
1
 2003 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. DSC-6141/5

 APPLICATION NOTE
AN-349

INTERFACING IDT's
3.3V MULTI-QUEUE FLOW-CONTROL DEVICE

TO THE VIRTEX II FPGA

JULY 2003

By Stewart Speed

CONTENTS
1. Abstract
2. Introduction
3. Multi-Queue Flow-Control Device at a Glance
4. Multi-Queue Flow-Control Device Architecture

- Basic Concept
- Queue Configuration
- Queue Flags
- Packet Mode
- Bus-Width Matching
- Depth/Queue Expansion
- Block Diagram

5. Interface Connections between the Virtex II and Multi-Queue
6. Set-up, Configuration & Basic Operation of the 3.3V Multi-Queue
7. Reset, Programming & Configuration Operation

- Master Reset & Programming including Verilog Code
- Partial Reset including Verilog Code

8. Normal Operation
- Write Port Control including Verilog Code
- Read Port Control including Verilog Code
- Flag Bus Operation including Verilog Code

9. Packet Mode Operation
10. Application Example

ABSTRACT
The Virtex II family of FPGA’s provides access and interfacing to a variety

of memory resources, both off-chip and on-chip. In addition to the on-chip
distributed RAM and block RAM features, Virtex-II FPGA’s can interface to a
variety of external high speed memory devices. One such device is a new family
of memories manufactured by “Integrated Device Technology”, IDT. This is the
multi-queue flow-control device family, which introduces a new memory
architecture to the arena of memory.

INTRODUCTION
Data buffering and queuing are common challenges in high performance data

acquisition and data communication applications. If we look in particular at
communication systems there is real need for buffering and queuing functions.
Data streams/paths have typically been buffered by traditional FIFO’s, these
provide short-term buffering and also provide an effective means of coupling
between two different clock domains. The multi-queue flow-control device
provides the traditional benefits and features of a standard FIFO, but now with
the added function of having discrete queues that can be accessed indepen-
dently by the write port and read port, each of these queues being a storage
buffer. These devices are based on a new industry architecture that combines
high-speed queuing logic with an embedded memory core. The multi-queue
flow-control device is a fully programmable device, the number of queues, depth
of each queue and flag offset positions are all programmable.

The multi-queue flow-control devices are available in densities up to
2Megabits and clock speeds up to 200MHz. By integrating high-speed logic and
memory on silicon, they are able to achieve sustained throughput rates up to
7.2 Gbps

Since the device is programmable and queues are addressable on both the
write and read port, there is some control involved in the operation of the ports.
This application note provides the reader with some general guidelines and
suggestions for the control and interfacing requirements between a Virtex II
device and a multi-queue flow-control device. This application note is based on
using the 3.3V multi-queue, (the timing for a 2.5V multi-queue is slightly different).
For more information on the Virtex II devices please refer to the data sheet. More
information and data sheets for the Multi-Queue devices can be found on the
IDT website at: www.idt.com

MULTI-QUEUE FLOW-CONTROL DEVICE
AT A GLANCE
••••• 2.5V and 3.3V Families
••••• Q-Number options: 4Q, 8Q, 16Q, 32Q
••••• Memory density options: 256Kbit, 512Kbit, 1Mbit, 2Mbit
••••• Up to 200MHz high speed operation
••••• x9, x18, x36 bit wide data port options
••••• Individual, active queue flags (OV, FF, AE, AF) and Programmable

Almost Full and Almost Empty Flags (PAF/PAE)
••••• 8-bit dedicated flag busses to monitor all queues (PAFn/PAEn)
••••• Packet Ready mode of operation
••••• 256-pin Ball Grid Array (BGA) with JTAG Functionality
••••• Bus-width matching on both ports
••••• Available with selectable LVTTL or HSTL I/O (2.5V family)
••••• Echo Read Clock and Enable is available for ‘Source Synchronous

Clocking’ (2.5V family)
••••• Up to 8 Multi-Queue devices can be cascaded for depth and queue

expansions (256 queues)

MULTI-QUEUE FLOW-CONTROL DEVICE
ARCHITECTURE
BASIC CONCEPT

The multi-queue flow-control device is a single chip within which anywhere
between 1 and 32 discrete queues can be setup. All queues within the device
have a common data input bus, (write port) and a common data output bus, (read
port). Data written into the write port is directed to a respective queue via an
internal de-multiplex operation, addressed by the user. Data read from the read
port is accessed from a respective queue via an internal multiplex operation,
addressed by the user. Data writes and reads can be performed at high speeds
up to 200MHz. Data write and read operations are totally independent of each
other, a queue maybe selected on the write port and a different queue on the
read port or both ports may select the same queue simultaneously.

QUEUE CONFIGURATION
The user has full flexibility configuring queues within the device, being able

to program the total number of queues between 1 and 32 and the individual
queue depths. If the user does not wish to program the multi-queue device, a
default option is available that configures the device in a predetermined manner.
Each multi-queue device has a total available memory within it, queues can be
configured within the device using some or all of this available memory. Queues
of varying depths can be configured within a single device.

2

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

QUEUE FLAGS
For the selected queue, the device provides Full flag (FF) status for write

operations and Output Valid (OV) flag status for read operations.
Also, the user can set independent Almost Full and Almost Empty values for

each queue. These values can be monitored via the Programmable Almost Full
(PAF) flag and Programmable Almost Empty (PAE) flag for the selected queue.

To retrieve the Almost Full and Almost Empty status of queues not selected
for read or write operations the device provides two 8-bit flag busses (PAFn/
PAEn). When 8 or less queues are configured in the device each bit of these
flag busses represents an individual flag per queue. When more than 8 queues
are used, a block of 8 queues can be monitored at a time.

A Packet Ready mode of operation is also available on the Multi-Queue family.
Here the device provides status of whether or not one or more ‘full’ packets of
data are present within respective queue’s. A Packet Ready flag status can be
obtained for each queue within a device.

Q0

Q1

Q2

Q31

MULTI-QUEUE FLOW-CONTROL DEVICE

FSTR

WEN

PAF

FF

WRADD

WADEN

WCLK

PAFn

x36
DATA IN

ESTR

REN

PAE

PR

RDADD

RADEN

RCLK

PAEn/PRn

x36
DATA
OUT

OE

OV

W
R

IT
E

 C
O

N
T

R
O

L

Din
Qout

8
8

88

R
E

A
D

 C
O

N
T

R
O

L
W

R
IT

E
 F

LA
G

S R
E

A
D

 F
LA

G
S

6141 drw01

PACKET MODE
A Packet Ready mode of operation is also available on the Multi-Queue family.

Here the device provides status of whether or not one or more ‘full’ packets of
data are present within respective queue’s. A Packet Ready flag status can be
obtained for each queue within a device.

BUS-WIDTH MATCHING
Bus-Width Matching is available on this device. Either port can be 9-bit, 18-

bit or 36-bit provided that at least one port is 36 bits wide. This allows to interface
busses of different width, seamlessly.

DEPTH/QUEUE EXPANSION
Expansion of Multi-Queue devices is also possible. Up to 8 devices can be

connected providing the possibility of both depth expansion and queue
expansion. Depth Expansion means expanding the depths of individual
queues, queue expansion means increasing the total number of queues
available.

Figure 1. Block Diagram

3

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

INTERFACE CONNECTIONS BETWEEN
THE VIRTEX II AND MULTI-QUEUE

The diagram below shows the connections between the VirtexTM II and Multi-
Queue devices based on a single FPGA controlling both the Write and Read
ports. It can seen that the write port control operates on a separate clock than

the read port control. This illustrates an advantage of using the Virtex II and Multi-
Queue combination in that both devices can provide data transfer between
different clock domains. For example the Write Clock can be running totally
independently and even at a different speed than the Read Clock.

The Virtex II family and Multi-Queue family also complement each other in
that the I/O of each device can be configured by the user for different I/O
standards. The 2.5V Multi-Queue family supports 2.5V LVTTL, 1.5V HSTL and
1.8V eHSTL, all of which (and many more) are supported by the Virtex II family.

WEN

WRADD

WCLK

WADEN

D[35:0]

FSTR

PAF

PAF[7:0]

MRS PRS REN

RDADD

RCLK

RADEN

Q[35:0]

OV

PAE

PAE[7:0]

OE

ESTR

ESYNC

FSYNC

FF

GCLK1 GCLK2

IDT
Multi-Queue

Write Port
Control

Read Port
Control

WRITE
CLOCK

READ
CLOCK

XILINX
VIRTEX II

6141 drw02

SET-UP, CONFIGURATION & BASIC OPERATION OF THE 3.3V MULTI-QUEUE
There are three main stages to using an IDT Multi-Queue Flow-Control Device(s):
1. Master Reset
2. Programming
3. Normal Operation (Writes & Reads)
This Application Note guides the user through each of these stages and makes suggestions as to how each stage may be controlled.

Figure 2. Interconnect Diagram

4

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

RESET, PROGRAMMING AND
CONFIGURATION OPERATION

For the purpose of this application note, the following block of verilog code
shows both the write and read ports being controlled by the same device/
module. However it is possible that a separate device will control the read port
and that a separate device again may even control the reset logic.

Any input that does not toggle can be tied HIGH or LOW by the user. For

example, if a Partial Reset is never required, the PRS input does not need to
be controlled by the controller and can be tied in-active, HIGH. This discussion
also requires that the JTAG port is idle.

Control Pins Involved:
MRS, PRS, WEN, WCLK, WRADDn, WADEN, FSTR, REN, RDADDn,

RADEN, ESTR, SENI, DFM, DF.

MASTER RESET & PROGRAMMING
The Master Reset described below is initiated by a “System Reset”. When

a System Reset occurs a master reset of the Multi-Queue follows.

Master
Reset

Device
Programming

Normal
Operation

System Reset

6141 drw03

Figure 3. Reset Flow Chart

5

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

Following is an extract of sample Verilog code that controls the Master Reset
function. This code is based on the user performing default programming of the

VERILOG CODE - MASTER RESET & PROGRAMMING

// Master Reset & Programming Function

// The input & output ports are not listed in this example
// Multi-Queue inputs: MAST, OW, IW, ID0, ID1 and ID2 can be controlled by the FPGA, however it is
// assumed that they will be externally tied HIGH or LOW.
// The DFM input to the Multi-Queue must be tied HIGH to enable default programming. If it is LOW then // serial programming should
be performed.
// Registers required for the master reset & programming function
reg [2:0] state;
reg [1:0] count;

// State Machine labels
parameter reset = 3’b000;
parameter res_rec = 3’b001;
parameter dfprog = 3’b010;
parameter progrec = 3’b011;
parameter normop = 3’b100;

always @ (posedge wclk or posedge system_reset)
begin // sync to wclk

if (system_reset) begin // System Reset is High, therefore perform Master Reset on MQ
mrs_ <= 1;
prs_ <= 1;
df <= 0; // df = 0 gives PAE & PAF offset values of 8 for all queues. df = 1 is 128
wen_ <= 1; ren_ <= 1;
fstr <= 0; estr <= 0;
waden <= 0; raden <= 0;
seni_ <= 1;

id0 <= 0; // id0, id1 and id2 are device ID and may be set up as 1 based on
id1 <= 0; // the user requirements. These pins are typically tied High or
id2 <= 0; // LOW

count <= 0; // This is a general purpose counter.

State <= reset;
end // IF (system reset is high)

else begin // System Reset goes Low, reset complete.

case (state)

reset: if (count < 3) begin // Perform mrs_ LOW
mrs_ <= 0;
state <= reset; // remain in reset for 3 wclk cycles
count <= count + 1;

end
else begin // when counter = 3 reset is complete

mrs_ <= 1; // Take mrs_ HIGH, reset complete

Multi-Queue device to setup the part in a pre-determined configuration. If the
user wishes to customize the configuration of the Multi-Queue they should refer
to the IDT Application Note, AN-303 “Multi-Queue Flow-Control Device- Serial
Programming”, for a detailed example.

6

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

state <= res_rec; // The delay ensures reset recovery period
count <= 0; // Reset counter

end

res_rec: if (count < 3) begin // Delay for Reset Recovery
state <= res_rec; // Delay for 3 wclk cycles
count <= count + 1;

end
else begin

state <= dfprog; // Reset recovery complete goto programming
count <= 0; // reset counter
seni_ <= 0; // Take seni_ LOW so default prog can begin

end

dfprog: if (seno_) begin // wclk cycles load the default settings while
state <= dfprog; // seno_ is HIGH and seni_ is LOW

end
else begin

seni_ <= 1; // Loading of default settings is complete
state <= progrec // Normal Operations may begin after a Prog Recovery

end

progrec: if (count < 3) begin // Delay for Programming Recovery
state <= progrec; // Delay for 3 wclk cycles
count <= count + 1;
end
else begin

state <= normop; // Programming recovery complete goto Normal Op
count <= 0; // reset counter

end

normop:
// Once the state machine has reached this state, normal operations of the
// Multi-Queue may begin. This includes addressing of queues, writing & reading
// of queues, direct accessing of the flag busses etc.

end // IF System Reset is LOW

end // sync to wclk

7

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

PARTIAL RESET
A Partial Reset can be performed on any individual queue within the device.

A partial reset will reset the read and write memory pointers to the first location
of the queue. To perform a partial reset the respective queue must be selected

on both the write and the read ports before the partial reset is initiated. The
following verilog code illustrates how this may be achieved. The code assumes
that a single Virtex II is used to control both the write and read ports and that the
same clock is applied to the write and read ports. The code also assumes that
a Partial Reset request is provided when a Partial reset is required.

VERILOG CODE - PARTIAL RESET

// State Machine labels
parameter waittwo = 3’b000;
parameter pares = 3’b001;
parameter done = 3’b010;
parameter recov = 3’b011;
parameter normop = 3’b100;

always @ (posedge wclk)
begin // sync to wclk

if (partial_reset) begin // System Reset is High, therefore perform Master Reset on MQ
wradd <= qnum; //Set-up the queue to be partial reset on the write port.
waden <= 1;
wen_ <= 1; // disable writes during Partial Reset
rdadd <= qnum; //Set-up the queue to be partial reset on the read port.
raden <= 1;
ren_ <= 1; // disable reads during Partial Reset
state <= waittwo;
count <= 0;

end

else begin

case (state)

waittwo: begin // wait two cycles before performing partial reset
if (count == 1) begin

state <= pares;
count <= 0;

end

else begin
count <= count + 1;
state <= waittwo;

end

pares: begin // perform reset, take prs_ LOW,
prs_ <= 0;
state <= done;
end

done: begin // Partial Reset complete, take prs_ HIGH
prs <= 1;
state <= recov;
end

recov: begin // Wait 3 cycles before normal operations can resume
if (count == 3) begin

state <= normop;

8

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

count <= 0;
end

else begin
count <= count + 1;
state <= recov;

end

normop: // Here normal operations may resume, queues may be addressed, written to and read from

end case
end

end

9

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

NORMAL OPERATION
WRITE PORT CONTROL

The write timing port is illustrated in the timing diagram below. Here we can
see that a queue to be written into is first selected ant then 2 write clock cycles
later an actual write operation on that queue may occur and data on the Din input

bus is written into the queue on a rising edge of the write clock. It can also be
seen that on the previous 2 clock cycles data can be written into the previously
selected queue, this illustrates what is called “100% bus utilization”. The timing
diagram assumes that all queues are NOT full and are therefore available to
accept data.

WCLK

tENH

WEN

Dn

tDHtDS tDS tDH tDS tDH

tENS

Queue X

tDS tDH tDS tDH tDS tDH

WADEN

WRADD Queue Y Queue Z

Queue Y - W1Queue X - W1 Queue X - W2 Queue X - W3 Queue Y - W2 Queue Y - W3

tAHtENS

tQHtQS

tAHtENS

tQHtQS

tAHtENS

tQHtQS

6141 drw04

Figure 4. Write Control

10

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

VERILOG CODE – WRITE PORT CONTROL

output MQdata_in;
output wen_;
output waden;
output [4:0] wradd;
input ff;

reg [1:0] state;

parameter qwait = 2’b00;
parameter cycle1 = 2’b01;
parameter cycle2 = 2’b10;
parameter cycle3 = 2’b11;

always @ (posedge wclk)
begin

case (state)

qwait: begin // Wait for first queue request
if (qreq) begin // qreq = 1, a queue request is made

state = cycle1;
end
else begin // qreq = 0, No request yet, wait for request

state = qwait;
end // qwait

cycle1: begin
if (!qreq) begin // No Queue change request - write to current queue

if (!ff_) begin // Current queue is full, stop writing
wen_ = 1; // Writes are disabled, Data on queue inputs are

// NOT written into the current queue on this cycle.
state = cycle1;
MQdata_in = MQdata_in; // No change in data
// New data should not be placed on the Multi-Queue inputs here.

end
else begin //Current queue is not full, writes may continue

state = cycle1;
wen_ = 0;
// New data maybe placed on to the Data Inputs of the Multi-Queue
// at this point.
// Note also that data on the MQdata_in inputs is written into the
// new queue on this cycle if wen_ is LOW
// It may be desirable to add further control here if writes
// are not simply of function of a queue being full.

end
else begin // A queue change has been requested

The FPGA controls the write port and all write operations. The write control
of the FPGA must take into consideration the 2 cycle latency between a queue
selection and data being written to that queue. The FPGA write control must also
detect when a queue being selected is full by monitoring a “full flag” output from
the IDT Multi-Queue device. The Full flag output will provide status of the queue
selected on the next WCLK clock cycle after the queue selection is made.

The following section of Verilog code should provide the reader with a simple
example of how the VirtexTM II FPGA can provide effective control of the Multi-

Queue write port. The code below assumes the following:
1. A Master Reset has been performed on the Multi-Queue device.
2. Programming of Multi-Queue device has occurred, (either default or

serial).
3. The FPGA will determine when a queue is going to be written into, the initial

part of the code is waiting for a queue request to be made.
4. The Multi-Queue contains 32 queues that can be addressed.

11

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

// wen_ can be Low on this cycle
// Note also that data on the MQdata_in inputs is written into the
// previous queue on this cycle if wen_ is LOW
// Write operations can occur during a queue switch

wradd = newqnum; // Queue address gets new queue
waden = 1; // set WADEN so address is made on next cycle
state = cycle2;
qreq = 0;// a queue change will occur reset the change

// request until next queue change request
end // cycle1

cycle2: begin // The address on WRADD is loaded into the Multi-Queue
// Note here that the Full Flag still shows status of the previous queue
// Note also that data on the MQdata_in inputs is written into the
// previous queue on this cycle if wen_ is LOW
// of the previous queue for this cycle.

waden = 0; // WADEN goes LOW, address is now loaded
state = cycle3;

end // cycle2

cycle3: begin
state = cycle1;
// On this cycle the Full Flag to change to show new queue status
// status to the new queue.The Full Flag will update to new queue
// on this cycle.
// Note also that data on the MQdata_in inputs is written into the
// previous queue on this cycle if wen_ is LOW
// A write to the previous queue may occur, wen_ may be LOW

end // cycle3
endcase

12

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

READ PORT CONTROL
The control algorithm/ logic controlling the read port must be able to recognize

that a valid data read, (that is to say that a new data word may have been
accessed and placed onto the Multi-Queue output bus), may have occurred due
to at least one of four possible events. Here is a description of the four possible
events:

1. A read may occur from a previously selected queue by taking the REN
input LOW. Note, here that a new word is accessed on the rising edge of read
clock and is available for the reading device to process that word on the following
rising edge of read clock.

2. The Multi-Queue device operates in a “First Word Fall Through”, FWFT
mode. One implication of this is that if the same queue is selected on both the write
and read ports the first word written into the queue will automatically fall through
to the outputs, regardless of the state of REN.

3. During a queue switch on the read port a final read will occur from the old
queue. Data from the old queue will be accessed and placed onto the Multi-
Queue data outputs regardless of the state of REN. This is due to the “Next Word
Fall Through” nature of the device. This word from the old is forced out to allow
an automatic read from the new queue, where the next word available in the
new queue falls through to the outputs of the Multi-Queue. This leads to event
four.

4. Also during a queue switch on the read port, the first word from the newly
selected queue will be accessed and placed onto the Multi-Queue data outputs
regardless of the state of REN. Again this is due to the “Next Word Fall Through”
operation, where the next word available in the new queue falls through to the
outputs of the Multi-Queue.

This Application Note reviews these four events and shows an overall
solution that may be implemented into the control logic of the FPGA to handle
any event.

Read Operations on the Current Queue
Figure 5 illustrates the potential event outlined in item 1 above. The diagram

shows the situation where a queue has previously been selected on the read
port and read operations are occurring based on valid words being available
in the queue and the REN input being toggled LOW to read out data words.

The Output Valid flag is essentially provided to indicate when a queue is empty
or has been read to empty. It does not indicate when a new word has been
placed on to the data outputs.

This diagram illustrates the implementation in the FPGA’s control logic of a flip-
flop called “lastren”, that indicates when an enabled read has been performed
and the word on the output bus should be processed by the reading device.
For example, if we look at cycle *C*, we can see an enabled read is performed
and word “LW-5” is placed onto the outputs. On the next the cycle, cycle *D*
the reading device should process this word “LW-5”. The state of “lastren” is
used to determine whether the word is a new word and therefore whether it
should be processed.

Based on this set-up the reading device will process words on the following
cycles:

D, *G*, *H*, *I*, *J* & *K*. Note, that on cycle *L* the output valid flag, OV
is HIGH, therefore the queue has essentially been read to empty.

In summary, when a normal read event occurs on the current queue, a new
word should be processed by the reading device on an RCLK cycle where the
OV flag is true, LOW and the “lastren” flip-flop is true, LOW.

13

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

R
C

LK

R
E
N

tE
N

S
tE

N
H

tE
N

S

Q
n

tA

LW
 -

 6

tA

LW
 -

 5

O
V

*A
*

*B
*

*C
*

*D
*

*E
*

*F
*

*G
*

*H
*

*I
*

*J
*

*K
*

*L
*

tA
tA

tA
tA

LW
 -

 4
LW

 -
 3

LW
 -

 2
LW

 -
 1

LW

tR
O

V

la
st

re
n

61
41

 d
rw

05

Fi
gu

re
 5

. R
ea

d
Co

nt
ro

l-
No

rm
al

 R
ea

d

14

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

Read Operation due to FWFT in Current Queue
Figure 6 below illustrates the “First Word Fall Through” (FWFT) effect, this

the second possible read event mentioned earlier. In this diagram both the Write
and Read ports are selected for the same queue. A new word, “W1” is written
into that queue, which before the write operation was an empty queue, the OV
flag is HIGH. This first word written into the queue automatically falls through to
the data outputs, causing the OV flag to go active, LOW. Note, that this first word
has fallen through regardless of the state of REN, in fact REN is HIGH throughout
this diagram. Therefore, the use of the “lastren” flip-flop mentioned above is no
longer an option to determine if a new word is available for the reading device

to process. We have now included a second flip-flop, “lastov” into the control
logic of the reading device. This flip-flop provides the reading device with a status
of the OV flag delayed by one read clock cycle. Therefore, the reading device
monitors both OV and “lastov” to determine whether a new word is available,
here we can see that on read clock cycle *C* the first word, W1 should be
processed by the reading device.

In summary, in the case of the FWFT read event a new word should be
processed by the reading device on an RCLK cycle where the OV flag is true,
LOW and the “lastov” flip-flop is false, HIGH

RCLK *A* *B* *C*

WEN

WCLK

REN

tENS tENH

Dn W1
tDHtDS

tSKEW1

HIGH

Qout Last Word Read Out

tA

W1 (Due to FWFT)

tROV

OV

lastov
6141 drw06

Figure 6. Read Control - FWFT

15

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

Read Operation due to a Queue Switch on the Read Port
Figure 7 below illustrates the third and fourth possible read events, which is

indirectly due to the “First Word Fall Through” effect caused by a queue switch
on the read port. In the diagram we can see that a “New Q” is selected on the
read port on RCLK cycle *A*. Here RADEN is HIGH and the RDADD address
bus is addressing the new queue. When a queue selection is made the first word
of the new queue will fall through to the data outputs of the read port, forcing a
final word to be read from the previous (old) queue. This occurs regardless of
the state of REN, in fact the REN input is HIGH throughout this diagram.

During a queue switch the REN input can remain HIGH and the OV flag can
remain LOW indicating that both the old queue and the new queue have not been
read to empty. Therefore, we introduce a register “sinceraden” into the control
logic of the reading device. Monitoring of the “lastren” and “lastov” flip-flops alone
does not indicate to the reading device that a new word is available in this
example, hence the introduction of the register, “sinceraden”. This register is
a 2 bit register and in the event of a queue switch is simply used to provide a
count from 0 through 3. Upon RADEN going HIGH this register should be reset

to a value 0. On the following three RCLK cycles this count will be incremented
up to a value of 3, at 3 the count will cease incrementing and wait until RADEN
is toggled HIGH once more.

In the event of a queue switch a minimum of 2 new words will be automatically
read out from the Multi-Queue device and will need to be processed by the
reading device, (this again is an effect of the “Next Word Fall Through”
operation). From the diagram we can see that on RCLK cycle *B* “Word N” is
read from the “Old Queue”. This word must be processed by the reading device
on RCLK cycle *C*. The same is true for the first word of the New Queue, “Word
1” which must be processed by the reading device on RCLK cycle *D*. The
reading device should monitor the “sinceraden” register and when the register
has a value of either 1 or 2 the data word on the bus is valid, providing of course
that the OV flag is LOW. It is also very important during a queue switch on the
read port, that the reading device realize that the new word processed with
“sinceraden” at value 1, is data from the old queue, and therefore processed
appropriately. Secondly, the new word processed with “sinceraden” at value
2, is data from the new queue, and therefore processed appropriately.

RCLK
A *B* *C*

New Q

REN HIGH

Qout Old Q Wn-1

tA

sinceraden

D *E*

tQS tQH

RADEN

tQS tQH

RDADD

tA

Old Q Word N New Q Word 1

OV LOW

3 0 1 2 3
6141 drw07

Figure 7. Read Control - Queue Switch

16

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

An Example of Consecutive Read Events
Figure 8 below shows an example where are number of read events occur

consecutively. From Figure 8 we can see that an enabled read has occurred
on the same RCLK cycle as the queue switch, cycle *A*. In this example the
“sinceraden” register serves exactly the same purpose as before, indicating in
conjunction with the OV flag that a new word must be processed on RCLK cycles
C and *D*, (“sinceraden” = 1 or 2). However, in this event we must also
process a word from the old queue that was accessed on RCLK *A*. This word
from the old queue, word “N-1” must be process by the reading device on RCLK
B. The reading device control logic processes this word due to the fact that
the “lastren” flip-flop is active, LOW on this cycle, and in conjunction with OV being

true processes the word “N-1”. As with the previous example, it is important to
note that the data words processed by the reading device on RCLK cycles *B*
and *C* are from the old queue and are therefore processed appropriately.
In summary, when a queue switch is made it is possible that up to three words
will need to be processed by the reading device. The first word will be processed
by virtue of the fact that an enabled read was performed at the queue switch and
therefore, the state of “lastren” in conjunction with the OV flag will ensure this word
is processed. The following 2 words will be processed by virtue of the fact that
register “sinceraden” has the value of 1 or 2, and that the OV flag is active, LOW.
Again, it is important to note that a valid word read with “sinceraden” equal to
‘1’, is a word from the old queue and therefore processed appropriately.

RCLK
A *B* *C*

REN

Qout Old Q Word N-2

tA

sinceraden

D

tAS tAH

RADEN

tQS tQH

RDADD

tA

Old Q Word N-1 New Q Word 1

OV

3 0 1 2 3

tENS
tENH

Old Q Word N

tA

LOW

lastren

New Q

6141 drw08

Figure 8. Read Control - Multiple Reads

17

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

FPGA - Verilog Code Sample

// IDT 3.3V Multi-Queue Read Port Control Code Example

always @ (posedge rclk) begin

if((!ov_) && (
(!lastren_ //Check for normal read
|| lastov_ //Check for FWFT independent of queue switch
|| (sinceraden == 1) //Check for queue purge after queue change (LWFT)
|| (sinceraden == 2)))) //Check for next word from new queue after queue change (NWFT)

begin
/*
Here the user should implement code that handles a valid data word
according to their application requirements.
*/
end

end

//Update counter that checks which queue (new or old) a word was read from
if(raden) begin

sinceraden <= 0;
//Reset the sinceraden 2 bit register to 0 when a new queue switch occurs
end

else begin
if(sinceraden < 3) sinceraden <= sinceraden + 1;
// sinceraden counter maximum is 3

end

lastren_ <= ren_;
// The lastren_ register always provides stauts of the ren_ on the last RCLK rising edge
lastov_ <= ov_;
// The lastov_ register always provides stauts of the ov_ flag on the last RCLK rising edge

end

/*
The code outlined above only interprets when a new, valid word has been read out of
the Multi-Queue device and the queue the word was read from.
This code implements a 2 bit counter, "sinceraden" and two flip-flops, "lastren_"
and "lastov_"
The counter, sinceraden is utilized during a read port queue switch. The value of
sinceraden determines from which queue a word was read during a queue switch. When the
read port pipeline is purged (regardless of ren_), a final word will be read from the
"old" queue (if a word is available) and the next word will be read from the "new"
queue (if a word is available).
If sinceraden = 1 then the word is from the old queue.
If sinceraden = 2 then the word is from the new queue.
If sinceraden = 0 or 3 then the lastren_ or lastov_ is used to determine whether a
read was performed.
*/

Read port verilog Implementation
The control logic required to handled all of the events outlined above can be

easily implemented in the FPGA, below is sample of Verilog code that produces

the control logic required to detect when a word out of the Multi-Queue read port
is a new, valid word that must be processed.

18

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

FLAG BUS OPERATION
There are two flag busses provided on the Multi-Queue device. This flag bus

may be 4 bits wide or 8 bits wide, depending on the device selected. If a 4 queue
device is used the flag busses are 4 bits wide and provide a constant status of
“Almost Full” and “Almost Empty” conditions for each queue. An 8 queue, 16
queue or 32 queue device has 8 bit wide busses. For the 8 queue part the 8
bit busses again provide continuous status of each queue. Now for the 16 queue
and 32 queue parts the flag busses can provide status of all queues in a multiplex
manner. There are two modes of operation for the flag bus in a 16 queue or
32 queue part, these modes are:

1. Direct Mode – Here the user address the queues required on the flag bus.
2. Polled Mode – Here the queues are cycled on the flag bus.

In the following discussion we provide an example for utilizing a 32 queue
part with the flag bus operating in “Polled” mode.

For a 32 queue device both the Almost Full flag bus, PAFn and Almost Empty
flag bus, PAEn are 8 bits wide. The status of all 32 queues can be obtained over
the period of 4 cycles of 8 bits, each 8 bit status is called a “Quadrant”. The
diagram below illustrates the timing of the “Almost Full” flag bus and the
relationship between the FSYNC pulse & flag bus data.
The diagram above illustrates the timing for the “Almost Full” flag bus. Each
quadrant is placed onto the bus with respect to a WCLK cycle, the first
quadrant is marked with a logic HIGH on the FSYNC output. The “Almost
Empty” flag bus has equivalent timing based on an RCLK input and
providing and ESYNC output.

WCLK

PAF[7:0] Quadrant 4

tA

tFSYNC

FSYNC

tA

Quadrant 1 Quandrant 2

tA

Quandrant 3

tA

Quandrant 4

tA

Quandrant 1

tA

tFSYNC tFSYNC tFSYNC

Quandrant 2

tA

6141 drw09

Figure 9. Flag Bus Control

19

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

Below is some example Verilog code that shows how the Virtex II FPGA
can keep track of all 32 queues by updating a 32 bit flag bus register. This

FLAG BUS CONTROL CODE EXAMPLE

input [7:0] pafn; // Almost Full Flag bus inputs
input fsync; // Almost Full Flag bus Sync pulse

reg [31:0] flagreg; // 32 bit register maintains a status of all queues Almost Full levels
reg [1:0] count; // Counter

always @ (posedge wclk)
begin

if (fsync) begin
flagreg[7:0] <= pafn[7:0];
count <= 0;
end

else begin
if (count == 2’b00) begin

flagreg[15:8] <= pafn[7:0];
count <= count + 1;

end

else if (count == 2’b01) begin
flagreg[23:16] <= pafn[7:0];
count <= count + 1;

end
else if (count == 2’b10) begin

flagreg[31:24] <= pafn[7:0];
count <= count + 1;

end
end

end

code assumes a 32 queue device is being used in Polled mode. The same
code may applied to the “Almost Empty” flag bus operation.

20

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

PACKET MODE OPERATION
APPLICABLE DEVICES
IDT72V51236, IDT72V51246, IDT72V51256
IDT72V51336, IDT72V51346, IDT72V51356
IDT72V51436, IDT72V51446, IDT72V51456
IDT72V51546, IDT72V51556

INTRODUCTION

Packet Mode operation of the multi-queue flow-control device is only
available on 36 bit wide devices (listed above). Packet Mode is a selectable
mode of the part and must be selected during a Master Reset. When in Packet
Mode the Packet Ready, PR flag becomes available and the PAEn/PRn bus
operates in Packet Mode, providing Packet Ready status of queues. Note also,
that when in Packet mode the Output Valid, OV flag is still available.

When in Packet Mode the user must utilize the Most Significant 3 bits of the
data bus as Packet markers. D35/Q35 is the “End Of Packet”, EOP marker, D34/
Q34 is the “Start Of Packet”, SOP marker and D33/Q33 is the “Almost End Of
Packet”, AEOP marker. When writing packets into a queue the user must include
these markers at the appropriate positions. The 36 bit wide family of Multi-Queue
devices contains logic that monitors these markers as they enter and leave the
Multi-Queue. This device then provides Packet Ready status for both the queue
selected on the read port as well all other queues within the device. Please refer
to the data sheets for more details on the Packet Mode operation.

The purpose of this application note is to provide the reader with a more clear
understanding of the control requirements of the Multi-Queue when operate in
Packet mode. It is also makes suggestions/recommendations as to how the
device controlling the read port should operate.

OPERATION
When using the multi-queue in Packet Mode the user should utilize a “Start

of Packet” marker (SOP), an “End of Packet” marker (EOP) and an “Almost End
of Packet” marker (AEOP).

The purpose of the SOP and EOP markers is apparent from reviewing the
data sheet in that the Multi-Queue Packet Ready logic must track these markers
as they both enter and exit a queue so as to provide accurate “Packet Ready”
(packet availability) status for a respective queue. The purpose of the AEOP
marker is not so apparent, but still important to the efficient operation of the Multi-
Queue.

When in Packet Mode appropriate control of the read port is very important
to maintain effective switching between queues and maintain packet integrity.
Due to the “pipelining” structure of the Read port, one or two words will be
automatically read out when a queue switch is made (on the read port). When
a read port queue switch is made from Queue 1 to Queue 2, the next available
in Queue 1 followed by the next available word in Queue 2 will be read out
consecutively regardless of the state of the REN input, provided that the queues
have complete packets available. It is important to note that a word cannot be
read from a queue unless a complete packet is available in that queue.

There are a number of scenario’s when considering the operation of the read
port in Packet Mode, these are:

A. Reading out one (or more) packets until the last ‘complete’ Packet of a
queue is read.

B. Reading out a Packet and then switching to a queue with another packet
waiting.

C. Reading out a Packet with another ‘complete’ packet behind it in the same
queue and stopping reads without accessing the next packet.

D. Switching from a queue with no packets available (maybe empty or
containing just a partial packet), to a queue with a packet ready.

Let us take a look at these scenario’s in turn and highlight the control
considerations for each.

A.
This is shown in Figure 10. Essentially when the packet is completely read

out and the last word in the queue has been accessed, the Output Valid Flag
will go HIGH thus preventing any further reads. This also covers the situation
where multiple packets are read from the same queue until the queue has gone
empty, or there are no more complete packets available.

21

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

Fi
gu

re
 1

0.

R
C

LK

R
S

O
P

61
41

 d
rw

10

tE
N

S

R
E
N

tA

tE
N

H

tA

R
A

E
O

P

tA
tA

R
E

O
P

tA

tA

P
re

vi
ou

s
D

at
a

W
0

Q
n

tA

W
1

tA

W
2

W
3

W
n-

5
W

n-
4

W
n-

3
W

n-
2

W
n-

1
W

n

P
R

tP
R

tR
O

V

O
V

*

tA
tA

tA
tA

tA
tA

N
O

TE
:

1.
Th

is
 d

ia
gr

am
 s

ho
w

s
a

Q
ue

ue
 b

ei
ng

 e
m

pt
ie

d
of

 it
's

fin
al

 "
co

m
pl

et
e"

 p
ac

ke
t.

2.
O

n
cy

cl
e

" *"
 a

 d
ec

is
io

n
m

us
t

be
 m

ad
e

w
he

th
er

 t
he

re
 is

 a
no

th
er

 p
ac

ke
t

to
 b

e
re

ad
 a

nd
 w

he
re

 it
 is

 lo
ca

te
d.

 I
n

th
is

 d
ia

gr
am

 t
he

 c
ur

re
nt

 q
ue

ue
 is

 r
ea

d
to

 e
m

pt
y.

22

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

RCLK

6141 drw11

REN

tENH

RAEOP

tA tA

REOP

tA

tA

Wn-4 Wn-3Qn

tA tA

Qx Pa Wn

PR

tPR

tROV

OV

Wn-2 Wn-1

RADEN

tQHtQS

tAHtAS

RDADD Null-Q

tA

Figure 11.

B.
This operation brings about the possible need for the implementation of a

“Null-Queue”. As explained in the data sheet for the multi-queue flow-control
device, the Null-Queue is a default queue to be selected at the end of read
operations on a respective queue to prevent the pipeline being filled with the
next word available in the current queue, this is also applicable in Packet Ready
mode. If the user requires to read a packet from a queue and NOT begin reading
the next “complete’ packet in that same queue, a queue switch should be made
out of that queue, either into a queue that has no complete packets available or
into a ‘Null-Queue”. The timing of the queue switch is important here for 2
reasons:

1. So as to ensure the last word of the required packet is read out, this word
marked with EOP. Let us call this word, “EOP of Packet A in Queue 1”.

2. To ensure the first word of the next packet (marked with SOP) is NOT
pushed into the read pipeline. Let us call this word “SOP of Packet B in Queue
1”.

If there is a queue available with no complete packets ready, a queue switch
can be made to this queue by virtue of the fact that data cannot be read from a
queue that does not have a complete packet available. However, there may
be an instance where this is not possible, i.e. all queues have packets available,
but reading these packets is not currently desired. In this case a Null-Queue must
be selected, to effectively, ‘flush’ the last EOP word of Packet A from Queue 1
and not read any further words or push the SOP word of Packet B from Queue
1 into the pipeline.

From reading the Multi-Queue Data Sheet, the definition of a Null-Queue is
a queue that can never be written to or read from. To the Write port this queue
always behaves as though it is full (Full flag LOW) and to the read port this queue
always behaves as though it is empty (Output Valid flag HIGH).

Please see Figure 11.

23

IDT APPLICATION NOTE
AN-349INTERFACING IDT's 3.3V MULTI-QUEUE FLOW-CONTROL DEVICE TO THE VIRTEX II FPGA

Figure 12.

RCLK

RSOP

6141 drw12

tA tA

RAEOP

tA tA

REOP

tA

Qx Wn-4Qn

tA tA

RADEN

tQHtQS

Qx Wn-3 Qx Wn-1Qx Wn-2

tA

Qx Wn Qy Pa W1 Qy Pa W2 Qy Pa W3 Qy Pa W4 Qy Pa W5

tA tA

REN
REN is don't care during a queue switch

C.
When a queue switch is required at the end of a packet, such that the next

read will be a packet from the new queue, the device reading data from the Multi-
Queue must ensure a queue switch occurs two RCLK cycles ahead of the EOP
and to do this the user should utilize the AEOP marker.

Please see Figure 12.

D.
This instance may occur when the read port has previously been selected

for a queue that either contains no packets available (or only a partial packet
available), or the read port has been selected for the Null-Queue. A packet has
now become available within another queue, thus requiring a queue switch to
service that packet. This operation is quite straightforward, the first word of the
new packet will be accessed 2 RCLK cycles after the queue selection is made,
this can be seen in Figure 13 below.

This Figure 13 shows a Null-Queue selection being made, followed at a later
time by a Selection of Queue Y being made. Here we can see that when the
Null-Queue was selected we completed the reading of Packet 1 from Queue X.
This last word from Queue X will remain on the output bus until a new queue
(with a complete packet) is selected.

Figure 13.

RCLK

6141 drw13

RAEOP

tA tA

REOP

tA

Qx P1 Wn-2Qout

tA tA

RADEN

tQHtQS

tA

REN

tENH tENS

tAHtAS

Null-QRDADD Queue y

Qx P1 Wn-1 Qx P1 Wn Qy P2 W0

tAtA

PR

tROV

OV

tROV

HIGH

tQHtQS

tAHtAS

Qy P2 W1

24

CORPORATE HEADQUARTERS for SALES: for Tech Support:
6024 Silver Creek Valley Road 800-345-7015 or 408-284-8200 408-360-1533
San Jose, CA 95138 fax: 408-284-2775 email: Flow-Controlhelp@idt.com

www.idt.com

Figure 14. Packet Mode Flow Diagram

Read Current Packet out of Queue

is AEOP
marker set

HIGH ?

Determine Location of next Packet to be Read out

Packet in Same Queue Packet in another queue No more Packets to be read.
(Packets may be available, but a

read is not desired).

No Queue Change
required. reads controlled

by REN

Make a Queue Switch

Switch to Queue with
no complete packets

Switch to Null-
Queue

YES

Wait for
Queue

Request

Wait for
Queue

Request

NO

6141 drw14

PACKET MODE SUMMARY
In summary there is an important guideline when using the multi-queue flow-

control device in Packet Mode, this is that the use of an AEOP marker is very
important. The AEOP marker must be set a minimum of 4 locations away from
the EOP. The controlling device must always determine what action must be
taken before the EOP marker (last word of the packet), has been accessed. For
the reasons discussed above, when an AEOP is detected the read port
controlling device needs to make a decision on where the next packet will be
accessed from and if no further packets are to be accessed, whether the selection
of an empty queue (or even Null-Queue) is required to ‘flush the pipe’.

To help determine which queue to switch to (if any), the multi-queue flow-
control device provides a Packet Ready flag bus, in packet mode this PRn bus
becomes available. This bus provides a packet ready status for all queues,
whether they are selected or not. The user should monitor this bus and use it
to determine which queue a packet will be read from at any given time.

An example block diagram of process when an AEOP marker is detected on
the read port is shown below.

NOTE:
That if there are any switching latencies within the read port controlling device when making a queue switch decision, the AEOP marker may need to be set more than 4
locations away from EOP to allow for this additional delay.

DATASHEET DOCUMENT HISTORY
09/06/2002 pgs. 18 and deleted 25.
06/03/2003 pgs. 1 through 24.
07/21/2003 pg. 1.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

