

© 2022 Renesas Electronics Corporation Page 1 of 6

AN-1155
Smart Home Controller

Author: Anas Ajaj and David Riedell

Date: January 11, 2017

Introduction

This Application Note shows how to create a

voice-activated Smart Home controller. It involves

creating a simple Android App and interfacing with

a Bluetooth node, which is connected to several

smart electrical outlets.

This design is implemented with a SLG46620V

GreenPAK device, an HC06 Bluetooth module, and

a few relays.

We will use this design to control four electrical

devices: a red light, a blue light, a white light,

and a fan. Each of these devices can either be ON

or OFF.

Android Application

This Android Application will be able to receive

voice commands, convert them into a command,

and send the commands to the Bluetooth module

to be carried out.

This app was made with MIT App Inventor, which

doesn’t require any programming experience. The

App Inventor lets the developer create an

application for Android OS devices using a web

browser by connecting programming blocks.

Since each of our four devices can either be ON or

OFF, we need four bits to represent all the

possible states for each of the devices.

Table 1 illustrates the control bits for each of our

four devices. In the table, “x” denotes a bit that

we do not wish to change, so we keep it

unchanged. Each bit represents a device state,

where 1 = ON, and 0 = OFF.

D3 D2 D1 D0 Result

0 0 0 0 All OFF

x x x 1 Red Light ON

x x 1 X Blue Light ON

x 1 x X White Light ON

1 x x x Fan ON

1 1 1 1 All ON

Table 1. Control Bits for Devices

Since our application includes voice controls, we

need to define what phrases will generate a

command to our system.

Figure 1. Components used in this App Note

© 2022 Renesas Electronics Corporation Page 2 of 6

Smart Home Controller

Table 2 shows which voice commands will turn on

or off each device. In the first column, LV stands

for Last Value, i.e. the previous byte value that

was sent. Since the red light is controlled by the

least significant bit in our byte, if we add 1 to the

previous byte value it will turn the red light ON.

Likewise, if we subtract 1 from the previous byte

value it will turn the red light OFF.

Decimal

Value
Byte Voice Command

0 00000000 Turn off all devices

LV - 1 0000xxx0 Turn off red light

LV + 1 0000xxx1 Turn on red light

LV – 2 0000xx0x Turn off blue light

LV + 2 0000xx1x Turn on blue light

LV – 4 0000x0xx Turn off white light

LV + 4 0000x1xx Turn on white light

LV – 8 00000xxx Turn off the fan

LV + 8 00001xxx Turn on the fan

15 00001111 Turn on all devices

Table 2. Voice Commands and Byte Value

You can import our App into the MIT App Inventor

by clicking on “Projects” -> “Import project (.aia)

from my computer”, and selecting the .aia file

included with this App Note.

To create the Android Application, we need to

start a new project and remove the visible

components from the designer screen. Then we

need to create two buttons: the first is a list

picker for Bluetooth devices, and the second is a

button to begin voice recognition.

Other components we need to add include a

Bluetooth client, speech recognition, and text-to-

speech modules. Figure 2 below is a screen

capture of our Android Application’s user

interface.

We can now start programming by clicking on the

“Block” button. We can add components by

dragging and dropping from the bar on the left.

We will start by adding our global variables, as

shown in Figure 3.

Now we can add the voice recognition block that

will be called when the user presses the large

microphone button.

Figure 2. Android App GUI

© 2022 Renesas Electronics Corporation Page 3 of 6

Smart Home Controller

The text received by this function will be

interpreted to determine which command to send

to our Bluetooth module. Figure 6 on page 3

shows the full block diagram for our “Turn on red

light” and “Turn off red light” commands.

Gathering Data from Bluetooth

Module

Now that we have our Android Application ready,

we need to set up our HC06 Bluetooth module.

The HC06 uses the UART protocol for

communication.

UART stands for Universal Asynchronous Receiver

/ Transmitter. UART can convert data back and

forth between parallel and serial formats. It

includes a serial to parallel receiver and a parallel

to serial converter which are both clocked

separately.

The data received in the HC06 will be transmitted

to our GreenPAK device.

B
it

1 2 3 4 5 6 7 8 9 10

F
u
n
c
ti
o
n

Start D0 D1 D2 D3 D4 D5 D6 D7 Stop

Table 3. UART Frame

Figure 3. Global Variable Initialization

Figure 4. Speech Recognizer function

Figure 5. Global Variable Definitions

Figure 6. Red Light Control Block

Diagram

© 2022 Renesas Electronics Corporation Page 4 of 6

Smart Home Controller

GreenPAK Design

The idle state for Pin10 is HIGH. Every character

sent begins with a logic LOW start bit, followed by

a configurable number of data bits, and one or

more logic HIGH stop bits.

The HC06 sends 1 START bit, 8 data bits, and one

STOP bit. Its default baud rate is 9600. We will

send the data byte from the HC06 to the

GreenPAK SLG46620’s SPI block.

Since the SPI block does not have START or STOP

bit control, we will use those bits instead to

enable and disable the SPI clock signal (SCLK).

When Pin10 goes LOW, we know we have

received a START bit, so we use the PDLY falling

edge detector to identify the start of

communication. That falling edge detector clocks

DFF0, which enables the SCLK signal to clock the

SPI block.

Our baud rate is 9600 bits per second, so our

SCLK period needs to be 1/9600 = 104µs.

Therefore, we set the OSC frequency to 2MHz and

used CNT2 as a frequency divider.

2MHz-1 = 0.5µs

(104µs / 0.5µs) - 1 = 207

Therefore, we want the CNT2 counter value to be

207. To ensure that we don’t miss any data any

data, we need to delay the SPI clock by half a

clock cycle so that the SPI block is being clocked

at the proper time. We accomplished this by using

CNT6, 2-bit LUT1, and the OSC block’s External

Clock. The output of CNT6 does not go high until

52µs after DFF0 is clocked, which is exactly half of

our SCLK period of 104µs. When it goes high, the

2-bit LUT1 AND gate allows the 2MHz OSC signal

to pass into the EXT. CLK0 input, whose output is

connected to CNT2.

Pipe Delay0 is used to reset DFF0 after all of the

data has been received.

Now that the command has been received by the

GreenPAK, it needs to be output via the SPI

Parallel Output block.

Figure 7. GreenPAK Design

© 2022 Renesas Electronics Corporation Page 5 of 6

Smart Home Controller

Since the SLG46620V is a dual-matrix chip, we

need to use the purple cross-matrix connections

to send the four signals from the SPI Parallel

Output block back to the other side of the chip so

that they can be connected to Pins 3, 4, 5, and 6.

Pin Number Device Bit

3 Red light D0

4 Blue light D1

5 White light D2

6 Fan D3

Table 4. Pin Connections

One difference between the UART and SPI

communication protocols is the order in which the

bits are sent. SPI sends the MSB first, while UART

sends the LSB first. This means that our LSB will

be taken from the SPI Parallel Output block’s MSB

pin.

SPI

Parallel

Output

7 6 5 4 3 2 1 0

Bit D0 D1 D2 D3 - - - -

Table 5. Parallel Output to Control Signal

Circuit Schematic

Figure 8 on page 6 is a schematic of the overall

circuit. We used a 5v regulator to step down a

12v input voltage to power our GreenPAK chip

and the HC06 Bluetooth module.

As you can see, the HC06’s TX pin is connected to

the GreenPAK’s Pin10. The GreenPAK’s Pin3, Pin4,

Pin5, and Pin6 are connected to the relay control

pins, and the output of each relay is connected to

its respective socket.

Figure 8. Circuit Schematic

© 2022 Renesas Electronics Corporation Page 6 of 6

Smart Home Controller

Conclusion

In this App Note, we created a homemade Smart

Home Controller with an Android Application, a

HC06 Bluetooth module, a GreenPAK SLG46620V,

and several relays. This Smart Home Controller

allows the user to control several outlets with a

simple spoken phrase.

The GreenPAK Programmable Mixed-Signal ASIC

has a variety of digital and analog components

that facilitate the creation of moderately complex

designs. The GreenPAK IC’s allow the user to

easily integrate several discrete components into

a single small chip.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

