HA-2640 and HA-2645 are monolithic operational amplifiers which are designed to deliver unprecedented dynamic specifications for a high voltage internally compensated device. These dielectrically isolated devices offer very low values for offset voltage and offset current coupled with large output voltage swing and common mode input voltage.

For maximum reliability, these amplifiers offer unconditional output overload protection through current limiting and a chip temperature sensing circuit. This sensing device turns the amplifier "off", when the chip reaches a certain temperature level.

These amplifiers deliver $\pm 35 \mathrm{~V}$ common mode input voltage range, $\pm 35 \mathrm{~V}$ output voltage swing, and up to $\pm 40 \mathrm{~V}$ supply range for use in such designs as regulators, power supplies, and industrial control systems. 4 MHz gain bandwidth and $5 \mathrm{~V} / \mu \mathrm{s}$ slew rate make these devices excellent components for high performance signal conditioning applications. Outstanding input and output voltage swings coupled with a low 5 nA offset current make these amplifiers excitation designs.

Features

- Output Voltage Swing . $\pm 35 \mathrm{~V}$
- Supply Voltage . $\pm 10 \mathrm{~V}$ to $\pm 40 \mathrm{~V}$
- Offset Current. 5nA
- Bandwidth . 4MHz
- Slew Rate. 5V/ $\mu \mathrm{s}$
- Common Mode Input Voltage Range. $\pm 35 \mathrm{~V}$
- Output Overload Protection

Applications

- Industrial Control Systems
- Power Supplies
- High Voltage Regulators
- Resolver Excitation
- Signal Conditioning

Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE (${ }^{\circ}$ C)	PACKAGE	PKG. DWG. \#
HA2-2640-2	HA2-2640-2	-55 to 125	8 Pin Metal Can	T8.C
HA7-2640-2	HA7-2640-2	-55 to 125	8 Ld CERDIP	F8.3A
HA2-2645-5 (No longer available or supported)	HA2-2645-5	0 to 75	8 Pin Metal Can	T8.C
HA7-2645-5 (No longer available or supported)	HA7-2645-5	0 to 75	8 Ld CERDIP	F8.3A

Pinouts

HA-2640/2645	HA-2640/2645
(CERDIP)	(METAL CAN)
TOP VIEW	TOP VIEW

(TO-99 CASE VOLTAGE = FLOATING)

Absolute Maximum Ratings	
Voltage Between V+ and V- Terminals	100V
Differential Input Voltage Range	37V
Output Current .	tection

Operating Conditions

Temperature Range

HA-2640-2 . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-2645-5 $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Thermal Information

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad V_{S U P P L Y}= \pm 40 \mathrm{~V}, R_{L}=5 k \Omega$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	HA-2640-2			HA-2645-5			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	

INPUT CHARACTERISTICS

Offset Voltage	25	-	2	4	-	2	6	mV
	Full		-	6	-	-	7	mV
Average Offset Voltage Drift	Full	-	15	-	-	15	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	25	-	10	25	-	12	30	nA
	Full	-	-	50	-	-	50	nA
Offset Current	25	-	5	12	-	15	30	nA
	Full	-	-	35	-	-	50	nA
Input Resistance (Note 2)	25	50	250	-	40	200	-	$\mathrm{M} \Omega$
Common Mode Range	Full	± 35	-	-	± 35	-	-	V

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain	$\mathrm{V}_{\text {OUT }}= \pm 30 \mathrm{~V}$	25	100	200	-	100	200	-	kV/V
		Full	75	-	-	75	-	-	kV/V
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 20 \mathrm{~V}$	Full	80	100	-	74	100	-	dB
Minimum Stable Gain		25	1	-	-	1	-	-	V/V
Unity Gain Bandwidth	$\mathrm{V}_{\text {OUT }}=90 \mathrm{mV}$	25	-	4	-	-	4	-	MHz

OUTPUT CHARACTERISTICS

| Output Voltage Swing | | Full | ± 35 | - | - | ± 35 | - | - | V |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Current | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | 25 | ± 12 | ± 15 | - | ± 10 | ± 12 | - | mA |
| Output Resistance | Open Loop | 25 | - | 500 | - | - | 500 | - | Ω |
| Full Power Bandwidth (Note 3) | $\mathrm{V}_{\text {OUT }}= \pm 35 \mathrm{~V}$ | 25 | - | 23 | - | - | 23 | - | kHz |

TRANSIENT RESPONSE $\mathrm{A}_{\mathrm{V}}=+1, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$									
Rise Time	$\mathrm{V}_{\text {OUT }}= \pm 200 \mathrm{mV}$	25	-	60	135	-	60	135	ns
Overshoot	$\mathrm{V}_{\text {OUT }}= \pm 200 \mathrm{mV}$	25	-	15	30		15	40	$\%$
Slew Rate		25	± 3	± 5	-	± 2.5	± 5	-	$\mathrm{V} / \mathrm{\mu s}$

POWER SUPPLY CHARACTERISTICS

Supply Current		25	-	3.2	3.8	-	3.2	4.5	mA
Supply Voltage Range		Full	± 10	-	± 40	± 10	-	± 40	V
Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$ to $\pm 40 \mathrm{~V}$	Full	80	90	-	74	90	-	dB

NOTES:
2. This parameter is based upon design calculations.
3. Full Power Bandwidth guaranteed based upon slew rate measurement: FPBW $=$ S.R. $/ 2 \pi V_{\text {PEAK }} ; V_{\text {PEAK }}=35 \mathrm{~V}$.

Schematic Diagram

Test Circuits and Waveform

FIGURE 1. SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

NOTE: Tested offset adjustment range is $\left|\mathrm{V}_{\mathrm{OS}}+1 \mathrm{mV}\right|$ minimum referred to output. Typical range is $\pm 20 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega$.
FIGURE 2. SUGGESTED V COMPENSATION HOOK UP

Test Circuits and Waveform (Continued)

Vertical $=10 \mathrm{~V} /$ Div., Horizontal $=5 \mu \mathrm{~s} /$ Div.

NOTE: $R_{L}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 40 \mathrm{~V}$
FIGURE 3. VOLTAGE FOLLOWER PULSE RESPONSE

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 4. INPUT BIAS AND OFFSET CURRENT vs TEMPERATURE

FIGURE 6. NORMALIZED AC PARAMETERS vs TEMPERATURE

FIGURE 5. INPUT NOISE CHARACTERISTICS

FIGURE 7. OPEN LOOP FREQUENCY RESPONSE

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 8. NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE AT $\mathbf{2 5}^{\circ} \mathrm{C}$

FIGURE 10. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 12. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 9. OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM COMPENSATION PIN TO GROUND

OUTPUT LOAD CURRENT (mA)
FIGURE 11. OUTPUT CURRENT CHARACTERISTIC

FIGURE 13. OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE

Die Characteristics

SUBSTRATE POTENTIAL (Powered Up):

Unbiased

TRANSISTOR COUNT:

76

PROCESS:

HV200 Bipolar Dielectric Isolation
Metallization Mask Layout

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision.

DATE	REVISION	CHANGE
August 7, 2015	FN2904.6	Page 1, Ordering Information table: HA2-2645-5 and HA7-2645-5 no longer available or supported. Added Revision History and About Intersil.

About Intersil

Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com.
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.
Reliability reports are also available from our website at www.intersil.com/support

Metal Can Packages (Can)

NOTES:

1. (All leads) $Ø b$ applies between $L 1$ and $L 2 . ~ Ø b 1$ applies between $L 2$ and 0.500 from the reference plane. Diameter is uncontrolled in L1 and beyond 0.500 from the reference plane.
2. Measured from maximum diameter of the product.
3. α is the basic spacing from the centerline of the tab to terminal 1 and β is the basic spacing of each lead or lead position ($\mathrm{N}-1$ places) from α, looking at the bottom of the package.
4. N is the maximum number of terminal positions.
5. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
6. Controlling dimension: INCH .

T8.C MIL-STD-1835 MACY1-X8 (A1) 8 LEAD METAL CAN PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.165	0.185	4.19	4.70	-
Øb	0.016	0.019	0.41	0.48	1
Øb1	0.016	0.021	0.41	0.53	1
Øb2	0.016	0.024	0.41	0.61	-
ØD	0.335	0.375	8.51	9.40	-
ØD1	0.305	0.335	7.75	8.51	-
ØD2	0.110	0.160	2.79	4.06	-
e		SC		BSC	-
e1	0.1	SC		BSC	-
F	-	0.040	-	1.02	-
k	0.027	0.034	0.69	0.86	-
k1	0.027	0.045	0.69	1.14	2
L	0.500	0.750	12.70	19.05	1
L1	-	0.050	-	1.27	1
L2	0.250	-	6.35	-	1
Q	0.010	0.045	0.25	1.14	-
α	$45^{\circ} \mathrm{BSC}$		$45^{\circ} \mathrm{BSC}$		3
β	$45^{\circ} \mathrm{BSC}$		$45^{\circ} \mathrm{BSC}$		3
N	8		8		4

Rev. 0 5/18/94

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
4. Corner leads ($1, N, N / 2$, and $N / 2+1$) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension Q shall be measured from the seating plane to the base plane.
7. Measure dimension S1 at all four corners.
8. N is the maximum number of terminal positions.
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
10. Controlling dimension: INCH

F8.3A MIL-STD-1835 GDIP1-T8 (D-4, CONFIGURATION A) 8 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.405	-	10.29	5
E	0.220	0.310	5.59	7.87	5
e		SSC	2.	BSC	-
eA		SC		BSC	-
eA/2		SC		BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
CCC	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2, 3
N	8		8		8

Rev. 0 4/94

© Copyright Intersil Americas LLC 2001-2015. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

