To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESANS
Application Note

78K Series Development Tools

Tutorial Guide

Target Devices
SP78K0 Ver.2.00
SP78K0S Ver.2.00
SP78K4 Ver.2.00

Document No. U17047EJ1VOANOO (1st edition)
Date Published March 2004 NS CP(K)

© NEC Electronics Corporation 2004
Printed in Japan

[MEMO]

2 Application Note U17047EJ1VOAN

Microsoft, Windows and Visual C++ are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

All other brand names or product names are registered trademarks or trademarks of their respective
proprietors.

e The information in this document is current as of January, 2004. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.

e No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.

e NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.

e Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.

e While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.

e NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-

designated "quality assurance program" for a specific application. The recommended applications of an NEC

Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of

each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.

(2) "NEC Electronics products” means any product developed or manufactured by or for NEC Electronics (as
defined above).

M8E 02.11-1

Application Note U17047EJ1VOAN

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
Electronics product in your application, please contact the NEC Electronics office in your country to
obtain a list of authorized representatives and distributors. They will verify:

« Device availability

« Ordering information

Product release schedule

Availability of related technical literature

« Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

[GLOBAL SUPPORT]
http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH NEC Electronics Hong Kong Ltd.

Santa Clara, California Duesseldorf, Germany Hong Kong
Tel: 408-588-6000 Tel: 0211-65030 Tel: 2886-9318
800-366-9782
e Sucursal en Espafa NEC Electronics Hong Kong Ltd.
Madrid, Spain Seoul Branch
Tel: 091-504 27 87 Seoul, Korea

Tel: 02-558-3737
e Succursale Francaise
Vélizy-Villacoublay, France NEC Electronics Shanghai Ltd.
Tel: 01-30-67 5800 Shanghai, P.R. China
. . Tel: 021-5888-5400
e Filiale Italiana

'\Iflill""%(; 2?3;5 41 NEC Electronics Taiwan Ltd.
el De- Taipei, Taiwan

« Branch The Netherlands Tel:02-2719-2377
Eindhoven, The Netherlands

Tel: 040-2445845 NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore
« Tyskland Filial Tel: 6253-8311
Taeby, Sweden
Tel: 08-63 80 820

« United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133

Jo4.1

Application Note U17047EJ1VOAN

Introduction

— To first-time users of NEC Electronics development environments —

Welcome to the world of development environments from NEC Electronics.
This tutorial introduces you to the operation of the SP78K Series software
package using simple sample programs.

— To current users of NEC Electronics development environments —

In this tutorial, you will find sample programs that use a simulator, such as a
virtual-screen output program and a slot-machine program.

Use these programs to confirm the operation of your development
environment.

Target Readers This tutorial is intended for first-time users of 78K Series development tools.
The reader should have a general knowledge of microcomputers, the C programming
language, and assembly language programming, as well as a basic knowledge of
Microsoft ™™ Windows ™.

Purpose The purpose of this tutorial is to assist the reader in understanding the basic operation of the
78K Series development tool.
To gain a deeper understanding of the development tool's operation, users are encouraged
to actually operate the development tool while following the tutorial examples.
This document uses the 78KO0 in all example explanations. Details that are unique to the
78KO0S or the 78K4 are explained separately.

Organization This tutorial consists of the following chapters:

Chapter 1 _Getting Ready

This chapter contains an overview of the 78K Series development tools used in this tutorial
and instructions on how to install the sample programs.

Chapter 2 Trying Out PM plus and Simulator

This chapter describes the basic operation of PM plus and system simulator
using a sample program. The 78K0 and 78K4 are the target processors.
The user manual documents associated with this chapter are Nos. 5, 7 and 8.

Chapter 3 System Simulator Basics

This chapter covers basic debugging with the system simulator using a sample program.
The 78K0, 78K0S and 78K4 are the target processors.
The user manual documents associated with this chapter are Nos. 5, 7, 8 and 9.

Chapter 4 Programming

This chapter shows how to handle CPU-specific dependencies in the C
programming language for the various 78K Series CPUs using a sample
program. The 78K0, 78K0S and 78K4 are the target processors. The user
manual documents associated with this chapter are Nos. 5, 7, 8 and 9.

Application Note U17047EJ1VOAN 5

Related Documents:
Please refer to the documents listed below when using this tutorial.
The related documents indicated in this publication may include preliminary versions. However,
preliminary versions are not marked as such.
Documents related to the development tool are stored as PDF files on the SP78Kxx installation CD.

Documents related to development tools (User's Manuals)

Document Name Document No No.
CC78K0 Ver.3.50 or later C compiler Operation U16613E 1
Language U14298E 2
RA78KO0 Ver.3.60 or later Assembler Package Operation U16629E 3
Language U14446E 4
PM plus Ver.5.10 U16569E 5
ID78K0-NS Ver.2.52 Integrated Debugger Operation U16488E 6
SM78K Series Ver.2.52 System Simulator Operation U16768E 7
SM78K Series Ver.2.30 or later System Simulator External Part User Open Interface U15802E 8
Specifications
Document Name Document No No.
CC78K0S Ver.1.50 or later C compiler Operation U16654E 1
Language U14872E 2
RA78KO0S Ver.1.40 or later Assembler Package Operation U16656E 3
Language U14877E 4
PM plus Ver.5.10 U16569E 5
ID78K0S-NS Ver.2.52 Integrated Debugger Operation U16584E 6
SM78K Series Ver.2.52 or later System Simulator Operation U16768E 7
SM78K Series Ver.2.30 or later System Simulator External Part User Open Interface U15802E 8
Specifications
Document Name Document No No.
CC78K4 Ver.2.40 or later C compiler Operation U16707E 1
Language U15556E 2
RA78K4 Ver.1.60 or later Assembler Package Operation U16708E 3
Language U15255E 4
PM plus Ver.5.10 U16569E 5
ID78K4-NS Ver.2.52 Integrated Debugger Operation U16632E 6
SM78K Series Ver.2.52 System Simulator Operation U16768E 7
SM78K Series Ver.2.30 or later System Simulator External Part User Open Interface U15802E 8
Specifications

6 Application Note U17047EJ1VOAN

Documents related to devices (User's Manuals)

Document Name Document No No.
1 PD780024A, 780034A, 780024AY, 780034AY Subseries U14046E 9

Document Name Document No No.
1 PD789046 Subseries U13600E 9

Document Name Document No No.
u PD 784038, 784038Y Subseries Hardware U11316E 9

Sample programs and program execution environments described in this document are current as of January

2004 and are subject to change without notice.
When considering the use of a product, please first refer to the most up-to-date product documentation and

confirm product availability by contacting an NEC Electronics sales representative.

Application Note U17047EJ1VOAN

CONTENTS

Chapter 1 Getting Ready........ccccuiiuimiiniiiiiiis e 10
Tools Used iN the TULOTIALcooiii et e e e e e e s e e e e e e e e nntnneeeeaaeeeas 11
Tutorial SamPple ENVIFONMENT ... e e e e e e e e e aare e e e e e 12

Chapter 2 Trying Out PM plus and Simulator ..o 13
STArtING PM PIUS.....ooiiiii e e s 15

INtrOAUCHION 0 PIM PIUS ...t e ettt e s e e s b e e s e s s 16
Reading @ WOrKSPACE File........uueiiiieiieeee et e e e e e e e e e rre e e e e aeeean 18
Creating an Executable Program.... ... ittt e e 20
Verifying Program OPeErationcc.uuiiiiiiie ittt e s e e e e e e st e e e e e e s aennnrereaaeeeas 22
Running the System Simulator (SM78KXX)coiiiuiiiiiiiiie e 23

Introduction to the System Simulator (SM78KXX)eeiiuiiiiiiiie e 25

Introduction to the Input/Output Panel WINAOWcc.uviiiiiiiiiiiee et 26
EXeCUING the Program ...t e e 27
StOPPING thE PrOgramttt e e e e e s e e e e e e e sesbeaaeeeeaaeessasaseaaaeeesannnnes 30
Exiting the System Simulator (SM78KXX)ueii i 31
G g T TN 1Y/ o) 0 1= PR 32

Chapter 3 System Simulator BasiCs........cccccciiiiimiinniiiier s 33
Counter Program SpPeCIfiCatiONScooiiiiiiiiiee et e e e e e e e e e e e e e e enraaee s 34
I = T (g To TN Y I o] U OSSR 36
Creating @ NEW WOIKSPACEcoiiiiiiie ettt e ettt e e e ea et e e s eabe e e e e sbee e e e sbaeeeesreeeeeanns 37
Editing the Source and Creating an Executable Program (1)oooiiiiie e 42
Running the System Simulator (SM78KXX)euiiiiiiiiiiiiie et 46
Setting Up the INput/OUtput Panel e e e e e 48
Executing the Program (1) ... et e et e et e e e et e e et e e e nnes 54
7= 18 o o |1 o S 57
Editing the Source and Creating an Executable Program (2)ccccoioeiiiiiiiee e 70
EXECULING the Program (2) oottt et e e e e e et e e e e e e e e e s nne e e e e e e e e e e aanneeeaeaaeas 73
]] o PRSP 82

(O3 =T o (=1 g S oY T = 110 14113V 84
Slot Machine Program SpecCifiCatioNSccuuviiiiiiii e e e e e e e e e e e ennnes 85
Verifying Slot Machine Program OpPerationcooiiiiioiiiiieiee e 87

Reading the WOrKSPACE File...........uuiiiiiiiiiie ettt e e e e e ettt e e e e e e s nbe e e e e e eennnraeeeas 88

Creating an Executable Program..............c.ccoiiiiiiiiiiicc e 89

Running the System Simulator (SM78KXX).......eeeeiiiiee i e e e e s e e s e e e eeneee e enneas 90

RUNNING the PrOGram..o ittt e oottt et e e e e e e ae bttt eaa e e e s nnbeeeeaaeeeaasaeeeaaeeaannnneeeas 91

STOPPING the PrOgram.... .ottt et e e et et e st e e s rane e e e aabeeeeaaes 93
Comments about the INpU/OULPUL PanElcoooiiiiiiii e 94
]] o PRSP 99
Comments about the Program..............oui ittt e e snaae e e s nneeee s 101

8 Application Note U17047EJ1VOAN

Accessing Special-function Registers using Register Name - #pragma sfr..........cocceiiiiiine, 102

Registering an Interrupt Function #pragma interrupt or #pragma vect and _ _interruptc..ooeee. 103
Enabling/Disabling Interrupts DI(); @Nd EI(); ...oveveieieeeieiie ettt 104

Outputting CPU Control Instructions HALT();, STOP();, BRK();, and NOP();cocoevevrvireerierereeieienneen. 106

2N o o 7= T SR 108
Creating UOVRAM.AIL.......ooi ittt e st e e e et e e e et e e e s enseeeeaannteeeeensteeeannreeaeennnes 109
Counter Program SouUrCe LiStNGc.ooiueiiiiiiiii et 114

Slot Machine Program SoUrce LiStiNGcocuiiiiiiiiie et e e e e e e enee 126

Application Note U17047EJ1VOAN 9

10

Chapter 1 Getting Ready

This chapter is an overview of the development tools used in this tutorial, together with instructions on how to
install the sample programs.

Note that the sample programs in this tutorial will only work with the development tools included with the
SP78Kxx.

Application Note U17047EJ1VOAN

Chapter 1 Getting Ready

Tools Used in the Tutorial

This section gives an overview of the development tools used in the tutorial.
The name and main functions of each of the development tools are given below.

e Device Files
A device file contains device-specific information, which is required by the other development tools.
The sample programs in this tutorial use the following device files: the DF780034 for the 78K0, the
DF789046 for the 78K0S and the DF784035 for the 78K4.

CC78Kxx 78K Series C compiler

This is a highly versatile, highly portable C compiler developed to enable 78K Series embedded
control programs to be written in C language.

RA78Kxx 78K Series Assembler Package

This compiler generates 78K Series executable code from assembler source programs.

PM plus
This is a Windows-based integrated development environment.
It integrates editing, compiling and debugging to provide an efficient and comprehensive development
environment.

SM78Kxx 78K Series System Simulator

Executing on the host PC, the SM78Kxx simulates the execution of 78K Series executable code.

In order to be able to execute the sample programs found in this tutorial, you must install the above-
mentioned development tools.

For instructions on how to install the development tools, please refer to the document "Important notes about
the SP78Kxx 78K Series Software Package" included with the SP78Kxx software package.

It is assumed throughout this document that the name of the program group registered in the Start Menu is
the default name, "NEC Tools32".

Application Note U17047EJ1VOAN 11

Chapter 1 Getting Ready

Tutorial Sample Environment

This section describes the preparation required to run the sample programs presented in this tutorial.

e Sample Program Main Body Directory Structure
When you install the Sample Program Main Body, the following files are stored in the directory structure
shown below, created under the directory you specified. Files stored in directories named after chapters
(Chapter2, Chapter3, etc.) are explained in the corresponding chapter. The following shows the directories

for the 78KO0.

ﬂKO_sample

— Chapter2

VRAM.prj
main.c
1

— Chapter3

:

counter.c

— Chapter4

slot.prj

slot.c

\

Directory used for Chapter 2
Project file

Source file
1
1

Directory used for Chapter 3
Source file
Directory used for Chapter 4
Project file
Source file

~

For the 78K0S, there is no Chapter2 directory.

12

Application Note U17047EJ1VOAN

Chapter 2 Trying Out PM plus and
Simulator

This chapter introduces you to the Program Manager and lets you try out the System Simulator
(SM78Kxx) using a completed 78K Series program. (Note that from here on, the 78K Series processors
(the KO, KOS and K4) are collectively referred to as Kxx.) The example in this chapter uses external RAM,
therefore it is not compatible with the 78K0S, but it can be used with the 78K0 or the 78K4. The 78K
Series program used here (called the VRAM program) writes an image pattern to Video RAM.

You will learn how to build the VRAM project, and, through operating the SM78Kxx, you will learn the
basic operation of the tools (PM plus and System Simulator), as well as what is required in the project file
to create an application program. The overall flow is shown here.

Starting PM plus

¥

Reading a Workspace File

¥

Creating an Executable Program

¥

Verifying Program Operation

Running the System Simulator (SM78Kxx)

v

Executing the Program

¥

Stopping the Program

¥

Exiting the System Simulator (SM78Kxx)

¥

Exiting PM plus

Application Note U17047EJ1VOAN 13

Chapter 2 Trying Out PM plus and Simulator

In this chapter, the VRAM program is executed in the following environment.

— SM78K0 N
~ 78K0 ~ -~ ROM ~
VRAM program
Read 0000-0000: 45 68 B4 5A 78 46 87 58
| 0000-0008: 56 87 7C 4F 28 67 84 7C
0000-0010: 57 78 F6 4C 46 78 67 85
0000-0018: 56 87 7C 4F 28 67 84 7C
. J _ J
Monitor Read / Write
- Input/Output Panel —_— ~ RAM ~
Input buttons VRAM program scratchpad memory
[Parts Window [_ o] =] Image Memory
File Mode Edif Parts Bitmap Customize Craw Option Help
e e i [P e [T Image pattern
[E-ErS E EA FeT B E E E E F 0010-0000: 45 68 B4 5A 78 46 87 58
[R e 0010-0008: 56 87 7C 4F 28 67 84 7C
0010-0010: 57 78 F6 4C 46 78 67 85
;
. J . J
\ J
Virtual VRAM display program —
Read + Virtual ¥Ram E =] 3
- 2]
3
E
A
E
i C
T
E
& /

SM78Kxx: The 78Kxx is simulated, together with the RAM, ROM and input buttons.

Virtual VRAM display program:
User-defined external parts for the SM78Kxx.
The SM78Kxx emulates a Video RAM display and displays the contents of the Video RAM on
the screen. (This user-defined external part was constructed for use in this chapter and
employs the External Part User Open Interface function. For the details on the External Part
User Open Interface function, refer to the SM78K Series System Simulator Ver.2.30 or later
External Part User Open Interface Specification User’s Manual (U15802E)).

14 Application Note U17047EJ1VOAN

Chapter 2 Trying Out PM plus and Simulator

Starting PM plus

Now, let's try using each of the tools.

First, start PM plus. From the Windows Start menu, select Programs -> NEC Tools32 -> PM plus.

R&7EK0S Help
CC78k0S Help
|D7Ek4-NS
_@ Aocessones ID7EKA-NS Help
= IDPBKOS-NS
@ Startp |D¥ER.05-MNS Help
Ll"ll Acrobat Reader 5.0 : SMTBKOS
{é Internet Explarer SMTEK0S Help
M35-D0% Prampt SM7aK4
fp"l Outlook Express Sk78KA Help
[3) Windows Explarer 78k.0 Tool Documents L
[E} MEC Tools TK ID7EKONS
o0 &) windows Media Player IDTBRO-NS Help
& &> RATAKOHelp
z & CC7EKOHelp
'E SHTEKD
=

T PM plus - No Workspace [OutPut] (O] x]

File Edit Find Laver “iew Project Build Tool Window Help

|2-DEH|(&k| b e R Hle»+ -EE2]

I = ERE R

[2 Proiec ol x| | 1Ol x]
- [EOF] —

=« i
For Help, press F1 T T ERr 4

Application Note U17047EJ1VOAN

Chapter 2 Trying Out PM plus and Simulator

Introduction to PM plus

PM plus integrates all the functions required to create, edit, build, debug and manage programs, all within
one programming environment. PM plus stores application program and environment settings in a single

project file.

Menu bar Tool bar

IEE,,' PM plus - No Workspace [OutPut]

File Edit Find Laver “iew Project Build Tool Window Help

|a-DEH (&6 & e j|¢»+-\|§@|@‘
= Ol Ak K|H |
= ProjectWindol M=l = outPut BE

- [EOF] ﬂ‘

For Help, press F1 \ \ lililiflxilyi 7
Project window Output window
Project window: Displays project, source, and include file names in a tree structure.
Output window: Displays the progress of the build process.

ﬁ> For details about the menu bar and tool bar, refer to the PM plus Ver.5.10 User’s Manual (U16569E).

4 \
What is a workspace ?
A workspace is the unit in which the file names of multiple project files are managed.
L J
\

What is a workspace file ?

A workspace file is a file in which information such as the file names of multiple project files are

stored. The file name is "xxxx.prw".

_ J

16 Application Note U17047EJ1VOAN

Chapter 2 Trying Out PM plus and Simulator

Application Note U17047EJ1VOAN 17

Chapter 2 Trying Out PM plus and Simulator

Reading a Workspace File

PM plus stores the application program environment (directory, tool, and option information) in a project
file.

Project file information is then stored in a workspace file.

Pre-created workspace and project files are used in this chapter.

E> Details on how to create workspace and project files are found in Chapter 3 - System Simulator

Basics.
The project file used in this chapter contains the completed VRAM program source file name, together
with the SM78Kxx simulator settings for the 78Kxx, ROM, RAM and input buttons.

In order to start running the VRAM program, you must first open the project file in PM plus.

In PM plus, from the menus select File->Open Workspace... and specify the VRAM.prw workspace file.

[> If you have not yet set up the Sample Environment, please refer to Chapter 1 - Tutorial Sample

Environment.

EE' PM plus - Ho Workspace [OutPut] M=]1E3
| File Edt Find Laver Wiew Project Buld Tool Window Help
Hew Chil+M e -
Open... Clrl+0 E | Eﬂl j| A ”EIE ? ‘
Irzertiile.. j| - ___1_ }?_ _f_ _2{__ | I?ﬁi |
Lloze
B DutPut - [O] x|

MNew Workspace...

Open'y . Iﬁ

SayeWiokepace
Cloze Workspace

Save [t s
Save bz,

[Ehange Source Fileame..
Saye bl Eaunee Fes

Frint Frexview
Frint... Chil+P

Eiecent File

Eezent Workspace

Exit PM pluz

¥

KIN ' 4
Open an existing workspace [[CAfa et 4

18 Application Note U17047EJ1VOAN

Chapter 2 Trying Out PM plus and Simulator

Open the Chapter2 directory.

Open Workspace 2]

Laak jn: |E Chapterd j El
1 ucvRAM_sic

3

File name: |"-.fFi.f3.M.prw "
Files of type: [workspace File(* prw) i Cancel |

Select VRAM.prw and click Open.

PM plus reads the workspace
file "VRAM.prw."

T PM plus - VRAM. prw [DutPut]
Eie Edit Find Lawer Miew Project Buld Tool ‘window Help

& 0= E|@R| 0 e S R Y
| [B Herawix W DEDREE |
M [=EI| = outPut IM[=1E3

- [rzor

1 5 78K20 Sexies ;
C1- Virtual YRAM
(21 Include Files

(L3 Project Related Files
(2] Other Files

KT | | A il

Moving project completed succasshully = CARTFT 2

Application Note U17047EJ1VOAN 19

Chapter 2 Trying Out PM plus and Simulator

Creating an Executable Program

Next, you will create an executable program. This process is called creating a build.

In PM plus, click the Build button

s | or select Build from the Build menu.

55 PM plus - VRAM. prw [DutPut] - (ofx]
File Edit Find Laper View Projct Buid Tool ‘window Help

=T e —— | T

J [Vitus| VREM - 7610 Seies =] [Debug Buiid = 4 & #-! iAW H ‘
IR [=19] = outPut -[O[x]

Fies | bhema | - lrzor ﬂ

-5 78K/0 Series - 1 Project(:
@ Virtual VRAM
123 Source Files
(23 Include Files
[0 Project Fielated Files
(23 Other Files

4 0| o
Moving project completed successiully T CIRTRT 4

E

The build process executes.

5 PM plus - VRAM_prw [OutPut] =10l x|
Fle Edi Find Laer View Project Buld Tool Window Help
e e ——— R
]I\/\rlua\\/RAM—?BK/DSeHes ~][Debug Buid Sl & R X HE H
 ProjectWinde I] 5 i 1ol x|
Files |MEMD| - Conversion complete, O error(s) fo —
- C:\NECTOOLS32\BINYra78KD.exe -fsub_code.prak
=] 78K/0 Serios - 1 Proieotl: || 4 -
@ Virtual VAAM - 7BK/D Series Assewbler V3.s0 [3 Apr 2003] 4
(3 Source Fies - Copyright (C) NEC Electronics Corporation 1980,2003+
(23 Include Filss -y
(2 Preiet Related Fies || pase1 starc
(23 Other Files _ Passz srarté
-+
- Target chip : uPD7TS00344
- Device ifTVEEEM
-+
- issembly o 0 warning(s) found.¥
_ c:\nzcTool] @ 13500 Buid completed nomall. |
-+
- 78K/D Seri 14
- Copyrig - - tion 1990,2003+
-4
- Target chip : uPD7B00344
- Device file : W1.01+4
-4
- Link complete, 0 error(s) and 0 warning(s) found.+
- C:\NECTOOLS32\BINYoc78K0.exe -yC:\NECTools32\DEVY character. lmfd
-4
- 78K/D0 Series Obhject Converter V3.60 [3 Apr 2003]+
- Copyright (C) NEC Electronics Corporation 1990,2003+
-+
- W30l Can't initialize RAN area 'Ib7ch - £o8Lh' 4
- Target chip : uPDTS00344
- Device file : V1.01+t
-+
- tbiject Conversion Complete, 0 error(s) and 1 warning(s) found.[EOL_|
e L) | T Bl
For Help. press F1 = L1 %7 [v:69 4

The above dialog appears if the build process completes normally™*®.

Note Even though the message " Can't initialize RAM area " is displayed in the Output Window, this does
not affect the operation of the VRAM program.

For details on this message, please refer to the RA78Kxx Assembler Package User's Manual.

Application Note U17047EJ1VOAN

Chapter 2 Trying Out PM plus and Simulator

-

U

What is a build ?

2N

The Build function converts source files within a project into an executable program. PM plus

automatically compiles, assembles, and links the program. In addition, after the first build of a

project has been performed, PM plus checks if any source files have changed, and only compiles

and assembles the changed files. This reduces the time required for the build.

J

Mat is a rebuild ?

2N

For a build, only source files with changes are compiled and assembled. For a rebuild, all

source files, whether they have changed or not, are compiled and assembled. When you change

any compiler options or other settings, you should select rebuild instead of build. Also, there

may be times when modified files are not detected. You will also need to select rebuild when:

* You replace a modified source file with an earlier copy of the file that does not contain the

modifications.
* You adjust the clock of the host computer after a build.

* You move the project environment to a different host computer whose clock setting is

)

different from the previous computer.

Application Note U17047EJ1VOAN

21

Chapter 2 Trying Out PM plus and Simulator

Verifying Program Operation

NEC Electronics offers an Integrated Debugger and System Simulator execution environment for verifying

the operation of a user application.

Here, we will run the System Simulator (SM78Kxx) and verify the operation of the program.

o\

What is an integrated debugger (ID78Kxx) ?
An Integrated Debugger is a Windows-based software tool that allows you to debug a
program within a development environment that consists of an in-circuit emulator connected
to a target system. You can debug at the C source level or the assembly code level. With the

event setting function of the in-circuit emulator, you can execute the program in real time and

\ observe the operation.)

What is a System Simulator (SM78Kxx) ? \
A System Simulator is a Windows-based software tool running on a host computer that
simulates the operation of the target system, allowing you to run and debug your application
program on the simulator. You can debug at the C source level or the assembly code level.

With a System Simulator, you can separate application program logic verification from

22

\ hardware development. /

Application Note U17047EJ1VOAN

Chapter 2 Trying Out PM plus and Simulator

Running the System Simulator (SM78Kxx)

Next, you will run the System Simulator (SM78Kxx).

In PM plus, click the Debug button

or select Build ->Debug from the menu bar.

If the Debug button is not displayed, select Tool->Debugger selection->SM78Kxx System Simulator.

For details on option settings, refer to Chapter 3 - System Simulator Basics.

3 PM plus - VRAM.prw [OutPut]

Fle Edi Find Layer Wiew Pioject Buld Tool Window Help

=[O x]

s e e —— - B

| it Vs - 7270 Seies

=][Debug Buid

3
-

I [

L L))

_1oj x|
Files |Memu|

78K/0 Ser
£ Virtual VRAM

(1 Source Fies

(21 Include Files

(21 Froject Related Files
-2 Other Files

B DutPut

78K/0 Series Assembler V3.60 [3 Apr 2003] 4%

Copyright (C) NEC Electronics Corporation 1990,2003+

¥
Passl Starct
Passz Starct

-+

: uPD7800344
P V1,014

Target chip
Device file
+

issembly complete, 0 error(s) and
C:\NECTOOLS32% BINY 1k75K0 . exe —foharacter.plkd
+

78K/0 Series Linker V3.s0 [3 Apr 200314

Copyright (C] NEC Electronics Corporation 1990,2003+

Target chip : uPD780034+
Deviee file : V1.014

Link complete, 0 error(s) and
C:YNECTOOLS324BINY on78K0. exe —yC:y\NECTonls32% DEVY

¥
TOKE/D Series Chject Converter V3.60 [3 Apr 20031+

Copyright (C] NEC Electronics Corporation 1990,20034

W301 Can't initialize RAM area 'fh7ch - fhSfh' ¢
Target chip : uPD7E0034+
Device file : V1.0l

Object Comversion Complete, 0 error(s] and

Build Total error(s) : 0 Total warning(s) : 1 [EOF]

KN

0 warning(s) found. 4

0 warning(s) found.+
character. lmf

- [O]]

1 warning(s) found.+

i

N I 1

%= SM78KD : VRAM. pri
File Edit View Option Run Ewent

Browse Jump Window Help

The SM78Kxx starts.

0l L A et S =1 AT e O TR [= e

E Source [main.c)
Search...l << > Watchl Quick...l Helleshl Close |
poid maind}
(>
DICY; »#% Disable interrupt =/
P InitC); #%* Initialize of SFR =/
< statePause = FALSE; #% An initial process
= EI<Y; »= Enable interrupt =~
< processOpenning(); % Excute "Drawing processing
e
Pushed Button "1% C{interrupt)
Arguments: none
Return values: none
poid pushButtonl<wvoid>
e
e 1L | JJ End int<)3 #* Interrupt state end is no
4

ing stop

I

sl

|main.c#153 [main

|0628 [[[

B Parts Window

File Mode Edit Parts

Bitmap Customize Draw Option Help

8KOD Simulator GUI

=101 x|

File Estemal Parls

E sternal Circuit

[ptinn

=10 x|

Help

g | 2)] e) A [

P00is setto 0
POlis setto 0

[P

N
==

P0Zis setto 0
P03is setto 0

Ll

Down Load File:

HOutput Data File:

Application Note U17047EJ1VOAN

23

Chapter 2 Trying Out PM plus and Simulator

Next, from the Input/Output Panel window menus select Custom -> Load and open the "uoVRAM.dII" file.

B8 Parts Window _[O]

File Mode Edit Parts Bitmap | Customize Craw Option Help

I8 4 e 1 B EEA e B e

IUnlaad

|2 =

1

Select "uoVRAM.AII" and

click Open.

Open

Look ir; I =5 Chapter2

|l e ®meckE-

uoYRAM_src

File name:

JusvRaM

Files of type: | DL Filel.dI]

If the "uoVRAM.dII" file is not displayed here, enter the name directly into the File name entry field

or set Windows Explorer to be able to display files with the .dll extension.

1 Virtual vyRam

I[=] E3

The virtual VRAM display
window opens.

(The file "uoVRAM.dII" used here was created for the VRAM program, so it is not necessary
to change any settings for the file. For an explanation of how to create the uoVRAM.dIl from

the source files, refer to Appendix - Creating uoVRAM.dII.

For additional details, refer to the SM78K Series System Simulator Ver.2.30 or later External

\Part User Open Interface Specification User’s Manual (U15802E).

24

Application Note U17047EJ1VOAN

Chapter 2 Trying Out PM plus and Simulator

Introduction to the System Simulator (SM78Kxx)

The System Simulator (SM78Kxx) consists of a Main window and a Simulator Graphical User Interface
(GUI) window.

Main window: Displays the status of the CPU core and controls the simulator execution.

Simulator GUI window: Controls external parts

The initial screen of the SM78Kxx is as follows.

<Mai i >
Menu Bar Main Window:

Tool Bar
SMKD32 : YRAM.prj

Edit Wiew Option Run Event Browse Jump Window Help

o[=[] 2 14| ||| RO Qa8 |ota] | BTes|s| BB ¢ 062 1))

Ready

main, c# 159

|BRE& 4
Window Display Area

Status Bar

<Simulator GUI Window>

Menu Bar Message Area

&= 78K /0 Simulator GUI

File External Parts Exterr®l Circuit Help

-
|

Down Load File:

Qutput Data File:
> 2

=~

Simulation Target File Name Display Area

E:> For details about each area, menu bar and tool bar, refer to the SM78K Series System Simulator
Ver.2.52 Operation User’s Manual (U16768E).

Application Note U17047EJ1VOAN 25

Chapter 2 Trying Out PM plus and Simulator

Introduction to the Input/Output Panel Window

The SM78Kxx offers standard parts, such as buttons and LEDs, as part of the simulated target system.
The Input/Output Panel window allows you to control the part settings and to operate the parts.
To open the Input/Output Panel window, from the SM78Kxx Simulator GUI window, select External Parts

->Input/Output Panel.

|j> For information on Input/Output Panel settings, refer to Chapter 3 - System Simulator Basics.
|j> For details about the menu bar and tool bar, refer to the SM78K Series System Simulator
Ver.2.52 Operation User’s Manual (U16768E).

Menu Bar Tool Bar

[Parts Window

File Mode EWE Parts Bitmap Customize Draw Opbon Help

[st sl | 2 | G A v A 2 A

NENE N

You can create additional parts as required by using Microsoft Visual C++TM, and the same procedure as

that used for creating the uoVRAM.dII file.

|j> For details on how to create user-defined external parts, refer to the SM78K Series System
Simulator Ver.2.30 or later External Part User Open Interface Specification User’s Manual
(U15802E).

26 Application Note U17047EJ1VOAN

Chapter 2 Trying Out PM plus and Simulator

Executing the Program

Next, you will execute the program.
Click the SM78Kx Restart button ke | or select Run->Restart. The VRAM program will execute.

SMKD32 : YRAM.prj

FiIe,Ed.i.K Wiew Opkion Run Event EBrowse Jump Window Help

([} =[] 2| <] BIBm| BIE= QlawE =
[Source {main.c)
Search...l <<J ¥ | Watch | Quick... | Refrazh | Cloze |
* (=151 HALTE) ; Sk Put [the CPU] in a HALT state #/f ;I
w [l a7(}
=1=
9|/ LT e
opl| Draw Function “Tile Pattern”
91 _I
22| Arguments: none
23| Return values: none
94 ik kk ik kk s
95([void processTile(vaid)
a6 ({
* o7 EICY; J# Enable interrupts #/
® EE if{statePaint == nowTile){ J4 if the state is [drawing Tile Pattern] #/
i =L statePaint = nowllear; /% Set the state to [cleaning monitor] #/ %I
* 100 paintClear(): A4 Cleaninz diselavy function #/ ﬂ
L 1L 1 104 Sz
K|]
Ready main.c#87 |processOpenning [082E [BREAK 4

Filz

Edit

Yigww Option Rum Event Browse Jump ‘Window Help

| e [= [e o] B Bfe|®| Qla|&R 2

B Source {main.c)

*

R

=

Search...lﬁj > | Watch I Quick...l Hefreshl Cloge |

158

160)
161
162
163
164
165
166
167
168
169
170
171
172

13

void mainl)

{
DI /% Disable Interrup #/
Init(); S Initializes device */
statePause = FalSE; /% Set state to pause */
EIC); /% Enable interrupts */
processOpenning(); £ Run draw initial function =/
1

T
When button 1 is downCinterrup)

hrzuments: none
Return walues: none
EEEEE R R R R ERE R R R RN R AR R AR R R R S

fegid. ras bt o s i
i

||
(=l
2
= —

The program executes.

The color of the status bar changes to red during program execution.

Application Note U17047EJ1VOAN

27

Chapter 2 Trying Out PM plus and Simulator

28

Next, you will operate the VRAM program while it executes. Click each button on the Input/Output Panel,

and confirm that the VRAM Display window changes accordingly.

B&lParts Window Mi=]

File Mode Edit Parks Bitmap Customize Craw Opktion Help

KR R R

PAUSE | RET

Clicking the [1] button switches to a program that draws the pattern shown on <Screen 1>.
Clicking the [2] button switches to a program that draws the pattern shown on <Screen 2>.
Clicking the [3] button switches to a program that draws the pattern shown on <Screen 3>.
RET Clicking the [RST] button_resets the target CPU under simulation.

Clicking the button while a pattern is being drawn in the Display window pauses the drawing

program.

Clicking the button while the program is paused resumes execution of the drawing program.

<Screen 1> <Screen 2> <Screen 3>

i Mirtual YRAM =13l x| i Yirtual YyRAM =3 x| i Yirtual YRAM

e

m 0
I TME O T

5B
C
T
E
F
2]
i
2
[

0 You have now confirmed that the VRAM program operates normally.

/What does "resetting the target CPU" mean ?

The target CPU mentioned here is a virtual . PD780034, which the SM78K0 simulates. For the
78K4, the target CPU is the ;. PD784035.

Resetting the target CPU means the SM78K0 simulates the application of a logical low signal
to the RESET terminal of the virtual PD780034.

As a result, the VRAM program running on the virtual ;. PD780034 returns to its initial state.
This operation *does not* mean that the personal computer that SM78Kxx is running on is

\ reset.

)

Application Note U17047EJ1VOAN

Chapter 2 Trying Out PM plus and Simulator

The following diagram shows the screen processing flow of VRAM program.

Button 3 clicked
Button 2 clicked

> Screen 3
(processing

Screen 2)

processing/ <

—

A

Button 2 clicked
Button 3 clicked

Initial

Screen

paya1Io Z uopng
payallo | uopng
pax2I[o | uoyng
pa)2119 | uoyng

paxaIfo | uoyng

Screen 1

processing

Draw Screen 1

Clear screen completed or
button 1 clicked

Draw

— Clear
Button 1 clicked screen

Screen 1

uopnq asned

uopnq asned
uopnq asned
uopnq asned

Clearing
screen
paused

Drawing
Screen 1
paused

Button 2 clicked or
button 3 clicked

Application Note U17047EJ1VOAN

29

Chapter 2 Trying Out PM plus and Simulator

Stopping the Program

Next you will stop the execution of the program.

Click the SM78Kxx Stop button II | or select Run -> Stop.

MK032 : YRAM.prj

File Edit Yiew Option Run Event Erowse Jump Window Help
G > (=12]2] El@e] Bl Qlalse) |
E Source {main.c)
Search...l << | > | ‘Watch | Guick...l Hefreshl Cloze |
[| rsgllvoid main() =]
E {
160 nIil; Jt Disable Interrup #/
* 161 Init(); / Initializes device */
il 162 statePause = FalSE; J* Set state to pause */
* 163 EIC(); /* Enable interrupts #/
164 processOpenning(); J Run draw initial function =
i 165 }
16H|
LET| | R R R R AR LA .
165|| When button 1 is down(interrup)
165
170|| drzuments: none
171| Return values: none (=
172|| dddrrdr skt Rk R R R R R =
I — 173 ferey i wuokhRut+tand ftemd AN ﬂ
[b

Program execution stops.

MK032 : YRAM.prj
File Edit Wew oOption Run Event Browse Jump Wwindow Help

e |e = [vivi|=] BlB|E B%E Qla

E Source {main.c)

Search...l £ | >>| “wiatch | Quick...l Hefreshl Cloze I

L =1 H<(D: S Put [the CPU] in a HALT state #/ =]
o g1

{515

gpl| Draw Function “Tile Pattern”

91 _I

92| drguments: none
93[| Return walues: none

94| ## * il * L e
95(|veid processTile(vaid)
ag(|{
® a7 EIC): /% Enable interrupts #/
* EE if(statePaint == nowTilel{ f4 if the state iz [drawing Tile Pattern] #/
* 23 statePaint = nowClear; /% Set the state to [cleaning monitar] #/ (Tl
i 100 paintClear(): f# Cleaning displaw function #/ g
LIl | ol o L Ed
|t - |
CR:QE_IL_ |main.c#8? |pr0cessOpenning |082E | |BREP.K____44.

The status bar color returns to its original color when you stop the program.

Application Note U17047EJ1VOAN

Chapter 2 Trying Out PM plus and Simulator

Exiting the System Simulator (SM78Kxx)

To exit the System Simulator (SM78Kxx), from the menus in the SM78Kxx Main window, select File ->

Exit.

&2 SM7BKO : VRAM.prj
File Edit “iew Option Bun Ewvent Browse Jump Window Help

Open... Ctrl+0 ! Al =S | o
L w0 g Qlalwel BlalE]
Download... 03e I
Upload... =]
Project 3 /% Dizable interrupt */
B i > /% Initialize of SFR =~
A= <% fAin initial processing stop
#% Enahle interrupt -
Debugger Resst... #% Excute "Drawing processing
E it
I EE BT on s yahdl samplekEhamtend s Fkd _I
2 e B aa EEs eI samplekEhaptensahanastenmf
171|| Return values: none
172 / LI
igi zuid pushButtonl{void? 2
175 End int<)s #% Interrunt state end is not ¥
<] | *

|rnain.c#159 |rnain |oB2a i

A dialog is displayed asking
you if you want to exit.

]
Thiz will end your Debugger sezsion.
Do pou want to zave the zettings in the project file ?

Mo | Cancel |

SHM7BKD

Click OK button to exit the SM78Kxx.

Application Note U17047EJ1VOAN 31

Chapter 2 Trying Out PM plus and Simulator

Exiting PM plus

To exit PM plus, from the menus in PM plus window, select File -> Exit PM plus.

5 PM plus - YRAM_prw [OutPut]

File Edit Find Layer Yiew Project Build Tool Window Help

Mew Ctrl+M
N T« » + = &= ‘
Open... Ctrl+0 = | ﬁﬁl J| | TE — ?
L oo EEET AR |
LClose
OutPut -0 x|
Mew Workspace...
Open Workspace... ¥ i -
Save Workspace TGE/0 Series Assenbler V3.60 [3 Apr Z003]+
s Copyright (C) NEC Electronics Corporation 1990,Z003+4
Cloze Workspace ¥
Save Chi+S Passl Starti
Cave ba. Fass2 Startd
- ¥
EhiangeSource Eile Wame:. Target chip : uPD7S00344
Save &l Souree FHes Device file : V1.01+4
Frink Prewiew i
N = hAzszewbly complete, 0 erroris) and 0 warningis) found.+
Eint... BilP | .4 NECTOOLS32% BINY 1X78KD.exe —foharacter. plit
FecerntHE *
TBE/0 Series Linker V3.60 [3 Apr 20031+
CAMECT oals32%. \WRAM. priw Copyright (C) NEC Electronics Corporation 1990,20034
*

Target chip : uPD7S00344
- Dewvice file : V1.01+%

- ¥

— Link complete, 0 error (s] and 0 warningi=s) found.+

— C:\NECTOOLS3Z%EINYoc78EQ.exe —-yC:\NECTools3Z24WDEVY character.lmfy
- ¥

- 78K/0 Series Object Converter V3.60 [3 Apr 20031+

— Copyright (C) NEC Electronics Corporation 1990,2003+4
- ¥

- W30l Can't initialize RAM sres 'fh7ch - fh8fh'+4

- Target chip : uPD7S00344

— Device file : Wi.014%

- ¥

- Chject Conversion Complete, 0 error(s) and 1 warning(s) found. ¥

-+

— Build Total error(s) : 0 Total warningi(=s) : 1 [EOF] =

-
4 »
' | 21y 0y
Exit Pk plus and prompt to save the files l_ {0 B o B A P

You will exit PM plus program.

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

This chapter explains basic debugging with the System Simulator (SM78Kxx), using a sample program. The
sample program used here is a counter program.

The sample counter program you will use contains several bugs that you will correct as you operate the
simulator.

The overall flow is shown here.

Starting PM plus

Xl

Creating a New Workspace

&

Editing the Source and Creating an Executable Program (1)

&

Running the System Simulator (SM78Kxx)

&

Setting Up the Input/Output Panel

&

Executing the Program (1)

Debuqging

@

Editing the Source and Creating an Executable Program (2)

@

Executing the Program (2)

&

Exiting

Application Note U17047EJ1VOAN 33

Chapter 3 System Simulator Basics

Counter Program Specifications

Before starting to debug the counter program, you need to have a general understanding of the counter

program. The basic external specifications of the program are as follows.

External Specifications
The devices specified are a button and a two-digit 7-segment display; when the button is clicked, the counter
increments. (INTWT is used for the 78K0S and INTCOO is used for the 78K4.)

(111
INTTHOO | | | ||

Here you will implement an increment function and an LED display function. The main routine, which is used
for debugging, takes advantage of the SM78Kxx debugging functions and handles processing such as button

input and initialization.

Basic Specifications (Increment function and LED display function)

® Increment function
» When an INTTMOO interrupt occurs, the 2-digit decimal counter increments by one.
» When the counter reaches 99, the next increment returns the counter to O (counts in a

loop).

® LED display function
» The decimal counter value is output to the 7-segment LED display.
» An |/O port of the 78Kxx is used to control the 7-segment LED display

Main Routine Basic Specifications
® |[nitialize the counter to 0.
® |Initialize the /O port used for controlling the 7-segment LED display.
® To simulate an INTTMOO interrupt, the SM78K0 uses an internal interrupt button to generate a virtual

internal interrupt, and implements only the part necessary to handle the internal interrupt.”

What is an I/O Port ? \
Almost all 78K Series devices are equipped with 1/0 ports, which allow the CPU to control
external components and to acquire external signals.

For details on the 1/O port, refer to the user manual of the device being used.

\— _/

34 Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

The internal specifications are as follows.

Internal Specifications
® Store the counter value in global variables count1 and count10

Variable Contents
int count1 Stores the value of the first digit of the counter (1's)
int count10 Stores the value of the second digit of the counter (10's)
® The program consists of three functions: LED display, increment and Main routine for debugging.
Function Contents
LED display - Displays the counter value on the LED display.
void putLED()
Increment - Starts on an INTTMOO interrupt.
void interrupt1() - Increments the counter value and handles digit overflow (carry
and loop).
- After incrementing the counter value, calls the putLED() function.
Main routine - Initializes the 1/0 port that controls the LED display.
void main() - Sets the conditions for accepting an INTMOO interrupt.
- Initializes the counter value to 0, starts the putLED() function and
displays an initial value of 0.
- Puts the CPU in HALT mode.

® For the 78K0 and 78K4, I/O ports P4 and P5 are used to control the 7-segment LED display.
P4 outputs the display contents, while P5 selects the digit. For the 78K0S, 1/0 ports PO and P1 are used.

Port | Bit position Port Address Usage
P4 0 P40 or P00 | When the state changes 0 -> 1, specifies that the
contents of P1 are to be displayed on the first digit
or PO e
1 P41 or P01 When the state changes 0 -> 1, specifies that the
contents of P1 are to be displayed on the second digit
P5 0 P50 or P10 | Sets the state of the bottom segment of the display (1 - lit,
0 - not lit)
orP1 1 P51 or P11 | Sets the state of the lower left segment of the display (1 -
lit, 0 - not lit)
2 P52 or P12 | Sets the state of the lower right segment of the display (1
- lit, 0 - not lit)
3 P53 or P13 | Sets the state of the middle segment of the display (1 - lit,
0 - not lit)
4 P54 or P14 | Sets the state of the upper left segment of the display (1 -
lit, 0 - not lit)
5 P55 or P15 | Sets the state of the upper right segment of the display (1
- lit, 0 - not lit)
6 P56 or P16 | Sets the state of the top segment of the display (1 - lit, O -
not lit)
7 P57 or P17 | Sets the state of the lower right dot of the display (1 - lit, 0
- not lit)
P56 or P16 —/—® \
/ e
P54 orP14 —e ®— P550rP15
e
> > P53 or P13

P51 orP11 —@ ®—— P52 or P12

P50 or P10 —N/A—@ NV [®—P570rP17

Application Note U17047EJ1VOAN 35

Chapter 3 System Simulator Basics

Starting PM plus

First, start PM plus.

From the Windows Start menu, select Programs->NEC Tools32->PM plus.

Ra&78K0S Help
@ Windows Update CE78K0S Help
D78k 4A-M5
Biogiams @ Arccessones ID7SKA-NS Help
— = |D78k05-MS
| Favontes ' Startlp IDTBKOS-NS Help
rrzﬁ Bocuments v [l"ll Acrobat Reader 5.0 SM7BKOS
_' e & Internet Explorer SM7BKOS Help
% Settings L M5-D05 Prompt SM7EK4
R Lf:] Outlook Express @ SM7EK4 Help
=E 1 3
% i IQ Windows Explorer 78k0 Tool Documents r
& Hep (3 NEC Tosk TK » BB D78KoNS
on @ “Windows Media Player @ ID7BKO0-NS Help
ﬁ Run.. & RATSKOHelp
%’ &) CC7BK0Help
3 &, Logor B Sh7aK
E @ Shut Down..
T =
Hea® |
E?_PM plus - Ho Workspace [DutPut] _ (Ol x|
File Edit Find Layer “iew Project Buld Tool Window Help
(B Ded SR s = e 2 -I=&Ele
R
 DutPut 19 [=1 B
- [EOF] —
KN a7
For Help, press F1 R LR 2

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

Creating a New Workspace

Next, you will create a new workspace.

From PM plus menus select File -> New Workspace...

5 PM plus - No Workspace [OutPut]
Fle Edt Fing Layer Yiew Project Buld Tool Window Help

P] 3

Newr ChilsN
Open Cirk0

I —] [EE

st T Slsa#+E[H|

Close

? OutPut
[EQF]

Dpen Wworkspace.
Seve Werispaoe
s W bikspieoe

S Wi
Savels

[Hange Saurce e are.
Saveiall Sauree Fies

Print Preview
Piint ChieP

Fezentbie,

CAMECTools324 hslot prw
CAMECTools32% . \WRAM priw

Exit PM plus

The New WorkSpace
dialog box opens.

.z

Create a new workspace

[O O 1050

Each item in the dialog box is explained
below.

Workspace File Name:

- The name assigned to the file that stores the
workspace information.

Folder:

- Specifies the folder in which workspace and
project files are stored.

- Click the Browse... button to display a dialog
box from which you can select a directory.

Project Group Name:

- Specifies what is displayed in the title bar of
the Project Window.

Series Name:

- Specifies the series name of the device file
used.

Device Name:

- Specifies the device name of the device file
used.

New WorkSpace - Step 1/8 [Workspace Information]

*workspace File Mame
I >»1. Workgpace Information

2 Select Heal Tine mS{H]
& Startup FilE(H]

I EEre | A Feqister b ade(H]

Project Group Narme : & Lt Directive FHiel#]
| E. Setup Source Files

I™ Create Blank Workspace
* Folder

Series Mame ; 7. Select Debugger

| 7840 Series

Device Name :
J2 I e

Device [nstall |

d 8. Canlfirnation

[#] w850 Series Only (2-5)

This will zet up the basic infarmation about the workspace and the project.

* Required field

| Cancel I Help

< Back [dents

Actual
dialog box are given on the next page.

entries for the items in this

Application Note U17047EJ1VOAN 37

Chapter 3 System Simulator Basics

ﬁter the following workspace inform%

Into the dialog box:

Workspace File Name:
counter
Folder:
For the 78KO0:
\78k0_sample\Chapter3
(Click Browse... button and select the
sample directory.)
For the 78K0S:
\78k0S_sample\Chapter3
For the 78K4:
\78k4_sample\Chapter3
Project Group Name:
counter program
Series Name:
78K/0 Series (for the 78K0)
78KI/0S Series (for the 78K0S)
78K/4 Series (for the 78K4)
Device Name:
1 PD780034 (for the 78K0)
1 PD789046 (for the 78K0S)
1 PD784035 (for the 78K4)

Hew WorkSpace - Step 1/8 [Workspace Information]

*Workspace File Mame :

Icuunler

[~ Creats Blank Workspace
* Folder :

IE SMECT ools32478k0_samplehChapter3 Browse...

Project Group Hame

|counler program
Series Mame : Device Mame :
| 7870 Series | [uPo7en0ze =l

Device |nstal |

»»1. Workspace Information
2. Gelect Healime WE{H#]
2 Startup FilelH
4 Hegisten Made(#]
&1 it Directive Ee(#]
. Setup Source Files
7. Select Debugger

8. Confirmnation

[#] /850 Series Only (2-5]

Thiz will et Lp the basic information sbaut the warkzpace and the project.

* Required field

—
< ﬁac(l Mewt > D
N _

Cancel Help

_

After completing the settings, click the Next button.

38 Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

Next, you will add a source file to the project.
Click Add... button.

Mew WorkSpace - Step 678 [Setup Source Files] Ed

Please setup Source Files.

Source File Mame : /_\ 1. wiorkspace Information
> 5. Geleot Heal Time (]
\ —T 3} St Eie(H
A Hearster b ed=ld]

Add..
REmovEA]) Lirk Difective FielE]
W

»»B. Setup Source Files
7. Select Debugger

8. Confirmnation

S [#)B50 Series Only (25)

'Y'ou can also add source files by specifving the list file or the folder.
You don't need to specify all the files here. and you can setup source files using [Project]-» [Project
Settings] later.

< Back I Hewt s I Cancel | Help I

Add Source Files - counter program E1E3

i -I@Chapteﬂ j gl

Select "counter.c” and click
Open.

File name: — oounter.c < Open D
Files of type: ISource Files[*.2;".asm;".c] j e |
Add Files from Folder...

4

If the source file name does not appear in the list, this means that the folder position is
not correctly set in the workspace information setting.
Perform the setting again, selecting the correct directory.

Hew WorkSpace - Step 678 [Setup Source Files] | x|

Flease setup Source Files.

1. Wiotkepace Information
Add 2 Gelet BealHime mEH
&) Startup Fie(H]

i |
hemove 4, Fegister iadelH#]
Remave A | 5 Lirik D ietive File(#]

>»B. Setup Source Files

Source File Name :

The source file "counter.c" is
7. Select Debugger

i | 8. Confimation
Bamm | [#] %850 Series Only [2-5]

added to the project.

"ou can alzo add source files by specifying the list file or the folder.
'ou don't need ta specify all the files here, and you can setup source files using [Project]->[Project
Settings] later.

< Back (ﬂaxm Cancel Help

TS——

Application Note U17047EJ1VOAN 39

Chapter 3 System Simulator Basics

Specify the debugger to be used.

Hew WorkSpace - Step 778 [Select Debugger]

Click the Next button.

Check the set contents.

Hew WorkSpace - Step 8/8 [Confirmation]

If the set contents are correct, click the Finish button.

40 Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

& PM plus - counter. prw [DutPut] _[Ofx]
File Edit Find Laper iew Project Build Tool Mwindow Help
|2 -DeW|8R|r =W S« -[=E|e]
Dt EmE HE
(Ol x]

J [icounter program - counter program 7 |[Debug Build
= Proj indos M (=] = OutPut
[TECF] i

counter program

=@

- Include Files
{Z3 Pioject Related Files
(1 Other Files

The project "counter program"

is registered in PM plus.

HA
[T o

s S| | T

Make file created successhully.

This completes the creation of the workspace.

You can add other source files at any time.

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

Editing the Source and Creating an
Executable Program (1)

Next, you will build the project.

In PM plus, click the Build button

or, from the menus, select Build -> Build.

PM plus - counter_prw [DutPut] _[O] %]
e Edi Find Laper View Project Buid Tool window Help

|=-oedarlieam Sl s -lEE]e|
| [ouner proaram - countr program _=][Debug Buld = {%-*-* AW |
B [= oura I

Files |Mem| [[EoF]

= 5] counter program : 1 Proic
= 63 counter program

#1-(1 Source Fllss

[0 Include Files

(23 Project Related Files

+--(Z3 Other Filss

[|
d 2 s »
Make file created successhully. ’—’—’— ’L_ ’><_ ’Y_ v

The build process starts.

5 PM plus - counter.pw [DutPut] -lol x|
Flz_ Edi Find Layer Yiew Project Buld Tool ‘window Help
e G — =
J [courter program - counter program —_—{[[Debug Buid
< Projectwiinde S=1ET|| = outPut —|o x|
G |Mem| [- C:\NECTOOLS32\BIN\cc?8k0.exe —foounter.pec j
E@cﬂunlerpmglam 1Poie || 788/0 Series C Compiler ¥3.50 [20 May 200314
=& counter program - Copyright (C) NEC Electronics Corporation 1991,2003 ¢
{3 Source Files -
11 Include Files | counter.ci52) : F756 Too wany initializers 'box'#
(1 Project Related Files | (]
(3 Other Fiies | Target chip : uPD780034+
|- Device file : ¥1.01 ¥
- v
- Compilac: Ty 0 warning(s) found.[ECF]
@ 13501 Evror detected on temination
< >
2 ety ol
For Help, press F1 N LRI

An error is detected in the source program, and an error message is displayed on the screen.
Click OK button.
Now, let's correct the error.

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

To correct the error, you will edit the source.
A detailed error message is displayed in the Output window.
Double-click the line where the error is indicated, "counter.c(52):F756 Too many initializers'box".

How to read the error message
"counter.c (52):F756 Too many initializers'box"

The source file name , line number and error message (cause of the error) are displayed.

7% PM plus - counter.prw [OutPut] _[Ofx]
File Edt Find Laper View Project Buld Tool ‘Window Help

B e s L —— 0 EE
| [ounter progrem - courter program =] Debug Buid Sk A s X HEB ‘

-0 T s

Fies | Memo | [c:\NECT0OLS32%BINY co78k0. exe -foounter.poc i
+

E‘--' counter program - 1 Proje || 7zx/0 Series C Compiler V3.50 [20 May 20037+
g

=@ counter program - Copyright = _Corporation 1991,2003+
123 Source Files

(22 Include Files <'
(13 Project Related Files
(21 Other Files

- counter.c(52) : F756 Too many initializers 'hox'+

- Target chip : W
- Deviee file : V1.01 ¥

-
- Compilation complets, 1 error(s) and 0 warning(s) found. ¥
- Build Toval error(s) : 1 Total warning(s) : O [EQF]

Double-click this line.

T ||| YT .

Mz
T Gimiwn

Editor opens.

% PM plus - counter.piw [C:\NECTools32\78K0_sample\Chapter3icounter.c]
File Edit Find Laper Yiew Project Buld Tool ‘Window Help
R T e I —- e U
chnuntevpmgvam counter progiam ¥ [Debug Buid HIEEEXEREIL L ‘
- C:ZNECTOOLS32YBINYoe?8k0. exe —fooun oo Zl
MECTools32\78K0_sample\Chapter3icounter. ¢ _[O]x]
Return values: noney B
- * Global variables used: !
- int countly
- " int countloy
C L,
- woid putLED()+ r
- ik
- idged char /* 7-segwent LED display '0' - 'S'patterns */4
- 1={0x77,0x24,0x6h,0x6d, 0x3c, 0x5d, 0xSE, 0x74,0x7£,0x7d} ; / *0E
-
- Er the current pattern to the 1s digit of the 7-segwent LED di
- ox[countl] ;¥
-+
- ime adjustment */¢
-+
= /* Transfer the current pattern to the 10s digit of the 7-secment LEDjLI
K] 7
The cursor points to the line
- » A
that contains the error.
/ CALF LR ["52 4

Application Note U17047EJ1VOAN 43

Chapter 3 System Simulator Basics

44

In line 52, the number of intializers (10) for the "box" array is larger than the specified length of the array (9).

Change "box[9]" to "box[10]".

Fle Edt Find Laver iew Project

Buld Tool Wwindow Help

|2-DEH 8R4

I —

| [counte program - counte program][Debug Buid = & s

=10ix|

Fies | bemo |

4r Transfer the current pattern to the 10s digit of the 7-secment LEDjLI

- C:YNECTOOLS3ZYBINY co76k0.exe -foounter.poch

Ef * Return values: noned =
* Global variasbles used
-+ int counclf
- = int countlO¥
Ly
L arrmm e R AR R R AT AR E AR AR AT EARTEE A REERATETART
| srrrssamersaassameIaETATATAASETIAISIRATETARTERTIASEIRTIRTARL |
- void putLED(]+ J
- ¥
- static har /¥ 7-segwent LED display 'O’ - '9'pacterns /4
- 0x77,0%24,0x6h,0x6d,0x3c, 0x5d, 0x5£, 0x74, 0% 7€, 0x7d} ; / *0
-
- /% Transfer The current pattern to the 1s digit of the 7-segment LED di
- P4 = 0:¢
- PS5 = hox[countl] ;¥
- P4 = 1:
-+
- /% Time adjustment /¢
- NOP ()2 ¥
- NOP () ;¥
-

A

i —— E

H .z

Far Help, press F1

[leAF ™ L kaafrsz 2

This completes the source editing.

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

You corrected an error, so you must now rebuild the project.
In PM plus, click the Build button s | or, from the menus, select Build -> Build.

When you use PM plus editor, the edited source contents are saved automatically during build.

fﬁ:PM plus - counter.prw [OutPut] _[alx]
Fle Edt Find Laver Wiew Project Buld Tool Window Help
| & - DeW|@R| s & n| & &% s =um]e
| [eounter program - couter pogram =] [Debug Buid = &()—? LA
B=E = outPut 19 =1 E3
Files | Mems | - C:\NECTOOLS3z'\BINYcc78k0.exe —foounter.poct ﬂ‘
- +
E‘-. counter progiam - 1 Proje || 5ap/0 Series ¢ Compiler ¥3.50 [20 May 2003]+
=@ counter program - Copyright (C) NEC Electronics Corporation 1991,2003%
(] Seurce Files .
(3 Include Files - counter.c(52) : F756 Too wany initializers 'hox'+
(2 Project Related Files
[Dther Files | Target chip : uPD780034%
- Deviee file : W1.01
- Compilation complete, 1 error(s) and 0 warning(s) found.+
- +
- Build Total error(s) : 1 Total warning(s) : O [EQF]
4 » —
e 2y oz
= L1 [13 4

The project is built.

M plus - counter.prw [DutPut] (=] S|
File Edit Find Laver View Project Build Tool ‘window Help
e D3 @R o e H Hers ==z
J Icounlel program - counter program leebug Build jl & & kX | O |

=101 x| EIT . =10
Files |Memo| - C:VNECTOOLS3ZNBIN\cc78k0.exe -foounter.pocy j
- ¥
E‘. counter program - 1 Proie | -5x/0 Series C Compiler ¥3.50 [20 May 2003] 4
=@ counter program - Copyright (C) MEC Electronics Corporation 1991,2003 %

(2 Source Fies .,

(23 Include Files - Target chip : uPD780034+4
(0 Project Related Files | pevice file : wi.01 4

" (1 Other Files -y
|- Compilation complete, O errori{s) and 0 warningis) found.+¥
- C:\NECTOOLS32%EBIN) Lk78KD.exe -frounter.plky
- ¢ PM plus
- 78K/0 Zeri ¥
= Copyri tion 1990,20034
[, T 13500 Build completed normall.
- Target ch
- Device fi
- ¥
- Link complete; T ELLUL (5] oT warning (=] found.
- Ci\NECTOOLS3IZYEBINY oc78ED. exe -foounter,poc+
-+
- 78E/0 Series Object Converter ¥3.60 [3 Apr 2003]+
- Copyright (C) HNEC Electronics Corporation 1990,2003 4
- ¥

- Target chip : uPD780032+
- Device file : V1.014

- ¥
- Object Conversion Complete, 0 error(s) and 0 warning(s) found.[EOE
NS | T v
For Help. press F1 = LRIz 2

The build completes normally, and an executable program is created.
The default file name of the executable program is "source name registered first".Imf.

Application Note U17047EJ1VOAN

45

Chapter 3 System Simulator Basics

Running the System Simulator (SM78Kxx)

Start up the SM78KO0.

Click the Debug button or select [Build (B)] -> [Debug (D)] from the menu.

7= PM plus - counter.pret [OutPut]
Fie Edt Find Layer View Proiect Buld Tool Window Help

B e —- | G

| [<ounter program - courter program =] [Debug B EIEEEEEY #1 |)
M=l)| = outPut _[O] %]
Fies | Mema | - C:\NECTOOLS324BIN\co78kD. exe —foounter.pect =
-
I counter progriam - 1 Proie || 7ok series © compiler v3.50 [20 Hay 20031
= ﬁ counter program - Copyright (C) MEC Electronics Corporation 1991,20034
(2 Source Files -
(3 Include Files - Target chip : uPD7B0034+
(] Project Related Files | || pevice file : vi.01 ¢
* 2 Other Files .
Compilation complete, 0 error(s) and O warning(s) found.}
C:YNECTOOLS32%BIN\ Lk78K0. exe -foounter.plk

¥
78K/0 Series Linker V3.60 [3 Apr 2003]4
Copyright (C) NEC Electronics Corporation 1990,20034
¥
Target chip : uPD760034+
Device file : V1.014
¥
Link complets, 0 error(s) and 0 warning(s] found.
C:\MECTOOLS32Y BIN, 0c78KD. exe —foounter. poct
¥
TEK/0 Series Chiject Comverter V3.60 [3 Apr 20031+
Copyright (€} NEC Electronics Corporation 1990,20034
¥
Target chip : uPD780034+
Device file : V1.01%

v
Chject Conversion Complete, 0 erroris) and 0 warning(s) found.+
Fuild Total erroris) : 0 Toral warning(s) : 0 [EOF]

N — | T A

C [Cikika

The Configuration dialog
box opens.

Configuration
—Ghip
Mame: wPD I?BUUB-‘l vl

—Internal ROMRAM

Internal ROM: IW _I K Byte Bestore

Project...
Internal RAM: |1024* -I Byte _—
Help |
—Clock

Main bz [F00 ~] Swb kb [=]

—Memory Mapping
Memory Attribute: Mapping Address: fdd

Emulation ROM =] | —| Delete |

Settings such as memory mapping and microprocessor clock speed are made using this dialog box.
However, since the counter program in this chapter uses the internal RAM and ROM of the x PD78xxxx, it is
not necessary to change any settings here.

Click OK button.

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

The Main window of the
SM78Kxx opens.

- SMK032 : counter.prj

File Edit Wiew Option Run Ewent Browse Jump ‘Window Help

0 3 e S) S A e 2| 2|8 5= V¢S5

@ Source [1] {counter.c)
>3 | ' atch | Quick...l Hefreshl Close |
*

Copyright {(C) NEC Corporation 2000,2001 _I
411 rights reserved by WEC Corporation. This program must be used solely
for the purpose for which it was furnizhed by NEC Corporation. No part

of thiz program may be reproduced or disclosed to others, in any form,
without the prior written permission of NEC Corporation.

i ik ik ik ik
ik ik ik ik

]
Gounter program (for the PD780034)
*

EEEd EEEd EEEd EEEd
L] L] L] L]

Compiler definitions #/
pragma NOP

pragma HALT

pragma EI

/% Enable peripheral function rezister names (peripheral

1/0 rezister names)
frragma =fr

/# Set the function interrupt1i(} as the interrupt handler for INTTHMOOD */ |
|| 28||tpragma vect INTTHOOD interrupti

3
K1

Ready [---#---

--- 2001 [EREAK 5

Application Note U17047EJ1VOAN

47

Chapter 3 System Simulator Basics

48

Setting Up the Input/Output Panel

Before running the counter program, you must set up the button and 7-segment LED display used by the
program.

First, you will set up the button in the Input/Output Panel.

You can open the Input/Output Panel window from the 78Kxx simulator GUI window.

Click on "78Kxx simulator GUI" in the task bar to open the 78Kxx simulator GUI window.

iiﬁtart”J :_ﬁ ﬁ I‘_‘gj |J F‘ru:ujeu:t Mar... | gidea-L{cDunt...“5MKI]32:|:..(E?SKID Sifnula...l)

The 78Kxx simulator
GUI window opens.

&= T8K/0 Simulator GUI

File External Parts External Circuit Help

P25/ASCKDis setto 0 =
| o
Down Load File: Output Data File:

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

From the menus in the 78Kxx simulator GUI window, select External Parts -> Input/Output Panel...

BT 78K,/0 Simulator GUI M=l 3

File External Parks External Circuit Help

Down Load File: Qutput Data File:

The Input/Output Panel

window opens.

[_ 0] x|

[Parts Window
File Mode Edit Parts Bitmap Customize Crav Option Help

[] o | 2 | G oA e] 2 TR

Al /@S]l

Application Note U17047EJ1VOAN 49

Chapter 3 System Simulator Basics

50

Next, you will set the internal interrupt button.
First, in the Input/Output Panel, click the Internal Interrupt button or, from the menus, select Connection

->Internal Interrupt Button...

The Internal Interrupt Button Settings dialog box will open. Change the name of the first interrupt from "#1" to
"INTTMOOQ" for the 78K0, "INWT" for the 78K0S and "INTCOO0" for the 78K4.

Bl parts Window M=l

File Mode Edit Parts Bitmap Customize Draw jon Help

sl 2 Sl = & ET

NEEEEE

The Internal Interrupt Button

Settings dialog box opens.

=} Internal Interrupt Button M= E3 |
pterupt

[t { [2 L
Change "# 1" to #2 | I1t2 "l M

"INTTMO0". Save |
43 | |3 |
Clear |

IM Ilm j GCancel |

Previous | Hext | Help |
Click OK button.
=} Internal Interrupt Button [_ (] |
Interupt

C_ D
I&I qu j Open
w0 o 7]

w] fom 7]

Preuiuu5| Hext | Help |

i

Save

Clear |

Cancel

L

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

1 [=] E3

&8 Parts Window
File Mode Edi Parts EBitmap Customize Draw Option Help

[g]] 2 B o] G 2 = A

AlAEe] el

I

The internal interrupt button is displayed at the top of the Input/Output Panel.

/What is an internal interrupt button ? \

The internal interrupt button is one of the debugging functions of the SM78Kxx. When a user
clicks the button, it can generate a virtual internal interrupt that corresponds to the internal
interrupt generated by a CPU peripheral function, such as a timer.

It is sometimes difficult to create the conditions required to generate an internal interrupt during

debugging. You can, however, easily generate interrupts using this function to test the interrupt

\ handling routines. /

Application Note U17047EJ1VOAN 51

Chapter 3 System Simulator Basics

52

Next, you will setup the 7-segment LED terminals.
Each bit of I/0 ports P1 and P3 is connected to a corresponding 7-segment LED display terminal.

In the Input/Output Panel window, click the 7-segment LED Display Terminal Setting button a or, from

the menus, select Connection->7-segment LED...

When the 7-segment LED Terminal Setting dialog opens, enter the connection information according to the

chart below.
B8l Parts Window M=l =
File Mode Edic Part‘sV-BWp Customize Draw Option Help
E E R E R R R E EEE RN SR
jp—
INTTMOD I
The7-segment LED Terminal
Setting dialog opens.
gﬁ?’seg LEDs !El
pigit1 || | ok |
| |Digit2 || | open |
pigita || | Save |
Enter the connection pigits || | clear |
information as follows. | pigits || | cancel |
| pigite || | Help |
|Digit? || |
Segment HIL Digit HIL —
IVG'H t"'L_HVG'H L pigits || |
Previous | Next |

@ 7seq 1505

Digit1 /| [Pu@
P56 | ﬂ | \g | ok |

pigitz Y [Pu1 open |

|P5u ||P55 |
|Digit3 || | Save |
P53 [pigits || | t1ear |
P51 | [P52 | pigits || | T |
|Digit6 || | Help |

P50 P57

|Digit? || |
Segme igit HIL—— —
’7(7H L ’76'|-| L | [pigits || |
Previous | Next |

When you complete the settings, click OK button.

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

The following shows how the virtual LED display segments correspond to the segment signal
setting entries in the 7-segment LED Terminal Setting dialog box. For the 78K0S, the settings
use P1x, rather than P5x.

<Virtual LED Display> <7-segment LED terminal settings>

ﬁ Tseq LEDs

é \E
\\ ¢ J—] i —
e ,@
Lk P

L —= Rl \|R5D uﬁ? |

’—Segment HiL— "Digit HiL——

FH CL FH L

The virtual LED display appears inside the Input/Output Panel window.

[Parts Window M= B3

File Mode Edit Parts EBitmap Customize Draw Option Help

(3 s o | 2| R A v 2]

FLL

il

Al/l00] e

INTTHOD

This completes the setup of the button and 7-segment LED display.

/What is a 7-segment LED display? \

The 7-segment LED display described here is one of the preconfigured external parts that comes
with the SM78Kxx. External parts are used to build up a virtual target system. This part is mainly

used to display numerical values and is connected to an I/O port when used.

The signals used to operate the display are a set of segment signals, which are common to all
digits, and an independent digit signal for each digit.

For further details, refer to the SM78K Series System Simulator Ver.2.52 Operation User’s Manual

\ (U16768E). /

Application Note U17047EJ1VOAN 53

Chapter 3 System Simulator Basics

Executing the Program (1)

Now, you will run the counter program.

In the SM78Kxx Main window, click the Restart button Tk | or from the menus, select Run -> Restart.

This operation resets the emulation CPU and starts program execution.

MKD32 : counter.pr - [Source (counter.c)]

Fig Edt View Option Run Event Browse Jump Window Help =1=1x|
l! l>|}|7|>l|'"|=|l<| BB m s Q& =& kel
Seocn | oo |0 |[Wateh | Quick.. | Fciiesh | Close |
91|[raid waindl =]
ag
a3 # Initialization
a4
45} /% Set the mode of the port that outputs to the 7-segement LED display #/
> PHS = 0x00: /wSet PS5 (PS0-P57) to outpul mode W/
47| FM4 = 0x00; /#Set F4 (P40-P47) to output mode */
ag
a3 /% Sel the interrupl lewel of INTTHUD and unmask the interrupt w/
100 WTHE = 03/ Unmask the INTTHOD interrupt w/
lg; THHKOD = 0:/# Ensbles the INTTHOD interruets #/
103 #4 Initialize the countsr #/
104 count! = 0;/% Initialize the LED display digit walue (1= digit) #/
105 countil = 03/ Initialize the LED display dizit value (10s dizit) w/
108} -
107 74 Display initial values #/ : Program execution starts.
105 putlED(}; /* Display nunerical values on the LED display #/ |
109
110)
11
11 # Wain loop
18]
114 /u From this point, Lhe processing is entirely Interrupt driven.
116| The CPU is in the HALT state when there is no interrupt processing going on. %/ LI
11§ EIC); /u Ensble interrupts w/ =
117 vhile(1) 3
11 ¥
KI| 2+
Ready counter,c#9% [main [ooza HALT RUNJTRC/COV Y

2 5SMK032 : counter.prj - [Source {counter.c)]

File Edt Wiew Option Run Evert Browse Jump ‘Window Help =&l x|
e = (el BB MW RS Qa6E = &8
Seach. | _co | oo |[Cwateh | guick... | Aeiesh | ciose |
31fvoid main(){ a]
921
33 # Initialization
34
35| /% Set the mode of the port that outpuls to the 7-sezement LED display #/
> PHS = =005 /#Set PS5 (PS0-P57) to output mode #/
97] PH4 = Dx00; /#Set P4 (P40-P47) to output mode #/
33
93] f# Set the interrupt level of INTTMOD and unmask the interrupt /
100 WTHE = 03/% Unmask the INTTMOO interrupt #/
il TMMEDD = 0;/% Enables the INTTMOD interrusts #/
103 /% Initialize the counter #/
104 count] = 0:/% Initialize the LED dismlay disit value (Is digit) #/
105 count10 = 03/# Initialize the LED display digit value (10s digit) #/
108
107] /% Display initial values #/
105 RULLED(); /4 Display numerical values on the LED display #/ |
108
11
i
11y # Main loop
113
114 #% Fron this point, the processing is entirely interrupt driven.
115 The CPU is in the HALT stale when Lhere is no interrupt processing going on. #/ o
11§ EI(); /% Enable interrupts #/ 2l
117 uhile(1) 3
11 I >

i)

The color of the status bar changes to red during program execution. The LED display on the Input/Output
Panel displays "00" and the system waits for input from the INTTMOO button. The INTWT button is used for
the 78K0S and the INTCOO button is used for the 78K4.

(Do the following if the system does not respond as described above: \
1) If the LED segments do not light:

- Perform a restart operation again.

If a restart does not remedy the situation, setup the 7-segment LED terminals again.
2) If the LED display shows nothing but "00", setup the 7-segment LED terminals again.

_ J

54 Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

Click the INTTMOO button several times.

Each click of the INTTMOO button should increment the counter by one, in accordance with the specifications.

#% 6MK032 : counter.prij - [Source {counter.c)]
File Edit Yiew Option Run Event Browss Jump ‘Window Help =] x|
jwelw = w2+ BEE BIfES Q4 @0E B4 ¢ W!‘"@|
Gezrch | e | oo |[Dwatch | @uick.. | Fefiesh | Closs |

9|lvaid main(l{ =]
82
83 # Initialization
94
35 /% Set the mode of the part that sutputs to the 7-sezement LED display */

> PM5 = 0x00; /#Set PS5 (PE0-PS7) to output mode #/
47 PMA = 0xD0: /#Set P4 (PAD-P47) to output mode #/
13
H /4 Set the interrupt level of INTTMOD and ummask the interrust #/
100) WTMK = 05/% Unmask the INTTHOD interrupt #/
101 THMEOD = 0:/4 Enables the INTTMOO interrupts #/
12
103 /4 Initialize the counter #/
104 countl = 03/% Initialize the LED display dizit valus (1s digit) #/
s count10 = 03/% Initialize the LED dizplay dizit value (10s digit) #/
108
107 f# Display initial values #/
108 PUtLEDC); /4 Display numerical values on the LED diselay #/ |
108
110
Ik
112 # Hain loop
113
114 /% From this point, the processing iz entirely interrupt driven.
118 The CPU is in the HALT stats when thers iz no interrupt pracessing gaing on. W/ o
11E EI{); /% Ensble Interrupts #/ 2
117 while(1) =
11 I >

Al

Al/Ee[Hal

I R A P S e R

SMK032 : counter.prj - [Source (counter.c)]

File Edt View Option Run Event Browse Jump ‘Window Help 7] x|
T =T e o s o VP T e = o A el
Seacn | o | oo |[Whateh | Quick.. | Feien || Clmse |
[#|fveid mainit =
42
43 # Initialization
a4
45| J# Set the mode of the port that outpuls to the 7-sezement LED display #/
> PME = 0x00; /#Set PE (P50-PE7) to output made #/
47 PM4 = 0x00; /#Set P4 (P40-P47) to output made #/
a3
49 ik Set the interrupt lewel of INTTMOO and unmask the interrupt #/f
10| WTHE = 03 /% Unmask the INTTMOD interrupt w/
lg; THMEOD = 0:/% Enables the INTTMOO interrupts #/
103 J# Initialize the counter #/
104 countl = 0;/% Initialize the LED display digit value (1= digit) #/
105] count10 = 0;/% Initialize the LED display digit value {10s digit) #/
10|
107 /% Display initial values %/
1038 putLED(); /# Display numerical values on the LED display #/ _[
1039
110]
111
112 # Main loop
113
114 /#% From Lthis point, the processing is entirely interrupt driven.
115] The CPU is in the HALT state when there is no interrupt processing going on. #/ L‘
18] EIC): /% Enable interrupts #/ =
117 while(1)
e [l Parts Window
Ready File Mods Edit Parts Btmap Customize Draw Option Help

i 1 B R A e e 3 A N O [)

@

Note that the count increases by 10 with each click of the INTTMOO button, while the 1s digit does not

change. This shows that the program behavior does not meet the specifications.

(Do the following if the system does not respond as described above:
1) If nothing happens when you click the INTTMO00 button:

- setup the internal interrupt button again.

2) If the LED display dos not behave as described above (counting in increments of 10),
- setup the 7-segment LED terminals again.

_

~

Application Note U17047EJ1VOAN

55

Chapter 3 System Simulator Basics

Since the counter is not counting up correctly, let's debug the program.
Stop the counter program.

In the SM78Kxx Main window, click the Stop button II , or from the menus, select Run -> Stop.

SMKD32 : counter.prj - [Source {counter.c)]
PLFie Edt View Option Run Event Browse Jump Windaw Help =181
(> [=]2 | <] las|m| Blrele| Qlalwm® 2|l vl
Search. | < > Guu:k..l Helreshl Close |
91|fvaid main{ =]
a2
93 # Initialization
a4 /
35/ J# Set the mode of ihe port that outputs to the 7-sezement LED display #/
> FHE = 0x00; /#3et PS5 (PG0-P67) to outpul mode #/
a7 PH4 = 0:x00; /#Set P4 (P40-P47) to output node #/
a8
BE] J# Set the interrupt lewel of INTTMOO and unmask the interrupt #/
1on WTHE = 0;/% Unmask the INTTMOO interrupt #/
101 THHKOD = 0:/% Enables the INTTHOO interrupts #/
102
103 /# Initialize the counter #/
104 countl = 0;/% Initialize the LED display digit value (1= digit) w/
106 count10 = 0;/# Initialize the LED display digit walue (105 digit) #/
106
107 /# Display initial values #/
it PutLED(); /% Display numerical values on the LED display #/ ml
109
110
111
12 # Main loop
113
114 J# From this point, the processing is entirely interrupt driven.
116 The CPU is in the HALT state when there is no interrupt processing going on. #/ LI
118 EI(); J# Enable interrupts #/ &l
17 \}JhHEU) 7l
1 =
[« | B Parts Window [_ 0]

File Mode Edit Parts Bitmap Customize Draw Option Help

B 1 e A o o 9 Y PN O S ST 0 Y

() S

Program execution stops.

SMKD32 : counter.prj - [Source {counter.c)]
File Edt View Option Run Event Browse Jump ‘Window Help =&l x|
oo [= o] 2 | 4] BBl @l Qlalslzl =28l 5w o]

seach | o | o |[Dwetch | ouick | Rl | clese |
froid maint){ =]

Initialization

/
/% Set the mode of the port that outputs to the 7-sesement LED display #/
PMS = 0x003 /fwSet P5 (P50-PS7) to output mode ®/
PM4 = 0x00; /f#Set P4 (P40-P47) to output mode */

/# Set the interrupt level of INTTMOD and unmask the interrupt s/
WTME = 0;/% Unmask the INTTMOD interrupt #/
TUMEOD = 03/% Enables the INTTMOD interrupts #/

/i Initialize the counter #/
count | O:/% Initialize the LED display digit value {1s dizit) #/
count10 = 0:/% Initialize the LED display digit value (10 digit) #/

J* Display initial walues #/
putLED(); /% Display numerical values on the LED display #/ |

i

Main loop

J# From this point, the processing is entirely interropt driven.

The CPU is in the HALT state when there is no interrupt processing going on. #/ =l
EIC)s f# Enable interrupts #/ 5]
while(1) =l
¥ 3

[oosa [HaLT [RUNTRCICON

HMERAE R S

Ready

The status bar color returns to its original color when you stop the program.

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

Debugging

The variable count1 is associated with the 1s digit and count10 is associated with the 10s digit of the LED

display.

E> For details, refer to the section "Counter Program Specifications".
First, you will investigate what values the variables count1 and count10 take on when the LED display
routine (putLED() function) is executed.
To do this, you must set a break point at line 68 for the 78K0 and 78K4, and line 69 for the 78K0S. Lines
on which you can set a breakpoint are indicated by " * " in the leftmost column.
Click the " * " on the 68th line for the 78K0 and 78K4, and the 69th line for the 78K0S.

SMK032 : counter.prj - [Source {counter.c)]

File Edit Wiew Option Run Event Browse Jump ‘Window Help =181
oo | = [iloi]= e] 25 el Q4w 2[s/E

Search...l @3 3 || ‘atch l Quick...l Hefreshl Close |

pe] =
59 J% Time adjustment #/
L :11] WOPCD:
B1 WOP(Ds
] /4 Transfer the current pattern to the 10s digit of the 7-sezment LED display #/
L 64 P4 = 0;
e BG PS5 = box[count10];
b EE P4 = 2:
T E7 return;
C*) Balt
1 £4
700/ deikik deikik deikik deikik deikik
71 bk bk bk bk bk =
72 # Main function for debugzing ﬂ
LIl 23| * . >
| -l
Ready [counter. c#9s main 0084 HALT [RUNTRCfCON Y

The "*" changes to "B"

MK032Z : counter.prj - [Source {counter.c)]

File Edit Wiew Option Run Ewent Browse Jump Window Help =1 |
][|= []2 4] BlE|e Bl Qlal®lE =8
Search...l < b || W atch | Guick...l Hefreshl Cloze |

] 58 a]
54 S Time adjustment #/
g0 WOPE):

I Bl NOP ()3

* 62
63 f# Transfer the current pattern to the 10s digit of the 7-segment LED display =/

e 64 P4 = 0

e 13 P8 = baox[count10];
BE P4 = 23

.lﬁ\ 67 return;

B () 88|}

e Ba

il 70| [o o o 8 8 A 8 o S O o
R EEE LSRR R R R ERE SRR R FEEEEESSEFEREEFEEEES R EEEEEE LS %I
72([# Main function for debugzing %I

I 1| . Ed

41| il
Ready |counter c#96 main |ooza [HALT [RUMTRC/COV 7

A break point is now set at line 68 (for the 78K0 and 78K4) or line 69 (for the 78K0S).

Application Note U17047EJ1VOAN 57

Chapter 3 System Simulator Basics

58

Next, you will execute the counter program.

In the SM78Kxx Main window, click the Restart button T

, or from the menus, select Run -> Restart.

MKO032 : counter.prj - [Source {counter.c}]
Ndlt View Option Run Event Browse Jump Window Help -|ﬁ' ﬂ
[} (= (o] 2 [| B{m(m| Blwle] Qlalwl =]l 5 (]
SeMl <<J > I| Watchl Quwck..l Hefreshl Close I
gg St Time adjustment #f B
] NOP():
: g; NOP(3;
K] .f* Transfer the current pattern to the 10s digit of the 7-sezment LED display #/
B4
ke £ i < boxcount 101;
lse 11 P4 = 23
B7 return;
B 68|[}
] b
70
H [~
79| # Wain function for debugzing ﬂ
I | | 1 | ¥
L] *l B
Ready |counter. c#95 [main |ooza |HALT [RUNTRCCOV 4
EE R EEEEFEEEEEE RN EE E RN

B 3 1

Program execution starts.

SMKO032 : counter.prj - [Source {counter.c}]

File Edit Wiew Option Run Event Browse Jump ‘Window Help =&l
1o o|= w24 BlBE B8 Q4= = &8 BT
Search...l_(_d b || atch I Quick... | Hefreshl Cloze |
1] void maini){ =
i
Initialization
f* Set _the mode of the port that outputs to the 7-sezement LED dislay #7-=1
= 0x00; /#Set PS5 (PSO-P57) to output mode #/ >
PM4 = 0x00; /#Set P4 (P40-P47) to output mode #/ e
LE] /% Zet the interrupt level of INTTMOO and unmask the interrupt #/
100 WTHE = 0;/% Unmask the INTTMOO interrupt #/
101 THMEDD = 0;/% Enables the INTTHOD interrupts #/
102
103 /% Initialize the counter */
104 countl = 0:;/#% Initialize the LED display digit value {15 digit) #/
105 count10 = 0;/% Initialize the LED display digit value {10s digit) #/
106
107 At Display initial values #/
108 putLED(); /% Display numerical walues on the LED display #/
104
110
111 ik -
112 # Main loop Z‘
113 i/ E
LI 114 Fw Cwemm dbhdm el boodbn o memcnnn ey b b dre e ek et b >
O [[=] 3
Ready |caunter. c#96 main ooga [HaLT [rUMTRCICOY 2
IHT, BLL
g] o | 2] O A e E] 2R [A]H[0] D0
(W
INTTHOO o

When program execution starts, the program stops almost immediately at the break point. The color of the

line where the program stopped changes to yellow and a ">" symbol is displayed in the second column.

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

You can use the Watch window to view the value of a variable.
Let's open a Watch window and confirm the values of count1 and count10.

On line 56, double-click count1 to select it (text is highlighted) and click the Watch button.

SMKO032 : counter.prj - [Source {counter.c)]

File Edit ‘ew Option Run Ewent Browse Jump ‘Window Help _Iﬂlil
oo | =[] 2| BB B QlalsE] 2lw|8]
Search..l <<J b (Watch DQulck I Hefreshl Cloze I
[] 51 TSTTCTC unsizned char /% T-sezment LED display 00 - "9 patterns #/ -]
52 box[10]={0x77,0x24, 0x6b,0x6d, 0x3c,0x6d, 0x6f,0x74, 0x7f, 0x7d}; fk—ERROR%/
53
54 /# Transfer the current pattern to the 1= dizit of the 7-segment LED display #/
] P4 = 0;
e 5 P5 = bo m
e 57 P4 = 13
ha
59 /4 Time adjustnent #/
e 1] NOPE D s
i 61 NOP():
62
e] /% Transfer the current pattern to the 10s dizit of the 7-sezment LED display */
4 P4 = 0;
o 65 PS = box[count10;
1] Pa = 2; ot
B B7 return; <
C g8|(t 3
I »l
Ready counter . c#95 i ooz [HaLT Uy TRCfCoM v
B8l Parts Window [_[O] =] I

File Mode Edit Parts Bitmap Customize ODraw Option Help

[l s o [2 D e e 2 A

BLL

Al gD

] {1 0

A Watch window opens.

MKO032 : counter.prj - [Source {counter.c}]

File Edit Wiew Option Run Event Browse Jump Window Help _|ﬁ||1|
e[| = [2| +] B|B[mE BT QlalHE =« B V]
Bl Watch =] B3
ED display "0° - "8 patterns #/ -]
MML'&ADDF‘;;“” Close_| L0x3c, 0x5d, 0x6F . 0x74,0x71,0x7d} ; /4—ERROR%/
he 1= digit of the 7-segment LED display #/
| |
he 10s digit of the 7-sezment LED display #/
[
|| e | 3 ﬂﬂ
| B —
Ready I |counter. c#9s ™ |ooza |HaLT [RUMTRC O v

I Ef Parts Window

File Mode Edit Parks Bitmap Customize Drays

Sl S]] 2] @S Data Value Display/Setting Area

Symbol Name Display Area

] (3 ()

The Watch window contains a Symbol Name Display Area and a Data Value Display/Setting Area.
|j> For further details, refer to the SM78K Series System Simulator Ver.2.52 Operation User’s Manual
(U16768E).

Application Note U17047EJ1VOAN 59

Chapter 3 System Simulator Basics

Similarly, double-click count10 on line 65 in the Source Text window (Source window) to select it (text is
highlighted) and click the Watch button.

The variable count10 is added to the Watch window.

[T Source (counter.c) =] 3

Search...l L4 I i I Watchl Quick...l Hefreshl Cloze I

1 | e STOITRINEIET LNE CUTTEn PaLcieri v e 1y JiEre ui LIeE - =B ;I
55 P4 =0;

e 56 P5 = box[countl];

e 57 P4 = 1;

e 58
53 ft Tine adjustment #/ [
ED NOP();

= Bl MOP();

I E2
B3 /4 Tranzfer the current pattern to the 10s digit of the 7-ze

L i P4 = 0;

e 5 PE = box [EETEREN ;

e BB P4 = 2; |
EY return; I~

B Il | 68|} k4

|)|

|ooEa Ha 2

8 Parts Window
File Mode Edic Parks Bitmap Customize Craw Option Help

[] |] Sl v]

Both count1 and count10

have the initial value of 0.

e

Looking at the Watch window you can confirm that both count1 and count10 have an initial value of 0.

Similarly, you can confirm that the LED display in the Input/Output Panel displays and initial value of 00.

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

The Data value display/setting area in the Watch window displays values in hexadecimal format (base 16),

but this can be changed from the SM78Kxx View menu.

Let's change the display format of count1 to decimal format.

Click to select (highlight) count1 in the Watch window and, from the SM78Kxx Main window menus, select

View -> Decimal.

&5 SMK032 : counter_prj

File Edit | Yiew Option Run Event Browse Jump Window Help

I Seatch,.. CErltE b EE M;élﬁl QlﬁlFﬁlll E-I!(')

MovE.., CErl4-]

Compulsion Read

] 3 KA

p— Py — Source (counter.c) =10 x|
uick wiateh, t+: - —__
Add watch... Search. I <<J >3, I’m Quick... | Hafreshl Close |
View Watch RIS Fd = 0; -
e e 58 P5 = box[count1]: B
Delete Wwatch Del e 57 P4 = I:
Symbol,., [a8
53 /% Time adiustment #/ I
Ein . [l NOP(s
i £ NOR();
B2
> B3 J% Transfer the current pattern to the 10s digit of the 7-sze
e £4 F4 = 0
String be 5 F5 = box [T ;
O Fges be B P4 = i =
s B7 ; return; ﬂ
1] b3
Byte e 1l |
4 L3
Ward JJ J
Diouble Yard] O[]
Adaptive Add | Delete | Up I Down I Fiefresh I Cloze I
e T000E
0000H
Downy

|eounter, c#9s main 0034 |HaLT [RUNiTRCICOY

=
k_

SME032Z : counter.prj

File Edit “iew Option Run Event Browse Jump ‘Window Help

¥ Source {counter.c) O] %

Search...l <4 | 3 ”WI Guick... I Hefresh | Cloze |
1] 53 -
hh P4 = 0; _I
3 13 PS = box[count1]:
[57 Fa = 1;
i h8
59 /% Time adjustment */ =

e &0 MOPE s
e 61 WOPE D s
g2
63 /4 Transfer the current pattern to the 10s dizit of the 7-ze
e 4 P4 = 0;
e 13 PE = box [[EEORI] ; =
e 113 F4 =2 7‘
&7 returns ﬂ

Bl Watch

Add... I Delete

countl0
countl

Ready [counter.c#38 |main 0034 HALT

4

Similarly, change the format for cout10 to decimal.

Application Note U17047EJ1VOAN

61

Chapter 3 System Simulator Basics

Next, you will determine if information is being correctly sent to the LED display when you click the INTTMOO
button.

In the SM78Kxx Main window, click the Start button Ll , or from the menus, select Run -> Go.

You use the Start button instead of the Restart button when you want to resume execution where you left off
after the program was stopped.

¥ SMKD32 : counter.prj
File Edit Wiew Option Run Ewvent Browse Jump ‘Window Help

11| = [o] 2 | <] 2|EBEI Qla|@lE] =|s/w o]

Search..l > “idatch I E!uwck...l Hefreshl Clogs I
T - DORLCOUNTIL; LI
e P4 = 13
f# Time adjustment #/
f Time adjustment #/
3 0
=
Le L Transfar the current pattern to the 10z digit of the 7-ses
P4 =
L s = bax[u
P4 =

Watch

add.. | Dekete |

count 10

I Drovin | Hefreshl Closs |

oT
oT

|courter c#63

[Parts Window |_ (O] x|

File Mode Edit Parts Bitmap Customize DCraw Option Help
[

I 5 e e e A PP R S P A

|putLED |ot30

AlAEe[D]a]

(] (3 0

Proaram execution starts.

% CMK032 : counter.prj
File Edit View ©Option Run Event EBrowse Jump ‘window Help

W[e [[rr]n] 2 || Bl ST QlalwlE =% E (5]
[T Source {counter.cy 9 [=] ES

| s> |[Cwatch | uick. | Refresh | Ciose |

f* Sel” the mode of ihe port that odtputs €5 the 7-segenent L/a]
= 0x00; /#3et PH (PS0-PG7?) to outpul mode #/
PMd = 0x00; /#3et P4 (P40-P47) Lo outpul mode ®/

Search | _

% 3et the interrupt level of INTTHOOD and unmask the interrupt
WTHE = 0;/% Unmask the INTTHMOD interrupt #/
THMEDQD = 0:/# Enables the INTTHOD interrupts #/ i

F Inilinlice Lhe counler &/
count 1 0:/% Initialize the LED display digit value {ls dig
count10 = 0;/% Initialize the LED display dizit value (10s di
f# Display initial valuss #®/ y
putLED(): /% Display numerical walues on the LED display #/ =

Bl Watch

B Parts Window
Farts Eitmap Customize Oraw Option Help

|2 S]] B ZW (2] AT O] Dfa)]

The color of the status
bar changes to red.

62 Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

Let's look at the execution of the LED display routine (putLED() function) when the INTTMOO button is clicked.
Click the INTTMOO button and observe the contents of the Watch window.

% SMK032 : counter.prj

File Edit ‘“iew Option Run Event Browse Jump ‘Window Help

0 S N =3 Q| ||| B[o3|

kA ls]

Search... Ii

I Source {counter.c) |_ (O] x|
J > | W'atc:hl Quick... I Hefreshl Close I

>

.-"* Set” the mode of the port that ‘odtputs to the 7-sezement /4]
PM5 = 0x00; /#3et PS5 (PE0-P57) to output mode #/
PH4 = 0x00; /#Set P4 (P40-P47) to output mode #/

f# Set the interrupt level of INTTMOO and unmask the interrupt
WTHE = 0:/% Unnask the INTTMOO interrupt #/
THMEOD = 0;/% INTTHOOE[AADZE{THFFI T2 #/ _I

A Inilialice Lhie voonler ®/
count! = 0;/#% Initialize the LED display digit value {1s dig
count10 = 0;/# Initialize the LED display digit value {10s di
% Display initial values *®/

putLED(); /% Display numerical values on the LED display #/ 2l

N

|counter.c#96 |main |ooea |HaLT 7

[Parts window | _ (O] x|

File Mode Edit Parks Bitmap Customize DOraw Option Help

[T e e s A e P e P R A

BLL

al/]@Ee[Ta]

When you click the INTTMOO button, the program stops at the break point.

Here, if the incremention routine is working correctly, count10 should equal 0 and count1 should equal 1.

However, by observing the Watch window contents, you see that, since count10 equals 1 and count1 equals

0, the variables are not being set to the correct values.

The LED display in the Input/Output Panel, does, however, correctly reflect the variable values shown in the

Watch window.

You can thereby assume that the routine that displays the values of count10 and count1 on the LED display is

working correctly.

Having determined that the display routine is correct, next you will determine if the incrementation routine is

correct.

Application Note U17047EJ1VOAN

63

Chapter 3 System Simulator Basics

64

Since the error dos not appear to be in the LED display routine (putLED() function), you will remove the break

point and look for the error in a different part of the program.

£ SMK032 : counter.prj
File Edit Wiew Option Run Ewent Browse Jump ‘Window Help

e[w 2|2 4] BB|@E B QlasR 28
[E Source {counter.c)

Search...lﬁ_J b | Watch | Quick...l Hefreshl Close |
10 1 WOFL TS

3 |
64 /4 Transfer the current pattern to the 10s digit of the 7-zes
85 P4 = 0:
6 P8 = box[count10];
AT £7 P4 = 21
b |-
Nt]

TO| | otk e s o o o o
T | ook b b RS
72| # Main function for debuzzing

73| *

4 4 This function performs the following:
78| # -+ Sets the modes of P4 and PS5 using mode rezisters PM4 and PMS, t
76/ # - Initializes the counter variables (countl and count10).

T

Ready |counter.c#6s |putLED o130
B8 Parts Window Hi=] E3
File Mode Edit Parks Eitmap Customize Craw Option Help
EERERRPEEEEEEERINE N E R

[
INTTHOO R

Click the "B" in the leftmost column. The "B" changes to "*" and the break point is removed.

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

Next, you will confirm the operation of the incrementation routine that executes when you click the INTTMOO0

button.

Let's investigate how the values of count1 and count10 change inside the internal interrupt handling routine

(interrupt1() function) that executes when an internal interrupt occurs.

Set a break point at line 144.
Click the "*" in the leftmost column of line 144.

% 5MK032 : counter.prj
File Edt Yiew Option Run Event Browse Jump Window Help

e [= i ool 2 [14] BRI BBl Q|| = et B 8 |)

E Source (counter.c) [_[Ofx]
seach. | < | » | Welch | Quok. | Refsh | oo |
[[([T3 T] [bkl o f e Ao oo o O A A o e A 7 =
142||__interrupt
" 143|lvaid interrupti()
144/
N 145
148 # Increments the counter
147
148 count1++ 3 /% increment the Is digit #/
1448
160 /4 Carry operation processing #/
181
152 /4 Is a carry operation necessary? #/
153 if(count1==10) J#—ERRORH/
154 { /% The 1= digit is equal to 10, so process the carry #/
G} - RA JJ ronntl = Nz A 8et the 1s dieit tanowf
1

BT Watch 1 [=]

countl

|J

Ready |courter.c#119 |putLED 013D [4

B8 Parts Window [_ O]

File Mode Edit Parts Bitmap Customize Draw Option Help

[]] e R =]

FIL

il

NEEEEE

¥ SMKD32 : counter.prj
File Edit view ©ption Run Event Browse Jump ‘Window Help

e L AT

[Source {counter.c)

Search. |iJ £ Watchl Guick. Hefrashl Close

T ([V3| [ook ks A o A o o R A A o o AR
__interrupt

1 void interrupti(}
B
/

Increments the counter

ra

count T4+ 5 /% increment the 1= digit #/
J# Carry operation processing #/

J# Is a carry operation necessary? #/

if{count1==10) JH—ERROR#S
/% The 1s dizit is equal to 10, so process the carry #/
conntl = fl: /4 et the 1= dizit tn 0 #4F

|

|counter c#119 |putLED o130

B8 Parts Window =]

Fle Mode Edi Parts Bitmap Customize Craw Option Help

= E ER e R e I

Al

Al E el el

[iwmwe] {

A break point is now set at line 144.

Application Note U17047EJ1VOAN

65

Chapter 3 System Simulator Basics

Next, perform a restart.

In the SM78Kxx Main window, click the Restart button T | , or from the menus, select Run -> Restart.

SMKD32 : counter.prj

FiIE}djk Wiew Option Run Event Browse Jump ‘Window Help

e o = [1] = [1+] 5[5 Qla|#2] =«
§ Source {counter.c)

EaarfchlﬁJ k2 | W’atchl E!ulck..l Refresh Close |

IENIELEET TR R P R E E R R R R R
| countl

__interrupt
woid interrupti()

Increments the counter

147

148 counti++ 5 /4 increment the s dizit #/
149

150 f# Carry operation processing #/

/% Is a carry operation necessary? #/

if{count1==103 J#<ERROR#/
/# The 1s dizit is equal to 10, so process the carry #/
rontl = N: f# Bet the 1= diegit tn 0o/

4]

Ready |eounter c#119 |putLED [o13D

B

[Parts Window |_ (O] =]

File Mode Edit Parts Bitmap Customize Draw Option Help

[B2 B A P P P E P

Bir

il

Al AEe[Ta]

) |

Proaram execution starts.

MKO032 : counter.prj

File Edit Wiew Option Run Ewent Browse Jump ‘Window Help

e | = o] 2]| BlB[m B QlawmEl 2|8 E 8 V]e0)]

[Source {counter.c)

J vy ‘watch I Qu\ck...l Hefleshl Close I
vaid main{l{ o
il H / =
[# Initialization ;
| ft Set the mode of the port that outputs to the 7-segement LE
I PWE = 0x00; /#Set P5 (PBO-P57) to output mode #*/f
PH4 = 0x00; /#Set P4 (P40-P47) to output mode */ [
3 J* Sst the interrupt level of INTTMOD and unmask the interrupt
= WTHE = 03/# Unmask the INTTMOD interrupt #/
THMEDD = 0;/#% Enables the INTTHOD interrupts #/
[f# Initialize the counter */
countl = U:ﬂ* Initialize the LED display digit value ;ls dig
LI ; cannt 10 Ne i Tritialize the |FN dAisnlawv dizit waloe (10= Ai
L1 0

Bl Watch =] S

Mode Edit Parts Bitmap Customize Craw Option Help

The color of the status
bar changes to red.

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

Click the INTTMOO button.

%5 5MKD32 : counter.prj

File Edit VYiew Option Run Ewvent Browse Jump ‘Window Help

1 [| | = | o] = [10| S IR

=]

[Source {counter.c) [_ O] =]
Saarch...l <<J ¥y | watch I Quwck..l Flelreshl Cloze I
[[141 -
142{|__interrupt _I
“143[lvoid interrupti()
B (> -144
-145
(146 # Increments the counter
147
1148 count1++ ; /4 increment the 1= digit #/
S144
160 f# Carry operation processing #/
181
o182 f# Is a carry operation necessary? #/
153 if{count1==10) JS#e—ERROR®S
154 { /# The 1s digit is equal to 10, so process the carry #/
I | - 156 countl = 0: /% Set the Is dizit to 0 */
L]
Bl Watch =10 x|
Add.. I Delete I Up I Dawn I Fefresh I Close I
countl1i 0T
0T
plal |
|courter c#144 firterruptl o150

B Parts Wir.ow
File: gfe Edit Parts Bitmap Customize Oraw Option Help

ELL

n

R AP EE SRR

The color of the status bar

Al /E[e[el

returns to its original color.

When you click the INTTMOO button, the program stops at the break point on line 144.

Application Note U17047EJ1VOAN

67

Chapter 3 System Simulator Basics

At this point, you can execute the program a line at a time (step) and observe the values of count1 and
count10. Execute three single steps.

In the SM78Kxx Main window, click the Step-in button il three times, or from the menus, select Run
->Step-in three times.

#5 SMKD32 : counter.prj

File Edit View Option Run Ewent Browse Jump ‘Window Help

i o[> [[2 14| BRI B QlalsR =(wE =]

[Source (counter.c) [_ O] =]
Search | <4 >>| Wah:hl Quick: I Hefrashl Clase I
141
142|[__interrupt
143vaid interrupt1()
[B 144
145
148 # Increments the counter
147
144 counti++ ;' /% increment the 1s digit #/
144)
160) /% Carry operation processing #/
161
162 /% Iz a carry operation necessary? #/
> 168 ificount1==103 J#—ERROR#/S
164 { /4 The 1s dizit is equal to 10. =0 process the carry #/
G N | 11 conntl = N: f4 Set the 1= dizit tn 0 %7
K
BT Watch
Add. I Delete | Up | Dawn | Refresh | Close |
countll 0T

| e |

Ready \cuunter‘c#l‘ﬁ |ir|terrupt1

o150
[Parts Window M=

File Mode Edib Parts Bitmap Customize Draw Option Help

I = e o s R o P P S I R S

BiL

AL

Al EE[T]a

(e {7

The program executes

three steps.

%% SMK032 : counter.prj =l
File Edit Yiew Option Run Event Browse Jump ‘Window Help

e[w [z]vi]oi|=] o] E|88|Em| EI%= QlalsE =5 5D
B Source {counter.c) [_[OIx]

Search...l <<J 123 I Wwatch | Quick.... I Refresh | Close |
142{|__interrupt

void interrupt1()

Increments the counter

147

148 count1++ /% increment the 1s digit #/
143

150 J# Carry operation processing #/

151

J# Is & carry operation necessary? #/
if(count1==107 Fw—ERROR®S
/¥ The 1s dizit is equal ta 10, so process the carry #/
conntl = N: f Set the 1s dizgit tn 0o#f

kL _IL_158l

Ready [counter.c#144 finterrupt1 o150

Bl Parts Window [_ O] %]
File Made Edit Parks Bitmap Customize Oraw Option Help

I 1 e A o e e N e [[i

]]

Observe the value of count1 in the Watch window after step execution at line148 completes.
Since count1 is 1, the routine is working correctly.

68 Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

Continuing on, step to line153.
In the SM78Kxx Main window, click the Step-in button L | , or from the menus, select Run->Step-in.

¥4 SMK032 : counter.prj
File Edit Wiew Option Run Event Erowse Jump ‘Window Help

e[w |= [i]oi] = |1o] B|E5|Em| %] Q||| 2 wSIE5] B ¢ Wt |5

E Source {counter.c)

Ssarch...l <<J >3
T

|_interrupt
void interrupti()

waich | Quick.. | Fefresh | Close |

Increments the counter

count T+ 5 /% increment the 1s dizit #/
f# Carry operation processing #/

F# s a carry operation necessary? #/
if(count1==101 S+« ERROR#/
/% The 1s digit is equal to 10, =0 process the carry #/
N: /% fpt the 1a dieit ta 0 %7

rnnntl =

Bl watch

count10

Ready [counter.c#144 finterrupt1 |o1sD
B Parts Window [_[O] =]

Fle Mode Edi Parts Bitmep Customize Drow Option Help

I 7 B o A e = 3 N N P S) e Y

(sl 3 3

After step execution stops at line153, the value of count1 changes from 1 to 10.

Line 153 contains a conditional statement that tests if a carry to the next digit is required, so the value of
count1 should not change due to this line. You can see from this that there is a problem with line 153.

Looking at line 153, in the if statement, a comparison of the value of count1 to the value 10, (count1==10), is

required. However, in its place, there is an assignment statement, assigning a value of 10 to count1.

Now that you have found the location of the error, you can remove the break point.
Click the "B" in the leftmost column. The "B" changes to "*" and the break point is removed.

#5 SMK032 : counter.prj

File Edit Wiew Option Run Event Browse Jump ‘Window Help

(e |2 [> [2]| E]8]e] 2|\

HE Source (counter.c)
Search.l <<J b Watch | Quick. | Helleshl Close I
1]] 141
142||__interrupt
(- 143|vaid interrupt1(}
[B IEETH
NI~ 145
148 # Increments the counter
147
140 countl++ ; /% increment the Ts digit #/
148
150 f# Carry operation processing #/
151
162 /# Is a carry operation necessary? #/
> 163 if{counti==10}) /#—ERROR#/
154 { /% The Is digit is equal to 10, so process the carry #/
L | RE conntl = Nz /% fet the 1= dieit tn 0 %/
L4121
Bl Watch 9 [=] S

countl

|J

Ready [counter.ca# 144

Jinterrupt1 |o15D

[Parts Window 1 [=1 E3

File Mode Edit Parts Bitmap Cusktomize Draw Option Help

| i B el (=R (A H[@[]

[O

Application Note U17047EJ1VOAN 69

Chapter 3 System Simulator Basics

70

Editing the Source and Creating an
Executable Program (2)

Next you will correct the error in the counter program.

In the SM78Kxx Main window, from the menus select Edit->Edit source.

MKD32 : counter.prj
Filz | Edit “iew Option Run Ewvent EBrowse Jump ‘Window Help

e e BlEle Bl QlalwE] 2l
= Copy [
B Gl
E Wrike in Enter atch | |:!uic:k...l Hefreshl Close |
[Restore Esc o o o o o o oo o o oo o o o oo s oo oo o o sk o e ook 7 ;I
t
Mermnary rupt1()

EEEEREEEEEEEEEEEEEEEEE EEEEE B EEEEEEEEE Y
Ilncrements the counter

st o o o o e ok o oo etk sk ek e ook o e koo
counti++ ; /% increment the 1= digit #/f

M Narry norratinn oronrasineg #/

counter.c#155 |interrupt1

017D

HECT ools32078K.0_zample\Chapterd\counter.c

fW‘K‘K‘K‘K‘K‘K‘NWWWWWW‘K‘K‘K‘K‘K‘K‘Nthttt‘ﬂ"ﬂ"ﬂ"ﬂ"ﬂ"ﬂ"ﬂ‘tttttt*

Tnerements the counterd
t‘k‘k'ﬂ"k‘k‘k‘k1:1:1:1:1:t‘k‘k'ﬂ"ﬂ"k‘k‘kt****t‘k‘k‘k‘k‘k‘k‘ktt***t’-‘-

countl++ ; /F increment the 1=z digit /4

/* Carry operation processing */ +

/% I=s a carry operation necessary? /4

ificountl=10) / *0@E

{ /% The 1= digit i= ecqual to 10, =o process the
countl 0; /% Set the 1z digit to 0O */4
count10++; /% Increment the 103 digit *

f% I2 there a carry from the 102 digic?
if (countl0==10] ¥
ik
/% The 10s digit iz egqual to 10, sSo proc
countl1l0 =0; /% 3et the 10s digit to
/% Heturn the Z LED disp
iR

Editor opens.

RREOR*/ ¢
carry 74

IE
i
ess the carry */ ¥

0 */
lay digits from 99 to

|

A

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

Correct line 153 by changing "count1=10" to "count1

==10" in the if statement.

NECT ools32\78K0_sampleAChapterdicounter.c [Changed])

— f1;1:1:1:1;1:1:1:1;1:1:1:1;1:1:1:1;1:****‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k*

- # Increments the counterd

— 1:1:1;1;1:1:1;1;1:1:1;1;1:1:1;1;1:*****‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k*fi—

- countl++ ; /% increment the 13 digic #/%

- ¥

- /% Carry operation processing */ ¥

- ¥

- . S operation hnecessary? 4

N w / *OGERRORT / 4

— . =figit i= equal to 10, sSo process the carry /4

— countl = 0; /% Set the 1= digit to 0 */+4

— countl0++; /% Increment the 10s digit */+¥

-

- f* Iz there a carry from the 103 digit? /4

— if (countl0==10) 4

- ¥

- /% The 10s digit is equal to 10, so process the carry /4

— countl0 =0; /% Set the 105 digit to 0O %/ D_J

— /% Return the Z LED display digits from 99 to

- T

- 4 hd

KN 1
When you finish making the change, click the Build->Debug button .f. on PM plus or select [Build (B)] ->

[Build->Debug (A)] from the menu.
When using PM plus editor, changes made to the source contents a
a build.

n:",' PM plus - counter_prw [DutPut]

File Edit Find Layer “iew Project Buld Tool ‘window Help

re automatically saved when you perform

- [Ofx]

|=-0E|& 3|5 E |5

A - el

v

EERT O

J Icuunler program - counter program leebug Build

B=EN = outPut M= E3
Files IME"“OI - CIANECTOOLZ3IZWEIN\co78k0.exe —foounter.pocd i
- ¥
E‘" counter program - 1 Proge || 95r/0 Series ¢ Compiler W3.50 [20 May 20037+
=@ counter program — Copyright (C) NEC Electronics Corporation 1991,2003+
B[] Source Files -
{3 Includs Files - Target chip : uPD7E0034+
-] Project Related Files || pevice file : w1.01 4
{2 Other Files _—
- Compilation completce, 0 erroriz) and 0 warningis) found.d
- C:ANECTOOLIIZY BINY 1k78KED.exe —feoounter. plkd
- ¥
- 7BE/0 Series Linker ¥3.60 [3 Apr 2003]+
— Copyright (C) NEC Electronics Corporation 1990, 20034
-+
- Target chip : uPD7800344
- Device file : W1.01+
-+
- Link complete, 0 error(s) and 0 warning(s) found.
- C:ANECTOOLZ3ZWEIN\oo78K0.exe —foounter.pocd
- ¥
- TSK/0 Series Chiject Converter ¥3.60 [3 Apr 20031+
— Copyright (C) NEC Electronices Corporation 1990,2003+
- ¥
- Target chip : uPD780034+
- Deviece file : V1.014
- ¥
- Chject Conwversion Comwplete, 0 error(3) and 0 warningis) found.
- ¥
- Build Total errori=s) : 0 Total warning(s) : 0 [ECQF]
=
ol — [
Tl CTRiRS »

Application Note U17047EJ1VOAN

7

Chapter 3 System Simulator Basics

72

SMKD32 : counter.prj

File Edit Miew Option Run Event EBrowse Jump ‘Window Help
[|w [z]e]]2]4] B|B[m BT QlawE =
¥ Source {counter.c)

Search...l <4 I b | Watch E!uick...l Hefreshl Cloze I
1| /# Set” the mode of the port that outputs fo the 7-sezement [7a]
PHE = Nx00; f#%et PE (PS0-P57) to output mode #)f
PH4 = 0x00; f45et P4 (P40-P47) to output mode #/

/4 Set the interrupt level of INTTMOD and unmazk the interrupt
WTHE = 0;/% Unmask the INTTMOD interrupt #/
THMEOD = 0:/% INTTHOOZ3A A DB T HEHFIT T3 &/

Jb Tnilianlice Lhe counler ®/

count! = 0:;/ % Initialize the LED display digit walue {1z dig
count10 = 03/% Initialize the LED display digit walue (10s di

PULLED{); /# Display numerical values on the LED display #/ =

Jo Display initial walues #/ =l
2
]

Feady |counter, ca#as min |oosa [HALT 4

When build is completed, the SM78Kxx automatically downloads an executable program file.

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

Executing the Program (2)

Now, perform a restart.
In the SM78Kxx Main window, click the Restart button 'TE | | or from the menus, select Run->Restart.

MK032 : counter.prj
Fl\e}dﬁ Wiew Option Run Ewvent Browse Jump ‘Window Help

¥ Source {counter.c)

e ‘watch I Quick... | Refresh | Close |
/% Sel the mode of the port that odtpuls T the 7-sezement [/a]
PHE = 0x00; /#%Set PE (PE0-P6?) to output mode #/
PH4 = 0x00: /f#Set P4 (P40-P47) to output mode #/

Search... | <<

J# Set the interrupt level of INTTMOD and unmask the interrupt
WTME = 0;/# Unmask the INTTMOD interrupt #/
THHEDD = 0:/% IMTTHOOZE|iA & DEFTHEFFT T D 4/ |

A Dnilinlice Lhe counler #/
count! = 03/% Initialize the LED diselay dizit value (1s diz
count10 = 0;/% Initialize the LED display digit value {10s di

/% Display initial walues */ =
putLED(}; /#% Display numerical values on the LED display #/ 3

]

[counter c#96 [main |oosa [HaLT

[Parts Window =]
File Mode Edii Parts Bitmap Customize Draw Option Help

IS e 5 B A I ot = 2 N [5] [

[RS

Program execution starts.

B4 5MK032 : counter.prj [_[O]x]
Fle Edt View Option Run Evert Browse Jump Window Help

e o= [ei]mi] | BlE|mE 208 Qlase =48 B]85

E Source {counter.c) [_]

>3 Watchl Gulck..l Hefreshl Close |

f# Set’ the mode of the port that oUtputs 10 the 7-sezEment /4]
PME = 0x00; /f#Set PE (PBO-PS7) to output mode #/
PM4 = 0x00; /f#Set P4 (P40-P47) to output mode #/

Search.. | <

/4 Set the interrupt level of INTTMOD and unmask the interrupt
WTHE = 0;/% Unmask the INTTMOO interrupt */
THMEDD = 0;/# INTTHOOEDAADFMFFa T2 / _I

A Inilialice Lhie counler &/
countl = 03/#% Initialize the LED diselay dizit value {Is dig
count10 = 03/% Initialize the LED diselay dizit valus (10s di
F# Display initial valuss #/

PutLED(}:; /% Display numerical waluss on the LED display #/

]
2

countl

|

] Parts Window
File Mode Edit Parts Bitmap Customize Craw Option Help

(= s | 2| G A ool] 2]) [] B @] D]

(oo || (|

Application Note U17047EJ1VOAN

73

Chapter 3 System Simulator Basics

74

Confirm whether the incrementation works correcitly.

First click the button several times to confirm whether the 1s digit increments correctly.

SMKD32 : counter.prj

File Edit View ©Option Run Event Browse Jump ‘Window Help

Search I <<J 3> | W'alchl Quick. I Flefrashl Cloze I
] 35 .-"* Set the mode of the porl that ‘odtputs to the 7-sezement [#a]
> PHS = 0x00; /#3et PS (P50-F57) to output mode #/
a7 P4 = 0x00; /F#Set P4 (P40-P47) to output mode #/
98
LR /% Set the interrupt level of INTTMOO and unmask the interrupt
100 WTHE = 0;/#% Unmask the INTTHOO interrupt #/
101 THMEOOD = 0:/% INTTMOOZA A DB(TEFFI T3 #/ [
102
108 A Tnilialize Lhe counler #/
104 countl = 0:/% Initialize the LED display digit value {15 diz
105 count10 = 0:/% Initialize the LED display digit value (10s di
106
7 A% Display initial values #/ =
putLEDC): /% Display numerical values on the LED diseplay #/ 2
¥

B Parts Window
File Mode Edic Parts Bitmap Cuskomize Craw Ophion Help

= B3

PLL

TS 2 A e A e P s e P S

Al AEe[]a]

) 3

The 1s digit does, in fact, increment correctly.

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

Next, click the INTTMOO button more than ten times to confirm whether a carry operation (incrementing the

10s digit) is performed correctly.

% SMKO032 : counter.prj
File Edit Visw ©Option Run Event Browse Jump ‘“Window Help

¥ Source {counter.c) =[]

Search | <<J 3> I Walchl Quick. | Helreshl Close I

[1l 1L__299] /% Sel” the mode of the port that ‘odtputs €0 the T-ceegient /]
> PWS = 0x00; /#Set P5 (PG0-P57) to output mode #/

PW4 = 0x00; /#Set P4 (P40-P47) to output mode #/

J#% Zet the interrupt level of INTTHOD and unmask the interrupt
WTHE = 0;/% Unmask the INTTHOO interrupt #/

THHEDD = 0;/% INTTMOOEGAADFETFFFT T #/ o
A Inilialice Lhe counler @/
count! = 0;/% Initialize the LED display digit value {15 dig

count10 = 0;/% Initialize the LED display digit value (103 di

f¥ Display initial values #/ g
PutLED(Y: /% Display numerical valuss on the LED display #/ g

— e o

Bl watch

[l Parts Window [_ O] %]

File Mode Edit Parks EBitmap Customize Draw Option Help

55 1 1 e A P e S 3 e Y [) e

[immn] | 5

The 10s digit does, in fact, increment correctly.

This confirms that the incrementation operations for both digits are working correctly.

Application Note U17047EJ1VOAN

75

Chapter 3 System Simulator Basics

Lastly, you will confirm whether the counter overflow handling is working correctly.

You could click the INTTMOO button more than 100 times to verify the operation, but here is a simpler
method.

In the SM78Kxx Main window, click the Stop button Ll or from the menus, select Run->Stop.

% SMKO32 : counter.prj
ﬁb\Edit Wigw Option Run Event Browse Jump ‘Window Help

(> [= -] 2 o] e Qlalmle =« = v]e]s)]

=10 =

Sealch.lij k2 \N"atchl quDk...l F\Eheshl Close I

/% el the mode of the port that outpuls to the 7-sezement <]

> PME = 0x00; /f#3et P5 (PEO-PE7) to output mode #/

PH4 = 0x00; /#Set P4 (F40-F47) to output mode #/

J# Zet the interrupt level of INTTMOD and unmask the interrupt
WTHE = 0;/% Unmask the INTTMOO interrupt #/

THHKOD = 0;f% INTTHOOE|A A DFMFFT TS 4/ [

St Inilialice Lhe counler #/

countl = 0;/% Initialize the LED display digit value (Is dig
count10 = 0:/# Initialize the LED display digit walue (10s di
s Diselay initial values #/ =
putLED(): /% Display numerical values on the LED display #®/ ﬂ
3 3
- L] I

Bl Watch

countl

|

B parts wWindow [_ O] x|

File Mode Edit Parts Bitmap Customize Craw Option Help

[22T R e e A) e S e I

AlZE@ el

INTTHOO I S

Program execution stops.

% 5MK032 : counter.prj
File Edit View Option Run Event Erowse Jump ‘Window Help

18 1 A
> | 119 HALT(D; f %/
120 H
121t
122
123 K
124
125 ||
126|| # Incrementation routine
127|| # (Interrupt function called by INTTHOD)
128 =l
129 # Increments the counter composed of variables countl and countll 4
130([# When the count reaches 38, the counter rolls over to 0 on the next count Edl
- K| [l
I K1]
El Watch [_[O] <]

[BrEAK >

5] Pa d o [=] ES
File M Edit Parts Bitmap Customize Cravw Option Help

A s A e s S R
The color of the status bar
returns to its original color.

Ready [counter-new.ci#119 main |o1sa

Al 0@ Ta

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

Next, in the Watch window, change the values in the Data Value Display/Setting area.

Move the cursor to the Data Value Display/Setting area in the Watch window and change the value of count10
to 9 and count1 to 7.

% SMKD32 : counter.prj
File Edit View Option Run Event Browse Jump WWindow Help
o[v |=[wi]mi]2|14] El#|ET B QlalnlR| 2|0 B T[]0
[E Source {counter-new.c) = - E||5|
Search |_<d k23 Watchl Quick, | F\efleshl Close |
{ [
b] HALTC): f ow/f
i
' [
Incrementat ion routine
(Interrupt function called by INTTMOO}
i =
Increments the counter composed of variables countl and countl10 =
30| # When the couni reaches 99. the counter rolls over Lo 0 on the next count T3]
Ki | |
| [T |
B watch [_[D]x]
Delete Up Daown
countll
countl

Change the value of count10
v from 1 to 9 and the value of
FRERK count1 from 5to 7.

Ready |eounter-new. c#119 main |o15a [

[l Parts Window

(O] x]

File Mode Edit Parts Bitmap Customize Draw Option Help

EE REEEEREE R EEE RN EE

INTTMOD I 5

#2 SMK032 : counter.prj
File Edit View Option Run Event Browse Jump Window Help
L0 I S S = Y e s L s T Y e N e e B e e e
[E Source {counter-new.c) -3l x|
Search _<d 23 wiatch | Cluick. | Refresh | Close I
T -
> HALTCD: Fwow/ »
i
[[
Incrementation routine
(Interrupt function called by INTTMOD)
i |
Increments the counter composed of variables count! and countid 2|
30| # When ihe count reaches 33, the counter rolls over to 0 on the nexi count T3]
41 0]
| LT i)
B Watch [_[D]x]
Delete Up Down I Refresh lose:
count 10 9T
T
| Hlal | 0|
Ready |counter-new.c#119 main o154 [[BREAK / The values of count10
[Parts Window [_ 1ol

as 9 and count1 as 7
are displayed in red.

File Mode Edii Parts Bitmap Customize Draw Option Help

I e 5 e A e e 5 e N I [) o

[men] |5

Application Note U17047EJ1VOAN 77

Chapter 3 System Simulator Basics

78

Now, with the values changed and displayed in red, press the Return key.

The values of count10 and count1 change from red to black.

%5 5MK032 : counter.prj
File Edit Yiew Option Run Event Browse Jump ‘Window Help

118 i]
| 119 HALTC): fwow/
120 i
121
122
123
1241/
125 | |
126([# Incrementation routine
127 # (Interrupt function called by INTTMOD)
128 =l
129/ # Increments the counter composed of variables count! and countl0 =]
130/ # When the count reaches 99, the counter rolls over to 0 on the next count =]
- 41| |
| 11 |
Watch =] E3
| Delete Up Dawn | HefreshJﬂELI
countll aT

]
Ready |counter-new.c#113 |main |o15A [|BREAK v
Bl Parts Window H=1E3
File Mode Edit Parts Bitmap Cuskomize Orzws Option Help
(e o 2 S]] R[[Z[RA (Al E[O] D[]

INTTHOD : 5

At this point, count10 has become 9 and count1 has become 7.

Now you can continue execution of the program.

In the SM78Kxx Main window, click the Start button ' B | or from the menus, select Run->Go.

#5 SMKD32 : counter.prj
File Ew Option Run Event Erowse Jump ‘indow Help
[([2 4| B[] Bt Qla|mle] 248 (]
[E Source ycounter-new.c) -1a ﬂ
118 -
> 14 HALTC): o/ -
120 1
12
122
128 ;
124
125 L
126)| # Incrementation routine
127|| # (Interrupt function called by INTTMOD)
128(| # (=l
129/ # Increments the counier composed of wariables countl and count10 A&
180)| # When the count reaches 94, the counier rolls aver to 0 on the next count 73]
KT 10|
| (R]
Bl Watch [_IDIx]
Add.. I Delete I Up | Down | Fiefreshl Cloze I
count 10 aT
T
| i
Ready |eounker-new, c#119 Imain D154 [[BREAK v
B Parts wWindow M=

File Mode Edit Parts Bitmap Customize ODrsw Option Help

IS] R T A e P s 3 I R PN e [[e Y

[imman] | 5

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

Program execution starts.

#% SMK032 : counter.prj
Flle Edit “ew Option Run Ewent Browse Jump ‘Window Help

e[v [= ||| 2]| B|E[6m| B%[# Qla|n@] 2|0 5 1))
[Source {counter-new.c) gl x|
Saarch..|_<< >r Wdatch I Quwck...l Hafreshl Close I

IR { ~

bl 119 HALTC: Fweow/ L

120 i

121

122

123 ;

124

125 -

126|| # Incrementation routine

127|| # (Interrupt function called by INTTHOO)

128 -

129 # Increments the counter composed of variables count! and countil =l

180 # When the count reaches 38. the counter rolls aver to 0 on the next count 3]
— I |

Bl watch

Add_ | Delete | Up

countll

Close |

| Down I Helreshl

Click the INTTMO0

BS|Parts Window
button once.

File Mode Edit Parts Bitmap Customize Draw Option Help

] [O v] 2

@IS

5 SMK0D32 : counter.prj
File Edit VWiew Option Run Ewent Browse Jump Window Help

Sealch...|_<d >3 ‘Watch | Quick.. | Helreshl Close |

i
Bl 119 . HALT(): /% %/

(Interrupt function called by INTTHOOD}

4

Incrementat ion routine

*
*
128/ #
*

14

Increments the counter composed of wvariables count! and countid 2]
130 # When the count reaches 33, the counter ralls over to I on the next count 7]

R >l
Bl watch

add_ | Delete | Up

count 10

| Down | F!efleshl Cloze |

The display in the Input/Output
Panel changes from 15 to 98.

[l Parts Window
File Mode Edit Parts Bitmap Customize Craw Option Help

S =1 e R A 2 o 5 3

Now, the program is at the same point as if you had clicked the INTTMOO button 98 times.
Continuing on, click the INTTMOO button again.

Application Note U17047EJ1VOAN 79

Chapter 3 System Simulator Basics

Click the INTTMOO
button once.

SMKOD32 : counter.prj
File Edt Y“iew Option Run Ewent Browse Jump ‘Window Help
e[r = |m]ei]=] @)l Bilelas| Qlt(stall S| 5] ¢ W[|65
[E Source {counter-new.c) g - |EI|5|
5earch...|_<ﬂ >>| “Watch | Quick...l Hefreshl Close I
[718 T =]
Bl 11a HALTCD: fwow/
120
121|[H
122
123 ;
124
125 L |
126(| # Incrementation routine
127(| % (Interrupt function called by INTTMOO)
128(| # =i
129(| # Increments the counter composed of variables countl and countl0 =]
|| 180f| # When the count reaches 93. ihe counter rolls over to 0 on the next count 3|
EN |
| <11 *
B Watch M=l 3
Add... I Delete | Up | Dawsin I F\efleshl Cloze |
count 10
[
E|parts Window H[=]
File Mode Edii Parts Bitmap Customize Draw ©Option Help
IS 1 e I P P e e A [PN O [) e

) 9 9

Click the INTTMO00
button once.

¥4 SMK032 : counter.prj
File Edit Wew Option Run Event Browse Jump ‘Window Help

| e |=|vi]or]=)] ElB|E SiER Qlalsz 2/ =] o)
[Source {counter-new.c) i | m] 4
Search | << ¥ Watchl Quick. | F\Elreshl Clase |
I { -
s 11e HALT(D: o/ L
120 1
121|(}
122
123 b
124
125 ||
126 # Incrementation routine
127 # {Interrupt function called by INTTHOD)
128 ®
1249l # Increments the counter composed of wvariables countl and countl0
180l # When the count reaches 99, the counter ralls over to 0 on the next count
TN o]
Bl Watch
Add... I Delete I Up | Diown | Helreshl Cloze
count 10

B parts window The LED display

File Mode Edit Parts Bitmap Cusbomize Draw Opkion Help

CEEHE 2 Sl S Z =R [a[=y shows 00.

()

You have determined that the counter overflow handling operates correctly.

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

Stop the program.
In the SM78Kxx Main window, click the Stop button " | , or from the menus, select Run->Stop.

#46MK032 : counter.prj
)le\Ed\t Wiew Option Run Event Browse Jump ‘Window Help

e = i) 2] Bl BI%Ele QlalklEl 2lslnl 5 v]e]o]
UrceN o =
Search..|_<d 3> | wlatch | Quick...l Fiefrashl Cloze |
1] 11e { E
sl 119 HALTCD: Fw o/ L
120 i
121)|k
122
123 b
124
125 |
126)| # Incrementation routine
127(| # (Interruet function called by INTTHMOO)
128(| =
129)| # Increments the counter composed of wariables countl and count!0 =l
130 # When the count reaches 33, the counter rolls over to I on the next count 73
T]

Delete | Up I Dowan I Hefreshl Cloze |

[Parts Window [_[O] =]

File Mode Edit Parks Bitmap Customize [Craw Option Help

(i sl o [.| G o] e R [Z[AR

Al/[Ee] e

fn
oo]] [

Program execution stops.

2 SMKD32 : counter.prj
Fle Edit WYiew Option Run Event Browse Jump Window Help

e[w[=|mi0i|2[e] Bl |em| BR8] Qf[dn|E =8 [%ls|5
[Source {counter-new.c) 10| x|
Search.. I_<d > | “a/atch I Quick.. I Hefrashl Close |
[1] 1] 118 i -
Byl 119 HALT(); fw o/ -
120 H
121
122
123 k
124
125 | |
126|| # Incrementation routine
127|| # (Interrupt funclion called by INTTHMOO)
128)| # -
128|| # Increments the counter composed of wariables countl and countll =
130 # When the count reaches 39, ihe counter rolls aver to [on the next count 73]
41

Bl watch

Add... I Delete | Up | Down I Hefleshl Close I

countll

{_Ready |eounter. c#113 |putLED |o13D [v)

BE|Parcs Winidow
File Mode FEdit Parts Bitmap Customize Draw Option Help

[1 B E A e P R S

s

Rl

N EEER

3

The color of the status bar

returns to its original color.

Application Note U17047EJ1VOAN 81

Chapter 3 System Simulator Basics

Exiting

Next, you will exit the SM78Kxx.
In the SM78Kxx Main window, from the menus, select File->Exit.

MKD32 : counter.prj
File Edit Wiew Option Run Ewvent Browse Jump ‘Window Help

Open... Chrl+O | Ql&lggall El!@

Save As...
Close

Download. .. LI Cloze |

Upload... =]

Project 3

Debugger Reset, ..

Exit

]

R EEEEEEEEEERE R R EEEEEEE R

1 78K _sampletChapter3tcounter Imf

2 CANECTools32\78K_samplsiChapter2yWRan. pri by INTTHOO)

3 CANECTools324 78K _sampletChapter2icharacter . Imf el bR et e dRC it

4 CANECTools324 78K _sampletcounter. prj
T ——

Add... | Delete | Up | Down I Hefreshl Cloze |

countl0

Ml

|c0unter.c#119 |main |015A

A dialog is displayed asking you if
you want to exit.

I
Thiz will end pour Debugger zezsian.
Do you want bo gave the settings in the project file ?

Ma | Caricel |

SH7EK0

To save the settings performed in this chapter, such as the Input/Output Panel settings, click Yes button. To
discard the settings, click Yes button. (To return to PM plus, click Cancel button.)

"Environment" refers to the external parts, window settings, etc.
E> For details, refer to the SM78K Series System Simulator Ver.2.52 Operation User’s Manual
(U16768E).

Application Note U17047EJ1VOAN

Chapter 3 System Simulator Basics

Lastly, you will exit PM plus.
In PM plus window, from the menus, select File->Exit PM plus.

PM plus - counter_prvw [DutPut] =13

File Edit Find Layer View Project Build Tool Window Help
Hew Chl+M T« > + = ’_’_E |
Dpen Chl+0 e | Eatl J' | !a frn ?
[nisertfle.. 0 Buid = ‘ L i i X | ﬁ |
LClose
OutPut [l
Mew Waorkzpace..
e — Ci4NECTOOLE32Y BINY co78k0. exe —foounter. pocd =

¥
T8K/0 Series C Compiler ¥3.50 [20 May 20031+
Copyright (C) NEC Electronics Corporstion 1991, 2003+

Save Workspace
Cloze “Workspace

Save LG5 +
G s, Target chip : uPD7S80034+
Device file : V1.01 +
Ehange Source Eile Hame.. ¥
Save sllEauce Fes Compilation complete, 0 error(s) and 0 warning(s) Lfound.¥
C:YMNECTOOLS3IZY BINY LK78K0 . exe —foounter.plké
PFrint Prexiew N
Erint.. CtP ogi/0 Series Linker W3.60 [3 Apr 2003] 4
1 counter.c Copyright (C) NEC Electronics Corporation 1990,2003 %
¥
C:AMECToolz32%. . hcounter. pra Target chip : uPD7S0034+
CAMECToolz32% . Mslot. prvs Device file : Wi.014
CAMECToolz32% . \WRAM. prw +
Link cowmwplete, 0 error(s) and 0 warning(s) found.+4

C:YNECTOOLS3 2 BINY oc78K0 . exe —foounter. pocd

-+

- 7HE/D Series Object Conwverter W3.60 [3 Apr 20031+

— Copyright {C) NEC Electronics Corporation 1990,2003 4
-

- Target chip : uPD7E0034+

- Device file : W1.014

-+

- COhiject Conversion Complete, 0 error(s) and 0 warning(s) found.

-+

- Build Total error(s) : 0 Total warning(s) : 0 [EOQF]

_I ¥
A 13
I Kil| Bl
Exit PM plus and prompt to save the files ’7 Lot =1 %23 2

Since PM plus saves project information successively, there is no confirmation dialog when you exit.

Application Note U17047EJ1VOAN

84

Chapter 4 Programming

This chapter shows you how to handle CPU-specific dependencies in the C programming language for the
various 78K Series CPUs, using a sample program.

The sample program used here is a simple slot machine program.

The slot machine program uses extensions to the C language specification: accessing special-function
registers using register name, interrupt/exception function descriptors, and enabling/disabling interrupts.

The overall flow of this chapter is as follows.

Slot Machine Program Specifications

&

Verifying Slot Machine Program Operation

&

Comments about the Input/Output Panel

&

Exiting

&

/ Comments about the Program \

Accessing Special-function Registers using Register Name

Registering an Interrupt Function

Enabling/Disabling Interrupts

\ Outputting CPU Control Instructions /

Application Note U17047EJ1VOAN

Chapter 4 Programming

Slot Machine Program Specifications

Before running the slot machine program in this chapter, you need to have a general understanding of the

program.

The external specifications are as follows.

External Specifications
® There are five 7-segment LED display digits, three square buttons and a reset button for the device.

E E 8 OHESEt
STOPLL) | |STOP(C || | STOP(R) |

Every second LED display digit is used to display numbers continuously in sequence from 0 to 9, with the

display cycling back to 0 after 9 is displayed.

® The square buttons are labeled from left to right as "STOP(L)", "STOP(C)", "STOP(R)", respectively and

correspond to a digit. When a button is clicked, the corresponding digit stops cycling and displays the
number it stopped at.

» When the STOP(L) button is clicked, the left-most LED display digit stops.

» When the STOP(C) button is clicked, the center LED display digit stops.

» When the STOP(R) button is clicked, the right-most LED display digit stops.

When the Reset button is clicked, the system returns to its initial state, where the digits resume cycling.

The basic specifications are as follows.

Basic Specifications

Slot machine display

» Displays sequentially incremented numbers from 0 to 9

» When a digit reaches 9, the counter loops back to 0

Button operation

» When the STOP(L) button is clicked, the INTPO interrupt is generated.

» When the STOP(C) button is clicked, the INTP1 interrupt is generated.

» When the STOP(R) button is clicked, the INTP2 interrupt is generated.

Interrupt function settings

» When the INTPO interrupt is generated, the stop_btn_Left function is executed.

» When the INTP1 interrupt is generated, the stop_btn_Center function is executed.
» When the INTP2 interrupt is generated, the stop_btn_Right function is executed.
Interrupt function processing

» When the stop_btn_Left function is executed, the left-most digit display is frozen.
» When the stop_btn_Center function is executed, the center digit display is frozen.
» When the stop_btn_Right function is executed, the right-most digit display is frozen.
Initialization of the target CPU environment

» Initialize the ports to be used.

» Enable the interrupts and set their priority.

Application Note U17047EJ1VOAN 85

Chapter 4 Programming

The internal specifications are as follows.

Internal Specifications

® The following variables specify the LED display digit position and numerical value, respectively.

Variable Contents
unsigned char place; Specifies the digit position
unsigned char num_data[10]; Specifies the numerical value to be displayed

® The program consists of the main function, target CPU environment initialization, slot machine display
routine, and the interrupt function.

File name Function Contents
slot.c Main function - calls the target CPU environment
void main(); initialization routine (init_target())

- calls the slot machine display function
(slot())

Target CPU environment initialization - initializes the target CPU environment,

void init_target(void); such as the ports and interrupt levels

- enables the interrupts

Slot machine display - cycles through digits 0-9 and displays
them on the LED display

void slot(void);
- accepts an interrupt during cycling

interrupt_func.h STOP(L) button processing - triggered by an INTPO interrupt
(function __interrupt void stp_btn_Left(void); - freezes the left-most digit display at its
declaration) current value
STOP(C) button processing - triggered by an INTP1 interrupt
interrupt_func.c __interrupt void stp_btn_Center(void); | . freezes the middle digit display at its
(function current value
definition) STOP(R) button processing - triggered by an INTP2 interrupt
__interrupt void stp_btn_Right(void); | . freezes the right-most digit display at

its current value

® The following 3 interrupts are used
» INTPO
> INTP1
> INTP2

® The following I/O ports are used for LED display control and interrupt input:
- For the 78K0: PO, P4 and P5
- For the 78K0S: P1, P2 and P54

- For the 78K4: P2, P4 and P5
78K0 78K0S 78K4

» PO P2 P2 Interrupt input
> P5 P1 P5 Lighting the 7-segment display segments
» P4 P4 P4 Selecting the 7-segment display digit

86 Application Note U17047EJ1VOAN

Chapter 4 Programming

Verifying Slot Machine Program
Operation

To begin verification of the slot machine program, first start PM plus.

From the Windows Start menu, select Programs->NEC Tools32->PM plus.

-

RAFEKDS Help

CCTEKOS Help

ID7aK4-M5

ID78K4-M5 Help

|D7K0S-MS

ID78K0S-MS Help

= SM7BK0S

SM7EKOS Help

= SM7EK4

SM78K4 Help

78K0 Tool Documents r
ID7EK0-MS

ID7AK0-MS Help

Ra7ek0 Help

CCTEKO Help

= SM7eKO0

Windows Update

@ Arccessolies

B NECT

Fawvorites L4 Startllp

» [l"ll Acrobat Reader 5.0
Q Intemet Explorer

Settings v @ M5-D05 Prompt
t'g;] Outlook, Expresz

» @ Windows Explorer

3
@
w
@ Help (53 MEC Tools Tk
&
u)

Diocuments

Find

@ “Windows Media Plager

Run...

Laog Off

Windows93

Shut Do

E? PM plus - No Workspace [OutPut]
File Edt Find Layer “iew Project Build Tool Window Help

|2-DSuW(8R| 5= e[e+ -[=E]e]
/|] 2l

2 Projec S| = ouPut _
[Fes W] | c=o; ‘

-

<11 H oz
For Help, press F1 ’_,_,_,L_,X_,‘ﬁ_ ~

Application Note U17047EJ1VOAN

Chapter 4 Programming

Reading the Workspace File

In this chapter, you will use a workspace file that has already been created.

In PM plus, from the menus, select File->Open Workspace... and specify the slot.prw workspace file.

ﬁ> If you have not yet set up the Sample Environment, please refer to Chapter 1 - Tutorial Sample

Environment.

5 PM plus - No Workspace [DutPut]

File Edt Find Layer View Project Buld Tool Window Help

L - | [
T SllssssX[®]

5 DutPut I [=[E3

,ﬁ
Print Prexigw
PBrint. ChisP
FezentiiE)
REsentiw/orkspace|
Exit PM plus.
Open the Chapter4 directory.
s el
Dpen an existing workspace T [CIRINT
Look. i Ia Chapterd j @I @
Select slot.prw and click Open.
File hame: Islot.prw ‘ Open >
Files of pe: [workspace Filel" pro] =1 Cancel
Help
4
55 PM plus - slot.prw [OutPut] M=ES
File Edt Find Layer View Pioject Buid Too Window Help
R - | =
78K/0 Saies 7] [Debug Buid EEEEEE
o
Foen o
Te slot 3 lgl:
[Sour iles:
() Tnclude Files - -
8 e The slot.prw workspace file is
read.
T W | | P .
ForHolp,pres F1 [S |

Application Note U17047EJ1VOAN

Chapter 4 Programming

Creating an Executable Program

Next, you will create and executable program.

In PM plus, click the Build button s | or, from the menus, select Build->Build.

[OutPut]

Fle Edi Find Leyer Yiew Project Buid Tool “indow Help
e cedsiemaa A ~dlerr-[=Ez]
JlThe slot of 2 figures - 78K/0 Series] [Debug Buid j\(& ** i H
M=lES)| = outPut 9 [=] 3
[EOF]
E
g
(23 Source Files
e (0 Include Files
(L1 Pioject Related Files
(2 Other Files
S A | v
For Help. press F1 = CTRTFT 4

The build process starts.

T PM plus - slot_prw [DutPut] % N [
Fle Edi Find Leyer iew Project Buld Tool Window Hef

s e —— O EE

| [The st of 3 figuaes - 70870 ot =][Detuag Bula Elll & 2 2 A | e R H ‘

i .

- Target chip : wPD7ED0344
E-lg 78K/0 Series : 1 Pr - Device file : V1.01

=@ The slot of 3 f "
(0 Source Files - Compilation complete, 0 error(s) and 0 warningis) found.t
(0 Inchde Fies - C:\NECTOOLS32%\BIN\cc78kl.exe —fslot.peck
(1 Project Related Fies || ¢
(20 Other Files | 78K/0 Series C Compiler ¥3.50 [20 May 2003+

- Copyright (C) NEC Electronics Corporation 1991,2003+
¥

- Target ch[gRRRN

- Device £i

-

E e 13500: Build completed nomaly. T
- CrANECTOOL ©_fune.pliy

- 78k/0 Seri i

- Copyr LI TeT WEC ETertromT TpoTETion 1980,2003

-

- Targst chip : uPD7E00344

- Device file : V1.014

-

- Link complete, 0 error(s) and 0 warningis) found.}

|- C:\NECTOQOLS32%BIM\oc78K0.exe -yC:\NECTools32\DEVY interrupt_func. lwfd

¥
- 78K/0 Series Chject Converter V3.60 [3 Apr 20031+
- Copyright (€) NEC Electronics Corporation 1990,2003%

- Targst chip : uPD7E00344
- Device file : V1.014

-+
|- Object Conwversion Complete, 0 error{s) and 0 warningis) found.[EOL_]
My Ly
For Help. press F1 = CTRTN-3® 4

The build completes normally, and an executable program is created.

Application Note U17047EJ1VOAN

Chapter 4 Programming

90

Running the System Simulator (SM78Kxx)

Next, you will run the SM78Kxx.

In the Project Manager, click the Debug button , or, from the menus, select Build->Debug .

&5, PM plus - slotprw [OutPut]
Fle Edt Find Layer Yiew Project Buld Tool ‘Window Help

|- DeH SR[Y 2o |w d ¢ v ~=El 2|
] [The slot of 3 figures - 78K/ Series 7] |Debug Build HIEEY- T J‘#

=3l = OutPut IS [=1E3

Fies | pemo | Device file : ¥1.01 + ?

=0 78K/0 Series - 1 -
-8 The slot of 3 figures

- Compilation complete, 0 error(s) and 0 warning(s) found.
- €:\NECTOOLS32YBIN%cc?8k0.exe —fslot.pect

[Source Files -y

(23 Inchude Files - 78K/D Series € Compiler ¥3.50 [20 May 2003]+4
; (2 Project Related Files | 1 Copyright (C) NEC Electronics Corporation 1991,2003+%
* [Other Files -

- Target chip : uPD7S0034+
- Deviee file : V1.01 +

- ¥

- Compilation complete, 0 error(s) and 0 warning(s) found.
- C:\NECTOOLS32\BINY1k78KO.exe —finterrupt func.plks

- ¥

- 78E/0 Series Linker ¥3.60 [3 Apr 2003]+

- Copyright (C) NEC Electronics Corporation 1950,2003 %
- ¥

- Target chip : uPD7S0034+

- Deviee file : ¥1.014%

- ¥

- Link complete, 0 error(s) and 0 warning(s) found.#

- C:\NECTOOLS32YBINY0cTSKEO.exe —yC:\NECTools324\DEVY interrupt func.lmf
- ¥

- 78E/0 Series Cbject Converter W3.60 [3 Apr 20031+

- Copyright (C) NEC Electronics Corporation 1950,2003 %
- ¥

- Target chip : uPD7S0034+

- Deviee file : ¥1.014%

- ¥

- Object Conversion Complete, 0 error(s) and 0 warning(s) found.}

~ Build Total erroris) : O Total warning(s) : O [EQF] =
4 »
e 2y B

I I 1 1 5

The SM78Kxx starts.

SMKD32 : slot.prj - [Source (slot.c)]
File Edit -%&w Option Run Event Growse Jump ‘Wwindow Help =|&] x|

1o | = e[= [0 | ||| B[R] Q2|
Seach. | ¢t | »» | watch | uick.. | Fefiesh | Close |

57][7% Initialize the tarzel CPU environment #/ =]
>

init_target();

59
80|| #* Initialize the display digit position variable #/
61|| place = Ox18; /% 10101 use & sets of LED dizits: display on every second digit #/
62
B3|lf# Turn of f the 7-sezment display #/ [l
edl[P4 = 0x00;
g5|[P5 = 0x00;
68| P4 = 0xFF;
67,
68|| s Siot machine processing (lizhting the dizits) #/
83| slot();
70
T F* main &/
72
73
%
76|[# Function for initializing ports, interrupt levels, and GPU environment =
TE[[=
L 77 j Function name: init tarzet Ed
4 »
[slat.c#58 |oosA [[4
_ o] x| =10l x|
File Mode Edit Parks Bitmap Customize Draw File External Parts External Circuit Help
Option_Hsp POl sef fo D
I =]
Oreset
4 »
s | [smecor | [smeco | Down Load File: |loutput Data Fite:

Application Note U17047EJ1VOAN

Chapter 4 Programming

Running the Program

Now, you will run the slot machine program.

In the SM78Kxx Main window, click the Restart button | , or from the menus, select Run->Restart.

SMKD32 : slot.prj - [Source {slot.c)] - Ellil
Ndit Miew Option Run Event Browse Jump ‘Window Help - ﬁ'lll

e[l [[v o] = [1+] B[S 0| || Q| ol Bl 51| B € |WP]%]]
_Sea_lch..l_(dLI “atch | Gulck..l Hafreshl Close I

/4 Initialize the target CPU environment #f d
| [> init_tarzet():
/# Initialize the diselay digit position variable #/
[place = 0x18; /# 10101: use 3 sets of LED digits: display on every second digit #/
2
B3[|/#% Turn off the 7-segment display #/]
[+ B4l P4 = 0x00;
[+ BG|| P5 = 0x00;
u BG|| P4 = 0xFF:
57
BB[| /# Slot machine processing (lighting the dizits) #/
t g3l| =slot();
70
U |} /% main #f
78
78
74/
75| # Function for initializing ports. interrupt levels, and CPU environment é‘
76| * i
LIl P # Function name: init target ﬂ
‘ >
4

Ready [slat.c#58 main D054

Program execution starts.

= SMK032 : slot.prj - [Source {slot.c)] -0 x|
Fle Edit Wew Option Run Event Browse Jump ‘window Help =] x|
e |=ri|m|2)+] B|@m B QlasR =/ 5= e]e]D
Search..l <4 >>| wiatch | Quick...l Helrashl Close |
/* Initialize the target CPU environment #/ ;[
|| | init_target();
G0[| F#* Initialize the display digit position wariable #/
i G1| place = 0x18; /% 10101z use 3 sets of LED dizits; display on every second digit #/
B2
G8[|/#% Turn off the 7-sezment display #/ _‘
i B4l P4 = 0x00;
i BG|| P5 = 0x00;
i BG|| P4 = 0xFF:
57
BB[| /# Slot machine processing [lizhtinz the dizits) »/
4 Baf| slot():
70
i [S main #/
I
73
74
78/[# Function for initializing ports, Interrupt levels, and CPU environment j‘
TE[[* a
LIl 7| # Fungl igo pa e 4]
< | R 1L |
R PE———

The color of the status bar changes to red during program execution.

Application Note U17047EJ1VOAN 91

92

Chapter 4 Programming

As the program executes, the LED display digits in the Input/Output Panel cyclically increment from 0 to 9

8 Parts Window

=] B3
File Mode Edit Parts Bitmap Customize Drav Option
Help

IS == e A P T 3 3 E

D D D oﬂeset

|stopcLy || [stopeey | [stopcey |

Now, let's try to operate the slot machine program.

Click each of the buttons in the Input/Output Panel and confirm that the digits displayed on LED display
change accordingly.

[B8] Parts Window

M[=] 3

File Mode Edii Parts Bitmap Customize Draw Option
Help

I e A e e P s = R
B D I_I oHeset

IstorcLy | [sropeo | [storcey |

When the STOP(L) button is clicked, the left-most LED display digit stops.
When the STOP(C) button is clicked, the center LED display digit stops.

When the STOP(R) button is clicked, the right-most LED display digit stops.
When the Reset button is clicked, the system returns to its initial state, where the digits resume cycling

This completes the verification of the slot machine program operation.

Application Note U17047EJ1VOAN

Chapter 4 Programming

Stopping the Program

Next, you will stop the execution of the program.

In the SM78Kxx Main window, click the Stop button " , or from the menus, select Run->Stop.

= SMKO032 : slot.prj - [Source {slot.c}] =] 3]
Jﬂ-ﬁ'{le Edit Wiew Option Run Event Browse Jump ‘Window Help =] x|
(ol [=][] =] +] BIB|E| BT Qe =[x ! [+
gealch...l <d >>| Walchl Quick...l F\efrashl Cloze I
0] /% Initialize the target GFU environment #/ -]
([init_targetil;
f# Initialize the display digit position variable %/
[place = 0x15; /% 10101: use 3 sets of LED digits: display on every second digit #/
B3||/# Turn off the 7-zezment display #®f _I
i B4l F4 = Dx00;
[+ BR[| PH = Dx00;
it EB|| P4 = DxFF:
57
G8[| /# Slot machine processing (lighting the digits) #/
[+ Bil[=lot();
70
u [P F# main #/f
72
73
4l
76| # Function for initializing ports. interrupt levels, and CPU environment %I
78| * 4l
LIl 73| % Function name : init tarzet Ed
4 [+

MKO32 : slot.prj - [Source (slot.c)]
[Edit wiew Option Run Event Erowse Jump Window Help

Program execution stops.

1w o [= e o] 2 14| B\ |ER| B|R|®B| Q|&|&E =

Search...l_ﬂd > watch Quick...l Hefreshl Cloze I

167|[vaid slot{void) -~
189 J# [|
e 1649 # Loop through the display digits (0-9).
170 # The place variable specifies the display digit.
171 wy
i 172
173|| /% Index for the display value (num_data) #/
174 int num_idx = 03 _I
175
176 /% Enable interrupts */
i 177 EIL):
i 178
([178(] while (13 { /% Infinite loop #/
180
i 181 f# Display the digit #/
142 PS5 = num_data[num_idx];
183 F4 = place;
184
it 185 num_idxtt
i 188
187 /% There are 10 elements in num_data; when num_idx reaches 10
188 # the value of the index must be set back to 0. #/
149 if0 num_idx »= 10) {
190 3 num_idx = 0;
[141
192 %I
193] 1 /% While #/ ﬂ
i -
P [«l| e
<Ready |slot.c#173 [shat o1 [EREAK r >

The status bar color returns to its original color when you stop the program.

Application Note U17047EJ1VOAN

93

Chapter 4 Programming

Comments about the Input/Output Panel

The devices used by the slot machine program that are displayed in the Input/Output Panel are a 7-segment
LED display, 3 buttons and a reset button.

The settings for each device are described below.

7-segment LED display Reset button

B Parts Window
File Mode Adit Parks Bitmap Customize Dra/ Opkion

Help

=1 E51 A EJI e A e ﬁlw}ﬁﬂl P ES

Reset

ELL I
'

STOPCLY STOPCC) STOPECRY

Buttons (3)

Application Note U17047EJ1VOAN

Chapter 4 Programming

First, the 7-segment LED display terminal settings are described.

In the Input/Output Panel window, click the 7-segment LED display terminal setting button a or, from the

menus, select Connection->7-segment LED...

The 7-segment LED Terminal Setting dialog opens.

B Parts Window [_ O]

File Mode Edit Parts Bitmap Customize DCraw Option
Help

5 =1 Ben B A 2 D P P
OFI eset

il

|stopcy | [stopces | | stopcey

The 7-segment LED Terminal
Setting dialog opens.

& 7seq LFOs A
[pigit1 f4|PhB \E | ok |
[pigit2 [| P41 | open |
[pigita] | [pu2 | save |
[pigith 1Hpu3 J | c1ear |
pigits N[Pus /| gancen |

pigit7 || |

[pigits || |

Previous | Hext |

For the 78K0 and 78K4, each bit of I/O ports P4 and P5 are connected to the 7-segment LED display
terminals. For the 78K0S, each bit of /O ports P1 and P4 are connected to the 7-segment LED display
terminals.

Since the slot machine program uses 5 digits, Digit Signal 1 through Digit Signal 5 are connected.

E> For details on 7-segment LED display terminal settings, refer to Chapter 3 - System Simulator Basics.

Application Note U17047EJ1VOAN 95

Chapter 4 Programming

Next, the button settings are described.

In the Input/Output Panel, click the button I or, from the menus, select Connection->Button...

The Button Terminal Setting dialog opens.

B8 Parts Window =] E3

File Mode Edit Parks Bitmap Customize Craw Opion
IS 1 e e R P D P P ES
OHESEt

|STIIIF'{L]' | STOP(C) | STOP (R |

The Button Terminal
Setting dialog opens.

T T .

r msmp(u HIHTPB‘\-FE ook |
Fi LY

#2 I'{a |STI]P([:) ||IHTP1 |QE &I
| i

Save I
O |

gprup(m | [1nTP2 Ve E Clear
e =
= E’&’ﬁf‘ E Cancel I
HoldTime _ telp |
nsec Previous | Hext |

In the Button Terminal Setting dialog, you input the connection information for a button that is displayed in the
Input/Output Panel window. A button can be connected to any terminal, and will apply the desired input value
to the terminal when the button is clicked. For the program in this chapter, the buttons are connected to the
external interrupt terminals (INTPO to 2).

An internal interrupt button can be used to generate an internal interrupt when clicked, but in this case, the
buttons are connected to the external interrupt terminals and a high state is detected on the terminal to trigger

an interrupt.

|j> For details, refer to the "Slot Machine Program Specifications" section in this chapter.

96

Application Note U17047EJ1VOAN

Chapter 4 Programming

In addition to the button settings, you must perform pull-up/pull-down settings for each interrupt terminal.

In the Input/Output Panel, click the Pull-up/Pull-down button % or, from the menus, select Connection

->Pull-up/Pull-down Settings...
The Pull-up/Pull-down Settings dialog box will open.

B8l Parts Window =]

File M™Maode Edit Parks Bitmap Cusktomize Draw Optiu:un

mﬁmww@wﬁw
OHESEt

STOPCLY | |STEIF‘(E]' | STOPCR Y .

Help

= B B

The Pull-up/Pull-down Settings
dialog box opens.

fi:Pull -Up / Pull-Down

__p__—ﬂLuleDDWN

=101

fil A TnTra oK
'l—l & Pm&\ S

o [T T Full Up \ _ Open |
i & Pull Down Tave I
= Full Up
THTFOZ
& Pull Do _ Clear |
-

fiid E o EuH" B Cancel |
= Pull Down
Help |

Prewious I et I

For the program in this chapter, the external interrupt terminals that are connected to the buttons (INTPO to 2)

are set to pull-down.

/What is pull-up/pull-down ? \

For some external parts of the SM78Kxx, the state is undefined when the part is not operating.
A button is one of those parts. For such external parts, the pull-up/pull-down setting must be
performed to define the state of the terminal when the button is not operating.

In addition, the pull-up/pull-down setting must be performed before setting an external part,

such as a button.
For details, refer to the SM78K Series System Simulator Ver.2.52 Operation User’s Manual

(U16768E).
(U j

Application Note U17047EJ1VOAN 97

Chapter 4 Programming

Next, the setting of the reset button is described.
In the Input/Output Panel, click the Reset button |RESET| or, from the menus, select Connection->Reset Button.

The Reset button moves to its default position.

&8 Parts Window =]

File Mode Edit Parks Bitmap Customize Draw Opkion

Help /-\

ClEEER S ==
N

OHESEt

STOPCLY | STOPC) | STOPECRY |

ELL I
'

The Reset button moves to its
default position (upper-left corner).

B8] Parts Window M[=]

File Mode Edit Parts Bitmap Cusktomize Draw Ophion

S G E 2]

Help

ﬁl.l-ﬁl.l

[stopeLy | [sropcey || [stopeey

To change the position of the reset button, from the Input/Output Panel menus, select Mode->Position and

then drag and drop the reset button to the new position.
After changing the position of the reset button, from the Input/Output Panel menus, select Mode->Run to

return to the Run mode.
When you click the reset button during program execution, a reset signal is input to the simulator.

This completes the discussion of the various Input/Output Panel settings.

98 Application Note U17047EJ1VOAN

Chapter 4 Programming

Exiting

Next, you will exit the SM78Kxx.

In the SM78Kxx Main window, from the menus, select File->Exit.

SMKD32 : slot.prj - [Source {slot.c)] - |EI|1|
File Edit Yiew Option Run Event Browse Jump ‘Window Help _|ﬁ'|1|

Open... Ctri+o @ Q||| =&

Save As...
Clase Close |

ronment #/ =]

len = |

Download. .
Upload...

osition variable #/
Project » l= of LED digits; display on every second digit #/

Debugger Reset, ., £ _I

Exit

1 478K _sampletChapter4slot. prj . .
2 i\ 78K _samplelChapter4tinterrupt_func., Imf inz the digits) #/
3 C:478K_samplelChapter3icounter.prj
4 1\ 78K_samplelChapter3tcounter . Imf
=
73
4|/
78| # Function for initializing ports, interrupt levels, and CPU environment %I
TB|| * =1
73| # Function mame: init target ¥
‘ ol

|slot.c#55 rin (=T v

A dialog is displayed asking you
if you want to exit.

SM78K0

E3
T hiz will end vour Debugger sezzion.
Do pou want o zave the settings in the project fle 7

Mo | Cancel |

To save the settings performed in this chapter, such as the Input/Output Panel settings, click Yes button. To
discard the settings, click Yes button. (To return to PM plus, click Cancel button.)

Application Note U17047EJ1VOAN 99

Chapter 4 Programming

Now, you will exit PM plus.

In PM plus window, from the menus, select File->Exit PM plus.

PM plus - slot.pre [OutPut] _ O] x]
File Edit Find Layer “iew Pmoject Buid Tool ‘window Help
Mew Chrl+ “« % + - = ‘
-

Open... Crl+0 E ‘ q‘l J' | Tg | ?
[e=nie b Buid EREEY] |
Close

2 OutPut
New ‘workspace. = =10
Upen‘warkspace. Device file : W1.01 +
Save Woarkspace ¥
o er Cowpilation complete, 0 error(s) and 0 warning(s) found.

038 Workspace C:\NECTOOLS32) BINY ce?8k0. exe —£s5lot.poc
Gave [Sirf5 ¥
Cave e 78K/0 Series € Compiler V3.50 [20 May 20031+
— Copyright {C) NEC Electronics Corporation 1991, 2003+
Ehanae Source Eie Hame: ¥
Eave all Enunee Files Target chip : uPD7800344
Deviee file @ W1.01 +

Print Prewiew ¥
Bink. Etrl+ Compilation complete, 0 error(s) and 0 warning(s) found.
Recent File C:\MECTOOLS32\BINY 1k78K0.exe -finterrupt_func.plkd

¥
CANECT ools32\ Aslot. prv 7BK/0 Series Linker V3.60 [3 Apr 20031+
C:ANECTools32%. . \WRAM . prw Copyright (C) NEC Electronics Corporation 1990, 20034

¥

Target chip : uPD7E0034+
- Device file : V1.014

-+

- Link complete, 0 error(s) and 0 warning({s) found.+¥

~ C:\MECTOOLS3Z\BIN\oc78KED.exe —-yC:\NECTools324DEW, interrupt_func. lmfy
-+

- 78K/0 Series Chject Converter V3.60 [3 ipr 20031+

o Copyright (C) NEC Electronics Corporation 1990,20034
- ¥

- Target chip : uPD780034¥

- Deviee file : ¥1.014

o é‘bject Conversion Complete, 0 error(s) and 0 warning(s) found.
: éu1ld Total error(s) : 0 Total warningi(s) : 0 [EOF] —
I [S— | o
Ezxit P plus and prompt to save the files e =

Since PM plus saves project information successively, there is no confirmation dialog when you exit.

100 Application Note U17047EJ1VOAN

Chapter 4 Programming

Comments about the Program

Here, you will find a description of how to use the C programming language to implement the following
functions, which are used in the slot machine program.

- Accessing special-function registers that are internal to a device

- Defining functions for when interrupts/exceptions occur

- Creating a function to control (enable/disable) interrupts.

- Outputting instructions to control the CPU

The source listing for the slot machine program is given in Appendix - Slot Machine Program Source Listing.

Refer to this listing when following the discussion in this chapter.

The CC78Kxx C compiler supports the ANSI standard C programming language
specification.

To allow the handling of CPU-specific dependencies as much as possible using the C
language, extensions to the ANSI standard specification are used.

These extensions allow such operations as interrupt handling, SFR referencing and
handling of CPU-specific dependencies to be implemented in the C programming language,
while maintaining efficiency of object usage, as well as improving program reusability and

development efficiency.

The extensions to the specification are as follows.
- Specifying allocation to the external variable saddr area (sreg variables)
- Specifying allocation to the function argument or automatic variable saddr area, or to a
register (norec, noauto functions)
- Specifying function calling for short instructions (callt function, callf function“**")
- Accessing SFRs
- Describing interrupt servicing in C language (register bank“**? switching possible)
- Outputting interrupt disable/enable instructions
- Inserting assembler descriptions in a C source program
- Outputting CPU control instructions

- Describing binary constants

For details on the language extensions, refer to the "CC78Kxx C Compiler Package
Language" user manual.

Notes 1. The callf instruction is not supported by the 78K0S.
2. Not supported by the 78K0S.

Application Note U17047EJ1VOAN 101

Chapter 4 Programming

Accessing Special-function Registers
using Register Name - #pragma sfr

The registers for the peripheral functions incorporated in each device are called special-function registers.
To access special-function registers from a C program, you need to include a "#pragma sfr" directive at the

beginning of the source.

#pragma sfr

Therefore, for the slot machine program, you put a #pragma sfr directive at the beginning of slot.c.

[slot.c]

/ * Enable special-function register name (SFR name)
#pragma sfr

When you use a "#pragma sfr" directive, the special-function register name can be treated as an ordinary
unsigned external variable. However, without the "#pragma sfr" directive, when you try to use a special-
function register name, the compiler generates an error (error: E2210: special-function register name: not
defined).

Example

/ * When there is no #pragma sfr directive* /
main() {
/* When there is no #pragma sfr directive* /

[> For details on a given special-function register, please refer to the user manual of the device being used.

102 Application Note U17047EJ1VOAN

Chapter 4 Programming

Registering an Interrupt Function
#pragma interrupt or #pragma vect and __interrupt

An interrupt stops the currently executing program, and starts the execution of a different (interrupt) program.
Once the interrupt program completes, the interrupted program resumes execution. Generating an interrupt is
referred to as an interrupt request.

The processing done when an interrupt request occurs can be described as a function and, a particular
function can be specified depending on the source of the interrupt. This type of function is referred to an
interrupt function.

You need to perform the following to make a function into an interrupt function:
- associate the function name with the source of the interrupt (interrupt request name)
- specify the function as an interrupt function

To associate a function name with an interrupt request name, use the "#pragma interrupt" or "#pragma vect"
pragma directive.

#pragma interrupt "interrupt request name" "function name"

#pragma vect "interrupt request name" "function name"

Using this pragma declaration, the function name is registered as an interrupt handler under the interrupt

request name.

|j> For details on what interrupt request names can be assigned, please refer to the user manual of the
device being used.

When you define a function as an interrupt function, you use the _interrupt modifier when you define the
function (or declare the function).

_ _interrupt "function definition" or "function declaration"

A function defined as an interrupt function saves/restores both the interrupt registers and the normal registers.
The function returns upon a reti instruction. A function that can be defined as an interrupt function typically
has no arguments and has no return values (a "void Func(void) " type function).

For the slot machine program, the association of function name with interrupt request name is done in the
source file, slot.c. The interrupt handler function setting is performed in the interrupt_func.h header file.

[slot.c]

- #pragma interrupt INTPO stp_btn_Left
- #pragma interrupt INTP1 stp_btn_Center
- #pragma interrupt INTP2 stp_btn_Right

[interrupt_func.h]

- __interrupt void stp_btn_Left(void);
- __interrupt void stp_btn_Center(void);
- __interrupt void stp_btn_Right(void);

Application Note U17047EJ1VOAN 103

Chapter 4 Programming

104

Enabling/Disabling Interrupts
DI(); and EI();

When an interrupt occurs, the order in which the interrupt is handled depends on the interrupt's priority level.
However, there are times when certain processing must proceed uninterrupted, which means that the
maskable interrupts must be disabled for the duration of the processing. After the processing has completed,
the interrupts are reenabled. This can be done using the C programming language.

Using interrupt control functions (DI/EI), you can enable and disable interrupts for particular sections of the
program.

First, specify "#pragma DI" and "#pragma EI".

#pragma DI
#pragma EI

DI();

The DI function disables interrupts (generates a di command).

El();

The El function enables interrupts (generates an ei command).

Application Note U17047EJ1VOAN

Chapter 4 Programming

Example:

#pragma DI
#pragma El

void func() {
inti,j.k;

DI(); /* * Disable interrupts */

/*
* Perform necessary processing while interrupts are disabled.

*/

El(); /* Enable interrupts */

For the slot machine program, an interrupt is generated when a button is clicked, so the interrupts should be

enabled before the program starts cycling through the digit incrementation loop.

[slot.c]

/* Enable interrupts */
EI();

Application Note U17047EJ1VOAN 105

Chapter 4 Programming

Outputting CPU Control Instructions
HALT();, STOP();, BRK();, and NOP();

Instructions to control the CPU can be described in C language, in a function format.
Note that the BRK instruction is only supported by the 78K0 and 78K4.

Declare the use of these functions by using a #pragma directive.

#pragma HALT
#pragma STOP
#pragma BRK
#pragma NOP

HALT();

In the 78K0 and 78K0S, the HALT function generates the halt instruction.
In the 78K4, the HALT function generates a code to manipulate STBC.

STOP();

In the 78K0 and 78K0S, the STOP function generates the stop instruction.
In the 78K4, the STOP function generates a code to manipulate STBC.

BRK();

In the 78K0 and 78K4, the BRK function generates the brk instruction.

NOP();

The NOP function generates the nop instruction.

106 Application Note U17047EJ1VOAN

Chapter 4 Programming

Example:

#pragma HALT
#pragma STOP
#pragma BRK
#pragma NOP

void func() {
HALT(); /* halt instruction output */
STOP(); /* stop instruction output */
BRK(); /* brk instruction output */
NOP(); /* nop instruction output */

return;

[Caution]

In the CC78K4, HALT() and STOP() check the values of CK1/CKO0 in STBC and output an instruction that sets
the corresponding values for HALT and STOP to STP/HLT.

(Only "MOV STBC,#value" can be set to STBC.)

As a result, an instruction that sets bits 2, 3, 6, and 7 of STBC to 0 is output.

Note that HALT() and STOP() cannot be used in devices in which bits 2, 3, 6, and 7 are not fixed to 0.

0 CK1 CKO 0 0 STP HLT

Application Note U17047EJ1VOAN 107

Appendix

Here, as an appendix, the following topics, which were mentioned in the corresponding chapter, are described

in greater detail.

o Creating uoVRAM.dII

o Counter Program Source Listing

- counter.c

o Slot Machine Program Source Listing

- slot.c

- interrupt_func.h
- interrupt_func.c

108 Application Note U17047EJ1VOAN

Appendix

Creating uoVRAM.dII

This appendix describes how to create an external part (uoVRAM.dII) for the virtual VRAM program given in
Chapter 2 using Microsoft Visual C++ (from here on referred to as VC++).
Note that a completed uoVRAM.dIl is included in the Chapter 2 sample environment, so you do not have to
perform the instructions here in order to follow the discussion in Chapter 2.

Ij> This appendix provides you with a reference on how you can create external parts that use the External
Part User Open Interface.

For additional details on the External Part User Open Interface, refer to either the SM78K Series
System Simulator Ver.2.30 or later External Part User Open Interface Specification User’s Manual
(U15802E).

The uoVRAM.dII source file is stored together with the other sample programs.

<Files used>

The following files are used to create uoVRAM.dIl: source files vram.c and vram.def, found in the self-
extracting compressed file; files used by the External Part Open User Interface, upart32.cpp and uparts32.h,

which are installed together with the SM78KO0.

® Virtual VRAM program source files
Expanded sample program directories

— 78K0_sample
— Chapter2
. uoVRAM_src
| vram.c
vram.def
L Chapter3

® Files used by the External Part Open User Interface
C:\NECTools32 (Directory in which the SM78K0 is installed)
— bin

uparts32.cpp
—— uparts32.h

Application Note U17047EJ1VOAN 109

Appendix

< Procedure for creating uoVRAM.dII >
Use the following procedure to build uoVRAM.dIl using VC++ Ver.6.

1.

Start VC++ and create a new "Win32 Dynamic-Link Library" project.

First, from the menus, select File->New...

Click the Project tab and perform the following settings.

Set the project classification to
"Win32 Dynamic-Link Library."

_lojx|

*., Microsoft Visual C++

J File Edit Wew Insert Project Bulld Took ‘Wwindow Help
L2 [o (o |
i]

=Y
Hi-||lems s B o

H“:.::

Open Workspace. ..
Save Workspace
Close Workspace

| = Chrl 45
Save G5,

ﬂ Sawve Al
Page Setug,..

&f print.., CHItE
Recent Files 3

Recent Waorkspaces »

Exit

Creates a new document, project of workspace

Set the project name to
IlroRAMnNote.

Project name:

|u0VF{P|M
ocation:

|d:¥f irat¥untFa

workspace

Eoluster Rezource Tvpe le"r Wln32 Dynamlc Link. L|brary

59 Gustom AppWizard BN
.Database Project

Enter a directory for the project. The steps
later on in this procedure make reference to
this directory, so make note of the path.

\ Mew Database Wizard
T Utility Project
A |Win32 Application

((0114 ﬂl Cancel |
-
e ——

When you have completed the settings, click OK button.

Note

110

Use "uoVRAM" for the project name. If you use a different project name, make sure to set the
options in VC++ to name the output DLL file "uoVRAM.dII". For the SM78Kxx External Component
Open User Interface, the DLL file name and the function name exported from the DLL must
correspond. If you use the supplied source file as it is, then if the DLL file name is not uoVRAM.dII,
the SM78Kxx will not be able to read the DLL properly. For additional details, refer to the SM78K
Series System Simulator Ver.2.30 or later External Part User Open Interface Specification
User’s Manual (U15802E).

Application Note U17047EJ1VOAN

Appendix

Next, select the type of DLL.
Select "Empty DLL project.”

Win32 Dynamic-Link Library - Step 1 of 1 e 1|

Yihat kind of DLL would vou like o create ¥

{* An empty DLL projec

& zimple DLL project.
" & DLL that exports some symbols.

< Back Mgt > ‘. Cancel |

After making the selection, click Finish button.

Application Note U17047EJ1VOAN 111

Appendix

Copy the virtual VRAM program source files (vram.c and vram.def) and the files used by the External Part

User Open Interface (uparts32.cpp, uparts32.h) to the project directory you created in step 1(for the locations

of the files, refer to the "Files used" section above).

Next, you will register the files copied in step 2 (vram.c, vram.def, uparts32.cpp, uparts32.h) with the project

you created in step 1. You will perform the operations in the VC++ Project Workspace window inside the File

view tab.
First, click on the File view tab.

Then, right click on uoVRAM file and, from the pop-up menu, select Add Files to project.

2l x|

EBuild

(1 Resource Fil
-] External Dep -

Unload Project

[[7 Header Files Bild (selection only)

Clean (selection only)

The Project Workspace window is a
default window and is displayed on the
left edge of the VC++ window.

Sethings. ..

d}lk &dd bo Source Contral...

|7 Docking Wiew
Hide

Properties

1] | Ll
't:OIassViewq File\figw

i —

Insert Files into Project

Select vram.c,
and uparts32.h.

vram.def, uparts32.cpp

File narne: I"vram.def" "uparts32.h'" "yram.c"' "uparts32.cpp' Ok, I

o ———

Files af t_l,lpet |AII Files [*.%])

j Cancel |

|Files will be inserted inta folder titled ‘uoWRAM filas' in project Lo WRAM'.

By setting the File type to All files, you can select all four files together.

After selecting the files, click OK button to register the files.

112 Application Note U17047EJ1VOAN

Appendix

Next, you build the project.

From the menus, select Build->Build.

JJ File Edit Wiew Insert Projeck m Tools Window Help

@ Zompile

Builit uovRARM. dll

i #ebuild A

Bakch Build. ..
Clean

el -

Confirm that "uoVRAM.dII" is

displayed. Start Debug

Debugger Remote Conneckion. .

Execute Ckr[+FS

Sek active Configuration, ..
Configurations. ..

Profile. ..

This completes the procedure for creating uoVRAM.dII.

Application Note U17047EJ1VOAN

113

Appendix

Counter Program Source Listing

[counter.c]

78K0 Source Listing (1/4)

/*

* Copyright (C) NEC Electronics Corporation 2000,2004

* All rights reserved by NEC Electronics Corporation. This program must be used solely
* for the purpose for which it was furnished by NEC Electronics Corporation. No part

* of this program may be reproduced or disclosed to others, in any form,

* without the prior written permission of NEC Electronics Corporation.

*/

/**
B L e e e e T S T s T2 2

*

* Counter program (for the uPD780034)

B T e e e e T ST s T2 2

**/

/* Compiler definitions */
#pragma NOP

#pragma HALT
#pragma El

/ * Enable special-function register names (SFR names) */
#pragma sfr

/* Set the function interrupt1() as the interrupt function for INTTMOO */
#pragma vect INTTMOO interrupt1

[* Variables for storing counter values */
volatile int count1; /* Numerical value displayed on the LED (1s digit) */
volatile int count10; /* Numerical value displayed on the LED (10s digit)*/

/**

khkkkkhkhkkkhkhhkhkhhhkhkhkhkhkkhhrkhkhhkhrhhkhkhhrhkhhkhkhhkhrrd

* Displays a numerical value on the 7-segment LED display.

*

* count1stores the 1s digit and is displayed on the first LED digit.
* count10stores the 10s digit and is displayed on the second LED digit.

114 Application Note U17047EJ1VOAN

Appendix

(2/4)

* Function name: putLED
* Arguments: none

* Return values: none

* Global variables used:
* int count1

int count10

*
*
kkkkkkkkkhkhkkhkhkhkhkhkhhkhkhkhkhkhkhkhhhhkhkhkhkkhkhkkhhkkhkkhkkkkhkhkkkkkkkk

**/

void putLED()
{
static unsigned char /* 7-segment LED display '0' - '9'patterns */
box[10]={0x77,0x24,0x6b,0x6d,0x3c,0x5d,0x5f,0x74,0x7f,0x7d};/*~ERROR*/

/* Transfer the current pattern to the 1s digit of the 7-segment LED display */
P4 = 0;

P5 = box[count1];

P4 =1,

/* Time adjustment */
NOP();
NOP();

I* Transfer the current pattern to the 10s digit of the 7-segment LED display */
P4 = 0;

P5 = box[count10];

P4 =2;

return;

}

/**

* Main function for debugging

* This function performs the following:

* @Sets the modes of P4 and P5 using mode registers PM4 and PM5, to display on the
* LED display.

* @lnitializes the counter variables (count1 and count10).

* @Initializes the INTTMOO interrupt and enables interrupts.

* @Puts the CPU in a HALT state until an INTTMOO interrupt is generated.

* When the INTTMOO interrupt processing completes, puts the CPU in a HALT state
* and waits for the next INTTMOO interrupt.

* Function name: main

* Arguments: none

* Return values: none

* Global variables used:

* int count1

int count10

khkkkkkkkkhkkhkkhkhkhkkhkhkhkkhkhkkhkhkkhkhhkhkkkhkhkkhhkhkkhkkkhkkkkkk

*

Application Note U17047EJ1VOAN 115

Appendix

(3/4)

**/

void main()}

/**

* Initialization

**/

/* Set the mode of the port that outputs to the 7-segement LED display */
PM5 = 0x00; /*Set P5 (P50-P57) to output mode */

PM4 = 0x00; /*Set P4 (P40-P47) to output mode */

/* Set the interrupt level of INTTMOO and unmask the interrupt */
WTMK = 0;/* Unmask the INTTMOO interrupt */

[* Initialize the counter */

count1 = 0;/* Initialize the LED display digit value (1s digit) */
count10 = 0;/* Initialize the LED display digit value (10s digit) */
/* Display initial values */

putLED(); /* Display numerical values on the LED display */

/**

* Main loop
**/
/* From this point, the processing is entirely interrupt driven.
The CPU is in the HALT state when there is no interrupt processing going on. */
EI(); /* Enable interrupts */
while(1)
{
HALT(); /**/

/**

khkkkkkhkkhkkkhkkhhkhkkhkkhkhkkhhkkhkkhhkhkkhkkhkhkkhkkkhkkhhkkkhkkhhkhkkhkkkkhkkk

* Incrementation routine

* (Interrupt function called by INTTMOOQ)

* Increments the counter composed of variables count1 and count10

* When the count reaches 99, the counter rolls over to 0 on the next count.
* Also, the putLED function is used to display the count value on the LED display.
* Function name: interrupt1

* Arguments: none

* Return values: none

* Global variables used:

* int count1

* int count10

*
kkkkkkkkkhkhkhkhkhkhkhkhhhhkhkhkhkkhkhkhhkhkhkhkhkkhkhkhhkkhkhkhhkkkhkhkkkkhkkkk

**/

__interrupt
void interrupt1()

{

116 Application Note U17047EJ1VOAN

Appendix

(4/4)

/**

* Increments the counter

**/

count1++ ; /* increment the 1s digit */
/* Carry operation processing */

[* Is a carry operation necessary? */

if(count1=10) I*<ERROR*/

{/* The 1s digit is equal to 10, so process the carry */
count1 = 0; /* Set the 1s digitto 0 */
count10++; /* Increment the 10s digit */

/* Is there a carry from the 10s digit? */
if(count10==10)
{
/* The 10s digit is equal to 10, so process the carry */
count10 =0; /* Set the 10s digit to 0 */
/* Return the 2 LED display digits from 99 to 0 */

}

/**

* Display the count value on the LED display

**/

putLED(); /* Display the count value on the LED display */
return;

Application Note U17047EJ1VOAN 117

Appendix

78K0S Source Listing (1/4)

* Copyright | NEC Electronics Corporation 2000,2004

* All rights reserved by NEC Electronics Corporation. This program must be used

* solely for the purpose for which it was furnished by NEC Electronics Corporation. No
* part of this program may be reproduced or disclosed to others, in any form,

* without the prior written permission of NEC Electronics Corporation.

*/

/**
khkkkkkkkkkkhkhkhkkhkkhkhkhkhhkkhkkhkhkkhkhkkhkkk
*

* Counter program (for the uPD789046)
*
khkkkkkkkkkkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhhkhkhkhkhkkhkkhkhhkkhkhhhhkhhhhkhhkkk

**/

/* Compiler definitions */
#pragma NOP

#pragma HALT
#pragma El

/ * Enable special-function register names (SFR names) */
#pragma sfr

/* Set the function interrupt1() as the interrupt function for INTWT */
#pragma vect INTWT interrupt1

[* Variables for storing counter values */
volatile int count1; /* Numerical value displayed on the LED (1s digit) */
volatile int count10; /* Numerical value displayed on the LED (10s digit)*/

/**

khkkkkkhkkhkkhkkhkkhkkhkkkhkkhhkkhkkhhkhkkhkhkhkkhhkkhkkhhkhkkhhkhkkkkhkkk

* Displays a numerical value on the 7-segment LED display

* count1stores the 1s digit and is displayed on the first LED digit.

* count10stores the 10s digit and is displayed on the second LED digit.
* Function name: putLED

* Arguments: none

* Return values: none

* Global variables used:

* int count1

* int count10

* **/

void putLED()

{
static unsigned char /* 7-segment LED display ‘0’ — ‘9’patterns */

box[9]={0x77,0x24,0x6b,0x6d,0x3c,0x5d,0x5f,0x74,0x7f,0x7d};/*~ERROR*/
[* Transfer the current pattern to the 1s digit of the 7-segment LED display */

118 Application Note U17047EJ1VOAN

Appendix

(2/4)
PO = 0;
P1 = box[count1];
PO =1;

/* Time adjustment */
NOP();
NOP();

[* Transfer the current pattern to the 10s digit of the 7-segment LED display */
PO =0;

P1 = box[count10];

PO =2;

return;

}

/**

* Main function for debugging

* This function performs the following:

* @Sets the modes of PO and P1 using mode registers PM0 and PM1, to display on the
* LED display.

* @lnitializes the counter variables (count1 and count10).

* @lnitializes the INTWT interrupt and enables interrupts.

* ®Puts the CPU in a HALT state until an INTWT interrupt is generated.

* When the INTWT interrupt processing completes, puts the CPU in a HALT state

* and waits for the next INTWT interrupt.

*

*

Function name: main
* Arguments: none

* Return values: none

* Global variables used:
* int count1

* int count10

*
L e e e S S e T e T s T2 2
**/

void main(}

/**

* Initialization

**/

/* Set the mode of the port that outputs to the 7-segement LED display */
PM1 = 0x00; /*Set P1 (P10-P17) to output mode */

PMO = 0x00; /*Set PO (P00-PQ7) to output mode */

/* Set the interrupt level of INTWT and unmask the interrupt */
WTMK = 0;/* Unmask the INTWT interrupt */

Application Note U17047EJ1VOAN 119

Appendix

(3/4)

[* Initialize the counter */
count1 = 0;/* Initialize the LED display digit value (1s digit) */
count10 = 0;/* Initialize the LED display digit value (10s digit) */

/* Display initial values */
putLED(); /* Display numerical values on the LED display */

/**

* Main loop
**/
/* From this point, the processing is entirely interrupt driven.
The CPU is in the HALT state when there is no interrupt processing. */
El(); /* Enable interrupts */
while(1)
{
HALT(); 7**/

/**

e L e e e e e e T ST s T2 2

* Incrementation routine

* (Interrupt function called by INTWT)

* Increments the counter composed of variables count1 and count10.

* When the count reaches 99, the counter rolls over to 0 on the next count.
* Also, the putLED function is used to display the count value on the LED display.
* Function name: interrupt1

* Arguments: none

* Return values: none

* Global variables used:

* int count1

* int count10

*
khkkkkhkhkkkhkhhhkhkhkhhkhkhkhhkhkhhrkhkrhhkhkhhkhkhhrhrrhkhkhhkhrid

**/

__interrupt
void interrupt1()
{

/**

* Increments the counter

**/

count1++ ; /* increment the 1s digit */

[* Carry operation processing */

120 Application Note U17047EJ1VOAN

Appendix

(4/4)

[* Is a carry operation necessary? */

if(count1=10) [*<ERROR*/

{/* The 1s digit is equal to 10, so process the carry */
count1 = 0; /* Set the 1s digit to 0 */
count10++; /* Increment the 10s digit */

/* Is there a carry from the 10s digit? */
if(count10==10)
{
/* The 10s digit is equal to 10, so process the carry */
count10 =0; /* Set the 10s digit to 0 */
/* Return the 2 LED display digits from 99 to 0 */

}

/**

* Display the count value on the LED display

**/

putLED(); /* Display the count value on the LED display */
return;

Application Note U17047EJ1VOAN 121

Appendix

78K4 Source Listing (1/4)

/*

* Copyright (C) NEC Electronics Corporation 2000,2004

* All rights reserved by NEC Electronics Corporation. This program must be used solely
* for the purpose for which it was furnished by NEC Electronics Corporation. No part

* of this program may be reproduced or disclosed to others, in any form,

* without the prior written permission of NEC Electronics Corporation.

*/

/**
khkkkkkkkkkkhkhkhkkhkkhkhkhkhhkkhkkhkhkkhkhkkhkkk
*

* Counter program (for the uPD784035)
*
khkkkkkkkkkkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhhkhkhkhkhkkhkkhkhhkkhkhhhhkhhhhkhhkkk

**/

/* Compiler definitions */
#pragma NOP

#pragma HALT
#pragma EI

/ * Enable special-function register names (SFR names) */
#pragma sfr

/* Set the function interrupt1() as the interrupt function for INTCOO */
#pragma vect INTCOO interrupt1

[* Variables for storing counter values */
volatile int count1; /* Numerical value displayed on the LED (1s digit) */
volatile int count10; /* Numerical value displayed on the LED (10s digit)*/

/**

* Displays a numerical value on the 7-segment LED display

* counti1stores the 1s digit and is displayed on the first LED digit.

* count10stores the 10s digit and is displayed on the second LED digit.
* Function name: putLED

* Arguments: none

* Return values: none

* Global variables used:

* int count1

* int count10

*

kkkkkkkkkhkhkhkhkhkhkhkhhhhkhkhkhkkhkhkhhkhkhkhkhkkhkhkhhkkhkhkhhkkkhkhkkkkhkkkk

122 Application Note U17047EJ1VOAN

Appendix

(2/4)

**/

void putLED()
{
static unsigned char /* 7-segment LED display '0' - '9'patterns */
box[9]={0x77,0x24,0x6b,0x6d,0x3c,0x5d,0x5f,0x74,0x7f,0x7d};/* < ERROR*/

/* Transfer the current pattern to the 1s digit of the 7-segment LED display */
P4 = 0;

P5 = box[count1];

P4 =1,

/* Time adjustment */

NOP();

NOP();

/* Transfer the current pattern to the 10s digit of the 7-segment LED display */
P4 = 0;

P5 = box[count10];

P4 = 2;

return;

}

/**

* Main function for debugging

* This function performs the following:

* @Sets the modes of P4 and P5 using mode registers PM4 and PM5, to display on the
* LED display.

* @lnitializes the counter variables (count1 and count10).

* @lnitializes the INTCOO interrupt and enables interrupts.

* ®Puts the CPU in a HALT state until an INTTMOO interrupt is generated.

* When theINTCOO interrupt processing completes, puts the CPU in a HALT state
* and waits for the next INTCOO interrupt.

* Function name: main

* Arguments: none

* Return values: none

* Global variables used:

* int count1

int count10

*
*
khkkkkkhkkhkkhkkhhkhkkhkhkhkkhhkkhkkhhkhkkhkkhkhkkhkkhkkhkkhkkhhkhkkhkkkkhkkk

**/

void main(}

/**

* Initialization

**/

/* Set the mode of the port that outputs to the 7-segement LED display */
PM5 = 0x00; /*Set P5 (P50-P57) to output mode */

PM4 = 0x00; /*Set P4 (P40-P47) to output mode */

Application Note U17047EJ1VOAN 123

Appendix

(3/4)

/* Set the interrupt level of INTC00 and unmask the interrupt */

CICO00 = CIC00 & 0xFO0;/* Make the INTCOO interrupt level high priority (CPR001=0
and CPR000=0) */

CMKOO0 = 0;/* Unmask the INTCOO interrupt */

/* Initialize the counter */
count1 = 0;/* Initialize the LED display digit value (1s digit) */
count10 = 0;/* Initialize the LED display digit value (10s digit) */

/* Display initial values */
putLED(); /* Display numerical values on the LED display */

/**

* Main loop
**/
/* From this point, the processing is entirely interrupt driven.
The CPU is in the HALT state when there is no interrupt processing going on. */
EI(); /* Enable interrupts */
while(1)
{
HALT(); /**/

}

/**

e L T e e e e e e T ST s T2 2

* Incrementation routine

(Interrupt function called by INTCO00)
Increments the counter composed of variables count1 and count10
When the count reaches 99, the counter rolls over to 0 on the next count.

Also the putLED function is used to display the count value on the LED display.

Function name: interrupt1

* Arguments: none
* Return values: none
* Global variables used:

*

*

*

int count1
int count10

khkkkkhkhkkkhkkhhhkhkkhkhhkhkhkhkhkhhrkhkhhhkhrhhkhkhhrhrhhkhkhhkhrhd

**/

124

Application Note U17047EJ1VOAN

Appendix

(4/4)

__interrupt
void interrupt1()

{

/**

* Increments the counter

**/

count1++ ; /* increment the 1s digit */
[* Carry operation processing */

[* Is a carry operation necessary? */

if(count1=10) I*<ERROR*/

{/* The 1s digit is equal to 10, so process the carry */
count1 = 0; /* Set the 1s digitto 0 */
count10++; /* Increment the 10s digit */

/* Is there a carry from the 10s digit? */
if(count10==10)
{
/* The 10s digit is equal to 10, so process the carry */
count10 =0; /* Set the 10s digit to 0 */
/* Return the 2 LED display digits from 99 to 0 */

}

/**

* Display the count value on the LED display

**/

putLED(); /* Display the count value on the LED display */
return;

Application Note U17047EJ1VOAN 125

Appendix

Slot Machine Program Source Listing

[slot.c]

78K0 Source Listing (1/4)

[
* Copyright (C) NEC Electronics Corporation 2000,2004

* All rights reserved by NEC Electronics Corporation. This program must be used solely
* for the purpose for which it was furnished by NEC Electronics Corporation. No part

* of this program may be reproduced or disclosed to others, in any form,

* without the prior written permission of NEC Electronics Corporation.

*/

/**

* Slot machine program (for the uPD780034)

**/

I* Compiler definitions */
#pragma El

/ * Enable special-function register names (SFR names) */
#pragma sfr

/* Assign the functions stp_btn_Left(), stp_btn_Center(), and stp_btn_Right()

* as interrupt functions for INTPO, INTP1, and INTP2 interrupts, respectively */
#pragma interrupt INTPO stp_btn_Left

#pragma interrupt INTP1 stp_btn_Center

#pragma interrupt INTP2 stp_btn_Right

#include "interrupt_func.h" /* Interrupt function declaration */

/* Position (LED display digit to be lit) of the display */
unsigned char place;

/* Numerical data for the display (for lighting the LED display segments) */
unsigned char num_data[10]
={ 0x77, 0x24, Ox6b, 0x6d, 0x3c, 0x5d, 0x5f, Ox74, Ox7f, 0x7d, };
/~'o 1 2t '3 4" st et T '8t 9

/* Function for initializing ports, interrupt levels, and CPU environment */
void init_target(void);

/* Slot machine display function */
void slot(void);

126 Application Note U17047EJ1VOAN

Appendix

(2/4)

/***

* Slot machine main function

* Loop through the display digits (0-9), displaying each digit on the LED display.
* When an interrupt occurs inside the loop, call the proper interrupt function
* and freeze the current display digit.

* Function name: main

* Arguments: none

* Return values: none

* Global variables used:

* unsigned char place;

KRR KRR kAR KRRk R KRR KRR KRR KRR kR Rk R kR RNk

void main(void)

{

/* Initialize the target CPU environment */
init_target();

/* Initialize the display digit position variable */
place = 0x15; /* 10101: use 3 sets of LED digits; display on every second digit */

[* Turn off the 7-segment display */

P4 = 0x00;
P5 = 0x00;
P4 = OxFF;

/* Slot machine processing (lighting the digits) */
slot();

} /¥ main */

/***

* Function for initializing ports, interrupt levels, and CPU environment
* Function name: init_target
* Arguments: none
* Return values: none
* Global variables used: none
**/
void init_target(void{

/*

* Use Port0 for the interrupt input.

* Use Port5 for lighting the LED display digit.

* Use Port4 for specifying the digit position.

*/

/* Set all Port0 bits to input mode */
PMO = OxFF; /* Set all mode register (PMO) bits to input (1) */

Application Note U17047EJ1VOAN 127

Appendix

(3/4)

/* Set all Port5 bits to output mode */
PM5 = 0x00; /* Set all mode register (PM5) bits to output (0) */

/* Set all Port4 bits to output mode */
PM4 = 0x00; /* Set all mode register (PM4) bits to output (0) */

/* To be able to use Port4 and Port5 in output mode,
* set the extended memory mode register to port mode */
MEM = 0x00;

/*
* The active edge for triggering an external input on the external input terminals

* is set to a positive edge by the external interrupt positive edge enable register (EGP)
* or to a negative edge by the external interrupt negative edge enable register (EGN).

* In this program, to make the external interrupt requests work with INTPO, INTP1 and
* INTP2, each interrupt is set to be positive edge triggered using EGP and

* the negative edge triggers are disabled (using EGN).

*/

EGP = 0x07; /*0x07=XXXX0111

* INTPO
* INTP1
* INTP2
* INTP3
*/
EGN = 0x00; /*0x00=XXXX0000
* INTPO
* INTP1
* INTP2
* INTP3
*EGP | EGN |
* 0| O |Interrupt disabled
* 0| 1 | Negative edge
* 1| 0 |Positive edge
* 1 | 1 | Positive and negative edge

128

Application Note U17047EJ1VOAN

Appendix

(4/4)

PMKO = 0; /* Unmask INTPO interrupt */
PMK1 = 0; /* Unmask INTP1 interrupt */
PMK2 = 0; /* Unmask INTP2 interrupt */

} /* init_target */

/***

* Slot machine display function

* Loop through the display digits (0-9), displaying each digit on the LED display.
When an interrupt occurs inside the loop, call the proper interrupt function
and freeze the current display digit.

*
*

*

* Function name: slot
* Arguments: none
* Return values: none
* Global variables used:
* unsigned char place;
unsigned int num_datal];
**/
void slot(void) {
/*
* Loop through the display digits (0-9).
* The place variable specifies the display digit.
*/

*

/* Index for the display value (num_data) */
int num_idx = 0;

/* Enable interrupts */
EI();

while (1) { /* Infinite loop */
/* Display the digit */
P5 = num_data[num_idx];
P4 = place;
num_idx++ ;
/* There are 10 elements in num_data; when num_idx reaches 10
* the value of the index must be set back to 0. */
if(num_idx >= 10) {

num_idx = 0;

}
} /* While */

} /* slot */

Application Note U17047EJ1VOAN 129

Appendix

78KO0S Source Listing (1/4)

/*

* Copyright (C) NEC Electronics Corporation 2000,2004

* All rights reserved by NEC Electronics Corporation. This program must be used solely
* for the purpose for which it was furnished by NEC Electronics Corporation. No part

* of this program may be reproduced or disclosed to others, in any form,

* without the prior written permission of NEC Electronics Corporation.

*/

/**

* Slot machine program (for the uPD789046)

**/

/* Compiler definitions */
#pragma ElI

/ * Enable special-function register names (SFR names) */
#pragma sfr

/* Assign the functions stp_btn_Left(), stp_btn_Center(), and stp_btn_Right()

* as interrupt functions for INTPO, INTP1, and INTP2 interrupts, respectively */
#pragma interrupt INTPO stp_btn_Left

#pragma interrupt INTP1 stp_btn_Center

#pragma interrupt INTP2 stp_btn_Right

#include "interrupt_func.h" /* Interrupt function declaration */

/* Position (LED display digit to be lit) of the display */
unsigned char place;

/* Numerical data for the display (for lighting the LED display segments) */
unsigned char num_data[10]
={ 0x77, 0x24, Ox6b, 0x6d, 0x3c, 0x5d, 0x5f, O0x74, 0x7f, Ox7d, };
/o1 2t '3 4t st et T '8t 9t

/* Function for initializing ports, interrupt levels, and CPU environment */
void init_target(void);

/* Slot machine display function */
void slot(void);

/***

* Slot machine main function

* Loop through the display digits (0-9), displaying each digit on the LED display.
When an interrupt occurs inside the loop, call the proper interrupt function
and freeze the current display digit.

*
*

*

* Function name: main
* Arguments: none
* Return values: none

130 Application Note U17047EJ1VOAN

Appendix

(2/4)

* Global variables used:
* unsigned char place;

**/
void main(void)

{

/* Initialize the target CPU environment */
init_target();

/* Initialize the display digit position variable */
place = 0x15; /* 10101: use 3 sets of LED digits; display on every second digit */

/* Turn off the 7-segment display */

PO = 0x00;
P1 = 0x00;
PO = OxFF;

/* Slot machine processing (lighting the digits) */
slot();

}/* main */

/***

* Function for initializing ports, interrupt levels, and CPU environment
* Function name: init_target

* Arguments: none

* Return values: none

* Global variables used: none
**/
void init_target(void{

/*

* Use Port2 for the interrupt input.

* Use Port1 for lighting the LED display digit.

* Use Port0 for specifying the digit position.

*/

/* Set all Port2 bits to input mode */
PM2 = OxFF; /* Set all mode register (PM2) bits to input (1) */

/* Set all Port1 bits to output mode */
PM1 = 0x00; /* Set all mode register (PM1) bits to output (0) */

/* Set all Port0 bits to output mode */
PMO = 0x00; /* Set all mode register (PMO) bits to output (0) */

Application Note U17047EJ1VOAN 131

Appendix

(3/4)

/*
* The active edge for triggering an external input on the external input terminals
* is set using external interrupt mode register INTMO.

*

* In this program, to make the external interrupt requests work with INTPO, INTP1 and
* INTP2, external interrupt mode register 0 (INTMO) is used to set each interrupt to

* positive edge triggered.
*/
INTMO = 0x54; /* 0x54 = 010101XX

* INTPO
* INTP1
* INTP2

* 00 | Negative edge

* 01 | Positive edge

* 10 | RFU (for future use)

* 11 | Positive and negative edge
*/

PMKO = 0; /* Unmask INTPO interrupt */
PMK1 = 0; /* Unmask INTP1 interrupt */
PMK2 = 0; /* Unmask INTP2 interrupt */

} /* init_target */

/***

* Slot machine display function

* Loop through the display digits (0-9), displaying each digit on the LED display.

* When an interrupt occurs inside the loop, call the proper interrupt function
* and freeze the current display digit.
* Function name: slot
* Arguments: none
* Return values: none
* Global variables used:
* unsigned char place;
* unsigned int num_datal];
**/
void slot(void) {
/*
* Loop through the display digits (0-9).
* The place variable specifies the display digit.
*/

132 Application Note U17047EJ1VOAN

Appendix

(4/4)

/* Index for the display value (num_data) */
int num_idx = 0;

/* Enable interrupts */
EI();

while (1) { /* Infinite loop */

/* Display the digit */

PO = 0x00;

P1 = num_data[num_idx];
PO = place;

num_idx++ ;

/* There are 10 elements in num_data; when num_idx reaches 10
* the value of the index must be set back to 0. */
if(num_idx >=10) {

num_idx = 0;

}
} /* While */

} /* slot */

Application Note U17047EJ1VOAN 133

Appendix

78K4 Source Listing (1/4)

/*

* Copyright (C) NEC Electronics Corporation 2000,2004

* All rights reserved by NEC Electronics Corporation. This program must be used solely
* for the purpose for which it was furnished by NEC Electronics Corporation. No part

* of this program may be reproduced or disclosed to others, in any form,

* without the prior written permission of NEC Electronics Corporation.

*/

/**

* Slot machine program (for the uPD784035)

**/

/* Compiler definitions */
#pragma ElI

/ * Enable special-function register names (SFR names) */
#pragma sfr

/* Assign the functions stp_btn_Left(), stp_btn_Center(), and stp_btn_Right()

* as interrupt functions for INTPO, INTP1, and INTP2 interrupts, respectively */
#pragma interrupt INTPO stp_btn_Left

#pragma interrupt INTP1 stp_btn_Center

#pragma interrupt INTP2 stp_btn_Right

#include "interrupt_func.h" /* Interrupt function declaration */

/* Position (LED display digit to be lit) of the display */
unsigned char place;

/* Numerical data for the display (for lighting the LED display segments) */
unsigned char num_data[10]
={ 0x77, 0x24, Ox6b, 0x6d, 0x3c, 0x5d, 0x5f, O0x74, 0x7f, Ox7d, };
/o1 2t '3 4t st et T '8t 9t

/* Function for initializing ports, interrupt levels, and CPU environment */
void init_target(void);

/* Slot machine display function */
void slot(void);

/***

* Slot machine main function

* Loop through the display digits (0-9), displaying each digit on the LED display.
When an interrupt occurs inside the loop, call the proper interrupt function
and freeze the current display digit.

*
*

*

* Function name: main
* Arguments: none
* Return values: none

134 Application Note U17047EJ1VOAN

Appendix

(2/4)

* Global variables used:
* unsigned char place;

**/
void main(void)

{

/* Initialize the target CPU environment */
init_target();

/* Initialize the display digit position variable */
place = 0x15; /* 10101: use 3 sets of LED digits; display on every second digit */

/* Turn off the 7-segment display */

P4 = 0x00;
P5 = 0x00;
P4 = OxFF;

/* Slot machine processing (lighting the digits) */
slot();

}/* main */

/***

* Function for initializing ports, interrupt levels, and CPU environment
* Function name: init_target

* Arguments: none

* Return values: none

* Global variables used: none
**/
void init_target(void{

/*

* Use Port2 for the interrupt input.

* Use Port5 for lighting the LED display digit.

* Use Port4 for specifying the digit position.

*/

/* Since Port2 is a dedicated input port, no mode setting is required. */

/* Set all Port5 bits to output mode */
PM5 = 0x00; /* Set all mode register (PM5) bits to output (0) */

/* Set all Port4 bits to output mode */
PM4 = 0x00; /* Set all mode register (PM4) bits to output (0) */

/* To be able to use Port4 and Port5 in output mode
* set the extended memory mode register to port mode */
MM = 0x00;

Application Note U17047EJ1VOAN 135

Appendix

(3/4)

/*

* The active edge for triggering an external input on the external input terminals

* is set using external interrupt mode registers INTMn (n=0 - 1).

* In this program, to make the external interrupt requests work with INTPO,INTP1 and
INTP2,

* external interrupt mode register 0 (INTMO) is used to set each interrupt to

* positive edge triggered.

*/

INTMO = 0x54; /* 0x54 = 010101XX

* INTPO
* INTP1
* INTP2

* 00 | Negative edge

* 01 | Positive edge

* 10 | RFU (for future use)

* 11 | Positive and negative edge
*/

PMKO = 0; /* Unmask INTPO interrupt */
PMK1 = 0; /* Unmask INTP1 interrupt */
PMK2 = 0; /* Unmask INTP2 interrupt */

} I* init_target */

/***

* Slot machine display function
* Loop through the display digits (0-9), displaying each digit on the LED display.
* When an interrupt occurs inside the loop, call the proper interrupt handler
* and freeze the current display digit.
* Function name: slot
* Arguments: none
* Return values: none
* Global variables used:
* unsigned char place;
* unsigned int num_datal];
**/
void slot(void) {
/*
* Loop through the display digits (0-9).
* The place variable specifies the display digit.
*/

136 Application Note U17047EJ1VOAN

Appendix

(4/4)

/* Index for the display value (num_data) */
int num_idx = 0;

/* Enable interrupts */
EI();

while (1) { /* Infinite loop */

/* Display the digit */

P4 = 0x00;

P5 = num_data[num_idx];
P4 = place;

num_idx++ ;

/* There are 10 elements in num_data; when num_idx reaches 10
* the value of the index must be set back to 0. */
if(num_idx >=10) {

num_idx = 0;

}
} /* While */

} /* slot */

Application Note U17047EJ1VOAN 137

Appendix

[interrupt_func.h]

/*

* Copyright (C) NEC Electronics Corporation 2000,2004

* All rights reserved by NEC Electronics Corporation. This program must be used solely
for the purpose for which it was furnished by NEC Electronics Corporation. No part

of this program may be reproduced or disclosed to others, in any form,

* without the prior written permission of NEC Electronics Corporation.

*/

*

*

/* Function to stop the slot machine digits */

[* The __interrupt modifier declares

* stp_btn_Left(), stp_btn_Center(), and stp_btn_Right()
* as interrupt functions.

*/

__interrupt void stp_btn_Left(void);
__interrupt void stp_btn_Center(void);
__interrupt void stp_btn_Right(void);

138 Application Note U17047EJ1VOAN

Appendix

[interrupt_func.c]

/*

* Copyright (C) NEC Electronics Corporation 2000,2004

* All rights reserved by NEC Electronics Corporation. This program must be used solely
* for the purpose for which it was furnished by NEC Electronics Corporation. No part

* of this program may be reproduced or disclosed to others, in any form,

* without the prior written permission of NEC Electronics Corporation.

*/

#include "interrupt_func.h"
extern unsigned char place; /* Specify the display digit position */

/* For the 7-segment LED display, when the outputs of the terminals

* allocated to the digit signals (in this program port5) are active

* the corresponding LED can be turned on or off.

* The terminal output information (value to be displayed) is received, and the value is
displayed

* until the value changes.

*/

void stp_btn_Left(void) {
/*
* Freeze the display of the left-most digit with its current value.
* (Make the number on the Input/Output Panel appear to have stopped.)
*/

I* Indicate which digit to stop by setting
* the corresponding bit of the digit position variable (place) to 0. */
place = place & OxEF; /* OxEF = 1110 1111 */

}

void stp_btn_Center(void) {
I* Freeze the display of the middle digit with its current value. */
place = place & OxFB; /* OxFB = 1111 1011 */

}

void stp_btn_Right(void) {
/* Freeze the display of the right-most digit with its current value. */
place = place & OxFE; /* OxFE = 1111 1110 */

}

*/

Application Note U17047EJ1VOAN 139

	COVER
	Introduction
	Chapter 1 Getting Ready
	Tools Used in the Tutorial
	Tutorial Sample Environment

	Chapter 2 Trying Out PM plus and Simulator
	Starting PM plus
	Introduction to PM plus

	Reading a Workspace File
	Creating an Executable Program
	Verifying Program Operation
	Running the System Simulator (SM78Kxx)
	Introduction to the System Simulator (SM78Kxx)
	Introduction to the Input/Output Panel Window

	Executing the Program
	Stopping the Program
	Exiting the System Simulator (SM78Kxx)
	Exiting PM plus

	Chapter 3 System Simulator Basics
	Counter Program Specifications
	Starting PM plus
	Creating a New Workspace
	Editing the Source and Creating an Executable Program (1)
	Running the System Simulator(SM78Kxx)
	Setting Up the Input/Output Panel
	Executing the Program (1)
	Debugging
	Editing the Source and Creating an Executable Program (2)
	Executing the Program (2)
	Exiting

	Chapter 4 Programming
	Slot Machine Program Specifications
	Verifying Slot Machine Program Operation
	Reading the Workspace File
	Creating an Executable Program
	Running the System Simulator (SM78Kxx)
	Running the Program
	Stopping the Program

	Comments about the Input/Output Panel
	Exiting
	Comments about the Program
	Accessing Special-function Registers using Register Name - #pragma sfr
	Registering an Interrupt Function #pragma interrupt or #pragma vect and __interrupt
	Enabling/Disabling Interrupts DI(); and EI();
	Outputting CPU Control Instructions HALT();, STOP();, BRK();, and NOP();

	Appendix
	Creating uoVRAM.dll
	Counter Program Source Listing
	Slot Machine Program Source Listing

