LENESAS

C
77
@D
ﬂ\l
7
<
Q
S
-
QL

CubeSuite+ V1.00.00

Integrated Development Environment
User’s Manual: V850 Coding

Target Device
V850 Microcontroller

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWw.renesas.com Rev.1.00 Apr 2011

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

How to Use This Manual

This manual describes the role of the CubeSuite+ integrated development environment for developing application
systems for V850 microcontrollers, and provides an outline of its features.

CubeSuite+ is an integrated development environment (IDE) for V850 microcontrollers, integrating the necessary
tools for the development phase of software (e.g. design, implementation, and debugging) into a single platform.

By providing an integrated environment, it is possible to perform all development using just this product, without
the need to use many different tools separately.

Readers This manual is intended for users who wish to understand the functions of the
CubeSuite+ and design software and hardware application systems.

Purpose This manual is intended to give users an understanding of the functions of the
CubeSuite+ to use for reference in developing the hardware or software of systems
using these devices.

Organization This manual can be broadly divided into the following units.

CHAPTER 1 GENERAL

CHAPTER 2 FUNCTIONS

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS
CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS
CHAPTER 5 LINK DIRECTIVE SPECIFICATION
CHAPTER 6 FUNCTIONAL SPECIFICATION

CHAPTER 7 STARTUP

CHAPTER 8 ROMIZATION

CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER
CHAPTER 10 CAUTIONS

APPENDIX A EDITOR

APPENDIX B INDEX

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electricity, logic
circuits, and microcontrollers.

Conventions Data significance: Higher digits on the left and lower digits on the right
Active low representation: XXX (overscore over pin or signal name)
Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remark: Supplementary information

Numeric representation: Decimal ... XXXX
Hexadecimal ... OxXXXXX

Related Documents

The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Document Name

Document No.

CubeSuite+

Integrated Development Environment

User's Manual

Start R20UT0545E
78K0 Design R20UTO0546E
78KOR Design R20UT0547E
RL78 Design R20UTO0548E
V850 Design R20UTO0549E
R8C Design R20UTO0550E
78K0 Coding R20UTO551E
RL78,78KOR Coding R20UTO0552E
V850 Coding This manual

Coding for CX Compiler R20UTO0554E
R8C Coding R20UT0576E
78K0 Build R20UTO0555E
RL78,78KOR Build R20UT0556E
V850 Build R20UTO0557E
Build for CX Compiler R20UT0558E
R8C Build R20UT0575E
78K0 Debug R20UT0559E
78KOR Debug R20UT0560E
RL78 Debug R20UTO561E
V850 Debug R20UT0562E
R8C Debug R20UT0574E
Analysis R20UTO0563E
Message R20UT0407E

Caution The related documents listed above are subject to change without
notice. Be sure to use the latest edition of each document when

designing.

All trademarks or registered trademarks in this document are the property of their respective

owners.

[MEMO]

[MEMO]

[MEMO]

TABLE OF CONTENTS

CHAPTER 1 GENERAL ... 13

1.1 Outline ... 13
1.2 Special Features ... 13

CHAPTER 2 FUNCTIONS ... 14

2.1 Variables (C language) ... 14
2.1.1 Allocating to sections accessible with short instructions ... 14
2.1.2 Changing allocated section ... 15
2.1.3 Defining variables for use during standard and interrupt processing ... 17
2.1.4 Defining user port ... 19
2.1.5 Defining const constant pointer ... 20
2.2 Functions ... 21
2.2.1 Changing areato be allocated to ... 21
2.2.2 Calling an away function ... 22
2.2.3 Embedding assembler instructions ... 23
2.2.4 Executing in RAM ... 23
2.3 Using Microcomputer Functions ... 24
2.3.1 Accessing peripheral I/O register with C language ... 24
2.3.2 Describing interrupt processing with C language ... 25
2.3.3 Using CPU instructions in C language ... 26
2.3.4 Creating a self-programming boot area ... 28
2.4 Variables (Assembler) ... 29
2.4.1 Defining variables with no initial values ... 29
2.4.2 Defining const constants with initial values ... 30
2.4.3 Referencing section addresses ... 31
2.5 Startup Routine ... 32
2.5.1 Secure stack area ... 32
2.5.2 Securing stack area and specifying allocation ... 34
2.5.3 Initializing RAM ... 35
2.5.4 Preparing function and variable access ... 36
2.5.5 Preparing to use code size reduction function ... 39
2.5.6 Ending startup routine ... 40
2.6 Link Directives ... 41
2.6.1 Adding function section allocation ... 41
2.6.2 Adding section allocation for variables ... 41
2.6.3 Distributing section allocation ... 42
2.7 Reducing Code size ... 44
2.7.1 Reducing code size (C language) ... 44
2.7.2 Reducing variable area with variable definition method ... 56
2.8 Accelerating Processing ... 59
2.8.1 Accelerate processing with description method ... 59

2.9 Compiler and Assembler Mutual References ... 61
2.9.1 Mutually referencing variables ... 61
2.9.2 Mutually referencing functions ... 63

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS ... 64

3.1 Basic Language Specifications ... 64
3.1.1 Processing system dependent Items ... 64
3.1.2 Ansioption ... 77
3.1.3 Internal representation and value area of data ... 78
3.1.4 General-purpose registers ... 84
3.1.5 Referencing data ... 85
3.1.6 Software register bank ... 85
3.1.7 Mask register ... 87
3.1.8 Device file ... 89
3.2 Extended Language Specifications ... 91
3.2.1 Macro name ... 91
3.2.2 Keyword ... 92
3.2.3 #pragma directive ... 92
3.2.4 Using expanded specifications ... 94
3.2.5 Modification of C-source ... 148
3.3 Function Call Interface ... 149
3.3.1 Calling between C functions ... 149
3.3.2 Prologue/Epilogue processing function ... 160
3.3.3 far jump function ... 162
3.4 Expanded Function of CC78Kx ... 168
3.4.1 #pragma directive ... 168
3.4.2 Assembler control instructions ... 172
3.4.3 Specifying interrupt/exception handler ... 172
3.4.4 Expanded function not supported ... 172
3.5 Section Name List ... 172

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS ... 174

4.1 Description of Source ... 174

4.1.1 Description ... 174

4.1.2 Expression ... 183

4.1.3 Operators ... 185

4.1.4 Arithmetic operators ... 186

4.1.5 Shift operators ... 186

4.1.6 Bitwise logical operators ... 187

4.1.7 Comparison operators ... 187

4.1.8 Operation rules ... 189

4.1.9 Definition of absolute expression ... 190

4.1.10 Identifiers ... 192

4.1.11 Characteristics of an operand ... 192
4.2 Quasi Directives ... 207

4.2.1 Outline ... 207

4.2.2 Section definition quasi directives ... 208

4.2.3 Symbol control quasi directives ... 232
4.2.4 Location counter control quasi directives ... 239
4.2.5 Area allocation quasi directives ... 242
4.2.6 Program linkage quasi directives ... 251
4.2.7 Assembler control quasi directive ... 257
4.2.8 File input control quasi directives ... 262
4.2.9 Repetitive assembly quasi directives ... 265
4.2.10 Conditional assembly quasi directives ... 269
4.2.11 Skip quasi directives ... 283
4.2.12 Macro quasi directives ... 288

4.3 Macro ... 293
4.3.1 Outline ... 293
4.3.2 Usage of macro ... 294
4.3.3 Symbols in macro ... 294
4.3.4 Macro operator ... 295

4.4 Reserved Words ... 296

4.5 Instructions ... 297
4.5.1 Memory space ... 297
4.5.2 Register ... 298
4.5.3 Addressing ... 334
4.5.4 Instruction set ... 342
4.5.5 Description of instructions ... 357
4.5.6 Load/Store instructions ... 358
4.5.7 Arithmetic operation instructions ... 367
4.5.8 Saturated operation instructions ... 430
4.5.9 Logical instructions ... 444
4.5.10 Branch instructions ... 490
4.5.11 Bit Manipulation instructions ... 507
4.5.12 Stack manipulation instructions ... 516
4.5.13 Special instructions ... 521
4.5.14 Pipeline (V850) ... 545
4.5.15 Pipeline (V850ES) ... 569
4.5.16 Pipeline (V850E1) ... 609
4.5.17 Pipeline (V850E2) ... 647

CHAPTER 5 LINK DIRECTIVE SPECIFICATION ... 679

5.1 Coding Method ... 679
5.1.1 Characters used in link directive file ... 679
5.1.2 Link directive file name ... 680
5.1.3 Segment directive ... 680
5.1.4 Mapping directive ... 685
5.1.5 Symbol directive ... 692
5.2 Reserved Words ... 697

CHAPTER 6 FUNCTIONAL SPECIFICATION ... 698

6.1 Supplied Libraries ... 698
6.1.1 Standard library ... 700

6.1.2 Mathematical library ... 705
6.1.3 ROMization library ... 707
6.2 Header Files ... 708
6.3 Re-entrant ... 708
6.4 Library Function ... 709
6.4.1 Functions with variable arguments ... 709
6.4.2 Character string functions ... 713
6.4.3 Memory management functions ... 731
6.4.4 Character conversion functions ... 739
6.4.5 Character classification functions ... 745
6.4.6 Standard I/O functions ... 758
6.4.7 Standard utility functions ... 790
6.4.8 Non-local jump functions ... 817
6.4.9 Mathematical functions ... 820
6.4.10 Copy function ... 861
6.5 Runtime Library ... 862
6.6 Library Consumption Stack List ... 864
6.6.1 Standard library ... 864
6.6.2 Mathematical library ... 874
6.6.3 ROMization library ... 875

CHAPTER 7 STARTUP ... 876

7.1 Functional Outline ... 876
7.2 File Contents ... 876
7.3 Startup Routine ... 877
7.3.1 Setting RESET handler when reset is input ... 878
7.3.2 Setting of register mode of start up routine ... 878
7.3.3 Securing stack area and setting stack pointer ... 879
7.3.4 Securing argument area for main function ... 880
7.3.5 Setting text pointer (tp) ... 880
7.3.6 Setting global pointer (gp) ... 881
7.3.7 Setting element pointer (ep) ... 882
7.3.8 Setting mask value to mask registers (r20 and r21) ... 882
7.3.9 Initializing peripheral 1/O registers that must be initialized before execution of main
function ... 883
7.3.10 Initializing user target that must be initialized before execution of main function ... 884
7.3.11 Clearing shss areato 0 ... 884
7.3.12 Clearing bss areato 0 ... 885
7.3.13 Clearing sebss areato 0 ... 886
7.3.14 Clearing tibss.byte areato 0 ... 887
7.3.15 Clearing tibss.word areato O ... 888
7.3.16 Clearing sibss areato 0 ... 889
7.3.17 Setting of CTBP value for prologue/epilogue runtime library of functions [V850E] ...
890
7.3.18 Setting of programmable peripheral I/O register value [V850E] ... 891
7.3.19 Setting r6 and r7 as argument of main function ... 892
7.3.20 Branching to main function (when not using real-time OS) ... 892
7.3.21 Branching to initialization routine of real-time OS (when using real-time OS) ... 893

7.4 Coding Example ... 894

CHAPTER 8 ROMIZATION ... 900

8.1 Outline ... 900
8.2 rompsec Section ... 902
8.2.1 Types of sections to be packed ... 902
8.2.2 Size of rompsec section ... 902
8.2.3 rompsec section and link directive ... 903
8.3 Creation of Object for ROMization ... 905
8.3.1 Creation procedure (default) ... 905
8.3.2 Creation procedure (customize) ... 907
8.4 Copy Function ... 910

CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER ... 915

9.1 Method of Accessing Arguments and Automatic Variables ... 915
9.2 Method of Storing Return Value ... 915

9.3 Calling of Assembly Language Routine from C Language ... 916
9.4 Calling of C Language Routine from Assembly Language ... 917
9.5 Reference of Argument Defined by Other Language ... 918

CHAPTER 10 CAUTIONS ... 919

10.1 Delimiting Folder/Path ... 919

10.2 Option Specification Sequence ... 919

10.3 Mixing with K&R Format in Function Declaration/Definition ... 920
10.4 Output of Other Than Position-Independent Codes ... 921

10.5 Count of Derivative Type Qualification for Type Configuration ... 921
10.6 Length of Identifier and Valid Number of Characters ... 921

10.7 Number of Times of Block Nesting ... 922

10.8 Number of case Labels in switch Statement ... 922

10.9 Floating-Point Operation Exception in Operation of Constant Expression ... 922
10.10 Merging Vast/Large-Quantity File ... 922

10.11 Optimization of Vast File ... 922

10.12 Library File Search by Specifying Option ... 923

10.13 Volatile Qualifier ... 923

10.14 Extra Brackets in Function Declaration ... 926

APPENDIX A EDITOR ... 927

APPENDIX B INDEX ... 932

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

CHAPTER 1 GENERAL

This chapter provides a general outline of the V850 microcontrollers C compiler package(CA850).

1.1 Outline

The V850 microcontrollers C compiler package (CA850) is a program that converts programs described in C language
or assembly language into machine language.

1.2 Special Features

The V850 microcontrollers C compiler package is equipped with the following special features.

(1) Language specifications in accordance with ANSI standard
The C language specifications conform to the ANSI standard. Coexistence with prior C language specifications
(K&R specifications) is also provided.

(2) Advanced optimization
Code size and speed priority optimization for the C compiler and assembler are offered.

(3) Built-in control functionality
Utilites to facilitate application system ROMization work are offered.

(4) Improvement to description ability
C language programming description ability has been improved due to enhanced language specifications.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 13 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

CHAPTER 2 FUNCTIONS

This chapter explains the programming method and how to use the expansion functions for more efficient use of the
CAB850.
2.1 Variables (C language)

This section explains variables (C language).

211 Allocating to sections accessible with short instructions

The V850 contains 2-byte instruction length load/store instructions. By allocating variables to sections accessible with
these instructions it is possible to reduce the code size.

When defining or referencing a variable use the #pragma section and specify “tidata” as the section type.

#ipragma section section-type begin

variable-declaration/definition

#ipragma section section-type end

Example

#ipragma section tidata begin

int a = 1; /*allocated to tidata.word attribute section*/

int b; /*allocated to tibss.word attribute section*/

#pragma section tidata end

Remark See "#pragma section directive" .

R20UT0553EJ0100 Rev.1.00 RENESAS Page 14 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.1.2 Changing allocated section

The default allocation sections are as follows:
- Variables with no initial value: .sbss section
- Variables with initial value: .sdata section
- const constants: .const section
To change the allocated section specify the section type using #pragma section.

#ipragma section section-type begin
variable-declaration/definition

#pragma section section-type end

The relationship between section type and the section generated is as follows.

Section Type Initial Value Default Section Section Name Base Register Access Instruction
Name Change
data Yes .data Possible ap Id/st 2 instruction
No .bss Possible ap Id/st 2 instruction
sdata Yes .sdata Possible ap Id/st 1 instruction
No .sbss Possible ap Id/st 1 instruction
sedata Yes .sedata Not Possible ep lld/st 1 instruction
No .sebss Not Possible ep Id/st 1 instruction
sidata Yes .Sidata Not Possible ep Id/st 1 instruction
No .sibss Not Possible ep Id/st 1 instruction
tidata.byte Yes tidata.byte Not Possible ep sld/sst 1 instruction
No tibss.byte Not Possible ep sld/sst 1 instruction
tidata.word Yes .tidata.word Not Possible ep sld/sst 1 instruction
No tibss.word Not Possible ep sld/sst 1 instruction
sconst Yes .sconst Possible r0 Id/st 1 instruction
const Yes .const Possible r0 Id/st 1 instruction
Example

#ipragma section sdata "mysdata" begin
int a = 1; /*allocated to mysdata.sdata attribute section*/
int b; /*allocated to mysdata.sbss attribute section*/

#pragma section sdata "mysdata" end

When referencing a variable using the #pragma section instruction from a function in another file (i.e. reference file), it
is necessary to also specify the #pragma section instruction in the reference file and to define the affected variable as
extern format.

Example File that defines a table

R20UT0553EJ0100 Rev.1.00 RENESAS Page 15 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

#pragma section sconst begin

const unsigned char table datal9] = {1, 2, 3, 4, 5, 6, 7, 8, 9};

#pragma section sconst end

Example File that references a table

#pragma section sconst begin
extern const unsigned char table_datal];

#pragma section sconst end

Remark See "#pragma section directive" .

R20UT0553EJ0100 Rev.1.00 RENESAS Page 16 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

2.1.3 Defining variables for use during standard and interrupt processing

Specify as volatile variables that are to be used during both standard and interrupt processing.

When a variable is defined with the volatile qualifier, the variable is not optimized and optimization for assigning the
variable to a register is no longer performed. When a variable specified as volatile is manipulated, a code that always
reads the value of the variable from memory and writes the value to memory after the variable is manipulated is output.
The access width of the variable with volatile specified is not changed. A variable for which volatile is not specified is
assigned to a register as a result of optimization and the code that loads the variable from the memory may be deleted.
When the same value is assigned to variables for which volatile is not specified, the instruction may be deleted as a result
of optimization because it is interpreted as a redundant instruction.

[Example of source and output code when volatile has been specified]

If volatile is specified for "variable a", "variable b", and "variable c", a code that always reads the values of these vari-
ables from memory and writes them to memory after the variables are manipulated is output. Even if an interrupt occurs
in the meantime and the values of the variables are changed by the interrupt, for example, the result in which the change
is reflected can be obtained. (In this case, interrupts may have to be disabled while the variables are manipulated,
depending on the timing of the interrupt.)

When volatile is specified, the code size increases compared with when volatile is not specified because the memory

has to be read and written.

volatile int a; _func:
volatile int b; .option volatile
volatile int c¢; ld.w $_a, rlo0

void func (void) { .option novolatile

if (a <= 0) | cmp r0, rl0
b++; jgt .L2

} else { .option volatile
C++; ld.w $ b, rill

} .option novolatile

b++; add 1, rili

C++; .option volatile

} st.w rll, $ b

.option novolatile
jbr .L3
.L2:
.option volatile
ld.w $_c, ril2
.option novolatile
add 1, ril2
.option volatile
st.w rl2, $_c
.option novolatile
L3
.option volatile
ld.w $_ b, ri13
.option novolatile
add 1, rl13

.option volatile

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 17 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

st.w rl3, $ b
.option novolatile
.option volatile
ld.w $_c, ril4
.option novolatile
add 1, rl4

.option volatile
st.w rl4, $_c
.option novolatile

jmp [1p]

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 18 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.1.4 Defining user port

With regards to the user port, specify volatile as in the following example to avoid optimization.

[Example of port description process]

/* 1.Port macro (format) definition*/

#define DEFPORTB (addr) (* ((volatile unsigned char *)addr)) /* 8-bit port*/
#define DEFPORTH (addr) (* ((volatile unsigned short *)addr)) /* 16-bit port*/
#define DEFPORTW (addr) (* ((volatile unsigned int *)addr)) /* 32-bit port*/

/* 2.Port definition (Example: PORT1 0x00100000 8bit)*/
#define PORT1 DEFPORTB (0x00100000) /* 0x00100000 8-bit port*/
/* 3. Port usex*/
{
PORT1 = OxFF; /* Write to PORT1*/
a = PORTL; /* Read from PORT1*/

}

/* 4.C Compiler output code*/

mov 1048576, rlO0
#@BEGIN_VOLATILE
st.b r20, [r10]
#@END_VOLATILE

mov 1048576, rll
#@BEGIN_VOLATILE
1d.b [r11], ri12

#@END_VOLATILE

Remarks 1.

By declaring a structure and assigning that structure variable to a specific section, and then assigning it
to the corresponding port address in the link directive, bit access is possible in the same "X.X" format
used in the CA850 internal region I/O register.

However, in the case of 1-bit or 8-bit access both the bit field and byte union are required, so the format
becomes "X.X.X".

Assigning variables to sections should be performed using #pragma section or the section file.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 19 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

2.15 Defining const constant pointer

The pointer is interpreted differently depending on the "const" specified location.
To assign the const section to the sconst section, specify #pragma section sconst.

- const char *p ;
This indicates that the object (*p) indicated by the pointer cannot be rewritten.
The pointer itself (p) can be rewritten.
Therefore the state becomes as follows and the pointer itself is allocated to RAM (.sdata/.data).

/*Error*/

/*Correct*/

- char *const p ;
This indicates that the pointer itself (p) cannot be rewritten.

The object (*p) indicated by the pointer can be rewritten.
Therefore the state becomes as follows and the pointer itself is allocated to ROM (.sconst/.const).

/*Correct*/

/*Error*/

- const char *const p ;

This indicates that neither the pointer itself(p) nor the object (*p) indicated by the pointer can be rewritten.

Therefore the state becomes as follows and the pointer itself is allocated to ROM (.sconst/.const).

/*Error*/

/*Error*/

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 20 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.2 Functions

This section explains functions.

221 Changing area to be allocated to

When changing a function's section name, specify the function using the #pragma text directive as shown below.

#pragma text ["section name"] function name

#ipragma text ["section name"]

For a text attribute section that has had its section name changed, specify the initial section name from the time the
input section was created in a link directive.

Example The link directive coding method for when [#pragma text "secl" funcl] has been coded in the C source,

allocating function "funcl" to the independently generated text-attribute section "secl" (segment name:
FUNC1):

FUNC1: 'LOAD ?RX{

secl.text = $SPROGBITS ?AX secl.text;

}i

When allocating a specific function to an independently specified text-attribute section using the #pragma text directive,

the section name actually generated will be "(specified character string)+.text", and the section name must be entered in
the link directive.

In the above example it would be "secl.text section”.

Remark See "#pragma text directive" .

R20UT0553EJ0100 Rev.1.00 RENESAS Page 21 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.2.2 Calling an away function

The C compiler uses the jarl instruction to call functions.

However, depending on the program allocation the address may not be able to be resolved, resulting in an error when
linking because the jarl instruction is 22-bit displacement.

In such a case, it is possible to make the function call not depend on the displacement amount by using the C com-
piler's -Xfar_jump option.

This is called the far jump function.

When calling a function set as far jump, the jmp instruction rather than the jarl/jal instruction is output.

One function is described per line in the file where the -Xfar_jump option is specified. The names described should be

C language function names prefixed with *_" (an underscore).

Example

_func_led
_func_beep

_func_motor

_func_switch

If the following is described in place of "_function-name", all functions will be called using far jump.

{all function}

Remark See "far jump function" .

R20UT0553EJ0100 Rev.1.00 RENESAS Page 22 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.2.3 Embedding assembler instructions

With the CA850 assembler instructions can be described in the following formats within C language source programs.
- asm declaration

__asm(character string constant); or _ asm(character string constant) ;

- #pragma directive

#fpragma asm
Assembler instruction

#fpragma endasm

To use registers with an inserted assembler, save or restore the contents of the registers in the program because they
are not saved or restored by the CA850.

Example

__asm("nop ") ;

__asm(".str \"string\\o\"");;

#pragma asm
mov r0, rl0
st.w rlo, $_ i

#fpragma endasm

Assembler instructions written within asm declarations and between #pragma asm and #pragma endasm directives are
never expanded even if the assembler source contains material defined by C language #define.

Furthermore assembler instructions written within asm declarations and between #pragma asm and #pragma endasm
directives are not expanded even if the -P option is added in the C compiler because they are passed as is to the assem-
bler.

Remark See "Describing assembler instruction™ .

2.2.4 Executing in RAM

A program allocated to external ROM can be copied to internal RAM and executed in internal RAM while linking and
after copying if the relative value of each section and each symbol (TP, EP, GP) is not destroyed.

Use caution, as some programs can be copied while others cannot.

If a program is copied to internal RAM following reset and is not changed, this can be done more easily by using the
ROMization function.

The text section can be packed with romp850.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 23 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.3 Using Microcomputer Functions

This section explains using microcomputer functions.

231 Accessing peripheral 1/0O register with C language

When reading from and writing to the device's internal peripheral I/O register in C language, adding a pragma directive
to the C source makes possible reading and writing using the peripheral 1/O register name and bit names.
The peripheral 1/O register name can be treated as a standard unsigned external variable.

#pragma ioreg
register name = ...
register name.bit number = ...

bit name = ..

After describing the above pragma directive as above, the peripheral 1/0O register name becomes usable.

Example

#pragma ioreg

main() {
int 1i;
PO = 1; /* Writes 1 to PO*/
i = RXBO; /* Reads from RXBO*/

void func (void) {

Pl = 0; /* Writes 0 to P1*/

void func2 (void) {

P0.1 = 1; /* Sets bit 1 of PO to 1*/
P2.3 = 0; /* Sets bit 3 of P2 to 0%/
PS00 = 1; /* Sets the bit named PSOO to 1*/

For peripheral I/O register bit names, the relevant bit names are limited to ones defined by the CA850.
An error will therefore occur if the bit name is undefined.
To access an undefined bit, use "register name.bit number".

Remarks 1. To access the 4th bit of C port 3, use "P3.4".
2. See "Peripheral I/O register" .

R20UT0553EJ0100 Rev.1.00 RENESAS Page 24 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

2.3.2 Describing interrupt processing with C language

With the CA850, the interrupt handler is specified using the "#pragma interrupt directive" and "__interrupt qualifier" (for

standard interrupt), or the "#pragma interrupt directive" and "__multi_interrupt qualifier” (for multiple interrupt).
An example of the interrupt handler is shown below.

Example Non-maskable interrupt

#pragma interrupt NMI funcl
__interrupt

void funcl (void) {

/*non-maskable interrupt*/

Example Multiple interrupt specification

#pragma interrupt INTPO func2
_ multi interrupt

void func2 (void) {

/* multiple-interrupt function specified*/

Remark

See "Interrupt/Exception processing handler” .

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 25 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

2.3.3

Using CPU instructions in C language

Some assembler instructions can be described in C language source as embedded functions. However, they are not

described exactly as assembler instructions, but rather in the function format prepared by the CA850.

Instructions that can be described as functions are shown below.

Assembler Function Embedded Function Description
Instruction
di Interrupt control (ei) __DI()
ei Interrupt control (di) __EI()
nop nop __nop()
halt halt ~_halt()
satadd Saturated addition (satadd) long a, b;
long _ satadd(a, b);
satsub Saturated subtraction (satsub) long a, b;
long _ satsub(a, b);
bsh Halfword data byte swap (bsh) [V850E] long a;
long _ bsh(a);
bsw Word data byte swap (bsw) [V850E] long a;
long _ bsw(a);
hsw Word data halfword swap (hsw) [V850E] long a;
long _ hsw(a);
sxb Byte data sign extension (sxb) [V850E] char a;
long _ sxb(a);
sxh Halfword data sign extension (sxh) [V850E] short a;
long _ sxh(a);
mul Instruction that assigns higher 32 bits of multiplication long a; long b;
result to variable using mul instruction [V850E] long mul32(a, b);
mulu Instruction that assigns higher 32 bits of unsigned unsigned long a, b;
multiplication result to variable using mulu instruction unsigned long _ mul32u(a, b);
[V850E]
sasf Flag condition setting with logical left shift (sasf) long a;

[V850E]

unsigned int b;

long _ sasf(a, b);

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 26 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

Example

long a, b, c;

void func (void) {

c = _ satsub(a, b); /* The result of the saturated operation of a and b is stored in c
(c =a - b) */

__nop();

Remark See "Embedded functions" .

R20UT0553EJ0100 Rev.1.00 RENESAS Page 27 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.3.4 Creating a self-programming boot area

Variables and functions can be referenced between the flash area and boot area with the following operations.
- Boot area functions can be called directly from the flash area.
- Calling a function from the boot area to the flash area is performed via a branch table.
- External boot area variables can be referenced from the flash area.
- External flash area variables cannot be referenced from the boot area.
- Common external variables as well as global functions can be defined for use by both boot area programs and
flash area programs. In this case the variable or function on the same area side is referenced.

Boot Area Side ROM Flash Area Side ROM

_bootfunc; _flashfunc]

A T A A

jarl _bootfunc, 1lp —+—

_J jarl _flashfunc, 1lp—1—

jarl bootfunc, 1p —

jarl _flashfunc, lp——

Branch Table

ID:1 jr

4!———» J ID:0 Jjr _flashfuncf-

Flash area functions called from the boot area are defined with the ext_func directive.

.ext func function name, ID number

[Example (Within a C language program)]

#pragma asm

.ext_func _func_flash0, 0
.ext func func_ flashl, 1
.ext_func _func_flash2, 2

#pragma endasm

Additional specifications such as options must be made. See "Flash relink function” in the "v850 Build" for details.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 28 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.4 Variables (Assembler)

This section explains variables (Assembler).

24.1 Defining variables with no initial values

Use the .Icomm directive in a section with no initial value to allocate area for a variable with no initial value.

.lcomm label name, size, alignment condition

In order that it may be referenced from other files as well, it is necessary to define the label with the .globl directive.

.globl label namel, size]

[Example]

.globl valo -- Sets val0 as able to be referenced from other files

.globl vall -- Sets vall as able to be referenced from other files

.globl val2 -- Sets val2 as able to be referenced from other files

.sbss

.lcomm val0,4,4 -- Allocates 4 bytes of area for val0 and sets its alignment
condition to 4

.lcomm vall, 2,2 -- Allocates 2 bytes of area for vall and sets its alignment
condition to 2

.lcomm val2,1,1 -- Allocates 1 byte of area for val2 and sets its alignment
condition to 1

Remark See ".Icomm", ".globl".

R20UT0553EJ0100 Rev.1.00 RENESAS Page 29 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.4.2 Defining const constants with initial values

To define a const with an initial value, use the following directives within the .const or .sconst section.
- 1-byte values

.byte value[, value, ...]

- 2-byte values

.hword value([, value, ...]

- 4-byte values

.word value/[, value, ...]

Example Allocates 1 halfword and stores 100

.const
.align 4

.globl p, 2

.hword 100

Remark See ".byte", ".hword", ".word" .

R20UT0553EJ0100 Rev.1.00 RENESAS Page 30 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.4.3 Referencing section addresses

Symbols such as .data and .sdata (reserved symbols) which point to the beginnings and ends of sections are available.
Therefore, utilize the appropriate symbol name when using the address value of a specified section from the assembler
source.

Start symbol: __s[section name]
End symbol: __e[section name]

For example, the start symbol for the .sbss section is __ssbss, and its end symbol is __esbss.

These symbols can be used to retrieve the section start address and end address, but these symbol names cannot be
used to make direct references with C language labels.

To retrieve these symbol values, create global variables to store these values then store the symbol values in the vari-
ables in assembler source such as that of the start up module.

By referencing these variables in the C source this can be realized.

The same applies to symbols such as __gp_DATA.

For example, the method for retrieving the start and end addresses of a .data section is as follows.

[In assembler source]

..comm _data _top, 4, 4
.comm _data_end, 4, 4
.extern _ sdata, 4

.extern _ edata, 4

mov # sdata, ri2
st.w rl2, $_data top
mov # edata, ril3
st.w rl3, $ _data_end

[In C source]

extern int data top; /* extern defines data_top*/
extern int data_end; /* extern defines data end*/
void funcl (void) {

int top, end;

top = data_top;

end = data end;

Try using this method in cases where a C language label is used to initialize only a specified section.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 31 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.5 Startup Routine

This section explains startup routine.

251 Secure stack area

When setting a value to the stack pointer (sp), it is necessary to pay attention to the following points.
- The stack frame is generated downwards starting from the sp set value.
- Be sure to set the sp to point at the of 4-byte boundary position.
When the compiler references memory relative to a stack, it generates code based on the assumption the

stack pointer points at the 4-byte boundary position.
Allocate it to a data section (bss attribute section) as far as possible from gp.
If it is near the gp, there is a chance that the program data area will be destroyed.

[sp setting example]

.set STACKSIZE, 0x3f0

.bss

.lcomm _ stack, STACKSIZE, 4
mov # stack + STACKSIZE, sp

In the above example, the size of the stack frame used by the application is set to 0x3f0 bytes and area is secured.
The label "__stack" points to the lowest position (start) of the stack frame.

Because __stack is not external variable defined (via .globl declaration) in the default startup module, __stack cannot
be referenced from other files.

If a .globl declaration is executed to __stack it becomes possible to be referenced by other files.

The stack area defines the __stack symbol to the lowest position address and sets the sum address and size of
__stack to the stack pointer.

Therefore there is no symbol for the end address.

By doing the following, it becomes possible to define the next address after the stack area end address.

Use caution, as it is not the last address in the stack area.

.set STACKSIZE, 0x200

.bss

.globl _ stack --added
.globl _ stack_end --added
.lcomm _ stack, STACKSIZE, 4

.lcomm _ stack_end, 0, 0 --added

With the above definition, it is possible to refer to _stack and _stack_end symbols in the C source.
The mapping image becomes as follows.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 32 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

__stack_end

Stack Area

__stack »

0x0

The size of the __stack symbol is specified in the startup module and should therefore be defined in C source in an
array as follows.
Use caution because it is not the last address in the stack area.

extern unsigned long _stackl[];

Remark When using a label defined in the assembler in C language, one underscore is removed from the start of its
name.
Assembly language definition:__stack
Reference with C language : stack

The stack usage tracer (slk850) can be used to measure C source program stack area.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 33 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

252 Securing stack area and specifying allocation

This section explains securing stack area and specifying allocation.

(1) Secure stack area
In the startup routine, secure a stack in a section of a variable with no initial value with a specified section name.

[Example of setting sp]

.set STACKSIZE, 0x200
.section " stack", bss
. lcomm _ stack, STACKSIZE, 4

In the above example the section of the stack frame to be used by the application is set to .stack, the size is speci-
fied as 0x200 bytes and the area is secured.
The label "__stack" points to the lowest position (start) of the stack frame.

(2) Specify stack area allocation
In the link directive file specify the allocation of the section created in (1).

[Example of allocation specification]

STACK : !LOAD ?RW VOx3ffeel0 {

.stack = SNOBITS ?AW .stack;

In the above example the stack segment is called STACK, and is allocated to the address 0x3ffeeQ0.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 34 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

253 Initializing RAM

This section explains initializing RAM.

(1) Variables with no initial value
Processing to clear the .sbss and .bss sections with 0 is embedded in the default startup routine.
When clearing sections other than those above is desired, add such processing to the startup routine. When clear-
ing, use the symbols that indicate the section start and end.

Example Clear the .tibss.byte section

.extern _ stibss.byte, 4 -- .tibss.byte area start symbol
.extern _ etibss.byte, 4 -- .tibss.byte area end symbol
mov # stibss.byte, ril3

mov # etibss.byte, ril2

cmp rl2, rl3

jnl .L20

.L21:

st.w r0, [rl3]

add 4, rl3

cmp rl2, rl3

j1 .121

.L20:

(2) RAM initialization
When a load module has been downloaded to the in-circuit emulator without performing ROMization, data with ini-
tialized values placed in regions such as the data and sdata areas are set to their values at the time of download.
When using the load module output by the linker to debug, it is necessary to remove the RAM area initialization
routine.
In the case of a ROMization load module, it is necessary to use the _rcopy copy function to perform operations
such as copying data with initial values.
This processing is possible not in the startup routine but also before accessing a main function variable with an ini-
tial value, so perform it upon full completion of peripheral settings.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 35 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

254 Preparing function and variable access

The text pointer is used when accessing a function, and either the global pointer or the element pointer is used when
accessing a variable

(1) Preparations for accessing a function
The text pointer (tp) is a pointer prepared to implement referencing (PIC: Position Independent Code) independent
of the position at which the text area of an application, i.e., program code is allocated when the program code is
referenced. For example, if it is necessary to reference a specific location in the code during program execution,
the CA850 outputs the code to be accessed in tp-relative mode.
Since the code is output on the assumption that tp is correctly set, tp must be correctly set in the startup routine.
The text pointer value is determined during linking, and is in a symbol defined by a symbol directive that is
described in the link directive file. For example, suppose that the symbol directive of the text pointer is described
as follows.

__tp TEXT @ %TP_SYMBOL {TEXT};

The text pointer value is the beginning of the TEXT segment, and isin"__tp_ TEXT".
Describe as follows to set tp in the startup routine.

.extern _ tp TEXT, 4

mov #_tp TEXT, tp

R20UT0553EJ0100 Rev.1.00 RENESAS Page 36 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

(2) Variable access preparations (Setting global pointer)
External variables or data defined in an application are allocated to the memory. The global pointer (gp) is a
pointer prepared to implement referencing independent of location position (PID: Position Independent Data) when
the variables or data allocated to the memory are referenced. The CA850 outputs a code for the section that is to
be accessed in gp-relative mode.
Since the code is output on the assumption that gp is correctly set, gp must be correctly set in the startup routine.
The global pointer value is determined during linking, and is in a symbol defined by a symbol directive that is
described in the link directive file. For example, suppose that the symbol directive of the global pointer is described
as follows.

__gp DATA @ %GP_SYMBOL {DATA};

The gp symbol value can be defined the beginning of "data segment" of the DATA segment as shown above, or
offset from a text symbol. A gp symbol can be specified not only by specifying the start address of a data segment
(such as the DATA segment), but also by using an offset value from the text symbol as its address.

Using the second method, the gp symbol value is determined by adding an offset value from tp to tp. In other
words, a code that is independent of location can be generated. To copy a program code and data used by that
code to the RAM area simultaneously and execute them, the value of gp can be acquired immediately if the start
address of the copy destination is known. In this case, the symbol directive is described as follows.

__tp TEXT @ $TP_SYMBOL;

__gp DATA @ %GP_SYMBOL &__ tp TEXT {DATA};

The global pointer value is"__tp_ TEXT to which the value of __gp_DATA is added", and the value to be added,
i.e., offset value, is stored in "__gp_DATA". Therefore, describe as follows to set gp in the startup routine.

.extern _ tp TEXT, 4

.extern = gp DATA, 4

mov #_ tp_ TEXT, tp
mov # gp DATA, gp
add tp, gp

This sets the correct value of the global pointer to gp.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 37 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

(3) Variable access preparations (Setting element pointer)

Of the external variables or data defined in an application, those that are allocated to the following sections are
accessed from the element pointer (ep) in relative mode.

- sedata/sebss attribute section

- sidata/sibss attribute section

- tidata/tibss attribute section

- tidata.byte/tibss.byte section

- tidata.word/tibss.word section
If these sections exist, the CA850 outputs a code to access these areas in ep-relative mode.
Since the code is output on the assumption that ep is correctly set, ep must be correctly set in the startup routine.
The element pointer value is determined during linking, and is in a symbol defined by a symbol directive that is
described in the link directive file. For example, suppose that the symbol directive of the element pointer is
described as follows.

__ep DATA @ %EP SYMBOL;

The element pointer value is the beginning of the SIDATA segment by default, and its value is in "__ep_DATA".
Therefore, describe as follows to set ep in the startup routine.

.extern _ ep DATA, 4

mov #_ep DATA, ep

Reference the absolute address of __ep_DATA and set that value to ep.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 38 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

255 Preparing to use code size reduction function

This setting is necessary to reduce code size when the V850EXx core is used or when the prologue/epilogue runtime
library is used (i.e. When higher optimization (execution speed priority) is not specified or when "-Xpro_epi_runtime=on"
is specified).

Since the CALLT instruction is used when the prologue/epilogue runtime library of functions is called by the V850Ex
core, the value of CTBP necessary for the CALLT instruction must be set at the beginning of the function table of the pro-
logue/epilogue runtime library of functions.

The prologue/epilogue runtime library is used in the following case

- Compiler option "-Xpro_epi_runtime=on" is set
If a compiler option except "-Ot" is specified for optimization, "-Xpro_epi_runtime=on" is automatically specified.
The start symbol for the function prologue/epilogue runtime library function table is as follows.

- __ PROLOG_TABLE
Describe the following code using this symbol.

mov # PROLOG_TABLE, rl2

ldsr r12, 20

CTBP is system register 20. Set a value to it using the Idsr instruction.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 39 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

25.6 Ending startup routine

The final process in the startup routine differs depending on whether or not a real-time OS is used.

(1) When not using areal-time OS

When the processing necessary for the startup routine has been completed, execute an instruction that branches

to the main function.

Describe the following code to branch to the main function.

jarl _main, 1lp

When the main function has been executed, execution returns to the 4 bytes subsequent to this branch instruction.

The following instruction can also be used if it is known that execution does not return.

jr main

mov # main, 1p

jmp [1lp]

The entire 32-bit space can be accessed using the jmp instruction. When the "jarl_main, Ip" instruction is used,
execution returns after the main function is executed. It is recommended to take appropriate action to prevent

deadlock from occurring when execution returns.

(2) When using areal-time OS (RI850V4)

In an application using a real-time OS, execution branches to the initialization routine when the processing that
must be performed by the startup routine has been completed.

.extern _ kernel sit

.extern _ kernel start

mov # kernel sit, r6
mov #_ kernel_start, rll
jarl __jump_kernel start, 1lp

__boot_error:
jbr __boot_error

__jump_kernel start:
jmp [r11]

R20UT0553EJ0100 Rev.1.00 RENESAS Page 40 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.6 Link Directives

This section explains link directives.
Link directive files can be generated automatically in CubeSuite+.

Remark For information about how to automatically generate link directive files, see the "CubeSuite+ V850 Build"
user's Manual.

26.1 Adding function section allocation

To perform function section allocation, divert the .text section setting portion and change the segment name and sec-
tion name.

TEXT : ILOAD ?RX ({

.pro_epi runtime = $PROGBITS ?AX .pro_epi runtime; Divert

.text = S$SPROGBITS ?AX .text;

Example Setting allocation for USRTEXT segment and usr.text section

USRTEXT : !LOAD ?RX {

usr.text = SPROGBITS ?AX usr.text;

}i

2.6.2 Adding section allocation for variables

To add allocation settings for a variable section, divert the specification part for a section with the same attributes and
change the segment name and section name.
The section attributes specify the section type when the section is set to a variable in #pragma section.

Section Type Section to Be Diverted
data .data/.bss
sdata .sdata/.sbss
sconst .sconst
const .const

Example Setting allocation for USRCONST segment and usr.const section

USRCONST : ILOAD ?R {
usr.const = $PROGBITS ?A usr.const;
}i
R20UT0553EJ0100 Rev.1.00 RENESAS Page 41 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.6.3 Distributing section allocation

The following three methods for distributing section allocation are available.

(1) Distribute by section name
In the C source or assembler source, specify separate names for the sections to be allocated.
By specifying individual input section names within the link directive, the section of each name will be allocated to

its specified part.

Example
TEXT : !LOAD ?RX({
.text = S$PROGBITS ?AX .text ; <- the .text section is allocated
FUNC1 : !LOAD ?RX{
funcsecl.text = SPROGBITS ?AX funcsecl.text ; <- he funcsec.text section is allocated

(2) Distribute by object files
By specifying individual object names within the link directive, the section with the relevant attributes within each

object will be allocated to the specified part.

Example

TEXT1 : !LOAD ?RX {

.textl = $SPROGBITS ?AX { filel.o file2.o0 }; <- The TEXT ATTRIBUTE sections in filel.o and
file2.0 are allocated.

}i

TEXT2 : !LOAD ?RX{

.text2 = SPROGBITS ?AX { file3.o }; <- The TEXT ATTRIBUTE section in file3.o is

allocated.

When specifying the name an object file in a library (.a file), specify the .a file name including its path within paren-

theses.

Example

.text2 = $PROGBITS ?AX .text {rcopy.o(c:\micomtools\1ib850\r32\libr.a)};

R20UT0553EJ0100 Rev.1.00 RENESAS Page 42 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

(3) Distribute by section attributes
Specify allocation only by attributes without specifying the input section and input object. Because this setting has

a lower priority level than the part where settings such as section name and object name are made, it can be used
to specify allocation for all parts where section and object names are not already specified.

Example
TEXT1 : !LOAD ?RX V0x100000{
.textl = $PROGBITS ?AX{filel.o file2.o}; <- The TEXT ATTRIBUTE sections in filel.o and

}i
TEXT2

.text2

}i

file2.0 are allocated.

ILOAD ?RX V0x120000({

= $SPROGBITS ?AX ;

<- The TEXT ATTRIBUTE sections in objects

other than filel.o and file2.o are allocated.

(4) Allocation specification priority level

There are priority levels depending on the presence or lack of input section and input object specifications. When

allocating sections, the linker allocates starting with the highest priority specification.
The relationship between priority level and specifications is shown below. (A lower the priority level number repre-
sents a higher priority.)

Priority Specified Names Output
Level
1 Input section name The specified input section is extracted from the specified object and is
+ object file name then output.
2 Input section name only The specified input section is extracted from all objects and is then
output.
3 Object file name only Sections having the same attribute as the output section to be created
are extracted from the specified object and are then output.
4 No names specified Sections having the same attribute as the output section to be created
are extracted from all objects and are then ouput.

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS Page 43 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.7 Reducing Code size

This section explains reducing code size.

2.7.1 Reducing code size (C language)

This section explains reducing code size (C language).

(1) Access to variables
Because 4 bytes are needed each for external variable access loading and storing, even in non-assignment cases
it is possible to reduce code size by assigning the external variable into a temporary variable and using that tempo-
rary variable so as to change memory access to register access.
In the following example s is an external variable

Before change: After change:
if(x 1= 0){ unsigned int tmp = s;
if ((s & 0x00F00F00) != MASK1) { if(x = 0){
return; if ((tmp & 0xO00FO0FO00) != MASK1) {
} return;
S s>= 12; 1
s &= OXFF; tmp >>= 12;
}else(tmp &= OXFF;
if ((s & 0x00FF0000) != MASK2) { }else{
return; if ((tmp & 0xO00FF0000) != MASK2) {
} return;
S >>= 24; 1
} tmp >>= 24;
}
s = tmp;

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 44 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

(2) Number of loops in loop processing

As in the following example, expanding a function may make its size smaller if the number of times to execute is
few and body of each loop is small.

In this case, the execution speed also increases.

Before change: After change:

for(i = 0; 1 < 4; 1i++){ long *p;
arrayl[i] = 0;

} p = array;

*p = 0;

*(p + 1) = 0;

*(p + 2)

I
o

*(p + 3)

1]
o

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 45 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

(3) auto variable initialization

When an auto variable is used within a function without being initialized, because that variable is not allocated to a

register and remains in memory, the code size may increase.

In the following example if neither switch case applies then variable a is referenced in the return statement without

being initialized.

Even if in actuality it will certainly apply to one of the cases it may not to be initialized because when the C compiler
allocates to register it is not understood when the program is analyzed.

In a case such as this, it cannot be allocated with CA850 register allocation.

By adding initialization it becomes able to be allocated to a register and the code size is reduced.

Before change:
int func(int x)
int a;
switch (x) {
case O0:
a = VALO;
break;
case 1:
a = VALL;
}

return(a) ;

After change:
int func(int x)
int a = 0;
switch (x) {
case O0:
a = VALO;
break;
case 1:
a = VALL;
}

return(a) ;

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.

2. As aresult of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in

unintended places register transfers that had up until that point remained without being optimized

may be erased or, alternatively, that optimization may become ineffective causing redundant regis-

ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting

in code for saving and restoring that register being added to the function entrance and exit.

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 46 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

(4) switch statements
With respect to switch statements, if there are four or more case labels and the difference between each variable's
low limit and high limit is up to 3 times the number of cases, the CA850 generates code in table branch format.
In such an instance, if the number of cases is approximately 16 or less (this number varies depending on factors
such as the switch expression format and the label value distribution), changing them to equivalent if-else state-
ments and putting comparison and branch instructions in line will cause the code size to decrease.
In cases such as when the switch expression is an external variable reference or is a complex expression, it is nec-
essary to once substitute the value to a temporary variable and make the if expression refer to the temporary vari-
able.
In the following example x is an auto variable.

Before change:
switch (x) {
case VALO:
return (RETVALO) ;
case VALL:
return (RETVAL1) ;
case VAL2:
return (RETVAL2) ;
case VAL3:
return (RETVAL3) ;
case VAL4:

return (RETVAL4) ;

After change:

if (x == VALO)
return (RETVALO) ;

else if (x == VALl)
return (RETVALL) ;

else if (x == VAL2)
return (RETVAL2) ;

else if (x == VAL3)
return (RETVAL3) ;

else if (x == VAL4)
return (RETVAL4) ;

else if (x == VALS5)

case VALS5: return (RETVALS) ;

return (RETVALS) ;

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

4. With the CA850 it is possible to specify the switch statement development code with the -Xcase
option.

- -Xcase=ifelse
Outputs the code in the same format as the if-else statement along a string of case statements.

- -Xcase=binary
Outputs the code in the binary search format.

- -Xcase=table
Outputs the code in a table jump format.

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 47 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

(5) if statements

When executing the same processing to multiple cases with an if-else combination, if using a separate set of con-

ditions would make the "multiple cases" combine into one case, then combine them.

This will delete redundant parts.

In the example below, if the conditions "the initial value of x is 0 and the values of s as well as t are either O or 1"

are set, the code can be changed as follows.

Before change:
if (1s){
if () {

After change:
if((s ~ £)){

if ((++u) >= v){

Remarks 1.

The amount of reduction is specific to this example, and will vary case by case.

2. As aresult of changing the source, output instructions may be reduced and execution speed may

be increased.

3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in

unintended places register transfers that had up until that point remained without being optimized

may be erased or, alternatively, that optimization may become ineffective causing redundant regis-

ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting

in code for saving and restoring that register being added to the function entrance and exit.

If an assigned value is referenced immediately following its assignment statement, the part referred to is substi-

tuted by the assignment statement and combined into one.
This makes possible deletion of excess register transferring and reduction in code size.
In most cases, however, redundant register transferring is deleted by the C compiler's optimization, so the code

size would not change.

Before change: After change:
--s; if(--s == 0)){
if (s == 0){
}
}
R20UT0553EJ0100 Rev.1.00 RENESAS Page 48 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.

2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.

3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 49 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

(6) if-else statements
As in the following example, if each branch destination of an if-else statement includes only statements that assign
differing values to the same variable, it is possible to reduce the code size by moving one of the branch destina-
tions ahead of the if statement, because the else block will be erased and the jump instruction from the if the block
to after the else block is eliminated.

Before change: After change:
if (x == 10){ s = 0;

s = 1; if (x == 10) {
telse{ s = 1;

s = 0; 1
}

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

As in the following example, if the branch destinations of if-else statements contain only return statements and
those return values are the results of the branch conditions themselves, change it to return the branch condition
expression and delete the if-else statement.

Before change: After change:

if (sl == s2){ return (sl == s2);
return (1) ;

}

return(0) ;

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

If after each respective branch a function is called using differing arguments for the same function, move the func-
tion call to after the branches converge if possible.

To do this assign the differing arguments of the original function calls to temporary variables and use these tempo-
rary variables as arguments when calling the function.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 50 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

Before change: After change:
if (s) { int tmp;
if (s) {
func (0, 1, 2);
telse({ tmp = 2;
}else(
func (0, 1, 3);
} tmp = 3;
}
func (0, 1, tmp);

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.

2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.

3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

In the case that after respective branches an identical assignment statement or function call exists, move it to
before the branch if possible.

If that statement's evaluation result is referenced, assign it once to a temporary variable and reference the tempo-
rary variable.

The following example is a case of a function call.

Before change: After change:
if(x >= 0){ long tmp;
if(x > func(0, 1, 2)){ tmp = func(0, 1, 2);

if (x >= 0)

} if (x > tmp) {
}else{
if(x < -func(0, 1, 2)){ }
}else{
} if (x < -tmp) {

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.

2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.

3. Pay attention to the following points when changing the source.
- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized

R20UTO0553EJ0100 Rev.1.00

RENESAS
Apr 01, 2011

Page 51 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

In the case that after respective branches an identical assignment statement or function call exists, if it cannot be
moved to before the branch but can be moved to after the merge, move it to after the merge.
The following example is an assignment statement case.

Before change: After change:
if (tmp & MASK) { if (tmp & MASK) {
o+ telse({
telse(
}
J++i J++i
}

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.

2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.

3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 52 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

(7) switch/if-else statements

As in the following example, in the case where differing values are assigned to the same external variable at the
respective branch destinations of a switch statement or an if-else statement, it is possible to reduce code size by
assigning the values to a temporary variable at each branch and then reassigning the temporary variable value

back to the original external variable after the branches merge.

This is because, assigning to an external variable requires a memory store instruction (4 bytes) because external

variables are rarely allocated to registers, while in most cases assigning to a temporary variable uses a register

transfer (2 bytes).

In the following example s is an external variable.

Before change:

switch (x) {

case O0:
s = 0;
break;

case 1
s = 0x5555;
break;

case 2:

s = OxXAAAA;

break;
case 3:
s = OxFFFF;

After change:

int tmp;

tmp = 0;
telse 1if (x == 1){
tmp = 0x5555;
telse 1if(x == 2){
tmp = OxXAAAA;
}else if(x == 3) {
tmp = OXFFFF;
}else(
goto 1label;
}
s = tmp;

label:

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may

be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-

ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 53 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

(8) for/while statements

The CA850 generates condition judgment expressions twice for loops that begin with condition judgment expres-
sions such as for and while
This type of change to loop format is executed at the front end (parsing part), which is the C compiler's first phase.
This is because the first condition judgment is commonly deleted by subsequent optimization, and changing the

code in this way is advantageous with regards to increasing execution speed.
However, in cases where the first condition judgment is not deleted, changing the code in this way creates redun-

dancy with regards to code size.

[for loop]
Before change: After change:
for (statement 1; expression 2; statement statement 1;
3){
if (expression 2){
loop body
dof
}
loop body
statement 3;
}while (expression 2);
}
[while loop]

Before change:
while (expression 1) {

loop body

After change:
if (expression 1)
dof
loop body

}while (expression 1) ;

Therefore, when the first time condition judgment expression is not deleted by optimization it is possible to reduce

the number of condition judgments to one by changing the loop to one composed with goto as follows.

[for loop]

statement 1;
loop_bgn:
if (! expression 2)
loop body
statement 3;

goto loop_bgn;

loop end:

goto loop_ end;

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 54 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

[while loop]

loop bgn:
if (! expression 1) goto loop_end;
loop body

goto loop_bgn;

loop end:
Before change: After change:
for(i = 0; 1 < s; ++i){ i = 0;
array[i] = arrayl[i+l]; bgn_loop:
} if(i >= s) goto end loop;

array[i] = arrayl[i+l];
++1;
goto bgn_loop;

end loop:

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

(9) Functions with no return values
Define functions with no return values as "void."

R20UT0553EJ0100 Rev.1.00 RENESAS Page 55 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.7.2 Reducing variable area with variable definition method

This section explains reducing variable area with the variable definition method.

(1) Variable signs
With the V850 microcontrollers, byte data and halfword data are sign-extended to word length, depending on the
value of their most significant bit, when they are loaded from memory to registers.
Consequently, the mask code of the higher bits may be generated when an operation on unsigned char or
unsigned short type data is performed (but it will not be generated in an operation in the case that the data is
already in the register).
Please use word data whenever possible.
When using byte data and halfword data, please use them in signed format.

Remarks 1. The V850E supports unsigned load instructions.
Because of this, sign-extension will not occur, and mask code will not be generated.
2. Inthe case of a program where word data cannot be used and mask code ends up being gener-
ated, it is possible to reduce code size by using the mask register function.

(2) Variable format
Because by ANSI-C specifications variables in short integer ((unsigned) short and (unsigned) char) formats are
expanded to int format or unsigned int format during operation, many format change instructions are generated
with respect to programs that use these variables (particularly in cases where these variables are allocated to reg-
isters).
Since making them (unsigned) int format makes this format change unnecessary, the code size is reduced.
Particularly with respect to stack intervals that are relatively easy to allocate to registers, it is recommended to use
(unsigned) int format as much as possible.

Before change:

After change:

unsigned char i; int i;
for(i = 0; i < 4; i++){ for(i = 0; 1 < 4; i++){
array[2 + 1] = *(p + 1i); array[2 + 1] = *(p + 1i);

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

In such a case, the code size will increase by the save/restore code amount (8 bytes).

R20UTO0553EJ0100 Rev.1.00

RENESAS
Apr 01, 2011

Page 56 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

(3) Allocating and referencing automatic variables

As in the following example, if there is a time interval between when a value is assigned to a stack variable and
when that value is actually referenced, during that interval a register is occupied and the chance for other variables

to be allocated to registers decreases.

In such a case, changing the value assignment to immediately before it is actually referenced increases the chance

for other variables to be allocated to registers increases, decreases memory access, and decreases the code size.

Before change:
int i =0, j =0, k=0, m=0;

/*There is a function call in this
interval*/

/*These variables are not used*/
while ((k & OxXFF) != OxFF) {
k = s1;
if (k & MASK) {
if(m != 1)
s2 += 2;
m= 1;
array[15+i+j] = OXFF;

J++i

After change:

int i, j, k, m;

i=20;
= 0;
k = 0;
m = 0;
while ((k & OxFF) != OxFF) {
k = s1;

if (k & MASK) {
if(m t= 1)
s2 += 2;
m= 1;
array [15+1i+7]

J++i

OxFF;

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.

2. As aresult of changing the source, output instructions may be reduced and execution speed may

be increased.

3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in

unintended places register transfers that had up until that point remained without being optimized

may be erased or, alternatively, that optimization may become ineffective causing redundant regis-

ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting

in code for saving and restoring that register being added to the function entrance and exit.

In such a case, the code size will increase by the save/restore code amount (8 bytes).

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 57 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

(4) Variable types and order of definition

It is best to perform definitions in groups beginning with long data length values.

With the V850 microcontroller, word data in formats such as int format must be aligned to word boundaries, and

halfword data in formats such as short format must be aligned to halfword boundaries.
Due to this, source such as the following causes padding areas to be generated for alignment.

char
short
int
char

int

High position

Low position

In order to avoid the generation of such padding areas, define definitions of variables and structure members

grouped by format beginning with longer data lengths.

int
int
short
char

char

High position

d ‘ c | s

3

i

Low position

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 58 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.8 Accelerating Processing

This section explains accelerating processing.

28.1 Accelerate processing with description method

This section explains accelerate processing with the description method.

(1) Loop processing pointer
A variable that controls a loop as in the example below is called an induction variable.
"Deleting the induction variable" refers to optimization that deletes the induction variable by using a different vari-
able to control the loop.
The CA850 includes this optimization, but because applicable conditions are limited, not all cases are able to be
optimized.
By modifying the program in the following manner, this optimization can be performed "manually”.
In the lines below, induction variable i is deleted through the use of temporary variable (pointer) p.

Before change: After change:
int 1i; const unsigned short *p;
for(i = 0; *(table + i) != NULL; ++i){ for(p = table; *p != NULL; ++p){
if ((*(table + i) & OxXFF) == x){ if ((*p & OXFF) == x){
return (* (table + i) & OxFF00) ; return(*p & OxFF00) ;
} }
} }

Remarks 1. The amount of reduction is specific to this example, and will vary case by case.
2. As aresult of changing the source, output instructions may be reduced and execution speed may
be increased.
3. Pay attention to the following points when changing the source.

- Changing the source causes the state of register usage to change. It is therefore possible that in
unintended places register transfers that had up until that point remained without being optimized
may be erased or, alternatively, that optimization may become ineffective causing redundant regis-
ter transfers to remain.

- By adding temporary variables, a new register for register variables may come to be used, resulting
in code for saving and restoring that register being added to the function entrance and exit.

In such a case, the code size will increase by the save/restore code amount (8 bytes).

(2) Auto variable declaration
Keep the number of auto variables to within ten; of preferably to six or seven.
Auto variables are assigned to registers.
The CA850 allows a total of 20 registers, 10 work registers and 10 register variable registers, to be used for vari-
ables (in the 32-bit register mode).
It is recommended to use many auto variables if processing in one function takes time.
If the processing does not take much time, use only the 10 work registers whenever possible.
The register variable registers require overhead when they are saved or restored.
The C compiler automatically judges whether or not to use register variables.
Therefore, use six to seven registers for auto variables and leave three or four to be able to be used for work by the
C compiler.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 59 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

(3) Function arguments
Four argument registers, r6 to r9, are available.
If the number of arguments is five or more, the stack is used for the fifth and subsequent arguments.
Therefore, keep the number of arguments to within four whenever possible.
If five or more arguments must be used, pass the arguments using the pointer of a structure.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 60 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

2.9 Compiler and Assembler Mutual References

This section explains compiler and assembler mutual references.

29.1 Mutually referencing variables

This section explains mutually referencing variables.

(1) Reference avariable defined in C language

Define extern when referencing an external variable defined in a C language program from an assembly language

routine.
Prefix "_" (an underscore) to a variable defined in an assembly language routine.

Example C source

extern void subf (void);
char ¢ = 0 ;
int 1 = 0 ;
void main (void) {
subf ();
}

Example Assembler source

.globl
.extern
.extern
.text
.align
_subf :
mov
st.b
mov

st.w

jmp [1p]

_subf
_c

it

4

4, rlo0
rl0, $ c
7, rlo0

rlo, $ i

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 61 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

(2) Reference avariable defined in assembly language
Define extern when referencing in a C language routine an external variable defined in an assembly language pro-
gram.
Prefix "_" (an underscore) to a variable defined in an assembly language routine.

Example C source

extern char c ;

extern int 1 ;

void subf (void) {
c = 'A';

i =4 ;

Example Assembler source

.globl _c¢
.globl i
.sbss

.lcomm _i, 4, 4

.lcomm ¢, 1, 1

R20UT0553EJ0100 Rev.1.00 RENESAS Page 62 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.9.2 Mutually referencing functions

This section explains mutually referencing functions.

(1) Reference a function defined in C language
Note the following points when calling a function described in C language from an assembly language routine.

- Stack frame
Code is generated on the assumption that the stack pointer (sp) always indicates the lowest address of the
stack frame. Therefore, set sp so that it indicates the higher address of an unused area of the stack area
when execution branches from an assembler function to a C function.

- Work register
Values of the register variable registers before and after a C function is called are retained, but the values of
the work registers are not. Therefore, do not leave a value that must be retained assigned to a work register.

- Return address to return to assembler function
Code is generated on the assumption that the return address of a function is stored in link pointer Ip (r31).
When execution branches to a C function, therefore, the return address of the function must be stored in Ip.

(2) Reference a function defined in assembly language
Note the following points when calling an assembly language routine from a function described in C language.
- ldentifier

Prefix to the name.

- Stack frame
Code is output based on the assumption that the stack pointer (sp) always indicates the lowest address of the
stack frame. Therefore, the address area lower than the address indicated by sp can be freely used in the
assembler function after branching from a C language source to an assembler function. Conversely, if the
contents of the higher address area are changed, the area used by a C function may be lost and the subse-
guent operation cannot be guaranteed. To avoid this, change sp at the beginning of the assembler function
before using the stack.
At this time, however, make sure that the value of sp is retained before and after calling.

- Register variable register
When using a register variable register in an assembler function, make sure that the register value is retained
before and after the assembler function is called. In other words, save the value of the register variable regis-
ter before calling the assembler function, and restore the value after calling.

- Return address to C language function
Code is generated on the assumption that the return address of a function is stored in link pointer Ip (r31).
When execution branches to an assembler function, the return address of the function is stored in Ip. Execute
the jmp [Ip] instruction to return to a C function.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 63 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

This chapter explains language specifications supported by the CA850.

3.1 Basic Language Specifications

The CA850 supports the language specifications stipulated by the ANSI standards. These specifications include items
that are stipulated as processing definitions. This chapter explains the language specifications of the items dependent on
the processing system of the micro processors for V850 microcontrollers.

The differences between when options strictly conforming to the ANSI standards are used and when those options are
not used are also explained.

See "3.2 Extended Language Specifications" for extended language specifications explicitly added by CA850.

3.1.1 Processing system dependent Items

This section explains items dependent on processing system in the ANSI standards.

(1) Datatypes and sizes
The byte order in a word (4 bytes) is "from least significant to most significant byte" Signed integers are expressed
by 2's complements. The sign is added to the most significant bit (O for positive or 0, and 1 for negative).
- The number of bits of 1 byte is 8.
- The number of bytes, byte order, and encoding in an object files are stipulated below.

Table 3-1. Data Types and Sizes

Data Types Sizes
char 1 byte
short 2 bytes
int, long, float, double 4 bytes
pointer Same as unsigned int

(2) Translation stages
The ANSI standards specify eight translation stages (known as "phases") of priorities among syntax rules for trans-
lation. The arrangement of "non-empty white space characters excluding line feed characters" which is defined as
processing system dependent in phase 3 "Decomposition of source file into preprocessing tokens and white space
characters" is maintained as it is without being replaced by single white space character.

(3) Diagnostic messages
When syntax rule violation or restriction violation occurs on a translation unit, the compiler outputs as error mes-
sage containing source file name and (when it can be determined) the number of line containing the error. These
error messages are classified into three types: "warning", "fatal error", and "other error" messages.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 64 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(4) Free standing environment

(@) The name and type of a function that is called on starting program processing are not stipulted in a
free-standing environmentN°t€. Therefore, it is dependent on the user-own coding and target system.

Note Environment in which a C Language source program is executed without using the functions of the
operating system.
In the ANSI Standard two environments are stipulated for execution environment: a free-standing envi-
ronment and a host environment. The CA850 does not supply a host environment at present.

(b) The effect of terminating a program in a free-standing environment is not stipulated. Therefore, it is
dependent on the user-own coding and target system.

(5) Program execution
The configuration of the interactive unit is not stipulated.
Therefore, it is dependent on the user-own coding and target system.

(6) Character set
The values of elements of the execution environment character set are ASCII codes.

(7) Multi-byte characters
Multi-byte characters are not supported by character constants.

However, Japanese description in comments and character strings is supported.

(8) Significance of character display
The values of expanded notation are stipulated as follows.

Table 3-2. Expanded Notation and Meaning

Expanded Notation Value(ASCII) Meaning
\a 07 Alert (Warning tone)
\b 08 Backspace
\f oC Form feed (New Page)
\n OA New line (Line feed)
\r oD Carriage return (Restore)
\t 09 Horizontal tab
\v 0B Vertical tab
R20UT0553EJ0100 Rev.1.00 RENESAS Page 65 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(9) Translation Limit
The limit values of translation are explained below.
The values marked with * are guaranteed values. These values may be exceeded in some cases, but the opera-
tion is not guaranteed.

Table 3-3. Translation Limit Values

Contents Limit values

Number of nesting levels of compound statements, repetitive control structures, and selective 127
control structures

(However, dependent on the number of "case" labels)

Number of nesting levels of condition embedding 255

Number of pointers, arrays, and function declarators (in any combination) qualifying one arith- 16
metic type, structure type, union type, or incomplete type in one declaration

Number of nesting levels enclosed by parentheses in a complete declarator 255*
Number of nesting levels of an expression enclosed by parentheses in a complete expression 255*
Valid number of first characters in a macro name 1023
Valid number of first characters of an external identifier 1022
Valid number of first characters in an internal identifier 1023

Number of identifiers having an external identifier in one translation unit and the valid block range | 4095*
declared in one basic block

Note

Number of macro identifiers simultaneously defined in one translation unit 2047

Number of parameters in one function definition and number of actual arguments in one function | 255

call

Number of parameters in one macro definition 127
Number of actual arguments in one macro call 127
Number of characters in one logical source line 32768

One character string constant after concatenation, or number of characters in a wide character 32766
string constant

Number of nesting levels for include (#include) files 50

Number of "case" labels for one "switch" statement 1025

(including those nested, if any)

Number of members of a single structure or single union 1023*

Number of enumerate constants in a single enumerate type 1023*

Number of nesting levels of a structure or union definition in the arrangement of a single structure | 63*
declaration

Note The upper limit of the macro identifier can be changed by a C compiler option (-Xm).

R20UT0553EJ0100 Rev.1.00 RENESAS Page 66 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(10)Quantitative limit

(&) The limit values of the general integer types (limits.h file)
The limits.h file specifies the limit values of the values that can be expressed as general integer types (char
type, signed/unsigned integer type, and enumerate type).
Because multibyte characters are not supported, MB_LEN_MAX does not have a corresponding limit. Conse-
quently, it is only defined with MB_LEN_MAX as 1.
If a -Xchar=unsigned option of the CA850 is specified, CHAR_MIN is 0, and CHAR_MAX takes the same
value as UCHAR_MAX.
The limit values defined by the limits.h file are as follows.

Table 3-4. Limit Values of General Integer Type (limits.h File)

Name Value Meaning

CHAR_BIT +8 The number of bits (= 1 byte) of the minimum object not
in bit field

SCHAR_MIN -128 Minimum value of signed char
SCHAR_MAX +127 Maximum value of signed char
UCHAR_MAX +255 Maximum value of unsigned char
CHAR_MIN -128 Minimum value of char
CHAR_MAX +127 Maximum value of char
SHRT_MIN -32768 Minimum value of short int
SHRT_MAX +32767 Maximum value of short int
USHRT_MAX +65535 Maximum value of unsigned short int
INT_MIN -2147483648 Minimum value of int
INT_MAX +2147483647 Maximum value of int
UINT_MAX +4294967295 Maximum value of unsigned int
LONG_MIN -2147483648 Minimum value of long int
LONG_MAX +2147483647 Maximum value of long int
ULONG_MAX +4294967295 Maximum value of unsigned long int

(b) The limit values of the floating-point type (float.h file)
The limit values related to characteristics of the floating-point type are defined in float.h file.
The limit values defined by the float.h file are as follows.

Table 3-5. Definition of Limit Values of Floating-point Type (float.h File)

Name Value Meaning
FLT_ROUNDS +1 Rounding mode for floating-point addition.
1 for the V850 microcontrollers (rounding in the nearest
direction).
FLT_RADIX +2 Radix of exponent (b)
FLT_MANT_DIG +24 Number of numerals (p) with FLT_RADIX of floating-

point mantissa as base
DBL_MANT_DIG

LDBL_MANT_DIG

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 67 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Name Value Meaning
FLT DIG +6 Number of digits of a decimal numberN°®© 1 () that can
DEL DIG round a decimal number of q digits to a floating-point
— number of p digits of the radix b and then restore the
LDBL_DIG decimal number of g
FLT_MIN_EXP -125 Minimum negative integer (en,,) that is a normalized
floating-point number when FLT_RADIX is raised to the
DBL_MIN_EXP .
- - power of the value of FLT_RADIX minus 1.
LDBL_MIN_EXP
FLT_MIN_10_EXP -37 Minimum negative integerlog;gb®mn: that falls in the
range of a normalized floating-point number when 10 is
DBL_MIN_10_EXP . .
raised to the power of its value.
LDBL_MIN_10_EXP
FLT_MAX_EXP +128 Maximum integer (ea) that is a finite floating-point
number that can be expressed when FLT_RADIX is
DBL_MAX_EXP . . .
— — raised to the power of its value minus 1.
LDBL_MAX_EXP
FLT_MAX_10_EXP +38 Maximum value of finite floating-point numbers that can

DBL_MAX_10_EXP

LDBL_MAX_10_EXP

be expressed

(1-bPy % peme

FLT_MAX 3.40282347E + 38F | Maximum value of finite floating-point numbers that can
be expressed

DBL_MAX
(1-0™P) * pemax

LDBL_MAX

FLT_EPSILON 1.19209290E - 07F | DifferenceN°®2 petween 1.0 that can be expressed by
specified floating-point number type and the lowest

DBL_EPSILON S
value which is greater than 1.

LDBL_EPSILON pl-p

FLT_MIN 1.17549435E - 38F | Minimum value of normalized positive floating-point
number

DBL_MIN
[p€min -1

LDBL_MIN

Notes 1. DBL_DIG and LDBL_DIG are 10 or more in the ANSI standards but are 6 in the V850 microcontrol-

lers because both the double and long double types are 32 bits.
2. DBL_EPSILON and LDBL_EPSILON are 1E-9 or less in the ANSI standards, but 1.19209290E-
07F in the V850 microcontrollers.

(12) Identifier
An external name must consist of up to 1022 characters and must be able to be identified uniformly.
Uppercase and lowercase characters are distinguished.

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 68 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(12)char type
A char type with no type specifier (signhed, unsigned) specified is treated as a signed integer as the default assump-
tion.
However, a simple char type can be treated as an unsigned integer by specifying the - Xchar=unsigned option of
the CA850.
The types of those that are not included in the character set of the source program required by the ANSI standards
(escape sequence) is converted for storage, in the same manner as when types other than char type are substi-
tuted for a char type.

char c = '"\777"; /* Value of ¢ is -1 */

(13)Floating-point constants
The floating-point constants conform to IEEE754NOt€,

Note I|EEE:Institute of Electrical and Electronics Engineers
Moreover,IEEE754 is a standard to unify specifications such as the data format and numeric range in
systems that handle floating-point operations.

(14)Character constants

(a) Both the character set of the source program and the character set in the execution environment are
basically ASCII codes, and correspond to members having the same value.
However, for the character set of the source program, character codes in Japanese can be used (see
"(8) Significance of character display").

(b) The last character of the value of an integer character constant including two or more characters is
valid.

(c) A character that cannot be expressed by the basic execution environment character set or escape
sequence is expressed as follows.

<1> An octal or hexadecimal escape sequence takes the value indicated by the octal or hexadecimal
notation

\777 511

<2> The simple escape sequence is expressed as follows.

\? ?

\\ \

<3> Values of \a, \b, \f, \n, \r, \t, \v are same as the values explained in "(8) Significance of character
display".

(d) Character constants of multi byte characters are not supported.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 69 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(15)Character string
A character string can be described in Japanese.
The default character code is Shift JIS.
A character code in input source file can be selected by using the -Xk option of the CA850.
However, if n or none is specified, character code is not guaranteed.

[Option specification]

-Xk=[e | euc | n | none | s | sjis]

A character code in output source file can be changed by using the -Xkt option of the CA850. However, if n or
none is specified, character code cannot be changed.

[Option specification]

-Xkt=[e | euc | n | none | s | sjis]

(16)Header file name
The method to reflect the string in the two formats (< > and " ") of a header file name on the header file or an
external source file name is stipulated in "(33) Loading header file".

(17)Comment
A comment can be described in Japanese. The character code is the same as the character string in "(15) Char-
acter string".

(18) Signed constants and unsigned constants
If the value of a general integer type is converted into a signed integer of a smaller size, the higher bits are trun-
cated and a bit string image is copied.
If an unsigned integer is converted into the corresponding signed integer, the internal representation is not
changed.

(19)Floating-points and general integers
If the value of a general integer type is converted into the value of a floating-point type, and if the value to be con-
verted is within a range that can be expressed but not accurately, the result is rounded to the closest expressible
value.
When the result is just a middle value, it can be rounded to the even number (with the least significant bit of the
mantissa being 0).

(20)double type and float type
In the CA850, a double type is expressed as a floating-point number in the same manner as a float type, and is
treated as 32-bit (single-precision) data.

(21) Signed type in operator in bit units
The characteristics of the shift operator conform to the stipulation in"(27) Shift operator in bit units" .
The other operators in bit units for signed type are calculated as unsigned values (as in the bit imag.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 70 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(22) Members of structures and unions
If the value of a member of a union is stored in a different member, it is stored according to an alignment condition.
Therefore, the members of that union are accessed according to the alignment condition (see "(6) Structure type"
and "(7) Union type").
In the case of a union that includes a structure sharing the arrangement of the common first members as a mem-
ber, the internal representation is the same, and the result is the same even if the first member common to any
structure is referred.

(23)sizeof operator
The value resulting from the "sizeof" operator conforms to the stipulation related to the bytes in an object in"(1)
Data types and sizes".
For the number of bytes in a structure and union, it is byte including padding area.

(24)Cast operator
When a pointer is converted into a general integer type, the required size of the variable is the same as the size of
the int type. The bit string is saved as is as the conversion result.
Any integer can be converted by a pointer. However, the result of converting an integer smaller than an int type is
expanded according to the type.

(25)Division/remainder operator
The result of the division operator ("/) when the operands are negative and do not divide perfectly with integer divi-
sion, is as follows: If either the divisor or the dividend is negative, the result is the smallest integer greater than the
algebraic quotient.
If both the divisor and the dividend are negative, the result is the largest integer less than the algebraic quotient.
If the operand is negative, the result of the "%" operator takes the sign of the first operand in the expression.

(26) Addition and subtraction operators
If two pointers indicating the elements of the same array are subtracted, the type of the result is int type, and the
size is 4 bytes.

(27) Shift operator in bit units
If E1 of "E1 >> E2" is of signed type and takes a negative value, an arithmetic shift is executed.

(28) Storage area class specifier
The storage area class specifier "register" is declared to increase the access speed as much as possible, but this
is not always effective.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 71 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(29) Structure and union specifier

(@) A simpleinttype bit field without signed or unsigned appended is treated as a signed field, and the
most significant bit is treated as the sign bit. However, the simple int type bit field can be treated as an
unsigned field by specifying the -Xbitfield option (Specifying sign of simple int type bit field) of the
CA850.

(b) To retain a bit field, a storage area unit to which any address with sufficient size can be assigned can
be allocated. If there is insufficient area, however, the bit field that does not match is packed into to
the next unit according to the alignment condition of the type of the field.

(c) The allocation sequence of the bit field in unit is from lower to higher.

(d) Each member of the non-bit field of one structure or union is aligned at a boundary as follows

char, unsigned char type, and its array Byte boundary
short, unsigned short type, and its array Halfword boundary
Others (including pointer) Word boundary

(30)Enumerate type specifier
The type of an enumeration specifier is signed int.
However, when the -Xenum_type=string option is specified, it is as follows

char Treated as char
uchar Treated as unsigned char
short Treated as short
ushort Treated as unsigned short

(31) Type qualifier
The configuration of access to data having a type qualified to be "volatile" is dependent upon the address (I/O port,
etc.) to which the data is mapped.

(32)Condition embedding

(@) The value for the constant specified for condition embedding and the value of the character constant
appearing in the other expressions are equal.

(b) The character constant of a single character must not have a negative value.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 72 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(33)Loading header file

(&) A preprocessing directive in the form of "#include <character string>"
A preprocessing directive in the form of "#include <character string>" searches for a header file from the folder
specified by the -l option if "character string” does not begin with "\"Note 'and then searches the \inc850 folder
with a relative path from the bin folder where the ca850 is placed.
If a header file uniformly identified is searched with a character string specified between delimiters "<" and ">",
the whole contents of the header file are replaced.

Note "/"are regarded as the delimiters of a folder.

Example

#include <header.h>

The search order is as follows.
- Folder specified by -I
- Standard folder

(b) A preprocessing directive in the form of "#include "character string""
A preprocessing directive in the form of "#include "character string™ searches for a header file from the folder
where the source file exists, then searches specified folder (-1 option) and then searches the ..\inc850 folder
via a relative path from the bin folder where the ca850 is placed.
If a header file uniformly identified is searched with a character string specified between delimiters " " "and " "
", the whole contents of the header file are replaced.

Example

#include "header.h"

The search order is as follows.
- Folder where source file exists
- Folder specified by -I
- Standard folder

(c) The format of "#include preprocessing character phrase string"
The format of "#include preprocessing character phrase string” is treated as the preprocessing character
phrase of single header file only if the preprocessing character phrase string is a macro that is replaced to the
form of <character string> or "character string".

(d) A preprocessing directive in the form of "#include <character string>"
Between a string delimited (finally) and a header file name, the length of the alphabetic characters in the
strings is identified,

And the file name length valid in the compiler operating environment is valid.

The folder that searches a file conforms to the above stipulation.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 73 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(34)#pragma directive
The CA850 can specify the following #pragma directives.

(a) Describing Assembler Instruction

#pragma asm
assembler instruction

#pragma endasm

Assembler directives can be described in a C language source program.
For the details of description, see "(4) Describing assembler instruction®.

(b) Inline Expansion Specification

#pragma inline function-name [, function-name ...]

A function that is expanded inline can be specified.
For the details of expansion specification, see " (8) Inline expansion".

(c) Specifying device type

#pragma cpu device-name

Specify so that a device file defining the machine-dependent information of the device used is referred. This
function is the same as the device specification option (-cpu) of the CA850. Used when defining device in C
language source.

(d) Data or program memory allocation

#pragma section section-type ["section-name"] [begin | end]

#pragma text ["section name"] [function name]

<1> section
Allocates variables to an arbitrary section.
For details about the allocation method, see "(1) Allocation of data to section".

<2> text
A function to be allocated in a text section with an arbitrary name can be specified.

For details about the allocation specification, see "(2) Allocating functions to sections" .

(e) Peripheral I/O register name validation specification

#pragma ioreg

The peripheral 1/O registers of a device are accessed by using peripheral function register names. When
programming using peripheral I/O registers names as it is, #pragma directives are needed to be specified.

(f) Interrupt/exception handler specification

R20UT0553EJ0100 Rev.1.00 RENESAS Page 74 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(@)

(h)

0]

#pragma interrupt interrupt-request-name function-name [allocation-method]

Interrupt/Exception handlers are described in C language.
For the details of description, see "(c) Describing interrupt/exception handler".

Interrupt disable function specification

#pragma block interrupt function-name

Interrupts are disabled for the entire function.

Task specification

#pragma rtos_task function-name

The task of operating on the realtime OS is described by C language.
For the details of description, see "(a) Description of task".

Structure type packing specification

#pragma pack([1248])

Specifies the packing of a structure type. The packing value, which is an alignment value of the member, is
specified as the numeric value. A value of 1, 2, 4, or 8 can be specified. When the numeric value is not spec-
ified, it is by default (8)N°®,

Note Alignment values "4" and "8" are treated as the same in this Version.

(35)Predefined macro names
All the following macro names are supported.
Macros not ending with"_ _ " are supplied for the sake of former C language specifications (K&R specifications).
To perform processing strictly conforming to the ANSI standards, use macros with *_ _ " before and after.

Table 3-6. List of Supported Macros

Macro name Definition
__LINE__ Line number of source line at that point (decimal).
__FILE__ Name of assumed source file (character string constant).
DATE_ Date of translating source file (character string constant in the form of "Mmm dd yyyy".

) Here, the name of the month is the same as that created by the asctime function stip-
ulated by ANSI standards (3 alphabetic characters with only the first character is capi-
tal letter) (The first character of dd is blank if its value is less than 10).

TIME__ Translation time of source file (character string constant having format "hh:mm:ss" sim-
ilar to the time created by the asctime function).

__STDC__ Decimal constant 1 (defined when -ansi option is specified)N°®®
__v800 Decimal constant 1.
_v800__
R20UT0553EJ0100 Rev.1.00 RENESAS Page 75 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Macro name Definition
__v850 Decimal constant 1.
_v850__
__v850e Decimal constant 1 (defined by CA850, if V850EX is specified as a target device).
_ v850e__
__v850e2 Decimal constant 1 (defined by CA850, if V850E?2 is specified as a target device).
__v850e2__
_ _CA850 Decimal constant 1.
_ CA850__
_ CHAR_SIGNED___ Decimal constant 1 (defined if signed is specified by -Xchar option and when -Xchar

option is not specified).

__CHAR_UNSIGNED__

Decimal constant 1 (defined when unsigned is specified by -Xchar option).

__DOUBLE_IS_32BITS__

Decimal constant 1.

_DOUBLE_IS_32BITS

Decimal constant 1.

CPUmacro

Decimal constant 1 of a macro indicating the target CPU. A character string indicated
by "product type specification" in the device file with "_ _ " prefixed and suffixed is
defined.

Register mode macro

Decimal constant 1 of a macro indicating the target CPU.
Macro defined with register mode is as follows.
32register mode:__reg32__

26 register mode: __reg26___

22 register mode: __reg22_

Note For the processing to be performed when the -ansi option is specified, see "3.1.2 Ansi option".

(36) Definition of special data type

NULL, size_t, and ptrdiff_t defined by stddef.h file are as follows.

Table 3-7. Definition of NULL, size_t, ptrdiff_t (stddef.h File)

NULL/size_t/ptrdiff_t Definition
NULL ((void*)0)
size_t unsigned int
ptrdiff_t int
R20UT0553EJ0100 Rev.1.00 RENESAS Page 76 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.1.2 Ansi option

When ansi option is specified by CA850, process strictly conforming to ANSI standards is executed.
The differences between when -ansi options are specified and when not specified are as follows.

Table 3-8. Processing When -ansi Option Strictly Conforming to Language Specifications is Specified

Item

With -ansi Specification

Without -ansi Specification

Trigraph series

Trigraph series is replaced.

Not replaced.

Bit field

ErrorNote 1 occurs if type other than int is speci-

fied for bit field.

Outputs warning message and permits.

Argument scope

Multiple defined error occurs if automatic vari-
able having same name as argument of function
is declared.

Outputs warning message and validates
automatic variable.

Pointer substitution 1

Error occurs if the numeric value of pointer type
is substituted into general integer typeNOt 2
able.

vari-

Outputs warning message, casts, and substi-
tutes.

Pointer substitution 2

Error occurs if pointers indicating different types
are substituted for each other.

Outputs warning message and permits.

Type conversion

Error occurs if conversion into pointer of array
that is not left-member value is performed.

Outputs warning message and permits.

Comparison operator

Error occurs if arithmatic type variable and
pointer are compared.

Outputs warning message and permits.

Conditional operator

Error occurs if both second and third expres-
sions are not general integer type, same struc-
ture, same union, or numeric value of pointer
type to type same as substitution destination.

Outputs warning message, casts, and substi-
tutes.

line number

Error occurs.

Treated in same manner as "#line line num-
ber" Note 3

Character # in middle of

Error occurs if character # appears in the middle

Outputs warning message and permits.

line of the line.

_asm Outputs warning message and handles as func- | Treated as assembler insertionNote 4,
tion call.
However, _ _asmi is valid.

__STDC__ Defines value as macro with value 1 . Does not define.

Binary Constants

Error occurs if "0b" or "0B" is followed by one or
more "0" or "1".

Treats "Ob" or "0B" followed by one or more
"0" or "1" as a binary constant.

Notes 1.

Normal error beginning with "E". The same applies hereafter.

2. char type, signed/unsigned integer type, and enumerate type.
3. See the ANSI standards.

4. See"(4) Describing assembler instruction”.

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 77 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.1.3 Internal representation and value area of data

This section explains the internal representation and value area of each type for the data handled by the CA850.

(1) Integer type

(&) Internal representation
The leftmost bit in an area is a sign bit with a signed type (type declared without "unsigned"). The value of a
signed type is expressed as 2' s complement.
If -Xchar=unsigned is specified, however, a char type specified without "signed" or "unsigned" is assumed to
be unsigned.

Figure 3-1. Internal Representation of Integer Type

char(no sign bit for unsigned)

7 0

Short (no sign bit for unsigned)

15 0

int, long (no sign bit for unsigned)

31 0

(b) Value area

Table 3-9. Value Area of Integer Type

Type Value Area
charNote -128 to +127
short -32768 to +32767
int -2147483648 to +2147483647
long -2147483648 to +2147483647
unsigned char 0to 255
unsigned short 0 to 65535
unsigned int 0 to 4294967295
unsigned long 0 to 4294967295

Note The value area is 0 to 255, if "-Xchar=unsigned" is specified by the CA850.

Caution 64-bit operation cannot be done by the CA850.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 78 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(2) Floating-point type

(&) Internal representation
Internal Representation of floating-point data type conforms to IEEE754N%®. The leftmost bit in an area of a

sign bit. If the value of this sign bit is O, the data is a positive value; if it is 1, the data is a negative value.
A double type is a floating-point representation same as a float type, and is handled as 32-bit (single- preci-

sion) data.

Note |EEE: Institute of Electrical and Electronics Engineers
IEEE754 is a standard to unify specifications such as the data format and numeric range in systems

that handle floating-point operations.

Figure 3-2. Internal Representation of Floating-Point Type

float, double
S E M
31 2322 0
S: Sign bit of mantissa
E: Exponent (8 bits)
M: Mantissa (23 bits)
(b) Value area
Table 3-10. Value Area of Floating-Point Type
Type Value Area
float, double 1.18 x 1078 t0 3.40 x 10%8
(3) Pointer type
(@) Internal representation
The internal representation of a pointer type is the same as that of an unsigned int type.
Figure 3-3. Internal Representation of Pointer Type
31 0

(4) Enumerate type

(a) Internal representation
The internal representation of an enumerate type is the same as that of a signed int type. The leftmost bit in

an area of a sign bit.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 79 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Figure 3-4. Internal Representation of Enumerate Type

31 0
When the -Xenum_type=string option is specified, see "(30) Enumerate type specifier".
(5) Array type
(&) Internal representation
The internal representation of an array type arranges the elements of an array in the form that satisfies the

alignment condition(alignment) of the elements

Example

char al8] = {1, 2, 3, 4, 5, 6, 7, 8};

The internal representation of the array shown above is as follows.

Figure 3-5. Internal Representation of Array Type

(6) Structure type
(a) Internal representation
The internal representation of a structure type arranges the elements of a structure in a form that satisfies the

alignment condition of the elements.

Example

struct {

short sl;

int s2;

char s3;

long s4;
Jtag;

The internal representation of the structure shown above is as follows.

Figure 3-6. Internal Representation of Structure Type

s4 s3 s2 sl

31 0 31 8 7 031 0 31 16 15 0

For the internal representation when the structure type packing function is used, see "(11) Structure type
packing".

R20UT0553EJ0100 Rev.1.00 RENESAS Page 80 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(7) Union type

(@) Internal representation

A union is considered as a structure whose members all start with offset 0 and that has sufficient size to

accommodate any of its members. The internal representation of a union type is like each element of the

union is placed separately at the same address.

Example

union{
int ul;
short u2;
char u3;
long u4;

Jtag;

The internal representation of the union shown in the above example is as follows.

Figure 3-7. Internal Representation of Union Type

31 0
i i
1 1
: | i >
1 1 + tag.u3 (1 byte) 1
: i« >
1 ' tag.u2 (2 bytes) 1
i< >
' tag.ul, tag.u4 (4 bytes) .
(8) Bit field

(a) Internal representation

An area including the declared number of bits is reserved for a bit field. The most significant bit of the area for

a bit field declared to be of signed type is a sign bit.

The bit field declared first is allocated from the least significant bit of a word area. If the alignment condition of

the type specified in the declaration of a bit field is exceeded as a result of allocating an area that immediately

follows the area of the preceding bit field to the bit field, the area is allocated starting from a boundary that sat-

isfies the alignment condition.

Example

struct{
unsigned int
int
unsigned int

}flag;

£1:30;
£2:14;

£3:6;

The internal representation for the bit field in the above example is as follows.

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 81 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Figure 3-8. Internal Representation of Bit Field

3 f2 fl

31 2019 1413 031 29 0

The ANSI standards do not allow char and short types to be specified for a bit field, but CA850 allows this.

In this case, a warning message is output, and paddingNOte is performed according to the alignment condition
of the specified type.

For the internal representation of bit field when the structure type packing function is used, see "(11) Structure
type packing".
Note An error occurs if -ansi is specified as an option of the CA850.
(9) Alignment condition
(&) Alignment condition for basic type
Alignment condition for basic type is as follows.

If -Xi of the CA850 is specified, however, all the arrey types are word boundaries.

Table 3-11. Alignment Condition for Basic Type

Basic Type Alignment conditions
(unsigned) char and its array type Byte boundary
(unsigned) short and its array type Halfword boundary
Other basic types (including pointer) Word boundary

(b) Alignment condition for union type
The alignment condition for the union type varies as shown in Table 3-12, depending on the maximum mem-

ber size.
Table 3-12. Alignment Condition for Union Type
Maximum Member Size Alignment conditions
2 bytes < size Word boundary
Size <= 2 bytes Maximum member size boundary

Here are examples of the respective cases:

Examples 1.

union tuglf{
unsigned short i; /*2 Bytes member*/
unsigned char c¢; /*1 Bytes member */

}; /* The union is aligned with 2 bytes. */

R20UT0553EJ0100 Rev.1.00 RENESAS Page 82 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

union tug2{
unsigned int

unsigned char

i; /*4 Byte member*/

c; /*1 Bytes member */

}; /* The union is aligned with 4 bytes. */

(c) Alignment condition for structure type
The alignment condition for the structure type differs as shown in Table 3-13, depending on the size of the

structure (excluding

the size of the integer).

If -Xi of the CA850 is specified, however, all the structure types are word boundaries.

Table 3-13. Alignment Condition of Structure Type

Structure size

Alignment conditions

2 bytes < size

Word boundary

Size <= 2 bytes

It is either of the following depending on the size and member type.

- If member of type more than int type exists
--> Word boundary

--> Halfword boundary

- If only member of char type, and the size is 1 byte.
--> Byte boundary

- Other than above,if the member of the short type exists or the size is 2.

Here are examples

Examples 1.

of the respective cases:

struct SS{

char c; /*

int i; /*4 Byte member */

1 Byte member*/

}; /* Structure is aligned with 4 bytes. */

struct BIT I{
int il:5;

}; /* Structur

/*4 Byte member (Size is 1 byte or less)*/

e is aligned with 4 bytes because member type is int. */

struct BIT C{
char «cl1:5;

}; /* Structur

/*1 Byte member */

e is aligned with 1 byte. */

R20UT0553EJ0100 Rev.1.00 ENESAS

Apr 01, 2011

Page 83 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

struct BIT CC{
char «c¢l1:5; /*1 Byte member */
char «¢2:5; /*1 Byte member*/

}7 /* Structure is aligned with 2 bytes because size is 2 bytes. */

(d) Alignment condition for function argument
The alignment condition for a function argument is a word boundary.

(e) Alignment condition for executable program
The alignment condition when an executable object file is created by linking object files is a halfword boundary.

3.14 General-purpose registers

How the CA850 uses the general-purpose registers are as follows.
The general-purpose registers includes the following functions.

(1) Software register bank
The number of the work registers (r10 through r19) and register variable registers (r20 through r29) used can be
reduced by the -reg option of CA850 (see "3.1.6 Software register bank").

(2) Mask register function
In the 32-register mode and 22-register mode, registers r20 and r21 can be used to set a mask value (see "3.1.7

Mask register").

Table 3-14. Using General-Purpose Registers

Register Usage

r0 Zero register Used for operation as value of 0.
Also used to reference data located at const section (read-only
section placed in ROM area)N°te,

rl Assembler-reserved register Used for instruction expansion by assembler.

r2 (hp) Handler stack pointer Reserved for system.

r3 (sp) Stack pointer Used to indicate beginning of stack frame.

r4 (gp) Global pointer Used to reference external variable.

15 (tp) Text pointer Used to indicate beginning of text section (.text section)

r6-r9 Argument registers Used to pass argument.

rl0torl9 Work register Used as work area during operation (r10 is also used to pass

return value of function).

r20 to r29 Register variable registers Used as an area for register variables.

r30 (ep) Element pointer Used to reference external variable specified to be located in
internal RAM or external RAM sectionN°t®,

r31 (Ip) Link pointer Used to pass return address of function.

Note For the allocation of data to a section, see "(1) Allocation of data to section".

R20UT0553EJ0100 Rev.1.00 RENESAS Page 84 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.15 Referencing data

How the CA850 references data are as follows.

Table 3-15. Referencing Data

Type

Referencing Method

Numeric constant

Immediate

Character string constant

Offset from global pointer (gp)
Offset from element pointer (ep)
Offset from r0

Automatic variable,Argument

Offset from stack pointer (sp)

External variable,Static variable in function

Offset from global pointer (gp)

Offset from element pointer (ep)
Offset from rO

Function address Operated during execution by using offset from text pointer (tp)

3.1.6 Software register bank

Because the CA850 implements a register bank function by software, three register modes are provided. By specifying
these register modes efficiently, the contents of some registers do not need to be saved or restored when an interrupt
occurs or the task is switched. As a result, the processing speed can be improved. The register modes are specified by
using the register mode specification option (-reg) of CA850. This function reduces the number of registers internally
used by the CA850 on a step-by-step basis. As a result, the following effects can be expected:

- The registers not used can be used for the application program (that is, a source program in assembly language).
- The overhead required for saving and restoring registers can be reduced.

Caution In an application program that has many variables to be allocated to registers by the CA850, the
variables so far allocated to a register are accessed from memory when a register mode has been

specified. As aresult, the processing speed may drop.

(1) Register mode
Next table and next Figure show the three register modes supplied by the CA850.

Table 3-16. Register Modes Supplied by CA850

Register modes Work Register Register Variable Registers
32-register mode (Default) r10to rl9 r20 to r29
26-register mode rl0torl6 r23 to r29
22-register mode rl0torl4d r25 to r29
R20UT0553EJ0100 Rev.1.00 RENESANAS Page 85 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Figure 3-9. Register Modes and Usable Registers

32-register mode 26-register mode 22 -register mode
31 0 31 0 31 0
A r0 r0 r0
Other registers
¥y - -
A r10 r10 r10
Work register 4
g p 115
rl6 //
7 rl7

r19 ’
* r20 \

\ r22
r23 N
N
. . . N 124
Register Variable Registerf
25
r29 r29 r29
Other registers
9 i r31 r3l r31

|:| Registers that can be used freely in application

Specification example on command line

> caB850 -cpu 3201 -reg26 file.c <- compiled in 26-register mode

(2) Register mode and library
A library supplied by the CA850 (see "CHAPTER 6 FUNCTIONAL SPECIFICATION") is provided for each register
mode. The standard folders that search a library are "Install Folder\lib850\r32" and "Install Folden\lib850" as the
default assumption. If the 22- or 26-register mode is specified by the CA850, however, "Install Folder \lib850\r22"
or "Install Folder\lib850\r26" is used as the standard folder for the library, in the place of "Install
Folder\lib850\r32".
If 1d850 is not started from the CA850 but object files are linked by directly starting 1d850 from the command line,
however, a library suitable for each register mode must be specified by specifying the -reg option of 1d850.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 86 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.1.7 Mask register

When byte data or halfword data is loaded from the memory to a register, the V850 microcontrollers sign- extends the
data to a word length according to the value of the most significant bit of the data. Therefore, mask codes of the higher
bits may be generated during an unsigned char or unsigned short type data.

When storing the result of an operation to a register variable, mask codes are generated to clear the higher bits if the
result of the operation is unsigned byte data or unsigned halfword data. Generation of mask codes can be prevented if
word data is used. If word data cannot be used and the mask codes are generated, the code size can be reduced by
using the mask register function.

However, to decide whether the mask register function is to be used or not, the following points must be carefully con-
sidered for the code where the mask register function may be used.

- Whether the program outputs many mask codes.
- Two register variable registers will not be able to be used because they will be used as mask registers.

The CA850 uses r20 and r21 as mask registers, as shown in the example below, when the mask register function is
used. Note that mask values must be set to the mask registers by program.

[Mask code generation example]

unsigned char uc;
unsigned short US;
void f (void) {

register unsigned char ruc;

register unsigned short rus;

Uuc *= UC;

ruc = UC;

rus = US;
}
(Normal code) (Code when mask register is used)
1d.b $uC, rilil 1d.b suC, rilil
andi oxff, ri1l, ri1l and r20, rll
mulh rll, rll mulh rll, rll
st.b rll, $UC st.b rll, S$UC
1d.b $UC, r29 1d.b $UC, r29
andi oxff, r29, r29 and r20, r29
1d.h $US, r28 1d.h $US, r28
andi oxffff, r28, r28 and r2l, r28

An instruction that executes "an operation on unsigned data" has been added to the V850Ex and the CA850 outputs a
code that uses this instruction. When the V850EX is used, therefore, setting to use the mask register may not have as
much effect as expected.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 87 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(1) Setting mask values
Mask values (Oxff and 0xffff) must be set to r20 and r21, which are used as mask registers, via the program. The
CAB850 generates mask codes using the mask registers, assuming that the mask values have been set.

[Example of setting of mask value]

__start:
mov #_ tp TEXT, tp
mov # gp DATA, gp
mov oxff, r20 --Sets mask value to r20
mov Oxffff, r21 --Sets mask value to r21
jarl ~main, 1lp

If the program uses an real-time OS, however, the mask values are automatically set according to the real-time OS
type

(&) When RI850V4 is used
The mask values must be set in advance by using the startup module.

(b) When real-time OS is not used
The mask values must be set in advance by using the startup module Note

Note The startup module crtN.s (for 32-register mode) supplied with the package sets the mask values (see
"7.3 Startup Routine").

(2) Using mask register function and points to be noted
This section describes the specifications for using the mask register functions and points to be noted.

(@) To newly compile C language source file
By specifying the mask register function option (-Xmask_reg) of the CA850, an assembler instructions includ-
ing the mask codes that use the mask registers and information indicating that the mask register function is
used (".option mask_reg" directive) is output.

(b) Checking during linking
Once the linker has been started by specifying the mask register function option (-Xmask_reg) of the compiler,
the object file with the file name information (information specified by the " file" directive) that indicates that the
object file has been created from the .c file is checked while the object file is linked. If an object using the mask
register function and an object that does not use the function exist together at this time, an error occurs

Notes 1. Obijects included in an archive file (.a file) are not checked. To use an .a file created by the user,
confirm that the mask registers are not used.
2. To start 1d850 alone from the command line, an option that performs checking during linking (-mc)
must be specified.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 88 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(c) If the program is described in an assembly language
From the beginning, check that the contents of the mask registers are not lost. The mask registers are not
checked during linking because the file name information is not ".c".Whether or not the contents of the mask
registers are lost can be confirmed by a warning message that is output when the assembiler is executed, if the
-m option that specifies the use of the mask registers is specified in the assembler.

(d) Supplied Libraries
Although the object files in the archive file are not checked during linking, almost all the libraries in the package
do not destroy the contents of the mask registers N°t,

Note The bsearch, and gsort function in the standard library, however, may destroy the contents of the mask
registers because it calls an application function. Therefore, do not use the bsearch, and gsort function
when the mask register function is used (The CA850 does not output an error even if the bsearch, and
gsort function is used).

3.1.8 Device file

A device file is a binary file that contains information dependent upon the device type. One device file is available for
each device or group of target devices as a package. The compiler referred a device file to generate object codes corre-
sponding to the target system that is used in the application system. Therefore, place the device file to be used under the
standard folder for the device file. If the device is placed under any other folder, specify the folder using a compiler
option; otherwise an error occurs during compilation because the device file is not found.

(1) Specifying device file
A device file that is referenced by a program in C language can be specified in the following two ways.

(a) Specifying device name using compiler option (-cpu device-name)

Example

> ca850 -cpu 3201 file.c

When building a program with CubeSuite+, specifying a device has an effect equivalent to specifying this
option.

(b) Specifying device name using #pragma directive (#pragma cpu device-name) in C language source file

Example

#pragma cpu 3201

In this example, the device name is "3201" (V850ES/SA2). The character strings that can be specified as
"device name" are common to option specification and the #pragma directive. Uppercase and lowercase char-
acters are not distinguished.

For the character strings that can be specified as a device nhame, see the User's Manual of each device.

Cautions 1. When specifying a device name using the #pragma directive, device specification must
be described in all source files.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 89 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

2. Specify a device name at the beginning of a source file when using the #pragma direc-
tive. Only preprocessing that has nothing to do with C language syntax and comments
can be described before specification of the device name. If a device name is specified
in C language syntax, the compiler outputs the following error message and stops pro-
cessin

F2625: illegal placement ' #pragma cpu '

[Example of incorrect specification]

#include <stdio.h>
int 1i;

#pragma cpu 3201

(2) Notes on specifying device file

(@)

(b)

()

If no device name is specified

If a device file is specified by neither the #pragma directive nor the -cpu option, and if neither the -cn option,
nor the -cnv850e option, -cnv850e2Not js specified, the compiler outputs the following error message and
stops compiling.

F2620: unknown cpu type, cannot compile

Note A device file is necessary during linking even if the -cn, -cnv850e option or -cnv850e2 option is specified

If device is specified by both option and #pragma directive

The compiler outputs a warning message and continues processing, giving priority to the option.

If different device names are specified by two or more options or #pragma directives, the compiler outputs the
following message and stops processing.

F2622: duplicated cpu type

Program described in assembler instructions
In this case also, a device must be specified by an assembler option or the .option quasi directive when an
object file that can be linked is created.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 90 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.2 Extended Language Specifications

This section explains the extended language specifications supported by the CA850.

The expanded specifications inclue how to specify section location of data and access the internal peripheral function
registers of the device, how to insert assembler code in a C language source program, how to specify inline expansion for
each function, how to define a handler when an interrupt or exception occurs, how to disable interrupts at the C lan-
guage level, the valid RTOS functions when a real-time OS is used for the target environment, and how to embed
instructions in a C language source program.

3.21 Macro name

All the following macro names are supported.
are supplied for the sake of former C language specifications (K&R specifica-
tions). To perform processing strictly conforming to the ANSI standards, use macros with"_ " before and after.

Macros not ending with "__

Table 3-17. List of Supported Macros

Apr 01, 2011

Macro Name Definition

__LINE__ Line number of source line at that point (decimal).

__FILE__ Name of assumed source file (character string constant).

_ DATE__ Date of translating source file (character string constant in the form of "Mmm dd yyyy".
The name of the month is the same as that created by the asctime function stipulated
by the ANSI standards (three alphabetic characters with only the first character being
uppercase) and the first character of dd is blank if its value is less than 10).

__TIME__ Translation time of source file (character string constant having format "hh:mm:ss" sim-
ilar to the time created by the asctime function).

__STDC__ Decimal constant 1 (defined when -ansi option is specified). Note

__v800 Decimal constant 1.

_v800__

_v850 Decimal constant 1.

_v850__

__v850e Decimal constant 1 (defined by CA850, if V850EX is specified as a target device).

_v850e__

__v850e2 Decimal constant 1 (defined by CA850, if VB50E?2 is specified as a target device).

_ v850e2__

__CA850 Decimal constant 1.

_ CA850__

_ CHAR_SIGNED___ Decimal constant 1 (defined if signed is specified by -Xchar option or when -Xchar
option is not specified).

__CHAR_UNSIGNED__ Decimal constant 1 (defined when unsigned is specified by -Xchar option).

__DOUBLE_IS_32BITS__ Decimal constant 1.

_DOUBLE_IS_32BITS Decimal constant 1.

CPU macro Decimal constant 1 of a macro indicating the target CPU. A character string indicated
by "product type specification” in the device file with *__" prefixed and suffixed is
defined.

R20UT0553EJ0100 Rev.1.00 RENESANAS Page 91 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Macro Name Definition

Register mode macro Decimal constant 1 of a macro indicating the target CPU..
Macros defined as a register mode are as follows.
32-register mode: __reg32___

26-register mode: __reg26___

22-register mode: __reg22__

Note For the processing to be performed when the -ansi option is specified, see "3.1.2 Ansi option".

3.2.2 Keyword

Thae CA850 adds the following characters as a keyword to implement the expanded function. These words are similar
to the ANSI C keywords, and cannot be used as a label or variable name.

Keywords that are added by the CA850 are listed below.

_asm, _bsh, _bsw, data, __ DI, __El, _halt, _hsw, __interrupt, _mul32, _mul32u, __multi_interrupt, _nop, _sasf, _satadd,
_satsub, __set_il, _sxb, _sxh

3.2.3 #pragma directive
The CA850 can specify the following #pragma directives.

(1) Description with assembler instruction
Assembler directives can be described in a C language source program.
For the details of description, see "(4) Describing assembler instruction”.

#pragma asm
assembler instruction

#pragma endasm

(2) Inline expansion specification
A function that is expanded inline can be specified.
For the details of expansion specification, see "(8) Inline expansion".

#pragma inline function-name [, function-name ...]

(3) Device type specification
Specify so that a device file defining the machine-dependent information of the device used is referenced. This
function is the same as the device specification option (-cpu) of the CA850. It is used when the device is specified
in the C language source.

#pragma cpu device-name

R20UT0553EJ0100 Rev.1.00 RENESAS Page 92 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(4) Data or program memory allocation

(a) section
Allocates variables to an arbitrary section.
For details about the allocation method, see (1) Allocation of data to section”.

(b) text
A function to be allocated in a text section with an arbitrary name can be specified.
For details about the allocation specification, see "(2) Allocating functions to sections".

#pragma section section-type ["section-name"] [begin | end]

#pragma text ["section-name"] [Function name]

(5) Peripheral I/O register name validation specification
The peripheral I/O registers of a device are accessed by using peripheral function register names. #pragma direc-
tive should be specified, when the program is executed by using the Peripheral I/O register name as it is.

#pragma ioreg

(6) Interrupt/exception handler specification
Interrupt/Exception handlers are described in C language.
For details, see "(c) Describing interrupt/exception handler".

#pragma interrupt interrupt-request-name function-name [allocation-method]

(7) Interrupt disable function specification
Interrupts are disabled for the entire function.

#pragma block interrupt function-name

(8) Task specification
Task that runs on an RTOS is described in the C language.
For details, see "(a) Description of task".

#pragma rtos_task Function name

(9) Structure type packing specification
Specifies the packing of a structure type. The packing value, which is an alignment value of the member, is speci-
fied as the numeric value. A value of 1, 2, 4, or 8 can be specified. When the numeric value is not specified, the
setting is the default 8N° assumption.

#ipragma pack([1248])

Note Alignment values "4" and "8" are treated as the same in this Version.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 93 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.24 Using expanded specifications

This section explains using expanded specifications.
- Allocation of data to section
- Allocating functions to sections
- Peripheral 1/O register
- Describing assembler instruction
- Controlling interrupt level
- Disabling interrupts
- Interrupt/Exception processing handler
- Inline expansion
- Real-time OS support function
- Embedded functions
- Structure type packing

(1) Allocation of data to section
When external variables and data are defined in a C language source, the CA850 allocates them to memory. The
memory location to which the variables and data are allocated is, basically, an area that can be referenced by an
offset from the address pointed to by the global pointer (gp). If the variables or data are accessed in the program,
therefore, the CA850 attempts to output a code that accesses the area using gp, by default.
At this time, the CA850 attempts to output a code that allocates data to an area that can be referenced from gp by
one instruction, in order to enhance the object efficiency and execution efficiency as much as possible. Since the
range that can be referenced by one instruction from gp must be within +32 K bytes (a total of 64 K bytes) from gp
according to the V850 architecture, the CA850 has dedicated sections in the +32 K bytes area from gp. These
sections are called the sdata and sbss attribute sections.

Figure 3-10. sdata and sbss Attribute Sections

High Address <

1

32K Bytes(0x8000)

Sdata Attribute /

Y <
Shbss Attribute section A 9p

32K Bytes(0x8000)

4

In many cases, however, variables exceed in this range when using an application that uses many variables. In
this case, the variables must be allocated to other sections. The CA850 has many sections to which variables and
data can be allocated, in addition to the sdata and sbss attribute sections. Each of these sections has its own fea-
ture and sections to which variables that must be accessed quickly can be allocated are also available, so that the
sections can be selected depending on the usage.

The sections that can be used in the CA850 including sdata and sbss attribute sections are explained below.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 94 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

- sdata and sbss attribute sections
These sections can be referenced from gp with one instruction and must be allocated within + 32 K bytes from
gp. Data with initial values is allocated to the sdata attribute section, and data without initial values is allocated
to sbss attribute section.
The CAB850 first attempts to generate a code that is to be allocated to these sections.
An error occurs if the code exceeds the upper limit of the section of these attributes.
To increase the amount of data to be allocated to the sdata or sbss attribute sections, the upper size limit for
the data to be allocated can be specified with the "-G" option of the CA850 so that data in excess of this upper
limit is not allocated to the sdata or sbss attribute sections (see "V850 Build" for details of this option).
Use the #pragma section directive to specify a variable to be allocated to the sdata or sbss attribute section in
the program (see "(a) #pragma section directive" for details).

#pragma section sdata begin
int a = 1; /*allocated to sdata attribute section¥*/
int b; /*allocated to sbss attribute section*/

#pragma section sdata end

data and bss attribute sections

These sections can be referenced from gp with two instructions. Since access is performed after address
generation, the code becomes correspondingly longer and the execution speed also drops, but the entire 32-
bit space can be accessed.

In other words, these sections can be allocated anywhere as long as they are in RAM.

Use the #pragma section directive to specify a variable to be allocated to the data or bss attribute section in
the program (see "(a) #pragma section directive" for details).

#pragma section data begin

int a = 1; /*allocated to data attribute section*/
int b; /*allocated to bss attribute section*/
#pragma section data end

sconst-attribute section

This is a section that can be referenced from r0, in other words from address 0, with 1 instruction, and must be
allocated within +32K bytes from address 0. Basically, data that can be fixed to ROM is allocated to this sec-
tion. In the case of V850 devices with internal ROM, in many cases the internal ROM is assigned from
address 0, and data that should be referenced with 1 instruction and that can be fixed to ROM is allocated to
the sconst attribute section. Variables/data declared by adding the const qualifier are subject to allocation to

the sconst attribute section. If the data exceeds the upper limit of this attribute section, it is allocated to the
const attribute section.

To increase the amount of data to be allocated to the sconst attribute section, the upper size limit for the data
to be allocated can be specified with the "-Xsconst" option of the CA850 so that data in excess of this upper
limit is not allocated to the sconst attribute section (see "V850 Build" for details of this option).

Use the #pragma section directive to specify a variable to be allocated to the sconst attribute section in the
program (see "(a) #pragma section directive" for details).

#pragma section sconst begin
const int a = 1; /*allocated to sconst attribute section*/

#pragma section sconst end

R20UT0553EJ0100 Rev.1.00 RENESAS Page 95 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

- const-attribute section
This is a section that can be referenced from r0, in other words from address 0, with two instructions. Data
that can be fixed to ROM that exceeds the upper limit of the sconst attribute section, or data that should be
allocated to external ROM in the case of ROMless devices of the V850 microcontrollers, is allocated to the
const attribute section. Variables/data declared by adding the const qualifier are subject to allocation to
the const attribute section.
The variables declared by adding the const qualifier are allocated to the const attribute section, string literal
even if allocation to the .const section is not specified by the #pragma section directive. Since access is per-
formed after address generation, the code becomes correspondingly longer and the execution speed also
drops, but the entire 32-bit space can be accessed. In other words, these sections can be allocated anywhere
as long as they are in 32-bit space.
Use the #pragma section directive to specify a variable to be allocated to the const attribute section in the
program (see "(a) #pragma section directive" for details

#pragma section const begin
const int a = 1; /*allocated to const attribute section*/

#pragma section const end

sidata and sibss attribute sections

These sections can be referenced from ep (element pointer) with 1 instruction toward higher addresses. In
other words, these sections are allocated in the 32 K bytes space toward higher addresses from ep.

Figure 3-11. sidata and sibss Attribute Sections

High Address —_-

: ,

Sidata and

Sibss attribute section 32K Bytes(0x8000)

Y — ¢ep

Data with initial values is allocated to the sidata attribute section, and data without initial values is allocated to
sibss attribute section. If variables that exceed the upper limit of the sdata and sbss attribute sections that can
be accessed from gp with 1 instruction, but which need to be accessed with 1 instruction still exist, they canbe
allocated in the range that can be accessed with 1 instruction using ep.

Use the #pragma section directive to specify a variable to be allocated to the sidata or sibss attribute section in
the program (see "(a) #pragma section directive" for details).

#pragma section sidata Dbegin
int a = 1; /*allocated to sidata section*/
int b; /*allocated to sibss section*/

#pragma section sidata end

R20UT0553EJ0100 Rev.1.00 RENESAS Page 96 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

- sedata and sebss attribute sections
These sections can be referenced from ep (element pointer) with 1 instruction toward lower addresses from
ep. In other words, these sections are allocated in the 32 K bytes space toward lower addresses from ep.

Figure 3-12. sdata and shss Attribute Sections

High Address & ¢— ¢ep

1

Sedata and sebss

attribute section 32K Bytes(0x8000)

v

Data with initial values is allocated to the sedata attribute section, and data without initial values is allocated to
sebss attribute section. If variables that exceed the upper limit of the sdata and sbss attribute sections that
can be accessed from gp with 1 instruction, but which need to be accessed with 1 instruction still exist, they
can be allocated in the range that can be accessed with 1 instruction using ep.

Use the #pragma section directive to specify a variable to be allocated to the sedata or sebss attribute section
in the program (see "(a) #pragma section directive" for details).

#pragma section sedata begin
int a = 1; /*allocated to sedata section*/
int b; /*allocated to sebss section*/

#pragma section sedata end

tidata (tidata.byte, tidata.word) and tibss (tibss.byte, tibss.word) attribute sections

These sections can be referenced from ep (element pointer) with 1 instruction toward higher addresses.
These sections are accessed with 1 instruction in the same manner as the sidata and sibss attribute sections,
but differ in terms of the assembler instruction to be used.

The sidata and sibss attribute sections use the 4-byte st/ld instruction for store/reference, whereas the tidata
and tibss attribute sections use the 2-byte sst/sld instruction to perform access. In other words, the
code efficiency of the tidata and tibss attribute sections is better than that of the sidata and sibss attribute sec-
tions.

However, the range in which sst/sld instructions can be applied is small, so it is not possible to allocate a large
number of variables.

Figure 3-13. tidata and tibss Attribute Sections

High Address
T tidata.byte attribute/

tibss.byte attribute/

tidata.word attribute/ 256 Bytes(0x100)

tibss.word attribute section

<«— €p

Data with initial values is allocated to the tidata (tidata.byte, tidata.word) attribute section, and data without ini-
tial values is allocated to the tibss (tibss.byte, tibss.word) attribute section. Specify the tidata.byte/tibss.byte
attribute to allocate byte data, and specify the tidata.word/tibss.word attribute to allocate word data. To select
automatic byte/word judgment by the CA850, specify the tidata/tibss attribute.

The tidata and tibss attribute sections are used to allocate data that must be accessed the fastest in
the system.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 97 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

However, the data to be allocated to these sections must be carefully selected because the quantity of data
that can be allocated to these sections is limited. Use the #pragma section directive to specify variables to be
allocated to the tidata.byte/tibss.byte or tidata.word/tibss.word attribute section in the program (see "(a)
#pragma section directive" for details).

#pragma section tidata byte begin

char a = 1; /*allocated to tidata.byte attribute section*/
unsigned char b; /*allocated to tibss.byte attribute section*/
#pragma section tidata byte end

#pragma section tidata_word begin

int a = 1; /*allocated to tidata.word attribute section*/
short b; /*allocated to tibss.word attribute section*/
#pragma section tidata word end

#pragma section tidata begin
int a = 1; /*allocated to tidata.word attribute section*/
char b; /*allocated to tibss.byte attribute section*/

#pragma section tidata end

The efficiency can be enhanced in terms of execution speed if variables or data that are especially frequently
used in the system are selected and allocated to the tidata (tidata.byte, tidata.word) or tibss (tibss.byte
or tibss.word) attribute section. The CA850 has a section file generator that investigates the frequency of ref-
erence. The frequency information obtained as a result of the investigation is output as a frequency informa-
tion file. The code that allocates data to the tidata (tidata.byte, tidata.word) or tibss (tibss.byte,
tibss.word) attribute section is output based on this information The user can edit the frequency information
file to select variables that should be allocated to the tidata (tidata.byte, tidata.word) or tibss (tibss.byte,
tibss.word) attribute section by priority. The variables can then be allocated to these sections without qualify-
ing the source.

Following figure shows an example of memory allocation of each section

R20UT0553EJ0100 Rev.1.00 RENESAS Page 98 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Figure 3-14. tidata and tibss Attribute Sections

- ro-relative access area
- ep-relative access area
:| gp-relative access are

|:| tp-relative access area
- Others

.Within 32K bytes

.Within 256 bytes

Within 128 bytes

ep

Generally, ep sets in the

.Within 32K bytes
beginning in RAM.

.bss Section

sbss Section

.sbss and .sdata are allocated within : — op
64 bytes gp shows the address of first .sdata section +
.sdata Section
32 bytes.
.data Section
.text Section
tp
Within 32 bytes Generally tp sets the first .text section or

other than 0.

(@) #pragma section directive
How to allocate data to a section using the #pragma section directive is explained below.

<1> By default, when the section name is used as it is
Describe the #pragma section directive in the following format when using the section name defined by
the CA850.

#pragma section section-type begin
Variable declaration/definition

#pragma section section-type end

The following can be specified as the section-type.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 99 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

data, sdata, sedata, sidata, tidata, tidata.word, tidata.byte, sconst, const

The name of the bss attribute section must not be specified as the section type. The CA850 automati-
cally allocates declared or defined data with initial values to the data attribute section, and data without
initial values to the bss attribute section.

#pragma section sdata begin
int a = 1; /*allocated to sdata attribute section*/

int b; /*allocated to sbss attribute section*/

#pragma section sdata end

In the above case, "variable a" is allocated to the data-attribute .sdata section because it has an initial
value, and "variable b" is allocated to the bss-attribute .sbss section because it does not have an initial
value.

Two or more variable declarations or definitions can be described between "#pragma section
section-type begin" and "#pragma section section-type end". Enumerate variables to be allocated for
each section type.

Use (underscore) instead of "." (period) to specify tidata.word or tidata.byte as the section type, as

shown below.
tidata_word, tidata_byte

Apr 01, 2011

<2> To assign original section name
The user can assign a specific name to the sections with the following attributes, and can allocate vari-
ables and data to those sections.
data, sdata, sconst, const
In this case, describe the #pragma section directive in the following format.
#pragma section section-type "created-section-name" begin
Variable declaration / Definition
#pragma section section-type "created-section-name" end
However, ".section-type" is appended to a section name actually generated by this method as follows.
created-section-name.section-type
This is to prevent a section with another attribute and having the same name from being created
because the section attribute is classified into data or bss attribute depending on whether the data has
an initial value or not. Specify a generated section name when specifying a section in a link directive file.
See "(b) Specifying link directive of specific data section" for an example of specification in a link
directive file. The following table shows specific examples of section names specified by the user and
generated section names.
Table 3-18. Arithmetic Operation Instructions
Section Name Specified by User Section Type Character String Appended Generated Section Name
mydata data attribute data/.bss mydata.data/mydata.bss
mysdata sdata attribute sdata/.sbss mysdata.sdata/mysdata.sbss
R20UT0553EJ0100 Rev.1.00 .QENESAS Page 100 of 943

CubeSuite+ Ver.1.00.00

Section Name Specified by User Section Type Character String Appended Generated Section Name
myconst const attribute .const myconst.const
mysconst sconst attribute .sconst mysconst.sconst

If the name is specified as follows, "variable a" is allocated to the mysdata.sdata section because it has
an initial value, and "variable b" is allocated to the mysdata.sbss section because it does not have an ini-

tial value.
#pragma section sdata "mysdata" begin
int a = 1; /*allocated to mysdata.sdata attribute section*/
int b; /*allocated to mysdata.sbss attribute section*/
#pragma section sdata "mysdata" end

(b) Specifying link directive of specific data section

Specifying link directive of specific data section When a specific section is created using the #pragma section
directive, describe that section in a link directive file as explained below.

If "variable a" and "variable b" are specified as follows in a C language source, "variable a" is allocated to the
mysdata.sdata section because it has an initial value, and "variable b" is allocated to the mysdata.sbss section
because it does not have an initial value.

#pragma section sdata "mysdata" begin

int a = 1; /*allocated to mysdata.sdata attribute section*/
int b; /*allocated to mysdata.sbss attribute section*/
#pragma section sdata "mysdata" end

At this time, the variable can be allocated to a specific section if the mapping directive in the link directive file is
described as follows.

.data = SPROGBITS ?AW .data;
.bss = SNOBITS ?AW .bss;
mysdata.data = SPROGBITS ?AW mysdata.data;
mysdata.bss = SNOBITS ?AW mysdata.bss;

Since the variables are allocated in the order in which they are described, change the description order to
change the allocation order. Itis also possible to specify the start address of the section directly (generally, a
segment is created first and a mapping directive, which specifies the start address of a section in segment
units, is then described in that segment).

Because the attribute of mysdata.data is "$PROGBITS?AW" and that of mysdata.bss is "$NOBITS?AW", do

not omit the input section (".data", ".bss", "mysdata.data”, and "mysdata.bss" on the rightmost side of

the mapping directive in the above example) from mapping directives that have the same attribute as these.

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 101 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(c) Notes on section allocation
Notes below must be noted when sections are allocated by the #progma section directive, the const qualifier,
or the section file.

<1> An error occurs during compilation if the #pragma section directive is specified as follows
- Section allocation is nested.
- begin and end of #pragma section cross.
- Either begin or end of #pragma section is missing.

[Example of incorrect specification: "Nesting of sections"]

#pragma section data begin
int a=1;

#pragma section sdata begin
short b;

char c = 0x10;

#pragma section sdata end
int d;

#pragma section data end

[Example of incorrect specification: "Crossing sections"]

#pragma section data begin
int a=1;

#pragma section sdata begin

short b;

char c = 0x10;

#pragma section data end
int d;

#pragma section sdata end

<2> |If asection is specified for an automatic variable, the specification is ignored. Section specifica-
tion is a function for external variables.

<3> When specifying a specific section name, keep the length of the name to within 256 characters
<4> A variable declaration that is not set with an initial value is usually treated as a tentative defini-

tion. When a section is specified, however, it is treated as a "definition". Do not allow variable
declarations, which do not have their initial values, set to get mixed in with definitions.

[Variable declaration not using #pragma section] [Variable declaration using #pragma section]
int 1i; /*tentative definition*/ #pragma section sedata begin
int i = 10; /*definition*/ int 1i; /*definition*/

int i = 10; /*definition*/
[Error does not occur.]
#pragma section sedata end

[Duplicated definition error.]

R20UT0553EJ0100 Rev.1.00 RENESAS Page 102 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Be sure to make extern declaration in files that reference an external variable. In the example below, a

duplicated definition error occurs if extern is missing in the tentative definition of the variable in filel.c.

[filel.c]
#pragma section sedata
extern int i;

#pragma section sedata

begin

end

[file2.c]

#pragma section sedata

int

i;

#pragma section sedata

begin

end

[Duplicated definition error occurs if extern is not declared]

<56> When a variable specified by a section is referenced by another file, the section must be speci-

fied with the same section type for the extern declaration of that variable. An error occurs if a

type of section different from that of the section specified when a variable is defined is specified.

For example, if "#pragma section data begin - #pragma section data end" is specified on the definition

side and "#pragma section data begin - #pragma section data end" is not specified on the ten-

tative definition side (extern declaration), it is assumed on the tentative definition side that the

variable is allocated to the sdata section. This means that a code that accesses the variable

from gp with two instructions is output on the definition side and that a code that accesses the variable

from gp with one instruction is output on the tentative definition side. In other words, a contradiction

occurs. Consequently, the following error message is output during linking.

".data" (file: file).

F4163: output section ".data" overflowed or illegal label reference forsymbol "symbol" in file “file" (value:
value, input section: section, offset: offset, type:R_V850_GPHWLO_1). "symbol" is allocated in section

[Example of correct specification]

[filel.c] [file2.c]

#pragma section sedata begin #pragma section sedata Dbegin

int i = 1; extern int i;

#pragma section sedata end #pragma section sedata end

[Example of incorrect specification 1]

[filel.c] [file2.c]

int i = 1; #pragma section sedata begin
extern int 1i;
#pragma section sedata end

"variable i" defined by filel.c is allocated to the sbss or bss attribute section. However, file2.c outputs a

code that accesses the sebss attribute section for "variable i". As a result, the linker outputs the following

error message.

".data" (file: file).

F4163: output section ".data" overflowed or illegal label reference forsymbol "symbol" in file "file" (value:
value, input section: section, offset: offset, type:R_V850_GPHWLO_1). "symbol" is allocated in section

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 103 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Example of incorrect specification 2]

[filel.c]
#pragma section sedata
int i = 1;

#pragma section sedata

begin

end

[file2.c]

extern int i;

<6>

"variable i" defined by filel.c is allocated to the sbss or bss attribute section. However, file2.c outputs a
code that accesses the sebss attribute section for "variable i". As a result, the linker outputs the following
error message.

F4156: can not find GP-symbol in segment "*DUMMY*" or illegal labelreference for symbol "_i" in file
"file2.0" (section: section, offset: offset, type:R_V850_GPHWLO_1)." i"is allocated in section ".sedata"
(file: filel.0).

When defining a variable with the sconst or const attribute using the #pragma section directive,
be sure to make a const specification for the variable. A const specification is also necessary at
the location of the tentative definition made by extern declaration.

If the const declaration is missing when a variable is declared, the variable is not allocated to the sconst
section or const section (the #pragma section directive is ignored) even if "#pragma section sconst begin
- #pragma section sconst end" or "#pragma section const begin - #pragma section const end" is speci-

fied, but to a gp-relative section such asthe sdata section or data section. In other words, allo-
cation is not performed as intended.

[filel.c]

#pragma section sconst

[file2.c]

begin #pragma section sconst begin

const int 1 = 1; int 1i;

#pragma section sconst end #pragma section sconst end

A code that allocates "variable i" to the sconst section is output in filel.c. In file2.c, however, the
#pragma section specification is ignored because the const specification is missing from "variable i", and
therefore the variable is treated as a gp-relative variable. In other words, a code that allocates the vari-
able to the sdata or data section is output. Consequently, "variable i" is not allocated to the
sconst section during linking.

A const specification is also necessary at the location of the tentative definition with extern dec-
laration, as shown below.

[filel.c] [file2.c]
#pragma section sconst begin #pragma section sconst Dbegin
const int i = 10; extern const int i;
#pragma section sconst end #pragma section sconst end
R20UT0553EJ0100 Rev.1.00 RENESANAS Page 104 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(d) Example of #pragma section directive
Here are some examples of using the #pragma section directive.

<1> Allocating "variable a" to tidata.word section and "variable b" to tibss.word section

#pragma section tidata word begin

int a = 1; /*allocated to tidata.word attribute section*/
short b; /*allocated to tibss.word attribute section*/
#pragma section tidata word end

<2> Allocating "variable c" to tidata.byte section and "variable d" to tibss.byte section

#pragma section tidata_ byte begin
char c = 0x10; /*allocated to tidata.byte section*/
char d; /*allocated to tibss.byte section*/

#pragma section tidata byte end

In the tidata attribute section, word data or halfword data is allocated to the tidata_word or tibss_word
section, and byte data is allocated to the tidata_byte or tibss_byte section.

If char-type arrays are declared in the C language source, however, they are allocated to the tidata.word
section. The tidata.word section can be used up to 256 bytes. Because the arrays are of char type, a
code using sld.b or sst.b is output.

However, the sld.b and sst.b instructions cannot access more than 128 bytes.

Therefore, if a char-type array is declared and if the array itself is of more than 128 bytes or is located at
a place exceeding 128 bytes relatively from ep, an error occurs during linking.

Take this point into consideration when allocating char-type arrays to the tidata section

<3> Allocating "variable e" specified by const to the sconst section and character string constant
data indicated by pointer p to sconst section.

#pragma section sconst begin
const int e = 0x10;

const char *p = "Hello, World";

#pragma section sconst end

In the above description, "Hello World" indicated by pointer p is allocated to the sconst section, and
pointer variable "p" itself is allocated to the sdata section or data section. The allocation position of the
pointer variable and the contents indicated by the pointer vary depending on how const is specified.

Examples 1.

const char *p = "Hello, World";

If this declaration is made, the pointer variable and character sting constant indicated by the pointer are

Pointer variable "p" Can be rewritten ("p = 0" can be compiled).
Character string constant "Hello World" Cannot be rewritten ("p = 0" cannot be compiled).
R20UT0553EJ0100 Rev.1.00 RENESAS Page 105 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Describe as shown
const attribute.

below to allocate what the pointer variable indicates to a section with the

#pragma section
const char

#pragma section

sconst begin
*p = "Hello, World";

sconst end

The above definition

allocates the pointer variable and constant to the following sections.

Pointer variable "p"

sdata/data section

Character string constant "Hello World" sconst section
2.
char *const p;

Pointer variable "p"

Cannot be rewritten ("p = 0" cannot be compiled).

Describe as shown

below to allocate the pointer variable to a section with the const attribute.

char *const

p = "Hello World";

The above description allocates both the pointer variable and character string constant "Hello World" to a

section with the const attribute.

#pragma section

char *const

#pragma section sconst end

sconst begin

p = "Hello World";

The above definition allocates the pointer variable and constant to the following sections.

Pointer variable "p"

sconst section

Character string constant "Hello World" sconst section
3.
const char *const p;

Pointer variable "p"

Cannot be rewritten ("p = 0" cannot be compiled).

Describe as shown below to allocate what the pointer variable indicates to a section with the

const attribute. Th

is description is used when the pointer itself is fixed to ROM.

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 106 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<4>

const char *const

p = "Hello World";

The above description allocates both the pointer variable and character string constant "Hello World" to a
section with the const attribute.

#pragma section sconst
const char *const

#pragma section sconst

begin

p = "Hello World";

end

The above definition allocates the pointer variable and constant to the following sections.

Pointer variable "p"

sconst section

Character string constant "Hello World"

sconst section

In addition to the #pragma section directive, the compiler option "-Xconst" can be used to allo-
cate a variable specified by const to the sconst section.

Make the extern declaration of the #pragma section directive in acommonly used header file and

include it in the C language source.

[header.h]

#pragma section sidata
extern int k;

#pragma section sidata

begin

end

[filel.c]

#include "header.h"
#pragma section sidata
int k;

#pragma section sidata

begin

end

[file2.c]

#include "header.h"
void funcl (void) {

k = 0x10;

If the extern declaration of the #pragma section directive is made in a header file as shown above, the
errors decrease and the source is visually simplified.

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 107 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(2) Allocating functions to sections
The CA850 allocates the functions of a C language source program, i.e., program codes, to the .text section by
default. When the text section allocation address is specified in the link directive file, the program is allocated from
that address.
However, it may be necessary to change the allocation address for each function or distribute the allocation
address because of the layout of the memory. To satisfy these necessities, the CA850 has the #pragma text direc-
tive. Using this directive, any name can be given to a section with the text attribute, and the allocation address can
be changed in the link directive file.

(a) #pragma text directive
Using the #pragma text directive, any name can be given to a section with the text attribute. The #pragma text
directive can be used in the following two ways

<1> Specifying the function name to be allocated to a section to be created using the #pragma text
directive.

#pragma text "created section name" function-name

Describe functions that are described in the C language. In the case of a function, "void funcl() {}", spec-
ify "funcl". The created section name can be omitted. In this case, a function specified by "function
name" is allocated to the default .text section.

<2> Describing the #pragma text directive before the main body of a function (function defini-
tion) but not specifying a function name.

#pragma text "created section name"

The created section name can be omitted. In this case, specification of the name of section to be cre-
ated by "#pragma text" specified immediately before is canceled, and the subsequent functions are allo-
cated to the default .text section.

However, ".section-type" is appended to a section name actually generated by this method as follows.

section-name.text

Specify a generated section name when specifying a section in a link directive file. See "(b) Specifying
link directive of specific data section" for an example of specification in a link directive file.
The following table shows specific examples of section names specified by the user and generated sec-

tion names.
Table 3-19. Arithmetic Operation Instructions
Section Name Specified by User Section Type Character String Appended Generated Section Name
mytext text attribute text mytext.text

If the name is specified as follows, "funcl" is allocated to the mytextl.text section, and "func2" is allo-
cated to the .text section by default, because the #pragma text directive is not used.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 108 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

#pragma text

void funcl (void) {

}

void func2 (void) {

"mytextl" funcl

If the name is specified as follows, "funcl" and "func2" are allocated to the mytext2.text section, "func3"
to the "mytext3.text section”, and "func4" to the default .text section because the #pragma text
"mytext3" immediately before is cancelled.

#pragma text

void funcl (void) {

}

void func2 (void) {

}

#pragma text

void func3 (void) {

}

#pragma text

void func4 (void) {

"mytext2"

"mytext3"

(b) Specifying link directive of specific data section

When a specific section is created using the #pragma section directive, describe that section in a link directive

file as explained below.

#pragma text

void funcl (void) {

}

void func2 (void) {

}

#pragma text

void func3 (void) {

}

#pragma text

void func4 (void) {

"mytext2"

"mytext3"

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 109 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

()

If the name is specified as follows, "funcl" and "func2" are allocated to the mytext2.text section, "func3" to the
"mytext3.text section”, and "func4" to the default .text section because the #pragma text "mytext3"
immediately before is cancelled.

text = $PROGBITS ?AX .text;
mytext2 = $PROGBITS ?AX mytext2.text;

mytext3 = SPROGBITS ?AX mytext3.text;

Since the variables are allocated in the order in which they are described, change the description order to
change the allocation order. It is also possible to specify the start address of the section directly (generally, a
segment is created first and a mapping directive, which specifies the start address of a section in segment
units, is then described in that segment).

Because the attribute of mytext2.text and mytext3.text is "$PROGBITS ?AX", do not omit the input section
(".text", "mytext2.text", and "mytext3.text" on the rightmost side of the mapping directive in the above example)
from mapping directives that have the same attribute as these.

Example If an input section is omitted from a mapping directive having the same "$PROGBITS?AX"
attribute, the linker links and locates all the sections having that attribute. Consequently, data is
not allocated to the specific section created by the user.

This means that the program that should be allocated to the mytext2.text or mytext3.text section is
allocated to the .text section.

.text = $PROGBITS ?AX;

Notes on #pragma text directive.
Note the following points when using the #pragma text directive

<1> Describe the #pragma text directive before the function definition in the same file; otherwise a
warning message is output and the directive is ignored. However, the order of prototype declara-
tion of a function is not affected.

<2> If afunction specified by the #pragma text directive is an interrupt handler specified as direct
allocation, a warning message is output and the #pragma text directive is ignored. See "(7)

Interrupt/Exception processing handler" for details of direct allocation specification.

<3> A function specified by #pragma text cannot be expanded inline by a #pragma inline specification
or an optimization option. Inline expansion specification is ignored.

<4> When specifying a section name, keep the length of the name to within 256 characters.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 110 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(3) Peripheral I/O register

Peripheral I/O registers are used to control the internal peripheral functions of a device. By using the peripheral

I/O register name defined by the device, the internal /0O can be accessed at C language level. The periph-
eral I/O register names can be treated in the C language source program as if they were normal unsigned external

variables.

For the register names and attributes that can be specified, see the Relevant Device 's Hardware User’ s Manual of

each device.

(a) Accessing

A peripheral function register name is validated by describing the following #pragma directive.

#pragma ioreg

In a C language source file in which "#pragma ioreg" directive is described, the peripheral function register
name described after the #pragma directive can be used.

If this directive is not used or if a peripheral function register name is used without specifying an applicable

device name, an "undefined variable" error occurs.

An error also occurs

Of the examples as follows, Example 1 is correct, but Examples 2 and 3 cause an error.

if the access attribute peculiar to the specified register is violated.

PO, P1, P2, RXB0O, and OVFO in the following examples indicate the peripheral I/O registers of the
V850 microcontrollers. In this way, symbols defined by the device file are specified as "register names".

Examples 1.

#pragma ioreg

void funcl (void)

int 1i;
PO = 1;
i = RXBO;

}

void func2 (void)

Pl = 0;

{

/*Writes to PO*/

/*Reads from RXBO*/

{

/*Writes to P1l*/

void func (void) {

/*Undefined error*/

#pragma ioreg
void func (void) {

RXBO = 1;

/*Error that occurs if attribute of RXBO is read-only*/

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 111 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(b) Bit access
The CA850 can access each bit of a peripheral function register. "bit number" is specified as 0 to 31 in the
case of a 32-bit register.

register name.bit number = ...

<1> Cautions of case of bit access
- A value other than 0 or 1 is substituted in accessing a bit, the binary least significant value of that
value is set (In this case, no message is output.).

Example

#pragma ioreg
void func (void) {
P0.1 = 1; /*Sets bit 1 of PO to 1*/

P2.3 = 0; /*Resets bit 3 of P2 to 0*/

- The bits of the flag of each register can be accessed by using a bit name. Specify a name defined
by the device file as the bit name.

Example

#pragma ioreg
void func (void) {

OVF0 = 1; /*Sets bit name OVFO0 to 1*/

(4) Describing assembler instruction
With the CA850, assembler instruction can be described in the functions of a C language source program in the fol-
lowing format.
- asm declaration
- #pragma directives

To use registers with an inserted assembler, save or restore the contents of the registers in the program
because they are not saved or restored by the CA850.
It is advisable to insert assembler in a function. If the instructions are described outside a function, the following
restrictions apply and a warning message is output.

- The output sequence of the function and code is not guaranteed.

- The code is not output in a file where the function does not exist.

(@) asm declaration

___asm(character string constant) ;
, OR

_asm (character string constant) ;

R20UT0553EJ0100 Rev.1.00 RENESAS Page 112 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<1> The _asm format is provided to maintain compatibility with the conventional language specifica-
tions. If the -ansi option is specified, the compiler outputs a warning message to the _asm format
and treats the option as a function call. When specifying the -ansi option, use the __asm format.

<2> (b) If the asm declaration is specified, the compiler suffixes a new-line character (\n) to the speci-
fied character string constantN°® and passes it to the assembler.

Note The specified character string constant is unlike the normal character string constant, "\" followed
by a character other than a new line indicates the following character itself ("\" followed by
a new line causes an error).

Example
__asm("nop") ;
__asm (".str \"string\o\"") ;

- _asmor_ asm is a declaration and is not treated as a statement. Therefore, because of the syntax of
the C language source, an error occurs in a structure that does not allow the use of a declaration only, as
shown in Example 1 below.

Therefor, enclose the statement in "{ }" as shown in Example 2 to make it a compound statement.

Examples 1.
if (i == 0)
__asm("mov rll, rl0o"); /*Error occurs because only declaration is made.*/
2.
if (1 == 0){
__asm("mov rll, rlo"); /* Can be used because this is compound

statement.*/

(b) #pragma directives
In the range enclosed by the above #pragma directives, assembler instructions can be described as is. This is
useful for using two or more assembler instructions.

#pragma asm

assembler instruction

#pragma endasm

A description of example 1 to show next is same to a description of example 2.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 113 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Examples 1.

int i;

void £(){
#pragma asm
mov r0, rlo0

st.w rlo, $ i

#pragma endasm

}

2.
int i;
void £(){
__asm("mov r0, rlo");
__asm("st.w rlo, $_im");
}

The description from "#pragma asm" to "#pragma endasm" is passed to the assembler as it is.
In other words, the CA850 internally creates an assembler instruction and starts the assembler.
Therefore, a quasi directive of the assembler can be used after the #pragma asm declaration. A local variable
in a C language source must not be used with the assembler. Because the local variable is allocated to the
stack or a register by the CA850, it cannot be used with an inline assembler.
A symbol defined using #define in the C language source file cannot be used in the description from "#pragma
asm" to "#pragma endasm". Therefore expand a macro defined by #define in a file by an assembler instruc-
tion, as follows.

- Define the macro by using the .macro instruction in the #pragma asm - #pragma endasm directives.

- Call an assembler instruction from the C language source program by means of a function call.

Another method is to write an assembler instruction without making a macro definition.
(5) Controlling interrupt level
(@) __set_il function
The CA850 can manipulate the interrupts of the V850 microcontrollers as follows in a C language source.
- By controlling interrupt level

- By enabling or disabling acknowledgment of maskable interrupts (by masking interrupts)

In other words, the interrupt control register can be manipulated.

For this purpose, the " __set_il" function is used. Specify this function as follows to manipulate the interrupt
priority level.
__set_il(interrupt-priority-level, "interrupt-request-name") ;
R20UT0553EJ0100 Rev.1.00 .zENESAS Page 114 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(b)

The "interrupt request name" that can be specified is the "maskable interrupt request name" defined in the
device file. Because a request name defined in the device file is used, the #pragma ioreg directive must be
described in the C language source that uses this function.

Integer values 1 to 8 can be specified as the interrupt priority level. With the V850, eight steps, from 0to 7, can
be specified as the interrupt priority level. To set the interrupt priority level to "5", therefore, specify the inter-
rupt priority level as "6" by this function.

Example

__set_il(2, "INTPO");

This specification sets the interrupt priority level of interrupt INTPO to 1.
Specify the __set_il function as follows to enable or disable acknowledgment of a maskable interrupt.

__set_il (enables/disables maskable interrupt, "interrupt request name") ;

"-1" or "0" can be specified to enable or disable the maskable interrupt.

Table 3-20. Enabling or Disabling Maskable Interrupt

Set Value Operation
-1 Disables acknowledgment of maskable interrupt (masks interrupt).
0 Enables acknowledgement of maskable interrupt (unmasks interrupt).
Example
__set_il(-1, "INTPO");

If the function is specified as shown above, acknowledging maskable interrupt INTPO is disabled (INTPO is
masked).

Note that the __ set il function does not manipulate the EP flag (that indicates that exception processing is in
progress) in the program status word (PSW).

__set_il function and interrupt control register
The interrupt control register of the V850 microcontrollers is configured as follows.

7 6 5 4 3 2 1 0

xXIFn xXMKn 0 0 0 xxPRn2 xxPRn1 xXPRNO

If the __ set il function is used, either "priority level" or "interrupt mask flag" is set. This means that
the __ set il function cannot set an interrupt request flag.

To set the interrupt priority level to 6 when the interrupt request name is "INTP000" and the interrupt control
register name is "P00ICQ", for example, describe the function as follows.

__set_il(7, "INTPOOO");

R20UTO0553EJ0100 Rev.1.00

RENESAS Page 115 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Output codes]

1d.b POOICO, rl
andi 0xf8, rl, rl
ori 0x6, rl, rl
st.b rl, POOICO

Therefore, codes that change only the lower 3 bits (xxxPR02 to xxxPRO0O0) of the setting of the priority level are

output.

Describe the ___ set_il function as follows to enable a maskable interrupt when the interrupt request name is

"INTPO00" and the interrupt control register name is "P00ICO".

__set_il(0, "INTPOOO");

[Output codes]
clrl 6, POOICO

A code that changes only the interrupt mask flag is output.

If a value is directly written to the interrupt control register, values are set to the priority level, interrupt mask

flag, and interrupt request flag.

Example When the interrupt control register name is "P00ICO"

POOICO = 0x6;

[Output codes]
mov 0x6, r29

st.b r29, POOICO

The meanings of these codes are as follows.
- Sets the priority level to 6.
- Enables the maskable interrupt.
- Clears the interrupt request flag.

(6) Disabling interrupts
The CA850 can disable the maskable interrupts in a C language source.
This can be done in the following two ways.
- Locally disabling interrupt in function
- Disabling interrupts in entire function

(a) Locally disabling interrupt in function

The "di instruction" and "ei instruction” of the assembler instruction can be used to disable an interrupt locally
in a function described in C language. However, the CA850 has functions that can control the interrupts in a

C.language source.

R20UT0553EJ0100 Rev.1.00 ENESAS
Apr 01, 2011

Page 116 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Table 3-21. Load/Store Instructions

Interrupt Control Function Operation Processing by CA850
__DI Disables interrupt. Generates di instruction.
__El Enables interrupt. Generates ei instruction.

Example How to use the __ DI() and __ EI() functions and the codes to be output are shown below.

[C language source]

void funcl (void) {

DI();

EI();

/*describe processing to be performed with interrupt disabled=*/

[Output codes]

_funcl:
-- prologue code
di

el

-- epilogue code

jmp [1p]

-- processing to be performed with interrupt disabled

(b) Disabling interrupts in entire function

The CA850 has a "#pragma block_interrupt" directive that disables the interrupts of an entire function.

This directive is described as follows.

#pragma block interrupt function-name

Describe functions that are described in the C language. In the case of a function, "void funcl() {}", specify

"funcl”.

The interrupt to the function specified by "function-name" above is disabled. As explained in"(a) Locally dis-
abling interrupt in function”, __ DI()" can be described at the beginning of a function and * ___ EI()", at the end.

In this case, however, an interrupt to the prologue code and epilogue code output by the CA850 cannot be dis-
abled or enabled, and therefore, interrupts in the entire function cannot be disabled.
Using the #pragma block_interrupt directive, interrupts are disabled immediately before execution of the

prologue code, and enabled immediately after execution of the epilogue code. As a result, interrupts in the

entire function can be disabled.

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 117 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Example How to use the #pragma block_interrupt directive and the code that is output are shown below.

[C language source]
#pragma block interrupt funcl

void funcl (void) {

/*describe processing to be performed with interrupt disabled*/

[Output codes]

_funcl:

di

-- prologue code

-- processing to be performed with interrupt disabled

-- epilogue code

el

jmp [1p]

(c) Notes on disabling interrupts in entire function

Note the following points when disabling interrupts in an entire function.

<1> If an interrupt handler and a #pragma block_interrupt directive are specified for the same inter-
rupt, the interrupt handler takes precedence, and the setting of disabling interrupts is ignored.
<2> |If the following functions are called in a function in which an interrupt is disabled, the interrupt is
enabled when execution has returned from the call.
- Function specified by #pragma block_interrupt
- Function that disables interrupt at the beginning and enables interrupt at the end
<3> Describe the #pragma block_interrupt directive before the function definition in the same file;
otherwise an error occurs during compilation.
However, the order of prototype declaration of a function is not affected.
<4> Neither #pragma inline nor inline expansion can be specified by an optimization option for the
function specified by a #pragma block_interrupt directive. The inline expansion specification is
ignored.
<5> A code that manipulates the ep flag (that indicates exception processing is in progress) in the
program status word (PSW) is not output even if #pragma block_interrupt is specified.
R20UT0553EJ0100 Rev.1.00 .zENESAS Page 118 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(7) Interrupt/Exception processing handler
The CA850 can describe an "Interrupt handler" or "Exception handler” that is called if an interrupt or exception
occurs. This section explains how to describe these handlers.

(&) Occurrence of interrupt/exception
If an interrupt or exception occurs in the V850 microcontrollers, the program jumps to a handler address corre-
sponding to the interrupt or exception. An interrupt source and a handler address correspond one by one. A
collection of handler addresses is called an interrupt/exception table.
For example, the interrupt/exception table of the VB50ES/SG2 is as shown below (only the top part is shown).

Table 3-22. Interrupt/Exception Table (VB50ES/SG2)

Address Interrupt Name Interrupt Trigger
0x00000000 RESET RESET pin input/reset by internal source
0x00000010 NMI Valid edge input to NMI pin
0x00000020 INTWDT2 Overflow of WDT2
0x00000040 TRAPON TRAP instruction
0x00000050 TRAP1n TRAP instruction
0x00000060 LGOP/DBGO lllegal instruction code/DBTRAP instruction
0x00000080 INTLVI Low voltage detection
0x00000090 INTPO Detection of input edge of external interrupt pin (INTPO))
0x000000A0 INTP1 Detection of input edge of external interrupt pin (INTP1)
0x000000B0 INTP2 Detection of input edge of external interrupt pin (INTP2)
0x000000CO INTP3 Detection of input edge of external interrupt pin (INTP3)

The arrangement of the handler addresses and the available interrupts vary depending on the device of the
V850. See the Relevant Device 's User’ s Manual of each device for details.

Each handler address has a 16-byte area. If an interrupt occurs, an instruction written in that 16-byte area is
executed. This means that, if the processing code does not exceed 16 bytes, it is performed only in the han-
dler address. If not, an instruction that branches to a function (interrupt handler) where the processing is writ-
ten is described.

Figure 3-15. Image of Interrupt Handler Address

Address
0x00000090
jr _func_intpO
Interrupt handler address of INTPO
0x000000A0
jr _func_intpl
Interrupt handler address of INTP1
R20UT0553EJ0100 Rev.1.00 RENESANAS Page 119 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

If the INTPO interrupt occurs in the VB50ES/SG2, the program jumps to address 0x90 and executes the code

written at that address. In this example, the program jumps to the func_intpO function because a code that
branches to that function is written. This means that func_intp0 is the interrupt handler of INTPO.

The above description is at an assembly language source level. With the CA850, users do not have to pay
much attention to this when describing interrupt servicing in C language source. How to describe

interrupt servicing is explained specifically in "(c) Describing interrupt/exception handler".

(b) Processing necessary in case of interrupt/exception

If an interrupt/exception occurs while a function or a task is being executed, interrupt/exception processing

must be immediately executed. When the interrupt/exception processing is completed, execution must return

to the function or task that was interrupted Nt
Therefore, the register information at that time must be saved when an interrupt/exception occurs, and the
register information must be restored when interrupt/exception processing is complete.

Note When a real-time OS is used, execution may not return to a task that is interrupted if a system call
issued during interrupt servicing. See the User's Manual of each real-time OS for details.

is

The prologue and epilogue codes of an ordinary function save and restore the registers for register variables.
The registers for register variables are shown below. Those that must be saved and restored are saved and

restored.

Table 3-23. Registers for Register Variables

Register modes

Register Variable Registers

22-register mode

25, 126, r27, 128, r29

26 -register mode

r23, r24, 125, 126, r27, 128, r29

32-register mode

r20, r21, r22, r23, 124, 125, r26, r27, r28, r29

When execution shifts to an interrupt/exception handler, the following registers that must be saved, in addition
to the registers shown in the above table, are also saved as a stack frame for the interrupt/exception handler.

Table 3-24. Stack Frame for Interrupt/Exception Handler

Register modes

Registers Saved/Restored in Case of Interrupt/Exception

22-register mode

rl, r6, r7,r8, 19, r10, r11, r12, r13, r14, r31 (Ip) , CTPC[V850E], CTPSWI[V850E]

26-register mode

rl, r6, r7,r8, 19, r10, r11, r12, r13, r14, r15, r16, r31 (Ip) , CTPC[V850E],
CTPSWI[V850E]

32-register mode

rl, r6, r7,r8, 19, rl10, r11, r12, r13, r14, rl5, rl6, r17, r18, r19, r31 (Ip) ,
CTPC[V850E], CTPSWI[V850E]

When multiple interrupt/exception occurs, the following registers that must be saved, in addition to the regis-

ters for register variables, are also saved as a stack frame for the multiple interrupt/exception handler.

Table 3-25. Stack Frame for Multiple Interrupt/Exception Handler

Register modes

Registers Saved/Restored in Case of Multiple Interrupts/Exceptions

22-register mode

rl, 16, 17, 18, 19, r10, r11, r12, r13, r14, r31 (Ip) , EIPC, EIPSW, CTPC[V850E],
CTPSW[V850E]

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 120 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Register modes

Registers Saved/Restored in Case of Multiple Interrupts/Exceptions

26-register mode

rl, r6, r7,r8, r9, rl10, r11, r12, r13, r14, rl5, r16, r31 (Ip) , EIPC, EIPSW,
CTPC[V850E], CTPSWI[V850E]

32-register mode

rl, r6, r7,r8, r9, r10, r1l, r12, r13, r14, r15, r16, r17, r18, r19, r31 (Ip) , EIPC,

EIPSW, CTPC[V850E], CTPSW[V850E]

The usage of the above registers is as follows.

Table 3-26. Usage of Registers

Register Usage
rl Assembler-reserved register
r6-r9 Registers for arguments (registers to set arguments of function)
r10-r19 Work registers (registers used by CA850 to generate codes)
r31 Link pointer
CTPC[V850E] Program counter (PC) when CALLT instruction is executed.
CTPSWI[V850E] Program status word (PSW) when CALLT instruction is executed.
EIPC Program counter (PC) during interrupt/exception processing
EIPSW Program status word (PSW) during EIPSW interrupt/exception processing.

When interrupt/exception processing is completed, the code which restores saved registers is output, the reti
instruction is output. This instruction notifies the V850 that the interrupt/exception servicing is completed.

If codes for saving/restoring registers or outputting the reti instruction are described as explained in "(c)
Describing interrupt/exception handler”, the CA850 automatically outputs the relevant code. The code for sav-
ing/ restoring registers is output as explained in "Table 3-27. Processing for Saving/Restoring Registers
During Interrupt". The user therefore does not have to pay much attention to this and can concentrate on
describing the processing of the main body of the interrupt handler.

Table 3-27. Processing for Saving/Restoring Registers During Interrupt

Register Name Register Explanation
Assembler-reserved register rl Always saved/restored at interrupt.
Argument registers ré-r9 r6 is always saved/restored when the interrupt
source is TRAPO/ TRAPL.
Saved/restored when a function call (including
runtime functions) exists.
Saved/restored if a function call does not exist
but is used with an interrupt function.
Work Registers 22-register mode ri0-ri4 Saved/restored when a function call exists.
26-register mode r10-r16 Saved/restored if a function call does not exist
but is used with an interrupt function.
32-register mode r10-r19
Register Variable 22-register mode r25-r29 Saved/restored as necessary, as with ordinary
Registers) functions.
26-register mode r23-r29
32-register mode r20-r29
R20UT0553EJ0100 Rev.1.00 RENESANAS Page 121 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Register Name Register Explanation

Link pointer r31(Ip) Saved/restored when a function call (including
runtime functions) exists

Does not save/restore if a function call does not
exist.

Interrupt-related system registers EIPCE, Saved/restored with functions using the multi-
EIPSW ple interrupt qualifier__multi_interrupt.

Not saved/restored with the __interrupt qualifier.

callt instruction-related system registers CTPC, Always saved/restored with interrupt functions
[V850E] CTPSW being compiled with a V850E/V850ES/V850E2
core device specified.

(c) Describing interrupt/exception handler
The format in which an interrupt/exception handler is described does not differ from ordinary C functions, but
the functions described in C must be recognized as an interrupt/exception handler by the CA850. With
the CA850, an interrupt/exception handler is specified using the #pragma interrupt directive and __ interrupt
qualifier, or #pragma interrupt directive and _ multi_interrupt qualifier.

<1> When specifying interrupt/exception handler

#pragma interrupt Interrupt-request-name Function-name Allocation-method

__interrupt Function-definition, or Function-declaration

<2> When specifying multiple-interrupt/exception handle

#pragma interrupt Interrupt-request-name Function-name Allocation-method

_ multi interrupt Function-definition, or Function-declaration

Describe functions that are described in the C language. In the case of a function, "void funcl() {}", spec-
ify "funcl".
"Specifying multiple-interrupt handler" means to "specify a function that can be interrupted more than
once" It does not mean "to specify a function that interrupts more than once”.
- Inerrupt request name
Interrupt request names registered in the device file can be specified. Refer to the interrupt
request names described in the Relevant Device 's Architecture User’ s Manual of each device; they
are the interrupt request names registered in the device file.
A non-maskable interrupt (NMI) can also be specified in this way, but a reset interrupt (RESET) can-
not be specified. Processing after reset must be described with assembler instructions. Processing
after reset is generally described in the startup routine, so see "CHAPTER 7 STARTUP" for details.

- Function Name
Specify the names of functions that are used as an Interrupt/Exception handler. Describe the func-
tion name in C language source. When specifying the function "void funcl(void)", specify the func-
tion name as "funcl”.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 122 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

- Allocation method
Specify whether the main body of the function is directly allocated to the handler address, or only the
instruction that branches to the interrupt handler function is allocated. Specify "direct" when the
main body of the function is directly allocated; otherwise describe nothing as "allocation method".
By specifying "direct”, all functions are allocated from the handler address of the specified
interrupt source. Note, however, that the areas for the subsequent handler address are also used.
When specifying "direct"”, be sure to describe the #pragma interrupt directive before the function def-
inition; otherwise an error occurs during compilation.

Next, the roles of the #pragma interrupt directive, __interrupt qualifier, and __ multi_interrupt qualifier
are explained.
- #pragma interrupt directive
Allocates an instruction (jr) that branches to the specified function to a handler address corresponding to
the interrupt request name specified by the #pragma interrupt directive. When the -Xj option is
specified, this directive allocates an instruction that saves the rl register contents to the stack and an
instruction (jmp) that branches to the specified function.

- __interrupt qualifier
Adds processing to save/restore the register contents by an interrupt/exception handler to a function with
the __interrupt qualifier and adds the reti instruction at the end. When the -Xj option is specified, process-
ing to save the rl register contents is output to the handler address, so only restore processing is output
for the function.

- __multi_interrupt qualifier
Adds processing to save/restore the register contents by an interrupt handler and processing to
save/ restore the contents of the EIPC and EIPSW registers to a function with the __multi_interrupt quali-
fier. This directive also adds the reti instruction at the end. When the -Xj option is specified, processing to
save the rl register contents is output to the handler address, so only restore processing is output for the
function.

When the #pragma interrupt directive, __interrupt qualifier, and__ multi_interrupt qualifier are specified at the
same time, the following codes are output and the handler completes the interrupt/ exception servicing routine.
- Allocation of an instruction branching to the specified interrupt/exception handler to the handler address.
- Addition of processing to save/restore the register contents as an interrupt handler (and processing
to save/restore the contents of EIPC and EIPSW if the __ multi_interrupt qualifier is specified)
- Addition of the reti instruction at the end of the handler

In this case, function definition and the #pragma interrupt directive can be described in separate files in any
order. If "direct" is specified for the allocation method, however, they cannot be described in separate files.
The following codes are output if only the ___interrupt qualifier or __ multi_interrupt qualifier is specified.
- Addition of processing to save/restore the register contents by an interrupt handler (and processing
to save/restore the contents of EIPC and EIPSW if the ___ multi_interrupt qualifier is specified)
- Addition of the reti instruction at the end of the interrupt/exception handler.

Therefore, the function can be started as an interrupt/exception handler but the processing to allocate "an
instruction to branch the interrupt handler to the handler address" output by the #pragma interrupt
directive is not performed.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 123 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Example The #pragma interrupt is specified as follows when the interrupt handler "void intpO_func(void)" is
used for the interrupt request name "INTPO" without "direct” being specified and multiple interrupts
being enabled.

#pragma interrupt INTPO intp0_func
__interrupt

void intp0_ func (void) {

main body of interrupt servicing

Next, the function type that can be specified as an interrupt handler is explained.
- Function type
The type of a handler that handles a maskable interrupt or NMl is as follows.
void func(void) type
The argument and return value of this function are void type.
The type of a software exception processing (trap) handler is as follows.
void func(unsigned int) type
EICC (exception code) of the interrupt source register (ECR) is set as the argument. Unless the function
is specified by this type, an error occurs during compilation. Refer to the next paragraph for the
software exception processing function.

Software exception processing (trap processing) handler

When software exception processing (trap processing) is used, two entry points, TRAPO (address 0x40)
and TRAP1 (address 0x50), are used according to the specifications of the V850 microcontrollers. When
the software exception "trap 0x00 to trap OxOf" occurs, execution branches to TRAPO (address 0x40); if
"trap 0x10 to trapOx1f" occurs, it branches to TRAP1 (address 0x50). At this time, the value "0x40 to Ox4f"
is set to the interrupt source register (ECR) as a software exception code in the case of TRAPO. In the
case of TRAP1, the value "0x50 to 0x5f" is set to the ECR.

Table 3-28. Trap Instructions and Software Exception Codes

Trap Instruction Software Exception Code
trap 0x00 0x40
trap 0x01 0x41
trap 0x02 0x42
trap 0x0a Ox4a
trap 0x0b 0x4b
trap 0x10 0x50
trap 0x11 0x51
trap 0x12 0x52
trap Oxle 0x5e
R20UT0553EJ0100 Rev.1.00 RENESAS Page 124 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Trap Instruction

Software Exception Code

trap 0x1f

Ox5f

When software exception processing for TRAPO or TRAPL1 is described, that function has one argument and
the type of the variable is "unsigned int". The software exception code set to the interrupt source register
(ECR) is set as the argument. In the case of TRAPO, the value is "0x40 to Ox4f". In the case of TRAPL, itis

"0x50 to Ox5f". Processing must be described in the handler depending on these values.

#pragma interrupt TRAPO trap0_func
__interrupt

void trap0_ func (unsigned int codenum) {

describe processing of each exception code

(d) Notes on describing interrupt/exception handler

- "Specifying multiple-interrupt handler" with the ___ multi_interrupt qualifier means to "specify a function that can
be interrupted more than once" and does not mean "to specify a function that interrupts more than once".

- Even if a handler that enables multiple interrupts is specified by _ multi_interrupt, interrupts are not
enabled when the interrupt handler is activated. Therefore, be sure to issue an interrupt enabling
instruction (such as __ El) in the interrupt handler, and issue an interrupt disabling instruction (such as __ DI)
at the end of the handler. If the interrupt disabling instruction is not issued at the end of the handler, an inter-
rupt may be acknowledged while the contents of a register are being restored, which may cause a hang-up.

- The reset interrupt cannot be specified by the #pragma interrupt directive.

#pragma interrupt RESET reset func

/*error*/

If the above description is made, an error occurs during compilation. Processing after reset must be

described with assembler instructions.

Processing after reset is generally described in the startup routine, so see "CHAPTER 7 STARTUP" for

details.

- Specify __multi_interrupt qualifier in the function specified as a handler that processes multiple interruptions.
In such case, code which saves,restores the EIPC and EIPSW is output. Interrupt handler where

__multi_interrupt qualifier is not specified, the code which saves, restores the EIPC and EIPSW is not output.
- The #pragma interrupt directive and _ _ multi_interrupt qualifier do not support multiple exceptions and
multiple NMIs. To use multiple exceptions or multiple NMI, add a code that saves or restores the necessary
system registers (such as FEPC and FEPSW). See the Relevant Device’s User’s Manual of each device for

the necessary system registers.

- The user is not required to additionally describe an interrupt handler address in the link directive file. It is out-

put internally by the CA850.

- The same interrupt request name must not be specified for two or more functions.

- Both the __interrupt qualifier and __ multi_interrupt qualifier must not be specified for the same function.
- An error occurs during compilation if a function is declared with the ___interrupt qualifier or __multi_interrupt
qualifier after the function is defined without the __interrupt qualifier or __multi_interrupt qualifier being

specified.

- A function specified as an interrupt/exception handler cannot be expanded inline. The #pragma inline

directive is ignored even if specified.

R20UT0553EJ0100 Rev.1.00 ENESAS

Apr 01, 2011

Page 125 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

- An interrupt to a function specified as an interrupt/exception handler is disabled. Therefore, the #pragma
block_interrupt directive is ignored even if specified.

- A function specified as an interrupt/exception handler cannot be called by an ordinary function call. Ifitis
called from another file, the compiler cannot check it.

- When an assembler instruction is called from an interrupt/exception handler and the registers shown in "Table
3-23. Registers for Register Variables" and "Table 3-24. Stack Frame for Interrupt/Exception Handler" are
used, processing to save/restore the register contents must be described. Processing to save/restore the
register contents must also be described when sp (r3), gp (r4), tp (r5), and ep (r30) are rewritten.

The #pragma interrupt directive, __interrupt qualifier, and __ multi_interrupt qualifier do not issue a pro-
cessing end report (EOI command) to the external interrupt controller. The user should therefore exe-
cute this directive, if necessary.

Disable interrupts at the end of multiple interrupts because a code that restores EIPC and EIPSW must be
described.

If "direct” is not specified, an instruction to branch to the interrupt/exception handler is allocated to the han-
dler address. In this case, the CA850 outputs the jr instruction to enhance the code efficiency. How-
ever, the range in which the jr instruction can branch execution is limited to +21 bits from the jr

instruction. If the main body of the interrupt handler is not within the range in which the jr instruction can
branch execution, an error occurs during linking. In this case, specify the compilation option "-Xj " to replace
the jr instruction with the jmp instruction.

(e) Description example of interrupt/exception handler
Examples of describing interrupt/exception handlers are shown below.
Note that the interrupt request name differs depending on the device. See the Relevant Device 's User’ s Man-
ual of each device.

Examples 1. Non-maskable interrupt

#pragma interrupt NMI funcl /*non-maskable interrupt*/
__interrupt

void funcl (void) {

2. Trap

#pragma interrupt TRAPO func2 /*Trap 0%/
__interrupt

void func2 (unsigned int num) {

switch (num) { /*for every exception cod*/
}
}
R20UT0553EJ0100 Rev.1.00 RENESAS Page 126 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

3. #pragmainterrupt and _ _ interrupt qualifier in separate files

[a.c]
__interrupt /* _interrupt specification*/

void funcl (void) {

}
[b. c]

#pragma interrupt NMI funcl /*can be described after definition or in separate
filex/

4. Specification of multiple interrupts

#pragma interrupt INTPO funcl
_ multi interrupt /*multiple-interrupt function specified*/

void funcl (void) {

(8) Inline expansion

The CA850 allows inline expansion of each function. This section explains how to specify inline expansion.

(&) Inline Expansion
Inline expansion is used to expand the main body of a function at a location where the function is called. This
decreases the overhead of function call and increases the possibility of optimization. As a result, the execution
speed can be increased.
If inline expansion is executed, however, the object size increases.
Specify the function to be expanded inline using the #pragma inline directive.
#pragma inline function-name [, function-name...]
Describe functions that are described in the C language. In the case of a function, "void funcl() {}", specify
"funcl". Two or more function names can be specified with each delimited by "," (comma).
#pragma inline funcl, func2
void funcl () {...}
void func2 () {...}
void func (void) {
funcl () ; /*function subject to inline expansion*/
func2 () ; /*function subject to inline expansion*/
}
(b) Conditions of inline expansion

At least the following conditions must be satisfied for inline expansion of a function specified using the
#pragma inline directive.

If optimization other than "size priority optimization (-Os)" and "execution speed priority optimization (-Ot)" is
specified, however, inline expansion may not be executed even if the following conditions are satisfied,
because of the internal processing of the CA850.

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 127 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<1> A function that expands inline and a function that is expanded inline are described in the same
file
A function that expands inline and a function that is expanded inline, i.e., a function call and a
function definition must be in the same file. This means that a function described in another C language
source cannot be expanded inline. If it is specified that a function described in another C language
source is expanded inline, the CA850 does not output a warning message and ignores the specification.

<2> The #pragmainline directive is described before function definition.
If the #pragma inline directive is described after function definition, the CA850 outputs a warning mes-
sage and ignores the specification. However, prototype declaration of the function may be described in
any order. Here is an example.

Example

[Valid Inline Expansion Specification] [Invalid Inline Expansion Specification]

#pragma inline funcl, func2 void funcl(); /*prototype declaration*/

void funcl(); /*prototype declaration*/ | void func2(); /*prototype declaration*/

void func2(); /*prototype declaration*/ | void funcl(){...} /*function

void funcli(){...} /*function definition*/
definition*/ void funcl(){...} /*function

void func2(){...} /*function definition*/
definition*/ #pragma inline funcl, func2

<3> The number of arguments is the same between "call" and "definition" of the function to be
expanded inline.
If the number of arguments is different between "call" and "definition" of the function to be expanded
inline, the CA850 outputs a warning message and ignores the specification.

<4> The types of return value and argument are the same between "call" and "definition" of the func-
tion to be expanded inline.
If the number of arguments is different between "call" and "definition" of the function to be expanded
inline, the CA850 outputs a warning message and ignores the specification. If the type can be con-
verted, however, it is converted as follows and the function is expanded inline.
- The return value type is the type of the "calling side".
- The argument type is the type of the "function definition”

If the "-ansi" option is specified, however, the type is not converted and an error is output.

<5> The size of the function to be expanded inline and the stack size are not too large.
If the size of the function to be expanded inline and the stack size are too large, neither an error nor
warning is output, and the inline expansion specification is ignored. This "size" means the size in
the intermediate language and is different from the size of the actual object. The upper limit of the size
can be changed in the CA850.
The function size in the intermediate language can be changed by this option.

-Wp,-Nnum

R20UT0553EJ0100 Rev.1.00 RENESAS Page 128 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

The stack size used by the function in the intermediate language can be changed by this option.

-Wp,-Gnum

In addition, the size of each function and stack size used in the intermediate language can be checked
by using this option.

“Wp,|

This option can be used to determine the size for specification.

<6> The number of arguments of the function to be expanded inline is not variable.
If inline expansion is specified for a function with a variable arguments, the CA850 outputs neither an
error nor warning message and ignores the specification.

<7> Recursive function is not specified to be expanded inline.
If a recursive function that calls itself is specified for inline expansion, the CA850 outputs neither an error
nor warning message and ignores the specification. If two or more function calls are nested and if a
code that calls itself exists, however, inline expansion may be executed.

<8> An interrupt handler is not specified to be expanded inline.
A function specified by the #pragma interrupt, __interrupt, or __ multi_interrupt directive is recognized
as an interrupt handler. If inline expansion is specified for this function, the CA850 outputs a warning
message and ignores the specification.

<9> A task of areal-time OS is not specified to be expanded inline.
A function specified by the #pragma rtos_task directive is recognized as a task of a real-time OS. If
inline expansion is specified for this function, the CA850 outputs a warning message and ignores the
specification.

<10> Interrupts are not disabled in a function by the #pragma block_interrupt directive.
#If inline expansion is specified for a function in which interrupts are declared by the #pragma
block_interrupt directive to be disabled, the CA850 outputs a warning message and ignores the specifi-
cation.

(c) Controlling inline expansion via option
Inline expansion can be controlled using options when inline expansion by the compiler should be suppressed.
The cases in which inline expansion can be controlled and the options are as follows.
If execution speed priority optimization (-Ot) is specified, however, refer to "(d) Execution speed priority
optimization and inline expansion”.

<1> To expand inline all static functions that are referenced only once
If this option is specified, a static function that is referenced only once is expanded inline, regardless of
optimization specification and the presence or absence of a #pragma inline specification.
If optimization other than the size priority optimization (-Os) is specified, however, inline expansion may
not be executed even if the -Wp,-S option is specified, because of the internal processing of the CA850.

-Wp,-S

R20UT0553EJ0100 Rev.1.00 RENESAS Page 129 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<2> To suppress inline expansion of all functions
In this case, inline expansion is suppressed even if the -Wp,-S option or the #pragma inline directive is
specified.

-Wp,-no_inline

(d) Execution speed priority optimization and inline expansion
If the "execution speed priority optimization (-Ot)" option of the CA850 is specified, the CA850 uses inline
expansion as one of the means of optimization.
If the -Ot option is specified, the CA850 selects an appropriate function and expands it inline as long as the
inline expansion conditions in "(b) Conditions of inline expansion" are satisfied, even if the function is not
specified for inline expansion by the #pragma inline directive.
Inline expansion can be controlled using options when inline expansion by the compiler should be suppressed.
The cases in which inline expansion can be controlled and the options are as follows

<1> To suppress inline expansion of all functions even though the -Ot option is specified.
In this case, inline expansion is suppressed even if the -Wp,-S option or the #pragma inline directive is
specified.

-Wp,-no_inline

<2> To expand inline only the function specified by the #pragma inline directive even though the -Ot
option is specified.
In this case, the function for which inline expansion is specified must meet the conditions explained in
"(b) Conditions of inline expansion”.

-Wp,-inline

(e) Examples of differences in inline expansion operation depending on option specification
Here are examples of differences in inline expansion operation depending on whether the #pragma
inline directive or an option is specified.
When -Os (size priority optimization) is specified (other than -Ot)

#pragma inline funcoO

void funco () {...} /*expanded if inline expansion conditions are satisfied because,
#pragma inline is specified*/

void funcl () {...} /*Not expanded*/

void func2 () {...} /*Not expanded*/

When -Ot (execution speed priority optimization) is specified

#pragma inline funcoO

void funco () {...} /*expanded if inline expansion conditions are satisfied
because -Ot is specified*/

void funcl () {...} /*expanded if inline expansion conditions are satisfied
because -Ot is specified*/

void func2 () {...} /*expanded if inline expansion conditions are satisfied

because -Ot is specified*/

R20UT0553EJ0100 Rev.1.00 RENESAS Page 130 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

When -Ot (execution speed priority optimization)+ -Wp,-inline (inline expansion of only function specified by
#pragma inline) are specified.

#pragma inline funco

void funco () {...} /*expanded if inline expansion conditions are satisfied because
#pragma inline is specified*/

void funcl () {...} /*not expanded because -Wp,-inline is specified but
#pragma inline is not specified*/

void func2 () {...} /*not expanded because -Wp,-inline is specified but

#pragma inline is not specified*/

Remarks 1. The CA850 does not treat a function specified for inline expansion by the #pragma inline direc-
tive as a static function. To use such a function as a static function, static must be explicitly
specified.

2. When executing debugging, a breakpoint cannot be specified for a function specified for
inline expansion in the C language source.

(9) Real-time OS support function
The CA850 has functions to improve programming description and to reduce the number of codes, making allow-
ances for organizing a system using the V850 microcontrollers real-time OS RI850V4.

(2) Description of task
An application using a real-time OS performs processing in task units. The real-time OS schedules a task
using a system call issued in that task or interrupt servicing. Register contents are saved and restored by the
real-time OS when the task is switched (when the context is switched). Therefore, prologue and epi-
logue processing are different from those of an ordinary function.
In other words, the prologue and epilogue processing generated by the CA850 when a function is called are
not executed by a task.
To use a function described as a task, the code can be reduced by deleting the prologue and epi-
logue processing that are executed when a function is called. However, ordinary functions and tasks are
not distinguished according to the description method of C language Therefore, the CA850 has the follow-
ing #pragma directive so that a function can be recognized as a task of a real-time OS.

#pragma rtos_task function-name

Consequently, the function specified by "function-name" can be recognized as a task of a real-time OS. A
function name described in C is specified as "function-name". The following description is made, for example,
to use the function "void funcl(int inicode){}" as a task.

Example

#pragma rtos_task funcl

Specifying the #pragma rtos_task directive has the following effect.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 131 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<1> The prologue/epilogue processing output by an ordinary function is not performed. Specif-
ically, the following codes are not output.
- Saving/restoring of register contents for register variables
- Saving/restoring of link pointer (Ip)
- Jump to return address

<2> The system call "ext_tsk" can be used as a defined function.

This system call can be used even if a prototype declaration is not made in the application. Functions
other than the one specified as a task can be called in the same manner as long as they are described
after the #pragma rtos_task directive.
When this system call is called, a code using the jr instruction is output to reduce the code size. If the
main body of system call "ext_tsk" is not in the range in which the jr instruction can branch execution, the
linker (1d850) outputs an error. In this case, take the following actions

- Change the memory allocation by the link directive

- Replace the jr instruction with the jmp instruction in the assembly language source.

- Specify far jump

Note the following points when the #pragma rtos_task directive is specified.

- A task cannot be called in the same manner as calling a function. A task called from a separate file
is not checked. A task cannot be expanded inline because it cannot be called as a function. Thatis,
even if the #pragma inline directive is specified for a function specified by the #pragma
rtos_task directive, the #pragma inline specification is ignored.

- An error occurs if "#pragma rtos_task function-name" is described after the function definition in the
same file.

- If the function is not defined after "#pragma rtos_task function-name" is described in the file,
the #pragma directive for that function is ignored.

- A function specified by the #pragma rtos_task directive cannot be specified as an ordinary
interrupt/exception handler (see "(7) Interrupt/Exception processing handler").

See the User's Manual of each real-time OS for the real-time OS functions.

(10)Embedded functions
In the CA850, some of the assembler instructions can be described in C language source as "Embedded Func-
tions". However, it is not described "as assembler instruction", but as a function format set in CA850. When these
functions are used, output code outputs the compatible assembler instructions without calling the ordinary function.
The instructions that can be described as functions are as follows.

Table 3-29. Embedded Functions

Assembler Instruction Function Embedded Function
di Interrupt control (DI/EI) _DI();
ei __EIQ);
nop nop __nop();
halt halt __halt();
satadd Saturated addition (satadd) long a, b;
long __satadd(a, b);
satsub Saturated subtraction (satsub) long a, b;
long __satsub(a, b);
R20UT0553EJ0100 Rev.1.00 RENESAS Page 132 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Assembler Instruction Function Embedded Function
bsh Halfword data byte swap (bsh) [V850E] long a;
long bsh(a) ;
bsw Word data byte swap (bsw) [V850E] long a;
long bsw(a) ;
hsw Word data halfword swap (hsw) [V850E] long a;
long hsw(a) ;
sxb Byte data sign extension (sxb) [V850E] char aj;
long sxb(a) ;
sxh Halfword data sign extension (sxh) short a;
[V850E] long sxh(a) ;
mul Instruction that assigns higher 32 bits of long a, b;
multiplication result to variable using mul long _ mul32(a, b);
instructions [V850E]
mulu Instruction that assigns higher 32 bits of unsigned long a, b;
multiplication result to variable using mulu unsigned long _ mul32u(a, b);
instruction [V850E]
sasf Flag condition setting with logical left shift long a;
(sasf) [V850E] unsigned int b;
long __sasf(a, b);
Cautions 1. [V850E] mark indicates that only V850Ex core is available.

2. Evenif afunction is defined with the same name as an embedded function, it cannot be

used.

If an att isempt made to call such a function, processing for the embedded function pro-

vided by the compiler takes precedence.

(a) Interrupt control (DI/EI)

An example of describing the interrupt control (DI/EI) instruction is shown below.

Example

void func (void) {
DI();

__EI();

/*Describe the processing to be executed while interrupts are disabled.*/

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 133 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Output code]
_func:

-- Prologue code

di
-- Describe the processing to be executed while interrupts are disabled
ei
-- Epilogue code
jmp [1p]

(b) nop
An example of describing the nop instruction is shown below.

Example

void func (void) {

__nop();

[Output code]

_func:

nop

(c) halt
An example of describing the halt instruction is shown below.

Example

void func (void) {

_ halt();

[Output code]

_func:

halt

R20UT0553EJ0100 Rev.1.00 RENESAS Page 134 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(d) Saturated addition (satadd)

An example of describing the saturated addition instruction is shown below.

Example

void func (void) {

long a, b, c;

c = _ satadd(a, b); /*The result of the saturated operation of a and b is

stored in c*/

[Output code]

_func:
ld.w -4 + .A2[sp]l,
ld.w -8 + .A2[sp],

satadd rl1l, rlo0

st.w rl0, -12 + .A2[sp] -- The result of the saturated operation is stored

rlo0 -- Load variable a
rll -- Load variable b

-- Saturated subtraction (a + b)

in variable c

(e) Saturated subtraction (satsub)
An example of describing the saturated subtraction instruction is shown below.

Example

void func (void) {

long a, b, c;

c = _ satsub(a, b); /*The result of saturated operation of a and b is stored in

c (c =a - b)*/

[Output code]

_func:
1d.w -4 + .A2[sp],
1d.w -8 + .A2[sp],

satsub rl1l, rlo0

st.w rl0, -12 + .A2[sp] -- The result of the saturated operation is stored

rlo0 -- Load variable a
rll -- Load variable b

-- Saturated subtraction (a - b)

in wvariable c

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 135 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(f) Halfword data byte swap (bsh) [V850E]
An example of describing the halfword data byte swap (bsh) instruction is shown below.

Example
void func (void) {
long a, b;
b = _bsh(a); /*Halfword data of a is byte-swapped and the result is stored in b*/
1
[Output code]
_func:
ld.w -4 + .A2([sp], rlo0 -- Load variable a
bsh rl0, rlo0 -- Halfword data byte swap
st.w rl0, -8 + .A2[spl] -- Halfword data byte swap
-- Result is stored in variable b

(g) Word data byte swap (bsw) [V850E]
An example of describing the word data byte swap (bsw) instruction is shown below.

Example

void func (void) {
long a, b;
b = bsw(a); /*Word data of a is byte-swapped and the result is stored in b*/

1

[Output code]

_func:
1d.w -8 + .A2[spl, rlo0 -- Load variable a
bsw rl0, rlo -- Word data byte swap
st.w rl0, -12 + .A2[sp] -- Stored in variable b

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 136 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(h) Word data halfword swap (hsw) [V850E]
An example of describing the word data halfword swap (hsw) instruction is shown below.

Example

void func (void) {
long a, b;
b = _ hsw(a); /*Word data of a is halfword-swapped and the result is stored in b*/

1

[Output code]

_func:
ld.w -8 + .A2[sp], rlo -- Load variable a
hsw rlo, -- Word data halfword swap
st.w rl0, -12 + .A2[sp] -- Stored in variable b

(i) Byte data sign extension (sxb) [V850E]
An example of describing the byte data sign extension (sxb) instruction is shown below.

Example

void func (void) {
char a;
long b;
b = sxb(a); /*Sign extension of the byte data of a is performed and the

result is stored in b*/

1

[Output code]

_func:
1d.b -8 + .A2[sp], rlo -- Load variable a
sxb rl0, rlo0 -- Sign extension of byte data
st.w rl0, -12 + .A2[sp] -- Stored in variable b

R20UT0553EJ0100 Rev.1.00 RENESAS Page 137 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Example

() Halfword data sign extension (sxh) [V850E]
An example of describing the halfword data sign extension (sxh) instruction is shown below.

void func (void) {

short a;
long b;
b = sxh(a); /*Sign extension of the halfword data of a is performed and the

result is stored in b*/

[Output code]

_func:

1d.h
sxh

st.w

-8 + .A2[sp], rlo0
rl0

rl0, -12 + .A2[sp]

-- Load variable a
-- Halfword data sign extension

-- Stored in variable b

(k) Instruction that assigns higher 32 bits of multiplication result to variable using mul instructions

[V850E]

An example of describing the instruction that assigns the higher 32 bits of the unsigned multiplication result to

variable using mul instruction is shown below.

Example

long

void func (void) {

/*The higher 32 bits of the result of a * b are stored in c*/

[Output code]

_func:

ld.w
1ld.w
mul

st.w

-4 + .A2[spl, rlo0
-8 + .A2([sp], ri1

rll, rl0, rl2

rl2, -12 + .A2[sp]

-- Load variable a
-- Load variable b
__a*b

-- Stored in variable ¢

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 138 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

() Instruction that assigns higher 32 bits of multiplication result to variable using mulu instruction

[V850E]

An example of describing the instruction that assigns the higher 32 bits of the unsigned multiplication result to

variable using mulu instruction is shown below.

Example
void func (void) {
unsigned long a, b, c;
¢ = _mul32u(a, b); /*The higher 32 bits of the result of a * b are stored in c*/
1
[Output code]
_func:
1d.w -4 + .A2[sp]l, rlo -- Load variable a
1d.w -8 + .A2[sp]l, rll -- Load variable b
mulu rll, rl1l0, ril2 --a*b
st.w rl2, -12 + .A2[sp] -- Stored in variable c

(m) Flag condition setting with logical left shift (sasf) [V850E]

An example of describing the flag condition setting instruction with logical left shift when a conditional expres-

sion is written in the second argument is shown in Example 1.

An example of describing the flag condition setting instruction (sasf) with logical left shift when a variable is

written in the second argument is shown in Example 2.

Examples 1. When a conditional expression is written in the second argument

void func (void) {

unsigned long a, b, c;

and 1 is added. If a ==

The result is stored in

c = sasf(c, a == Db); /*a == b is true, c is shifted left logically by 1 bit

b is not true, ¢ is shifted

left logically by 1 bit.

R20UT0553EJ0100 Rev.1.00 ENESAS
Apr 01, 2011

Page 139 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Output codel
_func:
1d.w -4 + .A2[sp], rlo -- Load variable a
1d.w -8 + .A2[sp]l, rll -- Load variable b
cmp rll, rlo -- Compare variable a and b
1d.w -12 + .A6[sp], rl2 -- Load variable c
sasf 0x2, rl2 -- a == b is not true, c is shifted left logically by 1 bit
-- ¢ is shifted left logically by 1 bit and 1 is added
st.w rl2, -12 + .A2[sp] -- Stored in variable c¢

2. When a variable is written in the second argument

void func (void) {

unsigned long a, b;

b = sasf(b, a); /*If a is not 0, b is shifted left logically by 1 bit and 1
is added.
If a is other than 0, b is shifted left logically by 1 bit.

The result is stored in b.*/

[Output code]

_func:

1d.w -4 + .A2[spl, rlo0 -- Load variable a

cmp r0, rlo -- Compare variable a and 0

1d.w -8 + .A2[sp]l, rll -- Load variable b

sasf Oxa, rll -- If a is not 0, b is shifted left logically by 1 bit
-- and 1 is added. If a is 0, b is shifted left
-- logically by 1 bit

st.w rll, -8 + .A2[spl] -- Stored in variable b

(11) Structure type packing
In the CA850, the alignment of structure members can be specified at the C language level. This function is equiv-
alent to the -Xpack option, however, the structure type packing directive can be used to specify the alignment value
in any location in the C language source.

Caution The data area can be reduced by packing a structure type, but the program size increases and
the execution speed is degraded.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 140 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(@) Format of structure type packing
The structure type packing function is specified in the following format.

(b)

#pragma pack([1248])

#pragma pack changes to an alignment value of the structure member upon the occurrence of this directive.

The numeric value is called the packing value and the specifiable numeric values are 1, 2, 4, and 8. When the

packing value is not specified, the default alignment 8N°€ is specified. Since this directive becomes valid upon

occurrence, several directives can be described in the C language source.

Example

struct TAG{

char c;
int i;
short s;

#pragma pack(l) /*Structure member aligned using 1l-byte alignment*/

Note Alignment values "4" and "8" are treated as the same in this Version.

Rules of structure type packing

The structure members are aligned in a form that satisfies the condition whereby members are aligned accord-

ing to whichever is the smaller value: the structure type packing value or the member’s alignment value.

For example, if the structure type packing value is 2 and member type is int type, the structure members are

aligned in 2-byte alignment.

Example
struct §{
char c; /*Satisfies 1l-byte alignment condition*/
int i; /*Satisfies 4-byte alignment condition*/

i
#pragma pack (1)
struct S1{
char c;
int i;
}i
#pragma pack(2)
struct S2{
char c;
int i;
i
struct S sobj;
struct S1 slobj;

struct S2 s20bj;

/*Satisfies

/*Satisfies

/*Satisfies

/*Satisfies

/*Size of 8
/*Size of 5

/*Size of 6

1-byte alignment

1-byte alignment

1-byte alignment

2-byte alignment

bytes*/
bytes*/

bytes*/

condition*/

condition*/

condition*/

condition*/

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 141 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

sobj

[| |

0 78 3132 63
slobj

L | |

0 78 39

s20bj

[= | |

0 78

(c) Union

A union is treated as subject to packing and is handled in the same manner as structure type packing.

Examples 1.

union U{

struct S{

char c;
int i;
}sobj;

}i
#pragma pack (1)
union U1{

struct 81

char c;
int i;
}slobj;

i
#pragma pack(2)
union U2{

struct 82

char c;
int i;
}s20bj;

union U uobj ;
union Ul ulobj;

union U2 u2o0bj;

/*Size of 8 bytes*/
/*Size of 5 bytes*/

/*Size of 6 bytes*/

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 142 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

union U{
int i:7;
}i
#pragma pack (1)
union U1{
int i:7;
}i
#pragma pack(2)
union U2{
int i:7;
}i
union U uobj;

union Ul ulobj;

union U2 u2o0bj;

/*Size of 4 bytes*/

/*Size of 1 bytex*/

/*Size of 2 bytes*/

(d) Bit field

Data is allocated to the area of the bit field element as follows.

<1> When the structure type packing value is equal to or larger than the alignment condition value of

the member type

Data is allocated in the same manner as when the structure type packing function is not used. That is, if

the data is allocated consecutively and the resulting area exceeds the boundary that satisfies the align-
ment condition of the element type, data is allocated from the area satisfying the alignment condition.

<2> When the structure type packing value is smaller than the alignment condition value of the ele-

ment type

- If data is allocated consecutively and results in the number of bytes including the area becoming

larger than the element type
The data is allocated in a form that satisfies the alignment condition of the structure type packing

value.

- Other conditions
The data is allocated consecutively.

Example

struct §{

struct S1{

short a:

short b:

short c:

short d:
}sobj ;

#pragma pack (1l

short a:

short b:

)

7;

7;

/*0 to 6th bit*/
/*7 to 13th bit*/
/*16 to 22nd bit (aligned to 2-byte boundary) */

/*32 to 46th bit (aligned to 2-byte boundary) */

/*0 to 6th bit*/

/*7 to 13th bit*/

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 143 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

short c:7; /*14 to 20th bit*/
short d:15; /*24 to 38th bit (aligned to byte boundary) */
}slobj;
sobj
L2 o [e | I
0 67 13 16 2223 3132 4647 63
slobj
L2 e [e || d 1
7 1314 20 23
0 6 3 21 24 3839

(e) Alignment condition of top structure object

The alignment condition of the top structure object is the same as when the structure packing function is not

used.

(f) Size of structure objects

Perform packing so that the size of structure objects becomes a multiple value of whichever is the smaller

value: the structure alignment condition value or the structure packing value. The alignment condition of the

top structure object is the same as when the structure packing function is not used.

Examples 1.

struct S{
int i;
char c;
Vi

#pragma pack (1)

struct S1{
int i;
char c;

}i

#pragma pack(2)

struct 82
int i;
char c;

}i

struct S sobj;
struct S1 slobj;
struct S2 s20bj;

/*Size of 8 bytes*/
/*Size of 5 bytes*/

/*Size of 6 bytes*/

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 144 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

sobj
C
0 3132 3940 63
slobj
C
0 3132 39
s20bj
C
0 3132 3940 47
2.
struct S{
int i;
char c;
}i
struct T{
char c;
struct S s;
}i
#pragma pack (1)
struct S1{
int i;
char c;
i
struct T1{
char c;
struct S1 s1;
i
#pragma pack(2)
struct 82
int i;
char c;
}i
struct T2
char c;
struct S2 s2;
}i
struct T tobj; /*Size of 12 bytes*/
struct T1 tlobj; /*Size of 6 bytes*/
struct T2 t2o0bj; /*Size of 8 bytes*/
R20UT0553EJ0100 Rev.1.00 RENESAS Page 145 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

tobj
c S.i s.C
0o 78 3132 6364 7172 95
tlobj
cl sl.i sl.c
0 78 3940 47
t2obj
c2 s2.i s2.c
0 78 1516 4748 5556 63

(g) Size of structure array

The size of the structure object array is a value that is the sum of the number of elements multiplied to the size

of structure object.

Example

struct S{
int
char c;
i

#pragma pack (1)
struct S1{
int
char Cc;

}i

#pragma pack(2)

struct 82
int i;
char c;
i
struct S sobj [2]; /*Size of 16 bytes*/
struct S1 slobj[2]; /*Size of 10 bytes*/
struct S2 s2o0bj[2]; /*Size of 12 bytes*/
sobj
i c i c
0 3132 3940 6364 9596103104 127
slobj
i c i c
0 3132 3940 7172 79
s20bj
i c i c
0 3132 3940 4748 7980 8788 95
R20UT0553EJ0100 Rev.1.00 RENESAS Page 146 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(h) Area between objects
For example, sobj.c, sobj.i, and cobj may be allocated consecutively without a gap in the following source pro-
gram (the allocation order of sobj and cobj is not guaranteed).

Example

#pragma pack (1)
struct S{
char Cc;
int i;
}sobj;

char cobj;

sobj, cobj

c i cobj
0 78 3940 47

(i) Notes concerning structure packing function

<1> -Specification of -Xpack option and #pragma pack directive at the same time
If the -Xpack option is specified when structure packing is specified with the #pragma pack directive in
the C language source, the specified option value is applied to all the structures until the first #pragma
pack directive appears. After this, the value of the #pragma pack directive is applied.
Even after the #pragma pack directive appears, however, the specified option value is applied to the
area specified by default.

Example When -Xpack=2 is specified

struct S2{...}; /*Packing value is specified as 2 in option

Option -Xpack = 2 is valid: packing value is 2%/

#pragma pack (1) /*Packing is specified as 1 in #pragma directive

struct S1{...}; pragma pack(l) is valid: packing value is 1%/

#pragma pack () /*Packing value is specified by default in #pragma directive
struct S2 2{...}; Option -Xpack = 2 is valid: packing value is 2%/

<2> Restrictions
When using the V850 microcontrollers and a CPU that is set to disable misalign access for V850Ex prod-
ucts, the following restrictions apply.
- Access using the structure member address cannot be executed correctly.
As shown in the following example, the structure member address is acquired, and the
access to that address is then performed with the address masked in accordance with the data
alignment of the device. Therefore, some data may disappear or be rounded off.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 147 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Example

struct test({

char c; /*offset 0%/
int i; /*offset 1-4%*/
}test;

int *ip, 1i;
void func (void) {
i = *ip; /*Accessed with address masked*/
}
void func2 (void) {

ip = &(test.i); /*Acquire structure member address*/

- In bit field access, an area with no data to be read using the member ’s type is also accessed.
If the width of the bit field is smaller than the member’ s type as shown in the following example,
access occurs outside the object because reading is performed using the member’ s type. Gener-
ally, there is no problem with the function, but if I/O are mapped, an illegal access may occur.

Example

struct S{
int x:21;

}sobj; /*3 bytes*/

sobj.x = 1;

3.25 Modification of C-source

By using expanded function object with high efficiency can be created. However, as expanded function is adapted in
V850, C-source needs to be modified so as to use in other than V850.
Here, 2 methods are described for shifting to CA850 from other C compiler and shifting to C compiler from CA850.

<From other C compiler to CA850>
- #pragma’\ote
C source needs to be modified, when C compiler supports the #pragma. Modification methods are examined
according to the C compiler specifications.
- Expanded Specifications
It should be modified when other C compilers are expanding the specifications such as adding keywords etc.

Modified methods are examined according to the C compiler specifications.

Note #pragma is one of the pre-processing directives supported by ANSI. The character string next to #pragma
is made to be recognized as directives to C compiler. If that directive does not supported by the compiler,
#pragma directive is ignored and the compiler continues the process and ends normally.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 148 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<From CA850 to other C compiler>
- CA850, either deletes key word or divides # fdef in order shift to other C compiler as key word has been added as
expanded function.

Examples 1. Disable the keywords

#ifndef _ CA850_

#define interrupt /*Considered interrupt function as normal function*/

#endif

2. Change to other type

#ifdef _ V850
#define bit char /*Change bit type variable to char type variablex*/

#endif

3.3 Function Call Interface

This section describes how to handle arguments when a program is called by the CA850.

331 Calling between C functions

- Normal function call
--> jarl instruction

- Function call using a pointer indicating a function (and returning from function call)
--> jmp instruction

When a C function is called from another C function, a 4-word argument is stored in the argument registers (r6 to r9).
An argument in excess of 4 words is stored in the stack frame of the calling function. Control is then transferred (jumps)
to the called function and the value in the argument registers stored when the function was called is stored in the stack
frame of the calling function.

The stack frame is generated when the prologue code of the function, i.e., the code that is executed before the code of
the main body of the function is called (processing (4) to (7) in "Figure 3-18. Generation/Disappearance of Stack Frame
(When Argument Register Area Is Located at Center of Stack))", "Figure 3-20. Generation/Disappearance of Stack
Frame (When Argument Register Area Is Located at Beginning of Stack)" is the prologue code), is executed and the
stack pointer (sp) is shifted by the necessary size. The stack frame disappears when the epilogue code of the function,
i.e., the code that is executed after the code of the main body of the function is executed and until control returns to the
calling function (processing (i) to (iv) in "Figure 3-18. Generation/Disappearance of Stack Frame (When Argument Reg-
ister Area Is Located at Center of Stack))", "Figure 3-20. Generation/Disappearance of Stack Frame (When Argument
Register Area Is Located at Beginning of Stack)" is the epilogue code), is executed and the stack pointer (sp) is returned.

(1) Stack frame/Function call
This section explains the stack frame format and how the stack frame is generated and disappears when a function
is called.

(a) Stack frame format
The CA850 allocates the argument register area to either the beginning of the stack or center of the stack in
the stack frame, according to the argument condition. The argument conditions are as follows.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 149 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<1> When the argument register area is allocated to the beginning of the stack
The argument register area is allocated to the beginning of the stack when the area is accessed
successively, exceeding the area for the 4-word argument, in the following two cases.
- If the number of arguments is variable
- If the argument is the entity of a structure and its area extends over a 4-word area

<2> When the argument register area is allocated to the center of the stack
In such case, it is other than the conditions mentioned above.
"Figure 3-16. Stack Frame (When Argument Register Area Is Located at Center of Stack)" shows stack
frame when the argument register area is at the center of the stack and "Figure 3-17. Stack Frame
(When Argument Register Area Is Located at Beginning of Stack)" shows stack frame when the argu-
ment register area is at the beginning of the stack.

Figure 3-16. Stack Frame (When Argument Register Area Is Located at Center of Stack)

Old sp J—
0 | 4
r21
Register area for register variables
S=F
r28
r29
Ip
- ry
Argument register area
X
(4-word argument area)
Work register area .R
Automatic variable area A
Argument area for argument more than 4 words.| f.T
New sp »

Figure 3-17. Stack Frame (When Argument Register Area Is Located at Beginning of Stack)

Old sp - .
Argument register area
(4-word argument area) S
r20 3
r21
Register area for register variables
r28 g
r29
Ip
Work register area R=.X
Automatic variable area A
Argument area for argument more than 4 words. —f.T
New sp > A
R20UT0553EJ0100 Rev.1.00 RENESAS Page 150 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

"S,.F X, .R,.A, and .T" in the figure are macros for functions output by the compiler internally.
macros are used for a specific purpose, as shown in the following table.

Table 3-30. Macros for Functions

Macro name Meaning
.S Stack size
.F Stack size - Size of argument register area (if at the beginning of the stack)
X Size of argument register area (if at the center of the stack) + .R
.R Size of work register area + .A
A Size of automatic variable area + .T
T Size of area for arguments of function to be called in excess of 4 words
P Always 0 (macro for code generation)N°®

Note .Pis notshownin "Figure 3-16. Stack Frame (When Argument Register Area Is Located at Center of
Stack)" and "Figure 3-17. Stack Frame (When Argument Register Area Is Located at Beginning of
Stack)" because it is always 0.

These macros are used to access the stack area. The following table shows specific access methods (access

codes.
Table 3-31. Method of Accessing Stack Area
Stack Area Access Method (Displacement [sp])
Register area for register variables (including Ip) -offset + .Fxx[sp]
Work register area -offset + .Rxx[sp]
Automatic variable area -offset + .Axx[sp]
Area for arguments in excess of 4 words offset + .Pxx[sp]
Argument register area offset + .Fxx[sp]
Argument register area (if at the center of the stack) offset + .Rxx[sp]

"offset" in this table is a positive integer and means the offset in each area. "xx" after a macro is a positive
integer and indicates the frame number of the function.

(b) Generation/disappearance of stack frame when function is called (when argument register area is at
center of stack)
The following explains the generation and disappearance of the stack frame when a function is called if the
argument register area is at the center of the stack. This case applies to most function calls.
The following figure shows an example of the generation/disappearance of the stack frame when the function
"func2 " is called from the function "funcl " and then execution returns to "funcl".

R20UT0553EJ0100 Rev.1.00 RENESAS Page 151 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Figure 3-18. Generation/Disappearance of Stack Frame (When Argument Register Area Is Located at Center of Stack)

Higher address

Stack frame

for funcl

sp of func 1 —p %
(i)

Stack frame

for func2

sp of func2 —p A
4)

Lower address

Area for automatic

variables

Area for arguments in

excess of 4 words

Area for saving
contents of registers
for register variables

Ip saving area

Arguemnt register

area (4 words)

Work register area

Area for automatic

variables

Area for arguments in

excess of 4 words

(@)

(6. (0

(5). (i)

@)

[Processing on funcl side when func2 is called]

(1) The arguments are stored in the argument registers.
The arguments of func2 to be called are stored in r6 to r9.

(2) The arguments in excess of 4 words are stored in the stack.
The excess arguments that cannot be stored in r6 to r9 are
stored in the stack.

(3) Execution branches to func2() by the jarl instruction.

[Processing on func2() side when called by func1]

(4) sp is shifted.
The stack pointer moves to the stack to be used by
func2.

(5

=

Ip is saved.
The return address of funcl is stored.
(6

=

Register variable registers are saved.

These registers are saved because the register values
used by funcl must be retained when func2 also uses the
register variable registers.

(7

~

Arguments in argument register area are stored.
The values of r6 to r9 are stored. The current argument
fvalues are stored in the stack because when another
function is called from func2, the arguments at that time are
stored in registers r6 to r9.
Since the V850Ex can perform processing (4) to (6) with the
prepare instruction, the CA850 outputs the prepare instruction.
[Processing on func2 side when execution returns from func2 to
funcl]
(iThe contents of the registers for register variables are
restored.
The values of the register variable registers of funcl() is
restored to registers.
(ii) Ip is restored.
The return address of funcl() is restored.
(iii) ssp is returned. The stack pointer moves back to the stack
to be used by funcl().
(iv) Execution is returned by the jmp [Ip] instruction.
Since the V850Ex can perform processing (i) to (iv) with the
dispose instruction, the CA850 outputs the dispose instruction.

The items that are saved to the stack frame and the stack frame to be used are summarized below.

<1> Calling side - funcl
- The values of the excess arguments are called if the arguments of func2 to be called exceed 4
words.

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 152 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<2> Called side - func2
- The arguments which are entered in the argument registed are passed (To enter into the argument
register means to call a function (Function (fun 1))
- Saving the link pointer (Ip) (= return address of funcl) of the calling side (funcl) Saving the contents
of the register variable registers.
- "Saving the contents of the register variable registers"
The register variable registers are allocated as follows.

In 22-register mode: "r25, 126, r27, r28, r29"
In 26-register mode: "r23, r24, 125, r26, r27, r28, r29"
In 32-register mode: "r20, r21, r22, r23, r24, r25, r26, r27, r28, r29"

Of these registers, those that are used are saved.

- Area for automatic variables

- Allocating an area used for operation if a very complicated expression is used in a function Although
this area is not is allocated at the lower address of the area for automatic variables if it is necessary.

If the function has a return value, that value is stored in r10.
The location of each area of the stack frame and the image of the stack growth direction of each area are illus-
trated below (it is assumed that func2() to be called has five arguments).

Figure 3-19. Stack Growth Direction of Each Area of Stack Frame

Growth direction of each area

Stores 5th argument

sp for funcl
Area for saving contents of registers

for register variables

Area for saving link pointer (Ip)

Stores 4th argument

Stores 3rd argument

Stores 2nd argument

Stores 1st argument

Area for automatic variables

Area for complicated operations

Area for arguments of function to be

called from func2 in excess of 4 words

sp for func2

An example of a source calling a C function from a C function and an assembly source when that source is
compiled is shown below.

Example

void funcl (void) {
int a, b, ¢, d, e;

func2(a, b, c, 4, e);

R20UT0553EJ0100 Rev.1.00 RENESAS Page 153 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

}
int func2(int a, int b, int c, int d, int e){
register int i;
return (i) ;
}
Assembler instructions generated when func2 is called in the above example.
[V850]
_funcil:
jbr .L3
L4
ld.w -8 + .A3[sp]l, r6
1d.w -12 + .A3[spl, r7
ld.w -16 + .A3[spl, r8 -- (1)
1d.w -20 + .A3[spl, r9
1d.w -24 + .A3([spl], rlo0
st.w rl0, [spl - (2)
jarl _func2, 1lp -- (3)
-- epilogue for funci
-- Processing from(ii)to(iv)
LL3:
-- prolog for funcl
-- processing (4) and (5)
jbr .L4
_func2:
jbr L5
.L6:
st.w r6, .R2[spl]
st.w r7, 4 + .R2[spl]
st.w r8, 8 + .R2[sp] -- (7)
st.w r9, 12 + .R2[spl]
st.w r29, -4 + .A2[spl]
jbr L2
LL2:
1d.w -4 + .A2[sp], rlo0
1d.w -4 + .F2[spl, r29 - (1)
ld.w -8 + .F2([spl], 1lp -- (ii)
add .F2, sp - (1ii)
jmp [1p] -- (iv)
.L5:
R20UT0553EJ0100 Rev.1.00 RENESAS Page 154 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

add -.F2, sp -- (4)
st.w lp, -8 + .F2[sp] -- (5)
st.w r29, -4 + .F2[spl] -- (6)
jbr .L6

[V850E]

_funcil:
jbr .L3

L4
ld.w -8 + .A3[sp], r6
1d.w -12 + .A3([spl, x7
ld.w -16 + .A3[spl, r8 -- (1)
1d.w -20 + .A3([spl, r9
1d.w -24 + .A3[spl, rlo
st.w rl0, [sp] -- (2)
jarl _func2, 1p -- (3)
-- epilogue for funcl
-- Processing from (ii) to (iv)

.L3:
-- prolog for funcl
-- processing (4) and (5)
jbr .L4

_func2:
jbr .L5

.Lé6:
st.w r6, .R2[sp]
st.w r7, 4 + .R2[spl]
st.w r8, 8 + .R2[spl] -- (7)
st.w r9, 12 + .R2[sp]
st.w r29, -4 + .A2[spl]
jbr L2

L2
1d.w -4 + .A2[spl, rlo0
dispose .X2, 0x3, [1lp]
-- (1) , (ii) , (iii) , (iv)

.L5:
prepare 0x3, .X2
-- (4) , (5) , (6)
jbr L6

R20UT0553EJ0100 Rev.1.00 RENESAS Page 155 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(c) Generation/disappearance of stack frame when function is called (when argument register area is at
beginning of stack)

The following explains the generation and disappearance of the stack frame when a function is called if the
argument register area is at the beginning of the stack.
The following figure shows an example of the generation/disappearance of the stack frame when the function

"func2 " is called from the function "funcl " and then execution returns to "funcl".

Figure 3-20. Generation/Disappearance of Stack Frame (When Argument Register Area Is Located at Beginning

Higher address

Stack frame

for funcl

spoffunl —p *
(iii)

Stack frame

for func2

sp of func2 —p L.
4

Lower address

Area for automatic

variables

Area for arguments in

excess of 4 words

Area for saving con-
tents of registers for
register variables

Ip saving area

Arguemnt register

area (4 words)

Work register area

Area for automatic

variables

Area for arguments in

excess of 4 words

(@)

(6). @

(5). (i)

@)

of Stack)

[Processing on funcl side when func2 is called]
(1) The arguments are stored in the argument registers.

The arguments of func2 to be called are stored in r6 to r9.

(2) The arguments in excess of 4 words are stored in the stack.
The excess arguments that cannot be stored in r6 to r9 are
stored in the stack. This processing is performed if the
number of arguments is five or more.

(3) Execution branches to func2 by the jarlinstruction.

[Processing on func2 side when called by func1]

(4) sp is shifted.

The stack pointer moves to the stack to be used by
func2.

(5) Ipis saved.

The return address of funcl is stored.

(6) Register variable registers are saved.

These registers are saved because the register values
used by funcl must be retained when func2 also uses the

register variable registers.

(7) Arguments in argument register area are stored.
The values of r6 to r9 are stored. The current argument
fvalues are stored in the stack because when another
function is called from func2, the arguments at that time are

stored in registers r6 to r9.

Since the V850EXx can perform processing (4) to (6) with the
prepare instruction, the CA850 outputs the prepare instruction.
[Processing on func2 side when execution returns from
func2 to funcl]
(i)The contents of the registers for register variables are
restored.
The values of the register variable registers of funcl is
restored to registers.
(ii) Ip is restored.
The return address of funcl is restored.
(iii) spis returned. The stack pointer moves back to the stack
to be used by func1.
(iv) Execution is returned by the jmp [Ip] instruction.

Since the V850Ex can perform processing (i) to (iv) with the

The items that are saved to the stack frame and the stack frame to be used are summarized below.

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS Page 156 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<1> Calling side - funcl
- The values of the excess arguments are called if the arguments of func2() to be called exceed 4
words.

<2> Called side - func2

- The arguments which are entered in the argument registed are passed (To enter into the argument
register means to call a function (Function (fun 1))

- Saving the link pointer (Ip) (= return address of funcl) of the calling side (funcl) Saving the contents
of the register variable registers.

- The register variable registers are allocated as follows.

- Area for automatic variables

- Allocating an area used for operation if a very complicated expression is used in a function
Although this area is not is allocated at the lower address of the area for automatic variables if it is
necessary.

If the function has a return value, that value is stored in r10.
The location of each area of the stack frame and the image of the stack growth direction of each area are illus-
trated below (it is assumed that func2 to be called has five arguments).

Figure 3-21. Stack Growth Direction of Each Area of Stack Frame

Growth direction of each area

Stores 5th argument

sp for funcl
Stores 4th argument

Stores 3rd argument

Stores 2nd argument

Stores 1st argument

Area for saving contents of registers

for register variables

Area for saving link pointer (Ip)

Area for automatic variables

Area for complicated operations

Area for arguments of function to be

called from func2 in excess of 4 words
sp for func2

An example of a source calling a C function from a C function and an assembly source when that source is
compiled is shown below.

Example

void funcl (void) {
int a, b, ¢, d, e;

func2(a, b, c, 4, e);

R20UT0553EJ0100 Rev.1.00 RENESAS Page 157 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

}
int func2(int a, int b, int c, int d, int e){
register int i;
return (i) ;
}
Assembler instructions generated when func2 is called in the above example.
[V850]
_funcil:
jbr .L3
L4
ld.w -8 + .A3[sp]l, r6
1d.w -12 + .A3[spl, r7
ld.w -16 + .A3[spl, r8 -- (1)
1d.w -20 + .A3[spl, r9
1d.w -24 + .A3([spl], rlo0
st.w rl0, [spl -- (2)
jarl _func2, 1lp -- (3)
-- epilogue for funcl
-- Processing from (ii) to (iv)
LL3:
-- prolog for funcl
-- processing (4) and (5)
jbr .L4
_func2:
jbr L5
.L6:
st.w r6, .F2[spl]
st.w r7, 4 + .F2[sp]
st.w r8, 8 + .F2[sp] -- (7)
st.w r9, 12 + .F2[spl]
st.w r29, -4 + .A2[sp]
jbr L2
LL2:
1d.w -4 + .A2[sp], rlo0
1d.w -4 + .F2[spl, r29 -- (1)
ld.w -8 + .F2([spl], 1lp -- (ii)
add .82, sp -- (iii)
jmp [1p] -- (iv)
.L5:
R20UT0553EJ0100 Rev.1.00 RENESAS Page 158 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

sub -.82, sp -- (4)
st.w lp, -8 + .F2[spl] -- (5)
st.w r29, -4 + .F2[spl] -- (6)
jbr .L6
[V850E]
_funcil:
jbr .L3
L4
ld.w -8 + .A3[sp], r6
1d.w -12 + .A3([spl, x7
ld.w -16 + .A3[spl, r8 -- (1)
1d.w -20 + .A3([spl, r9
1d.w -24 + .A3[spl, rlo
st.w rl0, [sp] -- (2)
jarl _func2, 1p -- (3)
-- epilogue for funcl
-- Processing from (ii) to (iv)
L3
-- prolog for funcl
-- processing (4) and (5)
jbr .L4
_func2:
jbr .L5
L6
st.w r6, .F2[spl
st.w r7, 4 + .F2[spl]
st.w r8, 8 + .F2[spl] -- (7)
st.w r9, 12 + .F2[sp]
st.w r29, -4 + .A2[spl]
jbr L2
L2
1d.w -4 + .A2[spl, rlo0
dispose .X2, 0x3
-- (i) , (ii) , (iii)
add .82 - .F2, sp -- (1i1i)
jmp [1p] -- (iv)
.L5:
add .F2 - .82, sp -- (4)
prepare 0x3, .X2
-- (4) , (5) , (6)
jbr .L6
R20UT0553EJ0100 Rev.1.00 RENESAS Page 159 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.3.2 Prologue/Epilogue processing function

The CA850 can reduce the object size in part of the prologue/epilogue processing of a function by calling a runtime

library. Itis called as "Prologue/Epilogue Runtime" process. Because the prologue/epilogue processing of a function

is predetermined, it is prepared as runtime library functions and these functions are called when a function is

called or execution returns to a function.
An example of the assembler code of the prologue/epilogue processing of a function is shown below.

Numbers in parentheses in this example correspond to those in "Figure 3-18. Generation/Disappearance of Stack

Frame (When Argument Register Area Is Located at Center of Stack)".

Example

register int i;

return (i) ;

int func(int a, int b, int ¢, int d, int e){

Assembler instruction in prologue/epilogue processing of function “func" in above example

[Code when runtime library function is not used]

_func:
jbr .L5

.L6:
st.w r6, .R2[sp]
st.w r7, 4 + .R2[sp]
st.w r8, 8 + .R2[sp] (7)
st.w r9, 12 + .R2[spl]
st.w r29, -4 + .A2[spl]
jbr L2

L2
1d.w -4 + .A2[spl, rlo
ld.w -4 + .F2[spl, r29 (1)
1d.w -8 + .F2[spl, 1lp (i)
add .F2, sp (1i1)
jmp [1p] (1iv)

.L5:
add -.F2, sp (4)
st.w lp, -8 + .F2([sp] (5)
st.w r29, -4 + .F2[spl (6)
jbr .L6

R20UTO0553EJ0100 Rev.1.00 RENESAS Page 160 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Code when runtime library function is used]

_func :
jbr .L5
L6
st.w r6, .R2[spl
st.w r7, 4 + .R2[sp]
st.w r8, 8 + .R2[sp] -- (7)
st.w r9, 12 + .R2[spl]
st.w r29, -4 + .A2[sp]
jbr L2
L2
1d.w -4 + .A2[sp]l, rlo
add .R2, sp -- (1iii)
jarl _ _pop2904, 1lp
-- (1) , (ii) , (iid) , (iv)
.L5:
jarl __push2904, rlo0
-- (4) , (5) , ()
add -.R2, sp -- (4)
jbr L6

(1) Specifying use of runtime library function for prologue/epilogue of function
Specify the compiler option "-Xpro_epi_runtime=on" to call the runtime library for prologue/epilogue. Specify "-
Xpro_epi_runtime=off" if the runtime library is not called.
When an optimization option other than "-Ot (execution speed priority optimization)" is specified, however, the
runtime library is automatically called for the prologue/epilogue of a function. That is, the compiler option "-
pro_epi_runtime=on" is automatically specified.
If an option other than "-Ot" is specified and if a runtime library should not be called, specify the "-
Xpro_epi_runtime=off" option.
The "-Xpro_epi_runtime" option can be specified in each source file, so a file for which the runtime library is called
and a file for which the runtime library is not called can be used together.
When a runtime library is called for the prologue/epilogue of a function by specifying the "-
Xpro_epi_runtime=on" option, a dedicated section ".pro_epi_runtime" is necessary.
Consequently, the following definition must be described by a link directive.

.pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

Table information of the prologue/epilogue runtime function is allocated to this section.

(2) Calling runtime library for prologue/epilogue of function in V850Ex
When the VB850EX is used, the following instruction is used to call the prologue/epilogue runtime function of a func-
tion.
The CALLT instruction is a 2-byte instruction. The code size can be reduced by using this instruction for calling a
function. The CALLT instruction requires a pointer that indicates that the table of the function subject to the CALLT
instruction is set to the CTBP (Callt Base Pointer) register. If processing of the setting is missing from the program,
the following error message is output during linking.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 161 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

®)

3.3.3

F4414: CallTBasePointer(CTBP) is not set. CTBP must be set when compileroption "-Ot" (or "-Xpro_epi_runtime=off")
is not specified.

If processing of the setting is missing from the program, the following error message is output during linking.
Add the following instruction to the startup routine.

mov # PROLOG TABLE, rl2 --three underscores " " before "PROLOG"
ldsr rl2, 20
At this time, ___ PROLOG_TABLE is the first symbol of the function table of the runtime function of the

prologue/epilogue of a function, and the function table itself is allocated to the ".pro_epi_runtime" section by setting
itto CTEB. The rl2 register is used in the above example, but it is not always necessary to use r12.

If the CALLT instruction provided in the CA850 is used for any purpose other than calling a runtime library for the
prologue/epilogue of a function, the CTBP register contents must be saved/restored If the CALLT instruction is
used by another object, such as middleware or a user-created library, and if a code that saves/restores the CTBP
register contents is missing or cannot be inserted in that object, a runtime library for the prologue/epilogue of a
function cannot be called In this case, suppress calling the runtime library by specifying the "-
Xpro_epi_runtime=off" option.

See the Relevant Device s Architecture User’ s Manual of each device for details of the CALLT instruction and
CTEB register.

Notes on calling runtime library for prologue/epilogue of function
Note the following points when calling a runtime library for the prologue/epilogue of a function.

- Calling a runtime library for the prologue/epilogue of a function degrades the execution speed because a func-
tion is called. Specify the "-Xpro_epi_runtime=off" option to avoid this. Specifying this option in file units is
effective.

- In the case of a program in which few functions are called, the code size may not be reduced even if a runtime
library is called for the prologue/epilogue. If no real effect can be expected, specify the
"-Xpro_epi_runtime=off" option.

- Note the following points when calling a runtime library for the prologue/epilogue of a function. Calling a runt-
ime library for the prologue/epilogue of a function degrades the execution speed because a function is called.

far jump function

The CA850 outputs a code using the jarl instruction when a function is called.

jarl _funcl, 1p

The architecture allows only a sign-extended value of up to 22 bits (22-bit displacement) to be specified as the first

operand of the jarl instruction.
This means that, if the branch destination is not within + 2MB range from the branch point, branching cannot take place
and the linker outputs the following error message.

F4161:symbol " function name"(output section: section-name) is too far from output section " section-name".(value: disp
value, file: main.o, input section: .text, offset: offset value, type: R_V850_PC22).

This can be solved easily by allocating as shown below, however, the branch destination may not be able to be located
within this range depending on target system. The "far jump" function solves this.

- The branch destination within + 2MB range from the branch point.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 162 of 943
Apr 01, 2011

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

When the far jump function is used, a code that uses the jmp instruction is output when a function is called. As a
result, execution can branch to the entire 32-bit space of the V850. However, one of the general purpose register is used.
Function call using far jump function is called "far jump calling".

(1) Specifying far jump
When calling a function using the far jump function, prepare a file in which functions to be called by the far jump
function are enumerated (file listing functions to be called by the far jump function), and use the compiler option "-
Xfar_jump".

-Xfar_jump file listing functions to be called by far jump function

The "-Xfar_jump" option can also be used with "=" as follows.

-Xfar_jump=file listing functions to be called by far jump function

See the next section for the format of the file listing the functions to be called by the far jump function.

(2) File listing functions to be called by far jump function
This section explains the format of the file that enumerates the functions to be called by using the far jump function.
Describe one function to which the far jump function is applied in one line. Describe a C function name with *_"
(underscore) prefixed.

[Sample of file listing functions to be called by far jump]

_func_led
_func_beep

_func_motor

_func_switch

If the following description is made instead of "_function-name", all the functions are called using the far jump func-
tion.

{all function}

If {all_function} is specified, all the functions are called by the far jump function, even if "_function-name" is speci-
fied.
The far jump function can also be applied to the following functions, as well as to user functions.

- Standard library functions

- Runtime library functions

- Prologue/epilogue runtime function of function

- System calls of real-time OS

R20UT0553EJ0100 Rev.1.00 RENESAS Page 163 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Note the following points when describing the file listing the functions to be called by the far jump function.
- Only ASCII characters can be used.
- Comments must not be inserted.
- Describe only one function in one line.
- A blank and tab may be inserted before and after a function name.
- Up to 1,023 characters can be described in one line. A blank or tab is also counted as one character.
- Describe a C function name with "_" (underscore) prefixed to the function name.
- The far jump function cannot be used together with the re-link function of the flash memory/external ROM.

(3) Examples of using far jump function
Examples of using the far jump function are shown below.

(@) User function (same applies to standard functions)
[C language source file]

extern void func3 (void) ;

void func(void)

{

func3 () ;

[File listing functions to be called by far jump]

_func3

[Normal calling code]

#@CALL_ARG

jarl _func3, 1p

[Far jump calling code]

#@CALL ARG
movea _func3, tp, rlo
movea .L18, tp, 1lp
jmp [r10]
.L18:
R20UT0553EJ0100 Rev.1.00 RENESAS Page 164 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(b) Runtime function (when calling a macro)
[File listing functions to be called by far jump]

mul

[Normal calling code]

.macro mul
add
st.w
st.w
mov
mov
jarl
1ld.w
mov
1ld.w
add

.endm

argl, arg2
-8, sp
r6, [spl
r7, 4[spl
argl, ré6
arg2, r7
_mul, 1lp
4[spl, x7
r6, arg2
[spl, ré6

8, sp

[Far jump calling code]

.macro mul
.local
add
st.w
st.w
mov
mov
movea
.option
movea
jmp
.option

macro ret:
ld.w
mov
ld.w
add

.endm

argl, arg2
macro_ret
-8, sp
r6, [spl
r7, 4([spl
argl, ré6
argz2, r7
macro_ret, tp, r3l
nowarning
mul, tp, rl
[r1]

warning

4[spl, r7
r6, argz
[spl, x6

8, sp

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 165 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(¢) Runtime function (when direct calling)
[File listing functions to be called by far jump]

mul

[Normal calling code]

mov rl2, ré6

mov rl3, r7
#@CALL_ARG r6, r7
#@CALL_ USE r6, r7
jarl _ mul, 1p
mov r6, rl3

[Far jump calling code]

mov rl2, ré6
mov rl3, r7
#@CALL ARG r6, r7
#@CALL_USE r6, r7

movea # mul, tp, rl4

movea .L13, tp, 1lp
jmp [r14]

.L13:
mov r6, rl3

The compiler automatically selects whether a runtime macro is called or a runtime function is directly called by
judging the register efficiency in the process of optimization.

(d) System calls of real-time OS
[File listing functions to be called by far jump]

_ext_tsk

[Normal calling code]

#@B_EPILOGUE
#@BEGIN_NO_OPT

add .84, sp

jr _ext tsk --C NR

#@END_NO_OPT

#@E_EPILOGUE

R20UT0553EJ0100 Rev.1.00 RENESAS Page 166 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Far jump calling code]

#@B_EPILOGUE
#@BEGIN NO OPT

add .84, sp

movea # ext tsk, tp, rl0
jmp [r10] --C NR
#@END NO OPT

#@E_EPILOGUE

(e) Prologue/epilogue runtime function
[File listing functions to be called by far jump]

pop2900

push2900

[Normal calling code]

#@B_EPILOGUE

jarl _ pop2900, lp --1
#@E_EPILOGUE
L3

jarl push2900, rl0

#@E_PROLOGUE

[Far jump calling code]

#@B_EPILOGUE
movea # pop2900, tp, rill
jmp [r11] --1
#@E_EPILOGUE
L3
movea # push2900, tp, rll
movea .L5, tp, rlo
jmp [r11]
.L5:

#@E_PROLOGUE

Following table shows the prologue/epilogue function names that can be specified by the far jump function.
Before specifying a prologue/epilogue runtime function, confirm the functions used in the assembly source out-
put after compilation.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 167 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Table 3-32. Prologue/Epilogue Runtime Functions

Prologue/Epilogue Runtime Function names
___pop2000 ____pop2001 ___pop2002 ___pop2003 ___pop2004 __pop2040
____pop2100 ____pop2101 ____pop2102 ___pop2103 ___pop2104 ___pop2140
___pop2200 ___pop2201 ___ pop2202 ___pop2203 ___ pop2204 ___pop2240
___pop2300 ___ pop2301 __ pop2302 ___ pop2303 __ pop2304 __pop2340
____pop2400 ____pop2401 ____pop2402 ____pop2403 ___ pop2404 ___pop2440
____pop2500 ___pop2501 ___pop2502 ___pop2503 ___pop2504 ___pop2540
___pop2600 ___pop2601 ___pop2602 ___pop2603 ___pop2604 __pop2640
____pop2700 ____pop2701 ____pop2702 ___pop2703 ___pop2704 ___pop2740
___pop2800 ___pop2801 ___pop2802 __ pop2803 ___pop2804 ___pop2840
___pop2900 ___pop2901 __ pop2902 __ pop2903 __pop2904 __pop2940
___poplp00 __ poplp01 ___poplp02 __ poplp03 ___poplp04 ___poplp40
_push2000 | _ push2001 | _ push2002 | __ push2003 | __ push2004 | __ push2040
_push2100 | _ push2101 | _ push2102 | __ push2103 | _ push2104 | _ push2140
_ push2200 | _ push2201 | __ push2202 | __ push2203 | __ push2204 | __ push2240
_push2300 | _ push2301 | _ push2302 | __ push2303 | __ push2304 | __ push2340
_push2400 | _ push2401 | _ push2402 | __ push2403 | _ push2404 | __ push2440
_ push2500 | _ push2501 | _ push2502 | _ push2503 | _ push2504 | _ push2540
__push2600 | __ push2601 | _ push2602 | _ push2603 | __ push2604 | __ push2640
_push2700 | _ push2701 | __ push2702 | __ push2703 | __ push2704 | _ push2740
_ push2800 | _ push2801 | _ push2802 | _ push2803 | _ push2804 | _ push2840
_push2900 | __ push2901 | _ push2902 | _ push2903 | __ push2904 | __ push2940
___pushlp00 ___ pushlp01 ___pushlp02 __ puship03 ___pushlp04 ___pushlp40

See "3.3.2 Prologue/Epilogue processing function” for details of the prologue/epilogue runtime library of
functions.

3.4 Expanded Function of CC78Kx

This section explains the expanded functions of the CC78Kx.

34.1 #pragma directive

The following #pragma directive compatible with the CC78Kx can be specified in the CA850.
The [78K-compatible] mark indicates as follows:

[78K-compatible] Invalid unless -cc78K option is specified.

Uppercase and lowercase characters of keywords following #pragma are not distinguished.

(1) Specifying device type
[78K-compatible]

#pragma pc (device-name)

Specify so that a device file defining the machine-dependent information of the device used is referenced. This
directive functions in the same manner as the "#pragma cpu device-name" specification and the device specifica-
tion option (-cpu) of the CA850.

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 168 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(2) Validating peripheral I/O register name
[78K-compatible]

#ipragma sfr

The peripheral 1/0O registers of a device are accessed by using peripheral function register names. This directive
functions in the same manner as the #pragma ioreg directive of the CA850.

(3) Specifying Disabling interrupts
[78K-compatible]

#pragma di

The function DI is treated as the embedded function __DI.

(4) Specifying enabling interrupts
[78K-compatible]

#pragma ei

The function El is treated as the embedded function __EI.

(5) Specifying CPU stop function
[78K-compatible]

#ipragma halt

The function HALT is treated as the embedded function __halt.

(6) Specifying no-operation function
[78K-compatible]

#pragma nop

The function NOP is treated as the embedded function __ nop.

(7) #pragma directives of CC78Kx
The following directives are not compatible with the 78K. These directives are treated as the #pragma directive in
the CA850.

(a) Interrupt/exception handler specification
[78K-compatible]

#pragma interrupt interrupt-request-name function-name [stack selection]
#pragma vect interrupt-request-name function-name [stack selection]
R20UT0553EJ0100 Rev.1.00 RENESAS Page 169 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

(b)

()

(d)

(e)

"#pragma interrupt" and "#pragma vect" of the CC78Kx are treated as "#pragma interrupt interrupt-
request-name function-name [allocation-method]" in the CA850. The following message is output if descrip-
tion is made after "[stack selection]" and if that description can- not be.

W2150: unexpected character(s) following directive ‘directive’

Specifying section
[78K-compatible]

#pragma section ...

This directive is treated as "#pragma section section-type ["section-name"] [begin | end]" in the CA850. The
following message is output if it is not recognized by the CA850.

W2162: unrecognized pragma directive ‘#pragma directive’, ignored

Specification related to memory manipulation
[78K-compatible]

#pragma inline

The CC78Kx expands memcpy, memset, memchr, and memcmp inline, but the CA850 attempts to
expand the specified function inline, so the following message is output.

W2162: unrecognized pragma directive '#pragma inline', ignored

Specifying module name
[78K-compatible]

#pragma name module-name

The CA850 outputs the following message.

W2162: unrecognized pragma directive '#pragma name', ignored

Specifying data insertion function
[78K-compatible]

#pragma opc

Corresponding embedded function

OoPC

The CA850 outputs the following message and stops compiling.

W2162: unrecognized pragma directive ‘#pragma opc', ignored

R20UTO0553EJ0100 Rev.1.00

RENESAS

Apr 01, 2011

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Page 170 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(f)

@)

(h)

E2752: cannot call opc function

Specifying byte address insertion/generation function
[78K-compatible]

#pragma addraccess

Corresponding embedded function

FP_SEG, FP_OFF, MK_FP

The CA850 outputs the following message and stops compiling.

W2162: unrecognized pragma directive ‘#pragma addraccess', ignored

E2752: cannot call addraccess function

Specifying function directly referencing register
[78K-compatible]

#pragma realregister

Corresponding embedded function

__rolca, __rora, __rorca, __setlcy, __seta, _ setax, _ setcy, _shla, __shra

__absa, __ashra, __clrlcy, __coma, __deca, _ geta, _ getax, _ getcy, __inca, __nega, _ notlcy, _ rola,

The CA850 outputs the following message and stops compiling.

W2162: unrecognized pragma directive '#pragma realregister', ignored

E2752: cannot call realregister function

Specifying function directly calling self-writing subroutine of firmware
[78K-compatible]

#pragma hromcall

Corresponding embedded function

___FlashWordWrite, __hromcall, __hromcalla, __setsp

__FlashAreaBlankCheck, __ FlashAreaErase, __FlashArealVerify, _ FlashAreaPreWrite, __FlashAreaWriteBack,
__FlashBlockBlankCheck, __FlashBlockErase, __FlashBlocklIVerify, _FlashBlockPreWrite,
__FlashBlockWriteBack, __ FlashByteRead, __FlashByteWrite, __FlashEnv, __FlashGetInfo, __ FlashSetEnv,

The CA850 outputs the following message and stops compiling.

W2162: unrecognized pragma directive ‘#pragma hromcall’, ignored

E2752: cannot call hromcall function

R20UT0553EJ0100 Rev.1.00 ENESAS
Apr 01, 2011

Page 171 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.4.2 Assembler control instructions

[78K-compatible]

#asm
assembler instruction

#endasm

This instruction is treated as "#pragma asm" - "#pragma endasm" in the CA850.
The following message is output for each instruction.

W2166: recognized pragma directive '#pragma asm'

W2166: recognized pragma directive '#pragma endasm'

343 Specifying interrupt/exception handler

An interrupt/exception handler is specified in a C-source program by the following #pragma directive and qual-
ifier.

[78K-compatible]

#pragma interrupt interrupt-request-name function-name [allocation method]

___interrupt brk function-definition, or function-declaration

The function qualifier __interrupt_brk is treated as specification of the __interrupt function in the CA850.

3.4.4 Expanded function not supported

The CA850 outputs a message if an expanded specification of the CC78Kx that is not supported is specified.

[78K-compatible]

__bankedl, __banked2, _ banked3, _banked4, _ banked5, _ banked6, _banked7, _ banked8, _ banked9,
__banked10, __banked1l, banked12, _banked13, _ banked14, _ banked15, callf, __ callf, callt, __ callt, noauto, norec,
__pascal, sreg, __sreg, __sregl, __temp

The CA850 outputs the following message.

W2761: unrecognized specifier 'specifier', ignored

3.5 Section Name List

The following table lists the names, section types, and section attributes of these reserved sections.

Table 3-33. Reserved Sections

NameNoe 1 Description Section Type Section Attribute
.bss .bss section NOBITS AW
.const .const section PROGBITS A
R20UT0553EJ0100 Rev.1.00 ;{ENESAS Page 172 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

NameNote 1 Description Section Type Section Attribute
.data .data section PROGBITS AW
.ext_info Information section for flash/external ROM re-link function PROGBITS None
.ext_info_boot
.ext_table Branch table section for flash/external ROM re-link function PROGBITS AX
.ext_tgsym Information section for flash/external ROM re-link function PROGBITS None
.gptabname Global pointer tableNot 2 GPTAB None
.pro_epi_runtime | Prologue/epilogue run-time call section PROGBITS AX
.regmode Register mode information REGMODE None
.relname Relocation information REL None
.relaname Relocation information RELA None
.sbss .shss section NOBITS AWG
.sconst .sconst section PROGBITS A
.sdata .sdata section PROGBITS AWG
.sebss .sebss section NOBITS AW
.sedata .sedata section PROGBITS AW
.shstrtab String table where the section name is saved STRTAB None
.sibss .sibss section NOBITS AW
.sidata .sidata section PROGBITS AW
.strtab String table STRTAB None
.symtab Symbol table SYMTAB None
text .text section PROGBITS AX
.tibss .tibss section NOBITS AW
tibss.byte tibss.byte section NOBITS AW
.tibss.word .tibss.word section NOBITS AW
tidata .tidata section PROGBITS AW
tidata.byte tidata.byte section PROGBITS AW
.tidata.word .tidata.word section PROGBITS AW
.vdbstrtab Symbol table for debug information STRTAB None
.vdebug Debug information PROGBITS None
.version Version information section PROGBITS None
vline Line and column information PROGBITS None

Notes 1. The name part of .gptabname, .relname, and .relaname indicates the name of the section corresponding to

each respective section.
2. Thisis information that is used when processing the linker’ s -A option.

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 173 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

This chapter explains the assembly language specifications supported by the CA850 assembler (as850).

4.1 Description of Source

This section explains description of source, expressio, and operators.

41.1 Description

An assembly language statement consists of a "label”, a "mnemonic”, "operands"”, and a "comment".

[labell] : [mnemonic] [operand] , [operand] -- [comment]

It is irrelevant whether blanks are inserted in the following location.
- Between the label name and colon
- Between the colon and mnemonic
- Before the second and subsequent operands
- Before "- - " that indicates the beginning of a comment

One or more blank is necessary in the following location.
- Between the mnemonic and the operand

Figure 4-1. Organization of Assembly Language Statement

Labell: add 0x10, rl9 --For example
| | | |
[| [|
Label Operand Comment
Mnemonic

Basically, one assembly language statement is described on one line. There is a line feed (return) at the end of the
statement. Two or more assembly language statements can be described in one line by using “; (semicolon)" .

R20UT0553EJ0100 Rev.1.00 RENESAS Page 174 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(1) Character set
The characters that can be used in a source program (assembly language) supported by the as850 are as follows.

Table 4-1. Character Set and Usage of Characters

Character

Usage

Lowercase letter (a-z)

Constitutes a mnemonic, identifier, and constant

Uppercase letter (A-Z)

Constitutes an identifier and constant

_ (underscore) Constitutes an identifier

.(period) Constitutes an identifier and constant

Numerals Constitutes an identifier and constant

: (colon) End of label

, (comma) Delimits an operand

- (hyphen) Negative sign, subtraction operator, and at the beginning of comment

Refers the absolute address of a label and indicates the beginning of a com-
ment

; (semicolon) End of statement

' (single quotation)

Start and end of character constant

"(double quotation)

Start and end of character string constant

$

gp offset reference of label

(]

Specifies the base register

Addition operator

Multiplication operator

Division operator

%

Offset reference of label in section (without instruction expansion) and
remainder operator

<<

Left shift operator

>>

Right shift operator

Absolute address reference of label (without instruction expansion) and
negation operator

Logical product operator

Logical sum operator

Exclusive OR operator

0

Specifies an operation sequence

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 175 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(2) Label
A label is a "name plate" that can be described on any line of a program. A label can be used as the name of a

branch destination if a conditional branch is executed or if execution branches to a subroutine.
For example, when the "jr" instruction, one of the branch instructions, is used, describe a label as follows.

jr

Labell

When this instruction is executed, execution branches to the location of Labell. When a label is described as

name Labell, describe as follows.

Labell:

Different labels can be defined over several lines.

Labell:

Label2:

However, two or more labels must not be specified on one line.

Labell:

Label2: --Two or more labels must not be specified on one line.

It is irrelevant whether one or more blanks are inserted between the label name and colon.

Before using a label, a "definition” or "declaration” must be made.

(a) Definition of label

A label may be defined in two ways.

<1> Defined as local label when ":" is suffixed to a name at the beginning of a statement
labell:
This method is generally used to define a local label, and is hereafter referred to as "normal label defini-
tion".
<2> Defined as local label by the .lIcomm quasi directive
.lcomm labell, 0x100, 4
The above statement means 'allocates size of "0x100 bytes" from an address aligned to 4 bytes and
uses the first label of that area as"label 1".
R20UT0553EJ0100 Rev.1.00 .IENESAS Page 176 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b) Declaration of label
A label may be declared in four ways.

<1> Declared as an undefined external label by the .comm quasi directive

..comm labell, 4, 4

This statement means 'undefined external label "labell" of size "4 bytes" is declared in an alignment con-
dition of 4 bytes.

<2> Declared as an external label by the .extern quasi directive (label not having a definition in a
specified file)

.extern labell

<3> Declared as an external label by the .globl quasi directive (label having a definition in a specified
file)

.globl 1labell

<4> Declared as an external label by not making a definition in a file.

mov labell, rlo0

If the definition of labell is not in the same file, labell is regarded as an external label.

(c) Characters that may be used in labels
The following characters shown in "(1) Character set" can be used in labels.
- Lowercase letters
- Uppercase letters
- _ (underscore)
- .(period)
- Numerals

However, a numeral must not be used at the beginning of a name. If a label that begins with a numeral is
specified, the as850 outputs the following message and stops assembling.
Also, reserved word may not be used as label.

E3249: illegal syntax

Caution Note that a label starting with "_" (underscore) may match a symbol name output by the
compiler, and may therefore cause an unexpected operation. Also, avoid using symbols
that start with "."(period) as much as possible because such symbols may be reserved in
the future.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 177 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) Maximum number of characters of label and maximum number of labels
A label consists of up to 1,037 characters. If a label of 1,038 or more characters is specified, the as850 out-
puts the following message and stops assembling.
The maximum number of labels that can be defined depends on the size of the available memory area.

E3260: token too long

(e) Normal label definition in shss/bss-attribute section
If a normal label definition is made in the sbss/bss-attribute section, the as850 outputs the following message
and stops assembling.
If this error is output, use the .lcomm quasi directive to define a label.

E3246: illegal section

(3) Mnemonic and operands
A mnemonic is a character string assigned to each instruction (V850 machine code). Machine codes are hard
for human beings to understand as is. Therefore, a name assigned to each machine code is "Mnemonic". A
mnemonic means the instruction itself. A mnemonic is expressed in close to word notation (based on English) so
that the operation it stands for can be easily inferred.
For example, the mnemonic "add" means "addition", and "mul" means "multiplication”. An operand is an object
to be manipulated by each instruction. If the mnemonic is "add" (addition), the operand is subject to the
operation of addition. An operand must be described next to (on the right of) a mnemonic.
One or more blank is necessary between the mnemonic and the first operand.

Figure 4-2. Mnemonic and Operands

add 0x10, rl9

}—I:{ Operand

Mnemonic

An assembly instruction consists of a "'mnemonic” and "operand(s)". Number of operand differs as per mnemon-
ics.

For the list of the assembly instructions provided in the V850 microcontrollers and their specifications, see "4.5.4
Instruction set".

(4) Comment
Comments can be described in an assembly language program. The as850 recognizes the description after the
following marks to the end of the line as a comment.

In the case of "#", however, the statement to the end of the line is recognized as a comment only if "#" is at the
beginning of the statementN°t.
In the comment, "EUC" or "shift JIS code " for Japanese can be described.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 178 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

add

sub

comment

0x10, rlo --comment 1

rl8, rl9 --comment 2

Note The blank at the start of line is not included in the statement. Even if before "#" space is included, it can be

handled as the comment until the end of that line.

(5) Constant

The as850 can handle "Numerical constants”, "Character constant”, and "String constant" as constants.

(&) Numerical constants
Numerical constants are divided into "Integer constants" and "Floating-point constant".

<1> Integer constants
Integer constants has a width of 32 bits. A negative value is expressed as a 2's complement. If an inte-
ger value that exceeds the range of the values that can be expressed by 32 bits is specified, the as850
uses the value of the lower 32 bits of that integer value and continues processing (it does not output any
message).
[Binary Constants]
Binary constant constitutes of "Ob" or "0B" followed by numeric string of one or more of "0" or "1" digits.
Example
0000010110111101010111111010010111
[Octal constant]
An octal constant consists of "0" followed by a numeric string of one or more "0" to "7" digits.
Example
02675277227
[Decimal constant]
A decimal constant consists of one or more numeric stings starting with digits other than "0".
Example
385187479
[Hexadecimal constant]
A hexadecimal constant consists of "0x" or "0X" followed by a numeric string of one or more "0" to "9"
digits and a character string of lowercase letters from "a" to "f* or uppercase letters from "A" to "F".
Example
0x16£57€97
R20UT0553EJ0100 Rev.1.00 .IENESAS Page 179 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

<2> Floating-point constant

Floating-point constant has 32 bits width. A floating-point constant consists of the following elements.
0] Sign of mantissa ("+" can be omitted.)
(ii) Mantissa
(i) "e" or "E" indicating exponent
(iv) Sign of exponent ("+" can be omitted.)
(v) Exponent

The exponent and mantissa are specified as decimal constants. If no exponent is used, however, (jii),
(iv), and (v) are not used.

Example

123.4

-100.

10e-2

-100.2E+5

A floating-point constant can also bby placing "Of" or "OF" at the beginning of a mantissa. For example,
the as850 regards 10 as being an integer constant but "0f10" as being a floating-point constant. A
numeric string that starts with "0" and which has no decimal point, such as "060", must not be specified
(only "0" can be specified).

(b) Character string constant

A character constant consists of a single character enclosed by a pair of single quotation marks (')

and indicates the value of the enclosed character
If any of the escape sequences listed below is specified in

Note

and ", the as850 regards the sequence as being

a single character.

Example

Tal
|\0|
\o012'

"\x0a"'

Note If a character constant is specified, the as850 assumes that an integer having the value of that

character constant is specified.

Table 4-2. Value and Meaning of Escape Sequence

Escape Sequence Value Meaning
\0 0x00 null character
\a 0x07 Alert
\b 0x08 Backspace
\f 0x0c Form feed
\n 0x0a Line feed
R20UTO0553EJ0100 Rev.1.00 RENESAS Page 180 of 943

Apr 01, 2011

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Escape Sequence Value Meaning
\r 0x0d Carriage return
\t 0x09 Horizontal tab
\v 0x0b Vertical tab
\ 0x5¢ Back slash
\ 0x27 Single quotation marks
\" 0x22 Double quotation mark
\? Ox3f Question mark
\ddd 0 to 0377 Octal number of up to 3 digits (0 < d < 7) Note
\xhh 0 to Oxff Hexadecimal number of up to 2 digits
(0O<h<9,a<h<f,orA<h<F)

Note If a value exceeding "\377" is sp value of the escape sequence becomes the lower 1 byte. Cannot be of
value more than 0377. For example value of"\777"is 0377.

(6) Symbol

A symbol is a name having a value (integer value) which is defined by the user. The ".set quasi directive" is used

to define a symbol.

.set syml, 0x10

mov syml, rl0

--syml is the s

--Storing value

ymbol having 0x10 value

(0x10) of syml in the register.

The as850 assumes a reference to a symbol appearing between the beginning of a file and the first .set quasi

directive as a "reference to a symbol undefined at that point", and distinguishes this symbol from a reference to a

defined symbol (also see "(1) Absolute expression"in "4.1.2 Expression").

(a) Characters that may be used in symbol

The following characters shown in (1) Character set" can be used as symbols.
- Lowercase letters
- Uppercase letters

- _ (underscore)
- .(period)
- Numerals

However, a numeral can not be used at the beginning of a name. If a symbol that begins with a numeral is

specified, the as850 outputs the following message and stops assembling.

Also, reserved word can not be used as label.

E3249: illegal syntax

Caution

Note that a symbol starting with

(underscore) may match a symbol name output by the

compiler, and may therefore cause an unexpected operation. Also, avoid using symbols

that start with "."(period) as much as possible because such symbols may be reserved in

the future.

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 181 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b) Maximum number of characters of symbol and maximum number of symbols

A symbol consists of up to 1,037 characters. If a symbol of 1,038 or more characters is specified, the as850

(o]

utputs the following message and stops assembling.

E3260: token too long

The maximum number of symbols that can be defined depends on the size of the available memory area.

(7) Example of assembly language statement

Here

is a simple example of an assembly language program.

sample program

.extern _ tp TEXT, 4
.extern _ gp DATA, 4

.extern _main

.section "RESET", text --Reset Handler address
jr __boot --Jump to _ boot
.text --Text section
.align 4 --Code alignment
.globl _ boot --Alignment
__boot:
mov # tp TEXT, tp --Set tp
mov # gp DATA, gp --Set gp

.extern _ ssbss, 4
.extern _ esbss, 4

start of bss initialize

mov #_ ssbss, ril3
mov # esbss, ril3
cmp rlza, rl3

jnl sbss_init_end

sbss_init_loop:

st.w r0, 0[r13]

add 4, rl3

cmp rl2, rl3

jl sbss_init_loop

sbss_init_ end:

end of bss initialize
jarl _main, 1lp --Call main function
.data

.align 4

data_area:

.word 0x00 --datal
.hword 0x01 --data2
.byte oxff; .byte O0xfe --data3, data4
R20UT0553EJ0100 Rev.1.00 RENESAS Page 182 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

41.2 Expression

An expression consists of a "constant”, "symbol", "label reference", "operator", and "parentheses".It indicates a value
consisting of these elements. The as850 distinguishes between Absolute expression and Relative expressions.

(1) Absolute expression
An expression indicating a constant is called an "absolute expression”. An absolute expression can be used when
an operand is specified for an instruction or when a value, size, alignment condition, filling value, or bit width is
specified for a quasi directive. An absolute expression usually consists of a constant or symbol. The as850 treats
expressions in the format described below as absolute expressions. However, an absolute expression in a format
other than "constant expression" must not be specified for quasi directives other than the .byte, .hword, .shword
[V850E], and .word quasi directives without a bit width specification and quasi directives other than the .frame
quasi directive (absolute expressions in all formats below can be specified for the .byte, .hword, .shword
[V850E], and .word quasi directives without a bit width specification to specify a value, while absolute expres-
sions in "symbol" format can be specified for the .frame quasi directive to specify size, in addition to the "constant
expression” format).

(a) Constant expression
If a reference to a previously defined symbol is specified, the as850 assumes that the constant of the value
defined for the symbol has been specified. Therefore, a defined symbol reference can be used in a constant

expression.
Example
.set syml, 0x100 --Define symbol syml
mov syml, rl0 --syml, already defined, is treated as a constant expression.
(b) Symbol
The expressions related to symbols are the following (" + " is either "+" or "-").
- Symbol

- Symbol + constant expression
- Symbol - symbol
- Symbol - symbol + constant expression

A "symbol" here means an undefined symbol reference at that point. If a reference to a previously defined
symbol is specified, the as850 assumes that the "constant" of the value defined for the symbol has
been specified.

Example
add SYM1 + 0x100, rll --SYM1 is an undefined symbol at this point
.set SYM1, 0x10 --Defines SYM1

(c) Label reference
The following expressions are related to label reference (" + " is either "+" or "-).
- Label reference - label reference
- Label reference - label reference + constant expression

Here is an example of an expression related to a label reference.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 183 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Example

mov Slabell - $label2, rilil

A "reference to two labels" as shown in this example must be referenced as follows.
- The same section has a definition in the specified file.
- Same reference method (such as $label and $label, and #label and #label)
- If a reference to a label having no definition in the specified file is specified, the as850 outputs the follow-
ing message and stops assembling.

E32009: illegal expression (labels must be defined)

If a reference to two labels having no definition in the same section is specified, the as850 out-
puts the following message and stops assembling.

E3208: illegal expression (labels in different sections)

If a reference to two labels by different reference methods is specified, the as850 outputs the fol-
lowing message and stops assembling.

E3207: illegal expression (labels have different reference types)

However, if a reference to the absolute address of a label not having a definition in the specified file is
specified as label reference on one side of "- label reference" in an "expression related to label reference”,
it is assumed that the same reference method as that of the label on the other side is used, because of the
current organization of the assembler. Note that an absolute expression in this format cannot be
specified for a branch instruction. If such an expression is specified, the as850 outputs the following
message and stops assembling.

E3221: illegal operand (label-label)

(2) Relative expressions
An expression indicating an offset from a specific address
sion is used to specify an operand by an instruction or to specify a value by the .byte, .hword, or .word quasi direc-

Note 15 called a "relative expression”. A relative expres-

tive that do not have bit width specification. A relative expression usually consists of a label reference The as850

regards expressions in the following formatsN°t€ 2 as being relative expressions.

Examples 1. This address is determined when the linker (Id850) in the CA850 is executed. Therefore, the value
of this offset may also be determined when the linker is executed.

2. The as850 can regard an expression in the format of "-symbol + label reference”, as being an
expression in the format of "label reference - symbol," but it cannot regard an expression in the for-
mat of "label reference - (+symbol)" as being an expression in the format of "label reference - sym-
bol" (the same applies to an absolute expression). Therefore, use parentheses "()" only in
constant expressions.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 184 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(@) Label reference
The following expressions are related to label reference (" + " is either "+" or "-).
- Label reference
- Label reference + constant expression
- Label reference - symbol
- Label reference - symbol + constant expression

Here is an example of an expression related to a label reference.

Example

add #labell + 0x10, rl0
add #label2 - SIZE, rlO0
.set SIZE, 0x10

4.1.3 Operators

An operator can be used to specify the operation to be performed by an expression.
(1) Types of operators
Operators are classified into four types: "Arithmetic operators", "Shift operators", "Bitwise logical operators", and

"Comparison operators”. "-" can be used as either a unary or binary operator.

Table 4-3. Operators

Type Operator
Arithmetic operators + - * / %
Shift operators << >>
Bitwise logical operators ! & ~
Comparison operators == < <= = > >= && ||

(2) Priority of operators
Table below shows the priorities of the operators. If two operators having the same priority are specified, and if
either is enclosed in parentheses, the operator in parentheses is executed first. If neither operator is enclosed in
parentheses, or if both are enclosed in parentheses, the one on the left is executed first.
However, use parentheses only for constant expressions (see "4.1.2 Expression").

Table 4-4. Priority of Operators

Priority Operator
High - ! (unary operator)
* / << >> %
& | »
+ -
Low && ||
R20UT0553EJ0100 Rev.1.00 RENESAS Page 185 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

41.4

@)

)

®)

(4)

®)

415

1)

@)

Arithmetic operators

+

Calculates the sum of the first and second operands.

Calculates the difference between the first and second operands.
If this operator is used as a unary operator, it calculates the 2's complement of the operand.

*

Calculates the product of the first and second operands.

/
Calculates the quotient of the first and second operands.

%
Calculates the remainder resulting from dividing the first operand by the second operand.

Shift operators

<<
Shifts the first operand to the left by the number of bits specified by the second operand. As many Os as the spec-
ified numbers of bits are inserted on the right side (LSBN) of the first operand.

Note LSB is an abbreviation of Least Significant Bit (bit corresponding to the lowest digit).

Example

0x12345678 << 4 0x23456780

>>

Shifts the first operand to the right by the number of bits specified by the second operand. If the first operand is
positive (MSB is 0), as many 0s as the specified number of bits are inserted on the left side of the first operand
(MSBN°®)_ |f the first operand is negative (MSB is 1), as many 1s as the specified number of bits are inserted on
the left side of the first operand.

Note MSB is an abbreviation of Most Significant Bit (bit corresponding to the highest digit)

Example

0x12345678 >> 4 0x01234567

0x87654321 >> 4 0xF8765432

R20UT0553EJ0100 Rev.1.00 RENESAS Page 186 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.6 Bitwise logical operators

@ !

Logically negates each bit of the operand value.

Example

10x12345678

O0xEDCBAS987

@) |

Calculates the logical sum of the first and second operands.

Example

0x1234 | 0x5678

0x567C

@B) &

Calculates the logical product of the first and second operands.

Example

0x1234 & 0x5678

0x1230

4 "

Calculates the exclusive OR of the first and second operands.

Example

A

0x1234 0x5678

0x444C

4.1.7 Comparison operators

(1) ==

Compares the first operand with the second operand. If the two operands are equal, returns 1. Otherwise, returns

0.
Example
1 ==1 1
1==0 0
R20UT0553EJ0100 Rev.1.00 RENESAS Page 187 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

@) <

Compares the first and second operands.

Returns 1 if the first operand is less than the second operand, and

returns 0 if the first operand is greater than or equal to the second operand.

Example

1 < 10

10 < 1

(@) <=

Compares the first and second operands.

Returns 1 if the first operand is less than or equal to the second oper-

and, and returns 0 if the first operand is greater than the second operand.

Example

1 <=2 1
1 <=1 1
1 <=0 0

(4) 1=

Compares the first and second operands.

Returns 0 if both the operands are equal, and returns 1 otherwise.

Example

11=0 1

1 1=1 0
®) >

Compares the first and second operands.

Returns 1 if the first operand is greater than the second operand, and

returns O if the first operand is less than or equal to the second operand.

Example

(6) >=

Compares the first and second operands. Returns 1 if the first operand is greater than or equal to the second oper-
and, and returns 0 if the first operand is less than the second operand.

Example

1>=0 1
1 >=1 1
1 >=2 0

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 188 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

7) &&

Calculates the logical product of the logical value of the first and second operands.

Example
1 1= 3 & 1 <= 1
1l ==16&& 1 !=1 0
1 1= 1 && 3 <= 0

@) Il

Calculates the logical sum of the logical value of the first and second operands

Example

11=3 || 1 <=3 1
1 ==11]] 11!=1 1
11=1]] 3 <=1 0

4.1.8 Operation rules

The operation rules of the as850 are as follows.

However, the rule explained in "4.1.2 Expression” takes precedence for an expression including a reference to a sym-

bol or label that has not yet been defined at that point.

(1) Unary operation

Only an absolute expression can be specified as the operand of a unary operator. An expression that handles a

floating-point value cannot be specified as the operand of the unary operator !.

(2) Binary operation

Below is the list of the valid combinations of integer value expressions that can be specified as the operands of
binary operators. In this table, the following symbols are used in expressions consisting of operators and oper-

ands.
abs Absolute expression
rel Relative expression "referencing a label with a definition in the specified file"
ext Relative expression "referencing a label with no definition in the specified file"
NG Indicates that the specified combination of the operator and operand is not supported by the as850

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 189 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

For floating-point values, however, the operation must be between floating-point values, and a floating-point value
must not exist together with a relative expression in the same expression.

Table 4-5. peration Rules for Binary Operation

Operand Operator
+ - * Other
Second operand abs rel ext abs rel ext abs rel ext abs rel ext
First operand abs | abs | rel ext abs | NG NG abs | NG NG abs | NG NG

rel rel NG NG rel abs NG NG NG NG NG NG NG
Note

ext ext NG NG ext NG NG NG NG NG NG NG NG

Note For details, see "4.1.2 Expression".

419 Definition of absolute expression

An expression indicating a constant is called an "absolute expression". An absolute expression can be used when an
operand is specified in an instruction or when a value, size, alignment condition, filling value, or bit width is specified in a
quasi directive.

An absolute expression usually consists of a constant or symbol.

The as850 treats expressions in the format described below as absolute expressions. However, an absolute expres-
sion in a format other than “"constant expression” must not be specified for quasi directives other than the .byte, .hword,
.shword [V850E], and .word quasi directives without a bit width specification and quasi directives other than the
.frame quasi directive (absolute expressions in all formats below can be specified for the .byte, .hword, .shword
[VB50E], and .word quasi directives without a bit width specification to specify a value, while absolute expressions in
"symbol" format can be specified for the .frame quasi directive to specify size, in addition to the "constant expression" for-
mat).

(1) Constant expression

Example
.set syml, 0x100 --Defines symbol syml
mov syml, rl0 --syml, already defined, is treated as a constant expression.

If a reference to a previously defined symbol is specified, the as850 assumes that the constant of the value defined
for the symbol has been specified. Therefore, a defined symbol reference can be used in a constant expression.

(2) Symbol
The expressions related to symbols are the following (" £ " is either "+" or "-").
- Symbol
- Symbol + constant expression
- Symbol - symbol
- Symbol - symbol + constant expression

A "symbol" here means an undefined symbol reference at that point. If a reference to a previously defined symbol
is specified, the as850 assumes that the "constant" of the value defined for the symbol has been speci-
fied.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 190 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Example
add SyMl1 + 0x100, rll --SYM1 is an undefined symbol at this point
mov syml, rl0 --syml, already defined, is treated as a constant expression.

(3) Label reference
The following expressions are used to reference a label (" + " is either "+" or "- ").
- Label reference - label reference
- Label reference - label reference + constant expression

Here is an example of an expression related to a label reference.

Example

mov Slabell - $label2, rll

A "reference to two labels" as shown in this example must be referenced as follows.
- The same section has a definition in the specified file.
- Same reference method (such as $label and $label, and #label and #label)
- If a reference to a label having no definition in the specified file is specified, the as850 outputs the following
message and stops assembling.

E32009: illegal expression (labels must be defined)

If a reference to two labels having no definition in the same section is specified, the as850 outputs the
following message and stops assembling.

E3208: illegal expression (labels in different sections)

If a reference to two labels by different reference methods is specified, the as850 outputs the follow-
ing message and stops assembling.

E3207: illegal expression (labels have different reference types)

However, if a reference to the absolute address of a label not having a definition in the specified file is speci-
fied as label reference on one side of "- label reference" in an "expression related to label reference”, it is
assumed that the same reference method as that of the label on the other side is used, because of the current
organization of the assembler. Note that an absolute expression in this format cannot be specified for a
branch instruction. If such an expression is specified, the as850 outputs the following message and stops
assembling.

E3221.: illegal operand (label-label)

R20UT0553EJ0100 Rev.1.00 RENESAS Page 191 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.10 Identifiers
An identifier is a name used for a symbol, label, or macro. The following characters shown in "(1) Character set" can
be used in identifiers.
- Lowercase letters
- Uppercase letters
- _ (underscore)
- .(period)
- Numerals

However, a numeral must not be used at the beginning of a name. Also note that a identifier starting with (under-

score) may match a label name output by the compiler, and may therefore cause an unexpected operation. Also, avoid
using identifiers that start with "." (period) as much as possible because such identifiers may be reserved in the future.

4.1.11 Characteristics of an operand

With the as850, registers, constants, symbols, label reference, reference of constants, symbols, and labels, operators
can be specified as the operands of instructions and quasi directives.

(1) Registers
The registers that can be specified with the as850 are listed belowN°t,
Note For the Idsr and stsr instructions, the PSW and system registers are specified using numbers.
With the as850, PC cannot be specified as an operand
r0 and zero (zero register), r2 and hp (handler stack pointer), r3 and sp (stack pointer), r4 and gp (global
pointer), r5 and tp (text pointer), r30 and ep (element pointer), and r31 and Ip (link pointer) are the same reg-
isters, respectively.

r0, zero, r1, r2, hp, r3, sp, r4, gp, 15, tp, 16, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24,
25, r26, r27, r28, r29, r30, ep, r31, Ip

(@ ro
r0 always has a value of 0. This register does not substitute the result of an operation even if used as a desti-
nation register. If r0 is specified as a destination register, the as850 outputs the following messageN°t€, then
continues assembling.

Note Output of this message can be suppressed by specifying the warning suppression (-w) option upon
starting the as850.

mov 0x10, xO

W3013: register r0 used as destination register

<1> IfrOis specified in any of the following instructions as a destination register when the V850EX is
used as the target device, the as850 outputs an error message, not a warning message.
- Syntax (1) and (2) of the dispose, divh instruction
- Syntax (2) of the Id.bu, Id.hu, mov instruction
- movea, movhi, mulh, mulhi, satadd, satsub, satsubi, satsubr, sld.bu, sld.hu

R20UT0553EJ0100 Rev.1.00 RENESAS Page 192 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

divh rl0, rO0

E3240: illegal operand (can not use r0 as destination in V850E mode)

<2> IfrOis specified in any of the following instructions as a source register when the V850Ex is used
as the target device, the as850 outputs an error message, not a warning message.
- Syntaxes (1) in divh instruction
- switch

divh r0, rlo0

E3239: illegal operand (can not use r0 as source in V850E mode)

(b) r1
The assembler-reserved register (r1) is used as a temporary register when instruction expansion is performed
using the as850. If rl is specified as a source or destination register, the as850 outputs the following mes-
sageN®then continues assembling.

Note Output of this message can be suppressed by specifying the warning suppression (-w) option upon
starting the as850.

mov 0x10, rl

W3013: register rl used as destination register

mov rl, rlo0

W3013: register rl used as source register

(2) Constants
As the constituents of the absolute expressions or relative expressions that can be used to specify the operands of
the instructions and quasi directives in the as850, integer constants and character constants can be used. For the
Id/st and bit manipulation instructions," a peripheral 1/0O register name", defined in the device file, can also be spec-
ified as an operand, thus enabling input/output of a port address. Moreover, floating-point constants can be used
to specify the operand of the .float quasi directive, and string constants can be used to specify the operand of the
.Str quasi directive.

(3) Symbol
The as850 supports the use of symbols as the constituents of the absolute expressions or relative expressions that
can be used to specify the operands of instructions and quasi directives.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 193 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(4) Label reference

With the as850, label references can be used as the constituents of the relative expressions that can be used to

specify the operand of the following instructions/quasi directive:

- Memory reference instructions (load/store and bit manipulation instructions)

- Operation instructions (arithmetic instructions, saturation operation instructions, and logical instructions)

- Branch instructions

- Area allocation quasi directive (only .word/.hword/.byte quasi directive)

The meaning of a label reference varies with the reference method and the differences in the instructions/ quasi

directives. Detail is shown below.

Table 4-6. Label Reference

Referencing Instruction Used Meaning
Method
#label Memory reference instructions, The absolute address of the position at which the definition of the
operation instructions, jmp label label exists (the offset from address gNote l).
instruction This has a 32-bit address and must be expanded into two instruc-
tions except V850EX.
Area allocation quasi directives The absolute address of the position at which the definition of the
(.word/.hword/.byte) label label exists (the offset from address ON°®© 1y,
Note that the 32-bit address is a value masked in accordance with
the size of the area secured.
label Memory reference instructions, The offset in the section at the position at which the definition of the
operation instructions label exists (the offset from the first address of the section where
the definition of the label label existsNOt® 2),
This has a 32-bit offset and must be expanded into two instruc-
tions.
Note that for a section allocated to a segment for which a tp symbol
is to be generated, the offset is referenced from the tp symbol
Branch instructions except jmp | The PC offset at the position at which the definition of the label
instruction label exists (the offset from the first address of the instruction using
the reference of the label labelN® 2),
Area allocation quasi directives The offset in the section at the position at which the definition of the
(.word/.hword/.byte) label exists (the offset from the first address of the section where
the definition of the label label existsN°t 2),
Note that the 32-bit offset is a value masked in accordance with the
size of the area secured.
$label Memory reference instructions, The gp offset at the position at which the definition of the label label
operation instructions exists (the offset from the address pointed to by the global
pointerNote 3y,

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 194 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Referencing Instruction Used Meaning
Method
llabel Memory reference instructions, The absolute address of the position at which the definition of the
operation instructions label exists (the offset from address gNote l).

This has a 16-bit address and cannot be instruction expanded if
instructions with 16-bit displacement or immediate data are speci-
fied.

If any other instructions are specified, expansion into appropriate
1-instruction units is possible.

If the address defined by the label label is not within a range
expressible by 16 bits, an error will be output at linking.

Area allocation quasi directives The absolute address of the position at which the definition of the
(.word/.hword/.byte) label exists (the offset from address gNote l).

Note that the 32-bit address is a value masked in accordance with
the size of the area secured.

%label Memory reference instructions, The offset in the section at the position at which the definition of the
operation instructions label exists (the offset from the first address of the section where
the definition of the label label existsNot 2).

This has a 16-bit address and cannot be instruction expanded if
instructions with 16-bit displacement or immediate data are speci-
fied.

If any other instructions are specified, expansion into appropriate
1-instruction units is possible.

If the address defined by the label label is not within a range
expressible by 16 bits, an error will be output at linking.

The ep offset at the position at which the definition of the label label
exists (the offset from the address pointed to by the element
pointer).

Area allocation quasi directives The offset in the section at the position at which the definition of the
(.word/.hword/.byte) label exists (the offset from the first address of the section where
the definition of the label label existsNot 2).

Note that the 32-bit offset is a value masked in accordance with the
size of the area secured.

Notes 1. Offset from address O in a linked object file.
2. The offset from the first address of the section (output section) to which the section in which
the definition of label label exists is allocated in the linked object file.
3. The offset from the address indicated by the value of the text pointer symbol + value of the global
pointer for the segment to which the above output section is allocated.

The meanings of label references for memory reference instructions, operation instructions, branch
instructions, and area allocation quasi directives are shown below.

Table 4-7. Memory Reference Instructions

Referencing Method Meaning

#label [reg] The absolute address of the label label is regarded as a displacement.

This has a 32-bit value and must be expanded into two instructions. By setting
#label[r0], referencing by an absolute address can be specified.

[reg] can be omitted. If omitted, the as850 assumes that [r0] has been specified.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 195 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Referencing Method Meaning

label [req] The offset in the section of the label label is regarded as a displacement. This has a
32-bit value and must be expanded into two instructions. By specifying a register indi-
cating the first address of the section as reg and thereby setting label[reg], general reg-
ister relative referencing can be specified.

For a section allocated to a segment for which a tp symbol is to be generated, how-
ever, the offset from the tp symbol is regarded as a displacement.

$label [reg] The gp offset of the label label is regarded as a displacement. This has either a 32-bit
or 16-bit value, depending on the section defined by the label label, and its instruction
expansion pattern changes acc:ordinegNOte . If an instruction with a 16-bit value is
expanded and the offset calculated by the address defined by the label label is not
within a range that can be expressed in 16 bits, an error is output at linking. By setting
$label[gp], relative referencing of the gp register (called a gp offset reference) can be
specified. [reg] can be omitted. If omitted, the as850 assumes that [gp] has been
specified.

llabel [req] The absolute address of the label label is regarded as a displacement. This has a 16-
bit value and is not instruction expanded. If the address defined by the label label can-
not be expressed in 16 bits, an error is output at linking. By setting !label[r0], referenc-
ing by an absolute address can be specified.

[reg] can be omitted. If omitted, the as850 assumes that [r0] has been specified.

Unlike #label[reg] referencing, however, instruction expansion is not executed.

%label [reg] The offset in the section of the label label is regarded as a displacement. If the label
label is allocated to a section that is the ep symbol, the offset from the ep symbol is
regarded as a displacement. This has either a 16-bit value, or depending on the
instruction a value lower than this, and if it is not a value that can be expressed within
this range, an error is output at linking.

[reg] can be omitted. If omitted, the as850 assumes that [ep] has been specified.

Table 4-8. Operation Instructions

Referencing Method Meaning

#label The absolute address of the label label is regarded as an immediate value.

This has a 32-bit value and must be expanded into two instructions.

label The offset in the section of the label label is regarded as an immediate value.
This has a 32-bit value and must be expanded into two instructions.

For a section allocated to a segment for which a tp symbol is to be generated, how-
ever, the offset from the tp symbol is regarded as an immediate value.

$label The gp offset of the label label is regarded as an immediate value.

This has either a 32-bit or 16-bit value, depending on the section defined by the label
label, and its instruction expansion pattern changes accordingly . If an instruction with
a 16-bit value is expanded and the offset calculated by the address defined by the
label label is not within a range that can be expressed in 16 bits, an error is output at
linking.

llabel This has a 16-bit value, and if operation instructions of an architecture for which a 16-
bit value can be specifiedN° as immediate are specified, instruction expansion is not
executed. If the add, mov, and mulh instructions are specified, expansion into appro-
priate 1-instruction units is possible. No other instructions can be specified. If the
value is not within a range that can be expressed in 16 bits, an error is output at linking.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 196 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Referencing Method Meaning

%label The offset in the section of the label label is regarded as an immediate value.

If the label label is allocated to a section that is a target of the ep symbol, the offset
from the ep symbol is regarded as a displacement.

This has a 16-bit value, and if operation instructions of an architecture for which a 16-
bit value can be specifiedN° as immediate are specified, instruction expansion is not
executed.

Unlike label referencing, however, instruction expansion is not executed. This refer-
encing method can be specified only for operation instructions of an architecture for
which a 16-bit value can be specified as immediate, as well as the add, mov, and mulh
instructions. If the add, mov, and mulh instructions are specified, expansion into
appropriate 1-instruction units is possible. No other instructions can be specified. If
the value is not within a range that can be expressed in 16 bits, an error is output at
linking.

Note The instructions for which a 16-bit value can be specified as immediate are the addi, andi, movea, mulhi, ori,
satsubi, and xori instructions.

Table 4-9. Branch Instructions

Referencing Method Meaning

#label The absolute address of the label label for the jmp instruction is regarded as the jump
destination address.

This has a 32-bit value and must be expanded into three instructions except V850E. In
case of VB50E, this has a 32-bit value and must be expanded into two instructions.

label The PC offset of the label label for branch instructions other than the jmp instruction is
regarded as being a displacement.

This is a 22-bit value, and if it is not within a range that can be expressed in 22 bits, an
error is output at linking.

Table 4-10. Area Allocation Quasi Directives

Referencing Method Meaning
#label The absolute address of the label label for the .word/.hword/.byte quasi instructions is
llabel regarded as a value.

This has a 32-bit value, but is masked in accordance with the bit width of the relevant
guasi directive.

label The offset in the section defined by the label label for the .word/.hword/.byte quasi
%label instructions is regarded as a value.

This has a 32-bit value, but is masked in accordance with the bit width of the relevant
guasi directive.

$label The gp offset of the label label for the .word/.hword/.byte quasi instructions is regarded
as a value.

This has a 32-bit value, but is masked in accordance with the bit width of the relevant
guasi directive.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 197 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(5) ep offset reference
The CA850 assumes that data explicitly stored in internal RAM is shown below.

Referenced by the offset from the address indicated by the element pointer (ep).

Data in the internal RAM is divided into the following two groups.
- .tidata/.tibss/.tidata.byte/.tibss.byte/.tidata.word/.tibss.word section

Data referenced by memory reference instructions (sld/sst) and having a small code size
- .sidata/.sibss section

Data referenced by memory reference instructions (Id/st) and having a large code size

Figure 4-3. Memory Location Image of Internal RAM

Higher address

»|
d

.sibss section

.Sidata section

tibss section

tidata section

InternalRAM
tibss.word section

tidata.word section

tibss.byte section

tidata.byte section

[P
|«

ep

Lower address

(a) Data allocation
Data is allocated to the sections in internal RAM as follows:

<1> When developing a program in C
- Allocate data by specifying the "tidata”, "tidata.byte", "tidata.word" or “sidata” section in the #pragma
section command.
- Allocate data by specifying the “tidata", "tidata.byte", "tidata.word", or "sidata" section in the section
file. Input the section file during compilation with a ca850 option.

<2> When developing a program in assembly language
Data is allocated to the .tidata, .tibss, .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, .sidata, or .sibss
section by a section definition quasi directive. ep offset reference can also be executed with respect

to data in a specific range of external RAM by allocating the data to sections .sedata or .sebss in the
same manner as above.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 198 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-4. Memory Allocation Image for External RAM (.sedata, /.sebss section)

Higher address

tibss.byte section
InternalRAM

tidata.byte section
ep

h 4

e

y
4
.sebss section
ExternalRAM

.sedata section

Lower address

(b) Data reference

Using the data allocation method explained "(a) Data allocation", the as850 generates a machine

instruction string that performs as follows:

- .Reference by ep offset for %label reference to data allocated to the .tidata, .tidata.byte, .tidata.word,

tibss, .tibss.byte, .tibss.word, .sidata, .sibss, .sedata, or .sebss section

- Reference by inter-section offset for %label reference to data allocated to other than that above

Example
.sidata
sidata: .hword Oxfffo0
.data
data: .hword O0xfffo0
.text
1d.h $sidata, r20 --(1)
1d.h %$data, r20 --(2)

The as850 generates a machine instruction string for %label reference because: The as850 regards the code
in (1) as being a reference by ep offset because the defined data is allocated to the .sidata section - The as850
regards the code in (2) as being a reference by in-section offset The as850 performs processing, assuming

that the data is allocated to the correct section. If the data is allocated to other than the correct section, it can-

not be detected by the as850.

Example

.text

1d.h r20

%$label [ep],

Instructions are coded to allocate a label to the .sidata section and to perform reference by ep offset. Here,
however, label is allocated to the .data section because of the allocation error. In this case, the as850 loads

the data in the base register ep symbol value + offset value in the .data section of label.

R20UTO0553EJ0100 Rev.1.00

RENESAS
Apr 01, 2011

Page 199 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Example

.text

1d.h %$labell[rl0], r20 -- (1)
.option ep label

1d.h %$label2[ep]l, r21 -- (2)
.option no_ep label

1d.h $label3 [r10], r22 -- (3)

For (1),

reference by ep offset or by in-section offset is performed according to the section in which the defined data is
allocated (default).

For (2),

reference by ep offset is performed regardless of the section in which the defined data is allocated, because
label is within the range specified by the .option ep_label quasi directive.

For (3),

the operation is the same as (1) because label is within the range specified by the .option no_ep_label

quasi directive.

(6) gp offset reference
The CA850 assumes that data stored in external RAM (other than the .sedata or .sebss section explained on the

previous page) is basically shown below.

Referenced by the offset from the address indicated by the global pointer (gp).

If rO-relative memory allocation for internal ROM or RAM is not done with the #pragma section command of C, the
section file to be input to the C compiler, or an assembly language section definition quasi directive, all data is sub-

ject to gp offset reference.

(a) Data allocation
The memory reference instruction (Id/st) of the machine instruction of the V850 microcontrollers can
only accept 16-bit immediate as a displacement. Therefore, data is divided into the following two in CA850,
the former data is allocated to the sdata attribute section or the sbhss attribute section, and latter data is allo-
cated to the data attribute section or the bss attribute section. Data having an initial value is allocated to
the sdata/data-attribute section, while data without an initial value is allocated to the sbss/bss-attribute
section. By default, the CA850 allocates data to the data-, sdata-, sbss-, then bss-attribute sections, starting
from the lowest address. Moreover, it is assumed that the global pointer (gp) is set by a start up module to
point to the address resulting from addition of 32 KB to the first address of the sdata-attribute section.
- Data allocated to a memory range that can be referenced by using the global pointer (gp) and a 16-bit dis-
placement
- Data allocated to a memory range that can be referenced by using the global pointer (gp) and a 32-bit dis-
placement (consisting of two or more instructions).

R20UT0553EJ0100 Rev.1.00 RENESAS Page 200 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-5. Memory Location Image of gp Offset Reference Section

Higher Address

bss attribute section

data without an

64K Bytes sbss attribute section initial value
ap
32K Bytes

e

v
A
sdata attribute section

data with an initial

data attribute section value

h 4

Lower address

Remark The sum of sdata- and sbss-attribute sections is 64 KB. gp is 32 KB below the first byte of the
sdata-attribute section.

Data in the sdata- and sbss-attribute sections can be referenced by using a single instruction. To reference
data in the data- and bss-attribute sections, however, two or more instructions are necessary. Therefore, the
more data allocated to the sdata- and sbss-attribute sections, the higher the execution efficiency and
object efficiency of the generated machine instructions. However, the size of the memory range that can be
referenced with a 16-bit displacement is limited.

If all the data cannot be allocated to the sdata- and sbss-attribute sections, it becomes necessary to determine
which data is to be allocated to the sdata- and sbss-attribute sections.

The CA850 "allocates as much data as possible to the sdata- and sbss-attribute sections." By default, all data
items are allocated to the sdata- and sbss-attribute sections. The data to be allocated can be selected as fol-
lows:

<1> When the -Gnum option is specified
By specifying the -Gnum option upon starting the C compiler (ca850) or assembler (as850), data of less
than num bytes is allocated to the sdata- and sbss-attribute sections.

<2> When using a program to specify the section to which data will be allocated
Explicitly allocate data that will be frequently referenced to the sdata- and sbss-attribute sections. For
allocation, use a section definition quasi directive when using the assembly language, or the
#pragma section command when using C.

<3> Specifying with the section file
In C, allocate data by specifying the sdata section in the section file. Input the section file during compi-
lation with a ca850 option.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 201 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b) Datareference
Using the data allocation method explained "(a) Data allocation”, the as850 generates a machine
instruction string that performs as follows:
- Reference by using a 16-bit displacement for gp offset reference to data allocated to the sdata- and sbss-
attribute sections
- Reference by using a 32-bit displacement (consisting of two or more machine instructions) for gp offset
reference to data allocated to the data- and bss-attribute sections

Example
.data
data: .word 0xf££00010 --(1)
.text
1d.w $datalgpl, r20 --(2)

The as850 generates a machine instruction string, equivalent to the following instruction string for the Id.w
instruction in (2), that performs gp offset reference of the data defined in (1).

movhi hil($data), gp, rl

1d.w lo($data) [r1l], r20

The as850 processes files on a one-by-one basis. Consequently, it can identify to which attribute section data
having a definition in a specified file has been allocated, but cannot identify the section to which data not hav-
ing a definition in a specified file has been allocated. Therefore, the as850 generates machine instructions
as followsN°€, when the -Gnum option is specified at start-up, assuming that the allocation policy
described above (i.e., data smaller than a specific size is allocated to the sdata- and sbss-attribute sections)
is observed.

Note The data, for which data or sdata is specified by the .option quasi directive, is assumed to be
allocated in the .data or .sdata section regardless of its size.

- Generates machine instructions that perform reference by using a 16-bit displacement for gp offset
reference to data not having a definition in a specified file and which consists of less than num bytes.

- Generates a machine instruction string that performs reference by using a 32-bit displacement (consisting
of two or more machine instructions) for gp offset reference to data having no definition in a specified file
and which consists of more than num bytes.

To identify these conditions, however, the size of the data not having a definition in a specified file, and which
is referenced by a gp offset, must be identified. To develop a program in an assembly language, therefore,

specify the size of the data (actually, a label for which there is no definition in a specified file and which
is referenced by a gp offset) for which there is no definition in a specified file, by using the .extern quasi

directive.
Example
.extern data, 4 --(1)
.text
1d.w $datalgpl, r20 --(2)
R20UTO0553EJ0100 Rev.1.00 ;{ENESAS Page 202 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

When -G2 is specified upon starting the as850, the as850 generates a machine instruction string, equivalent to
the following instruction string for the Id.w instruction in (2), that performs gp offset reference of the data
defined in (1).

movhi hil($data), gp, rl

1d.w lo(sdata) [r1l], r20

To develop a program in C, the C compiler (ca850) of the CA850 automatically generates the .extern quasi
directive, thus outputting code which specifies the size of data not having a definition in the specified
file (actually, a label for which there is no definition in a specified file and which is referenced by a gp offset).

[Summary]
The handling of gp offset reference (specifically, memory reference instructions that use a relative expression
having the gp offset of a label as their displacement) by the as850 is summarized below:

<1> If the data has a definition in a specified file
- If the data is to be allocated to the sdata- or shss-attribute section
Generates a machine instruction that performs reference by using a 16-bit displacement.
- If the data is not allocated to the sdata- or shss-attribute section.

Note

Generates a machine instruction string that performs reference by using a 32-bit displacement.

Note If the value of the constant expression of a relative expression in the form of "label + con-
stant expression" exceeds 16 bits, the as850 generates a machine instruction string that
performs reference using a 32-bit displacement.

<2> If the data does not have a definition in a specified file
- If the -Gnum option is specified upon starting the assembler

If a size of other than 0, but less than num bytes is specified for the data (label referenced by gp off-
set) by the .comm, .extern, .globl, .lcomm, or .size quasi directive.
Assumes that the data is to be allocated to the sdata- or shss-attribute section and generates a
machine instruction that performs reference by using a 16-bit displacement.
Other than above, assumes that the data is not allocated to the sdata- or sbss-attribute sec-
tion and generates a machine instruction string that performs reference using a 32-bit displace-
ment.

- If the -Gnum option is not specified upon starting the assembler
Assumes that the data is to be allocated to the sdata- or sbss-attribute section and generates a
machine instruction that performs reference by using a 16-bit displacement.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 203 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

@) hi ()flo ()hil ()

(a) To store 32-bit constant value in a register
The V850 microcontroller does not support a machine instruction that can store a 32-bit constant value in a
register with a single instruction. To store a 32-bit constant value in a register, therefore, the as850 performs
instruction expansion, and generates an instruction string, by using the movhi and movea instructions. These
divide the 32-bit constant value into the higher 16 bits and lower 16 bits.

Example

mov 0x18000, rll movhi hil(0x18000), r0, rl

movea lo(0x18000), rl, rll

At this time, the movea instruction, used to store the lower 16 bits in the register, sign-extends the specified
16-bit value to a 32-bit value. To adjust the sign-extended bits, the as850 does not merely store the higher 16
bits in a register when using the movhi instruction, instead it stores the value of "the higher 16 bits + the most
significant bit (i.e., bit 15) of the lower 16 bits" in the register.

Higher 16 bits + Most significant bit of lower 16 bits (bit number 15)

| 00000000 | 00000001 | 10000000 | 00000001 |

| Ple »|
Higher 16 bits Lower 16 bits

When not adjusting

| 00000000 | 00000001 | 00000000 | 00000000 | <— movhi

+

| 11111111 | 11111111 | 10000000 | 00000000 | <— Sign extension of lower 16 bit by movea

- | 00000000 | 00000000 | 10000000 | 00000000 | <— Does not return to original value

When adjusting

000000000000001 + 1 = 0000000000000010 <— hil

| 00000000 | 00000010 | 00000000 | 00000000 | <— movhi

+

| 11111111 | 11111111 | 10000000 | 00000000 | <4— Sign extension of lower 16 bit by movea

= | 00000000 | 00000001 | 10000000 | 00000000 | <«— Return to original value

R20UT0553EJ0100 Rev.1.00 RENESAS Page 204 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b) To reference memory by using 32-bit displacement
The memory reference instruction (Load/store and bit manipulation instructions) of the machine instruction
of the V850 microcontrollers can only take 16-bit immediate as a displacement. Consequently, the as850
performs instruction expansion to reference the memory by using a 32-bit displacement, and generates
an instruction string that performs the reference, by using the movhi and memory reference instructions and
thereby constituting a 32-bit displacement from the higher 16 bits and lower 16 bits of the 32-bit displacement.

Example

ld.w 0x18000[r11l], rl2 movhi hil(0x18000), rll, rl

1d.w 1lo(0x18000) [r1], rl2

At this time, the memory reference instruction that uses the lower 16 bits as a displacement, sign-extends the
specified 16-bit displacement to a 32-bit value. To adjust the sign-extended bits, the as850 does not
merely configure the displacement of the higher 16 bits by using the movhi instruction, instead it con-
figures the displacement of

Higher 16 bits + Most significant bit of lower 16 bits (bit number 15)

| 00000000 | 00000001 | 10000000 | 00000001 |

|« >ie >

Higher 16 bits Lower 16 bits

When not adjusting

| 00000000 | 00000001 | 00000000 | 00000000 | <— movhi

+

| 11111111 | 11111111 | 10000000 | 00000000 | <— Sign extention of lower 16 bit by Id.w

- | 00000000 | 00000000 | 10000000 | 00000000 | <— Not correct address

When adjusting
000000000000001 + 1 = 0000000000000010 <— hil

| 00000000 | 00000010 | 00000000 | 00000000 | <— movhi

+

| 11111111 | 11111111 | 10000000 | 00000000 | <— Sign extention of lower 16 bit by Id.w

= | 00000000 | 00000001 | 10000000 | 00000000 | <4— Correct address

R20UT0553EJ0100 Rev.1.00 RENESAS Page 205 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(c) hi() /Nlo() /hil()
In the next table, the as850 can specify the higher 16 bits of a 32-bit value, the lower 16 bits of a 32-bit value,
and the value of the higher 16 bits + bit 15 of a 32-bit value by using hi(), lo(), and hi1() N°® .

Note If this information cannot be internally resolved by the assembler, it is reflected in the relocation

information and subsequently resolved by the linker (Id850).

Table 4-11. Area Allocation Quasi Directives

hi () /lo () /hil ()

Meaning

Higher 16 bits of value

Lower 16 bits of value

Higher 16 bits of value + value of bit 15 of value

hi (value)
lo (value)
hil (value)
Example
.data
Ll:

.text
movhi
movea
movhi
movea

hi(sLi), r0, rlo0

lo($L1l), r0, rlo

hil(sLi), r0, rl

lo($L1l), rl, rlo

--Stores the higher 16 bits of the gp offset value of

--L1 in the higher 16 bits of rlo0,

--lower 16 bits.

--Sign-extends and stores the lower 16 bits of gp

--offset value of L1 in rl0

and 0 in the

--Stores the gp offset value of L1 in rlo0

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 206 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.2 Quasi Directives

This section describes the assembly language quasi directives supported by the CA850 assembler (as850).

4.2.1 Outline

A quasi directive performs the preprocessing necessary for the assembler to generate machine instructions. It directs
the assembler to define a section or input a file. It can also direct processing of output code and macro replacement.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 207 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

422 Section definition quasi directives

Using a section definition quasi directive, the as850 can allocate a code, generated for a source program

(assembly language), to a specified sectionN?®, Next table lists the section definition quasi directives described in this

section.

Note The CAB850 handles machine instructions and data in units called sections.

Table 4-12. Section Definition Quasi Directives

Quasi directive Meanings
tidata Allocation to .tidata section
tidata.byte Allocation to .tidata.byte section
.tidata.word Allocation to .tidata.word section
tibss Allocation to .tibss section
tibss.byte Allocation to .tibss.byte section
.tibss.word Allocation to .tibss.word section
.data Allocation to .data section
.bss Allocation to .bss section
.sdata Allocation to .sdata section
.sbss Allocation to .sbss section
.sedata Allocation to .sedata section
.sebss Allocation to .sebss section
.Sidata Allocation to .sidata section
.sibss Allocation to .sibss section
.sconst Allocation to .sconst section
.const Allocation to .const section
text Allocation to .text section
.vdbstrtab Allocation to .vdbstrtab section
.vdebug Allocation to .vdebug section
.vline Allocation to .vline section
.section Allocation to section of specified type
.previous (Re-)definition of section definition quasi directive preceding the section definition quasi directive that
specifies the current section definition quasi directive

If the assembler source program does not contain a section definition quasi directive, all sections generated by that

program will become .text sections.

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 208 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

tidata

Allocation to .tidata section.

[Syntax]

tidata

[Function]

Allocates, to the .tidata sectionN°, a code generated for the assembly language source program, between this quasi
directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,
allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .tidata, section type PROGBITS, and section attribute AW.

[Description]

The .tidata section is located in internal RAM of the V850 microcontrollers and is assumed to be accessed by relative
addressing, using ep and the sld/sst instruction. The as850 and |d850 position .tidata at the address indicated by ep
when none of .tidata.byte, .tibss.byte, .tidata.word, and .tibss.word sections are used. When any of these sections is
used, .tidata is positioned at the address obtained by adding the size of the .tidata.byte/.tibss.byte/.tidata.word/.tibss.word
section used to the address indicated by ep.

For the sld and sst instructions, the range to be accessed varies with the data size. To effectively use the sld and sst
instructions, therefore, it is recommended that byte data be allocated to the .tidata.byte/.tibss.byte section and that half-
word or larger data be allocated to the .tidata.word/.tibss.word section. If, however, the amount of data to be stored in
internal RAM is small, making such careful consideration for access areas unnecessary, this quasi directive can be used
to allocate data to the .tidata section, thus eliminating the necessity to classify data by size.

[Example]

Used as .tidata section until the next section definition quasi directive.

.tidata
.align 4

.globl _p, 4

.word 10

R20UT0553EJ0100 Rev.1.00 RENESAS Page 209 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

tidata.byte

Allocation to .tidata.byte section.

[Syntax]
tidata.byte

[Function]

Allocates, to the .tidata.byte sectionN°®

, a code generated for the assembly language source program, between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi direc-

tive, allocates it between this quasi directive and the end of the assembler source file.
Note Reserved section having section name .tidata.byte, section type PROGBITS, and section attribute AW.

[Description]

The .tidata.byte section is located in internal RAM of the V850 microcontrollers and is assumed to be accessed by rel-
ative addressing, using ep and the sld/sst instruction. The sld/sst instruction can access
- Area of up to 128 bytes when byte data is accessed.
- Area of up to 256 bytes when halfword or larger data is accessed.

The as850 and 1d850 classify sections into either .tidata.byte/.tibss.byte or .tidata.word/.tibss.word, depending on the
size of the data, to position .tidata.byte to the address indicated by ep, enabling effective use of the area that can be

accessed by the sld/sst instruction.It is recommended, therefore, that byte data having an initial value to be stored in

internal RAM be allocated to the .tidata.byte section by using this quasi directiveN°e,

Note Byte data having an initial value can be accessed even if allocated to the .tidata.word section.

[Example]

Used as .tidata.byte section until the next section definition quasi directive.

.tidata.byte

.globl p, 1

.byte 1

R20UT0553EJ0100 Rev.1.00 RENESAS Page 210 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.tidata.word

Allocation to .tidata.word section.

[Syntax]

tidata.word

[Function]

Allocates, to the .tidata.word sectionN°€, a code generated for the assembly language source program, between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi direc-
tive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .tidata.word, section type PROGBITS, and section attribute AW.

[Description]

The .tidata.word section is located in internal RAM of the V850 microcontrollers and is assumed to be accessed by rel-
ative addressing, using ep and the sld/sst instruction. The sld/sst instruction can access
- Area of up to 128 bytes when byte data is accessed.
- Area of up to 256 bytes when halfword or larger data is accessed.

The as850 and 1d850 classify sections into either .tidata.byte/.tibss.byte or .tidata.word/.tibss.word, depending on the
size of the data, to position .tidata.word at the address obtained by adding the size of the .tidata.byte/.tibss.byte section
used to the address indicated by ep. This enables the area that can be accessed by the sld/sst instruction to be used
effectively.It is recommended, therefore, that halfword or larger data having an initial value to be stored in internal RAM
be allocated to the .tidata.word section by using this quasi directive.

[Example]

Used as .tidata.word section until the next section definition quasi directive.

.tidata.word
.align 4

.globl _p, 4

.word 100000

R20UT0553EJ0100 Rev.1.00 RENESAS Page 211 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

tibss

Allocation to .tibss section.

[Syntax]

tibss

[Function]

Allocates, to the .tibss sectionNote

, a code generated for the assembly language source program between this quasi
directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,

allocates it between this quasi directive and the end of the assembler source file.
Note Reserved section having section name .tibss, section type NOBITS, and section attribute AW.

[Description]

The .tibss section is data without an initial value that is located in internal RAM of the V850 microcontrollers. Access to
it is assumed to be by relative addressing using ep and the sld/sst instruction. The as850 and Id850 position .tibss at the
address indicated by ep when none of .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, and .tidata sections are used.
When any of these sections is used, .tibss is positioned at the address obtained by adding the size of the .tidata.byte/
tibss.byte/.tidata.word/.tibss.word section used to the address indicated by ep.

The range to be accessed when the sld and sst instructions are used varies with the data size. To effectively use the
sld and sst instructions, therefore, it is recommended that byte data be allocated to the .tidata.byte/ .tibss.byte section and
that halfword or larger data be allocated to the .tidata.word/.tibss.word section. If, however, the quantity of data to be
stored in internal RAM is small, making such careful preparations for access areas unnecessatry, this quasi directive can
be used to allocate data to the .tibss section, thus eliminating the necessity to classify data by size.

[Example]

Used as .tibss section until the next section definition quasi directive.

.tibss

.globl 1, 4

.lcomm _1, 4, 4

R20UT0553EJ0100 Rev.1.00 RENESAS Page 212 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

tibss.byte

Allocation to .tibss.byte section.

[Syntax]
tibss.byte

[Function]

Allocates, to the .tibss.byte sectionN°®, a code generated for the assembly language source program between this

quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi direc-
tive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .tibss.byte, section type NOBITS, and section attribute AW.
[Description]

The .tibss.byte section is located in internal RAM of the V850 microcontrollers. Access to it is assumed to be by rela-
tive addressing using ep and the sld/sst instruction. The sld/sst instruction can access
- Area of up to 128 bytes when byte data is accessed
- Area of up to 256 bytes when halfword or larger data is accessed

The as850 and 1d850 classify sections into either .tidata.byte/.tibss.byte or .tidata.word/.tibss.word, depending on the
size of the data, to position .tibss.byte at the address obtained by adding the size of the .tidata.byte section used to the
address indicated by ep. This enables the area that can be accessed by the sld/sst instruction to be used effectively. Itis

recommended, therefore, that byte data without an initial value to be stored in internal RAM be allocated to the .tibss.byte
section with this quasi directiveNte.

Note Byte data can be accessed even if allocated to the .tibss.word section.

[Example]

Used as .tibss.byte section until the next section definition quasi directive.

.tibss.byte
.globl _1, 1

.lcomm 1, 1, 1

R20UT0553EJ0100 Rev.1.00 RENESAS Page 213 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.tibss.word

Allocation to .tibss.word section.

[Syntax]

.tibss.word

[Function]

Allocates, to the .tibss.word sectionNo®

, a code generated for the assembly language source program between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi direc-

tive, allocates it between this quasi directive and the end of the assembler source file.
Note Reserved section having section name .tibss.word, section type NOBITS, and section attribute AW.

[Description]

The .tibss.word section is located in internal RAM of the V850 microcontrollers. Access to it is assumed to be by rela-
tive addressing using ep and the sld/sst instruction. The sld/sst instruction can access
- Area of up to 128 bytes when byte data is accessed
- Area of up to 256 bytes when halfword or larger data is accessed

The as850 and 1d850 classify sections into either .tidata.byte/.tibss.byte or .tidata.word/.tibss.word, depending on the
size of the data, to position .tibss.word at the address obtained by adding the size of the .tidata.byte/.tibss.byte/
tidata.word section used to the address indicated by ep. This enables the area that can be accessed by the sld/sst
instruction to be used effectively. It is recommended, therefore, that halfword or larger data without an initial value to be
stored in internal RAM be allocated to the .tibss.word section with this quasi directive.

[Example]

Used as .tibss.word section until the next section definition quasi directive.

.tibss.word
.globl 1, 4

.lcomm _1, 4, 4

R20UT0553EJ0100 Rev.1.00 RENESAS Page 214 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.data

Allocation to .data section.

[Syntax]

.data

[Function]

Allocates, to the .data sectionN°te

directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,
allocates it between this quasi directive and the end of the assembler source file.

, a code generated for the assembly language source program, between this quasi

Note Reserved section having section name .data, section type PROGBITS, and section attribute AW.

[Description]

The .data section is allocated to a memory range which can be referenced by using gp and a 32-bit displacement,
specified by two instructions. This section has an initial value

[Example]

Used as .data section until the next section definition quasi directive.

.data
.align 4

.globl _p, 4

.word 10

R20UT0553EJ0100 Rev.1.00 RENESAS Page 215 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.bss

Allocation to .bss section.

[Syntax]

.bss

[Function]

Note

Allocates, to the .bss section™**, a code generated for the assembly language source program, between this quasi

directive and the subsequent section definition quasi directive. Or, if there is no subsequent section definition quasi direc-
tive, allocates it between this pquasi directive and the end of the assembler source file.

Note Reserved section having section name .bss, section type NOBITS, and section attribute AW.

[Description]

The .bss section is allocated to a memory range which can be referenced by using gp and a 32-bit displacement, spec-
ified by two instructions. This section has no initial value.

[Example]

Used as .bss section until the next section definition quasi directive.

.bss

.lcomm _stack, 0x100, 4

R20UT0553EJ0100 Rev.1.00 RENESAS Page 216 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.sdata

Allocation to .sdata section.

[Syntax]

.sdata

[Function]

Allocates, to the .sdata sectionN°, a code generated for the assembly language source program, between this quasi
directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,
allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sdata, section type PROGBITS, and section attribute AWG.

[Description]

The .sdata section is allocated to a memory range which can be referenced with a single instruction by using gp and a
16-bit displacement (up to 64 KB, including the size of the .sbss section). This section has an initial value.

[Example]

Used as .sdata section until the next section definition quasi directive.

.sdata
.align 4

.globl _p, 4

.word 10

R20UT0553EJ0100 Rev.1.00 RENESAS Page 217 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.sbss

Allocation to .sbss section.

[Syntax]

.sbss

[Function]

Allocates, to the .sbss section

, a code generated for the assembly language source program, between this quasi

directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,

allocates it between this quasi directive and the end of the assembler source file.
Note Reserved section having section name .sbss, section type NOBITS, and section attribute AWG.

[Description]

The .sbss section is allocated to a memory range which can be referenced with a single instruction by using gp and a

16-bit displacement (up to 64 KB, including the size of the .sdata section). This section has no initial value.

[Example]

Used as .sbss section until the next section definition quasi directive.

.sbss
.globl

. lcomm

_l’

_l’

4

4,

4

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 218 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.sedata

Allocation to .sedata section.

[Syntax]

.sedata

[Function]

Allocates, to the .sedata sectionN°€, a code generated for the assembly language source program, between this quasi
directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,
allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sedata, section type PROGBITS, and section attribute AW.

[Description]

The .sedata section is allocated to a memory range which can be referenced with a single instruction by using ep and a
16-bit displacement (up to 32 KB in the negative direction, relative to ep). It cannot be allocated, however, to the higher
addresses used for the .sebss section within that range. This section has an initial value.

[Example]

Used as .sedata section until the next section definition quasi directive.

.sedata
.align 4
.globl p, 4

.word 10

R20UT0553EJ0100 Rev.1.00 RENESAS Page 219 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.sebss

Allocation to .sebss section.

[Syntax]

.sebss

[Function]

Allocates, to the .sebss sectionN°®, a code generated for the assembly language source program, between this quasi
directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,
allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sebss, section type NOBITS, and section attribute AW.

[Description]

The .sebss section is allocated to a memory range which can be referenced with a single instruction by using ep and a
16-bit displacement (up to 32 KB in the negative direction, relative to ep). It cannot be allocated, however, to the lower
addresses used for the .sedata section within that range. This section has no initial value.

[Example]

Used as .sebss section until the next section definition quasi directive.

.sebss
.globl 1, 4

. lcomm 1, 4, 4

R20UT0553EJ0100 Rev.1.00 RENESAS Page 220 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.Sidata

Allocation to .sidata section.

[Syntax]

.Sidata

[Function]

Allocates, to the .sidata sectionN°®®, a code generated for the assembly language source program, between this quasi
directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,
allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sidata, section type PROGBITS, and section attribute AW.

[Description]

The .sidata section is allocated to a memory range which can be referenced with a single instruction by using ep and a
16-bit displacement (up to 32 KB in the positive direction, relative to ep). It is allocated at an address higher by the size of
the .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, .tidata, or .tibss section within that range.

[Example]

Used as .sidata section until the next section definition quasi directive.

.sidata
.align 4
.globl p, 4

.word 10

R20UT0553EJ0100 Rev.1.00 RENESAS Page 221 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.sibss

Allocation to .sibss section.

[Syntax]

.sibss

[Function]

Note

Allocates, to the .sibss section™"**, a code generated for the assembly language source program, between this quasi

directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,
allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sibss, section type NOBITS, and section attribute AW.

[Description]

The .sibss section is allocated to a memory range that can be referenced with a single instruction by using ep and a 16-
bit displacement (up to 32 KB in the positive direction from ep). It is allocated at an address higher by the size of the
tidata.byte, .tibss.byte, .tidata.word, .tibss.word, .tidata, .tibss, or .sidata section within that range. This section does not
have an initial value .

[Example]

Used as .sibss section until the next section definition quasi directive.

.sibss

.globl 1, 4

.lcomm _1, 4, 4

R20UT0553EJ0100 Rev.1.00 RENESAS Page 222 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.sconst

Allocation to .sconst section.

[Syntax]

.sconst

[Function]

Allocates, to the .sconst sectionN°®, a code generated for the assembly language source program, between this quasi
directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,
allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sconst, section type PROGBITS, and section attribute A.

[Description]

The .sconst section is allocated to a memory range which can be referenced with a single instruction by using rO and a
16-bit displacement (up to 32 KB in the positive direction, relative to r0). This section is used for constant data (read-

only).

[Example]

Used as .sconst section until the next section definition quasi directive.

.sconst
.align 4
.globl p, 4

.word 10

R20UT0553EJ0100 Rev.1.00 RENESAS Page 223 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.const

Allocation to .const section.

[Syntax]

.const

[Function]

Allocates, to the .const sectionN°®, a code generated for the assembly language source program, between this quasi
directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,
allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .const, section type PROGBITS, and section attribute A.

[Description]

The .const section is allocated to a memory range which can be referenced by using r0 and a 32-bit displacement,
specified by two instructions. This section is used for constant data (read-only).

[Example]

Used as .const section until the next section definition quasi directive.

.const
.align 4

.globl _p, 4

.word 10

R20UT0553EJ0100 Rev.1.00 RENESAS Page 224 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

text

Allocation to .text section.

[Syntax]

ext

[Function]

Allocates, to the .text sectionN°®€ 1 a code generated for the assembly language source program, between this quasi
directive and the next section definition quasi directive.
Or, if there is no subsequent section definition quasi directive, allocates it between this quasi directive and the end of

the assembler source fileNo® 2,

Notes 1. Reserved section having section name .text, section type PROGBITS, and section attribute AX.

2. The as850 assumes .text to be specified two times before the assembly-language source program in a sin-
gle assembler source file (for example, if ".word 1" is specified prior to a section definition quasi directive, it
is allocated to the .text section). If, however, the .text section is not explicitly specified, and if a label defini-
tion, instruction, location counter control quasi directive, or area allocation quasi directive are not specified
for the .text section that is specified as being the default section, the as850 does not generate the .text sec-
tion.

[Example]

Used as .text section until the next section definition quasi directive.

.text
.align 4

.globl _start

_start:
mov # tp TEXT, tp
R20UT0553EJ0100 Rev.1.00 RENESAS Page 225 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.vdbstrtab

Allocation to .vdbstrtab section.

[Syntax]

.vdbstrtab

[Function]

Allocates, to the .vdbstrtab sectionNo®

, a code generated for the assembly language source program, between this
quasi directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi direc-

tive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .vdbstrtab and section type STRTAB.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 226 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.vdebug

Allocation to .vdebug section.

[Syntax]
.vdebug

[Function]

Allocates, to the .vdebug sectionNot®

, a code generated for the assembly language source program, between this quasi
directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,

allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .vdebug and section type PROGBITS.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 227 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.vline

Allocation to .vline section.

[Syntax]

.vline

[Function]

Allocates, to the .vline sectionNote

, a code generated for the assembly language source program, between this quasi
directive and the next section definition quasi directive. Or, if there is no subsequent section definition quasi directive,

allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .vline and section type PROGBITS.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 228 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.section

Allocation to section of specified type.

[Syntax]

.section "section-name"[, section-type]

[Function]

Allocates, to a section of the type specified by the second operand in the section name specified by the first operand, a
code generated for the assembly language source program, between this quasi directive and the next section definition
quasi directive. Or, if there is no subsequent section definition quasi directive, allocates it between this quasi directive
and the end of the assembler source file.

Note Uppercase characters can also be used to specify a section type (for example, TEXT can be specified instead of

text).
Table 4-13. Section Types
Type Meaning
data data-attribute section
Section having section type PROGBITS and section attribute AW
bss bss-attribute section
Section having section type NOBITS and section attribute AW
sdata sdata-attribute section
Section having section type PROGBITS and section attribute AWG
sbss sbss-attribute section
Section having section type NOBITS and section attribute AWG
const const-attribute section
Section having section type PROGBITS and section attribute A
text text-attribute section
Section having section type PROGBITS and section attribute AX
comment comment-attribute section
Section with section type PROGBITS and without any section attribute
[Example]

Defines a data-attribute section named sec.

.section "sec", data
.align 4

.globl _p, 4

.word 10

R20UT0553EJ0100 Rev.1.00 RENESAS Page 229 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Caution]

- Section names .pro_epi_runtime, .text, .data, .bss, .sdata, .sbss, .sconst, .const, .sidata, .sibss, .sedata, .sebss,

tidata, .tibss, .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, and .version are reserved for use by the CA850.
The correspondence between these reserved section hames and the section types is detailed in the table below.

Table 4-14. Section Types

Section Type Reserved Section Name
data tidata, .tidata.byte, .tidata.word, .data, .sedata, .sidata
bss tibss, .tibss.byte, .tibss.word, .bss, .sebss, .sibss
sdata .sdata
shss .shss
const .sconst, .const
text .text, .pro_epi_runtime
comment .version

If these section names are specified by the first operand, therefore, either the second operand must be omitted or
the section type corresponding to each reserved section must be specified. If a type other than the corresponding

type is specified, the as850 outputs the following message then stops assembling.

F3504: illegal section kind

- If a name other than that of one of the above reserved sections is specified by the first operand, and if the second

operand is omitted, it is assumed that text is specified as the section type.
- If two or more different section types are specified for a single section having a specific name, the as850 outputs
the following message then stops assembling

F3504: illegal section kind

- If an interrupt request name defined in the device file is specified as the first operand, the linker automatically allo-
cates the section to the corresponding handler address. The allocation address, therefore, cannot be specified by
using the linker for a section for which an interrupt request name has been specified. An interrupt request name

must not be specified for other than an interrupt handler section.

[Example of using interrupt request name]

Defines a section that jumps to ___ start when a reset is input.

.section "RESET", text
jr _start
R20UT0553EJ0100 Rev.1.00 RENESAS Page 230 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.previous

(Re-)definition of section definition quasi directive preceding the section definition quasi directive that specifies the cur-
rent section definition quasi directive.

[Syntax]

.previous

[Function]

(Re-)specifies the section definition quasi directive preceding the section definition quasi directive specifying the cur-
rent section definition quasi directive.

For example, if quasi directives .data, .text, then .previous are specified, the specification of the .previous quasi direc-
tive is equivalent to specifying the .data quasi directive.

[Example]

.previous is equivalent to .data.

.data
.align 4
.globl _p, 4

_p:
.word 10
.text

lab:
jbr LL
.previous

R20UT0553EJ0100 Rev.1.00 RENESAS Page 231 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.2.3 Symbol control quasi directives

Using the symbol control quasi directives, the as850 can generate a symbol table entry, define symbols, and specify
the size of the data indicated by a label. Next table lists the symbol control quasi directives described in this section.

Table 4-15. Symbol Control Quasi Directives

Quasi directive Meanings
.set Defines a symbol
.Size Specifies the size of the data indicated by label
frame Generates a symbol table entry (FUNC type)
file Generates a symbol table entry (FILE type)
.ext_func Generates a flash table entry
.ext_ent_size Specifies a flash table entry size

Maintain the value of size

specified, the as850 outputs the following message then stops assembling.

Note 55 specified by the symbol control quasi directive, within 231, If a value of 231 or more is

E3247: illegal size value

R20UT0553EJ0100 Rev.1.00 ENESAS

Apr 01, 2011

Page 232 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.set

Defines a symbol.

[Syntax]

.set symbol-name, value

[Function]

Defines a symbol having a symbol name specified by the first operand and a value(Integer value) specified by the sec-
ond operand. If the .set quasi directive is specified for a given symbol more than once within a single assembler source
file, reference to that symbol will have the following value, depending on the position of that reference.

- If the reference appears between the beginning of the file and the first .set quasi directive for that symbol

Value specified with the last .set quasi directive for that symbol
- If the reference does not appear between a certain .set quasi directive and the next .set quasi directive, or if there
is no subsequent .set quasi directive, between the first .set quasi directive and the end of the assembler source file

Value specified by that .set quasi directive

[Example]

Defines the value of symbol sym1 as 0x10

.set syml, 0x10

[Caution]
- Any label reference or undefined symbol reference must not be used to specify a value.
Otherwise, the as850 outputs the following message then stops assembling.

E3203: illegal expression (string)

- If a label name, a macro name defined by the .macro quasi directive, or a symbol of the same name as a formal
parameter of a macro is specified, the as850 outputs the following message and stops assembling.

E3212: symbol already define as string

R20UT0553EJ0100 Rev.1.00 RENESAS Page 233 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.Size

Specifies the size of the data indicated by label.

[Syntax]

.size label-name, size

[Function]

Specifies the size specified by the second operand as the size of the data indicated by the label specified by the first
operandNo®,

Note If the size has already been set, the previously specified value is overwritten.

[Example]

Assumes size of labell to be 15

.size labell, 15

[Caution]

If the -A option of the linker of the CA850 is used, set the size of the data to be allocated to the sdata-attribute section
(actually, the label subject to gp offset reference) by using this quasi directive or the .globl quasi directive when defining
the dataNote,

Note Otherwise, valid information cannot be obtained by specifying the -A option of the linker.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 234 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

frame

Generates a symbol table entry (FUNC type).

[Syntax]

frame label-name, size

[Function]

Generates a symbol table entry of a size specified by the second operand and type FUNC when the symbol table entry
for the label specified by the first operand is generated upon the generation of the object fileNot.

Note This quasi directive is used for debugging at C language source level. Specify 0 in size to code for debugging at
assembler level

R20UT0553EJ0100 Rev.1.00 RENESAS Page 235 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

file

Generates a symbol table entry (FILE type).

[Syntax]

file "file-name"

[Function]

Generates a symbol table entryNOte having a file name specified by the operand and type FILE when an object file is
generated. If this quasi directive does not exist in the input source file, it is assumed that ".file "input file name™has been
specified, and a symbol table entry with the input file name and type FILE is generated.

Note The binding class is LOCAL.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 236 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.ext_func

Generates a flash table entry.

[Syntax]

.ext_func label-name, ID-value

[Function]

Generates a flash table entry having a label name and ID value specified by the operands when an object file is gener-
ated. Specify this instruction to use the function for relinking a flash area or external ROM

[Description]

To specify a branch from an area that cannot be rewritten or replaced (boot area) to a rewritable or replaceable area
(flash area), a branch table is generated to a specified address in a flash area by specifying this quasi directive and two-
stage branch is performed via the table.

[Caution]

- This quasi directive must be written in a source file which contains a relevant branch instruction (in the boot area)
and a source file which contains a relevant label definition (in the flash area).

- If the same label name is specified with a different ID value, the as850 outputs the following message then stops
assembling.

E3253: symbol "identifier" already defined as another id

- If the same ID value is specified with a different label name, the as850 outputs the following message then stops
assembling.

E3252: id already defined as symbol “identifier"

- It is recommended that all relevant label names be written in a single file and included into source files of the boot
area and flash area using the .include quasi directive. This prevents contradictions described above.

- The ID value must be a positive number. The size of a branch table to be allocated depends on the maximum ID
value. Renesas Electronics recommends that the ID value be specified without spaces.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 237 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.ext_ent_size

Specifies a flash table entry size.

[Syntax]

.ext_ent_size size

[Function]

Sets the value specified by the operand as the flash table entry size when an object file is generated. Specify this
instruction to use the function for relinking a flash area or external ROM.

[Description]

To specify a branch from an area that cannot be rewritten or replaced (boot area) to a rewritable or replaceable area
(flash area), a branch table is generated at a specified address in the flash area by specifying this quasi directive and two-
stage branch is performed via the table. The entry size of this table is 4 bytes by default. A jr instruction is generated and
execution can branch in a range of 22 bits from the branch instruction. If it is necessary to branch to an address exceed-
ing the range of 22 bits from the branch instruction in this table, execution can branch over the entire 32-bit address
space when 10 is specified by this instruction as the entry size in the case of the V850 core, and 8 is specified in the case
of the V850EX core.

[Caution]

- This quasi directive must be described in a source file which contains a relevant branch instruction (in the boot
area) and a source file which contains a relevant label definition (in the flash area).

- The size specified by this quasi directive is the only value for the entire area, including the boot area and flash
area.

- If a different size is specified, the as850 outputs the following message and stops assembling.
If a different size is specified for two or more relocatable object files, an error occurs when linking is executed.

W3021: .ext_ent_size already specified, ignored.

- It is recommended that all relevant label names be described in a single file and included in the source files of the
boot area and flash area using the .include quasi directive. This prevents the contradictions described above.

- Specify 4 (default), 8 [V850E], or 10 [V850] as the size.

- When a common object is created (when the -cn option is specified), 8 [V850E] must not be specified because the
object must operate with both the V850 and V850EX.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 238 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

42.4 Location counter control quasi directives

Using the location counter control quasi directive, the as850 can align or advance the value of the location counter™°t,
Next table lists the location counter control quasi directives described in this section.

Table 4-16. Location Counter Control Quasi Directives

Quasi directive Meanings
.align Aligns the value of the location counter
.org Advances the value of the location counter

If the location counter control quasi directive is specified in the sbss- or bss-attribute section, the as850 outputs the fol-
lowing message then stops assembling.

E3246: illegal section

Note A location counter exists in each section and is initialized to 0 when the first section definition quasi directive for
the corresponding section in that file appears.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 239 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.align

Aligns the value of the location counter.

[Syntax]

.align alignment-condition], fill-value]

[Function]

Aligns the value of the location counter for the current section, specified by the previously specified section definition
quasi directive under the alignment condition specified by the first operand. If a hole results from aligning the value of the
location counter, it is filled with the fill value specified by the second operand, or with the default value of 0.

For example, if .align 4 is specified while the current value of the location counter is 3, the value of the location counter
is aligned, according to the alignment condition of 4 (word boundary), to 4, and the 1-byte hole that results is filled with the
default value of 0.

[Example]
Aligns at 16 bytes.

.align 16

[Caution]

- Specify an even number of 2 or more, but less than 231, as the alignment condition. Otherwise, the as850 outputs
the following message then stops assembling.

E3200: illegal alignment value

- Specify a 1-byte value as the fill value. If a value of more than 1 byte is specified, the lowermost 1-byte is used.

- If this quasi directive is used with an alignment condition of 4 or more, as specified by the sdata-attribute section,
valid information may not be obtained when a guideline value for determining the size of the data to be allocated to
the sdata/sbss-attribute section is displayed (by using the -A option of the 1d850).

- This quasi directive merely aligns the value of the location counter in a specified file for the section. It does not
align an absolute addressN°€ 1 or an offset in a sectionN°t 2,

Notes 1. Offset from address 0 in linked object file.

2. Offset from the first address of the section (output section) to which that section is allocated in a linked
object file.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 240 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.org

Advances the value of the location counter.

[Syntax]

.org value

[Function]

Advances the value of the location counter for the current section, specified by the previously specified section
definition quasi directive, to the value(Less than 231) specified by the operand. If a hole results from advancing the value
of the location counter, it is filled with 0.

[Example]

Advances the location counter value 16 bytes.

.org 16

[Caution]

- If a value that is smaller than the current value of the location counter is specified, the as850 outputs the following
message then stops assembling.

E3244: illegal origin value value

- If this quasi directive is used in the sdata-attribute section, valid information may not be obtained when a guideline
value for determining the size of the data to be allocated to the sdata/sbss-attribute section is displayed (by using
the -A option of the 1d850).

- This quasi directive merely advances the value of the location counter in a specified file for the section. It does not
specify either an absolute addressN°® 1 or an offset in a sectionN°€ 2,

Notes 1. Offset from address 0 in a linked object file.

2. Offset from the first address of the section (output section) to which that section is allocated in a linked
object file.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 241 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

425 Area allocation quasi directives

Using area allocation quasi directives, the as850 can allocate an area and set a value for that area. Next table lists the
area allocation quasi directives described in this section.

Table 4-17. Area Allocation Quasi Directives

Quasi directive Meanings
.byte Allocates a 1-byte area
.hword Allocates a 1-halfword area
.shword Allocates a 1-halfword area [V850E]
.word Allocates a 1-word area
float Sets a floating-point value
.space Allocates an area for size
.str Allocates an area for string
Jdcomm Defines a label that allocates an area

If an area allocation quasi directive other than the .Icomm quasi directive is specified in the sbss- or bss attribute sec-
tion, the as850 outputs the following message then stops assembling.

E3246: illegal section

Maintain the values of size (Number of bytes) and alignment condition, specified with the area allocation quasi direc-

231

tive, within 231. If a value of or more is specified, the as850 outputs the following message then stops assembling.

E3247: illegal size value
or

E3200: illegal alignment value

R20UT0553EJ0100 Rev.1.00 RENESAS Page 242 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.byte

Allocates a 1-byte area.

[Syntax]

- .byte value[, value, ...]
- .byte bit-width:value[, bit-width:value, ...]

[Function]

- The first part of this quasi directive instructs the allocation of a 1-byte area for each operand, and the storing of the
value of the lowermost byte of the specified value in the allocated area.

- The second part instructs the allocation of an area of the specified bit width and stores the specified value into the
allocated area.

- Specify the bit width as a value between 0 and 8.

- If the specified bit width exceeds the byte width, it is masked by the byte width.

- A value specified first and having the bit width is allocated starting from the least significant bit of the byte
area. If the area exceeds the byte boundary as a result of allocating an area immediately after the area to
which the value with the previous bit width has been allocated, the second value is allocated starting from the
byte boundary (see the figure below).

- If a hole results, it is filled with 0.

Figure 4-6. Example of Allocation with Bit Width Specified

.byte 4:2,3:1, 5:6, 0x20

00100O0O0OO0CB0O0O0OO0COO11O000O0O10O0T1O

- The above two specifications can be made together with one .byte quasi directive (see the above figure).

[Example]

Allocates 1 byte and stores 1.

.tidata.byte
.align 4

.globl _p, 4

.byte 1

R20UT0553EJ0100 Rev.1.00 RENESAS Page 243 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.hword

Allocates a 1-halfword area.

[Syntax]

- .hword value[, value, ...]
- .hword bit-width:value|, bit-width:value, ...]

[Function]

- The first part of this quasi directive instructs the allocation of a 1-halfword area (2 bytes) for each operand, and the
storing of the value of the lower 1 halfword of the specified value into the allocated area.

- The second part of this instruction instructs the allocation of an area of the specified bit width, and the storing of the
specified value into the allocated area.

- Specify the bit width as a value between 0 and 16.

- If the specified value exceeds the halfword width, it is masked by the halfword width.

- A value declared first and having the bit width is allocated from the least significant bit position in the halfword
area. If the halfword boundary of the area is exceeded as a result of allocating an area immediately after the
area to which the value having the previous bit width has been allocated, the value having the bit width is allo-
cated starting from the halfword boundary.

- If a hole results, it is filled with 0.

- The above two specifications can be made together for each .hword quasi directive.

[Example]

Allocates 1 halfword and stores 100.

.tidata
.align 4

.globl _p, 4

.hword 100

R20UT0553EJ0100 Rev.1.00 RENESAS Page 244 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.shword

Allocates a 1-halfword area [V850E].

[Syntax]

- .shword value[, value, ...]
- .shword bit-width:value[, bit-width:value, ...]

[Function]

- The first part of the .shword quasi directive allocates an area of 1 halfword to each operand, shifts a specified
value 1 bhit to the right, and stores it in the allocated area.

- The second part of the .shword quasi directive allocates an area of the specified bit width, shifts a specified value
1 bit to the right, and stores it in the allocated area.
- Specify the bit width as a value between 0 and 16.
- If the specified value exceeds the halfword width, it is masked by the halfword width.
- A value that is declared first and has the bit width is allocated from the least significant bit position in the half-
word area. If the halfword boundary of the area is exceeded as a result of allocating an area immediately after

the area to which the value with the previous bit width has been allocated, that value is allocated starting at the
halfword boundary.

- If a hole results, it is filled with 0.

- The above two specifications can be made together for each .shword quasi directive.
- This quasi directive is suitable for creating a table for the switch instruction.

[Example]

Allocates an area for a string constant and stores a value in it.

.sdata
.align 4

.globl p, 4

.shword 10

R20UT0553EJ0100 Rev.1.00 RENESAS Page 245 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.word

Allocates a 1-word area.

[Syntax]

- .word value[, value, ...]
- .word bit-width:value[, bit-width:value, ...]

[Function]

- The first part of this quasi directive instructs the allocation of a 1-word area for each operand, and the storing of the
specified value in the allocated area.

- The second part of this quasi directive instructs the allocation of an area of a specified bit width, and the storing of
the specified value in the allocated area.

- Specify the bit width as a value between 0 and 32.

- If the value exceeds the word width, it is masked by the word width.

- A value for which the bit width is declared first is allocated starting from the least significant bit position of the
word area. If the word boundary of the area is exceeded as a result of allocating an area immediately after the
area to which the value having a bit width has been allocated, the value having the bit width is allocated start-
ing from the word boundary.

- If a hole results, it is filled with 0.

- The above two specifications can be made together for each .word quasi directive.

[Example]

Allocates an area of 1 word and fills it with Oxa.

.sidata
.align 4

.globl _p, 4

.word Oxa

R20UT0553EJ0100 Rev.1.00 RENESAS Page 246 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

float

Sets a floating-point value.

[Syntax]

float valuel[, value, ...]

[Function]

Allocates a 1-word area for each operand, and stores the specified floating-point value in the allocated areaNo®e,

Note If an integer constant is specified, a 1-word area is allocated, and the specified integer constant is stored in the
allocated area.

[Example]

Allocates 1 word and stores 1.2345.

.sidata
.align 4

.globl _p, 4

.float 1.2345

R20UT0553EJ0100 Rev.1.00 RENESAS Page 247 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.space

Allocates an area for size.

[Syntax]

.space size[, fill-value]

[Function]

- Allocates an area of the size specified by the first operand and fills the allocated area with the fill value specified by
the second operand (the default is 0).

- If afill value is specified, specify a 1-byte fill value.

- If a larger value than a 1-byte is specified, the 1 byte corresponding to the lowermost digit is used.

[Example]

Fills 4 bytes with 0.

.sidata

.globl _p, 4

.space 4

R20UT0553EJ0100 Rev.1.00 RENESAS Page 248 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.Sstr

Allocates an area for string.

[Syntax]

.Str "string-constant"[, "string-constant”, ...]

[Function]

Allocates an area for the specified string constant for each operand and stores the specified string in the allocated
Note
area """,

Note Unlike in the case of C, \O’ is not loaded as the default value at the end of a string.

[Example]

Allocates an area for a string constant and stores a value in it.

.str "hello"

R20UT0553EJ0100 Rev.1.00 RENESAS Page 249 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Jdcomm

Defines a label that allocates an area.

[Syntax]

dcomm label-name, size, alignment-condition

[Function]

Aligns the value of the location counter for the current section, specified by the previously specified section definition
quasi directive, under the alignment condition specified by the third operand, allocates an area of the size specified by the
second operand, and defines a local labelN°®, having a label name specified by the first operand, at the first address of
the allocated area.

Note Local symbol (symbol having binding class LOCAL).

[Example]

Assumes size of __ stack label to be 0x100 for 4-byte alignment.

.bss

.lcomm _stack, 0x100, 4

[Caution]

- The current section, specified by the previously specified section definition quasi directive, must be an sbss- or
bss-attribute section. If this quasi directive is specified for any other section, the as850 outputs the following mes-
sage then stops assembling.

E3246: illegal section

- If this quasi directive is used by specifying an alignment condition of 4 or greater in the sbss-attribute section, valid
information may not be obtained when a guideline value for determining the size of the data to be allocated to the
sdata/sbss-attribute section is displayed (by using the -A option of the 1d850).

R20UT0553EJ0100 Rev.1.00 RENESAS Page 250 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.2.6 Program linkage quasi directives

[Note 1 o external labelNO®

Using the program linkage quasi directive, the as850 can declare an undefined external labe
2ofa specified size, together with an alignment condition. Next table lists the program linkage quasi directives described

in this section.

Table 4-18. Program Linkage Quasi Directives

Quasi directive Meanings
.globl Declares an external label
.extern Declares an external label
.comm Declares an undefined external label

Maintain the values of the size (Number of bytes) and alignment condition, specified for a program linkage quasi direc-
tive, within 231, If a value of 231 or more is specified, the as850 outputs the following message then stops assembling.

E3247: illegal size value
or

E3200: illegal alignment value

Notes 1. Undefined external symbol (symbol having binding class GLOBAL and section header table index
GPCOMMON or COMMON).
2. External symbol (symbol having binding class GLOBAL).

R20UT0553EJ0100 Rev.1.00 RENESAS Page 251 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.globl

Declares an external label.

[Syntax]

.globl label-name], size]

[Function]

Declares a label having the same name as that specified by the first operand as an external labelN°®_ If the second
operand is specified, a value is specified as the size of the data indicated by the label. This quasi directive is the same as
the .extern quasi directive in that both declare an external label. However, use this quasi directive to declare a label hav-
ing a definition in the specified file as an external label, and use the .extern quasi directive to declare a label that does not
have a definition in the specified file as an external label.

Note External symbol (symbol having binding class GLOBAL)

[Example]

Declares external label _func (_func is defined in file).

.globl _func

[Caution]

- If a label having the same name as that of the label specified by the first operand is defined by this declaration, that
label can be referenced from other assembler source files.

- When a guideline value for determining the size of the data to be allocated to the sdata/sbss-attribute section is to
be displayed (by using the -A option of the 1d850), the size of the data to be allocated to the sdata-attribute section
(actually, the label subject to gp offset reference) must be specified by using either this or the .size quasi direc-
tiveNote,

Note Otherwise, valid information may not be obtained.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 252 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.extern

Declares an external label.

[Syntax]

.extern label-name], size]

[Function]

Declares a label having the same name as that specified by the first operand as an external labelN°®_ If the second
operand is specified, specifies a value as the size indicated by the data of the label. This quasi directive is the same as
the .globl quasi directive in that both declare an external label. However, use this quasi directive to declare a label that
does not have a definition in the specified file as an external label, and use the .globl quasi directive to declare a label
having a definition in the specified file as an external labe

Note External symbol (symbol having binding class GLOBAL).

[Example]

Declares external label _main (_main is not defined in file).

.extern _main

[Caution]

- With the as850, by default, a label is declared as an external label if it does not have a definition in the specified
file. Consequently, if a label having the same name as the label specified by the first operand does not have a def-
inition in the specified file, this quasi directive specifies only the size of the data indicated by that label.

- Because the as850 judges whether to generate "a machine instruction that performs reference using 16-bit dis-
placement" or "a machine instruction string (consisting of two or more machine instructions) that performs refer-
ence using 32-bit displacement" when executing gp offset reference to data that does not have a definition in the
specified file, based on the size of the data, specify the size of the label that has no definition in the specified file
and which is subject to gp offset reference, using this quasi directive.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 253 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.comm

Declares an undefined external label.

[Syntax]

.comm label-name, size, alignment-condition

[Function]

Declares an undefined external label having a label name specified by the first operand, a size specified by the second
operand, and an alignment condition specified by the third operand.

Undefined external symbol (symbol having binding class GLOBAL and section header table index GRCOMMON or
COMMON). If a definition for the undefined external symbol does not exist, the linker (Id) of the CA850 allocates an area
of the specified size, aligned under the specified alignment condition, to the .sbss section for an undefined external sym-
bol having section header table index GPCOMMON, or to the .bss section for an undefined external symbol having sec-
tion header table index COMMON. If two or more undefined external symbols of different sizes exist, the Id uses the
larger size. If a definition already exists, it takes precedence.

- If the -Gnum option is specified upon starting the as850
- If the specified size is 1 or more, but no more than num bytes
Generates a symbol table entry having section header table index GPCOMMON upon generating the symbol
table entry for the label when the object file is generated.
- If the specified size is 0 or more than num bytes
Generates a symbol table entry having section header table index COMMON upon generating the symbol
table entry for the label when the object file is generated.

- If the -Gnum option is not specified upon starting the as850
Generates a symbol table entry having section header table index GPCOMMON upon generating the symbol table
entry for the label when the object file is generated.

[Example]

Declares undefined external label of size 4 with alignment condition 4.

.sbss
.comm _p, 4, 4
R20UT0553EJ0100 Rev.1.00 RENESAS Page 254 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Caution]

- If the same label name as that specified by the first operand is defined by means of normal label definition in the
same file as this quasi directive

- If the label is declared as having symbol table entry index GPCOMMON and is defined by means of normal
label definition in the data-attribute section, or if it is declared as having symbol table entry index COMMON by
this quasi directive and is defined by means of normal label definition in the sdata-attribute section.

. comm labl, 4, 4 --GPCOMMON if assembly is executed without -G

.data

labl: --Normal label definition in .data section

The as850 outputs the following message then stops assembling.

E3213: label identifier redefined

- Else
The label defined by means of normal label definition is regarded as being an external label and the specifica-
tion of this quasi directive is ignored. Generates a symbol table entry having binding class GLOBAL upon
generating the symbol table entry for the label when the object file is generated.

.comm labl, 4, 4 --GPCOMMON if assembly is executed without -G

.sdata

labl: --Normal label definition in .sdata section

- If a label having the same name as that specified by the first operand is defined by the .Icomm quasi directive in
the same file as this quasi directive

- If the size or alignment condition specified by the .Icomm quasi directive differs from the size or alignment con-
dition specified by this quasi directive.

.comm labl, 4, 4

.sbss

.lcomm labl, 4, 2 --Alignment condition differs

The as850 outputs the following message then stops assembling.

E3213: label identifier redefined

R20UT0553EJ0100 Rev.1.00 RENESAS Page 255 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If the label is declared, by this quasi directive, as having section header table index GPCOMMON and is
defined in the bss-attribute section by the .lcomm quasi directive, or if it is declared by this quasi directive as
having section header table index COMMON and is defined in the sbss-attribute section by the .Icomm quasi

directive.
. comm labl, 4, 4 --GPCOMMON 1f assembly is executed without -G
.bss
.lcomm labl, 4, 4 --Definition in .bss section

The as850 outputs the following message then stops assembling.

E3213: label identifier redefined

- Else
The as850 regards the label defined by .Icomm as being an external labelN®, ignoring the specification made
by this quasi directive. Generates a symbol table entry having binding class GLOBAL upon generating the
symbol table entry for the label when the object file is generated.

. comm labl, 4, 4 --GPCOMMON 1f assembly is executed without -G
.sbss
.lcomm labl, 4, 4 --Definition in .bss section

- If a label having the same name as that specified by the first operand is (re-)defined by this quasi directive in the
same file as this quasi directive.

- If the size or boundary condition is differen

.comm labl, 4, 4

. comm labl, 2, 4 --Size differs

The as850 outputs the following message then stops assembling.

E3213: label identifier redefined

- When the size and boundary conditions are the same
The as850 assumes the .comm quasi directive to be specified once only.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 256 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.2.7 Assembler control quasi directive

The assembler control quasi directive can be used to control the processing performed by the as850. Next table lists
the assembler control quasi directives described in this section.

Table 4-19. Assembler Control Quasi Directive

Quasi directive Meanings
.option Controls the assembler according to specified options
R20UT0553EJ0100 Rev.1.00 RENESAS Page 257 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.option

Controls the assembler according to specified options.

[Syntax]

.option option

[Function]

Controls the assembler according to the options specified with the operand.The following options can be specifiedNOte:

Note Uppercase characters can also be used to specify the option (for example, NOMACRO can be specified instead
of nomacro).

- asm
This cancels c option specification for a syntax error that occurs after this quasi directive.

- az_info_j
The address of the instruction immediately after this quasi directive is output to the address information section for
AZ850 (The section nhame is az_info_j) . This option is specified to collect the address information for an instruc-
tion that calls a function.

- az_info_r
The address of the instruction immediately after this quasi directive is output to the address information section for
AZ850 (The section name is az_info_r) . This option is specified to collect the address information for an instruc-
tion which causes a return from a function.

- az_info_ri
The address of the instruction immediately after this quasi directive is output to the address information section for
AZ850 (The section name is az_info_ri) . This option is specified to collect the address information for an instruc-
tion which causes a return from an interrupt function.

- ¢ linenum ["filename"]
The line number of the error message and the file name for the syntax error subsequent to this quasi directive are
overwritten by the specified items and output. Second and subsequent "filename" specifications in the assembler
source file can be omitted. If omitted, the file name is processed as the one specified for the preceding quasi direc-
tive. In this case, the presence of the asm option between this quasi directive and the preceding one is not
checked.
If the first "filename" is omitted in the assembler source file, as850 outputs the following message then stops
assembling.

E3249: illegal syntax

- callt
A quasi directive which is reserved for the compiler.

Caution Do not delete a callt instruction when it exists in the assembler source file output by the com-
piler. If it is deleted, the prologue epilogue runtime linking cannot be checked.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 258 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- cpu devicename
Reads the device file on the target device specified by devicename. To specify a device name to read the device
file, the -cpu option can also be specified when starting the as850. If a device name is not specified with the -cpu,
-cnxxx option, or with this quasi directive, the as850 outputs the following message then stops processing.

F3522: unknown cpu type

If a device name is specified by both the -cpu option and quasi directive, the as850 outputs a warning message. In
this case, the specification made with the option takes precedence over that made with the quasi directive. If two
or more devices are specified by the option or quasi directive, the as850 outputs the following error message stops
processing.

F3523: duplicated cpu type

Example Specifies VB50ES/SA2 as device to be used.

.option cpu 3201

The device file to be used must be stored in directory-containing-as850\..\..\..\dev (that is, C-compiler-pack-
age-install-directory\dev). Alternatively, the directory containing the device file must be specified by using the
-F option of the as850.

If there is a blank in the file name of the device file specified by devicename, the following message is output
and assembly is stopped.

E3250: illegal syntax string

- data extern_symbol
Assumes that external data having symbol name extern_symbol has been allocated to the data or bss attribute
section, regardless of the size specified with the -G option of the ca850 or as850, and expands the instructions
which reference that data. This format is used when a variable for which "data” is specified in #pragma section or
section file is externally referenced by an assembler source file

Example _dis used as the .data section regardless of the option and is expanded into instructions when refer-
enced.

.option data ~d
.text

mov $ d, ril

- ep_label

Performs a label reference by %label as a reference by ep offset for the subsequent instructions.
- macro

Cancels the specification made with the nhomacro option for the subsequent instructions.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 259 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- mask_reg
Embeds information, which indicates the mask register function is used, in the relocatable object file generated by

the as850. This option is effective when, for example, an assembler source file output by an earlier C compiler that
does not support the mask register function is used to specify the mask register function. Since use of this option
assumes that the mask register function is used, no error occurs when an object compiled with the mask register

function specified is linked.

Caution

When the mask register function is used, the C compiler uses r20 and r21 as mask registers. Do

not allow the assembler source program to change the mask values set in these registers.

- new_fcall
Embeds information, which indicates the new function call formatN°€ is used, in the relocatable object file gener-
ated by the as850. This option is effective when, for example, an assembler source file output by an earlier C com-
piler with different calling specifications is used with an object created by the current version of the C compiler.

Specifying this option assumes that the new call format is met, resulting in no error during a link with an object cre-
ated in the default new call format of the C compiler.
- no_ep_label

Cancels the specification made with the ep_label option for the subsequent instructions.

- nomacro
Does not expand the subsequent instructions, other than the setfcnd/ sasfcnd [V850E])/ cmovend [V850E]/ adfcnd
[V850E2]/ sbfcnd [V850E2]/ jend/ jmp/ jarl/jr instructions.

- nooptimize

Does not optimize instruction rearrangement for the subsequent instructions.

- novolatile

Cancels the specification made with the nooptimize/volatile option for the subsequent instructions.

- nowarning

Does not output warning messages for the subsequent instructions.

- optimize
Has the same function as the novolatile option.

- reg_mode tnum pnum
Embeds a register mode information section in the relocatable object file generated by the as850. The register
mode information section contains information relating to the number of work registers, and registers for register

variables, used by the compiler. This instruction sets the number of work registers, and registers for register vari-
ables, as tnum, pnum. When 22-register mode is used, tnum and pnum indicate five registers each. In 26-register
mode, they indicate seven registers each.

Example 22-register mode is used.

.option reg mode

5

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 260 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- sdata extern_symbol
Assumes that external data having symbol name extern_symbol has been allocated to the sdata or sbss attribute
section, regardless of the size specified with the -G option of the ca850 or as850, and does not expand the instruc-
tions which reference that data. This format is used when a variable for which "sdata" is specified in the #pragma
section or section file is externally referenced by an assembler source file.

Example The _d is used as the .sdata section regardless of the option and is not expanded into instructions
when referenced.

.option sdata _d
.text
mov $_d, ril

- volatile

Has the same function as the nooptimize option.
- warning
Outputs warning messages for the subsequent instructions.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 261 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.2.8 File input control quasi directives

Using the file input control quasi directive, the as850 can input an assembler source file or binary file to a specified

position. Next table lists the file input control quasi directives described in this section.

Table 4-20. File Input Control Quasi Directives

Quasi directive Meanings
.include Inputs an assembler source file
.binclude Inputs a binary file
R20UT0553EJ0100 Rev.1.00 RENESAS Page 262 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.include

Inputs an assembler source file.

[Syntax]

.include "file-name"
[Function]

ssumes that the contents of the file specified by the operand to be at the position of this quasi directive. The specified
file is searched in the folder in which the source file including this quasi directive is placed. "file-name" can also be
described with the relative path from the folder including the source file. When a folder is specified by the assembler
option -1, the folder is searched first. When there is no file in the folder in which the source file is placed, the folder in
which C language source file is placed (specified by the .file quasi directive and the current folder are searched).

[Example]

Includes aa.s file.

.include "aa.s"

[Caution]

- Enclose the file name to be specified with ".
- If a non-existent file is specified, the as850 outputs the following message then stops assembling.

F3503: can not open file file

- If the .include statement is nested 9 or more levels deep, the as850 outputs the following message then stops
assembling

F3517: include nest over

R20UTO0553EJ0100 Rev.1.00

RENESAS Page 263 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.binclude

Inputs a binary file.

[Syntax]

.binclude "file-name"

[Function]

Assumes the contents of the binary file specified by the operand to be the result of assembling the source file at the
position of this quasi directive. The specified file is searched in the folder in which the source file including this quasi
directive is placed. "file-name" can also be described with the relative path from the folder including the source file.
When a folder is specified by the assembler option -I, the folder is searched first. When there is no file in the folder in
which the source file is placed, the folder in which C language source file is placed (specified by the .file quasi directive)

and the current folder are searched

[Example]

Includes aa.bin file.

.binclude "aa.bin"

[Caution]
- This quasi directive handles the entire contents of the binary files. When a relocatable file is specified, this quasi
directive handles files configured in ELF format. Note that it is not just the contents of the .text selection, etc. that
are handled.

- Enclose the file name to be specified with ".
- If a non-existent file is specified, the as850 outputs the following message then stops assembling.

F3503: can not open file file

R20UT0553EJ0100 Rev.1.00 RENESAS Page 264 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

429 Repetitive assembly quasi directives

The as850 can repeatedly assemble an arrangement of statements (block) enclosed within a repetitive assem-
bly quasi directive and corresponding .endm quasi directive, at the position of the repetitive assembly quasi directive.
Next table lists the repetitive assembly quasi directives described in this section.

Table 4-21. Repetitive Assembly Quasi Directives

Quasi directive Meanings
.repeat Repetition by the specified number of times
.irepeat Repetition according to the parameter specification
R20UT0553EJ0100 Rev.1.00 RENESANAS Page 265 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

repeat

Repetition by the specified number of times.

[Syntax]

.repeat absolute-value-expression

[Function]

Repeatedly assembles the arrangement of statements (block) enclosed within this quasi directive and the correspond-
ing .endm quasi directive by the number of times specified by the absolute expression of the first operand.

[Example]

The expansion result is shown below:
[Before expansion]

.repeat 2
nop

.endm

[After expansion]

nop

nop

[Caution]

- Always specify .repeat and .endm as a pair. If .endm is omitted, the as850 outputs the following message then
stops assembling.

F3513: unexpected EOF in .repeat/.irepeat

- The value is evaluated as a 32-bit signed integer.

- If there is no arrangement of statements (block), nothing is executed.

- If the result of evaluating the expression is negative, the as850 outputs the following message then stops assem-
bling.

E3225: illegal operand (must be evaluated positive or zero)

R20UT0553EJ0100 Rev.1.00 RENESAS Page 266 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.irepeat

Repetition according to the parameter specification.

[Syntax]

.irepeat formal-parameter actual-parameter[, actual-parameter, ...]

[Function]

Repeatedly assembles the arrangement of statements (block) enclosed within this quasi directive and the .endm quasi
directive corresponding to this quasi directive, replacing the formal parameter specified by the first operand appearing in
that block with the actual parameters specified by the second operands and those that follow. If the formal parameter is
replaced by all the actual parameters specified by the second operand and those that follow, repetition is stopped.

[Example]

The expansion result is shown below:
[Before expansion]

.irepeat x a, b, ¢, d

.word x

.endm

[After expansion]

.word a
.word b
.word c
.word d
[Caution]

- Always specify .irepeat and .endm as a pair. If .endm is omitted, the as850 outputs the following message then
stops assembling.

F3513: unexpected EOF in .repeat/.irepeat

- If 33 or more actual parameters are specified, the as850 outputs the following message then stops assembling.

F3514: paramater table overflowt

- If the same parameter name is specified for a formal parameter and an actual parameter, the as850 outputs the
following message and stops assembling.

F3238: illegal operand (.irepeat parameter)

R20UT0553EJ0100 Rev.1.00 RENESAS Page 267 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If a parameter defined by a label or other quasi directive is specified for a formal parameter and an actual parame-
ter, the as850 outputs the following message and stops assembling.

F3238: illegal operand (.irepeat parameter)

R20UT0553EJ0100 Rev.1.00 RENESAS Page 268 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.2.10 Conditional assembly quasi directives

Using conditional assembly quasi directives, the as850 can control the range of assembly according to the result of

evaluating a conditional expression. Next table lists the conditional assembly quasi directives described in this section.

Table 4-22. Conditional Assembly Quasi Directives

Quasi directive Meanings
if Control based on absolute expression (assembly performed when the value is true)
.ifn Control based on absolute expression (assembly performed when the value is false)
.ifdef Control based on symbol (assembly performed when the symbol is defined)
.ifndef Control based on symbol (assembly performed when the symbol is not defined)
.else Control based on absolute expression/symbol
.elseif Control based on absolute expression (assembly performed when the value is true)
.elseifn Control based on absolute expression (assembly performed when the value is false)
.endif End of control range

If a conditional assembly quasi directive is nested 17 or more levels deep, the as850 outputs the following message

then stops assembling.

F3512: .if, .ifn, etc. too deeply nested

R20UT0553EJ0100 Rev.1.00 ENESAS

Apr 01, 2011

Page 269 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Af

Control based on absolute expression (assembly performed when the value is true).

[Syntax]

.if absolute-value-expression

[Function]

- If the absolute expression specified by the operand is evaluated as being true (# 0)

(a) If this quasi directive and a corresponding .else, .elseif, or .elseifn quasi directive exist, assembles the
block enclosed within this quasi directive and the corresponding quasi directive.

(b) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed
within this quasi directive and the corresponding .endif quasi directive.

- If the absolute expression is evaluated as being false (= 0)
Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

[Example]

The expansion result is shown below:
[Before expansion]

if 10
.word 10
.endif
Lif 10 < 20
.word 20
.endif
.set expr, 30
Lif expr
.word expr
.endif

[After expansion]

.word 10
.word 20
.word 30
R20UT0553EJ0100 Rev.1.00 RENESAS Page 270 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Caution]

- If an undefined symbol is specified by the operand, the as850 outputs the following message then stops assem-
bling.

E3202: illegal expression

- If a corresponding quasi directive does not exist, the as850 outputs the following message then stops assembling.

F3511: .endif unmatched

R20UT0553EJ0100 Rev.1.00 RENESAS Page 271 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ifn

Control based on absolute expression (assembly performed when the value is false).

[Syntax]

.ifn absolute-value-expression

[Function]

- If the absolute expression specified by the operand is evaluated as being true (# 0)
Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

- If the absolute expression is evaluated as being false (= 0)

(a) If this quasi directive and the corresponding .else, .elseif, or .elseifn quasi directive exist, assembles
the block enclosed within this quasi directive and the corresponding quasi directive.

(b) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed
within this quasi directive and the corresponding .endif quasi directive.

[Example]

The expansion result is shown below:
[Before expansion]

.ifn 0
.word 10
.endif
.ifn 10 > 20
.word 20
.endif
.set expr, O
.ifn expr
.word expr
.endif

[After expansion]

.word 10

.word 20

.word 0
[Caution]

- If the corresponding quasi directive does not exist, the as850 outputs the following message then stops assem-
bling.

F3511: .endif unmatched

R20UT0553EJ0100 Rev.1.00 RENESAS Page 272 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ifdef

Control based on symbol (assembly performed when the symbol is defined).

[Syntax]

.ifdef name

[Function]

- If the name specified by the operand is defined

(a) If this quasi directive and the corresponding .else, .elseif, or .elseifn quasi directive exist, assembles
the block enclosed within this quasi directive and the corresponding quasi directive.

(b) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed
within this quasi directive and the corresponding .endif quasi directive.

- If the specified name is not defined
Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

[Example]

The expansion result is shown below:
[Before expansion]

define symbol:
.ifdef define symbol
.word 10
.endif
.ifdef undef symbol
.word 20
.else

.ifdef define symbol

.str "x"
.endif
.endif
.set expr, 20

.ifdef expr

.word expr

.endif

[After expansion]

.word 10
.str "x"
.word 20
R20UT0553EJ0100 Rev.1.00 RENESAS Page 273 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Caution]

- A symbol, label, or macro name can be specified as the name, but a reserved word must not be specified. If a
reserved word is specified, the as850 outputs the following message then stops assemblin

E3220: illegal operand (identifier is reserved word)

- If the corresponding quasi directive does not exist, the as850 outputs the following message then stops assem-
bling.

F3511: .endif unmatched

- The local symbol name that the assembler generated by .local quasi directive is an undefined symbol.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 274 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ifndef

Control based on symbol (assembly performed when the symbol is not defined).

[Syntax]

.ifndef name

[Function]

- If the name specified by the operand is defined
Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

- If the specified name is not defined

(a) If this quasi directive and the corresponding .else, .elseif, or .elseifn quasi directive exist, assembles
the block enclosed within this quasi directive and the corresponding quasi directive.

(b) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed
within this quasi directive and the corresponding .endif quasi directiv

[Example]

The expansion result is shown below:
[Before expansion]

define symbol:

.ifndef define symbol

.word 10
.else

.str "a"
.endif

.ifndef undef symbol
.word 20
.else

.ifndef define symbol

.str "x"
.endif
.endif
.set expr, 20

.ifndef expr
.word expr

.endif

[After expansion]

.str "a"
.word 20
R20UT0553EJ0100 Rev.1.00 RENESAS Page 275 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Caution]

- A symbol, label, or macro name can be specified as the name, but a reserved word must not be specified. If a
reserved word is specified, the as850 outputs the following message then stops assembling.

E3220: illegal operand (identifier is reserved word)

- If the corresponding quasi directive does not exist, the as850 outputs the following message then stops assem-
bling.

F3511: .endif unmatched

- The local symbol name that the assembler generated by .local quasi directive is an undefined symbol.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 276 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.else

Control based on absolute expression/symbol.

[Syntax]

.else

[Function]

If the absolute expression of the .if, .elseif, or .ifdef quasi directive is evaluated as being false (= 0), or if the absolute
expression of the .ifn, .elseifn, or .ifndef quasi directive corresponding to this quasi directive is evaluated as being true (#
0), assembles the arrangement of statements (block) enclosed within this quasi directive and the corresponding .endif
quasi directive.

[Example]

The expansion result is shown below:
[Before expansion]

Lif 0

.word 10
.else

.str "a"
.endif
Lif 10 > 20

.word 20
.else

.str "b"
.endif
.set expr, O
Lif expr

.word expr
.else

.str et
.endif

[After expansion]

.str "a"

.str "b"

.str et
[Caution]

- If the .if, .ifn, .elseif, .elseifn, .ifdef, or .ifndef quasi directive corresponding to this quasi directive does not exist, the
as850 outputs the following message then stops assembling.

F3510: .else unexpected

R20UT0553EJ0100 Rev.1.00 RENESAS Page 277 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.elseif

Control based on absolute expression (assembly performed when the value is true).

[Syntax]

.elseif absolute-value-expression

[Function]

- If the absolute expression specified by the operand is evaluated as being true (# 0)

(a) If this quasi directive and the corresponding .else, .elseif, or .elseifn quasi directive exist, assembles
the block enclosed within this quasi directive and the corresponding quasi directive.

(b) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed
within this quasi directive and the corresponding .endif quasi directive.

- If the absolute expression is evaluated as being false (= 0)
Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

[Example]

The expansion result is shown below:
[Before expansion]

Lif 0
.word 10
.elseif 10
.str "a"
.endif
Lif 10 > 20
.word 20
.elseif 10 == 20
.str "b"
.endif
.set expr, O
Lif expr
.word expr
.elseifn expr - 10
.str et
.endif

[After expansion]

.str "a"

R20UT0553EJ0100 Rev.1.00 RENESAS Page 278 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Caution]

- If a corresponding quasi directive does not exist, the as850 outputs the following message then stops assembling.

F3511: .endif unmatched

R20UT0553EJ0100 Rev.1.00 RENESAS Page 279 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.elseifn

Control based on absolute expression (assembly performed when the value is false).

[Syntax]

.elseifn absolute-value-expression

[Function]

- If the absolute expression specified by the operand is evaluated as being true (# 0)
Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

- If the absolute expression is evaluated as being false (= 0)

(a) If this quasi directive and the corresponding .else, .elseif, or .elseifn quasi directive exist, assembles
the block enclosed within this quasi directive and the corresponding quasi directive.

(b) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed
within this quasi directive and the corresponding .endif quasi directive.

[Example]

The expansion result is shown below:
[Before expansion]

Lif 0
.word 10
.elseifn 10
.str "a"
.endif
Lif 10 > 20
.word 20
.elseifn 10 >= 20
.str "b"
.endif
.set expr, O
Lif expr
.word expr
.elseif expr - 10
.str et
.endif

[After expansion]

.str "
.str "e"
R20UT0553EJ0100 Rev.1.00 RENESAS Page 280 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Caution]

- If the corresponding quasi directive does not exist, the as850 outputs the following message then stops assem-
bling.

F3511: .endif unmatched

R20UT0553EJ0100 Rev.1.00 RENESAS Page 281 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.endif

End of control range.

[Syntax]

.endif

[Function]

Indicates the end of the control range of a conditional assembly quasi directive.

[Caution]

- If the .if, .ifn, .elseif, .elseifn, .ifdef, or .ifndef quasi directive corresponding to this quasi directive does not exist, the
as850 outputs the following message then stops assembling.

F3510: .endif unexpected

R20UT0553EJ0100 Rev.1.00 RENESAS Page 282 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.2.11 Skip quasi directives

Using the skip quasi directives, the as850 can skip the remaining repetitions of a repetitive assembly quasi directive.

Next table lists the skip quasi directives described in this section.

Table 4-23. Skip Quasi Directives

Quasi directive Meanings
.exitm Skips outwards by one
.exitma Skips to the outmost repetition
R20UT0553EJ0100 Rev.1.00 RENESAS Page 283 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.exitm

Skips outwards by one.

[Syntax]

.exitm

[Function]

This quasi directive skips the repetitive assembly of the repetitive assembly quasi directives enclosing this quasi direc-

tive at the innermost position.

[Example]

The expansion result is shown below:
[Before expansion]

.repeat 2
.set expr, 1
.word 10
.repeat 10
Lif expr < 5
.byte expr
.set expr, expr + 1
.else
.ifdef wundefine symbol
.byte expr
.set expr, expr + 1
.else
.exitm
.endif
.endif
.endm
.hword 20
.hword 30
.endm

.word expr

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 284 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[After expansion]

.word
.byte
.byte
.byte
.byte
.hword
.hword
.word
.byte
.byte
.byte
.byte
.hword
.hword

.word

10

20

30

10

20

30

5

[Caution]

- If this quasi directive is not enclosed by repetitive assembly quasi directives, the as850 outputs the following mes-

sage then stops assembling.

F3513: unexpected EOF in .repeat/.irepeat

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 285 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.exitma

Skips to the outmost repetition.

[Syntax]

.exitma

[Function]

This quasi directive skips the repetitive assembly of the repetitive assembly quasi directives enclosing this quasi direc-

tive at the outermost position.

[Example]

The expansion result is shown below:

[Before expansion]

.repeat 2

.word 10

.repeat 10

.byte
.set
.else

.ifdef

.else

.endif
.endif
.endm
.hword 20
.hword 30
.endm

.word expr

.set expr, 1

.set

Lif expr < 5

expr

expr, expr + 1

undefine symbol

.byte expr

expr, expr + 1

.exitma

[After expansion]

.word 10
.byte 1
.byte 2
.byte 3
.byte 4
.word 5

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 286 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Caution]

- If this quasi directive is not enclosed by repetitive assembly quasi directives, the as850 outputs the following mes-
sage then stops assembling.

F3515: .exitma not in .repeat/.irepeat

R20UT0553EJ0100 Rev.1.00 RENESAS Page 287 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.2.12 Macro quasi directives

Using a macro quasi directive, the as850 can define any arrangement of statements as a macro body corre-
sponding to a specified macro name. By referencing this macro name in the source program, it can be assumed that the
arrangement of statements corresponding to the macro name is described at the position of reference. Next table lists
the skip quasi directives described in this section.

Table 4-24. Macro Quasi Directives

Quasi directive Meanings
.macro Beginning of macro definition
.endm End of repetitive zone or end of macro definition
local Definition of local symbol
R20UT0553EJ0100 Rev.1.00 RENESANAS Page 288 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.macro

Beginning of macro definition.

[Syntax]

.macro macro-name [formal-parameter, ...]

[Function]

Defines the arrangement of the statements, enclosed within this quasi directive and the .endm quasi directive, as the
macro body for the macro name specified by the first operand. If this macro name is referenced (a process referred to as
"macro call"), it is assumed that the macro body corresponding to the macro name is described at the position of the
macro call.

[Example]

The expansion result is shown below:
[Before expansion]

.macro PUSH REG
add -4, sp
st.w REG, 0x0 [sp]
.endm
.macro POP REG
1d.w 0x0 [sp], REG
add 0x4, sp
.endm
PUSH rlo
mov 10, rlo
add rl0, xr20
POP rl0

[After expansion]

add -4, sp
st.w r10, 0x0[sp]
mov 10, rlo
add rl0, r20
1d.w 0x0 [sp], rlo0
add 0x4, sp
R20UT0553EJ0100 Rev.1.00 RENESAS Page 289 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Caution]

- If the .endm quasi directive corresponding to this quasi directive does not exist, the as850 outputs the following
message then stops assembling.

F3513: unexpected EOF in .macro

- If a macro name is re-defined, and if this macro is subsequently called, the re-defined macro body becomes the
macro body of the macro name.
- If 33 or more formal parameters are specified, the as850 outputs the following message then stops assembling.

F3514: paramater table overflow

- Any excess formal parameters that are not referenced in the macro body are ignored. Note that, in this case, the
as850 outputs no message.

- If a shortage of actual parameters for macro call occurs, the as850 outputs the following message then stops
assembling.

F3519: argument mismatch

- If an undefined macro is called in a macro body, the as850 outputs the following message then stops assembling.

E3249: illegal syntax

- If a currently defined macro is called in a macro body, the as850 outputs the following message then stops assem-
bling.

F3518: unreasonable macro_call nesting

- If a parameter defined by a label or quasi directive is specified for a formal parameter, the as850 outputs the fol-
lowing message and stops assembling.

E3212: symbol already defined as string

- When calling a macro, only a label name, symbol name, numeric value, register, and instruction mnemonic can be
specified for an actual parameter.
If a label expression (LABEL-1), reference method specification label (#LABEL), or base register specification
([gp]) is specified, the as850 outputs a message dependent on the specified actual parameter and stops assem-
bling.

- Alline of a sentence can be designated in the macro-body. Such as operand can't designate the part of the sen-
tence. If operand has a macro call, performs a label reference is undefined macro name, or the as850 outputs the
following message then stops assembling.

E3249: illegal syntax

R20UT0553EJ0100 Rev.1.00 RENESAS Page 290 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

.endm

End of repetitive zone or end of macro definition.

[Syntax]

.endm

[Function]

Indicates the end of a repetitive zone or a macro body.

[Caution]

- If the .repeat, .irepeat, or .macro quasi directive corresponding to this quasi directive does not exist, the as850 out-
puts the following message then stops assembling.

F3510: .endm unexpected

R20UT0553EJ0100 Rev.1.00 RENESAS Page 291 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Jocal

Definition of local symbol.

[Syntax]

Jocal local-symboll[, local-symbol, ...]

[Function]

Declares a specified string as a local symbol that is replaced by a specific identifier.

[Example]

The expansion result is shown below:
[Before expansion]

.macro ml x

.local a, b

a: .word a
b: .word x
.endm
ml 10
ml 20

[After expansion]

.?2?20000: .word .?2?20000

.?2?20001: .word 10

.?2?20002: .word .?2?20002

.?2?20003: .word 20
[Caution]

- If 33 or more local symbols are specified for the formal parameter of this quasi directive, the as850 outputs the fol-
lowing message then stops assembling.

F3514: paramater table overflow

- The local symbol name is generated by the assembler in the range between .??0000 and ??FFFF.
- The local symbol name is generated by the assembiler, is an undefined by conditional assembly quasi directives.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 292 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3 Macro

This section lainshe hthe cro function .
This is very convenient function to describe serial instruction group for number of times in the program

4.3.1 Outline

This macro function is very convenient function to describe serial instruction group for number of times in the program.

Macro function is the function that is deployed at the location where serial instruction group defined as macro body is
referred by macros as per .macro, .endm quasi directives.

Macro differs from subroutine as it is used to improve description of the source.

Macro and subroutine has features respectively as follows. Use them effectively according to the respective purposes.

- Subroutine
Process required many times in program is described as one subroutine. Subroutine is converted in machine lan-
guage only once by assembler.
Subroutine/call instruction (generally instruction for argument setting is required before and after it) is described
only in subroutine reference. Consequently, memory of program can be used effectively by using subroutine.
It is possible to draw structure of program by executing subroutine for process collected serially in program
(Because program is structured, entire program structure can be easily understood as well setting of the program
also becomes easy.).

Macro

Basic function of macro is to replace instruction group.

Serial instruction group defined as macro body by .macro, .endm quasi directives are deployed in that location at
the time of referring macro. Assembler deploys macro/body that detects macro reference and converts the
instruction group to machine language while replacing temporary parameter of macro/body to actual parameter at
the time of reference.

Macro can describe a parameter.

For example, when process sequence is the same but data described in operand is different, macro is defined by
assigning temporary parameter in that data. When referring the macro, by describing macro name and actual
parameter, handling of various instruction groups whose dercription is different in some parts only is possible.

Subroutine technique is used to improve efficiency of coding for macro to use to draw structure of program and reduc-
ing memory size.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 293 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3.2 Usage of macro

A macro is described by registering a pattern with a set sequence and by using this pattern. A macro is defined by the

user. A macro is defined as follows. The macro body is enclosed by ".macro" and ".endm".

.macro PUSH REG --The following two statements constitute the macro body.
add -4, sp

st.w REG, 0x0 [sp]

.endm

If the following description is made after the above definition has been made, the macro is replaced by a code that
"stores r19 in the stack".

PUSH

rl9

In other words, the macro is expanded into the following codes.

add -4, sp
st.w rl9, 0x0[sp]
4.3.3 Symbols in macro

There are two types of symbols defined in macro such as global symbol and local symbol.

- Global symbol
It is possible to refer from all the statements in source.
Consequently, macro in which that symbol is defined is referred for more than 2 times and if serial statement is
deployed, symbol gives double definition error.
Symbol that is not defined in .local quasi directive is global symbol.

- Local symbol
Local symbol is defined by .local quasi directive (see "4.2.12 Macro quasi directives").
Local symbol can be referred only in the macro declared by .local quasi directive.
Local symbol cannot be referred without macro.

Example of usage is shown below.

.macro ml X
.local a, b
a: .word a
b: .word x

.endm

ml 10

ml 20

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 294 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

434 Macro operator

This section describes a tilde (~), used as a zero-length delimiter in a macro body, and a dollar ($), used to specify a
symbol value as an argument in a macro call.

(1) Tilde symbol
The as850 handles a tilde (~) in a macro body as a zero-length delimiter. If, however, the tilde appears in a string
constant or comment, it is not regarded as being a delimiter, but as a normal tilde (~).

Examples 1.
.macro abc b4
abc~x: mov rl0, r20
sub def~x, r20
.endm
abc STU

[Development result]

abcSTU mov rl0, r20
sub defSTU, r20
2.
.macro abc X, Xy
a_ ~xy: mov rl0, r20
a_~X~y: mov r20, rlo
.endm

abc stu, STU

[Development result]

a STU: mov rl0, r20
a_stuy: mov r20, rlo
3.
.macro abc X, XYy
~ab: mov rl0, r20
.endm

abc stu, STU

[Development result]

ab: mov rl0, r20

R20UT0553EJ0100 Rev.1.00 RENESAS Page 295 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(2) Dollar symbol
If a symbol prefixed with a dollar symbol ($) is specified as an actual argument for a macro call, the as850 assumes

the symbol to be specified as an actual argument. If, however, an identifier other than a symbol or an undefined
symbol name is specified immediately after the dollar symbol ($), the as850 outputs the following message then

stops assembling.

F3520: $ must be followed by defined symbol

Example
.macro macl X
mov X, rl0
.endm

.macro macz

.set value, 10
macl value
macl Svalue
.endm
mac2

[Development result]

.set value, 10
mov value, rl0
mov 10, rio

4.4 Reserved Words

The as850 has reserved words. Reserve word cannot be used in symbol, label, section name. If a reserved word is
specified, the as850 outputs the following message and stops assembling.

E3245: identifier is reserved word

The reserved words are as follows.
- Instructions (such as add, sub, and mov)
- QUASI DIRECTIVES (such as .section, .lcomm, and .globl)
- hi, lo, hil (because they are used as hi(), lo(), and hi1())
- Register names

R20UT0553EJ0100 Rev.1.00 RENESAS Page 296 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.5 Instructions

This section describes various instruction functions of V850 microcontroller products.

45.1 Memory space

V850 microcontroller has architecture of 32 bit and supports linear address space (data space) of maximum 4G byte in
operand addressing.

On other hand, linear address space (program space) of maximum 16M byte is supported in address of instruction
address.

Memory map of V850 microcontroller is shown below.

However, see user's manual of each product for details as contents of internal ROM, internal RAM etc are different for
each product.

Figure 4-7. Memory Map of V850 Microcontroller

FFFFFFFFH =<
Peripheral I/O
FFFFEFFFH
Internal RAM
4G byte linear
Internal ROM/
PROM/
Flash memory
00000000H A A
R20UT0553EJ0100 Rev.1.00 RENESAS Page 297 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

45.2 Register

Register can be divided broadly in 2 types of registers such as program register used for general program and system
register used for controlling of executing environment. Register has width of 32 bits. System register is different depend-
ing on architecture. See "(2) System register"” for details.

Figure 4-8. Program Register

31 0

r0:Zero register

rl:Assembler reserve register

r2

r3:Stack pointer(SP)

r4:Global pointer(GP)

r5:Text pointer(TP)

r6

r7

r8

r9

r10

ril

rl2

rl3

ri4

r15

rl6

rl7

rl8

r19

r20

r21

r22

r23

r24

25

26

r27

r28

r29

r30:Element pointer(EP)

r31:Link pointer(LP)

PC:Program counter

R20UT0553EJ0100 Rev.1.00 RENESAS Page 298 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-9. System Register

31

EIPC:Status save register at the time of interruption ‘

EIPSW:Status save register at the time of interruption

FEPC:Status save register at the time of NMI

FEPSW:Status save register at the time of NMI

ECR:Interruption cause register

PSW:Program status word

CTPC:Status save register at the time of CALLT execution

CTPSW:Status save register at the time of CALLT execution

DBPC:Status save register upon exception/debug trap

DBPSW:Status save register upon exception/debug trap

CTBP:CALLT base pointer

DIR:Debug interface register

BPCO:Breakpoint control register

BPC1:Breakpoint control register

BPC2:Breakpoint control register

BPC3:Breakpoint control register

ASID:Program ID register

BPAVO:Breakpoint address setting register

BPAV1:Breakpoint address setting register

BPAV2:Breakpoint address setting register

BPAV3:Breakpoint address setting register

BPAMO:Breakpoint address mask register

BPAM1:Breakpoint address mask register

BPAM2:Breakpoint address mask register

BPAM3:Breakpoint address mask register

BPDVO0:Breakpoint data setting register

BPDV1:Breakpoint data setting register

BPDV2:Breakpoint data setting register

BPDV3:Breakpoint data setting register

BPDMO:Breakpoint data mask register

BPDM1:Breakpoint data mask register

BPDM2:Breakpoint data mask register

BPDM3:Breakpoint data mask register

R20UT0553EJ0100 Rev.1.00 ENESAS
Apr 01, 2011

Page 299 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(1) Program register
The program registers include general-purpose registers (r0 to r31) and a program counter (PC).

Table 4-25. Program Registers

Name Purpose Operation
r0 Zero register Always holds 0.
rl Assembler reserved registe | Working register when generating the address
r2 Address/data variable register (when the real-time OS to be used is not using r2)
r3 Stack pointer Used for stack frame generation when function is called.
r4 Global pointer Used to access global variable in data area.
5 Text pointer Used as register for pointing to start address of text area (area where pro-

gram code is placed)

r6-r29 Address/data variable registers

r30 Element pointer Used as base pointer when generating address at the time of accessing
the memory

r31 Link pointer Used when compiler calls function.

PC Program counter Saves instruction address in program execution

(a) General purpose registerrO-r31
Thirty-two general-purpose registers, r0 to r31, are provided. These registers can be used for address vari-
ables or data variables.
However, care must be exercised as follows in using the r0 to r5, r30, and r31 registers.

<1> r0,r30
r0 and r30 are implicitly used by instructions.
r0 is a register that always holds 0, and is used for operations using 0 and offset 0 addressing.
r30 is used as base pointer by SLD instruction or SST instruction when accessing memory .

<2> rl,r3-r5,r31
rl, r3 to r5, and r31 are implicitly used by the assembler and C compiler.
Before using these registers, therefore, their contents must be saved so that they are not lost.. The con-
tents must be restored to the registers after the registers have been used.

<3> r2
r2 is sometimes used by a real-time OS.
When the real-time OS is not using r2, r2 can be used as an address variable register or a data variable
register.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 300 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b) Program counter: PC
This register holds an instruction address during program execution.
Further, meaning of each bit of PC differs according to the types (V850, V850ES, V850E1, V850E2) of CPU.

<1> V850

Bit 23-0 are valid and bits 31-24 are reserved for future function expansion (fixed to 0).

Carry from bit 23 to bit 24 is ignored even if it occurs. Bit 0 is always fixed to 0 so that execution cannot
branch to an odd address.

Figure 4-10. Program Counter [V850]

31 24 23

PC (Executing command address) ! 0

<2> VB850ES, V850E1

Bits 25-0 are valid and bits 31-26 are reserved for future function expansion (fixed to 0).

If a carry occurs from bit 25 to bit 26, it is ignored. Bit Bit O is always fixed to 0 so that execution cannot
branch to an odd address.

Figure 4-11. Program Counter[V850ES, V850E1]

31 26 25

(Executing command address)

PC :0

<3> VB850E2

Bits 28-0 are valid and bits 31-29 are reserved for future function expansion (fixed to 0).

If a carry occurs from bit 28 to bit 29, it is ignored. Bit 0 is always fixed to 0 so that execution cannot
branch to an odd address.

Figure 4-12. Program Counter[V850E2]

10
[T 1T r1r 1t 1t 1 1 1 10 1 17 17 1 1T 7T 17T 17T T 1T 1T T T T T
PC (Executing command address) ! 0
R20UT0553EJ0100 Rev.1.00 RENESAS Page 301 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(2) System register
he system registers control the CPU status and hold information on interrupts.
System registers can be read or written by specifying the register number from the following list using a system
register load/store instruction (LDSR or STSR instruction).

Table 4-26. System Register No.

Register No. Register Name Operand Specifiability
LDSR STSR
Instruction Instruction

0 Interrupt status saving register EIPC OK OK

1 Interrupt status saving register EIPSW OK OK

2 NMI status saving register FEPC OK OK

3 NMI status saving register FEPSW OK OK

4 Exception cause register ECR - OK

5 Program status word PSW OK OK

6-15 Reserved Numbers. - -

16 [VB50ES, V850E1, V850E2] OK OK
CALLT caller status saving register CTPC

17 [VB50ES, V850E1, V850E2] OK OK
CALLT caller status saving register CTPSW

18 [V850ES, V850E1, V850E2] OK okNote 1
Exception/debug trap status saving register DBPC

19 [V850ES, V850E1, V850E2] OK okNote 1
Exception/debug trap status saving register DBPSW

20 [V850ES, V850E1, V850E2] OK OK
CALLT base pointer CTBP

21 [V850ES, V850E1, V850E2] okNote 1 OK
Debug interface register DIR

22 [V850E1, V850E2] okNote 1 okNote 1
Breakpoint control registers BPCnNote 2

23 [V850E1, V850E2] OK OK
Program ID register ASIDz

24 [V850E1, V850E2] okNote 1 okNote 1
Breakpoint address setting register BPAVnNOtE 2

25 [V850E1, V850E2] okNote 1 okNote 1
Breakpoint address mask registers BPAMNOtE 2

26 [V850E1, V850E2] okNote 1 okNote 1
Breakpoint data setting registers BPDVnNOte 2

27 [V850E1, V850E2] okNote 1 okNote 1
Breakpoint data mask registers BPDMnNOt 2

28-31 [VB50E1, V850E2] - -
Reserved Numbers

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 302 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Notes 1.

Remark

Caution

These registers can be accessed only in the debug mode of type A and B of V850E products. Access-
ing these registers in other products is prohibited.
The actual register to be accessed is specified by the DIR.CS flag.

n=0-3
- :Inaccessible
OK :Accessible

When returning using the RETI instruction after setting bit 0 of EIPC, FEPC, CTPC, or DBPCto 1
using the LDSR instruction and servicing an interrupt, the bit 0 is ignored (because bit 0 of the
PC is fixed to 0). Therefore, be sure to set an even number (bit 0 = 0) when setting a value to
EIPC, FEPC, or CTPC.

(a) Interrupt status saving registers EIPC, EIPSW [V850, V850ES, V850E, V850E2]
Two interrupt status saving registers are provided EIPC and EIPSW.
If a software exception or maskable interrupt occurs, the contents of the program counter (PC) are saved to
EIPC, and the contents of the program status word (PSW) are saved to EIPSW (if a non-maskable interrupt

(NMI) or runtime error occurs, the contents are saved to the NMI status saving registers).

<1>

<2>

EIPC
Except for some instructions, the address of the instruction next to the one being executed when the
software exception or maskable interrupt occurs is saved.

EIPSW
If a software exception or maskable interrupt occurs, contents of the program status word (PSW) are
saved.

Because only one pair of Interrupt Status Saving Registers is provided, the contents of these registers must be
saved by program when multiple interrupt servicing is enabled.
Meaning of each bit of EIPC and EIPSW differs according to types (V850, V850ES, V850E1, V850E2) of CPU.

<3> V850
For EIPC, Bits 23-0 are valid and bits 31-24 are reserved for future function expansion (fixed to 0).
For EIPSW, Bits 7-0 are valid and bits 31-8 are reserved for future function expansion (fixed to 0).
Figure 4-13. Interrupt Status Saving Registers [V850]
31 2423 0
T T T T 11 Y Y Y I D I Y B B B
EIPC (PC contents)
31 8 7 0
rr 1111 rrr1r 1 1 1 1T 1T 1T 17T 11717711 T T T T 11
EIPSW (PSW contents)
R20UT0553EJ0100 Rev.1.00 .IENESAS Page 303 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<4> VB850ES

For EIPC, Bits 25-0 are valid and bits 31-26 are reserved for future function expansion (fixed to 0).
For EIPSW, Bits 7-0 are valid and bits 31-8 are reserved for future function expansion (fixed to 0)

Figure 4-14. Interrupt Status Saving Registers [V850ES]

31 26 25 0
T T 1T 171 T T T T T T T T T T T T T T T T T T T 1T 17
EIPC (PC contents)
31 8 7 0
rrrrr1rrr 111 17 17T 17 17T 17 17T T T 1T T T T T 17T T T 177
EIPSW (PSW contents)
<5> V850E1l

For EIPC, Bits 25-0 are valid and bits 31-26 are reserved for future function expansion (fixed to 0).
For EIPSW, Bits 11, 7-0 are valid and bits 31-12 are reserved for future function expansion (fixed to 0).
Further SS flag of PSW is saved in bit 11 of EIPSW.

Figure 4-15. Interrupt Status Saving Registers [V850E1]

31 26 25 0
T T 1T 171 T T T T T T T T T T T T T T T T T T T 1T 17
EIPC (PC contents))
31 1211 10 8 7 0
1Tt 11t 1t 1 1 17 17 17T 17T 1T 1T 1T T T [T T 17T T T 177
S
EIPSW s (PSW contents)
<6> V850E2

For EIPC, Bits 28-0 are valid and bits 31-29 are reserved for future function expansion (fixed to 0)

For EIPSW, Bits 11-10, 7-0 are valid and bits 31-12, 9-8 are reserved for future function expansion (fixed
to 0).

SS flag of PSW is saved in bit 11 of EIPSW and SB flag of PSW is saved in bit 10 of EIPSW.

Figure 4-16. Interrupt Status Saving Registers [V850E2]

31 2928 29 28 0
1 rr T 1T 11 117 11 1 1 17 T T 1T 1T 7T 17T T T 1T T 17 T 71
EIPC (PC contents)
31 1211109 8 7 0
T T T T T 17T T T T T T T T T T T T sls I T T T 1T 1771
EIPSW s|B (PSW contents)
R20UT0553EJ0100 Rev.1.00 RENESAS Page 304 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b) NMI status saving registers FEPC, FEPSW [V850, V850ES, V850E1, V850E2]
Two NMI status saving registers are provided: FEPC and FEPSW.
In these registers, contents of PC are saved in FEPC and contents of PSW are saved in FEPSWI when non-
maskable interrupt (NMI) and run time error occurs. (They are saved in (Interrupt status saving register when
software exception or maskable interrupt occurred).

<1> FEPC
Except for some instructions, the address of the instruction next to the instruction that was being exe-
cuted when the NMI or runtime error occurs, is saved

<2> FEPSW
Contents of PSW that is saved when non-maskable interrupt and run time error occurs are saved.

Because only one pair of NMI status saving registers is provided, the contents of these registers must be
saved by program when multiple interrupt servicing is enabled.

Further, meaning of each bit of FEPC and PEPSW differs according to types (V850, V850ES, V850E1,
V850E2) of CPU.

<3> V850
For FEPC, Bits 23-0 are valid and bits 31-24 are reserved for future function expansion (fixed to 0)

For FEPSWI, Bits 7-0 are valid and bits 31-8 are reserved for future function expansion (fixed to 0).

Figure 4-17. NMI Status Saving Registers [V850]

31 24 23 0
T T T T 77 T T T T T T T T T T T T T T T 1T T T T T T
FEPC (PC contents)
31 8 7 0
Tt 11t 111 17 17 17T 17 17 17T 17T 1T 1T T T T T 1T 1T 1T T 171
FEPSW (PSW contents)
<4> V850ES

For FEPC, Bits 25-0 are valid and bits 31-26 are reserved for future function expansion (fixed to 0).
For FEPSWI, bits 7-0 are valid and bits31-8 are reserved for future function expansion (fixed to 0).

Figure 4-18. NMI Status Saving Registers [V850ES]

31 26 25 0
T T 17T T 1T 1T 17 11t 17 17 1 17 17 17T 17 17T 17T 17T 1T 1T 1T T T T T
FEPC (PC contents)
31 8 7 0
1T T T 1 17 1 T 1T 17 1T T T 17 17 7 T T 71 T T T T T 1
FEPSW (PSW contents)
R20UT0553EJ0100 Rev.1.00 RENESAS Page 305 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<5> VB850E1
For FEPC, Bits 25-0 are valid and bits 31-26 are reserved for future function expansion (fixed to 0).
For FEPSWI, Bits 11, 7-0 are valid and bits 31-12, 10-8 are reserved for future function expansion (fixed
to 0).
Further SS flag of PSW is saved in bit 11 of FEPSW.

Figure 4-19. NMI Status Saving Registers [V850E1]

31 26 25 0
T T 17T T 1T 1T 17 11t 17 17 1 17 17 17T 17 17T 17T 17T 1T 1T 1T T T T T
FEPC (PC contents)
31 1211 10 8 7 0
1T 1T 1T T 1T T T T T 1T T T T T 711 T T T T T 171
S
FEPSW s (PSW contents)
<6> V850E2

For FEPC, Bits 28-0 are valid and bits 31-29 are reserved for future function expansion (fixed to 0).
For FEPSWI, Bits 11-10, 7-0 are valid and bits 31-12, 9-8 are reserved for future function expansion
(fixed to 0).

Further, SS flag of PSW is saved in bit 11 of FEPSW and SB flag of PSW is saved in bit 10 of FEPSW.

Figure 4-20. NMI Status Saving Registers [V850E2]

31 2928 0
[1T 11T T 1T T T T T T T T T T T T T T T T T T T T
FEPC (PC contents)
31 1211109 8 7 0
11T 11T 1T 17T 17 17T 17T 17T 17T T T T T T I 1T 1T 1T T 171
S|S
FEPSW slB (PSW contents)

(c) Exception cause registeECR [V850, VB50ES, V850E1, V850E2]
When software exception, maskable interrupt, non maskable interrupt occurs, ECR holds the cause informa-
tion (value which identifies each interrupt source)
This is a read-only register, and therefore no value can be written to it by using the LDSR instruction.

Figure 4-21. Exception Cause Register [V850, V850ES, V850E1, V850E2]

31 16 15 0

ECR FECC EICC

R20UT0553EJ0100 Rev.1.00 RENESAS Page 306 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Table 4-27. Exception Cause Register [V850, V850ES, V850E1, V850E2]

Bit Position Flag Name Meaning
31-16 FECC Exception code of non-maskable interrupt (NMI)
15-0 EICC Exception code of software exception/maskable interrupt

(d) Program status wordPSW [V850, V850ES, V850E1, V850E2]
Itis a collection of flags that indicate the status of the program (result of instruction execution) and the status of

the CPU.

If the contents of the bits in this register are modified by the LDSR instruction, the PSW will assume the new

value immediately after the LDSR instruction has been executed. Setting the ID flag to 1, however, will disable
interrupt requests even while the LDSR instruction is being executed.
Meaning of each bit of PSW differs according to types (V850, V850ES, V850E1, V850E2) of CPU.

<1> V850, V850ES
Bits 7-0 are valid and bits 31-8 are reserved for future function expansion (fixed to 0).

Figure 4-22. Program Status Word [V850, V850ES]

8 76543210

PSW

N[E]|I

Cc|O
P{P|D \%

>0

Table 4-28. Program Status Word [V850, V850ES]

Bit Position

Flag Name

Meaning

7

NP

Indicates whether non maskable interrupt (NMI) servicing is in
progress or not. This flag is set to 1 when an NMI request is
acknowledged, and multiple interrupt servicing is disabled.

0: NMI servicing is not in progress

1:NMI servicing is in progress

EP

Indicates weather software exception servicing is in progress or
not This flag is set to (1) if software when exception occurrs.

Even when this bit is set, maskable interrupt requests can be
acknowledged.

0:Software exception servicing is not in progress.

1:Software exception servicing is in progress.

Indicates whether a maskable interrupt request can be acknowl-
edged.

O:Interrupts enabled (EI)
L:Interrupts disabled (Dl)

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 307 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Bit Position Flag Name Meaning

4 SATNote Indicates that an overflow has occurred in a saturated operation
and the result is saturated. This is a cumulative flag. When the
result is saturated, the flag is set to 1 and is not cleared to 0
even if the next result is not saturated. To clear this flag to O,
use the LDSR instruction to load data in PSW.

This flag is neither set to 1 nor cleared to 0 by execution of an
arithmetic operation instruction.

0:Not saturated.
1:Saturated.

3 CY Indicates whether a carry or borrow occurred as a result of the
operation.

0:Carry or borrow did not occur

1:Carry or borrow occurred

2 oyNote Indicates whether overflow occurred as a result of the operation.
0:Overflow did not occur

1:Overflow occurred.

1 gNote Indicates whether the result of the operation is negative.
0:Result is positive or zero
1:Result is negative

0 4 Indicates whether the result of the operation is zero.

0:Result is not zero
1:Resultis 0.

Note In the case of saturate instructions, the SAT, S, and OV flags will be set according to the result of
the operation as shown in the table below. Note that the SAT flag is set to 1 only when the OV
flag has been set to 1 during a saturated operation.

Status of Operation Status of Flag Operation Result of
Result Saturation Processing
SAT oV S
Maximum positive value 1 1 0 7FFFFFFFH
is exceeded
Maximum negative value 1 1 1 80000000H
is exceeded
Positive (Not exceeding Holds the value 0 0 Operation result
maximum value) before operation
Negative (Not exceed- Holds the value 0 1 Operation result
ing maximum value) before operation
R20UT0553EJ0100 Rev.1.00 RENESANAS Page 308 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<2> VB850E1l
Bit 11, 7 to 0 are valid and bit 31 to 12, and 10 to 8 are reserved for future function expansion (fixed to 0).

Figure 4-23. Program Status Word [V850E1]

31 121110 8 7 6 5 4 3 2 1 0
rFrrrrr 1t 1T 1t 1T 1T 17 17T 1T T 17T T T T I S
PSW S NIE|1|A1S|9| sl
S PIP|D|T|Y|V

Table 4-29. Program Status Word [V850E1]

Bit Position Flag Name Function

11 sghote 1 Operates with single-step execution when this flag is set to 1
(debug trap occurs each time instruction is executed).

This flag is cleared to 0 when branching to the interrupt servicing
routine.

When the SE flag of the DIR register is 0, this flag is not set
(fixed to 0).

7 NP Indicates that non-maskable interrupt (NMI) servicing is in
progress. This flag is set to 1 when an NMI request is acknowl-
edged, and multiple interrupt servicing is disabled.

0:Exception processing is not in progress

1:Exception processing is in progress

6 EP Indicates that software exception processing is in progress.
This flag is set to (1) when software exception occurs.

Even when this bit is set, maskable interrupt requests can be
acknowledged.

0:Exception processing is not in progress

1:Exception processing is in progress

5 ID Indicates whether a maskable interrupt request can be acknowl-
edged.

O:Interrupts enabled (EI)
L:Interrupts disabled (Dl)

4 SATNote 2 Indicates that an overflow has occurred in a saturated operation
and the result is saturated. This is a cumulative flag. When the
result is saturated, the flag is set to 1 and is not cleared to 0
even if the next result is not saturated. To clear this flag to O,
load data in PSW using LDSR instruction.

This flag is neither set to 1 nor cleared to 0 by execution of an
arithmetic operation instruction.

0:Not saturated.
1:Saturated.

3 CY Indicates whether a carry or borrow occurred as a result of the
operation.

0:Carry or borrow did not occurr

1:Carry or borrow occurred

2 oyNote 2 Indicates whether overflow occurred as a result of the operation.
0:Overflow did not occur

1:Overflow occurred

R20UT0553EJ0100 Rev.1.00 RENESAS Page 309 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Bit Position Flag Name Function

1 gNote 2 Indicates whether the result of operation is negative.
0:Result is positive or zero.
1:Result is negative

0 z Indicates whether the result of the operation is 0.
0:Result is not zero.
1:Result is zero.

Notes 1. Can only be used in type A ot B of VB50E1. Cannot be used in other product types.

2. Inthe case of saturate instructions, the S, and OV flags will be set according to the result of
the operation as shown in the table below. Note that the SAT flag is set to 1 only when the
QV flag has been set to 1 during a saturated operation.

Status of operator result Status of Flag Operation result of
saturation processing
SAT oV S
Maximum positive value 1 1 0 7FFFFFFFH
is exceeded
Maximum negative value 1 1 1 80000000H
is exceeded
Positive (Not exceeding Holds the value 0 0 Operation result
maximum value) before operation
Negative (Not exceed- Holds the value 0 1 Operation result
ing maximum value) before operation
<3> V850E2
Bit 11 to 10 and 7 to 0 are valid and bit 31 to 12 and 9 and 8 are reserved for future function expansion
(fixed to 0).
Figure 4-24. Program Status Word [V850E2]
31 1211109 8 7 6 54 3 2 10
1T 1T 17 1T 1T 1T 17T 17T 17T 1T 17T T T T T T T I S
PSW S|s NIE[T[a|ClOls];
S|B PIPIDITIY|V
Table 4-30. Program Status Word [V850E2]
Bit Position Flag Name Function
11 SS Operates with single-step execution when this flag is set to 1

(debug trap occurs each time instruction is executed).

However, contents of SB flag are transferred when branching to
the interrupt servicing routine. Therefore, if SB flag is cleared
(0), single step operation of interrupt servicing routine is not exe-
cuted.

When the SSE flag of the DIR register is 0, this flag is not set
(fixed to 0).

R20UTO0553EJ0100 Rev.1.00

RENESAS
Apr 01, 2011

Page 310 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Bit Position

Flag Name

Function

10

SB

Contents of this flag (Initial value: 0) are transferred to SS flag
when branching to the interrupt servicing routine.

Therefore, single step operation of interrupt servicing routine is
enabled by setting this flag to 1.

NP

Indicates that non-maskable interrupt (NMI) servicing is in
progress. This flag is set to 1 when an NMI request is acknowl-
edged, and multiple interrupt servicing is disabled.

0:Exception processing is not in progress

1:Exception processing is in progress

EP

Indicates that software exception processing is in progress.
This flag is set to (1) when software exception occurs.

Even when this bit is set, maskable interrupt requests can be
acknowledged.

0:Exception processing is not in progress

1:Exception processing is in progress

Indicates whether a maskable interrupt request can be acknowl-
edged.

O:Interrupts enabled (EI)
L:Interrupts disabled (Dl)

SATNote

Indicates that an overflow has occurred in a saturated operation
and the result is saturated. This is a cumulative flag. When the
result is saturated, the flag is set to 1 and is not cleared to 0
even if the next result is not saturated. To clear this flag to O,
load data in PSW using LDSR instruction.

This flag is neither set to 1 nor cleared to 0 by execution of an
arithmetic operation instruction.

0:Not saturated.
1:Saturated.

CY

Indicates whether a carry or borrow occurred as a result of the
operation.

0:Carry or borrow did not occurr

1:Carry or borrow occurred

OvNOKE

Indicates whether overflow occurred as a result of the operation.
0:Overflow did not occur

1:Overflow occurred

SNote

Indicates whether the result of operation is negative.
0:Result is positive or zero.

1:Result is negative

Indicates whether the result of the operation is 0.
0:Result is not zero.

1:Result is zero.

Note In the case of saturate instructions, the S, and OV flags will be set according to the result of the
operation as shown in the table below. Note that the SAT flag is set to 1 only when the OV flag
has been set to 1 during a saturated operation.

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 311 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Status of Operation Status of Flag Operation Result of
Result Saturation Processing
SAT oV S
Maximum positive value 1 1 0 7FFFFFFFH
is exceeded
Maximum negative value 1 1 1 80000000H
is exceeded
Positive (Not exceeding Holds the value 0 0 Operation result
maximum value) before operation
Negative (Not exceed- Holds the value 0 1 Operation result
ing maximum value) before operation

(e) CALLT caller status saving registers: CTPC, CTPSW [V850ES, V850E1, V850E2]
Two CALLT caller status saving registers are provided: CTPC and CTPSW.
In these registers, if a CALLT instruction is executed, the contents of the PC are saved to CTPC, and the con-
tents of the PSW are saved to CTPSW.

<1> CTPC
Address of instruction next to CALLT instruction is saved.

<2> CTPSW
Value of PSW is saved at the time of CALLT instruction is executed.

Functions of each bit of CTPC and CTPSW differs depending on types (V850ES, V850E1, V850E2) of CPU.
<3> VB50ES
For CTPC, Bit 25 to 0 are valid and bit 31 to 26 are reserved for future function expansion (fixed to 0).

For CTPSWI, Bit 7 to 0 are valid and bit 31 to 8 are reserved for future function expansion (fixed to 0).

Figure 4-25. CALLT Caller Status Saving Registers [V8B50ES]

31 26 25 0
T T T 11 rr T T 1T 1T T T T T T T T T T T T T T T 1T 171
CTPC (PC contents)
31 8 7 0
1T 1T 1711t 17 1 17 17 17 17T 17T 1T 17T 17T T T T T T T T 1T T T T 7
CTPSW (PSW contents)
R20UT0553EJ0100 Rev.1.00 RENESAS Page 312 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<4> VB850E1l

For CTPC, Bit 25 to 0 are valid and bit 31 to 26 are reserved for future function expansion (fixed to 0).

For CTPSW, bit 11, 7 to O are valid and bit 31 to 12, and 10 to 8 are reserved for future function expan-
sion (fixed to 0).

Further SS flag of PSW is saved in bit 11 of CTPSW.

Figure 4-26. CALLT Caller Status Saving Registers [V850E1]

31 26 25 0
T T T T 1T 1T 17 11t 17 17T 1T 17 17T 17T 17 17 1T 17T 7T 17T 17T T T T T
CTPC (PC contents)
31 12 11 10 8 7 0
T T T T 1T 17 T T T T T 1T T T T T 11 T T T T T 171
S
CTPSW s (PSW contents)
<5> V850E2

For CTPC, Bit 25 to 0 are valid and bit 31 to 29 are reserved for future function expansion (fixed to 0).
For CTPSW, bit 11 to 10, 7 to 0 are valid and bit 31 to 12, and 10 to 8 are reserved for future function
expansion (fixed to 0).

SS flag of PSW is saved in bit 11 of CTPSW and SB flag of PSW is saved in bit 10 of CTPSW.

Figure 4-27. CALLT Caller Status Saving Registers [V8B50ES]

31 2928 0

T 1 1 1 1 17 1T 17 17 T 17 17 17 T 7 7T T T 1T 17 T 7 T 71
CTPC (PC contents)

31 121110 9 8 7 0

T 111 1T 17 17 17 17 17T 1T T 17T T T T T I 1T 1T 1T 1T T°1
S|S
CTPSW slB (PSW contents)
R20UT0553EJ0100 Rev.1.00 RENESAS Page 313 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(f) Exception/debug trap status saving registers: DBPC, DBPSW [V850ES, V850E1, V850E2]
Two exception/debug trap status saving registers are provided: DBPC and DBPSW.
In these registers, when an exception trap, debug trap, or debug break occurs or during a single-step opera-
tion, the contents of the PC are saved to DBPC, and the contents of the PSW are saved to DBPSW.
At the time of user mode (DIR.DM flag =0), this register is an undefined value.

<1> DBPC
Contents shown below are saved in DBPC.

Table 4-31. Contents to Be Saved to DBPC

Cause for Saving Contents Saved to DBPC

Occurrence of exception trap Address of the instruction next to the instruction that
caused an exception trap

Note 1 Address of the instruction next to the instruction that

caused a debug trap

Occurrence of debug trap

Occurrence of debug breakNo® 2 Address of the instruction next to the instruction that
- Execution trap caused a break

- Misalign access exception

- Alignment error exception

Occurrence of debug breakNo® 2 Address of the instruction next to the instruction that
- Access trap caused a break

Note 2

Single-step operation execution Address of the instruction to be executed next (instruction

executed when restoring from the debug monitor routine)

Notes 1. Type C of V850E1 do not support a "Debug trap".
2. V850ES do not support "Occurrence of debug break", "Execution of single step operation”.

<2> DBPSW
In DBPSW, when an exception trap, debug trap, or debug break occurs or during a single-step operation,
the contents of the PSW are saved to DBPSW.
Functions of each bit of DBPC and DBPSW differs depending on types (V850ES, V850E1, V850E2) of CPU.
<3> VB850ES
For DBPC, bhit 25 to 0 are valid and bit 31 to 26 are reserved for future function expansion (fixed to 0).

For DBPSW, bit 7 to 0 are valid and bit 31 to 8 are reserved for future function expansion (fixed to 0).

Figure 4-28. Exception/Debug Trap Status Saving Registers [VB50ES]

31 26 25 0
T T 1T 11 1Tt 111t 17 111 17 1T 17 17 17T 17T 17T 17T 1T T T T T
bBPC (PC contents)
31 8 7 0
T 1T T 1T T 17 T T T T 1T T T T T T T T T 71 T T T T 171
DBPSW (PSW contents)
R20UT0553EJ0100 Rev.1.00 RENESAS Page 314 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<4> VB850E1l

For DBPC, bit 25 to 0 are valid and bit 31 to 26 are reserved for future function expansion (fixed to 0).

For DBPSWI, bit 11, 7 to 0 are valid and bit 31 to 12, and 10 to 8 are reserved for future function expan-
sion (fixed to 0).

Further SS flag of PSW is saved in bit 11 of DBPSW.

Figure 4-29. Exception/Debug Trap Status Saving Registers [V850E1]

31 26 25 0
T T 17T T 1T 1T 17 1117 17T 1T 17 17T 1T 17 17T 17T 17T 1T 7T 1T T T T T
bBPC (PC contents)
31 12 11 10 8 7 0
1T 1T 1T T 1T T T T T 1T T T T T 711 T T T T T 171
S
DBPSW s (PSW contents)
<5> V850E2

For DBPC, bit 25 to 0 are valid and bit 31 to 26 are reserved for future function expansion (fixed to 0)
For DBPSWI, bit 11 to 10, 7 to 0 are valid and bit 31 to 12, and 10 to 8 are reserved for future function
expansion (fixed to 0).

SS flag of PSW is saved in bit 11 of DBPSW and SB flag of PSW is saved in bit 10 of DBPSW.

Figure 4-30. Exception/Debug Trap Status Saving Registers [V850E2]

31 2928 0
T T 1T T r 7 r 1 1 1 1 1 171 17 17171717 17T 17 T 1T T T
DBPC (PC contents)
31 121110 9 8 7 0
T 1117 17 17 17 1T 17 17T 1T T 1T T T T T I 1T 1T T 1T 171
S|S
DBPSW slB (PSW contents)
R20UT0553EJ0100 Rev.1.00 RENESAS Page 315 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(g) CALLT base pointer: CTBP [V850ES, V850E1, V850E2]
The CALLT base pointer (CTBP) is used to specify a table address and to generate a target address (bit 0 is
fixed to 0).
Functions of each bit of CTBP differs depending on types (V850ES, V850E1, V850E2) of CPU.

<1> VB850ESV850E1l
Bit 25 to 0 are valid and bit 31 to 26 are reserved for future function expansion (fixed to 0).

Figure 4-31. CALLT Base Pointer [V850ES, V850E1]

31 26 25 0

T T T T 11 N Y I D I I B B B B
CTBP (Base address) ! 0

<2> VB850E2
Bit 25 to 0 are valid and bit 31 to 29 are reserved for future function expansion (fixed to 0).
Figure 4-32. CALLT Base Pointer [V850E2]

31 2928 0

T B I Y Y Y I O I IO DO
CTBP (Base address) X 0

R20UT0553EJ0100 Rev.1.00 .QENESAS Page 316 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(h) Debug interface register: DIR [V850ES, V850E1, V850E2]
It controls the debug function and indicates the debug function status.
Functions of each bit of DIR differs depending on types (V850ES, V850E1, V850E2) of CPU.

<1> VB850ES
Bit 0 is valid and bit 31 to 1 are reserved for future function expansion (fixed to 0).
Contents of this register can be read by saving the contents of this register in general purpose register
using STSR instruction. Writing to this register is disabled.

Figure 4-33. Debug Interface Register [V850ES]

31 10
rrrrr o1t 1 1r1r 11111 17T 1T 1T T T 1T 1T 1T 1T 1T 1T T T T T
DIR D
M
Table 4-32. Debug Interface Register [V850ES]
Bit Position Flag Name Function
0 DM Itis setto 1 and cleared 0 by DBRET instruction at the time of
exception trap and DBRAP instruction.
0:Normal mode
1:Debug mode
<2> V850E1l
Bit 14 to 8 and 6 to 0 are valid and bit 31 to 15 and 7 are reserved for future function expansion (fixed to
0).
If the contents of the bits in this register are modified by the LDSR instruction, the PSW will assume the
new value immediately after the LDSR instruction has been executed.
This register can only be written (except for bits 3 and 1) in the debug mode (DM bit = 1) but can always
be read.
Reading of this register is normally enabled but Bits 14 to 8, 6 to 4, and 2 to 1 are undefined in the user
mode (DM flag=0).
Caution Can only be used in type A ot B of VB50E1. Cannot be used in other product types.
Figure 4-34. Debug Interface Register [V850E1]
31 1514131211109 8 7 6 5 4 3 2 10
1T 17 17 17 17 17 17 17T 17T 17T 1T 1T T T
DIR S|R|C|C|M|A|S I {T|T|{C[M[A|D
Q|E|S|E|A|E|E NI1|O|M[T|[T[M
Table 4-33. Debug Interface Register [V850E1]
Bit Position Flag Name Function
14 sQNote 1,2 | gets sequential break mode (sets a break if a break occurs for
channel 0 and channel 1in that order).
0:Normal break mode
1:Sequential break mode
R20UT0553EJ0100 Rev.1.00 .QENESAS Page 317 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Bit Position

Flag Name

Function

13

RENote 1,2

Sets range break mode (sets a break only when a break occurs
for channels 0 and 1 simultaneously).

0:Normal break mode

1:Range break mode

12

CsNOIE 2

Sets break register bank.
0:Select bank 0 register (channel 0 control register)

1:Select bank 1 register (channel 1 control register)

11

CE

Enables/disables COMBO interrupt.
0:COMBO interrupt disabled
1:COMBO interrupt enabled

10

MA

Enables/disables misalign access exception detection.
0:Misalign access exception detection disabled

1:Misalign access exception detection enabled

AE

Enables/disables alignment error exception detection.
0:Alignment error exception detection disabled

1:Alignment error exception detection enabled

SE

Enables/disables writing to SS flag of PSW.
0:Writing to SS flag disabled (SS flag is fixed to 0)
1:Writing to SS flag enabled

INNOIES

Set to 1 by debug function reset.

Be sure to clear this bit to 0 after reset While this bit is set to 1,
writing to SQ, RE, and CS bits is disabled. And T1 and TO bits
do not operate.

TlNote 3,4

Set to 1 by channel 1 break generation.
Cleared to 0 by setting 0. N0 4

TONote 3,4

Set to 1 by channel 1 break generation.
Cleared to 0 by setting 0. Not€ 4

CMNote 5

Set to 1 by shift to COMBO interrupt routine or debug monitor
routine 2.

Writing to this bit is disabled.

MTNote 3

Set to 1 by detection of misalign access exception.
Cleared to 0 by setting 0.Note 6

A—I—Note 3

Set to 1 by detection of alignment error exception.
Cleared to 0 by setting 0.Not 6

DMNote 5

Set to 1 when debug mode is entered. Cleared to 0 when user
mode is entered.

Writing to this bit is disabled.

Notes 1. Always set either the SQ or RE flag to 1 or clear both flag to 0. If both flags are set to 1, the
operation cannot be guaranteed.

2. While the IN bit is set to 1, writing to the SQ, RE, and CS bits is disabled. When the IN bit is

set to 1, each bit is automatically cleared to 0

3. The N, T1, TO, MT, and AT bits are not automatically cleared to O after being set to 1 (they

are cleared to 0 by using LDSR instruction).

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 318 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4. While the IN bit is set to 1, the T1 and TO bits do not operate (even if a break occurs, these
bits are not set to 1), And, automatically cleared to 0.
5. The DM and CM bits change as follows.

Main routine DM flag CM flag

e ===

. : 0 0 User mode
Debug monitor routine 1
Debug trap, e R e e e m e e e e e eaaaaaaaa
Debug break ! '
. . 1 0 Debug mode
COMBG interruption routine
Maskable interrupt, I R L I I
Non maskable interruptign
. 0 1 User mode
' Debug monitor routine 2
Debugtrap,, ! # =P e e cceccceaasaaaaaamaa e aannn
Debug break -
: 1 1 Debug mode
' 0 1 User mode
1 0 Debug mode
0 0 User mode

6. The T1, TO, MT, and AT bits cannot be arbitrarily set to 1 by a user program

<3> VB850E2
Bit 30 to 28, 22 to 20, 16, 14 to 12, 10 to 4 and 2 to 0 are valid and bit 31, 27 to 23, 19 to 17, 15, 11 and
3 are reserved for future function expansion (fixed to 0)..
If the contents of the bits in this register are modified by the LDSR instruction, the PSW will assume the
new value immediately after the LDSR instruction has been executed.Writing to this register is enabled
for bit 22 at the time of user mode for bit 31, 27-23, 19-17, 15 and of writing disabled at the time of debug
mode and bit excluding 3, 0 of read only.
Reading of this register is normally enabled but bits 22 exception is undefined in the user mode (DM

flag=0).
Figure 4-35. Debug Interface Register [V850E2]
31 30 29 28 27 2322212019 17161514131211109 8 7 6 5 4 3 2 1 0
1T T T T
S|R|C c|B|B s| |s|RrR|c| |M|A|[s|E|I|B|B| |mlAalD
DIR Q|E|S SIT|T T| [QIE[S| [A[E[SIXINITIT| |t|tIm
1(1]1 L{3]2 T 0| 0| O E[(E|E|T|I |1|o0
Table 4-34. Debug Interface Register [V850E2]
Bit Position Flag Name Function
30 SQlN"te 1 Sets sequential break mode for channel 2 and 3 (sets a break if
a break occurs for channel 2 and channel 3 in that order).
0:Normal break mode
1:Sequential break mode
R20UT0553EJ0100 Rev.1.00 .zENESAS Page 319 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Bit Position

Flag Name

Function

29

RElNote 1

Sets range break mode for channel 2 and 3 (sets a break only
when a break occurs for channels 2 and 3 simultaneously).

0:Normal break mode

1:Range break mode

28

CSlNOte 1

Enables control register (BPCn, BPAVNn, BPAMn, BPDVn,
BPDMn) of channel 2 and 3.

0: F Enables control register (BPC2, BPxx2) of channel 2.
1:Enables control register (BPC3, BPxx3) of channel 3.

22

CSL

Enables control register of each channel.
0:Channel 0, 11
1:Channel 2, 3

21

BT3Note 2

Set to 1 by channel 1 break generation.

20

BTzNote 2

Set to 1 by channel 1 break generation.

16

STT

Set to 1 at the time of debug trap execution.

This bit is automatically not cleared 0. Cleared to 0 only by the
LDSR instruction

14

SQoNOte 3

Sets sequential break mode for channel 0 to 1 (sets a break if a
break occurs for channel 0 and channel 1 in that order).

0:Normal break mode

1:Sequential break mode

13

REONote 3

Sets range break mode for channel 2 and 3 (sets a break only
when a break occurs for channels 2 and 3 simultaneously).

0:Normal break mode

1:Range break mode

12

CsoNOte 3

Enables control register (BPCn, BPAVn, BPAMn, BPDVn,
BPDMN) of channel 0 and 1.

0:Enables control register (BPCO, BPxx0) of channel 0.
1:Enables control register (BPC1, BPxx1) of channel 1.

10

MAE

Enables/disables misalign access exception detection.
0:Misalign access exception detection disabled

1:Misalign access exception detection enabled

AEE

Enables/disables alignment error exception detection.
0:Alignment error exception detection disabled

1:Alignment error exception detection enabled

SSE

Enables/disables writing to SS flag of PSW.
0:Writing to SS flag disabled
1:Writing to SS flag enabled

EXT

Validates/invalidates of extension debug function.
O:invalid
1:Valid

|NNote4

Set to 1 by debug function reset.

Be sure to clear this bit to 0 after reset While this bit is set to 1,
writing to SQn, REn and CSn bits is disabled. And bit 3 to 0 do
not operate.

BTlNote 5

Set to 1 by channel 1 break generation.

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 320 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Bit Position Flag Name Function
4 BTONO® 5 Set to 1 by channel 1 break generation.
2 mNote 4 Set to 1 by detection of misalign access exception.
1 ATNote 4 Set to 1 by detection of alignment error exception.
0 pmNote 6 Set to 1 when debug mode is entered.
Notes 1. While the INI flag is set to 1, writing to the SQ1, RE1 and CS1 bits is disabled. When the INI

bit is set to 1, SQ1, RE1 and CS1 bit is automatically cleared to 0.

While the BT2 and BT3 INI flag is set to 1, it does not operate (even if a break occurs, these
bits are not set to 1). When the INI bit is setto 1, it is not cleared (0) till O is set by LDSR com-
mand or INI flag is set to 1.

While the INI is set to 1, writing to the SQO, REO, and CSO0 bits is disabled. When the INI bit

is setto 1, SQO, REO and CSO bit is automatically cleared to O.

INI, MT, AT flags are automatically not cleared 0. Cleared to 0 only by the LDSR instruction
While the BTO and BT1 flag is set to 1 by INI flag, it does not operate (even if a break occurs,
these bits are not set to 1). When the INI bit is set to 1, it is not cleared (0) till O is set by
LDSR command or INI flag is set to 1.

The DM flag change as follows.

Main routine DM flag

. 0 User mode
D:ebug monitor routine 1

Debug trap,
Debug break ' Debug mode
0 User mode
v '
R20UT0553EJ0100 Rev.1.00 RENESAS Page 321 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

() Breakpoint control registers: BPCn [V850E1, V850E2]
It controls the debug function and indicates the debug function status.

Functions of each bit of BPCn differs depending on types (V850E1, V850E2) of CPU.

<1> V850E1l
BPCO0 and BPCL1 exist in breakpoint control register of V850E1 and one or other of these registers is
enabled by setting of DIR.CS flag.
For BPCn, bit 23 to 15, 11 to 7 and 4 to 0 are valid and bit 31 to 24, 14 to 12 and 6 to 5 are reserved for
future function extension (fixed to 0).
The values of the bits in these registers can be changed by using the LDSR instruction. Changed values
become valid immediately after execution of this instruction. (If the FE flag is set to 1, the timing at which
the changed values become valid is delayed, but the changes are definitely reflected after the DBRET
instruction is executed.)
This register can only be written in the debug mode (DIR.DM flag = 1) but can always be read.
Reading of this register is normally enabled but bits 0 is 0, bit 23 to 15, 11 to 7 and 4 to 1 have undecided
value at the time of user mode (DIR.DM flag=0).
Caution Can only be used in type A ot B of V850E1. Cannot be used in other product types.
Figure 4-36. Breakpoint Control Registers [V850E1]
31 24 23 16 15 14 1211109 8 7 6 5 10
1T 1T T T T T T T I I
I T |V|IVIM W| R
BPCO
BP ASID E v [p|AlD ElE
31 24 23 16 15 14 1211109 8 7 6 10
1T 17 [T 1T 17T T T [T I T
| T V|iM W| R
BPC1
BP ASID E v |plalD Ele
Table 4-35. Breakpoint Control Registers [V850E1]
Bit Position Flag Name Function
23-16 BP ASID Sets the program ID that generates a break (valid only when IE
bit = 1).
15 IE Sets the comparison of the BP ASID bit and the program ID set
in the ASID register.
- 0:Not compared
- 1:Compared
11-10 TY Sets the type of access for which a break is detected.
Note that the contents set in this register are ignored in the case
of an execution trap.
0,0: Access by all data types
0,1:Byte access (including bit manipulation)
1,0:Halfword access
1,1: Word access
9 VD Sets the match condition of the data comparator.
0: Break on match
1: Break on mismatch

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 322 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Bit Position Flag Name Function

8 VA Sets the match condition of address comparator.
0: Break on match

1: Break on mismatch

7 MD Sets the operation of the data comparator.
0: Break on match of data and condition

1: Whether data matches (data comparator) is ignored regard-
less of the setting of the VD bit or BPDVx and BPDMXx regis-
ters

4 TENOe 1 Enables/disables trigger output.
0: Trigger output disabled

1: Trigger output enabled (output corresponding trigger before
break occurs in channel 0 or 1)

3 BENote 1 Sets whether or not a break in channel O or 1 is reported to the
CPU.

0: Not reported.
1: Reported (break)

2 FE Enables/disables break/trigger due to instruction execution
address match.

0: Break/trigger disabled
1: Break/trigger enabledN°t 2

1 WE Enables/disables break/trigger on data write.
0: Break/trigger disabled

1: Break/trigger enabledN°® 3

0 RE Enables/disables break/trigger on data read.
0: Break/trigger disabled

1: Break/trigger enabled Not 3

Notes 1. The TE and BE flags can be set only in type B of V850EL. In other product types, the TE and
BE bits are fixed to 0 (however, even when the BE bit is fixed to 0, it reports a break to the
CPU).
2. Ifthe FE flag is set to 1, always clear the WE, RE flags to 0.
3. Ifthe WE flag is set to 1, always clear the FE flags to O.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 323 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<2> VB850E2
BPCO, BPC1, BPC2 and BPC3 exist in breakpoint control register of V850E2 and one or other of these
registers is enabled by setting of DIR.CSL, CS1 and CSO flag.
For BPChn, bit 26 to 15, 11 to 7 and 4 to 0 are valid and bit 31 to 27, 14 to 12 and 6 to 5 are reserved for
future function extension (fixed to 0).

BPCO

BPC1

BPC2

BPC3

The values of the bits in these registers can be changed by using the LDSR instruction. Changed values

become valid immediately after execution of this instruction. (If the FE bit is set to 1, the timing at which

the changed values become valid is delayed, but the changes are definitely reflected after the DBRET

instruction is executed.)

Bit 31 to 27, 14 to 12 and 6 to 5 always clear the 0. Operation cannot be guaranteed when any bit is set

to 1.

Writing to FB2 to FBO flag is enabled only upon clear 0. If values of these bits are updated, all the bits

cleared 0. Operation cannot be guaranteed when any bit is set to 1.

Figure 4-37. Breakpoint Control Register [VB50E2]

31 27 26 25 24 23 16 15 14 1211109 8 7 6 5 4 3 2 1 0
T T T T 17T T T T T [T I I
E E E I T VM T|B|F|WR
BP ASID
11210 E Y |p|A|ID E|E|E|E|E
31 27 26 25 24 23 16 15 14 1211109 8 7 6 54 3 2 10
T T T T 17T T T 17T [I I
FIF|F I T VM T|B|F|WR
B|(B|B BP ASID
11210 E Y |p|A|ID E|E|E|E|E
31 27 26 25 24 23 16 15 14 1211109 8 7 6 5 4 3 2 1 0
T T T T 17T T T T T [T I I
E g E I T VM T|B|F|WR
BP ASID
11210 E Y |p|A|ID E|E|E|E|E
31 27 26 25 24 23 16 15 14 1211109 8 7 6 54 3 2 10
T T T T T T T 17T [I I
FIFIF I T VM T|B|F|WR
B(B|B BP ASID
11210 E Y |p|A|ID E|E|E|E|E
Table 4-36. Breakpoint Control Register [V850E2]
Bit Position Flag Name Function
26-24 FBn Indicates life of break occurred by instruction fetch event.

0,0,0:Break by execution discontinuation of break target
instruction

0,1,0:Break by execution discontinuation of break target
instruction and instruction before it

1,0,0:Break by execution discontinuation of break target
instruction and instruction before it and 2 instructions before it
0,0,1:Break by execution termination of break target instruc-
tion

Other: reservation for future function expansion

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 324 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Bit Position Flag Name Function

23-16 BP ASID Sets the program ID that generates a break (valid only when IE
bit = 1).

15 IE Sets the comparison of the BP ASID bit and the program ID set

in the ASID register.
0:Not compared

1:Compared

11-10 TY Sets the type of access for which a break is detected.

Note that the contents in this register are ignored in the case of
an execution trap.

0,0: Access by all data types
0,1: Byte access (including bit manipulation)
1,0: Half word access

1,1: Word access

9 VD Sets the match condition of the data comparator.
0: Break on a match

1: Break on a mismatch

8 VA Sets the match condition of the address comparator.
0: Break on a match

1: Break on a mismatch

7 MD Sets the operation of the data comparator.
0: Break on match of data and condition.

1: Whether data matches (data comparator) is ignored regard-
less of the setting of the VD bit or BPDVx and BPDMXx regis-
ters.

4 TE Enables/disables trigger output at the time of event of channel 3
occurs.

0: Trigger output disabled
1: Trigger output enabled (output corresponding trigger)

3 BE Sets whether or not a break when event occurs in channel 0 or 3
is reported to the CPU.

0: Not reported.
1: Reported (break)

2 FE Set the event operation at the time of instruction fetch.

0: Event mask

1: Event occurrenceNoe 1

1 WE Sets the event operation at the time of data write.

0:Event mask

1:Event occurrenceNote 2

0 RE Sets the event operation at the time of data read.

0:Event mask

1:Event occurrenceNote 2

Notes 1. Ifthe FE flag is set to 1, always clear the WE, RE flags to 0.
2. If WE flag or RE flag is set to 1, always clear the FE flag to 0.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 325 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

() Program ID registerASID[V850E1, V850E2]
This register sets the ID of the program currently under execution.
For ASID, bit 7 to 0 are valid and bit 31 to 8 are reserved for future function expansion (fixed to 0).
The program ID is used when a shift to the debug mode is necessary only in cases such as when
a specific program is being executed to download different programs to the RAM of the same address area
While the BPCn.IE flag is set to bit 1, the system does not shift to the debug mode if the program IDs set to the
BPCn.BP ASID bit. and the ASID register do not match; even if the break conditions match.

Caution Access is enabled only at the time of type A, B of V850E1 and V850E2. Access in other
product types is prohibited

Figure 4-38. Program ID Register [V850E1, V850E2]

ASID ASID

Table 4-37. Program ID Register [V850E1, V8B50E2]

Bit Position Flag Name Function

7-0 ASID ID of program currently under execution

(k) Breakpoint address setting registerBPAVN[V850E1, V850E2]
These registers set the breakpoint addresses to be used by the address comparator.
Functions of each bit of BPAVn differs depending on types (V850E1, V850E2) of CPU.

<1> VB850E1l
BPAVO and BPAV1 exist in breakpoint address setting register of V850E1 and one or other of these reg-
isters is enabled by setting of DIR.CS flag.
For BPAVN, Bit 7-0 is valid and bit 31-8 is reserved for future function extension (fixed to 0).
Writing to/reading from these registers is enabled only in the debug mode (DIR.DM bit = 1).
Reading of this register is normally enabled but it is undefined in the user mode (DIR.DM flag=0).
When these registers are not used, be sure to set each bit to 1.

Caution Access is enabled only at the time of type A, B of V850E1. Access in other product
types is prohibited.

Figure 4-39. Breakpoint Address Setting Register [V850E1]

31 28 27 0
T T rr o1 1t 1 11 1 17 17 17T 1T 17T 17T 17T 17T 1T 1T T T T T T T
BPAVO (Breakpoint address)
31 28 27 0
T rrrrrrr1r1r1t17 11 17 17 17T 17T 17T 17T 1T 1T 17T T T T T
BPAV1 (Breakpoint address)
R20UT0553EJ0100 Rev.1.00 RENESAS Page 326 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<2> VB850E2
BPCO, BPC1, BPC2, BPC3 exist in breakpoint address setting register of V850E2 and one or other of
these registers is enabled by setting of DIR.CSL, CS1 and CSO flag.
For BPAVN, bit 25 to 0 are valid and bit 31 to 29 are reserved for future function expansion (fixed to 0).
When these registers are not used, be sure to set each bit to (1).
Figure 4-40. Breakpoint Address Setting Register [VB50E2]
31 29 28 0
T rr 11Tt r 1t 1t 1t 1717 17T 17T 1T 17T 17T 7T 17T 1T 1T T T T T T T
BPAVO (Breakpoint address)
31 29 28 0
1 rr 11 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T T T T T T 1T 1T T T
BPAV1 (Breakpoint address)
31 29 28 0
T rr 11Tt r 1t 1t 1t 1717 17T 17T 1T 17T 17T 7T 17T 1T 1T T T T T T T
BPAV2 (Breakpoint address)
31 29 28 0
1 rr 11 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T T T T T T 1T 1T T T
BPAV3 (Breakpoint address)
R20UT0553EJ0100 Rev.1.00 .QENESAS Page 327 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

() Breakpoint address mask registerBPAMnN [V850E1, V850E2]
These registers set the bit mask for address comparison (masked by 1).
Functions of each bit of BPAMn differs depending on types (V850E1, V850E2) of CPU.

<1> VB850E1l
BPAMO and BPAML1 exist in breakpoint address setting register of V850E1 and one or other of these
registers is enabled by setting of DIR.CS flag.
For BPAMN, bit 28 to 0 are valid and bit 31 to 28 are reserved for future function expansion (fixed to 0).
This register can only be written/read in the debug mode (DIR.DM flag = 1) but can always be read.
Reading of this register is normally enabled but it is undefined in the user mode (DIR.DM flag=0).
When these registers are not used, be sure to set each bit to (1).

Figure 4-41. Breakpoint Address Mask Register [V850E1]

31 28 27 0
T T rr 1t 11t 111 17 17T 17 17T 1T 17T 1T 17T 17T 17T 1T T T T T T T
BPAMO (Breakpoint address mask)
31 28 27 0
T rrrrrrr1r1r1t1r 11 17 17 17T 1T 1T 17T 1T 1T 17T T T T T
BPAM1 (Breakpoint address mask)
R20UT0553EJ0100 Rev.1.00 RENESAS Page 328 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<2> VB850E2
BPAMO, BPAM1, BPAM2, BPAM3 exist in breakpoint address setting register of V850E2 and one or
other of these registers is enabled by setting of DIR.CSL, CS1 and CSO flag.
For BPAMN, bit 28 to 0 are valid and bit 31 to 29 are reserved for future function expansion (fixed to 0).
When these registers are not used, be sure to set each bit to (1).
Figure 4-42. Breakpoint Address Mask Register [V850E2]
31 29 28 0
T rrrr 1Tt r 1t 1t 1t 17 17 17 17T 17T 17T 17T 7T 7T 1T 1T 1T T T T T T
BPAMO (Breakpoint address mask)
31 29 28 0
1 rr 11 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T T T T T T 1T 1T T 11
BPAM1 (Breakpoint address mask)
31 29 28 0
T rrrr 1Tt r 1t 1t 1t 17 17 17 17T 17T 17T 17T 7T 7T 1T 1T 1T T T T T T
BPAM2 (Breakpoint address mask)
31 29 28 0
1 rr 11 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T T T T T T 1T 1T T 11
BPAM3 (Breakpoint address mask)
R20UT0553EJ0100 Rev.1.00 .QENESAS Page 329 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(m) Breakpoint data setting register BPDVn[V850E1, V850E2]
These registers set the breakpoint data to be used by the data comparator.
Functions of each bit of BPDVn differs depending on types (V850E1, V850E2) of CPU.

<1> VB850E1l
BPDVO and BPDV1 exist in breakpoint data setting register of V850E1 and one or other of these regis-
ters is enabled by setting of DIR.CS flag.
Writing to/reading from these registers is enabled only in the debug mode (DIR.DM bit = 1).
Reading of this register is normally enabled but it is undefined in the user mode (DIR.DM flag=0).
When these registers are not used, be sure to set each bit to (1).
Caution Access is enabled only to type A, B of V850E1. Access in other product types is pro-
hibited.
Remark Set the instruction code for 16-bit instructions aligned to the LSB. Set the instruction codes
for 32-bit instructions in little endian format.
Figure 4-43. Breakpoint Data Setting Register [V850E1]
31 0
N Y I I B B B B
BPDVO (Breakpoint data)
31 0
rrrr 111 1T 111 rr 1 11T 1T 1T 1T 1T T T T T 1T 1T 7 1T T T
BPDV1 (Breakpoint data)
R20UT0553EJ0100 Rev.1.00 .zENESAS Page 330 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<2> VB850E2
BPDVO, BPDV1, BPDV2, BPDV3 exist in breakpoint data setting register of V850E2 and one or other of
these registers is enabled by setting of DIR.CSL, CS1 and CSO flag.
When these registers are not used, be sure to set each hit to (1).
Remark Set the instruction code for 16-bit instructions aligned to the LSB. Set the instruction codes
for 32-bit instructions in little endian format.
Figure 4-44. Breakpoint Data Setting Register [V850E2]
31 0
N Y I I B B B B
BPDVO (Breakpoint data)
31 0
rrr 111 1 rrrr1r 111 1111 1T T 1T 1T 1T 1T T T T T
BPDV1 (Breakpoint data)
31 0
rr1r 11 1 1 1rrrr 1111 1T 1T 1T 1T 1T T T 1T 1T 1T 1T T T T T
BPDV2 (Breakpoint data)
31 0
rrr 111 1 rrrr1r 111 1111 1T T 1T 1T 1T 1T T T T T
BPDV3 (Breakpoint data)
R20UT0553EJ0100 Rev.1.00 .IENESAS Page 331 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(n) Breakpoint data mask registerBPDMn[V850E1, V850E2]
These registers set the bit mask for data comparison (masked by 1).
Functions of each bit of BPDMn differs depending on types (V850E1, V850E2) of CPU.

<1> VB850E1l
BPDMO and BPDMZ1exist in breakpoint data mask register of VB50E1 and one or other of these registers
is enabled by setting of DIR.CS flag.
This register can only be written/read in the debug mode (DIR.DM flag = 1) but can always be read.
Reading of this register is normally enabled but it is undefined in the user mode (DIR.DM flag=0).
When these registers are not used, be sure to set each bit to (1).
When the data access type that detects breaks is set to the byte access (BPCn.TY flag = 0, 1), set bits
31to 8to 1, and if halfword access (BPCn.TY flag = 1,0), set bits 31 to 16 to 1.

Caution Access is enabled only at the time of type A, B of V850E1. Access in other product
types is prohibited.

Figure 4-45. Breakpoint Data Mask Register [V850E1]

31 0
rr T 1r1r 1T 17 17 17 17 17T 17 17T 17T 17T 7T 17T 17T T 1T 17T 17T T T 17T T T T T T711
BPDMO (Breakpoint data mask)
31 0
r-rrrrr 11717 1t 117 17T 1 17 17T 17T 17T 17T 7T 17T 1T 17T 17T T T T T T T T
BPDM1 (Breakpoint data mask)
R20UT0553EJ0100 Rev.1.00 RENESAS Page 332 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<2> VB850E2
BPDMO, BPDM1, BPDM2, BPDM3 exist in breakpoint data mask register of V850E2 and one or other of
these registers is enabled by setting of DIR.CSL, CS1 and CSO flag.
When these registers are not used, be sure to set each hit to (1).
Figure 4-46. Breakpoint Data Mask Registers [V850E2]
31 0
N Y I I B B B B
BPDMO (Breakpoint data mask)
31 0
r-r 11T 17117 17 1 17 17 17 17 17 17T 17T 17T 17T 17T 17T 1T 1T 17T T T T T T T T
BPDM1 (Breakpoint data mask)
31 0
rr1r 11 1 1 1rrrr 1111 1T 1T 1T 1T 1T T T 1T 1T 1T 1T T T T T
BPDM2 (Breakpoint data mask)
31 0
r-r 11T 17117 17 1 17 17 17 17 17 17T 17T 17T 17T 17T 17T 1T 1T 17T T T T T T T T
BPDM3 (Breakpoint data mask)
R20UT0553EJ0100 Rev.1.00 .QENESAS Page 333 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

45.3 Addressing

The CPU generates two types of addresses: instruction addresses used for instruction fetch and branch opera-

tions; and operand addresses used for data access.

(1) Instruction address

An instruction address is determined by the contents of the program counter (PC), and is automatically

incremented (+2) according to the number of bytes of an instruction to be fetched each time an instruction is exe-

cuted. When a branch instruction is executed, the branch destination address is loaded into the PC using one of

the following two addressing modes.

(a) Relative addressing (PC relative)
The signed 9- or 22-bit data of an instruction code (displacement: disp x) is added to the value of the program

counter (PC). At this time, the displacement is treated as 2's complement data with bits 8 and 21 serving as
sign bits (S).
JR disp22 instruction, JARL disp22, reg?2 instruction, JR disap32 instruction, JARL disp32, regl instruction,

Bcend disp9 instruction is the target of this addressing.

Figure 4-47. Relative Addressing (JR disp22/JARL disp22, reg2)[V850]

31 24 23 0
T T 17T 17T 171 Tttt rr 1t 1t 1T 1T 1T 1T 1T T 1T 17T 17T T 1T T 11
00O0O0OOOODO PC 0
+
31 2221 0
T 1T 17T 17T 1T 1T 11 1T rrrr1r1r 1t 1t 1T 17 17T 17T T T T T T T

Sign extension S disp22 0

31 24 23 0
T T T 17T 171 rFrrrrrrrrrr 1t 11T 1T T T T T T T T T T

000O0OO0OOOO PC 0

Operation target memory

v

R20UT0553EJ0100 Rev.1.00 RENESAS Page 334 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-48. Relative Addressing (JR disp22/JARL disp22, reg2)[V850ES, V850E1]

31 26 25 0
T 1T T1 rrrrrr1rrrrrr 111 17 7T 17T 7T 17T 17T 17T 17T T T 11
000O0OO0DO PC 0
+
31 22 221 0
T T 17T 17T T 1T T 11117 171 17 17 17 17 17T 17T 1T 7T 1T T 1T T

Sign extension S disp22 0

31 26 25 0
T T T 117117 1r 1 17 17T 17 1T 17T 17T T 17T T 17T T 17T T T T

00O0OOO PC 0

Operation target memory

v

Figure 4-49. Relative Addressing (JR disp22/JARL disp22, reg2)[V850E2]

31 29 28 0
[T rr 1 0 01011 11T 1T 1T 1T 1T 1T 7T T T T T T T T T°11
00O PC 0
+
31 2221 0
T 17T 17T 7T 17T 1T T 117 1T 1717117 17 17 17 17T 17T 1T 7T 1T T 1T T

Sign extension S disp22 0

31 29 28 0
[rr 1117171 117 17 17 17 17T 17T 17 17 17 7T 17T 7T 17T 7T 17T T T T T

00O PC 0

Operation target memory

v

R20UT0553EJ0100 Rev.1.00 RENESAS Page 335 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-50. Relative Addressing (JR disp32/JARL disp32, reg2)[V850E2]

31 2928 0
[T rrrrrrr1t 171t 1t17 11 17 1 17 17 17T 17T 1T 17T 17T T T T T T
000 PC 0
+
31 0
T T T T T T T T T T T T T T T T T T T 1 T T T T T 1T 171
S disp32 0
31 29 28 0
1 1 1 111 11T 17T 17T 1T T T T T 17T T T T T T T 71
000 PC 0

Operation target memory

v

Figure 4-51. Relative Addressing (Bcnd disp9)[V850]

31 24 23 0
T T T T 1771 T T T T T 1T T T T 1T T T T T T T T T T T 11
0000O0O0OO0O PC 0
+
31 9 8 0
T T T T T T T T T T T 1T T T T T T 1T T T T T T T T T

Sign extension S disp9 0

31 24 23 0
T T T T 1771 I Y Y O O N B
000O0O0OOO PC 0

Operation target memory

v

R20UT0553EJ0100 Rev.1.00 RENESAS Page 336 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-52. Relative Addressing (Bcnd disp9)[V850ES, V850E1]

31 26 25 0
T 1T T1 rrrrrr1rrrrrr 111 17 7T 17T 7T 17T 17T 17T 17T T T 11
00O0O0O0O PC 0
+
31 9 8 0
FTr T T T T T T T T T T 1T T T T T T 1T T T T T T T T T

Sign extension S disp9 0

31 26 25 0
T T T 1111111 T 1T 1T T T T T T T T T T T 171
00O0O0O0O PC 0

Operation target memory

v

Figure 4-53. Relative Addressing (Bcnd disp9)[V850E2]

31 2928 0
T 1T 11T T 1T T T 1T T T T T T 1T T T T T
00O PC 0
+
31 9 8 0
[N I I N I O B N T T T T 17 71

Sign extension S disp9 0

31 2928 0
T rr1rrrrr 11T T T T T T T T T T T T T T T T
00O PC 0

Operation target memory

v

R20UT0553EJ0100 Rev.1.00 RENESAS Page 337 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b) Register addressing (Register indirect)
The contents of a general-purpose register (regl) specified by an instruction are transferred to the pro-
gram counter (PC).
This addressing is used for the JMP [regl] instruction.

Figure 4-54. Relative Addressing (JMP [reg1])[V850]

31 0
rrrrr 17T r1r1r1r 17171717 1T 17 17T 17 17T 1T 17T 1T 17T T 7T T 17T T T T
regl
31 24 23 0
T T 1T 7T 17T 1Tt 1rr 1T 17117 17 17 17 17 17T 17T 17 17T 7T T T T T
000O0OOOOO PC 0

Operation target memory

v

Figure 4-55. Register Addressing (JMP [regl] V850ES, V850E1]

31 0
rrrrr 17T r1r1r1r 17171717 1T 17 17T 17 17T 1T 17T 1T 17T T 7T T 17T T T T
regl
31 26 25 0
T T T 1T 71T 1r 171 17 17T 17 1T 17T 17T 1T 17T T 17T T T 1T T T
00O0OODO PC 0

Operation target memory

v

R20UT0553EJ0100 Rev.1.00 RENESAS Page 338 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-56. Register Addressing (JMP [reg1])[V850E2]

31 0
rrrrrrrrrrrrrrT T T T T T T T T T T T T T T T T T T
regl
31 2928 0
[rrr o1t 1r1rrr 1Tt 11T 1T T T T T T T T 17T 17T T T T 1771
000 PC 0

Operation target memory

v

(c) Based addressing
Contents of general purpose register (regl) specified by command, in which 32 bit data (displacement: disp) is
added, are forwarded in program counter (PC).
This addressing is used for the JMP disp32 [reg1l] instruction.

Figure 4-57. Register Addressing (JMP disp32[reg1])[V850E2]

31 0
rrrrrrrrrrrrrrT T T T T T T T T T T T T T T T T T T
regl
+
31 0
rrrr U1 1r1r1r oo 11T 1T T T T T T T T T T T T T T T T
S disp32 0
31 2928 0
T rrr o 11 rrr1r ot 1T 1T 1T T T T T T T T 17T 1T T T T T°71
000 PC 0

Operation target memory

v

R20UT0553EJ0100 Rev.1.00 RENESAS Page 339 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(2) Operand address
When an instruction is executed, the register or memory area to be accessed is specified in one of the following
four addressing modes.

(a) Register addressing
The general-purpose register or system register specified in the general-purpose register specification
field is accessed as operand.
This addressing mode applies to instructions using the operand format regl, reg2, reg3, or regID.

(b) Immediate addressing
The 5-bit or 16-bit data for manipulation is contained in the instruction code
This addressing mode applies to instructions using the operand format imm5, imm16, vector, or cccc.

<1> vector
Operand that is 5-bit immediate data for specifying a trap vector (O0OH to 1FH), and is used in the TRAP
instruction.

<2> cccc
Operand consisting of 4-bit data used in the CMOV, SASF, and SETF instructions to specify a condition
code. Assigned as part of the instruction code as 5-bit immediate data by appending 1-bit 0 above
the highest bit.

(c) Based addressing
The following two types of based addressing are supported.

<1> Typel
The address of the data memory location to be accessed is determined by adding the value in the speci-
fied general-purpose register (regl) to the 16-hit displacement value (disp16) contained in the instruction
code.
This addressing mode applies to instructions using the operand format disp16 [regl]

Figure 4-58. Based Addressing (Typel) [V850, V850ES, V850E1, V850E2]

rrrrrrrrrrrrrrrrrrrprr Tt rrr Tl
Sign extension disp16

Operation target memory

v

R20UT0553EJ0100 Rev.1.00 RENESAS Page 340 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<2> Type?2
The address of the data memory location to be accessed is determined by adding the value in the ele-
ment pointer (r30) to the 7- or 8-bit displacement value (disp7, disp8).
This addressing mode applies to SLD and SST instructions.

Figure 4-59. Based Addressing (Type2) [V850, V850ES, V850E1, V850E2]

31 0

rrrrrrrrrr 7 1r1rrr 7 171 11T 17T T T T T T T T T T T°1
r30(element pointer)

+

31 8 7 0

rrrrrrrrrrrrrrrrrrrrrrrpr Tl
Zero corresponding extension disp8 or disp7

Operation target memory

v

Remark Byte access = disp7
Halfword access and word access: disp8

(d) Bit addressing
This addressing is used to access 1 bit (specified with bit#3 of 3-bit data) among 1 byte of the memory space
to be manipulated by using an operand address which is the sum of the contents of a general-purpose
register. (regl) and a 16-bit displacement (disp16) sign-extended to a word length.
This addressing mode applies only to bit manipulation instructions.

Figure 4-60. Bit Addressing [V850, VB50ES, V850E1, V850E2]

- rrrrrrrrrrrrprrrrr T
Sign extension disp16

Operation target memory

n

v

Remark n: Bit position specified with 3-bit data (bit#3) (n = 0 to 7)

R20UT0553EJ0100 Rev.1.00 RENESAS Page 341 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

454 Instruction set

This section explains the instruction set supported by the CA850 assembler (as850).

(1) Description of symbols

Next table lists the meanings of the symbols used further.

Table 4-38. Meaning of Symbols

Symbols Meaning

CMD Instruction

CMDi Instruction(andi, ori, or xori)

reg, regl, reg2, reg3, regd Register

r0 Zero register

rl Assembler-reserved register

ap Global pointer (r4)

ep Element pointer (r30)

[req] Base register

disp Displacement (Displacement from the address)
32 bits unless otherwise stated.

imm Immediate
32 bits unless otherwise stated.

bit#3 3-bit data for bit number specification

#label Absolute address reference of label

label Offset reference of label in section or PC offset reference
However, for a section allocated to a segment for which a tp symbol is to be generated,
offset reference from the tp symbol is referred instead of offset in section

$label gp offset reference of label

llabel Absolute address reference of label (without instruction expansion)

%label Offset reference of label in section (without instruction expansion)

hi(value) Higher 16 bits of value

lo(value) Lower 16 bits of value

hil(value) Higher 16 bits of value + bit valueN° of bit number 15 of value

addr Address

PC Program counter

PSW Program status word

reglD System register number (0 to 31)

vector Trap vector (0 to 31)

BITIO Peripheral I/0O register (for 1-bit manipulation only)

Note The bit number 0 is LSB (Least Significant Bit).

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 342 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(2) Operand
This section describes the description format of operand in as850. In as850, register, constant, symbol, label ref-
erence, and constant, symbol, label reference, operator can be specified as the operands for instruction, and
pseudo-instruction.

(a) Register
The registers that can be specified with the as850 are listed below.N°t

Note For the Idsr and stsr instructions, the PSW, and system registers are specified by using the numbers.
Further, in as850, PC cannot be specified as an operand.

r0, zero, r1, r2, hp, r3, sp, r4, gp, 5, tp, 16, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23,
r24, r25, r26, r27, r28, r29, r30, ep, r31, Ip

rO and zero (Zero register), r2 and hp (Handler stack pointer), r3 and sp (Stack pointer), r4 and gp (Global
pointer), r5 and tp (Text pointer), r30 and ep (Element pointer), r31 and Ip (Link pointer) shows the same regis-
ter.

(b) rO
r0 is the register which normally contains 0 value. This register does not substitute the result of an operation
even if used as a destination register. When r0 is specified as a destination register, the as850 outputs the fol-

Note

lowing message"™"”**, and then continues assembling.

Note Output of this message can be suppressed by specifying the warning message suppression option (-w)
upon starting the as850.

mov 0x10, rO0

W3013: register r0 used as destination register

<1> When V850EX is used in target device, and when r0 is specified as a destination register in the
following instruction, then it outputs error message instead of warning message.
Format (1), and (2) of dispose, divh instruction, Format (2) of Id.bu, Id.hu, mov instruction, movea, movhi,
mulh, mulhi, satadd, satsub, satsubi, satsubr, sld.bu, sld.hu

divh rl0, rO0

E3240: illegal operand (can not use r0 as destination in V850E mode)

<2> IfrOis specified in any of the following instructions as a source register when the V850Ex is used
as the target device, the as850 outputs an error message, not a warning message.
Format (1) of divh instruction, switch

divh r0, rlo0

E3239: illegal operand (can not use r0 as source in V850E mode)

R20UT0553EJ0100 Rev.1.00 RENESAS Page 343 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(c) r1
The assembler-reserved register (rl1) is used as a temporary register when instruction expansion is performed
using the as850. If rl is specified as a source or destination register, the as850 outputs the following mes-
sageN®, then continues assembling.

Note Output of this message can be suppressed by specifying the warning message suppression option (-w)
upon starting the as850.

mov 0x10, rl

W3013: register rl used as destination register

mov rl, rlo0

W3013: register rl used as source register

(d) Constants
As the constituents of the absolute expressions or relative expressions that can be used to specify the oper-
ands of the instructions and pseudo-instruction in the as850, integer constants and character constants can be
used. For the Id/st and bit manipulation instructions, a "peripheral I/O register name", defined in the device file,
can also be specified as an operand. Thus enabling input/output of a port address. Moreover, floating-point
constants can be used to specify the operand of the .float pseudo-instruction, and string constants can be
used to specify the operand of the .str pseudo-instruction.

(e) Symbols
The as850 supports the use of symbols as the constituents of the absolute expressions or relative expressions
that can be used to specify the operands of instructions and pseudo-instruction.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 344 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(f) Label reference

In as850, label reference can be used as a component of available relative value as shown in operand desig-

nation of instruction/pseudo-instruction.

- Memory Reference Instruction (Load/store instruction, and bit manipulation instruction)

- Operation Instruction (Arithmetic operation instruction, saturated operation instruction, logical operation

instruction)

- Branch Instruction

- Area Allocation Pseudo-instruction (However, .word/.hword/.byte pseudo-instruction only)

In as850, the meaning of a label reference varies with the reference method and the differences used in the

instructions/pseudo-instruction. Details are shown below.

Table 4-39. Label Reference

Referenc
e Method

Instructions Used

Meaning

#label

Memory reference instruc-
tion, operation instruction
and jmp instruction

The absolute address of the position at which the definition of
label (label) exists (Offset from address Nt 1,

This has a 32-bit address and must be expanded into two
instructions except V850EX.

Area Allocation Pseudo-
instruction

(.word/.hword/.byte)

The absolute address of the position at which the definition of
label (label) exists (Offset from address ON°® 1,

Note that the 32-bit address is a value masked in accordance
with the size of the area secured.

label

Memory reference instruc-
tion, operation instruction

The offset in the section of the position where definition of the
label (label) exists (offset from the initial address of the section
where the definition of label (label) existsN€ 2).

This has a 32-bit offset and must be expanded into two instruc-
tions.

Note that for a section allocated to a segment for which a tp

symbol is to be generated, the offset is referred from the tp
symbol.

Branch instruction except
jmp instruction

The PC offset at the position where definition of label (label)
exists (offset from the initial address of the instruction using the
reference of label (label)NOte 2),

Area Allocation Pseudo-
instruction

(.word/.hword/.byte)

The offset in the section of the position where definition of the
label (label) exists (offset from the initial address of the section
where the definition of label (label) existsNo€ 2),

Note that the 32-bit offset is a value masked in accordance with
the size of the area secured.

$label

Memory reference instruc-
tion, operation instruction

The gp offset at the position where definition of the label (label)
exists (offset from the address showing the global pointerN°t 3y,

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 345 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Referenc
e Method

Instructions Used

Meaning

llabel

Memory reference instruc-
tion, operation instruction

The absolute address of the position at which the definition of
label (label) exists (Offset from address 0 Not€ 1),

This has a 16-bit address and cannot expand instructions if
instructions with 16-bit displacement or immediate are speci-
fied.

If any other instructions are specified, expansion into appropri-
ate one instruction is possible.

If the address defined by label (label) is not within a range
expressible by 16 bits, an error will be occur at the time of link.

Area Allocation Pseudo-
instruction

(.word/.hword/.byte)

The absolute address of the position at which the definition of
label (label) exists (Offset from address 0 Not€ 1),

Note that the 32-bit address is a value masked in accordance
with the size of the area secured.

%label

Memory reference instruc-
tion, operation instruction

The offset in the section of the position where definition of the
label (label) exists (offset from the initial address of the section
where the definition of label (label) exists N 2),

This has a 16-bit offset and cannot expand instructions if
instructions with 16-bit displacement or immediate are speci-
fied.

If any other instructions are specified, expansion into appropri-
ate one instruction is possible.

If the address defined by label (label) is not within a range
expressible by 16 bits, an error will be occurred at the time of
link.

The ep offset at the position where definition of the label (label)
exists (offset from the address showing the element pointer).

Area Allocation Pseudo-
instruction

(.word/.hword/.byte)

The offset in the section of the position where definition of the
label (label) exists (offset from the initial address of the section
where the definition of label (label) existsNot 2),

Note that the 32-bit offset is a value masked in accordance with
the size of the area secured.

Notes 1.

2.

The offset from address 0 in object file after link.

The offset from the first address of the section (output section) in which the definition of label (label)

exists is allocated in the linked object file.

The offset from the address indicated by the value of text pointer symbol + value of the global

pointer symbol for the segment to which the above output section is allocated.

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 346 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

The meanings of label references for memory reference instructions, operation instructions, branch instruc-
tions, and area allocation pseudo-instruction are shown below.

Table 4-40. Memory Reference Instruction

Reference Method Meaning

#label[reg] The absolute address of label (label) is treated as a displace-
ment.

This has a 32-bit value and must be expanded into two instruc-
tions. By setting #label[r0], reference by an absolute address
can be specified.

Part of [reg] can be omitted. If omitted, the as850 assumes that
[rO] has been specified.

label[req] The offset in the section of label (label) is treated as a displace-
ment. This has a 32-bit value and must be expanded into two
instructions. By specifying a register indicating the first address
of section as reg and thereby setting label[reg], general register
relative reference can be specified.

For a section allocated to a segment for which a tp symbol is to
be generated, however, the offset from tp symbol is treated as a
displacement.

$label[reg] The gp offset of label (label) is treated as a displacement. This
has either a 32-bit or 16-bit value, from the section defined by
label (label), and pattern of instruction expansion changes
accordingly N°®. If an instruction with a 16-bit value is
expanded and the offset calculated from the address defined by
label (label) is not within a range that can be expressed in 16
bits, an error is output at the time of link. By setting $label [gp],
relative reference of the gp register (called a gp offset refer-
ence) can be specified. Part of [reg] can be omitted. If omitted,
the as850 assumes that [gp] has been specified.

llabel[req] The absolute address of label (label) is treated as a displace-
ment. This has a 16-bit value and instruction is not expanded.
If the address defined by label (label) cannot be expressed in
16 bits, an error is output at the time of link. By setting
llable[rQ], reference by an absolute address can be specified.

Part of [reg] can be omitted. If omitted, the as850 assumes that
[rO] has been specified.

However, unlike #label[reg] reference, instruction expansion is
not executed.

%label[reg] The offset in the section of label (label) is treated as a displace-
ment. If the label (label) is allocated to a section that is the ep
symbol, the offset from the ep symbol is treated as a displace-
ment. This either has a 16-bit value, or depending on the
instruction a value lower than this, and if it is not a value that
can be expressed within this range, an error is output at the
time of link.

Part of [reg] can be omitted. If omitted, the as850 assumes that
[ep] has been specified.

Note See "(h) gp offset reference”.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 347 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Table 4-41. Operation Instructions

Reference Method Significance

#label The absolute address of label (label) is treated as an immedi-
ate.

This has a 32-bit value and must be expanded into two instruc-
tions.

label The offset in the section of label (label) is treated as an immedi-
ate.

This has a 32-bit value and must be expanded into two instruc-
tions.

However, for a section allocated to a segment for which a tp
symbol is to be generated, the offset from the tp symbol is
treated as an immediate value.

$label The gp offset of label (label) is treated as an immediate.

This either has a 32-bit or 16-bit value, from the section defined
by label (label), and pattern of instruction changes accordingly
Note 1 if an instruction with a 16-bit value is expanded and the
offset calculated from the address defined by label (label) is not
within a range that can be expressed in 16 bits, an error is out-
put at the time of link.

llabel The absolute address of label (label) is treated as an immedi-
ate.

This has a 16-bit value. If operation instruction of an architec-
ture for which a 16-bit value can be specify Note 2 35 an immedi-
ate are specified, and instruction is not expanded. If the add,
mov, and mulh instructions are specified, expansion into appro-
priate 1-instruction is possible. No other instructions can be
specified. If the value is not within a range that can be
expressed in 16 bits, an error is output at the time of link.

%label The offset in the section of label (label) is treated as an immedi-
ate.

If the label (label) is allocated to a section that is a target of the
ep symbol, the offset from the ep symbol is treated as an dis-
placement.

This has a 16-bit value. If operation instruction of an architec-
ture for which a 16-bit value can be specify N 2 as an immedi-
ate are specified, and instruction is not expanded.

However, unlike label reference, instruction is not expanded.
This reference method can be specified only for operation
instructions of an architecture for which a 16-bit value can be
specified as an immediate, and add, mov, and mulh instruc-
tions. If the add, mov, and mulh instructions are specified,
expansion into appropriate 1-instruction is possible. No other
instructions can be specified. If the value is not within a range
that can be expressed in 16 bits, an error is output at the time of
link.

Notes 1. See "(h) gp offset reference".
2. Theinstructions for which a 16-bit value can be specified as an immediate are the addi, andi,
movea, mulhi, ori, satsubi, and xori instructions.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 348 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Table 4-42. Branch Instructions

Reference Method Meaning

#label In jmp instruction, the absolute address of label (label) is
treated as a jump destination address.

This has a 32-bit value and must be expanded into three
instructions.

label In branch instructions other than the jmp instruction, PC offset
of the label (label) is treated as a displacement.

This has a 22-bit value, and if it is not within a range that can be
expressed in 22 bits, an error is output at the time of link.

Table 4-43. Area Allocation Pseudo-instruction

Reference Method Meaning
#label In .word/.hword/.byte pseudo-instruction, the absolute address
llabel of the label (label) is treated as a value.

This has a 32-bit value, but is masked in accordance with the bit
width of each pseudo-instruction.

label In .word/.hword/.byte pseudo-instruction, the offset in the sec-
%label tion defined by label (label) is treated as a value.

This has a 32-bit value, but is masked in accordance with the bit
width of each pseudo-instruction.

$label In .word/.hword/.byte pseudo-instruction, the gp offset of label
(label) is treated as a value.

This has a 32-bit value, but is masked in accordance with the bit
width of each pseudo-instruction.

(g) ep offset reference
This section describes the ep offset reference. The CA850 assumes that data explicitly stored in internal RAM
is shown below.

Reference through the offset from address indicated by the element pointer (ep).

Data in the internal RAM is divided into the following two groups.
- tidata/.tibss/.tidata.byte/.tibss.byte/.tidata.word/.tibss.word section (Data is referred by memory reference
instructions (sld/sst) in a small code size)
- sidata/.sibss section (Data is referred by memory reference instructions (Id/st) in a large code size)

R20UT0553EJ0100 Rev.1.00 RENESAS Page 349 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-61. Memory Location Image of Internal RAM

. Higher address
.sibss section
.sidata section
.tibss section
.tidata section
.tibss.word section Internal RAM

.tidata.word section

.tibss.byte section

tidata.byte section

l€

ep > Y |ower address

<1> Data allocation
In internal RAM, data is allocated to the sections as follows:

- When developing a program in C
Allocate data by specifying the "tidata", "tidata.byte", "tidata.word", or "sidata" section type in the
"#pragma section" instruction.
Allocate data by specifying the "tidata", "tidata.byte", "tidata.word", or "sidata" section type in the
section file. Input the section file during compilation using a ca850 option.

- When developing a program in assembly language
Data is allocated to the section of .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, .sidata, or .sibss
section type by the section definition pseudo-instruction. ep offset reference can also be executed
with respect to data in a specific range of external RAM by allocating the data to .sedata or .sebss
sections in the same manner as above.

Figure 4-62. Memory Allocation Image for External RAM (.sedata/.sebss Section)

Higher address

.tibss.byte section Internal RAM
tidata.byte section
e » A 4
p - A
.sebss section
.sedata section External RAM

Lower address

<2> Datareference
As per the "Data allocation" method explained above, the as850 generates a machine instruction string
as follows.

- Generates a machine instruction by referring ep offset for %label reference to data allocated to the
tidata, .tibss, .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, .sidata, .sibss, .sedata, or .sebss
section

- Generates a machine instruction string by referring offset in the section for %label reference to data
allocated to other than that above

R20UT0553EJ0100 Rev.1.00 RENESAS Page 350 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Example

.sidata

sidata: .hword Oxfffo

.data
data: .hword O0xfffo
.text
1d.h $sidata, r20 -- (1)
1d.h $data, r20 -- (2)

The as850 generates a machine instruction string for %label reference because: The as850 regards the
code in (1) as being a reference by ep offset because the defined data is allocated to the .sidata section.
The as850 regards the code in (2) as being a reference by in-section offset. The as850 performs pro-
cessing, assuming that the data is allocated to the correct section. If the data is allocated to other than
the correct section, it cannot be detected by the as850.

Example

.text

1d.h %$label [ep], r20

Instructions are coded to allocate a label to the .sidata section and to perform reference by ep offset.
However, label is allocated to the .data section because of the allocation error. In this case, the as850
loads the data in the base register ep symbol value + offset value in the .data section of label.

Example

.text

1d.h %$labell[r10], r20 -- (1)
.option ep label

1d.h $label2[ep], r21l -- (2)

.option no_ep label

1d.h %$label3 [r10], r22 -- (3)

(2):

Reference by ep offset or by offset in section offset is performed according to the section in which the
defined data is allocated (default).

(2):

Reference by ep offset is performed regardless of the section in which the defined data is allocated,
because label is within the range specified by the .option ep_label pseudo-instruction.

(3):

Operation is the same as (1) because label is within the range specified by the .option no_ep_label
pseudo-instruction.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 351 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(h) gp offset reference
This section describes the gp offset reference. The CA850 assumes that data stored in external RAM (other

than .sedata/.sebss section explained on the previous page) is basically shown below.

Referred by the offset from the address indicated by global pointer (gp).

If rO-relative memory allocation for internal ROM or RAM is not done with the "#pragma section" command of
C, the section file to be input to the C compiler, or an assembly language section definition pseudo-instruction,
all data is subject to gp offset reference.

<1> Data allocation
The memory reference instruction (Id/st) of the machine instruction of the V850 microcontrollers can only
accept 16-bitimmediate as a displacement. For this reason, the CA850 classifies data into the following
two types. Data of the former type is allocated to the sdata- or shss-attribute section, while that of the lat-
ter type is allocated to the data- or bss-attribute section. Data having an initial value is allocated to the
sdata/data-attribute section, while data without an initial value is allocated to the sbss/bss-attribute sec-
tion. By default, the CA850 allocates data to the data/sdata/ sbss/bss-attribute sections, starting from
the lowest address. Moreover, it is assumed that the global pointer (gp) is set by a start up module to
point to the address resulting from addition of 32 KB to the first address of the sdata-attribute section.
- Data allocated to a memory range that can be referred by using the global pointer (gp) and a 16-bit
displacement
-Data allocated to a memory range that can be referred by using the global pointer (gp) and (con-
structed by many instructions) a 32-bit displacement

Figure 4-63. Memory Location Image for gp Offset Reference Section

Higher address

bss attribute section

data without an initial value
sbss attribute section 64KB

ap —»
I 32KB

sdata attribute section
Data having an initial value

data attribute section
Lower address

Remark The sum of sdata- and sbss-attribute sections is 64 KB. gp is 32 KB below the first byte of
the sdata- attribute section.

Data in the sdata- and sbss-attribute sections can be referred by using a single instruction. To reference
data in the data- and bss-attribute sections, however, two or more instructions are necessary. There-
fore, the more data allocated to the sdata- and sbss-attribute sections, the higher the execution effi-
ciency and object efficiency of the generated machine instructions. However, the size of the memory
range that can be referred with a 16-bit displacement is limited.

If all the data cannot be allocated to the sdata- and sbss-attribute sections, it becomes necessary to
determine which data is to be allocated to the sdata- and sbss-attribute sections.

The CA850 "allocates as much data as possible to the sdata- and sbss-attribute sections". By default, all
data items are allocated to the sdata- and sbss-attribute sections. The data to be allocated can be
selected as follows:

R20UT0553EJ0100 Rev.1.00 RENESAS Page 352 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- When the -Gnum option is specified
By specifying the -Gnum option upon starting the C compiler (ca850) or assembler (as850), data of
less than num bytes is allocated to the sdata- and sbss-attribute sections.

- When using a program to specify the section to which data will be allocated
Explicitly allocate data that will be frequently referred to the sdata- and sbss-attribute sections. For
allocation, use a section definition pseudo-instruction when using the assembly language, or the
#pragma section command when using C.

- When specifying with the section file
In C, allocate data by specifying the sdata section in the section file. Input the section file during
compilation using a ca850 option.

<2> Data reference
Using the data allocation method explained above, the as850 generates a machine instruction string that
performs:
- Reference by using a 16-bit displacement for gp offset reference to data allocated to the sdata- and
sbhss- attribute sections.
- Reference by using a 32-bit displacement (consisting of two or more machine instructions) for gp
offset reference to data allocated to the data- and bss-attribute sections.

Example
.data

data: .word oxfff00010 -- (1)
.text
1d.w $datalgp]l, r20 -- (2)

The as850 generates a machine instruction string, equivalent to the following instruction string for the
Id.w instruction in (2), that performs gp offset reference of the data defined in (1) Note

movhi hil($data), gp, rl
1d.w lo($data) [r1l], r20

Note See "(i) About hi/lo /hil", for details of hil/lo.

The as850 processes files on a one-by-one basis. Consequently, it can identify to which attribute section
data having a definition in a specified file has been allocated, but cannot identify the section to which
data not having a definition in a specified file has been allocated. Therefore, the as850 generates
machine instructions as follows N°€ when the -Gnum option is specified at start-up, assuming that the
allocation policy described above (i.e., data smaller than a specific size is allocated to the sdata- and
sbss-attribute sections) is observed.

Note The data, for which data or sdata is specified by the .option pseudo-instruction, is assumed to be
allocated in the .data or .sdata section regardless of its size.

- Generates machine instructions that perform reference by using a 16-bit displacement for gp offset
reference to data not having a definition in a specified file and which consists of less than num bytes.

- Generates a machine instruction string that performs reference by using a 32-bit displacement (con-
sisting of two or more machine instructions) for gp offset reference to data having no definition in a
specified file and which consists of more than num bytes.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 353 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

To identify these conditions, however, the size of the data not having a definition in a specified file, and
which is referred by a gp offset, must be identified. To develop a program in an assembly language,
therefore, specify the size of the data (actually, a label for which there is no definition in a specified file
and which is referred by a gp offset) for which there is no definition in a specified file, by using the .extern
pseudo-instruction.

.extern data, 4 -- (1)
.text
1d.w Sdatalgpl, r20 -- (2)

When -G2 is specified upon starting the as850, the as850 generates a machine instruction string, equiv-
alent to the following instruction string, for the Id.w instruction in (2) that performs gp offset reference to
the data declared in (1).No®

movhi hil($data), gp, rl

1d.w lo($data) [r1l], r20

Note See "(i) About hi/lo /hil", for details of hil/lo.

To develop a program in C, the C compiler (ca850) of the CA850 automatically generates the .extern
pseudo-instruction, thus output the code which specifies the size of data not having a definition in the
specified file (actually, a label for which there is no definition in a specified file and which is referred by a
gp offset).

Remark The handling of gp offset reference (specifically, memory reference instructions that use a
relative expression having the gp offset of a label as their displacement) by the as850 is sum-
marized below.

- If the data has a definition in a specified file
- If the data is to be allocated to the sdata- or sbss-attribute sectionN°t®
Generates a machine instruction that performs reference by using al16-bit displacement.
- If the data is not allocated to the sdata- or sbss-attribute section

Generates a machine instruction string that performs reference by using a 32-bit displacement.

Note If the value of the constant expression of a relative expression in the form of "label + constant
expression” exceeds 16 bits, the as850 generates a machine instruction string that performs ref-
erence using a 32-bit displacement.

- If the data does not have a definition in a specified file

- If the -Gnum option is specified upon starting the assembler
If a size of other than 0, but less than num bytes is specified for the data (label referred by gp offset)
by the .comm/.extern/.globl/.lcomm/.size pseudo-instruction.
Assumes that the data is to be allocated to the sdata- or sbss-attribute section and generates a
machine instruction that performs reference by using a 16-bit displacement.
Other than above, assumes that the data is not allocated to the sdata- or shss-attribute section and
generates a machine instruction string that performs reference using a 32-bit displacement

R20UT0553EJ0100 Rev.1.00 RENESAS Page 354 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If the -Gnum option is not specified upon starting the assembler
Assumes that the data is to be allocated to the sdata- or sbss-attribute section and generates a
machine instruction that performs reference by using a 16-bit displacement.

(i) About hi/lo /hil

<1> To store 32-bhit constant value in aregister
The V850 core of V850 microcontrollers does not support a machine instruction that can store a 32-bit
constant value in a register with a single instruction. To store a 32-bit constant value in a register, there-
fore, the as850 performs instruction expansion, and generates an instruction string, by using the movhi
and movea instructions. These divide the 32-bit constant value into the higher 16 bits and lower 16 bits.

Example

mov 0x18000, rll movhi hil(0x18000), r0, rl

movea 1lo(0x18000), rl, rll

At this time, the movea instruction, used to store the lower 16 bits in the register, sign-extends the speci-
fied 16-bit value to a 32-bit value. To adjust the sign-extended bits, the as850 does not merely store the
higher 16 bits in a register when using the movhi instruction, instead it stores the following value in the
register.

Higher 16 bits + the most significant bit (bit of bit number 15) of the lower 16 bits

<2> To refer memory by using 32-bit displacement
The memory reference instruction (Load/store and bit manipulation instructions) of the machine instruc-
tions of the V850 microcontrollers can take only a 16-bit immediate from displacement. Consequently,
the as850 performs instruction expansion to refer the memory by using a 32-bit displacement, and gen-
erates an instruction string that performs the reference, by using the movhi and memory reference
instructions and thereby constituting a 32-bit displacement from the higher 16 bits and lower 16 bits of
the 32-bit displacement.

Example

ld.w 0x18000([r11l], rl2 movhi hil(0x18000), rll, rl

1d.w 1lo(0x18000) [r1], rl2

At this time, the memory reference instruction of machine instructions that uses the lower 16 bits as a
displacement sign-extends the specified 16-bit displacement to a 32-bit value. To adjust the sign-
extended bits, the as850 does not merely configure the displacement of the higher 16 bits by using the
movhi instruction, instead it configures the following displacement.

Higher 16 bits + the most significant bit (bit of bit number 15) of the lower 16 bits

R20UT0553EJ0100 Rev.1.00 RENESAS Page 355 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<3> hi/lo/hil
In the next table, the as850 can specify the higher 16 bits of a 32-bit value, the lower 16 bits of a 32-bit
value, and the value of the higher 16 bits + bit 15 of a 32-bit value by using hi(), lo(), and hi1().N°®

Note If this information cannot be internally resolved by the assembler, it is reflected in the relocation
information and subsequently resolved by the linker (Id850).

Table 4-44. Area Allocation Pseudo-instruction

hi/lo/hil Meaning
hi (value) Higher 16 bits of value
lo (value) Lower 16 bits of value
hil (value) Higher 16 bits of value + bit value of bit number 15 of value
Example
.data
Ll:
.text
movhi hi(s$L1l), r0, rlo0 --Stores the higher 16 bits of the gp offset
--value of L1 in the higher 16 bits of rl0,
--and the lower 16 bits to 0
movea lo($L1l), r0, rlo0 --Sign-extends the lower 16 bits of the gp offset of
--L1 and stores to rl0
movhi hil(sLl), r0, rl --Stores the gp offset value of L1l in rl0
movea lo($L1l), rl, rlo
R20UT0553EJ0100 Rev.1.00 RENESANAS Page 356 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

455 Description of instructions

This section describes the instructions of the assembly language supported by the as850.
For details of the machine instructions generated by the as850, see the "Each Device User Manual".

Instruction

Indicates the meaning of instruction.

[Syntax]

Indicates the syntax of instruction.

[Function]

Indicates the function of instruction.

[Description]

Indicates the operating method of instruction.

[Flag]

Indicates the operation of flag (PSW) by the execution of instruction.
However, in (setl, clrl, notl) bit operation instruction, indicates the flag value before execution.
"---" of table indicates that the flag value is not changed.

[Caution]

Indicates the caution in instruction.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 357 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.5.6

Load/Store instructions

This section describes the load/store instructions. Next table lists the instructions described in this section.

Table 4-45. Load/Store Instructions

Instruction Meaning
Id Id.b Byte data load
Id.h Halfword data load
ld.w Word data load
Id.bu Unsigned byte data load [V850E]
Id.hu Unsigned halfword data load [V850E]
sld sld.b Byte data load (short format)
sld.h Halfword data load (short format)
sld.w Word data load (short format)
sld.bu Unsigned byte data load (short format) [V850E]
sld.hu Unsigned halfword data load (short format) [V850E]
st st.b Byte data store
st.h Halfword data store
st.w Word data store
sst sst.b Byte data store (short format)
sst.h Halfword data store (short format)
sst.w Word data store (short format)
R20UT0553EJ0100 Rev.1.00 RENESAS Page 358 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Id

Data load

[Syntax]

-ld.b disp[regl], reg2
- ld.h disp[regl], reg2
- ld.w disp[regl], reg2
- Id.bu disp[regl], reg2 [V850E]
- Id.hu disp[regl], reg2 [V850E]

The following can be specified for displacement (disp):
- Absolute expression having a value of up to 32 bits
- Relative expression

- Either of the above expressions with hi(), lo(), or hi1() applied
[Function]

The Id.b, Id.bu, Id.h, Id.hu, and Id.w instructions load data of 1 byte, 1 halfword, and 1 word, from the address specified
by the first operand, int the register specified by the second operand.

[Description]

- If any of the following is specified for disp, the as850 generates one Id machine instructionN°®_ |n the following
explanations, Id denotes the Id.b/ld.h/ld.w/ld.bu/ld.hu instructions.

(a) Absolute expression having a value in the range of -32,768 to +32,767

1d displé6 [regl], reg2 1d displé6 [regl], reg2

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

14 S$label [regl], reg2 1d Slabel [regl] , reg2

(c) Relative expression having !label or %label

1d !label [regl], reg2 1d !label [regl], reg2

1d %$label [regl], reg2 1d %$label [regl] , reg2

(d) Expression with hi(), lo(), or hil()

1d displé6 [regl], reg2 1d displé6 [regl], reg2

Note The Id machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xffff8000 to Ox7fff) as
the displacement.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 359 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If any of the following is specified for disp, the as850 performs instruction expansion to generate multiple machine

instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

1d displregl], reg2

movhi

1d

hil(disp), regl, rl

lo(disp) [r1l], reg2

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

14 #label [regl], reg2 movhi hil (#label), regl, rl
1d lo(#label) [rl], reg2

14 label [regl], reg2 movhi hil(label), regl, rl
1d lo(label) [rl], reg2

14 $label [regl], reg2 movhi hil(slabel), regl, rl
1d lo($label) [rl], reg2

- If disp is omitted, the as850 assumes 0.

- If a relative expression having #label, or a relative expression having #label and with hi(), lo(), or hil() applied is
specified as disp, [regl] can be omitted. If omitted, the as850 assumes that [r0] is specified.
- If a relative expression having $label, or a relative expression having $label and with hi(), lo(), or hil() applied, is

specified as disp, [regl] can be omitted. If omitted, the as850 assumes that [gp] is specified.

- If a peripheral I/O register name defined in the device file is specified as disp, [regl] can be omitted. If omitted, the

as850 assumes that [r0] is specified.

[Flag]

cYy

oV

IS —

z —

SAT

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 360 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Caution]
- Id.b and Id.h sign-extend the data of 1 byte and 1 halfword, respectively, and load the data into a register as 1
word.
- Id.bu and Id.hu zero-extend the data of 1 byte and 1 halfword, respectively, and load the data into a register as 1
word.

- If a value that is not a multiple of 2 is specified as disp of Id.h, Id.w, or Id.hu, the as850 aligns disp with 2 and gen-
erates a code.

W3010: illegal displacement in Id instruction.

W4659: relocated value (value) of relocation entry (symbol: symbol, file: file, section: section, offset: offset, type: reloca-
tion type) for load/store command become odd value.

- If rO is specified as the second operand of Id.bu and Id.hu, the as850 outputs the following message and stops

assembling

E3240: illegal operand (can not use r0 as destination in V850E mode)

R20UT0553EJ0100 Rev.1.00 RENESAS Page 361 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

sld

Short format Load

[Syntax]
- sld.b disp7[ep], reg2
- sld.h disp8[ep], reg2
- sld.w disp8[ep], reg2
- sld.bu disp4[ep], reg2 [V850E]
- sld.hu disp5[ep], reg2 [V850E]

The following can be specified for displacement (disp4/5/7/8):

- Absolute expression having a value of up to 7 bits for sld.b, 8 bits for sld.h and sld.w, 4 bits for sld.bu, and 5 bits for
sld.hu.

- Relative expression
[Function]

The sld.b, sld.bu, sld.h, sld.hu, and sld.w instructions load the data of 1 byte, 1 halfword, and 1 word, from the address

obtained by adding the displacement specified by the first operand to the contents of register ep, to the register specified
by the second operand.

[Description]

The as850 generates one sld machine instruction. Base register specification "[ep]" can be omitted.

[Flag]

cy

ov

IS —

d -

SAT

[Caution]

- sld.b and sld.h sign-extend and store data of 1 byte and 1 halfword, respectively, in the register as 1 word.
- sld.bu and sld.hu zero-extend and store data of 1 byte and 1 halfword, respectively, in the register as 1 word.
- If a value that is not a multiple of 2 is specified as disp8 of sld.h or disp5 of sld.hu, and if a value that is not a multi-

ple of 4 is specified as disp8 of sld.w, the as850 aligns disp8 or disp5 with multiples of 2 and 4, respectively, and
generates a code.

W3010: illegal displacement in sld instruction.

W4659: relocated value (value) of relocation entry (symbol: symbol, file: file, section: section, offset: offset, type: reloca-
tion type) for load/store command become odd value.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 362 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If a value exceeding 127 is specified for disp7 of sld.b, a value exceeding 255 is specified for disp8 of sld.h and
sld.w, a value exceeding 16 is specified for disp4 of sld.bu, and a value exceeding 32 is specified for disp5 of
sld.hu, the as850 outputs the following message, and generates code in which disp7, disp8, disp4, and disp5 are
masked with 0x7f, Oxff, Oxf, and Ox1f, respectively.

W3011: illegal operand (range error in immediate)

- If rO is specified as the second operand of the sld.bu and sld.hu, the as850 outputs the following message and

stops assembling

E3240: illegal operand (can not use r0 as destination in V850E mode)

R20UT0553EJ0100 Rev.1.00 RENESAS Page 363 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

st

Store

[Syntax]

- st.b reg2, disp[regl]
- st.h reg2, disp[regl]
- stw reg2, disp[regl]

The following can be specified as a displacement (disp):
- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with hi(), lo(), or hi1() applied

[Function]

The st.b, st.h, and st.w instructions store the data of the lower 1 byte, lower 1 halfword, and 1 word, respectively, of the
register specified by the first operand to the address specified by the second operand.

[Description]

- If any of the following is specified as disp, the as850 generates one st machine instructionN°®. In the following
explanations, st denotes the st.b/st.h instructions.

(a) Absolute expression having a value in the range of -32,768 to +32,767

st regz,

displé6 [regl]

st

regz,

displé6 [regl]

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

st reg2, $label [regl] st reg2, S$label [regl]
(c) Relative expression having !label or %label

st reg2, !label [regl] st reg2, !label [regl]

st reg2, %label [regl] st reg2, %label [regl]
(d) Expression with hi(), lo(), or hi1()

st reg2, displé6[regl] st reg2, displé [regl]

Note The st machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xffff8000 to Ox7fff) as

the displacement.

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 364 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If any of the following is specified as disp, the as850 executes instruction expansion to generate two or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

st reg2, displregl], reg2 movhi hil(disp), regl, rl

st reg2, lo(disp) [rl], reg2

(b) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

st reg2, #label [regl] movhi hil (#label), regl, rl
st reg2, lo(#label) [rl]

st reg2, label[regl] movhi hil(label), regl, rl
st reg2, lo(label) [rl]

st reg2, $label[regl] movhi hil(slabel), regl, rl
st reg2, lo($label) [rl]

- If disp is omitted, the as850 assumes 0.

- If a relative expression with #label, or a relative expression with #label and with hi(), lo(), or hil() applied is speci-
fied as disp, [regl] can be omitted. If omitted, the as850 assumes that [r0] is specified.

- If a relative expression with $label, or a relative expression with $label and with hi(), lo(), or hil() applied is speci-
fied as disp, [regl] can be omitted. If omitted, the as850 assumes that [gp] is specified.

- If a peripheral I/O register name defined in the device file is specified as disp, [regl] can be omitted. If omitted, the
as850 assumes that [r0] is specified.

[Flag]

cYy

oV

IS —

z —

SAT

[Caution]

- If a value that is not a multiple of 2 is specified as the disp of st.h or st.w, the as850 aligns disp with 2 and gener-
ates a code.

W3010: illegal displacement in st instruction.

W4659: relocated value (value) of relocation entry (symbol: symbol, file: file, section: section, offset: offset, type: reloca-
tion type) for load/store command become odd value.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 365 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

sst

Short format Store

[Syntax]

- sst.b reg2, disp7[ep]
- sst.h reg2, disp8[ep]
- sst.w reg2, disp8[ep]

The following can be specified for displacement (disp7/8):
- Absolute expression having a value of up to 7 bits for sst.b or 8 bits for sst.h and sst.w
- Relative expression

[Function]

The sst.b, sst.h, and sst.w instructions store the data of the lower 1 byte, lower 1 halfword, and 1 word, respectively, of
the register specified by the first operand to the address obtained by adding the displacement specified by the second
operand to the contents of register ep.

[Description]

The as850 generates one sst machine instruction. Base register specification "[ep]" can be omitted.

[Flag]

cy

ov

IS —

d -

SAT

[Caution]

- If a value that is not a multiple of 2 is specified as disp8 of sst.h, and if a value that is not a multiple of 4 is specified
as disp8 of sst.w, the as850 aligns disp8 with multiples of 2 and 4, respectively, and generates a code.

W3010: illegal displacement in sst instruction.

W4659: relocated value (value) of relocation entry (symbol: symbol, file: file, section: section, offset: offset, type: reloca-
tion type) for load/store command become odd value.

- If a value exceeding 127 is specified as disp7 of sst.b, and if a value exceeding 255 is specified as disp8 of sst.h
and sst.w, the as850 outputs the following message, and generates codes disp7 and disp8, masked with 0x7f and
Oxff, respectively.

W3011: illegal operand (range error in immediate)

R20UT0553EJ0100 Rev.1.00 RENESAS Page 366 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

457 Arithmetic operation instructions

This section describes the arithmetic operation instructions. Next table lists the instructions described in this section.

Table 4-46. Arithmetic Operation Instructions

Instruction Meaning

add Addition

addi Addition (immediate)

adf Add with condition [V850E2]

sub Subtraction

subr Reverse subtraction

sbf Subtract with condition [V850E2]

mulh Signed multiplication (halfword)

mulhi Signed multiplication (halfword immediate)

mul Signed multiplication (word) [V850E]

mac Signed word data multiply and add [V850E2]

mulu Unsigned multiplication [V850E]

macu Unsigned word data multiply and add [V850E2]

divh Signed division (halfword)

div Signed division (word)) [V850E]

divhu Unsigned division (halfword) [V850E]

divu Unsigned division (word) [V850E]

cmp Comparison

mov Moves data

movea Moves execution address

movhi Moves higher halfword

mov32 Moves 32-bit data [V850E]

cmov Moves data depending on the flag condition [V850E]

setf Sets flag condition

sasf Sets the flag condition after a logical left shift [V850E]
R20UT0553EJ0100 Rev.1.00 RENESAS Page 367 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

add

Add

[Syntax]

-add regl, reg2
-add imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "add reg1l, reg2"
Adds the value of the register specified by the first operand to the value of the register specified by the second

operand, and stores the result into the register specified by the second operand.

- Syntax "add imm, reg2"
Adds the value of the absolute expression or relative expression specified by the first operand to the value of the

register specified by the second operand, and stores the result in the register specified by the second operand.

[Description]
- If this instruction is executed in syntax "add regl, reg2", the as850 generates one add machine instruction.
- If the following is specified as imm in syntax "add imm, reg2", the as850 generates one add machine instruction-

Note

(@) Absolute expression having a value in the range of -16 to +15

add imm5, reg

add imm5, reg

Note The add machine instruction takes a register or immediate value in the range of -16 to +15 (OxfffffffO to Oxf) as

the first operand

- If the following is specified for imm in syntax "add imm, reg2", the as850 executes instruction expansion to gener-

ate one or more machine instructions

(@) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

add imml6, reg addi immlé, reg, reg

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

add imm, reg movhi hi(imm), r0, rl
add rl, reg
R20UT0553EJ0100 Rev.1.00 RENESAS Page 368 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Else

add imm, reg movhi hil(imm), r0, rl
movea lo(imm), rl, rl
add rl, reg

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are O

add imm, reg movhi hi(imm), r0, rl
add rl, reg
Else
add imm, reg mov imm, ril
add rl, reg

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the
sdata/sbss-attribute section

add !label, reg addi !label, reg, reg
add %$label, reg addi %label, reg, reg
add Slabel, reg addi Slabel, reg, reg

(e) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section

add #label, reg movhi hil(#label), r0, rl
movea lo(#label), rl, rl
add rl, reg

add label, reg movhi hil(label), r0, rl
movea lo(label), rl, rl
add rl, reg

add Slabel, reg movhi hil(slabel), r0, ril
movea lo(slabel), rl, rl
add rl, reg

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section [V850E]

add #label, reg mov #label, ril
add rl, reg
add label, reg mov label, rl
add rl, reg
add Slabel, reg mov Slabel, rl
add rl, reg
R20UTO0553EJ0100 Rev.1.00 RENESAS Page 369 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Flag]
CY 1 if a carry occurs from MSB (Most Significant Bit), O if not
oV 1 if Integer-Overflow occurs, O if not
S 1 if the result is negative, 0 if not
Z 1 if the result is 0, O if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESANAS Page 370 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

addi

Add Immediate

[Syntax]
- addi imm, regl, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hil1() applied

[Function]

Adds the value of the absolute expression, relative expression, or expression with hi(), lo(), or hil() applied, specified
by the first operand, to the value of the register specified by the second operand, and stores the result into the register
specified by the third operand.

[Description]

- If the following is specified for imm, the as850 generates one addi machine instructionNO®.
(a) Absolute expression having a value in the range of -32,768 to +32,767
addi immlé6, regl, reg2 addi imml6é, regl, reg2

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

addi $label, regl, reg2 addi $label, regl, reg2

(c) Relative expression having !label or %label

addi !label, regl, reg2 addi !label, regl, reg2

addi %$label, regl, reg2 addi %$label, regl, reg2

(d) Expression with hi(), lo(), or hil()

addi immlé6, regl, reg2 addi imml6, regl, reg2

Note The addi machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xffff8000 to
Ox7fff)as the first operand.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 371 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If the following is specified for imm, the as850 executes instruction expansion to generate two or more machine
instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

addi imm, regl, reg2 movhi hi(imm), r0, reg2

add regl, reg2

If all the lower 16 bits of the value of imm are 0 and when reg2 is rO

addi imm, regl, r0 movhi hi(imm), r0, rl
add regl, ril

Else

addi imm, regl, reg2 movhi hil(imm), r0, rl

movea lo(imm), rl, reg2

add regl, reg2
Other than above and when reg2 is r0
addi imm, regl, roO movhi hil(imm), r0, rl
movea lo(imm), rl, rl
add regl, ril

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are O

addi imm, regl, reg2 movhi hi(imm), r0, reg2
add regl, reg2
If all the lower 16 bits of the value of imm are 0 and when reg2 is rO
addi imm, regl, r0 movhi hi(imm), r0, rl
add regl, ril
Else
addi imm, regl, reg2 mov imm, reg2
add regl, reg2
Other than above and when reg2 is r0
addi imm, regl, r0 mov imm, rl
add regl, ril
R20UT0553EJ0100 Rev.1.00 RENESANS Page 372 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(c) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section

If reg2 is rO

addi #label, regl, x0 movhi hil (#label), r0, ril
movea lo(#label), rl, rl
add regl, reg2

addi label, regl, x0 movhi hil(label), r0, rl
movea lo(label), rl, rl
add regl, ril

addi $label, regl r0 movhi hil($label), r0, rl
movea lo($label), rl, ri
add regl, ril

Else

addi #label, regl, reg2 movhi hil (#label), r0, ril
movea lo(#label), rl, reg2
add regl, reg2

addi label, regl, reg2 movhi hil(label), r0, rl
movea lo(label), rl, reg2
add regl, reg2

addi Slabel, regl reg2 movhi hil($label), r0, rl
movea lo(slabel), rl, reg2
add regl, reg2

(d) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section [V850E]

If reg2 is rO
addi #label, regl, r0 mov #label, ril
addi regl, rl
addi label, regl, r0 mov label, rl
add regl, ril
addi Slabel, regl, rO mov $label, rl
add regl, ril
Else
addi #label, regl, reg2 mov #label, reg2
addi regl, reg2
addi label, regl, reg2 mov label, reg2
add regl, reg2
addi Slabel, regl, reg2 mov Slabel, reg2
add regl, reg2
R20UT0553EJ0100 Rev.1.00 RENESANAS Page 373 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Flag]
CY 1 if a carry occurs from MSB (Most Significant Bit), O if not
oV 1 if Integer-Overflow occurs, O if not
S 1 if the result is negative, 0 if not
Z 1 if the result is 0, O if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESANAS Page 374 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

adf

Add with Condition Flag (Add on Condition Flag) [V850E2]

[Syntax]

-adf imm4,regl, reg2, reg3
- adfend reg1l, reg2, reg3

The following can be specified for imm4:
- Absolute expression having a value up to 4 bits (Oxd cannot be specified)

[Function]

- Syntax "adf imm4, reg1, reg2, reg3"
It compares the current flag condition with the flag condition indicated by the value of the lower 4 bits of the abso-
lute expression (see Table 4-47. adfcond Instruction List) specified by the first operand.
If the values match, adds the word data of the register specified by the second operand to the word data of the reg-
ister specified by the third operand. And 1 is added to the addition result and that result is stored in the register
specified by the fourth operand.
If the values not match, adds the word data of the register specified by the second operand to the word data of the
register specified by the third operand. And that result is stored in the register specified by the fourth operand.

- Syntax "adfcnd regl, reg2, reg3"
It compares the current flag condition with the flag condition indicated by the string in the cnd"part.
If the values match, adds the word data of the register specified by the first operand to the word data of the register
specified by the second operand. And 1 is added to the addition result and that result is stored in the register spec-
ified by the third operand.
If the values not match, adds the word data of the register specified by the first operand to the word data of the reg-
ister specified by the second operand. And that result is stored in the register specified by the third operand.

[Description]

- For the adf instruction, the as850 generates one adf machine instruction.
- For the adcond instruction, the as850 generates the corresponding adf instruction (see Table 4-47. adfcond
Instruction List) and expands it to syntax "adf imm4, regl, reg2, reg3".

Table 4-47. adfcond Instruction List

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion
adfgt ((SxorOV)orz)=0 Greater than (signed) adf oxf
adfge (Sxorov)=0 Greater than or equal (signed) adf Oxe
adflt (Sxorov)=1 Less than (signed) adf 0x6
adfle ((SxorOV)orz)=1 Less than or equal (signed) adf 0x7
adfh (CYorz)=0 Higher (Greater than) adf oxb
adfnl CY=0 Not lower (Greater than or equal) adf 0x9
adfl Cy=1 Lower (Less than) adf ox1
adfnh (CYorz)=1 Not higher (Less than or equal) adf 0x3
adfe Z=1 Equal adf 0x2
adfne Z=0 Not equal adf Oxa
R20UT0553EJ0100 Rev.1.00 RENESAS Page 375 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion
adfv ov=1 Overflow adf 0x0
adfnv ov=0 No overflow adf 0x8
adfn S=1 Negative adf o0x4
adfp S=0 Positive adf Oxc
adfc Cy=1 Carry adf ox1
adfnc CY=0 No carry adf 0x9
adfz Z=1 Zero adf 0x2
adfnz Z=0 Not zero adf Oxa
adft always 1 Always 1 adf 0x5

[Flag]
CY 1 if there is carry from MSB, 0 if not
oV 1 if overflow occurred, 0 if not
S 1 if the result is negative, 0 if not
z 1ifthe resultis 0, 0 if not
SAT
[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the adf instruction, the following

message is output, and assembly continues using the lower 4 bits of the specified value.

W3011: illegal operand (range error in immediate).

- If Oxd is specified as imm4 of the adf instruction, the following message is output, and assembly is stopped

E3261: illegal condition code.

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 376 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

sub

Subtract

[Syntax]

-sub regl, reg2
-sub imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "sub reg1, reg2"
Subtracts the value of the register specified by the first operand from the value of the register specified by the sec-
ond operand, and stores the result in the register specified by the second operand.

- Syntax "sub imm, reg2"
Subtracts the value of the absolute expression or relative expression specified by the first operand from the value
of the register specified by the second operand, and stores the result into the register specified by the second oper-
and.

[Description]

- If the instruction is executed in syntax "sub regl, reg2", the as850 generates one sub machine instruction.
- If the instruction is executed in syntax "sub imm, reg2", the as850 executes instruction expansion and generates

one or more machine instructionsN° .

(@ 0

sub 0, reg sub r0, reg

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

sub imm5, reg mov imm5, rl

sub rl, reg

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

sub imml6, reg movea immlé, r0, rl
sub rl, reg
R20UT0553EJ0100 Rev.1.00 RENESAS Page 377 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

sub imm, reg movhi hi(imm), r0, rl
sub rl, reg
Else
sub imm, reg movhi hil(imm), r0, rl
movea lo(imm), rl, ril
sub rl, reg

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are O

sub imm, reg movhi hi(imm), r0, rl
sub rl, reg
Else
sub imm, reg mov imm, ril
sub rl, reg

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

sub $label, reg movea Slabel, r0, rl

sub rl, reg

(g) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

sub #label, reg movhi hil(#label), r0, rl
movea lo(#label), rl, rl
sub rl, reg

sub label, reg movhi hil(label), r0, rl
movea lo(label), rl, rl
sub rl, reg

sub Slabel, reg movhi hil(slabel), r0, ril
movea lo($label), rl, rl
sub rl, reg

R20UT0553EJ0100 Rev.1.00 RENESANAS Page 378 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(h) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section [V850E]

sub #label, reg mov #label, rl
sub rl, reg

sub label, reg mov label, ril
sub rl, reg

sub $label, reg mov Slabel, rl
sub rl, reg

Note The sub machine instruction does not take an immediate value as an operand.

[Flag]
CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not
ov 1 if Integer-Overflow occurs, 0 if not
S 1 if the result is negative, 0 if not
z 1 if the resultis 0, O if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESANS Page 379 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

subr

Subtract Reverse

[Syntax]

- subr regl, reg2
- subr imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "subr reg1l, reg2"
Subtracts the value of the register specified by the first operand from the value of the register specified by the sec-
ond operand, and stores the result in the register specified by the second operand.

- Syntax "subr imm, reg2"
Subtracts the value of the absolute expression or relative expression specified by the first operand from the value
of the register specified by the second operand, and stores the result into the register specified by the second oper-
and.

[Description]

- If the instruction is executed in syntax "subr regl, reg2", the as850 generates one subr machine instruction.
- If the instruction is executed in syntax "subr imm, reg2", the as850 executes instruction expansion and generates

one or more machine instructionsN°t .

(@ 0

subr 0, reg subr r0, reg

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

subr imm5, reg mov imm5, rl

subr rl, reg

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

subr imml6, reg movea immlé, r0, rl
subr rl, reg
R20UT0553EJ0100 Rev.1.00 RENESAS Page 380 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

subr imm, reg movhi hi(imm), r0, rl
subr rl, reg
Else
subr imm, reg movhi hil(imm), r0, rl
movea lo(imm), rl, ril
subr rl, reg

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are O

subr imm, reg movhi hi(imm), r0, rl
subr rl, reg
Else
subr imm, reg mov imm, ril
subr rl, reg

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

subr $label, reg movea Slabel, r0, rl

subr rl, reg

(g) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

subr #label, reg movhi hil(#label), r0, rl
movea lo(#label), rl, rl
subr rl, reg

subr label, reg movhi hil(label), r0, rl
movea lo(label), rl, rl
subr rl, reg

subr Slabel, reg movhi hil(slabel), r0, ril
movea lo($label), rl, rl
subr rl, reg

R20UT0553EJ0100 Rev.1.00 RENESANAS Page 381 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(h) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section [V850E]

subr #label, reg mov #label, rl
subr rl, reg

subr label, reg mov label, ril
subr rl, reg

subr $label, reg mov Slabel, rl
subr rl, reg

Note The subr machine instruction does not take an immediate value as an operand.

[Flag]
CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not
ov 1 if Integer-Overflow occurs, 0 if not
S 1 if the result is negative, 0 if not
z 1 if the resultis 0, O if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESANS Page 382 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

sbf

Subtract with Condition Flag (Subtract on Condition Flag) [V850E2]

[Syntax]

- sbf imm4, regl, reg2, reg3
- sbfend regl, reg2, reg3

The following can be specified for imm4:
- Absolute expression having a value up to 4 bits (Oxd cannot be specified)

[Function]

- Syntax "sbf imm4, regl, reg2, reg3"
It compares the current flag condition with the flag condition indicated by the value of the lower 4 bits of the abso-
lute expression (see Table 4-48. sbfcond Instruction List) specified by the first operand.
If the values match, subtracts the word data of the register specified by the second operand from the word data of
the register specified by the third operand. And 1 is subtracted from the subtraction result and that result is stored
in the register specified by the fourth operand.
If the values not match, subtracts the word data of the register specified by the second operand from the word data
of the register specified by the third operand. And that result is stored in the register specified by the fourth oper-
and.

- Syntax "sbfcnd regl, reg2, reg3"
It compares the current flag condition with the flag condition indicated by the string in the "cnd" part.
If the values match, subtracts the word data of the register specified by the first operand from the word data of the
register specified by the second operand. And 1 is subtracted from the subtraction result and that result is stored
in the register specified by the third operand.
If the values not match, subtracts the word data of the register specified by the first operand from the word data of
the register specified by the second operand. And that result is stored in the register specified by the third oper-
and.

[Description]

- For the sbf instruction, the as850 generates one sbf machine instruction.
- For the adcond instruction, the as850 generates the corresponding sbf instruction (see Table 4-48. sbfcond
Instruction List) and expands it to syntax "subr regl, reg2".

Table 4-48. sbfcond Instruction List

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion
sbfgt ((SxorOV)orZz)=0 Greater than (signed) sbf 0Oxf
sbfge (Sxor0OVv)=0 Greater than or equal (signed) sbf Oxe
sbflt (SxorOVv)=1 Less than (signed) sbf 0x6
sbfle ((SxorOV)orz)=1 Less than or equal (signed) sbf 0x7
sbfh (CYorz)=0 Higher (Greater than) sbf 0xb
sbfnl CY=0 Not lower (Greater than or equal) sbf 0x9
sbfl Cy=1 Lower (Less than) sbf 0x1
sbfnh (CYorz)=1 Not higher (Less than or equal) sbf 0x3
R20UT0553EJ0100 Rev.1.00 RENESAS Page 383 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion
sbfe zZ=1 Equal sbf 0x2
sbfne Z=0 Not equal sbf Oxa
sbfv ov=1 Overflow sbf 0x0
sbfnv ov=0 No overflow sbf 0x8
sbfn S=1 Negative sbf 0x4
sbfp S=0 Positive sbf 0xc
sbfc Cy=1 Carry sbf 0x1
sbfnc CY=0 No carry sbf 0x9
sbfz Z=1 Zero sbf 0x2
sbfnz Z=0 Not zero sbf 0Oxa
sbft always 1 Always 1 sbf 0x5

[Flag]
CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not
ov 1 if overflow occurred, O if not
S 1 if the result is negative, 0 if not
z 1if the resultis 0, O if not
SAT -
[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the sbf instruction, the following

message is output, and assembly continues using the lower 4 bits of the specified value.

W3011: illegal operand (range error in immediate).

- If Oxd is specified as imm4 of the sbf instruction, the following message is output, and assembly is stopped.

E3261: illegal condition code.

R20UTO0553EJ0100 Rev.1.00

RENESAS

Apr 01, 2011

Page 384 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

mulh

Multiply Half-word

[Syntax]

- mulh regl, reg2
- mulh imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 16 bitsN°t®

- Relative expression

Note The as850 does not check whether the value of the expression exceeds 16 bits. The generated mulh instruction
performs the operation by using the lower 16 bits.

[Function]

- Syntax "mulh reg1, reg2"
Multiplies the value of the lower halfword data of the register specified by the first operand by the value of the lower
halfword data of the register specified by the second operand as a signed value, and stores the result in the regis-
ter specified by the second operand.

- Syntax "mulh imm, reg2"
Multiplies the value of the lower halfword data of the absolute expression or relative expression specified by the
first operand by the value of the lower halfword data of the register specified by the second operand as a signed
value, and stores the result in the register specified by the second operand.

[Description]

- If the instruction is executed in syntax "mulh regl, reg2", the as850 generates one mulh machine instruction.

- If the following is specified as imm in syntax "mulh imm, reg2", the as850 generates one mulh machine instruction-
Note

(a) Absolute expression having a value in the range of -16 to +15

mulh imm5, reg mulh imm5, reg

Note The mulh machine instruction takes a register or immediate value in the range of -16 to +15 (OxfffffffO to 0xf) as
the first operand.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 385 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If the following is specified for imm in syntax "mulh imm, reg2", the as850 executes instruction expansion to gener-
ate one or more machine instructions.

(@) Absolute expression having a value exceeding the range of -16 to +15

mulh immlé6, reg mulhi immlé, reg, reg

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

mulh imm, reg movhi hi(imm), r0, rl
mulh rl, reg

Else

mulh imm, reg movhi hil(imm), r0, rl
movea lo(imm), rl, rl
mulh rl, reg

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are O

mulh imm, reg movhi hi(imm), r0, rl
mulh rl, reg

Else

mulh imm, reg mov imm, ril
mulh rl, reg

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the
sdata/sbss-attribute section

mulh !label, reg mulhi !label, reg, reg
mulh %label, reg mulhi $label, reg, reg
mulh Slabel, reg mulhi Slabel, reg, reg
R20UT0553EJ0100 Rev.1.00 RENESANS Page 386 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(e) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section

mulh #label, reg movhi hil (#label), r0, rl
movea lo(#label), rl, rl
mulh rl, reg

mulh label, reg movhi hil(label), r0, rl
movea lo(label), rl, rl
mulh rl, reg

mulh $label, reg movhi hil(slabel), r0, rl
movea lo($label), rl, ri
mulh rl, reg

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section [V850E]

mulh #label, reg mov #label, ril
mulh rl, reg

mulh label, reg mov label, rl
mulh rl, reg

mulh Slabel, reg mov $label, rl
mulh rl, reg

[Flag]

cY

oV

SAT

[Caution]

- If rO is specified by the second operand when the V850EX is used as the target device, the as850 outputs the fol-
lowing message and stops assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

With a device other than the V850EX, the as850 outputs the following message and continues assembling.

W3013: register r0 used as destination register

R20UT0553EJ0100 Rev.1.00 RENESAS Page 387 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

mulhi

Multiply Half-word Immediate

[Syntax]
- mulhi imm, regl, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 16 bitsNote

- Relative expression
- Either of the above expressions with hi(), lo(), or hi1() applied

Note The as850 does not check whether the value of the expression exceeds 16 bits. The generated mulhi machine
instruction performs the operation by using the lower 16 bits.

[Function]

Multiplies the value of the absolute expression, relative expression, or expression with hi(), lo(), or hil() applied spec-
ified by the first operand by the value of the register specified by the second operand, and stores the result in the register
specified by the third operand.

[Description]

- If the following is specified for imm, the as850 generates one mulhi machine instructionN°t

(a) Absolute expression having a value in the range of -32,768 to +32,767

mulhi immlé, regl, reg2 mulhi immlé6, regl, reg2

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

mulhi $label, regl, reg2 mulhi $label, regl, reg2

(c) Relative expression having !label or %label

mulhi !label, regl, reg2 mulhi !label, regl, reg2

mulhi %label, regl, reg2 mulhi %label, regl, reg2

(d) Expression with hi(), lo(), or hil()

mulhi immlé, regl, reg2 mulhi immlé6, regl, reg2

Note The mulhi machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xffff8000 to Ox7fff)
as the first operand.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 388 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If the following is specified for imm, the as850 executes instruction expansion to generate two or more machine
instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

mulhi imm, regl, reg2 movhi hi(imm), r0, reg2

mulh regl, reg2

If all the lower 16 bits of the value of imm are 0 and when reg2 is rO

mulhi imm, regl, r0 movhi hi(imm), r0, rl
mulh regl, ril

Else

mulhi imm, regl, reg2 movhi hil(imm), r0, rl
movea lo(imm), rl, reg2
mulh regl, reg2

Other than above and when reg2 is r0

mulhi imm, regl, reg2 movhi hil(imm), r0, rl
movea lo(imm), rl, rl
mulh regl,rl

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are O

mulhi imm, regl, reg2 movhi hi(imm), r0, reg2
mulh regl, reg2
Else
mulhi imm, regl, reg2 mov imm, reg2
mulh regl, reg2
R20UT0553EJ0100 Rev.1.00 RENESAS Page 389 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(c) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section

If reg2 is rO

mulhi #label, regl, x0 movhi hil (#label), r0, ril
movea lo(#label), rl, rl
mulh regl, ril

mulhi label, regl, x0 movhi hil(label), r0, rl
movea lo(label), rl, rl
mulh regl, ril

mulhi $label, regl r0 movhi hil($label), r0, rl
movea lo($label), rl, ri
mulh regl, ril

Else

mulhi #label, regl, reg2 movhi hil (#label), r0, ril
movea lo(#label), rl, reg2
mulh regl, reg2

mulhi label, regl, reg2 movhi hil(label), r0, rl
movea lo(label), rl, reg2
mulh regl, reg2

mulhi Slabel, regl reg2 movhi hil($label), r0, rl
movea lo(slabel), rl, reg2
mulh regl, reg2

(d) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section [V850E]

mulhi #label, regl, reg2 mov #label, reg2
mulhi regl, reg2
mulhi label, regl, reg2 mov label, reg2
mulh regl, reg2
mulhi Slabel, regl, reg2 mov Slabel, reg2
mulh regl, reg2
[Flag]
CcY -
ov -
S —
z —
SAT -
R20UT0553EJ0100 Rev.1.00 RENESANS Page 390 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Caution]

- If rO is specified by the second operand when the V850EX is used as the target device, the as850 outputs the fol-
lowing message and stops assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

With a device other than the V850EX, the as850 outputs the following message and continues assembling.

W3013: register r0 used as destination register

R20UT0553EJ0100 Rev.1.00 RENESAS Page 391 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

mul

Multiply Word [V850E]

[Syntax]

-mul regl, reg2, reg3
-mul imm, reg2, reg3

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "mul regl, reg2, reg3"
Multiplies the register value specified by the first operand by the register value specified by the second operand as
a signed value and stores the lower 32 bits of the result in the register specified by the second operand, and the
higher 32 bits in the register specified by the third operand. If the same register is specified by the second and
third operands, the higher 32 bits of the multiplication result are stored in that register.

- Syntax "mul imm, reg2, reg3"
Multiplies the value of the absolute or relative expression specified by the first operand by the register value speci-
fied by the second operand as a signed value and stores the lower 32 bits of the result in the register specified by
the second operand, and the higher 32 bits in the register specified by the third operand. If the same register is
specified by the second and third operands, the higher 32 bits of the multiplication result are stored in that register.

[Description]

- If the instruction is executed in syntax "mul regl, reg2, reg3", the as850 generates one mul machine instruction.
- If the instruction is executed in syntax "mul imm, reg2, reg3", the as850 executes instruction expansion to generate

one or more machine instructions.

(@ 0

mul 0, reg2, reg3l mul r0, reg2, reg3

(b) Absolute expression having a value of other than 0 whithin the range of -256 to +255

mul imm9, reg2, reg3 mul imm9, reg2, reg3

(c) Absolute expression exceeding the range of -256 to +255, but within the range of -32,768 to +32,767

mul immlé6, reg2, reg3 movea immlé, r0, ril
mul rl, reg2, reg3
R20UT0553EJ0100 Rev.1.00 RENESAS Page 392 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

mul imm, reg2, reg3 movhi hi(imm), r0, rl
mul rl, reg2, reg3
Else
mul imm, reg2, reg3 mov imm, ril
mul rl, reg2, reg3

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

mul $label, reg2, reg3

movea

mul

$label, r0, rl

rl,

regz,

reg3

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

mul #label, reg2, reg3 mov #label, rl
mul rl, reg2, reg3
mul label, reg2, reg3 mov label, ril
mul rl, reg2, reg3
mul $label, reg2, reg3 mov Slabel, rl
mul rl, reg2, reg3
[Flag]
CcY -
ov -
S —
z —
SAT -
R20UT0553EJ0100 Rev.1.00 .zENESAS Page 393 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Caution]

- If these three conditions for the instructions in syntax "mul regl, reg2, reg3" are met: regl and reg3 are the same
register, reg2 is a different register from regl and reg3, and regl and reg3 are neither rO nor rl, the as850 per-
forms instruction expansion and generates multiple machine-language instructions.

mov regl, rl

mul rl, reg2, reg3

- If these three conditions for the instructions in syntax "mul regl, reg2, reg3" are met: regl and reg3 are the same
register, reg?2 is a different register from regl and reg3, and regl and reg3 are rl1, the as850 outputs the following
messages and stops assembling.

W3013: register rl1 used as source register

W3013: register r1 used as destination register

E3259: can not use rl as destination in mul/mulu

- If these two conditions for the instructions in syntax "mul imm, reg2, reg3" are met: reg2 and reg3 are the same
register, and reg3 is r1, the as850 outputs the following message and stops assembling.

W3013: register rl1 used as source register

W3013: register rl1 used as destination register

E3259: can not use rl as destination in mul/mulu

- If the warning message suppressing option -wrl- is specified, the as850 outputs the following message and stops
assembling.

E3259: can not use rl as destination in mul/mulu

R20UT0553EJ0100 Rev.1.00 RENESAS Page 394 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

mac

Signed Word Data Multiply and Add (Multiply Word and Add) [V850E2]

[Syntax]

-mac regl, reg2, reg3, reg4

[Function]

Adds the multiplication result of the general-purpose register reg2 word data and the general-purpose register regl
word data with the 64-bit data made up of general-purpose register reg3 as the lower 32 bits and general-purpose regis-
ter reg3+1 (for example, if reg3 were r6, "reg3+1" would be r7) as the upper 32 bits, and stores the upper 32 bits of that
result (64-bit data) in general-purpose register reg4+1 and the lower 32 bits in general-purpose register reg4.

The contents of general-purpose registers regl and reg2 are treated as 32-bit signed integers.

General-purpose registers regl, reg2, reg3, and reg3+1 are unaffected.

[Description]

The as850 generates one mac machine instruction.

[Flag]

cy

ov

IS —

d -

SAT

[Caution]

- The general-purpose registers that can be specified to reg3 or reg4 are limited to even numbered registers (r0, r2,
r4, ..., r30). When specifying an odd numbered register, the following message is output, and assembly continues,
specifying the register as an even numbered register (r0, r2, r4, ..., r30).

W3026: illegal register number, aligned odd register(rXX) to be even register(rYY).

R20UT0553EJ0100 Rev.1.00 RENESAS Page 395 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

mulu

Multiply Word Unsigned [V850E]

[Syntax]

- mulu regl, reg2, reg3
-mulu imm, reg2, reg3

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "mulu reg1l, reg2, reg3"
Multiplies the register value specified by the first operand by the register value specified by the second operand as
an unsigned value and stores the lower 32 bits of the result in the register specified by the second operand, and
the higher 32 bits in the register specified by the third operand. If the same register is specified by the second and
third operands, the higher 32 bits of the multiplication result are stored in that register.

- Syntax "mulu imm, reg2, reg3"
Multiplies the value of the absolute or relative expression specified by the first operand by the register value speci-
fied by the second operand as an unsigned value and stores the lower 32 bits of the result in the register specified
by the second operand, and the higher 32 bits in the register specified by the third operand. If the same register is
specified by the second and third operands, the higher 32 bits of the multiplication result are stored in that register.

[Description]

- If the instruction is executed in syntax "mulu regl, reg2, reg3", the as850 generates one mulu machine instruction.
- If the instruction is executed in syntax "mulu imm, reg2, reg3", the as850 executes instruction expansion to gener-
ate one or more machine instructions.

(@ 0

mulu 0, reg2, reg3 mulu r0, reg2, reg3l

(b) Absolute expression having a value in the range of 1 to +511

mulu imm9, reg2, reg3 mulu imm9, reg2, reg3

(c) Absolute expression exceeding the range of 0 to +511, but within the range of 0to +65,535

mulu immlé6, reg2, reg3 movea immlé, r0, ril
mulu rl, reg2, reg3
R20UT0553EJ0100 Rev.1.00 RENESAS Page 396 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) Absolute expression having a value exceeding the range of 0 to +65,535
If all the lower 16 bits of the value of imm are O

mulu imm, reg2, reg3 movhi hi(imm), r0, rl
mulu rl, reg2, reg3
Else
mulu imm, reg2, reg3 mov imm, ril
mulu rl, reg2, reg3

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

mulu $label, reg2, reg3

movea

mulu

$label, r0, rl

rl,

regz,

reg3

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

mulu #label, reg2, reg3 mov #label, rl
mulu rl, reg2, reg3
mulu label, reg2, reg3 mov label, ril
mulu rl, reg2, reg3
mulu $label, reg2, reg3 mov Slabel, rl
mulu rl, reg2, reg3
[Flag]
CcY -
ov -
S —
z —
SAT -
R20UT0553EJ0100 Rev.1.00 .zENESAS Page 397 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Caution]

- If these three conditions for the instructions in syntax "mulu regl, reg2, reg3" are met: regl and reg3 are the same
register, reg2 is a different register from regl and reg3, and regl and reg3 are neither rO nor rl, the as850 per-
forms instruction expansion and generates multiple machine-language instructions.

mov regl, rl

mulu rl, reg2, reg3

- If these three conditions for the instructions in syntax "mulu regl, reg2, reg3" are met: regl and reg3 are the same
register, reg?2 is a different register from regl and reg3, and regl and reg3 are rl1, the as850 outputs the following
messages and stops assembling.

W3013: register rl1 used as source register

W3013: register r1 used as destination register

E3259: can not use rl as destination in mul/mulu

- If these two conditions for the instructions in syntax "mulu imm, reg2, reg3" are met: reg2 and reg3 are the same
register, and reg3 is r1, the as850 outputs the following message and stops assembling.

W3013: register rl1 used as destination register

E3259: can not use rl as destination in mul/mulu

- If the warning message suppressing option -wrl- is specified, the as850 outputs the following message and stops
assembling.

E3259: can not use rl as destination in mul/mulu

R20UT0553EJ0100 Rev.1.00 RENESAS Page 398 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

macu

Unsigned Word Data Multiply and Add (Multiply Word Unsigned and Add) [V850E2]

[Syntax]

- macu regl, reg2, reg3, reg4

[Function]

Adds the multiplication result of the general-purpose register reg2 word data and the general-purpose register regl
word data with the 64-bit data made up of general-purpose register reg3 as the lower 32 bits and general-purpose regis-
ter reg3+1 (for example, if reg3 were r6, "reg3+1" would be r7) as the upper 32 bits, and stores the upper 32 bits of that
result (64-bit data) in general-purpose register reg4+1 and the lower 32 bits in general-purpose register reg4.

The contents of general-purpose registers regl and reg2 are treated as 32-bit unsigned integers.

General-purpose registers regl, reg2, reg3, and reg3+1 are unaffected.

[Description]

The as850 generates one macu machine instruction.

[Flag]

cy

ov

IS —

d -

SAT

[Caution]

- The general-purpose registers that can be specified to reg3 or reg4 are limited to even numbered registers (r0, r2,
r4, ..., r30). When specifying an odd numbered register, the following message is output, and assembly continues,
specifying the register as an even numbered register (r0, r2, r4, ..., r30).

W3026: illegal register number, aligned odd register(rXX) to be even register(rYY).

R20UT0553EJ0100 Rev.1.00 RENESAS Page 399 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

divh

Divide Half-word

[Syntax]

- divh regl, reg2
- divh imm, reg2
- divh regl, reg2, reg3 [V850E]
- divh imm, reg2, reg3 [V850E]

The following can be specified for imm:
- Absolute expression having a value of up to 16 bitsNote

- Relative expression

Note The as850 does not check whether the value of the expression exceeds 16 bits. The generated machine
instruction performs execution using the lower 16 bits.

[Function]

- Syntax "divh regl, reg2"
Divides the register value specified by the second operand by the value of the lower halfword data of the register
specified by the first operand as a signed value, and stores the quotient in the register specified by the second
operand.

- Syntax "divh imm, reg2"
Divides the register value specified by the second operand by the value of the lower halfword data of the absolute
or relative expression specified by the first operand as a signed value and stores the quotient in the register speci-
fied by the second operand.

- Syntax "divh regl, reg2, reg3"
Divides the register value specified by the second operand by the value of the lower halfword data of the register
specified by the first operand as a signed value and stores the quotient in the register specified by the second
operand, and the remainder in the register specified by the third operand. If the same register is specified by the
second and third operands, the remainder is stored in that register.

- Syntax "divh imm, reg2, reg3"
Divides the register value specified by the second operand by the value of the lower halfword data of the absolute
or relative expression specified by the first operand as a signed value and stores the quotient in the register speci-
fied by the second operand, and the remainder in the register specified by the third operand. If the same register is
specified by the second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntaxes "divh regl, reg2" and "divh regl, reg2, reg3", the as850 generates one
divh machine instruction.
- If the instruction is executed in syntax "divh imm, reg2, reg3", the as850 executes instruction expansion to gener-

ate one or more machine instructionsN°e,

@ 0

divh 0, reg divh r0, reg

R20UT0553EJ0100 Rev.1.00 RENESAS Page 400 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

divh imm5, reg

mov

divh

imm5, ril

rl, reg

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

divh imml6, reg

movea

divh

immlé, r0, rl

rl,

reg

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

divh imm, reg movhi hi(imm), r0, rl
divh rl, reg

Else

divh imm, reg movhi hil(imm), r0, rl
movea lo(imm), rl, rl
divh rl, reg

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are O

divh imm, reg movhi hi(imm), r0, rl
divh rl, reg
Else
divh imm, reg mov imm, ril
divh rl, reg

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

divh $label, reg movea Slabel, r0, rl
divh rl, reg
R20UT0553EJ0100 Rev.1.00 RENESAS Page 401 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(9) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section

divh #label, reg movhi hil (#label), r0, rl
movea lo(#label), rl, rl
divh rl, reg

divh label, reg movhi hil(label), r0, rl
movea lo(label), rl, rl
divh rl, reg

divh $label, reg movhi hil(slabel), r0, rl
movea lo($label), rl, ri
divh rl, reg

(h) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

divh #label, reg mov #label, ril
divh rl, reg

divh label, reg mov label, rl
divh rl, reg

divh Slabel, reg mov $label, rl
divh rl, reg

Note The divh machine instruction does not take an immediate value as an operand.

- If the instruction is executed in syntax "divh imm, reg2, reg3", the as850 executes instruction expansion to gener-

ate one or more machine instructions. [V850E]

@ o

divh

0, reg2, reg3

divh

r0, regz2, reg3

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

divh

imm5, reg2, reg3l

mov

divh

imm5, ril

rl, reg2, reg3

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

divh

imml6, reg2, reg3 movea immlé, r0, rl
divh rl, reg2, reg3
R20UT0553EJ0100 Rev.1.00 RENESAS Page 402 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

divh imm, reg2, reg3 movhi hi(imm), r0, rl
divh rl, reg2, reg3l
Else
divh imm, reg2, reg3 mov imm, ril
divh rl, reg2, reg3

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

divh $label, reg2, reg3 movea $label, r0, rl

divh rl, reg2, reg3

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section

divh #label, reg2, reg3 mov #label, rl
divh rl, reg2, reg3l
divh label, reg2, reg3 mov label, ril
divh rl, reg2, reg3
divh $label, reg2, reg3 mov Slabel, rl
divh rl, reg2, reg3l
[Flag]
CcY ---
oV 1 if Integer-Overflow occurs, 0 if not
S 1 if the result is negative, 0 if not
z 1 if the result is 0, O if not
SAT ---
[Caution]

- If r0 is specified by the first operand in syntax "divh reg1, reg2" when the V850EX is used as the target device, the
as850 outputs the following message and stops assembling.

E3239: illegal operand (can not use r0 as source in V850E mode)

With a device other than the V850EX, the as850 outputs the following message and continues assembling.

W3013: register r0 used as source register

R20UT0553EJ0100 Rev.1.00 RENESAS Page 403 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If r0 is specified by the second operand in syntaxes "divh reg1, reg2" and "divh imm, reg2, reg3" when the V850EXx
is used as the target device, the as850 outputs the following message and stops assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

With a device other than the V850EX, the as850 outputs the following message and continues assembling.

W3013: register r0 used as destination register

R20UT0553EJ0100 Rev.1.00 RENESAS Page 404 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

div

Divide Word [V850E]

[Syntax]

-div regl, reg2, reg3
-div imm, reg2, reg3

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "div reg1l, reg2, reg3"
Divides the register value specified by the second operand by the register value specified by the first operand as a
signed value and stores the quotient in the register specified by the second operand, and the remainder in the reg-
ister specified by the third operand. If the same register is specified by the second and third operands, the remain-
der is stored in that register.

- Syntax "div imm, reg2, reg3"
Divides the register value specified by the second operand by the value of the absolute or relative expression
specified by the first operand as a signed value and stores the quotient in the register specified by the second
operand, and the remainder in the register specified by the third operand. If the same register is specified by the
second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntax "div regl, reg2, reg3", the as850 generates one div machine instruction.
- If the instruction is executed in syntax "divimm, reg2, reg3", the as850 executes instruction expansion to generate

two or more machine instructionsN°e,

(@ 0

div 0, reg2, reg3 div r0, reg2, reg3l

(b) Absolute expression having a value of other than 0 whithin the range of -16 to +15

div imm5, reg2, reg3 mov imm5, rl

div rl, reg2, reg3l

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

div imml6, reg2, reg3 movea immlé6, r0, rl
div rl, reg2, reg3l
R20UT0553EJ0100 Rev.1.00 RENESAS Page 405 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

div imm, reg2, reg3 movhi hi(imm), r0, rl
div rl, reg2, reg3l
Else
div imm, reg2, reg3 mov imm, ril
div rl, reg2, reg3

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

div

$label, reg2, reg3

movea

div

$label, r0, rl

rl,

regz,

reg3

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

div #label, reg2, reg3 mov #label, rl

div rl, reg2, reg3
div label, reg2, reg3 mov label, ril

div rl, reg2, reg3
div $label, reg2, reg3 mov Slabel, rl

div rl, reg2, reg3l

Note The div machine instruction does not take an immediate value as an operand.

[Flag]
cY
ov 1 if Integer-Overflow occurs, 0 if not
S 1 if the result is negative, 0 if not
z 1 if the result is 0, O if not
SAT

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 406 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

divhu

Divide Half-word Unsigned [V850E]

[Syntax]

- divhu regl, reg2, reg3
- divhu imm, reg2, reg3

The following can be specified for imm:
- Absolute expression having a value of up to 16 bitsN°t®

- Relative expression

Note The as850 does not check whether the value of the expression exceeds 16 bits. The generated machine
instruction uses only the lower 16 bits for execution.

[Function]

- Syntax "divhu regl, reg2, reg3"
Divides the register value specified by the second operand by the value of the lower halfword data of the register
value specified by the first operand as an unsigned value and stores the quotient in the register specified by the
second operand, and the remainder in the register specified by the third operand. If the same register is specified
by the second and third operands, the remainder is stored in that register.

- Syntax "divhu imm, reg2, reg3"
Divides the register value specified by the second operand by the value of the lower halfword data of the absolute
or relative expression specified by the first operand as an unsigned value and stores the quotient in the register
specified by the second operand, and the remainder in the register specified by the third operand. If the same reg-
ister is specified by the second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntax "divhu regl, reg2, reg3", the as850 generates one divhu machine instruc-

tion.

- If the instruction is executed in syntax "divhu imm, reg2, reg3", the as850 executes instruction expansion to gener-

ate one or more machine instructionsN°te,

(@ 0

divhu 0, reg2, reg3 divhu r0, reg2, reg3l

(b) Absolute expression having a value of other than 0 whithin the range of 0 to +31

divhu imm5, reg2, reg3l mov imm5, ril

divhu rl, reg2, reg3

(c) Absolute expression exceeding the range of 0 to +31, but within the range of 0 to +65,535

divhu immlé6, reg2, reg3 movea immlé, r0, ril

divhu rl, reg2, reg3l

R20UT0553EJ0100 Rev.1.00 RENESAS Page 407 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) Absolute expression having a value exceeding the range of 0 to +65,535
If all the lower 16 bits of the value of imm are O

divhu imm, reg2, reg3 movhi hi(imm), r0, rl
divhu rl, reg2, reg3l
Else
divhu imm, reg2, reg3 mov imm, ril
divhu rl, reg2, reg3

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

divhu

$label, reg2, reg3

movea

divhu

$label, r0, rl

rl,

regz,

reg3

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

divhu #label, reg2, reg3 mov #label, rl
divhu rl, reg2, reg3l

divhu label, reg2, reg3 mov label, ril
divhu rl, reg2, reg3

divhu $label, reg2, reg3 mov Slabel, rl
divhu rl, reg2, reg3l

Note The divhu machine instruction does not take an immediate value as an operand.

[Flag]
cY
ov 1 if Integer-Overflow occurs, 0 if not
S 1 if the word data MSB of the resultis 1, O if not
z 1 if the result is 0, O if not
SAT

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 408 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

divu

Divide Word Unsigned [V850E]

[Syntax]

- divu regl, reg2, reg3
- divu imm, reg2, reg3

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "divu regl, reg2, reg3"
Divides the register value specified by the second operand by the register value specified by the first operand as
an unsigned value and stores the quotient in the register specified by the second operand, and the remainder in
the register specified by the third operand. If the same register is specified by the second and third operands, the
remainder is stored in that register.

- Syntax "divu imm, reg2, reg3"
Divides the register value specified by the second operand by the value of the absolute or relative expression
specified by the first operand as an unsigned value and stores the quotient in the register specified by the second
operand, and the remainder in the register specified by the third operand. If the same register is specified by the
second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntax "divu regl, reg2, reg3", the as850 generates one divu machine instruction.
- If the instruction is executed in syntax "divu imm, reg2, reg3", the as850 executes instruction expansion to gener-

ate one or more machine instructionsN°® .

(@ 0

divu 0, reg2, reg3 divu r0, reg2, reg3

(b) Absolute expression having a value of other than 0 whithin the range of -16 to +15

divu imm5, reg2, reg3 mov imm5, rl

divu rl, reg2, reg3l

(c) Absolute expression exceeding the range of 0 to +31, but within the range of -32,768to +32,767

divu imml6, reg2, reg3 movea immlé6, r0, rl
divu rl, reg2, reg3l
R20UT0553EJ0100 Rev.1.00 RENESAS Page 409 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) Absolute expression having a value exceeding the range of 0 to +65,535
If all the lower 16 bits of the value of imm are O

divu imm, reg2, reg3

movhi hi(imm), r0, rl

divu rl, reg2, reg3

Else

divu imm, reg2, reg3

mov

divu

imm, ril

rl, reg2, reg3

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

divu $label, reg2, reg3

movea

divu

Slabel, r0, ril

rl, regz2, reg3

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbhss-attribute section

divu #label, reg2, reg3 mov #label, ril
divu rl, reg2, reg3
divu label, reg2, reg3i mov label, ril
divu rl, reg2, reg3l
divu $label, reg2, reg3 mov $label, rl
divu rl, reg2, reg3

Note The divu machine instruction does not take an immediate value as an operand.

[Flag]
CcY
ov 1 if Integer-Overflow occurs, 0 if not
S 1 if the word data MSB of the result is 1, 0 if not
z 1if the resultis 0, O if not
SAT

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS

Page 410 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

cmp

Compare

[Syntax]

-cmp regl, reg2
-cmp imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "cmp regl, reg2"
Compares the value of the register specified by the first operand with the value of the register specified by the sec-
ond operand, and indicates the result using a flag. Comparison is performed by subtracting the value of the regis-
ter specified by the first operand from the value of the register specified by the second operand.

- Syntax "cmp imm, reg2"
Compares the value of the absolute expression or relative expression specified by the first operand with the value
of the register specified by the second operand, and indicates the result using a flag. Comparison is performed by
subtracting the value of the register specified by the first operand from the value of the register specified by the

second operand.

[Description]

- If the instruction is executed in syntax "cmp regl, reg2", the as850 generates one cmp machine instruction.
- If the following is specified as imm in syntax "cmp imm, reg2", the as850 generates one cmp machine instruction-
Note

(@) Absolute expression having a value in the range of -16 to +15

cmp imm5, reg cmp imm5, reg

Note The cmp machine instruction takes a register or immediate value in the range of -16 to +15 (OxfffffffO to Oxf) as

the first operand.

- If the following is specified as imm in syntax "cmp imm, reg2", the as850 executes instruction expansion to gener-

ate one or more machine instructions.

(@) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

cmp imml6, reg movea immlé6, r0, rl
cmp rl, reg
R20UT0553EJ0100 Rev.1.00 RENESAS Page 411 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

cmp imm, reg movhi hi(imm), r0, rl
cmp rl, reg

Else

cmp imm, reg movhi hil(imm), r0, rl
movea lo(imm), rl, ril
cmp rl, reg

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are O

cmp imm, reg movhi hi(imm), r0, rl
cmp rl, reg
Else
cmp imm, reg mov imm, ril
cmp rl, reg

(d) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

cmp $label, reg movea Slabel, r0, rl

cmp rl, reg

(e) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

cmp #label, reg movhi hil(#label), r0, rl
movea lo(#label), rl, rl
cmp rl, reg

cmp label, reg movhi hil(label), r0, rl
movea lo(label), rl, rl
cmp rl, reg

cmp Slabel, reg movhi hil(slabel), r0, ril
movea lo($label), rl, rl
cmp rl, reg

R20UT0553EJ0100 Rev.1.00 RENESANAS Page 412 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section [V850E]

cmp #label, reg mov #label, rl
cmp rl, reg
cmp label, reg mov label, ril
cmp rl, reg
cmp $label, reg mov Slabel, rl
cmp rl, reg
[Flag]
CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not
oV 1 if Integer-Overflow occurs, 0 if not
S 1 if the result is negative, 0 if not
Z 1 if the resultis 0, O if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESANAS Page 413 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

mov

Move

[Syntax]

-mov regl, reg2
-mov imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]
- Syntax "mov regl, reg2"
Stores the value of the register specified by the first operand in the register specified by the second operand.

- Syntax "mov imm, reg2"
Stores the value of the absolute expression or relative expression specified by the first operand in the register

specified by the second operand.

[Description]
- If the instruction is executed in syntax "mov regl, reg2", the as850 generates one mov machine instruction.

- If the following is specified as imm in syntax "mov imm, reg2", the as850 generates one mov machine instruction-
Note

(a) Absolute expression having a value in the range of -16 to +15

mov imm5, reg mov imm5, reg

Note The mov machine instruction for the V850 is in 16-bit format. A 48-bit format is supported with the V850Ex. For
the V850, therefore, this instruction takes a register or immediate value in the range of -16 to +15 (OxfffffffO to
0xf) as the first operand. For the V850EX, in addition to these register and immediate values, mov takes an
immediate value in the range of -2,147,483,648 to -2,147,483,647 (0x80000000 to Ox7fffffff).

- If the following is specified as imm in syntax "mov imm, reg2", the as850 executes instruction expansion to gener-

ate one or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

mov imml6, reg movea immlé, r0, reg

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

hi(imm), r0, reg

mov imm, reg movhi

R20UT0553EJ0100 Rev.1.00 RENESAS Page 414 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Else

mov imm, reg movhi hil(imm), r0, rl

movea lo(imm), rl, reg

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are O

mov imm, reg movhi hi(imm), r0, reg
ElseNOte
mov imm, reg mov imm, reg

Note A 16-bit mov instruction is replaced by a 48-bit mov instruction.

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the
sdata/sbss-attribute section

mov !label, reg movea !label, r0, reg
mov %$label, reg movea %$label, r0, reg
mov Slabel, reg movea Slabel, r0, reg

(e) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section

mov #label, reg movhi hil (#label), r0, rl
movea lo(#label), rl, reg
mov label, reg movhi hil(label), r0, rl

movea lo(label), rl, reg

mov $label, reg movhi hil(slabel), r0, rl

movea lo($label), rl, reg

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute sectionN°t® [V850E]

mov #label, reg mov #label, reg
mov label, reg mov label, reg
mov Slabel, reg mov Slabel, reg

Note A 16-bit mov instruction is replaced by a 48-bit mov instruction.

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 415 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Flag]

cy

ov

IS —

z -

SAT

[Caution]

- If rO is specified by both the first and the second operand of syntax "mov regl, reg2", the result of assembly
becomes a nop instruction code.

- When the V850EX is used as the target device, if an absolute expression having a value in the range between -6
and 15 is specified by the first operand and r0 is specified by the second operand of syntax "mov imm, reg2", the
as850 outputs the following message and stops assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

- If an absolute expression having a value exceeding the range of -32,768 to +32,767, #label, or a relative expres-
sion having label, and a relative expression having $label without a definition in the sdata/sbss attribute section are
specified as the first operand of an instruction in syntax "mov imm, reg2", and if instruction expansion is sup-
pressed with quasi directive .option nomacro specified, when the target device is the V850EX, the as850 outputs
the following message and stops assembling.

In this case, use the mov32 instruction.

E3249: illegal syntax

R20UT0553EJ0100 Rev.1.00 RENESAS Page 416 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

movea

Move Effective Address

[Syntax]

- movea imm, regl, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hil() applied

[Function]
Adds the value of the absolute expression, relative expression, or expression with hi(), lo(), or hil() applied, specified
by the first operand, to the value of the register specified by the second operand, and stores the result in the register

specified by the third operand.

[Description]

- If the following is specified for imm, the as850 generates one movea machine instructionNOte.

- If rO is specified by regl, the as850 recognizes specified syntax "mov imm, reg2".

(a) Absolute expression having a value in the range of -32,768 to +32,767

movea imml6, regl, reg2 movea immlée, regl, reg2

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

movea $label, regl, reg2 movea Slabel, regl, reg2

(c) Relative expression having !label or %label

movea !label, regl, reg2 movea !label, regl, reg2

movea %label, regl, reg2 movea $label, regl, reg2

(d) Expression with hi(), lo(), or hil()

movea imml6, regl, reg2 movea immlée, regl, reg2

Note The movea machine instruction takes an immediate value in a range of -32,768 to +32,767 (0xffff8000 to 0x7fff)

as the first operand.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 417 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If the following is specified for imm, the as850 executes instruction expansion to generate one or more machine
instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

movea imm, regl, reg2 movhi hi(imm), regl, reg2

Else

movea imm, regl, reg2 movhi hil(imm), regl, rl
movea lo(imm), rl, reg2

(b) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section

movea #label, regl, reg2 movhi hil (#label), regl, rl
movea lo(#label), rl, reg2
movea label, regl, reg2 movhi hil(label), regl, rl

movea lo(label), rl, reg2

movea $label, regl, reg2 movhi hil($label), regl, rl

movea lo($label), rl, reg2

[Flag]

ov

SAT

[Caution]

- If rO is specified by the third operand when the V850EX is used as the target device, the as850 outputs the follow-
ing message and stops assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

With a device other than the V850EX, the as850 outputs the following message and continues assembling.

W3013: register r0 used as destination register

R20UT0553EJ0100 Rev.1.00 RENESAS Page 418 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

movhi

Move High half-word

[Syntax]

- movhi imm16, regl, reg2

The following can be specified for imm16:
- Absolute expression having a value of up to 16 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hil() applied

[Function]

Adds word data for which the higher 16 bits are specified by the first operand and the lower 16 bits are 0, to the value
of the register specified by the second operand, and stores the result in the register specified by the third operand

[Description]

The as850 generates one movhi machine instruction.

[Flag]

cy

ov

IS —

z -

SAT

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 65,535 is specified as imm16, the as850 out-
puts the following message and stops assembling.

E3231: illegal operand (range error in immediate)

- If rO is specified by the third operand when the V850EX is used as the target device, the as850 outputs the follow-
ing message and stops assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

With a device other than the V850EX, the as850 outputs the following message and continues assembling.

W3013: register r0 used as destination register

R20UT0553EJ0100 Rev.1.00 RENESAS Page 419 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

mov32

32 bit Move [V850E]

[Syntax]

- mov32 imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

Stores the value of the absolute or relative expression specified as the first operand in the register specified as the sec-
ond operand.

[Description]

The as850 generates one 48-bit machine language mov instruction.

[Flag]

cy

ov

IS —

d -

SAT

R20UT0553EJ0100 Rev.1.00 RENESAS Page 420 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

cmov

Conditional Move [V850E]

[Syntax]

- cmov imm4, regl, reg2, reg3
- cmov imm4, imm, reg2, reg3
- cmovcend regl, ret2, reg3
- cmovend imm, reg2, reg3

The following can be specified for imm4:

- Constant expression having a value of up to 4 bitsNote

Note The cmov machine instruction takes an immediate value in the range of 0 to 15 (0x0 to Oxf) as the first operand.

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits

[Function]

- Syntax "cmov imm4, regl, reg2, reg3"
Compares the flag condition indicated by the value of the lower 4 bits of the value of the constant expression spec-
ified by the first operand with the current flag condition. If a match is found, the register value specified by the sec-
ond operand is stored in the register specified by the fourth operand; otherwise, the register value specified by the
third operand is stored in the register specified by the fourth operand.

- Syntax "cmov imm4, imm, reg2, reg3"
Compares the flag condition indicated by the value of the lower 4 bits of the constant expression specified by the
first operand with the current flag condition. If a match is found, the value of the absolute expression specified by
the second operand is stored in the register specified by the fourth operand; otherwise, the register value specified
by the third operand is stored in the register specified by the fourth operand.

- Syntax "cmovcend regl, ret2, reg3"
Compares the flag condition indicated by string cnd with the current flag condition. If a match is found, the register
value specified by the first operand is stored in the register specified by the third operand; otherwise, the register
value specified by the second operand is stored in the register specified by the third operand.

- Syntax "cmovcnd imm, reg2, reg3"
Compares the flag condition indicated by string cnd with the current flag condition. If a match is found, the value of
the absolute expression specified by the first operand is stored in the register specified by the third operand; other-
wise, the register value specified by the second operand is stored in the register specified by the third operand.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 421 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Table 4-49. cmovcnd Instruction List

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion
cmovgt ((SxorOV)orz)=0 Greater than (signed) cmov 0xf
cmovge (SxorQV)=0 Greater than or equal (signed) cmov 0xe
cmovlt (SxoroVv)=1 Less than (signed) cmov 0x6
cmovle ((SxorOV)orz)=1 Less than or equal (signed) cmov 0x7
cmovh (Cyorz)=0 Higher (Greater than) cmov 0xb
cmovnl CY=0 Not lower (Greater than or equal) cmov 0x9
cmovl Cy=1 Lower (Less than) cmov 0x1
cmovnh (Cyorz)=1 Not higher (Less than or equal) cmov 0x3
cmove zZ=1 Equal cmov 0x2
cmovne Z=0 Not equal cmov 0xa
cmovv ov=1 Overflow cmov 0x0
cmovnv ov=0 No overflow cmov 0x8
cmovn S=1 Negative cmov 0x4
cmovp S=0 Positive cmov 0xc
cmove Cy=1 Carry cmov 0x1
cmovnc CY=0 No carry cmov 0x9
cmovz Z=1 Zero cmov 0x2
cmovnz Z=0 Not zero cmov 0Oxa
cmovt always 1 Always 1 cmov 0x5
cmovsa SAT =1 Saturated cmov 0xd

[Description]

- If the instruction is executed in syntax "cmov imm4, regl, reg2, reg3", the as850 generates one cmov machine

instruction

Note

Note The cmov machine instruction takes an immediate value in the range of -16 to +15 (OxfffffffO to Oxf) as the

second operand.

- If the following is specified as imm in syntax "cmov imm4, imm, reg2, reg3", the as850 generates one cmov

machine instruction.

(a) Absolute expression having a value in the range of -16 to +15

If all the lower 16 bits of the value of imm are 0

cmov

imm4, imm5, reg2, reg3l

cmov

imm4, imm5,

regz2,

reg3

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 422 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If the following is specified as imm in syntax "cmov imm4, imm, reg2, reg3", the as850 executes instruction expan-

sion to generate two or more machine instructions.

(@) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

cmov

imm4,

immlé, reg2, reg3

movea

cmov

immlé6, r0, rl

imm4, rl, reg2, reg3

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

cmov imm4, imm, reg2, reg3 movhi hi(imm), r0, rl

cmov imm4, rl, reg2, reg3
Else
cmov imm4, imm, reg2, reg3 mov imm, rl

cmov imm4, rl, reg2, reg3

(c) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbhss-attribute section

cmov imm4, #label, reg2, reg3 mov #label, rl

cmov imm4, rl, reg2, reg3
cmov imm4, label, reg2, reg3 mov label, ril

cmov imm4, rl, reg2, reg3
cmov imm4, S$label, reg2, reg3 mov Slabel, rl

cmov imm4, rl, reg2, reg3

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the

sdata/shss-attribute section

cmov imm4, !label, reg2, reg3 movea !label, r0, rl

cmov imm4, rl, reg2, reg3
cmov imm4, %label, reg2, reg3 movea %$label, r0, rl

cmov imm4, rl, reg2, reg3
cmov imm4, Slabel, reg2, reg3 movea Slabel, r0, ril

cmov imm4, rl, reg2, reg3

- If the instruction is executed in syntax "cmovcnd regl, ret2, reg3", the as850 generates the corresponding cmov
instruction (see Table 4-49. cmovcnd Instruction List) and expands it to syntax "cmov imm4, regl, reg2, reg3".

- If the following is specified as imm in syntax "cmovcnd imm, reg2, reg3", the as850 generates the corresponding
cmov instruction (see Table 4-49. cmovcnd Instruction List) and expands it to syntax "cmov imm4, imm, reg2,
reg3".

(@) Absolute expression having a value in the range of -16 to +15

R20UTO0553EJ0100 Rev.1.00
Apr 01, 2011

RENESAS Page 423 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If the following is specified as imm in syntax "cmovcnd imm, reg2, reg3", the as850 executes instruction expansion

to generate two or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

cmovend immlé, reg2, reg3

movea

cmovend

immlé, r0, rl

rl, reg2, reg3

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

cmovend imm, reg2, reg3 movhi hi(imm), r0, rl
cmovend rl, reg2, reg3
Else
cmovend imm, reg2, reg3l mov imm, ril
cmovend rl, reg2, reg3

(c) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

cmovend #label, reg2, reg3 mov #label, ril
cmovend rl, reg2, reg3

cmovend label, reg2, reg3 mov label, ril
cmovend rl, reg2, reg3

cmovend $label, reg2, reg3l mov $label, rl
cmovend rl, reg2, reg3

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the

sdata/sbss-attribute section

cmovend !label, reg2, reg3 movea !label, r0, rl
cmovend rl, reg2, reg3
cmovend immé4, %$label, reg2, reg3l movea %$label, r0, rl
cmovend rl, reg2, reg3
cmovend immé4, $label, reg2, reg3l movea $label, r0, rl
cmovend rl, reg2, reg3
R20UT0553EJ0100 Rev.1.00 RENESAS Page 424 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Flag]

cy

ov

IS —

z -

SAT

[Caution]

- If a constant expression having a value exceeding 4 bits is specified as imm4 of the cmov instruction, the as850
outputs the following message.
If the value exceeds 4 bits, the as850 masks the value with Oxf and continues assembling.

W3011: illegal operand (range error in immediate)

- If anything other than a constant expression (undefined symbol and label reference) is specified as imm4 of the
cmov instruction, the as850 outputs the following message and stops assembling.

E3249: illegal syntax

R20UT0553EJ0100 Rev.1.00 RENESAS Page 425 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

setf

Set Flag Condition

[Syntax]

- setf imm4, reg
- setfcnd reg

The following can be specified for imm4:

- Absolute expression having a value of up to 4 bits

[Function]

- Syntax "setf imm4, reg"

Compares the status of the flag specified by the value of the lower 4 bits of the absolute expression specified by
the first operand with the current flag condition. If they are found to match, 1 is stored in the register specified by

the second operand; otherwise, 0 is stored in the register specified by the second operand.

- Syntax "setfcnd reg”

Compares the status of the flag indicated by string cnd with the current flag condition. If they are found to match, 1

is stored in the register specified by the second operand; otherwise, 0 is stored in the register specified by the sec-

ond operand.

[Description]

- If the instruction is executed in syntax"setf imm4, reg",the as850 generates one satf machine instruction.

- If the instruction is executed in syntax "setfcnd reg”, the as850 generates the corresponding setf instruction (see

Table 4-50. setfcnd Instruction List) and expands it to syntax "setf imm4, reg”.

Table 4-50. setfcnd Instruction List

Apr 01, 2011

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion
setfgt ((SxorOV)orZz)=0 Greater than (signed) setf O0xf
setfge (Sxor0OVv)=0 Greater than or equal (signed) setf Oxe
setflt (Sxor0QVv)=1 Less than (signed) setf 0x6
setfle ((SxorOV)orz)=1 Less than or equal (signed) setf 0x7
setfh (CYorz)=0 Higher (Greater than) setf 0xb
setfnl CY=0 Not lower (Greater than or equal) setf 0x9
setfl Cy=1 Lower (Less than) setf 0x1
setfnh (CYorz)=1 Not higher (Less than or equal) setf 0x3
setfe Z=1 Equal setf 0x2
setfne Z=0 Not equal setf Oxa
setfv ov=1 Overflow setf 0x0
setfnv ov=0 No overflow setf 0x8
setfn S=1 Negative setf 0x4
setfp S=0 Positive setf 0xc
setfc Cy=1 Carry setf 0x1
R20UT0553EJ0100 Rev.1.00 RENESAS Page 426 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion
setfnc CY=0 No carry setf 0x9
setfz Z=1 Zero setf 0x2
setfnz Z=0 Not zero setf Oxa
setft always 1 Always 1 setf 0x5
setfsa SAT=1 Saturated setf 0xd

[Flag]
CcY
ov
S -
7 -
SAT
[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the setf instruction, the as850
outputs the following message and continues assembling using four low-order bits of a specified value.

W3011: illegal operand (range error in immediate).

R20UT0553EJ0100 Rev.1.00 RENESAS Page 427 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

sasf

Shift And Set Flag Condition [V850E]

[Syntax]

- sasf imm4, reg
- sasfcnd reg

The following can be specified for imm4:
- Absolute expression having a value of up to 4 bits

[Function]

- Syntax "sasf imm4, reg"
Compares the flag condition indicated by the value of the lower 4 bits of the absolute expression specified by the
first operand (see Table 4-51. sasfcnd Instruction List) with the current flag condition. If a match is found, the con-
tents of the register specified by the second operand are shifted logically 1 bit to the left and ORed with 1, and the
result stored in the register specified by the second operand; otherwise, the contents of the register specified by
the second operand are logically shifted 1 bit to the left and the result stored in the register specified by the second
operand.

- Syntax "sasfcnd reg”
Compares the flag condition indicated by string cnd with the current flag condition. If a match is found, the con-
tents of the register specified by the second operand are shifted logically 1 bit to the left and ORed with 1, and the
result stored in the register specified by the second operand; otherwise, the contents of the register specified by
the second operand are shifted logically 1 bit to the left and the result stored in the register specified by the second
operand.

[Description]

- If the instruction is executed in syntax "sasf imm4, reg", the as850 generates one sasf machine instruction.
- If the instruction is executed in syntax "sasfcnd reg", the as850 generates the corresponding sasf instruction (see
Table 4-51. sasfcnd Instruction List) and expands it to syntax “"sasfimm4, reg”.

Table 4-51. sasfcnd Instruction List

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion
sasfgt ((SxorOV)orz)=0 Greater than (signed) sasf Oxf
sasfge (SxoroVv)=0 Greater than or equal (signed) sasf Oxe
sasflt (Sxorov)=1 Less than (signed) sasf 0x6
sasfle ((SxorOV)orz)=1 Less than or equal (signed) sasf 0x7
sasfh (CYorz)=0 Higher (Greater than) sasf 0xb
sasfnl CY=0 Not lower (Greater than or equal) sasf 0x9
sasfl Cy=1 Lower (Less than) sasf 0x1
sasfnh (CYorz)=1 Not higher (Less than or equal) sasf 0x3
sasfe zZ=1 Equal sasf 0x2
sasfne Z=0 Not equal sasf Oxa
sasfv ov=1 Overflow sasf 0x0
R20UT0553EJ0100 Rev.1.00 RENESAS Page 428 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion
sasfnv ov=0 No overflow sasf 0x8
sasfn S=1 Negative sasf 0x4
sasfp S=0 Positive sasf 0Oxc
sasfc Cy=1 Carry sasf 0x1
sasfnc CY=0 No carry sasf 0x9
sasfz Z=1 Zero sasf 0x2
sasfnz Z=0 Not zero sasf Oxa
sasft always 1 Always 1 sasf 0x5
sasfsa SAT=1 Saturated sasf 0xd

[Flag]
CcY ---
ov ---
S -
d -
SAT -
[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the sasf instruction, the as850

outputs the following message and continues assembling using four low-order bits of a specified value.

W3011: illegal operand (range error in immediate).

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 429 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

45.8 Saturated operation instructions

This section describes the saturated operation instructions. Next table lists the instructions described in this section.

Table 4-52. Saturated Operation Instructions

Instruction Meaning
satadd Saturated addition
satsub Saturated subtraction
satsubi Saturated subtraction (immediate)
satsubr Saturated reverse subtraction
R20UT0553EJ0100 Rev.1.00 RENESAS Page 430 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

satadd

Saturated Add

[Syntax]

- satadd reg1l, reg2
- satadd imm, reg2
- satadd reg1l, reg2, reg3 [VB50EZ2]

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "satadd reg1l, reg2"

Adds the value of the register specified by the first operand to the value of the register specified by the second
operand, and stores the result in the register specified by the second operand. If the result exceeds the maximum

positive value of OxTfffffff, however, Ox7fffffff is stored in the register specified by the second operand. Likewise, if
the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the register specified by
the second operand. In both cases, the SAT flag is set to 1.

- Syntax "satadd imm, reg2"

Adds the value of the absolute expression or relative expression specified by the first operand to the value of the

register specified by the second operand, and stores the result in the register specified by the second operand. If

the result exceeds the maximum positive value of Ox7fffffff, however, Ox7fffffff is stored in the register specified by
the second operand. Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is
stored in the register specified by the second operand. In both cases, the SAT flag is set to 1.

- Syntax "satadd regl, reg2, reg3"

Adds the value of the register specified by the first operand to the value of the register specified by the second
operand, and stores the result in the register specified by the third operand. If the result exceeds the maximum

positive value of OxTfffffff, however, Ox7fffffff is stored in the register specified by the second operand. Likewise, if
the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the register specified by

the third operand. In both cases, the SAT flag is set to 1.

[Description]

- If the instruction is executed in syntax "satadd regl, reg2" or "satadd reg1l, reg2, reg3", the as850 generates one

satadd machine instruction.

- If the following is specified for imm in syntax "satadd imm, reg2", the as850 generates one satadd machine instruc-

tionNote,

(a) Absolute expression having a value in the range of -16 to +15

satadd imm5, reg

satadd

imm5, reg

Note The satadd machine instruction takes a register or immediate value in the range of -16 to +15 (OxfffffffO to Oxf) as

the first operand.

R20UT0553EJ0100 Rev.1.00 ENESAS

Apr 01, 2011

Page 431 of 943

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If the following is specified for imm in syntax "satadd imm, reg2", the as850 executes instruction expansion to gen-
erate one or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

satadd

immlé6, reg

movea

satadd

immlé6, r0, rl

rl, reg

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

satadd imm, reg movhi hi(imm), r0, rl
satadd rl, reg
Else
satadd imm, reg movhi hil(imm), r0, rl
movea lo(imm), rl, rl
satadd rl, reg

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are O

satadd imm, reg movhi hi(imm), r0, rl
satadd rl, reg
Else
satadd imm, reg mov imm, ril
satadd rl, reg

(d) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

satadd $label, reg movea $label, r0, rl
satadd rl, reg
R20UT0553EJ0100 Rev.1.00 RENESAS Page 432 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(e) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section

satadd #label, reg movhi hil (#label), r0, rl
movea lo(#label), rl, rl

satadd rl, reg

satadd 1label, reg movhi hil(label), r0, rl
movea lo(label), rl, rl

satadd rl, reg

satadd $label, reg movhi hil(slabel), r0, rl

movea lo($label), rl, ri

satadd rl, reg

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section [V850E]

satadd #label, reg mov #label, ril

satadd rl, reg

satadd 1label, reg mov label, rl

satadd rl, reg

satadd $label, reg mov $label, rl

satadd rl, reg

[Flag]
CY 1 if a carry occurs from MSB (Most Significant Bit), O if not
oV 1 if Integer-Overflow occurs, 0 if not
S 1 if the result is negative, 0 if not
z 1 if the result is 0, O if not
SAT 1ifOV =1, -if not
[Caution]

- If the instruction is executed in syntax "satadd regl, reg2" or "satadd imm, reg2", if the target device is V850Ex and
r0 is specified as the second operand, the following message is output and assembly is stopped.

E3240: illegal operand (can not use r0 as destination in V850E mode)

With a device other than the V850EX, the as850 outputs the following message and continues assembling.

W3013: register r0 used as destination register

R20UT0553EJ0100 Rev.1.00 RENESAS Page 433 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

satsub

Saturated Subtract

[Syntax]

- satsub regl, reg2
- satsub imm, reg2
- satsub regl, reg2, reg3 [V850E2]

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "satsub reg1, reg2"
Subtracts the value of the register specified by the first operand from the value of the register specified by the sec-
ond operand, and stores the result in the register specified by the third operand. If the result exceeds the maxi-
mum positive value of Ox7fffffff, however, Ox7fffffff is stored in the register specified by the second operand.
Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the register
specified by the second operand. In both cases, the SAT flag is setto 1

- Syntax "satsub imm, reg2"
Subtracts the value of the absolute expression or relative expression specified by the first operand from the value
of the register specified by the second operand, and stores the result in the register specified by the second oper-
and. If the result exceeds the maximum positive value of Ox7fffffff, however, OxTfffffff is stored in the register spec-
ified by the second operand. Likewise, if the result exceeds the maximum negative value of 0x80000000,
0x80000000 is stored in the register specified by the second operand. In both cases, the SAT flag is set to 1.

- Syntax "satsub reg1, reg2, reg3"
Subtracts the value of the register specified by the first operand from the value of the register specified by the sec-
ond operand, and stores the result in the register specified by the second operand. If the result exceeds the maxi-
mum positive value of Ox7fffffff, however, Ox7fffffff is stored in the register specified by the second operand.
Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the register
specified by the third operand. In both cases, the SAT flag is set to 1.

[Description]

- If the instruction is executed in syntax "satsub regl, reg2" or "satsub regl, reg2, reg3", the as850 generates one
satsub machine instruction.

- If the instruction is executed in syntax "satsub imm, reg2", the as850 executes instruction expansion to generate
one or more machine instructionsNOte,

(@ 0

satsub 0, reg satsub r0, reg

(b) Absolute expression having a value in the range of -32,768 to +32,767

satsub immlé, reg satsubi imml6, reg, reg

R20UT0553EJ0100 Rev.1.00 RENESAS Page 434 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

satsub imm, reg movhi hi(imm), r0, rl

satsub rl, reg

Else

satsub imm, reg movhi hil(imm), r0, rl

movea lo(imm), rl, ril

satsub rl, reg

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are O

satsub imm, reg movhi hi(imm), r0, rl

satsub rl, reg

Else

satsub imm, reg mov imm, ril

satsub rl, reg

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

satsub S$label, reg satsubi $label, reg, reg

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

satsub #label, reg movhi hil (#label), r0, rl
movea lo(#label), rl, rl

satsub rl, reg

satsub label, reg movhi hil(label), r0, rl
movea lo(label), rl, rl

satsub rl, reg

satsub $label, reg movhi hil($label), r0, rl

movea lo($label), rl, ril

satsub rl, reg

R20UT0553EJ0100 Rev.1.00 RENESAS Page 435 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(9) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section [V850E]

satsub #label, reg mov #label, rl

satsub rl, reg

satsub label, reg mov label, ril

satsub rl, reg

satsub S$label, reg mov Slabel, rl

satsub rl, reg

Note The satsub machine instruction does not take an immediate value as an operand.

[Flag]
CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not
ov 1 if Integer-Overflow occurs, 0 if not
S 1 if the result is negative, 0 if not
z 1 if the resultis 0, O if not
SAT 1ifOV =1, -if not
[Caution]

- If the instruction is executed in syntax "satsub regl, reg2" or "satsub imm, reg2", if the target device is V850Ex and
r0 is specified as the second operand, the following message is output and assembly is stopped.

E3240: illegal operand (can not use r0 as destination in V850E mode)

With a device other than the V850EX, the as850 outputs the following message and continues assembling.

W3013: register r0 used as destination register

R20UT0553EJ0100 Rev.1.00 RENESAS Page 436 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

satsubi

Saturated Subtract Immediate

[Syntax]

- satsubi imm, regl, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hil() applied

[Function]

Subtracts the value of the absolute expression, relative expression, or expression with hi(), lo(), or hil() applied spec-
ified by the first operand from the value of the register specified by the second operand, and stores the result in the regis-
ter specified by the third operand. If the result exceeds the maximum positive value of Ox7fffffff, however, Ox7fffffff is
stored in the register specified by the third operand. Likewise, if the result exceeds the maximum negative value of
0x80000000, 0x80000000 is stored in the register specified by the third operand. In both cases, the SAT flag is set to 1.

[Description]

- If the following is specified for imm, the as850 generates one satsubi machine instructionN°t.

(a) Absolute expression having a value in the range of -32,768 to +32,767

satsubi immlé, regl, reg2 satsubi immlé, regl, reg2

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

satsubi $label, regl, reg2 satsubi $label, regl, reg2

(c) Relative expression having !label or %label

satsubi !label, regl, reg2 satsubi !label, regl, reg2

satsubi %label, regl, reg2 satsubi %label, regl, reg2

(d) Expression with hi(), lo(), or hil()

satsubi immlé, regl, reg2 satsubi immlé, regl, reg2

Note The satsubi machine instruction takes an immediate value, in the range of -32,768 to +32,767 (0xffff8000 to
0x7fff), as the first operand.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 437 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If the following is specified for imm, the as850 executes instruction expansion to generate one or more machine
instructions

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

satsubi imm, regl, reg2 movhi hi(imm), r0, reg2

satsubr regl, reg2

If all the lower 16 bits of the value of imm are 0 and when reg2 is rO

satsubi imm, regl, r0 movhi hi(imm), r0, rl

satsubr regl, rl

Else

satsubi imm, regl, reg2 movhi hil(imm), r0, rl
movea lo(imm), rl, reg2

satsubr regl, reg2

Other than above and when reg2 is r0

satsubi imm, regl, reg2 movhi hil(imm), r0, rl

movea lo(imm), rl, rl

satsubr regl, rl

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are O

satsubi imm, regl, reg2 movhi hi(imm), r0, reg2

satsubr regl, reg2

Else
satsubi imm, regl, reg2 mov imm, reg2
satsubr regl, reg2
R20UT0553EJ0100 Rev.1.00 RENESAS Page 438 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(c) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section

If reg2 is rO
satsubi #label, regl, r0 movhi hil (#label), r0, ril
movea lo(#label), rl, rl
satsubr regl, rl
satsubi label, regl, r0 movhi hil(label), r0, rl
movea lo(label), rl, rl
satsubr regl, rl
satsubi $label, regl, r0 movhi hil($label), r0, rl
movea lo($label), rl, ri
satsubr regl, rl
Else
satsubi #label, regl, reg2 movhi hil (#label), r0, ril
movea lo(#label), rl, reg2
satsubr regl, reg2
satsubi label, regl, reg2 movhi hil(label), r0, rl
movea lo(label), rl, reg2
satsubr regl, reg2
satsubi $label, regl, reg2 movhi hil($label), r0, rl
movea lo(slabel), rl, reg2
satsubr regl, reg2

(d) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section [V850E]

satsubi #label, regl, reg2 movhi #label, reg2

satsubr regl, reg2

satsubi label, regl, reg2 mov label, reg2

satsubr regl, reg2

satsubi $label, regl, reg2 mov Slabel, reg2

satsubr regl, reg2

[Flag]
CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not
oV 1 if Integer-Overflow occurs, 0 if not
S 1 if the result is negative, 0 if not
z 1 if the result is 0, O if not
SAT 1ifOV =1, -if not
R20UT0553EJ0100 Rev.1.00 RENESANS Page 439 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Caution]

- If rO is specified by the second operand when the V850EX is used as the target device, the as850 outputs the fol-
lowing message and stops assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

With a device other than the V850EX, the as850 outputs the following message and continues assembling.

W3013: register r0 used as destination register

R20UT0553EJ0100 Rev.1.00 RENESAS Page 440 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

satsubr

Saturated Subtract Reverse

[Syntax]

- satsubr regl, reg2
- satsubr imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "satsubr regl, reg2"
Subtracts the value of the register specified by the second operand from the value of the register specified by the
first operand, and stores the result in the register specified by the second operand. If the result exceeds the maxi-
mum positive value of Ox7fffffff, however, OxTfffffff is stored in the register specified by the second operand. Like-
wise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the register
specified by the second operand. In both cases, the SAT flag is set to 1.

- Syntax "satsubr imm, reg2"
Subtracts the value of the register specified by the second operand from the value of the absolute expression or
relative expression specified by the first operand, and stores the result in the register specified by the second oper-
and. If the result exceeds the maximum positive value of Ox7fffffff, however, OxTfffffff is stored in the register spec-
ified by the second operand. Likewise, if the result exceeds the maximum negative value of 0x80000000,
0x80000000 is stored in the register specified by the second operand. In both cases, the SAT flag is set to 1.

[Description]

- If the instruction is executed in syntax "satsubr regl, reg2", the as850 generates one satsubr machine instruction.
- If the instruction is executed in syntax "satsubr imm, reg2", the as850 executes instruction expansion to generate

one or more machine instructionsN°te,

(@) O

satsubr 0, reg satsubr r0, reg

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

satsubr imm5, reg mov imm5, ril

satsubr rl, reg

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

satsubr immlé, reg movea immlé, r0, rl

satsubr rl, reg

R20UT0553EJ0100 Rev.1.00 RENESAS Page 441 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

satsubr imm, reg movhi hi(imm), r0, rl

satsubr rl, reg

Else

satsubr imm, reg movhi hil(imm), r0, rl

movea lo(imm), rl, ril

satsubr rl, reg

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are O

satsubr imm, reg movhi hi(imm), r0, rl

satsubr rl, reg

Else

satsubr imm, reg mov imm, ril

satsubr rl, reg

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

satsubr S$label, reg movea Slabel, r0, rl

satsubr rl, reg

(g) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

satsubr #label, reg movhi hil(#label), r0, rl
movea lo(#label), rl, rl

satsubr rl, reg

satsubr label, reg movhi hil(label), r0, rl
movea lo(label), rl, rl

satsubr rl, reg

satsubr $label, reg movhi hil(slabel), r0, ril

movea lo($label), rl, rl

satsubr rl, reg

R20UT0553EJ0100 Rev.1.00 RENESAS Page 442 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(h) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section [V850E]

satsubr #label, reg mov #label, rl
satsubr rl, reg

satsubr label, reg mov label, ril
satsubr rl, reg

satsubr S$label, reg mov Slabel, rl
satsubr rl, reg

Note The satsubr machine instruction does not take an immediate value as an operand.

[Flag]
CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not
ov 1 if Integer-Overflow occurs, 0 if not
S 1 if the result is negative, 0 if not
z 1 if the resultis 0, O if not
SAT 1ifOV =1, -if not
[Caution]

- If rO is specified by the second operand when the V850EX is used as the target device, the as850 outputs the fol-

lowing message and stops assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

With a device other than the V850EX, the as850 outputs the following message and continues assembling.

W3013: register r0 used as destination register

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 443 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

45.9 Logical instructions

This section describes the logical instructions. Next table lists the instructions described in this section.

Table 4-53. Logical Instructions

Instruction Meanings

or Logical sum

ori Logical sum (immediate)

xor Exclusive OR

XOri Exclusive OR (immediate)

and Logical product

andi Logical product (immediate)

not Logical negation (takes 1's complement)

shr Logical right shift

sar Arithmetic right shift

shi Logical left shift

sxb Sign extension of byte data [V850E]

sxh Sign extension of halfword data [V850E]

zxb Zero extension of byte data [V850E]

zxh Zero extension of halfword data [V850E]

bsh Byte swap of halfword data [V850E]

bsw Byte swap of word data [V850E]

hsh Half-word data half-word swap [V850E2]

hsw Halfword swap of word data [V850E]

tst Test

schOl Bit (0) search from MSB side [V850E2]

schOor Bit (0) search from LSB side [V850E2]

schil Bit (1) search from MSB side [V850E2]

schilr Bit (1) search from LSB side [V850E2]
R20UT0553EJ0100 Rev.1.00 RENESAS Page 444 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

or

Or

[Syntax]

-or regl, reg2
-or imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "or regl, reg2"
ORs the value of the register specified by the first operand with the value of the register specified by the second
operand, and stores the result in the register specified by the second operand.

- Syntax "or imm, reg2"
ORs the value of the absolute expression or relative expression specified by the first operand with the value of the
register specified by the second operand, and stores the result in the register specified by the second operand.

[Description]

- When this instruction is executed in syntax "or regl, reg2", the as850 generates one or machine instruction.
- When this instruction is executed in syntax "or imm, reg2", the as850 executes instruction expansion to generate

one or more machine instructionsN°te,

(@ o0

or 0, reg or r0, reg

(b) Absolute expression having a value in the range of 1 to 65,535

or imm5, reg ori immlé, reg, reg

(c) Absolute expression having a value in the range of -16 to -1

or imml6, reg mov imm5, ril

or rl, reg

(d) Absolute expression having a value in the range of -32,768 to -17

or imml6, reg movea immlé, r0, rl
or rl, reg
R20UT0553EJ0100 Rev.1.00 RENESAS Page 445 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(e) Absolute expression exceeding the above ranges

If all the lower 16 bits of the value of imm are 0

or imm, reg movhi hi(imm), r0, rl
or rl, reg
Else
or imm, reg movhi hil(imm), r0, rl
movea lo(imm), rl, ril
or rl, reg
(f) Absolute expression exceeding the above ranges [V850E]
If all the lower 16 bits of the value of imm are O
or imm, reg movhi hi(imm), r0, rl
or rl, reg
Else
or imm, reg mov imm, ril
or rl, reg

(9) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

or

Slabel,

reg

movea

or

Slabel,

rl,

reg

r0,

rl

(h) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/shss-attribute section

or #label, reg movhi hil(#label), r0, rl
movea lo(#label), rl, rl
or rl, reg

or label, reg movhi hil(label), r0, rl
movea lo(label), rl, rl
or rl, reg

or Slabel, reg movhi hil(slabel), r0, ril
movea lo($label), rl, rl
or rl, reg

R20UT0553EJ0100 Rev.1.00 RENESANAS Page 446 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(i) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section [V850E]

or #label, reg mov #label, rl
or rl, reg

or label, reg mov label, ril
or rl, reg

or $label, reg mov Slabel, rl
or rl, reg

Note The or machine instruction does not take an immediate value as an operand.

[Flag]
CcY
ov 0
S 1 if the word data MSB of the result is 1, O if not
z 1if the resultis 0, 0 if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESAS Page 447 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ori

Or Immediate

[Syntax]

-ori imm, regl, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hil() applied

[Function]

ORs the value of the absolute expression, relative expression, or expression with hi(), lo(), or hil() applied specified
by the first operand with the value of the register specified by the second operand, and stores the result in the register
specified by the third operand.

[Description]

- If the following is specified for imm, the as850 generates one ori machine instruction™Note.

(a) Absolute expression having a value in the range of 0 to 65,535

ori immlé, regl, reg2 ori immlé6, regl, reg2

(b) Relative expression having !label or %label

ori !label, regl, reg2 ori !label, regl, reg2

ori $label, regl, reg2 ori %$label, regl, reg2

(c) Expression with hi(), lo(), or hil()

ori immlé, regl, reg2 ori immlé6, regl, reg2

Note The ori machine instruction takes an immediate value of 0 to 65,535 (0 to Oxffff) as the first operand.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 448 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If the following is specified for imm, the as850 executes instruction expansion to generate one or more machine
instructions.

(@) Absolute expression having a value in the range of -16 to -1

ori imm5, regl, reg2 mov imm5, reg2

or regl, reg2

(b) Absolute expression having a value in the range of -32,768 to -17

If reg2is r0

ori imml6, regl, r0 movea immlé6, r0, rl
or regl, rl

Else

ori imml6, regl, reg2 movea immlé, r0, reg2
or regl, reg2

(c) Absolute expression exceeding the above ranges
If all the lower 16 bits of the value of imm are O

ori imm, regl, reg2 movhi hi(imm), r0, reg2

or regl, reg2

If all the lower 16 bits of the value of imm are 0 and when reg2 is rO

ori imm, regl, rO movhi hi(imm), r0, rl
or regl, rl

Else

ori imm, regl, reg2 movhi hil(imm), r0, ril
movea lo(imm), rl, reg2
or regl, reg2

Other than above and when reg2 is r0

ori imm, regl, r0 movhi hil(imm), r0, ril
movea lo(imm), rl, rl
or regl, rl
R20UT0553EJ0100 Rev.1.00 RENESAS Page 449 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) Absolute expression exceeding the above ranges [V850E]
If all the lower 16 bits of the value of imm are O

ori imm, regl, reg2 movhi hi(imm), r0, reg2

or regl, reg2

If all the lower 16 bits of the value of imm are 0 and when reg2 is rO

ori imm, regl, rO movhi hi(imm), r0, rl
or regl, rl

Else

ori imm, regl, reg2 mov imm, reg2
or regl, reg2

Other than above and when reg2 is r0

ori imm, regl, r0 mov imm, ril

or regl, rl

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

If reg2is r0
ori Slabel, regl, rO movea $label, r0, rl
or regl, rl
Else
ori $label, regl, reg2 movea $label, r0, reg2
or regl, reg2
R20UT0553EJ0100 Rev.1.00 RENESANS Page 450 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section

If reg2 is rO

ori #label, regl, x0 movhi hil (#label), r0, ril
movea lo(#label), rl, rl
or regl, rl

ori label, regl, x0 movhi hil(label), r0, rl
movea lo(label), rl, rl
or regl, rl

ori Slabel, regl, rO movhi hil($label), r0, rl
movea lo($label), rl, rl
or regl, rl

Else

ori #label, regl, reg2 movhi hil (#label), r0, ril
movea lo(#label), rl, reg2
or regl, reg2

ori label, regl, reg2 movhi hil(label), r0, rl
movea lo(label), rl, reg2
or regl, reg2

ori Slabel, regl, reg2 movhi hil($label), r0, rl
movea lo(slabel), rl, reg2
or regl, reg2

(g) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section [V850E]

If reg2 is rO
ori #label, regl, r0 mov #label, ril
or regl, rl
ori label, regl, rO mov label, ril
or regl, rl
ori Slabel, regl, rO mov $label, rl
or regl, ril
Else
ori #label, regl, reg2 mov #label, reg2
or regl, reg2
ori label, regl, reg2 mov label, reg2
or regl, reg2
ori Slabel, regl, reg2 mov Slabel, reg2
or regl, reg2
R20UT0553EJ0100 Rev.1.00 RENESANS Page 451 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Flag]
CY
ov 0
S 1 if the word data MSB of the result is 1, O if not
z 1 if the result is 0, O if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESAS Page 452 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Xor

Exclusive Or

[Syntax]

- Xor regl, reg2
- Xor imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "xor regl, reg2"
Exclusive-ORs the value of the register specified by the first operand with the value of the register specified by the
second operand, and stores the result in the register specified by the second operand.

- Syntax "xor imm, reg2"
Exclusive-ORs the value of the absolute expression or relative expression specified by the first operand with the
value of the register specified by the second operand, and stores the result in the register specified by the second
operan

[Description]

- When this instruction is executed in syntax "xor regl, reg2", the as850 generates one xor machine instruction.
- When this instruction is executed in syntax "xor imm, reg2", the as850 executes instruction expansion to generate

two or more machine instructionsN°e,

(@ 0

XOor 0, reg XOor r0, reg

(b) Absolute expression having a value in the range of 1 to 65,535

XOor imml6, reg xori immlé, reg, reg

(c) Absolute expression having a value in the range of -16 to -1

XOor imm5, reg mov imm5, rl

XOor rl, reg

(d) Absolute expression having a value in the range of -32,768 to -17

xXor imml6, reg movea immlé, r0, rl
XOor rl, reg
R20UT0553EJ0100 Rev.1.00 RENESAS Page 453 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(e) Absolute expression exceeding the above ranges

If all the lower 16 bits of the value of imm are 0

xXor imm, reg movhi hi(imm), r0, rl
XOor rl, reg

Else

xXor imm, reg movhi hil(imm), r0, rl
movea lo(imm), rl, ril
XOor rl, reg

(f) Absolute expression exceeding the above ranges [V850E]

If all the lower 16 bits of the value of imm are O

xXor imm, reg movhi hi(imm), r0, rl
XOor rl, reg

Else

xXor imm, reg mov imm, ril
XOor rl, reg

(9) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

Xor

Slabel,

reg

movea

Xor

Slabel,

rl,

reg

r0,

rl

(h) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/shss-attribute section

xXor #label, reg movhi hil(#label), r0, rl
movea lo(#label), rl, rl
XOor rl, reg

xXor label, reg movhi hil(label), r0, rl
movea lo(label), rl, rl
XOor rl, reg

xXor Slabel, reg movhi hil(slabel), r0, ril
movea lo($label), rl, rl
XOor rl, reg

R20UT0553EJ0100 Rev.1.00 RENESANAS Page 454 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(i) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]
XOor #label, reg mov #label, rl
XOor rl, reg
XOor label, reg mov label, ril
XOor rl, reg
xXor $label, reg mov Slabel, rl
XOor rl, reg

Note The xor machine instruction does not take an immediate value as an operand.

[Flag]
CcY
ov 0
S 1 if the word data MSB of the result is 1, 0 if not
z 1if the resultis 0, O if not
SAT

R20UTO0553EJ0100 Rev.1.00

Apr 01, 2011

RENESAS

Page 455 of 943

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

XOri

Exclusive Or Immediate

[Syntax]

- xori imm, regl, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hil() applied

[Function]

Exclusive-ORs the value of the absolute expression, relative expression, or expression with hi(), lo(), or hi1() applied
specified by the first operand with the value of the register specified by the second operand, and stores the result in the
register specified by the third operand.

[Description]

- If the following is specified for imm, the as850 generates one xori machine instructionN°t.

(a) Absolute expression having a value in the range of 0 to 65,535

xori immlé, regl, reg2 xori immlé6, regl, reg2

(b) Relative expression having !label or %label

xori !label, regl, reg2 xori !label, regl, reg2

xori %$label, regl, reg2 xori %label, regl, reg2

(c) Expression with hi(), lo(), or hil()

xori immlé, regl, reg2 xori immlé6, regl, reg2

Note The xori machine instruction takes an immediate value of O to 65,535 (0 to Oxffff) as the first operand.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 456 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If the following is specified for imm, the as850 executes instruction expansion to generate one or more machine

instructions

(@) Absolute expression having a value in the range of -16 to -1

xori imm5, regl, reg2 mov

Xor

imm5, reg2

regl, reg2

(b) Absolute expression having a value in the range of -32,768 to -17

If reg2is r0

xori imml6, regl, r0 movea immlé6, r0, rl
XOr regl, rl

Else

xori imml6, regl, reg2 movea immlé, r0, reg2
XOor regl, reg2

(c) Absolute expression exceeding the above ranges
If all the lower 16 bits of the value of imm are O

xori imm, regl, reg2 movhi

Xor

hi(imm), r0, reg2

regl, reg2

If all the lower 16 bits of the value of imm are 0 and when reg2 is rO

xori imm, regl, rO movhi hi(imm), r0, rl
Xor regl, rl

Else

Xori imm, regl, reg2 movhi hil(imm), r0, rl
movea lo(imm), rl, reg2
Xor regl, reg2

Other than above and when reg2 is r0

xori imm, regl, r0 movhi hil(imm), r0, ril
movea lo(imm), rl, rl
Xor regl, rl
R20UT0553EJ0100 Rev.1.00 RENESAS Page 457 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) Absolute expression exceeding the above ranges [V850E]

If all the lower 16 bits of the value of imm are 0

Xori imm, regl, reg2 movhi hi(imm), r0, reg2
Xor regl, reg2

If all the lower 16 bits of the value of imm are 0 and when reg2 is rO

xori imm, regl, rO movhi hi(imm), r0, rl
Xor regl, rl

Else

xori imm, regl, reg2 mov imm, reg2
XOor regl, reg2

Other than above and when reg2 is r0

xori imm, regl, r0 mov imm, ril
XOr regl, rl

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

If reg2is r0
xori Slabel, regl, rO movea $label, r0, rl
Xor regl, rl
Else
xori $label, regl, reg2 movea $label, r0, reg2
Xor regl, reg2
R20UT0553EJ0100 Rev.1.00 RENESANS Page 458 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section

If reg2 is rO

xori #label, regl, x0 movhi hil (#label), r0, ril
movea lo(#label), rl, rl
XOr regl, rl

xori label, regl, x0 movhi hil(label), r0, rl
movea lo(label), rl, rl
XOor regl, rl

xori Slabel, regl, rO movhi hil($label), r0, rl
movea lo($label), rl, ri
XOor regl, rl

Else

xori #label, regl, reg2 movhi hil (#label), r0, ril
movea lo(#label), rl, reg2
Xor regl, reg2

xori label, regl, reg2 movhi hil(label), r0, rl
movea lo(label), rl, reg2
Xor regl, reg2

xori Slabel, regl, reg2 movhi hil($label), r0, rl
movea lo(slabel), rl, reg2
Xor regl, reg2

(g) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section [V850E]

If reg2 is rO

xori #label, regl, r0 mov #label, ril
XOor regl, rl

xori label, regl, rO mov label, ril
XOr regl, rl

xori Slabel, regl, rO mov $label, rl
XOor regl, ril

Else

xori #label, regl, reg2 mov #label, reg2
Xor regl, reg2

xori label, regl, reg2 mov label, reg2
XOor regl, reg2

xori Slabel, regl, reg2 mov Slabel, reg2
Xor regl, reg2

R20UT0553EJ0100 Rev.1.00 RENESANS Page 459 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Flag]
CY
ov 0
S 1 if the word data MSB of the result is 1, O if not
z 1 if the result is 0, O if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESAS Page 460 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

and

And

[Syntax]

-and regl, reg2
-and imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "and reg1l, reg2"
ANDs the value of the register specified by the first operand with the value of the register specified by the second
operand, and stores the result in the register specified by the second operand.

- Syntax "and imm, reg2"
ANDs the value of the absolute expression or relative expression specified by the first operand with the value of the
register specified by the second operand, and stores the result in the register specified by the second operand.

[Description]

- When this instruction is executed in syntax "and regl, reg2", the as850 generates one and machine instruction.
- When this instruction is executed in syntax "and imm, reg2", the as850 executes instruction expansion to generate

one or more machine instructionNot,

(@ o0

and 0, reg and r0, reg

(b) Absolute expression having a value in the range of +1 to +65,535

and imml6, reg andi immlé, reg, reg

(c) Absolute expression having a value in the range of -16 to -1

and imm5, reg mov imm5, ril

and rl, reg

(d) Absolute expression having a value in the range of -32,768 to -17

and imml6, reg movea immlé, r0, rl
and rl, reg
R20UT0553EJ0100 Rev.1.00 RENESAS Page 461 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(e) Absolute expression exceeding the above ranges

If all the lower 16 bits of the value of imm are 0

and imm, reg movhi hi(imm), r0, rl
and rl, reg
Else
and imm, reg movhi hil(imm), r0, rl
movea lo(imm), rl, ril
and rl, reg
(f) Absolute expression exceeding the above ranges [V850E]
If all the lower 16 bits of the value of imm are O
and imm, reg movhi hi(imm), r0, rl
and rl, reg
Else
and imm, reg mov imm, ril
and rl, reg

(9) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

and

Slabel,

reg

movea

and

Slabel,

rl,

reg

r0,

rl

(h) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/shss-attribute section

and #label, reg movhi hil(#label), r0, rl
movea lo(#label), rl, rl
and rl, reg

and label, reg movhi hil(label), r0, rl
movea lo(label), rl, rl
and rl, reg

and Slabel, reg movhi hil(slabel), r0, ril
movea lo($label), rl, rl
and rl, reg

R20UT0553EJ0100 Rev.1.00 RENESANAS Page 462 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(i) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section [V850E]

and #label, reg mov #label, rl
and rl, reg

and label, reg mov label, ril
and rl, reg

and $label, reg mov Slabel, rl
and rl, reg

Note The and machine instruction does not take an immediate value as an operand.

[Flag]
CcY
ov 0
S 1 if the word data MSB of the result is 1, O if not
z 1if the resultis 0, 0 if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESAS Page 463 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

andi

And Immediate

[Syntax]

-andi imm, regl, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression
- Either of the above expressions with hi(), lo(), or hil() applied

[Function]

ANDs the value of the absolute expression, relative expression, or expression with hi(), lo(), or hil() applied specified
by the first operand with the value of the register specified by the second operand, and stores the result into the register
specified by the third operand.

[Description]

- If the following is specified as imm, the as850 generates one andi machine instructionN°t.

(a) Absolute expression having a value in the range of 0 to 65,535

andi immlé, regl, reg2 andi immlé6, regl, reg2

(b) Relative expression having !label or %label

andi !label, regl, reg2 andi !label, regl, reg2

andi %$label, regl, reg2 andi %$label, regl, reg2

(c) Expression with hi(), lo(), or hil()

andi immlé, regl, reg2 andi immlé6, regl, reg2

Note The andi machine instruction takes an immediate value of 0 to 65,535 (0 to Oxffff) as the first operand.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 464 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If the following is specified for imm, the as850 executes instruction expansion to generate one or more machine
instructions.

(@) Absolute expression having a value in the range of -16 to -1

andi imm5, regl, reg2 mov imm5, reg2

and regl, reg2

(b) Absolute expression having a value in the range of -32,768 to -17

If reg2is r0

andi imml6, regl, r0 movea immlé6, r0, rl
and regl, ril

Else

andi imml6, regl, reg2 movea immlé, r0, reg2
and regl, reg2

(c) Absolute expression exceeding the above ranges
If all the lower 16 bits of the value of imm are O

andi imm, regl, reg2 movhi hi(imm), r0, reg2

and regl, reg2

If all the lower 16 bits of the value of imm are 0 and when reg2 is rO

andi imm, regl, rO movhi hi(imm), r0, rl
and regl, rl

Else

andi imm, regl, reg2 movhi hil(imm), r0, ril
movea lo(imm), rl, reg2
and regl, reg2

Other than above and when reg2 is r0

andi imm, regl, r0 movhi hil(imm), r0, ril
movea lo(imm), rl, rl
and regl, rl
R20UT0553EJ0100 Rev.1.00 RENESAS Page 465 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) Absolute expression exceeding the above ranges [V850E]

If all the lower 16 bits of the value of imm are 0

andi imm, regl, reg2 movhi hi(imm), r0, reg2
and regl, reg2
If all the lower 16 bits of the value of imm are 0 and when reg2 is rO
andi imm, regl, rO movhi hi(imm), r0, rl
and regl, rl
Else
andi imm, regl, reg2 mov imm, reg2
and regl, reg2
Other than above and when reg2 is r0
andi imm, regl, reg2 mov imm, ril
and regl, ril

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

If reg2is r0
andi Slabel, regl, rO movea $label, r0, rl
and regl, rl
Else
andi $label, regl, reg2 movea $label, r0, reg2
and regl, reg2
R20UT0553EJ0100 Rev.1.00 RENESANAS Page 466 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(f) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section

If reg2 is rO

andi #label, regl, x0 movhi hil (#label), r0, ril
movea lo(#label), rl, rl
and regl, ril

andi label, regl, x0 movhi hil(label), r0, rl
movea lo(label), rl, rl
and regl, ril

andi Slabel, regl, rO movhi hil($label), r0, rl
movea lo($label), rl, ri
and regl, ril

Else

andi #label, regl, reg2 movhi hil (#label), r0, ril
movea lo(#label), rl, reg2
and regl, reg2

andi label, regl, reg2 movhi hil(label), r0, rl
movea lo(label), rl, reg2
and regl, reg2

andi Slabel, regl, reg2 movhi hil($label), r0, rl
movea lo(slabel), rl, reg2
and regl, reg2

(g) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section [V850E]

If reg2 is rO
andi #label, regl, r0 mov #label, ril
and regl, ril
andi label, regl, rO mov label, ril
and regl, ril
andi Slabel, regl, rO mov $label, rl
and regl, ril
Else
andi #label, regl, reg2 mov #label, reg2
and regl, reg2
andi label, regl, reg2 mov label, reg2
and regl, reg2
andi Slabel, regl, reg2 mov Slabel, reg2
and regl, reg2
R20UT0553EJ0100 Rev.1.00 RENESANS Page 467 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Flag]
CY
ov 0
S 1 if the word data MSB of the result is 1, O if not
z 1 if the result is 0, O if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESAS Page 468 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

not

Not

[Syntax]

-not regl, reg2
-not imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "not regl, reg2"
NOTs (1's complement) the value of the register specified by the first operand, and stores the result in the register
specified by the second operand.

- Syntax "not imm, reg2"
NOTs (1's complement) the value of the absolute expression or relative expression specified by the first operand,
and stores the result in the register specified by the second operand.

[Description]

- When this instruction is executed in syntax "not regl, reg2", the as850 generates one not machine instruction.
- When this instruction is executed in syntax "not imm, reg2", the as850 executes instruction expansion to generate

one or more machine instructionsN°te,

(@ o0

not 0, reg not r0, reg

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

not imm5, reg mov imm5, ril

not rl, reg

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

not imml6, reg movea immlé, r0, rl
not rl, reg
R20UT0553EJ0100 Rev.1.00 RENESAS Page 469 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

not imm, reg movhi hi(imm), r0, rl
not rl, reg

Else

not imm, reg movhi hil(imm), r0, rl
movea lo(imm), rl, ril
not rl, reg

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are O

not imm, reg movhi hi(imm), r0, rl
not rl, reg

Else

not imm, reg mov imm, ril
not rl, reg

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

not $label, reg movea Slabel, r0, rl

not rl, reg

(g) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

not #label, reg movhi hil(#label), r0, rl
movea lo(#label), rl, rl
not rl, reg

not label, reg movhi hil(label), r0, rl
movea lo(label), rl, rl
not rl, reg

not Slabel, reg movhi hil(slabel), r0, ril
movea lo($label), rl, rl
not rl, reg

R20UT0553EJ0100 Rev.1.00 RENESANAS Page 470 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(h) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section [V850E]

not #label, reg mov #label, rl
not rl, reg

not label, reg mov label, ril
not rl, reg

not $label, reg mov Slabel, rl
not rl, reg

Note The not machine instruction does not take an immediate value as an operand.

[Flag]
CcY
ov 0
S 1 if the word data MSB of the result is 1, O if not
z 1if the resultis 0, 0 if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESAS Page 471 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

shr

Shift Logical Right

[Syntax]

-shr regl, reg2

-shr immb5, reg2
-shr regl, reg2, reg3 [VB50EZ2]

The following can be specified for imm5:

- Absolute expression having a value of up to 5 bits

[Function]

- Syntax "shr reg1, reg2"
Logically shifts to the right the value of the register specified by the second operand by the number of bits indicated

by the lower 5 bits of the register value specified by the first operand, then stores the result in the register specified
by the second operand.
- Syntax "shr immb5, reg2"

Logically shifts to the right the value of the register specified by the second operand by the number of bits specified
by the value of the absolute expression specified by the first operand, then stores the result in the register specified
by the second operand.

- Syntax "shr reg1, reg2, reg3"
Logically shifts to the right the value of the register specified by the second operand by the number of bits indicated
by the lower 5 bits of the register value specified by the first operand, then stores the result in the register specified

by the third operand.

[Description]

The as850 generates one shr machine instruction

[Flag]
CY 1 if the value of the bit shifted out last is 1, O if not
(0 if the specified number of bits is 0)
ov 0
S 1 if the result is negative, 0 if not
z 1if the resultis 0, 0 if not
SAT ---
[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified as imm5 in syntax "shr imm5,
reg2", the as850 outputs the following message, and continues assembling by using the lower 5 bitsN°® of the
specified value.

W3011: illegal operand (range error in immediate).

Note

The shr machine instruction takes an immediate value of 0 to 31 (0x0 to 0x1f) as the first operand.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 472 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

sar

Shift Arithmetic Right

[Syntax]

-sar regl, reg2

-sar immb5, reg2
-sar regl, reg2, reg3 [VB50EZ2]

The following can be specified for imm5:

- Absolute expression having a value of up to 5 bits

[Function]

- Syntax "sar regl, reg2"

Arithmetically shifts to the right the value of the register specified by the second operand by the number of bits indi-
cated by the lower 5 bits of the register value specified by the first operand, then stores the result in the register
specified by the second operand.

- Syntax "sar immb5, reg2"
Arithmetically shifts to the right the value of the register specified by the second operand by the number of bits
specified by the value of the absolute expression specified by the first operand, then stores the result in the register

specified by the second operand.

- Syntax "sar regl, reg2, reg3"
Arithmetically shifts to the right the value of the register specified by the second operand by the number of bits indi-
cated by the lower 5 bits of the register value specified by the first operand, then stores the result in the register

specified by the third operand.

[Description]

The as850 generates one sar machine instruction.

[Flag]
CY 1 if the value of the bit shifted out last is 1, O if not
(0 if the specified number of bits is 0)
ov 0
S 1 if the result is negative, 0 if not
z 1if the resultis 0, 0 if not
SAT ---
[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified for imm5 in syntax "sar immb5,

reg2", the as850 outputs the following message, and continues assembling using the lower 5 bits

Note of the speci-

fied value.

W3011: illegal operand (range error in immediate).

Note

The sar machine instruction takes an immediate value of 0 to 31 (0x0 to 0x1f) as the first operand.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 473 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

shl

Shift Logical Left

[Syntax]

-shl regl, reg2

-shl immb5, reg2
-shl regl, reg2, reg3 [V850E2]

The following can be specified for imm5:

- Absolute expression having a value of up to 5 bits

[Function]

- Syntax "shl regl, reg2"
Logically shifts to the left the value of the register specified by the second operand by the number of bits indicated
by the lower 5 bits of the register value specified by the first operand, then stores the result in the register specified
by the second operand.

- Syntax "shl immb5, reg2"
Logically shifts to the left the value of the register specified by the second operand by the number of bits specified
by the value of the absolute expression specified by the first operand, then stores the result in the register specified

by the second operand.

- Syntax "shl regl, reg2, reg3"
Logically shifts to the left the value of the register specified by the second operand by the number of bits indicated
by the lower 5 bits of the register value specified by the first operand, then stores the result in the register specified

by the third operand.

[Description]

The as850 generates one shl machine instruction.

[Flag]
CY 1 if the value of the bit shifted out last is 1, O if not
(0 if the specified number of bits is 0)
ov 0
S 1 if the result is negative, 0 if not
z 1if the resultis 0, 0 if not
SAT ---
[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified for imm5 in syntax "shl imm5,
reg2", the as850 outputs the following message, and continues assembling by using the lower 5 bitsN°® of the
specified value.

W3011: illegal operand (range error in immediate).

Note

The shl machine instruction takes an immediate value of 0 to 31 (OxO to 0x1f) as the first operand.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 474 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

sxb

Sign Extend Byte [V850E]

[Syntax]

-sxb reg

[Function]

Sign-extends the data of the lowermost byte of the register specified by the first operand to word length.

[Description]

The as850 generates one sxb machine instruction.

[Flag]

cy

ov

IS —

z -

SAT

R20UT0553EJ0100 Rev.1.00 RENESAS Page 475 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

sxh

Sign Extend Half-word [V850E]

[Syntax]

-sxh reg

[Function]

Sign-extends the data of the lower 2 bytes of the register specified by the first operand to word length.

[Description]

The as850 generates one sxh machine instruction.

[Flag]

cy

ov

IS —

z -

SAT

R20UT0553EJ0100 Rev.1.00 RENESAS Page 476 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

zxb

Zero Extend Byte [V850E]

[Syntax]

-zxb reg

[Function]

Zero-extends the data of the lowermost byte of the register specified by the first operand to word length.

[Description]

The as850 generates one zxb machine instruction.

[Flag]

cy

ov

IS —

z -

SAT

R20UT0553EJ0100 Rev.1.00 RENESAS Page 477 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

zxh

Zero Extend Half-word [V850E]

[Syntax]

-zxh reg

[Function]

Zero-extends the data of the lower halfword of the register specified by the first operand to word length.

[Description]

The as850 generates one zxh machine instruction.

[Flag]

cy

ov

IS —

z -

SAT

R20UT0553EJ0100 Rev.1.00 RENESAS Page 478 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

bsh

Byte Swap Half-word [V850E]

[Syntax]
- bsh regl, reg2

[Function]

Byte-swaps the register value specified by the first operand in halfword units and stores the result in the register speci-
fied by the second operand.

| bit 23-16 H bit 31-24 ‘ | bit 7-0 || bit 15-8 ‘

i Byte-swap of regl in halfword units

| reg2 ‘
[Description]
The as850 generates one bsh machine instruction.
[Flag]
CY 1 if either or both of the bytes in the lower halfword of the register is 0, O if not
ov 0
S 1 if the word data MSB of the resultis 1, O if not
z 1 if the lower half-word data of the result is 0, 0 if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESANS Page 479 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

bsw

Byte Swap Word [V850E]

[Syntax]
- bsw regl, reg2

[Function]

Byte-swaps the register value specified by the first operand and stores the result in the register specified by the second
operand.

‘ bit 7-0 H bit 15-8 | | bit 23-16 H bit 31-24 ‘

i Byte-swap of reg1 for entire word

‘ reg2 ‘
[Description]
The as850 generates one bsw machine instruction.
[Flag]
CY 1 if one or more bytes of the word in the register is 0, 0 if not
ov 0
S 1 if the word data MSB of the resultis 1, O if not
z 1 if the word data of the result is 1, O if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESANS Page 480 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

hsh

Half-word Swap Half-word [V850E2]

[Syntax]
- hsh reg2, reg3

[Function]

Stores the register value specified by the first operand in the register specified by the second operand, and stores the
flag assessment result in the PSW register.

[Description]

The as850 generates one hsh machine instruction.

[Flag]
CY 1 if the lower half-word data of the result is 0, 0 if not
ov 0
S 1 if the word data MSB of the result is 1, O if not
A 1 if the lower half-word data of the result is 0, 0 if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESANAS Page 481 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

hsw

Half-word Swap Word [V850E]

[Syntax]
-hsw regl, reg2

[Function]

Halfword-swaps the register value specified by the first operand and stores the result in the register specified by the
second operand.

| bit 15-0 | ‘ bit 31-16 |

i Halfword swap of regl

‘ reg2 |
[Description]
The as850 generates one hsw machine instruction.
[Flag]
CY 1 if one or more halfwords in the word of the register is 0, 0 if not
ov 0
S 1 if the word data MSB of the resultis 1, O if not
z 1 if the word data of the result is 1, O if not
SAT ---
R20UT0553EJ0100 Rev.1.00 RENESANS Page 482 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

tst

Test

[Syntax]

-tst regl, reg2
-tst imm, reg2

The following can be specified for imm:
- Absolute expression having a value of up to 32 bits
- Relative expression

[Function]

- Syntax "tst regl, reg2"
ANDs the value of the register specified by the second operand with the value of the register specified by the first
operand, and sets only the flags without storing the result.

- Syntax "tst imm, reg2"
ANDs the value of the register specified by the second operand with the value of the absolute expression or rela-
tive expression specified by the first operand, and sets only the flags without storing the result.

[Description]

- When this instruction is executed in syntax "tst regl, reg2", the as850 generates one tst machine instruction.
- When this instruction is executed in syntax "tst imm, reg2", the as850 executes instruction expansion to generate

two or more machine instructionsN°te,

@ o

tst 0, reg tst r0, reg

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

tst imm5, reg mov imm5, ril

tst rl, reg

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

tst imml6, reg movea immlé, r0, rl
tst rl, reg
R20UT0553EJ0100 Rev.1.00 RENESAS Page 483 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767
If all the lower 16 bits of the value of imm are O

tst imm, reg movhi hi(imm), r0, rl
tst rl, reg

Else

tst imm, reg movhi hil(imm), r0, rl
movea lo(imm), rl, ril
tst rl, reg

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]
If all the lower 16 bits of the value of imm are O

tst imm, reg movhi hi(imm), r0, rl
tst rl, reg
Else
tst imm, reg mov imm, ril
tst rl, reg

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

tst $label, reg movea Slabel, r0, rl

tst rl, reg

(g) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/sbss-attribute section

tst #label, reg movhi hil(#label), r0, rl
movea lo(#label), rl, rl
tst rl, reg

tst label, reg movhi hil(label), r0, rl
movea lo(label), rl, rl
tst rl, reg

tst Slabel, reg movhi hil(slabel), r0, ril
movea lo($label), rl, rl
tst rl, reg

R20UT0553EJ0100 Rev.1.00 RENESANAS Page 484 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(h) Relative expression having #label or label, or that having $label for a label having no definition in the
sdata/shss-attribute section [V850E]

tst #label, reg mov #label, rl
tst rl, reg
tst label, reg mov label, ril
tst rl, reg
tst $label, reg mov Slabel, rl
tst rl, reg
[Flag]
CcY -
ov 0
S 1 if the word data MSB of the result is 1, O if not
z 1if the resultis O, O if not
SAT -
R20UT0553EJ0100 Rev.1.00 RENESANS Page 485 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

schOl

Bit (0) Search from MSB Side (Search zero from left) [V850E2]

[Syntax]
- schOl reg2, reg3

[Function]

Searches the word data of the register specified by the first operand, from the left (MSB side), and stores the position of
the first bit (0) found in the register specified by the second operand in hexadecimal. (For example, if bit 31 of the register
specified by the first operand is 0, 01H is stored in the register specified by the second operand.)

If no bit (0) is found, 0 is written into the register specified by the second operand, and the Z flag is simultaneously set
(). If a bit (0) is found at the end, the CY flag is set (1).

[Description]

The as850 generates one schOl machine instruction.

[Flag]
CY 1 if a bit (0) is found at the end, 0 if not
ov 0
S 0
z 1 if a bit (0) is not found, O if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESAS Page 486 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

schOr

Bit (0) Search from LSB Side (Search zero from right) [V850E2]

[Syntax]
- schOr reg2, reg3

[Function]

Searches the word data of the register specified by the first operand, from the right (LSB side), and stores the position
of the first bit (0) found in the register specified by the second operand in hexadecimal. (For example, if bit O of the regis-
ter specified by the first operand is 0, 01H is stored in the register specified by the second operand.)

If no bit (0) is found, 0 is written into the register specified by the second operand, and the Z flag is simultaneously set
(). If a bit (0) is found at the end, the CY flag is set (1).

[Description]

The as850 generates one schOr machine instruction.

[Flag]
CY 1 if a bit (0) is found at the end, 0 if not
ov 0
S 0
z 1 if a bit (0) is not found, O if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESAS Page 487 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

schil

Bit (1) Search from MSB Side (Search one from left) [V850E2]

[Syntax]
- schll reg2, reg3

[Function]

Searches the word data of the register specified by the first operand, from the left (MSB side), and stores the position of
the first bit (1) found in the register specified by the second operand in hexadecimal. (For example, if bit 31 of the register
specified by the first operand is 1, 01H is stored in the register specified by the second operand.)

If no bit (1) is found, O is written into the register specified by the second operand, and the Z flag is simultaneously set
(). If a bit (0) is found at the end, the CY flag is set (1).

[Description]

The as850 generates one schll machine instruction.

[Flag]
CY 1if a bit (1) is found at the end, 0 if not
ov 0
S 0
z 1if a bit (1) is not found, O if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESAS Page 488 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

schlr

Bit (1) Search from LSB Side (Search zero from right) [V850E2]

[Syntax]
- schlr reg2, reg3

[Function]

Searches the word data of the register specified by the first operand, from the right (LSB side), and stores the position
of the first bit (1) found in the register specified by the second operand in hexadecimal. (For example, if bit O of the regis-
ter specified by the first operand is 1, 01H is stored in the register specified by the second operand.)

If no bit (1) is found, 0 is written into the register specified by the second operand, and the Z flag is simultaneously set
(). If abit (1) is found at the end, the CY flag is set (1).

[Description]

The as850 generates one schlr machine instruction.

[Flag]
CY 1if a bit (1) is found at the end, 0 if not
ov 0
S 0
z 1if a bit (1) is not found, O if not
SAT
R20UT0553EJ0100 Rev.1.00 RENESAS Page 489 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4510 Branch instructions

This section describes the branch instructions. Next table lists the instructions described in this section.

Table 4-54. Branch Instructions

Instruction Meanings

jmp Unconditional branch

jmp32 Unconditional branch (jump) [V850E2]

ir Unconditional branch (PC relative)

jr22 Unconditional branch (PC relative) [V850E2]

jr32 Unconditional branch (PC relative) [V850E2]

jend Conditional branch

jarl Jump and register link

jarl22 Jump and register link [V850E2]

jarl32 Jump and register link [V850E2]
R20UT0553EJ0100 Rev.1.00 RENESAS Page 490 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

jmp

Jump

[Syntax]
-jmp [reg]
-jmp disp32[reg] [VB50E2]
-jmp addr

The following can be specified for addr:
- Relative expression having the absolute address reference of a label

The following can be specified for disp32:
- Absolute expression having a value of up to 32 bits

[Function]

- Syntax "jmp [reg]"
Transfers control to the address indicated by the value of the register specified by the operand.
- Syntax "jmp disp32[reg]"

Transfers control to the address attained by adding the displacement specified by the operand and the register
content.

- Syntax "jmp addr"

Transfers control to the address indicated by the value of the relative expression specified by the operand.

[Description]

- When this instruction is executed in syntax "jmp [reg]", the as850 generates one jmp machine instruction.
- When this instruction is executed in syntax “jmp disp32[reg]", the as850 generates one jmp (6-byte long instruc-
tion) machine instructions

- When this instruction is executed in syntax "jmp addr", the as850 executes instruction expansion and generates
two or more machine instruction

[V850]

jmp #label movhi hil (#label), r0, ril
movea lo(#label), rl, ril
jmp [r1]

[V850E]

jmp #label mov #label, ril
jmp [r1]

- If the instruction is executed in syntax "jmp addr", when the V850E2 operate, the as850 generates one jmp
machine instruction (6-byte long instruction).

R20UT0553EJ0100 Rev.1.00 RENESAS Page 491 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Flag]

cy

ov

IS —

z -

SAT

[Caution]

- If an expression other than a relative expression having the absolute address reference of a label is specified as
addr in syntax "jmp addr", the as850 outputs the following message and stops assembling.

E3224: illegal operand (label reference for jmp must be #label)

R20UT0553EJ0100 Rev.1.00 RENESAS Page 492 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

jmp32

Unconditional Branch [V850E2]

[Syntax]

- jmp32 disp32[req]
- jmp32 addr

The following can be specified for addr:
- Relative expression having the absolute address reference of a label

The following can be specified for disp32:
- Absolute expression having a value of up to 22 bits

[Function]

- Syntax "jmp32 disp32[reg]"
Transfers control to the address attained by adding the displacement specified by the operand and the register
content.

- Syntax "jmp32 addr"
Transfers control to the address indicated by the value of the relative expression specified by the operand.

[Description]

The as850 generates one jmp machine instruction (6-byte long instruction).

[Flag]
cY
oV
S -
Z —
SAT
[Caution]
- If an expression other than a relative expression having the absolute address reference of a label is specified as
addr in syntax "jmp32 addr", the as850 outputs the following message and stops assembling.
E3224: illegal operand (label reference for jmp must be #label)
R20UT0553EJ0100 Rev.1.00 .zENESAS Page 493 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

jr

Jump Relative

[Syntax]
-jr disp22
-jr disp32 [V850E2]

The following can be specified for disp22:
- Absolute expression having a value of up to 22 bits
- Relative expression having a PC offset reference of label

The following can be specified for disp32:
- Absolute expression having a value of up to 32 bits
- Relative expression having a PC offset reference of label

[Function]

- Syntax "jr disp22"
Transfers control to the address attained by adding the current program counter (PC) value and the relative or

absolute expression value specified by the first operand.

- Syntax "jr disp32"
Transfers control to the address attained by adding the current program counter (PC) value and the relative or

absolute expression value specified by the first operand.

[Description]

- If the instruction is executed in syntax "jr disp22", the as850 generates one jr machine instructionN°® if any of the

following expressions are specified for disp22.
(a) Absolute expression having a value in the range of -2,097,152 to +2,097,151

(b) Relative expression that has a PC offset reference of label having a definition in the same section of
the same file as this instruction, and having a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label with no definition in the same file or section
as this instruction

Note The jr machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151 (0xfe00000 to

Ox1fffff) as the displacement.

- If the instruction is executed in syntax "jr disp32", the as850 generates one jr machine instruction (6-byte long

instruction).

R20UT0553EJ0100 Rev.1.00 RENESAS Page 494 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Flag]

cy

ov

IS —

z -

SAT

[Caution]

- If an absolute expression having a value exceeding the range of -2,097,152 to +2,097,151, or a relative expression
having a PC offset reference of a label with a definition in the same section and the same file as this instruction,
and having a value exceeding the range of -2,097,152 to +2,097,151, is specified as disp22, the as850 outputs the
following message and stops assembling.

E3230: illegal operand (range error in displacement)

- If an absolute expression having an odd-numbered value or a relative expression having a PC offset reference of a
label with a definition in the same section and the same file as this instruction, and having an odd-numbered value,
is specified as disp22, the as850 outputs the following message and stops assembling.

E3226: illegal operand (must be even displacement)

- When the assembler option -Xfar_jump is not specified, and an absolute expression outside of the range -
2,097,152 to +2,097,151 or a relative expression outside of the range -2,097,152 to +2,097,151, having a label PC
offset reference with a definition in the same file and same section as this instruction, is specified as disp32, the
following message is output and assembly is stopped

E3230: illegal operand (range error in displacement)

R20UT0553EJ0100 Rev.1.00 RENESAS Page 495 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

jr22

Unconditional Branch (PC Relative) (Jump Relative) [V850E2]

[Syntax]
- jr22 disp22
The following can be specified for disp22:

- Absolute expression having a value of up to 22 bits
- Relative expression having a PC offset reference of label

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative or absolute
expression value specified by the operand.

[Description]

- If the following is specified for disp22, the as850 generates one jr machine instructionN°t.
(a) Absolute value in the range of -2,097,152 to +2,097,151

(b) Relative expression that has a PC offset reference of label having a definition in the same section and
the same file as this instruction, and which has a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label having no definition in the same file or sec-
tion as this instruction

Note The jr machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151 (0xfe00000 to
Ox1fffff) as the displacement.

[Flag]

cY

oV

IS —

z —

SAT

R20UT0553EJ0100 Rev.1.00 RENESAS Page 496 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Caution]

- If an absolute expression that exceeds the range of -2,097,152 to +2,097,151, or a relative expression having a PC
offset reference of label with a definition in the same section and the same file as this instruction and having a
value that falls outside the range of -2,097,152 to +2,097,151 is specified as disp22, the as850 outputs the follow-

ing message and stops assembling.

E3230: illegal operand (range error in displacement)

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of
a label with a definition in the same section and the same file as this instruction and having an odd-numbered
value, is specified as disp22, the as850 outputs the following message and stops assembling.

E3226: illegal operand (must be even displacement)

R20UT0553EJ0100 Rev.1.00 RENESAS Page 497 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

jr32

Unconditional Branch (PC relative) (Jump Relative) [V850E2]

[Syntax]
-jr32 disp32

The following can be specified for disp32:
- Absolute expression having a value of up to 32 bits
- Relative expression having a PC offset reference of label

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative or absolute
expression value specified by the first operand.

[Description]

The as850 generates one jr machine instruction (6-byte long instruction).

[Flag]

cy

ov

IS —

d -

SAT

[Caution]

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of
a label with a definition in the same section and the same file as this instruction and having an odd-numbered
value, is specified as disp32, the as850 outputs the following message and stops assembling.

E3226: illegal operand (must be even displacement)

R20UT0553EJ0100 Rev.1.00 RENESAS Page 498 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

jend

Jump on Condition

[Syntax]
-jend disp22

The following can be specified for disp22:

- Absolute expression having a value of up to 22 bits

- Relative expression having a PC offset reference of label

[Function]

Compares the flag condition indicated by string cnd (see Table 4-55. jcnd Instruction List) with the current flag condi-

tion. If they are found to be the same, transfers control to the address obtained by adding the value of the absolute

expression or relative expression specified by the operand to the current value of the program counter (PC)NOte.

Note The jr machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151 (0xfe00000 to

Ox1fffff) as the displacement.

Table 4-55. jcnd Instruction List

Instruction Flag Condition Meaning of Flag Condition

jot ((SxorOV)orz)=0 Greater than (signed)

jge (SxorQVv)=0 Greater than or equal (signed)

jit (SxorQVv)=1 Less than (signed)

jle ((SxorOV)orz)=1 Less than or equal (signed)

jh (CYorz)=0 Higher (Greater than)

jnl Cy=0 Not lower (Greater than or equal)

jl Cy=1 Lower (Less than)

jnh (Cyorz)=1 Not higher (Less than or equal)

je Z=1 Equal

jne Z=0 Not equal

v ov=1 Overflow

jnv ov=0 No overflow

jn S=1 Negative

ip S=0 Positive

ic Cy=1 Carry

jnc Cy=0 No carry

jz Z=1 Zero

jinz Z=0 Not zero

jbr Always (Unconditional)

jsa SAT=1 Saturated
R20UT0553EJ0100 Rev.1.00 ;{ENESAS Page 499 of 943

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Description]

- If the following is specified for disp22, the as850 generates one bcond machine instructionNot,
(a) Absolute expression having a value in the range of -256 to +255

(b) Relative expression having a PC offset reference for a label with a definition in the same section and
the same file as this instruction and having a value in the range of -256 to +255

jecnd disp9 bend disp9

Note The bend machine instruction takes an immediate value in the range of -256 to +255 (Oxffffff00 to Oxff) as the
displacement.

- If the following is specified as disp22, the as850 executes instruction expansion and generates two or more
machine instructions.

(a) Absolute expression having a value exceeding the range of -256 to +255 but within the range of -
2,097,150 to +2,097,153N°ote 1

(b) Relative expression having a PC offset reference of label with a definition in the same section of the
same file as this instruction and having a value exceeding the range of -256 to +255 but within the
range of -2,097,150 to +2,097,153

(c) Relative expression having a PC offset reference of label without a definition in the same file or section
as this instruction

jbr disp22 jr disp22
jsa disp22 bsa Labell
br Label2
Labell:
jr disp22 - 4
Label2:
jend disp22 bnend Labe1Note 2
jr disp22 - 2
Label:

Notes 1. The range of -2,097,150 to +2,097,153 applies to instructions other than jbr and jsa. The range for the jbr
instruction is from -2,097,152 to +2,097,151, and that for the jsa instruction is from -2,097,148 to
+2,097,155.

2. bncnd denotes an instruction that effects control branches under opposite conditions, for example, bnz for
bz or ble for bgt.

R20UT0553EJ0100 Rev.1.00 RENESAS Page 500 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Flag]

cy

ov

IS —

z -

SAT

[Caution]

- If an absolute expression having a value exceeding the range of -2,097,150 to +2,097,153, or a relative expression
having a PC offset reference of a label with a definition in the same section and the same file as this instruction,
and having a value exceeding the range of -2,097,150 to +2,097,153, is specified as disp22, the as850 outputs the
following message and stops assembling.

E3230: illegal operand (range error in displacement)

If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of
a label with a definition in the same section and the same file as this instruction, and having an odd-numbered
value, is specified as disp22, the as850 outputs the following message and stops assembling.

E3226: illegal operand (must be even displacement)

When disp22 indicates a relative expression comprising a PC offset reference to a label defined in the same sec-
tion of the same file as this instruction, then as850 determines whether to expand the instruction on the basis of
the value of that relative expression. But the value of the relative expression can itself vary because generally it is
affected by instruction expansion. as850 is designed to be able to handle this variation, but in cases in which there
is an .align directive or an .org directive between this instruction and the label referenced by the PC offset, as850
outputs the following message and stops assembling. If this occurs, try deleting the .align or.org directive, if possi-
ble.

F3507: overflow error(9bit)

R20UT0553EJ0100 Rev.1.00 RENESAS Page 501 of 943
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

jarl

Jump and Register Link

[Syntax]

- jarl disp22, reg2
- jarl disp32,regl [V850E2]

The following can be specified for disp22:
- Absolute expression h