

## **Application Note**

# In-Circuit Programming of DA9061/2/3

**AN-PM-080** 

### **Abstract**

The Dialog Semiconductor DA9061/2/3 PMICs can be configured during board-level testing using the Dialog In-Circuit Programmer Kit together with this application note. This provides flexibile device configuration and just-in-time programming.



### **Contents**

| Αb  | stract | :          |                                              | 1  |
|-----|--------|------------|----------------------------------------------|----|
| Со  | ntent  | s          |                                              | 2  |
| Fiç | gures. |            |                                              | 3  |
| Та  | bles   |            |                                              | 3  |
| 1   | Term   | ns and D   | Definitions                                  | 4  |
| 2   | Refe   | rences.    |                                              | 4  |
| 3   |        |            |                                              |    |
| •   | 3.1    |            |                                              |    |
| 4   | Deve   | lopmen     | t Flow                                       | 7  |
| 5   |        | -          | juration                                     |    |
| J   | 5.1    | _          | Configuration Registers                      |    |
|     | 5.2    |            | ediate Configuration Registers               |    |
|     | 5.3    |            | ced Configuration Registers                  |    |
|     | 5.4    |            | zation Feature and General Purpose Registers |    |
|     |        | 5.4.1      | Record of Last Serial Number                 | 9  |
| 6   | Prog   | rammin     | g Interface                                  | 9  |
|     | 6.1    |            | are                                          |    |
|     |        | 6.1.1      | Application Hardware Design Considerations   | 11 |
|     | 6.2    | Softwa     | ıre                                          | 12 |
| 7   | Orde   | ering Info | ormation                                     | 15 |
| 8   | Cond   | clusions   | S                                            | 15 |
| Αp  | pendi  | x A OTF    | P Register List                              | 15 |
| Ap  | pendi  | x B Con    | nmand Line Tool User Guide                   | 19 |
| •   | B.1    |            | ation                                        |    |
|     | B.2    | Runnin     | ng the Tool                                  | 19 |
|     |        | B.2.1      | Programming                                  | 19 |
|     |        | B.2.2      | Verification                                 | 20 |
|     |        | B.2.3      | Debug                                        | 20 |
|     |        | B.2.4      | Verbose Mode                                 | 20 |
|     |        | B.2.5      | Command Line Serialization Feature           | 20 |
|     |        |            | B.2.5.1 Masking the Serial Number            | 20 |
|     |        | B.2.6      | Software Version                             |    |
|     |        | B.2.7      | Command Abbreviations                        |    |
| Αp  | pendi  | x C Sma    | artCanvas Software Overview                  | 22 |
| R۵  | wision | History    | vi                                           | 22 |

© 2022 Renesas Electronics



### **Figures**

| Figure 1: Principle for Defining PMIC Application-Specific Settings                                                                                                                            |                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Figure 3: SmartCanvas Power Sequencer<br>Figure 4: Programmer Board (232-18-A) and Customer Board Ribbon Cable Connection (DA906 <sup>7</sup>                                                  |                      |
|                                                                                                                                                                                                | ,                    |
| Figure 5: Programmer Board (232-18-A) and Customer Board Ribbon Cable Connection (DA9063 Figure 6: SCL and SDA Isolation in Case of Clamping by the Processor or Other I <sup>2</sup> C Slaves | 12<br>13<br>14<br>14 |
| Tables                                                                                                                                                                                         |                      |
| Table 1: OTP Programming Options                                                                                                                                                               | 5                    |
| Table 2: OTP Seed Files                                                                                                                                                                        | 7                    |
| Table 3: DA9062 Basic Configuration Register Settings                                                                                                                                          |                      |
| Table 4: Connections to Programmer Board for DA9061/2                                                                                                                                          |                      |
| Table 5: Connections to Programmer Board for DA9063                                                                                                                                            |                      |
| Table 6: Programming Voltage for TP Pin                                                                                                                                                        |                      |
| Table 7: DA9062 Register Summary                                                                                                                                                               |                      |
| Table 8: Return Codes                                                                                                                                                                          | 10                   |



### 1 Terms and Definitions

CRC Cyclic redundancy check (used by Dialog to identify OTP configuration ini files)

DA906x DA9061, DA9062, DA9063 and DA9063L

DUT Device under test
ESD Electrostatic discharge
GUI Graphical user interface
ICP In-circuit programming

ini file Configuration file defining the OTP content

OTP One-time programmable (memory)

PMIC Power management IC

seed ini file The configuration of the partly-configured OTP

### 2 References

- [1] DA9061 Datasheet, Dialog Semiconductor
- [2] DA9062 Datasheet, Dialog Semiconductor
- [3] DA9063 Datasheet, Dialog Semiconductor
- [4] Dialog Support Site, http://www.dialog-semiconductor.com/support
- [5] AN-PM-060, DA9061/2 Developers' Guide
- [6] UM-PM-008, SmartCanvas DA9061/2 User Manual, Dialog Semiconductor



### 3 Introduction

The Dialog PMIC architecture provides configuration flexibility so the PMIC can be used in many applications. This flexibility is achieved by incorporating OTP in the DA906x which configures the device at start-up. Programming of the OTP is outlined in Table 1.

**Table 1: OTP Programming Options** 

| Programming Method           | Suitability                                                                            | Volume<br>(Units) | Comments                                                                                                                 |
|------------------------------|----------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------|
| Evaluation kit               | Development of PMIC configuration using SmartCanvas™ (Note 1) and Power Commander Mode | 1                 | No need for OTP<br>programming, see<br>SmartCanvas DA9061/2 User<br>Manual [5].                                          |
|                              | Prototype builds or bespoke small volume manufacture                                   | ≤ 30              | Evaluation kit and socket board (Note 2).                                                                                |
| In-circuit programming (ICP) | Volume manufacturing                                                                   | < 30k             |                                                                                                                          |
| Dialog custom variant        | High volume manufacturing                                                              | > 30k             | Usually supplied directly from Dialog as a custom OTP variant.                                                           |
| Dialog standard variants     | Platform-specific                                                                      | ≥ 1               | Supplied with the OTP programmed for specific platforms such as NXP i.MX 5/6/7/8 families, Xilinx Zynq™, Renesas R-Car™. |

Note 1 SmartCanvas is the GUI software included with the Dialog PMIC Evaluation Kits. The software can be downloaded separately from the Dialog Support Site [4].

Note 2 Socket boards are DA9063-EVAL6, DA9061-SOCKETBOARD, and DA9062-SOCKETBOARD

Dialog manufactures an expanding range of standard variants that support specific platforms such as NXP i.MX 5 and 6 families, Atmel SAMA5, and Renesas R-Car. Dialog recommends the use of these standard variants where available. Other platforms are supported by programming the PMIC OTP as described in Table 1. ICP is the most suitable programming solution for fewer than 30k devices. ICP has the advantage of low additional cost once the programming interface has been designed and avoids manual handling of the devices. With ICP, the PMICs follow the standard board assembly. Board rework due to PMIC programming failure is expected to be insignificant due to the high quality of Dialog products: expected programming failure rate is measured in parts-per-million and expected programming yield is therefore close to 100 %.

#### 3.1 ICP

Dialog supplies seed ini files which simplify the configuration process for system designers. These files allow start-up customization for parameters such as regulator voltage, regulator power-up / power-down sequence, voltage monitoring, and GPIO configuration.

Many other settings are configurable by I<sup>2</sup>C writes to the PMIC after the system starts, as described in the datasheets [1], [2], and [3].

The basic premise of the ICP OTP is to add the application-specific settings into the seed ini file, so to create a complete OTP configuration (Figure 1).

© 2022 Renesas Electronics



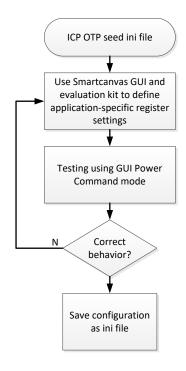



Figure 1: Principle for Defining PMIC Application-Specific Settings

Once the configuration has been finalized and tested, production is set up to repeat the programming of the custom settings into the blank DA906x-00 parts (Figure 2).

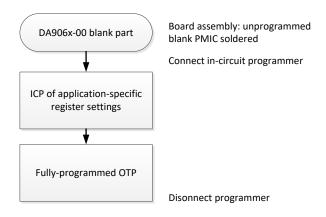



Figure 2: Principle of ICP



### 4 Development Flow

Expanding on Figure 1, the first step is to customize the OTP configuration for the target application. This is achieved by:

- 1. Using the SmartCanvas GUI and evaluation kit:
  - a. Select a suitable seed ini file, see Table 2 (contact Dialog support for DA9063 seed file availability).
  - b. Download the ini file from the Dialog Support Site [4] and open it using SmartCanvas.
  - c. Determine the correct settings for the registers discussed in Section 5 and Appendix A.
  - d. Finalize the OTP configuration and save it as a new ini file. Make a note of the CRC.
- 2. Set up and test the programmer hardware interface and test the In-Circuit Programmer
- 3. Set up production

**Table 2: OTP Seed Files** 

| Device  | Seed ini File                             | Description (Note 1)                                                                             |
|---------|-------------------------------------------|--------------------------------------------------------------------------------------------------|
| DA9061  | DA9061_seed_for_in-cct_prog_v02-2602.ini  | Starting point for a new DA9061 OTP configuration. Basic configuration registers need to be set. |
| DA9062  | DA9062_seed_for_in-cct-prog_v02-09A6.ini  | Starting point for a new DA9062 OTP configuration. Basic configuration registers need to be set. |
| DA9063  | DA9063_seed_for_in-cct_prog_v01-8D23.ini  | Starting point for a new DA9063 OTP configuration. Basic configuration registers need to be set. |
| DA9063L | DA9063L_seed_for_in-cct_prog_v01-1784.ini | Starting point for a new DA9063 OTP configuration. Basic configuration registers need to be set. |

Note 1 The seed in files exclude settings for the basic configuration registers, see Section 5.1.

The latest seed ini files are on the Dialog Support Site. The files are also on the USB stick which is included in the In-Circuit Programmer Kit.

### **5 PMIC Configuration**

Dialog PMICs allow customization of many parameters and device behavior. To assist the developer, the sub-sections below separate registers that provide customization of basic configuration, those that are intermediate, and advanced features. The SmartCanvas GUI provides register information when a register control is highlighted with the mouse pointer: this is an efficient quick reference when working on configurations.

### 5.1 Basic Configuration Registers

The registers are listed in Table 3. For the regulator control, the basic configuration uses only the A regulator settings. The B settings are not used. After setting the voltages, the power-up and power-down sequence needs to be configured. The sequencer registers are listed in Table 3, although it is more convenient to set these values using the SmartCanvas Power Sequencer utility that is found on the front panel of the GUI (Figure 3).

© 2022 Renesas Electronics



**Table 3: DA9062 Basic Configuration Register Settings** 

| Register Address | Register Name | Control Name | Purpose                                                                                                                                                               |
|------------------|---------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x010            | CONTROL_C     | AUTO_BOOT    | Determines if the system immediately boots up through the sequence to the ACTIVE state or if it enters POWERDOWN mode and waits for a wake-up such as an ONKEY press. |
| 0x0A3            | VBUCK2_A      | VBUCK2_A     | Sets the Buck2 voltage                                                                                                                                                |
| 0x0A4            | VBUCK1_A      | VBUCK1_A     | Sets the Buck1 voltage                                                                                                                                                |
| 0x0A5            | VBUCK4_A      | VBUCK4_A     | Sets the Buck4 voltage                                                                                                                                                |
| 0x0A7            | VBUCK3_A      | VBUCK3_A     | Sets the Buck3 voltage                                                                                                                                                |
| 0x0A9            | VLDO1_A       | VLDO1_A      | Sets the LDO1 voltage                                                                                                                                                 |
| 0x0AA            | VLDO2_A       | VLDO2_A      | Sets the LDO2 voltage                                                                                                                                                 |
| 0x0AB            | VLDO3_A       | VLDO3_A      | Sets the LDO3 voltage                                                                                                                                                 |
| 0x0AC            | VLDO4_A       | VLDO4_A      | Sets the LDO4 voltage                                                                                                                                                 |
| 0x082            | SEQ_TIMER     | SEQ_TIME     | Sets the sequencer slot period                                                                                                                                        |
| 0x082            | SEQ_TIMER     | SEQ_DUMMY    | Sets the sequencer dummy slot period                                                                                                                                  |
| 0x083            | ID_2_1        | LDO1_STEP    | Sets the LDO1 sequencer slot (Note 1)                                                                                                                                 |
| 0x083            | ID_2_1        | LDO2_STEP    | Sets the LDO2 sequencer slot (Note 1)                                                                                                                                 |
| 0x084            | ID_4_3        | LDO3_STEP    | Sets the LDO3 sequencer slot (Note 1)                                                                                                                                 |
| 0x084            | ID_4_3        | LDO4_STEP    | Sets the LDO4 sequencer slot (Note 1)                                                                                                                                 |
| 0x089            | ID_14_13      | BUCK1_STEP   | Sets the Buck1 sequencer slot (Note 1)                                                                                                                                |
| 0x089            | ID_14_13      | BUCK2_STEP   | Sets the Buck2 sequencer slot (Note 1)                                                                                                                                |
| 0x08A            | ID_16_15      | BUCK4_STEP   | Sets the Buck4 sequencer slot (Note 1)                                                                                                                                |
| 0x08A            | ID_16_15      | BUCK3_STEP   | Sets the Buck3 sequencer slot (Note 1)                                                                                                                                |
| 0x095            | SEQ_A         | SYSTEM_END   | Recommended value for a basic configuration is 0x1 (Note 2)                                                                                                           |
| 0x095            | SEQ_A         | POWER_END    | Recommended value for a basic configuration is 0xE (Note 2)                                                                                                           |
| 0x096            | SEQ_B         | MAX_COUNT    | Recommended value for a basic configuration is 0xF (Note 2)                                                                                                           |
| 0x096            | SEQ_B         | PART_DOWN    | Recommended value for a basic configuration is 0x0 (Note 2)                                                                                                           |
| 0x099            | RESET         | RESET_TIMER  | Configures when the RESET_EVENT timer begins                                                                                                                          |
| 0x099            | RESET         | RESET_EVENT  | Configures the delay for nRESET being released. The timer start is determined by the setting of RESET_TIMER                                                           |
| 0x0C5            | BBAT_CONT     | BCHG_VSET    | Sets the backup battery voltage                                                                                                                                       |
| 0x0C5            | BBAT_CONT     | BCHG_ISET    | Sets the backup battery charging current                                                                                                                              |

**Note 1** Setting the control to 0x0 as Slot 0 means the regulator is not sequenced. The default behavior is then that the regulator remains turned off.

Note 2 These pointers must be ordered PART\_DOWN < SYSTEM\_END < POWER\_END < MAX\_COUNT





Figure 3: SmartCanvas Power Sequencer

### 5.2 Intermediate Configuration Registers

The intermediate configuration registers are highlighted in Table 7, Appendix A.

### 5.3 Advanced Configuration Registers

There are many other registers available for customization. These can be considered advanced features which require a full understanding of the device. Developers should refer to the datasheet Functional Description sections to understand the behavior of the advanced features, see [1], [2], or [3].

### 5.4 Serialization Feature and General Purpose Registers

Registers CUSTOMER\_ID and CONFIG\_ID are programmed by Dialog with the OTP variant number. This provides traceability as to which variant was manufactured by Dialog. Register GP\_ID\_0 holds the Dialog revision number of this specific variant.

GP\_ID\_1 to GP\_ID\_3 can be used by the developer to store other configuration information such as the board revision number.

GP\_ID\_4 to GP\_ID\_9 are used by the Dialog ICP tool to store serialization data. This can provide the developer and system production engineers with individual board traceability. Values can be set by the production line operative or an initial value can be entered and the ICP tool will then auto-increment the value for each device programmed. The programmed values can be checked against the Dialog In-Circuit Programmer log files.

To enable a fixed CRC to be calculated, the ICP GUI and Command Line Tool both have the option to mask the serial number. This allows a CRC to be calculated as though GP\_ID\_4 to GP\_ID\_9 were fixed as 0x00. This should produce the same CRC as the ini file. However, the correct programming of GP\_ID\_4 to GP\_ID\_9 is still checked.

GP\_ID\_10 to GP\_ID\_19 remain available for any general purpose values. These values persist through the PMIC RESET mode.

See Section 6.2 for further information about the serialization feature.

#### 5.4.1 Record of Last Serial Number

The last serial number used by the GUI is stored on disk to next serial number to program.txt.

### 6 Programming Interface

### 6.1 Hardware

The required connections between the application and the Programmer Board are listed in Table 4 and Table 5, and illustrated in Figure 4 and Figure 5. All five lines can be taken from the J11 header using an 8 x 2 female connector.



The VSYS connection is not used on the 232-18-A revision of the Programmer Board, but may be connected and reserved for future use. However, if connecting VSYS to the 232-18-A Programmer Board then the jumper on J10 pins 23-24 must be removed to prevent damage to the Programmer Board.

Table 4: Connections to Programmer Board for DA9061/2

| PMIC Pin on Application Board | Connection on Programmer Board (232-18-A)    |
|-------------------------------|----------------------------------------------|
| GND                           | Header J11, pin 40                           |
| TP                            | Header J11, pin 26                           |
| SDA                           | Header J11, pin 30 (labelled SDA_0 / SI)     |
| SCL                           | Header J11, pin 32 (labelled SCL_0 / SK)     |
| VSYS                          | Header J11, pin 25 (labelled GPIO_11) Note 1 |

**Note 1** The VSYS connection is not used on the 232-18-A revision of the Programmer Board, but VSYS may be connected and reserved for future use. If connecting VSYS to the 232-18-A Programmer Board then the jumper on J10 pins 23 to 24 must be removed to prevent damage.

**Table 5: Connections to Programmer Board for DA9063** 

| PMIC Pin on Application Board | Connection on Programmer Board (232-18-A)    |
|-------------------------------|----------------------------------------------|
| GND                           | Header J11, pin 40                           |
| TP                            | Header J11, pin 26                           |
| GPIO14                        | Header J11, pin 31 (labelled SDA_1)          |
| GPIO15                        | Header J11, pin 33 (labelled SCL_1)          |
| VSYS                          | Header J11, pin 25 (labelled GPIO_11) Note 1 |

Note 1 The VSYS connection is not used on the 232-18-A revision of the Programmer Board, but VSYS may be connected and reserved for future use. If connecting VSYS to the 232-18-A Programmer Board then the jumper on J10 pins 23-24 must be removed to prevent damage.

From a hardware perspective, the programming sequence is:

- 4. Connect the Programmer Board to the application board. This correctly drives TP high before ramping V<sub>SYS</sub>. This sequencing is critical for entering the correct programming mode. Note that switch SW1 is not used and should be permanently set to 'ON'.
- 5. The application should then be supplied with power to raise V<sub>SYS</sub> to its normal operating level.
- 6. Start programming using the GUI.

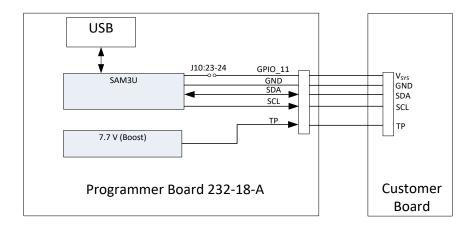



Figure 4: Programmer Board (232-18-A) and Customer Board Ribbon Cable Connection (DA9061/2)



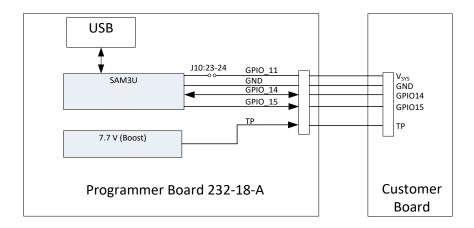



Figure 5: Programmer Board (232-18-A) and Customer Board Ribbon Cable Connection (DA9063)

### 6.1.1 Application Hardware Design Considerations

When designing the system, the following should be considered:

- V<sub>SYS</sub>: it should be possible to supply V<sub>SYS</sub> from the application when required for programming.
   Since the PMIC does not start up during the programming procedure, it is expected that powering V<sub>SYS</sub> should be possible without powering the remainder of the system into an unknown state.
  - $\circ$  For production line automation, a voltage detected on the TP pin of 4.5 < V<sub>TP</sub> < 7.8 V can be used as a trigger to raise V<sub>SYS</sub> automatically. A delay of >10 ms is recommended before raising V<sub>SYS</sub>.
- SCL and SDA: The DA9061/2 application design must allow the I<sup>2</sup>C bus to be driven from the Programmer Board. For DA9063, the GPIO14 and GPIO15 lines must be controllable from the Programmer Board. The SCL and SDA lines have 2.2 kΩ pull-ups on the Programmer Board. However, the following must be considered for DA9061/2:
  - O There will be other resistors on these lines in the application that are connected to a power rail which is unpowered during PMIC programming. These resistors therefore act as pull-downs on SDA and SCL during programming. The designer should ensure that the  $V_{IH}$  that is obtainable on the bus during programming meets the  $I^2$ C specification. This means ensuring the application pull-up resistors are of a value  $\gg 2.2 \text{ k}\Omega$ .
  - The system must be designed so that other unpowered devices connected to the I<sup>2</sup>C bus do not clamp the voltage to ground, for example through their V<sub>DD</sub> ESD protection diodes. A solution is outlined in Figure 6.



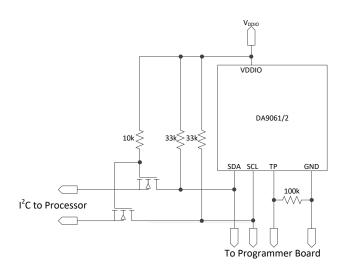



Figure 6: SCL and SDA Isolation in Case of Clamping by the Processor or Other I<sup>2</sup>C Slaves

- nRESETREQ (DA9061/2), nSHUTDOWN and nOFF (DA9063/L only) and nONKEY: these
  inputs must remain at a steady state from V<sub>SYS</sub> being applied until ICP has completed. Any
  transition on these inputs (including noise sources) may prevent successful programming.
  Alternatively, they should be driven high by pulling-up to V<sub>SYS</sub> during programming.
- The cable can be of any design that is most suited to the system board design and production environment – it does not need to be ribbon cable and there is no requirement to retain the 2.54 mm pitch at the application end of the cable: a finer pitch connector may be preferred to save board space.

For system verification, use the specification in Table 6. This is for information only since the Programmer Board is guaranteed to supply the correct programming voltage.

Table 6: Programming Voltage for TP Pin

| Parameter              | Symbol               | Note | Min | Тур | Max | Unit |
|------------------------|----------------------|------|-----|-----|-----|------|
| TP programming voltage | V <sub>TP_PROG</sub> |      | 7.0 | 7.5 | 7.8 | V    |

### 6.2 Software

Two software programs are used to support the ICP flow. The seed ini files are first customized using SmartCanvas software. After installing the software, a user manual is available from the Help menu.

The In-Circuit Programmer software has been designed for use by production line operatives. The procedure is to:

- 1. Connect the hardware and start the GUI
- 2. Open the ini file
- 3. If required, enable the Serial Number feature and then:
  - a. Choose Auto-increment or Manual entry
  - b. Set the Current Serial Number value
- 4. Connect the application board to the ICP Programmer Board. (It is critical to connect the powered In-Circuit Programmer to the powered-off system before powering the system.)
- 5. The programming sequence is:
  - a. Power VSYS supplied from the system. (This must follow after connecting the powered Programmer Board.)



- b. Press Scan for Devices: blank devices should be recognized and appear green (Figure 7). A question mark (?) means the DUT is not ready for programming
- c. Press the Program OTP button. Programming completion is signified by a green tick (Figure 8)
- 6. Power down the system board (power down VSYS)
- 7. Remove the programming interface

ICP can be performed x1, x2, and x4 by connecting additional Programmer Boards to the PC (Figure 9).

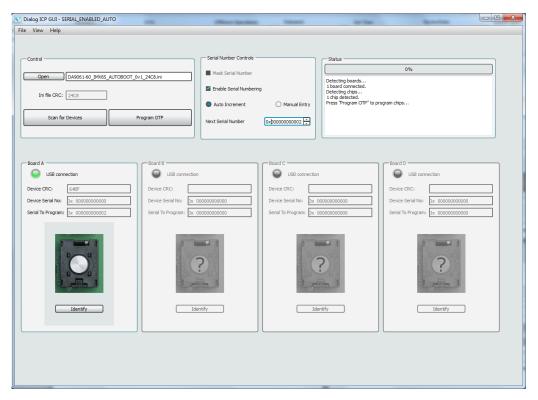



Figure 7: In-Circuit Programmer: Board A Ready to Program

#### **NOTE**

If restarting the GUI, the 'Next Serial Number' value will be incremented from the last session (the number is stored in the GUI system file next serial number to program.txt and is loaded when starting the GUI).

If more than a single Programmer Board is connected, the serial numbers for the boards are n, n+1, n+2, n+3. If a device fails to program, its serial number is not re-used.

If using multiple Programmer Boards with manual serial number entry, the serial numbers are entered in the four separate number fields. In this case, the 'Next Serial Number' value is unused.

To enable a fixed CRC to be calculated, the option to 'Mask Serial Number' can be used. This is only necessary when a device has previously been programmed. It is not used when programming a serial number into a blank device. Enabling the 'Mask Serial Number' option allows a CRC to be calculated as though GP\_ID\_4 to GP\_ID\_9 were fixed as 0x00. This should produce the same CRC as the ini file.

The 'Mask Serial Number' option is unavailable when 'Enable Serial Numbering' is used. This is because the mask is applied automatically when programming serial numbers.

The auto-increment ends at 0xFFFFFFFFF. It does not wrap to 0x000000000000.

After programming devices with serial numbers, the GUI switches to manual entry and then another refresh is done. The user should wait for this to complete before powering-down the board(s).



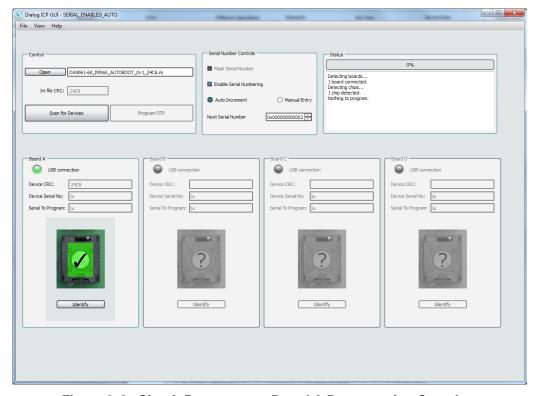



Figure 8: In-Circuit Programmer: Board A Programming Complete



Figure 9: In-Circuit Programmer: Two Boards Connected After Programming Complete



### 7 Ordering Information

| Part Number        | Description                                            |
|--------------------|--------------------------------------------------------|
| DA9061-A0          | OTP ready for ICP. Use with customized seed ini files. |
| DA9062-A0          | OTP ready for ICP. Use with customized seed ini files. |
| DA9063-00          | OTP ready for ICP. Use with customized seed ini files. |
| DA9063L-00         | OTP ready for ICP. Use with customized seed ini files. |
| DA9061_2_3 ICP KIT | ICP kit. Includes board and software.                  |

### 8 Conclusions

The Dialog DA9061/2/3 PMICs are highly suited to just-in-time programming in the application manufacturing line using the Dialog In-Circuit Programmer Kit.

### **Appendix A OTP Register List**

Table 7 presents the DA9062 registers that require configuration by the system developer. Example configurations are provided by the seed ini files. The table is also valid for DA9061 for all blocks/features that are common with DA9062.

### Key:





OTP register that contains the basic settings listed in Section 5.1 and intermediate settings that can be customized by the developer

OTP registers that contain advanced settings. These can be customized as described in the datasheet

Table 7: DA9062 Register Summary

| Addr      | Register                                                      | 7                          | 6                        | 5           | 4           | 3          | 2           | 1         | 0         |  |  |
|-----------|---------------------------------------------------------------|----------------------------|--------------------------|-------------|-------------|------------|-------------|-----------|-----------|--|--|
| Page Cor  | <u> </u>                                                      |                            |                          |             |             |            |             |           |           |  |  |
| 0x000     | PAGE_CON                                                      | REVERT                     | REVERT WRITE_MODE PAGE   |             |             |            |             |           |           |  |  |
| Power Ma  | Power Manager Control and Monitoring (except IRQs and events) |                            |                          |             |             |            |             |           |           |  |  |
| 0x001     | x001 STATUS_A DVC_BUSY NONKEY                                 |                            |                          |             |             |            |             |           |           |  |  |
| 0x002     | STATUS_B                                                      |                            | GPI4 GPI3 GPI2 GPI1 GPI0 |             |             |            |             |           | GPI0      |  |  |
| 0x004     | STATUS_D                                                      |                            |                          |             |             | LDO4_ILIM  | LDO3_ILIM   | LDO2_ILIM | LDO1_ILIM |  |  |
| 0x005     | FAULT_LOG                                                     | WAIT_SHUT                  | NRESETREQ                | KEY_RESET   | TEMP_CRIT   | VDD_START  | VDD_FAULT   | POR       | TWD_ERROR |  |  |
| IRQ Even  | ts                                                            |                            |                          |             |             |            |             |           |           |  |  |
| 0x006     | EVENT_A                                                       |                            | EVENTS_C                 | EVENTS_B    | E_SEQ_RDY   | E_WDG_WARN |             | E_ALARM   | E_NONKEY  |  |  |
| 0x007     | EVENT_B                                                       | E_VDD_WARN                 |                          | E_DVC_RDY   |             | E_LDO_LIM  |             | E_TEMP    |           |  |  |
| 0x008     | EVENT_C                                                       |                            |                          |             | E_GPI4      | E_GPI3     | E_GPI2      | E_GPI1    | E_GPI0    |  |  |
| IRQ Mask  | (S                                                            |                            |                          |             |             |            |             |           |           |  |  |
| 0x00A     | IRQ_MASK_A                                                    |                            |                          |             | M_SEQ_RDY   | M_WDG_WARN |             | M_ALARM   | M_NONKEY  |  |  |
| 0x00B     | IRQ_MASK_B                                                    | M_VDD_WARN                 |                          | M_DVC_RDY   |             | M_LDO_LIM  |             | M_TEMP    |           |  |  |
| 0x00C     | IRQ_MASK_C                                                    |                            |                          |             | M_GPI4      | M_GPI3     | M_GPI2      | M_GPI1    | M_GPI0    |  |  |
| System co | ontrol                                                        |                            |                          |             |             |            |             |           |           |  |  |
| 0x00E     | CONTROL_A                                                     |                            | M_POWER1_EN              | M_POWER_EN  | M_SYSTEM_EN | STANDBY    | POWER1_EN   | POWER_EN  | SYSTEM_EN |  |  |
| 0x00F     | CONTROL_B                                                     | BUCK_SLOWSTA<br>RT NFREEZE |                          | nONKEY_LOCK | NRES_MODE   | FREEZE_EN  | WATCHDOG_PD |           |           |  |  |
| 0x010     | CONTROL_C                                                     | DEF_SUPPLY                 | SLEW_RATE                |             | OTPREAD_EN  | AUTO_BOOT  | DEBOUNCING  |           |           |  |  |



|           |                    |               | ı            | 1             | 1                   | I                   | 1                   | 1                   | 1                   |  |
|-----------|--------------------|---------------|--------------|---------------|---------------------|---------------------|---------------------|---------------------|---------------------|--|
| Addr      | Register           | 7             | 6            | 5             | 4                   | 3                   | 2                   | 1                   | 0                   |  |
| 0x011     | CONTROL_D          |               |              |               |                     |                     | TWDSCALE            | 1                   | ,                   |  |
| 0x012     | CONTROL_E          | V_LOCK        |              |               |                     |                     | RTC_EN              | RTC_MODE_SD         | RTC_MODE_PD         |  |
| 0x013     | CONTROL_F          |               |              |               |                     |                     | WAKE_UP             | SHUTDOWN            | WATCHDOG            |  |
| 0x014     | PD_DIS             | PMCONT_DIS    | OUT32K_PAUSE | BBAT_DIS      | CLDR_PAUSE          |                     | PMIF_DIS            |                     | GPI_DIS             |  |
| GPIO con  | GPIO control       |               |              |               |                     |                     |                     |                     |                     |  |
| 0x015     | GPIO_0_1           | GPIO1_WEN     | GPIO1_TYPE   | GPIO1_PIN     |                     | GPIO0_WEN           | GPIO0_TYPE          | GPIO0_PIN           |                     |  |
| 0x016     | GPIO_2_3           | GPIO3_WEN     | GPIO3_TYPE   | GPIO3_PIN     |                     | GPIO2_WEN           | GPIO2_TYPE          | GPIO2_PIN           |                     |  |
| 0x017     | GPIO_4             |               |              |               |                     | GPIO4_WEN           | GPIO4_TYPE          | GPIO4_PIN           |                     |  |
| 0x01C     | GPIO_WKUP_MOD<br>E |               |              |               | GPIO4_WKUP_M<br>ODE | GPIO3_WKUP_M<br>ODE | GPIO2_WKUP_M<br>ODE | GPIO1_WKUP_M<br>ODE | GPIO0_WKUP_M<br>ODE |  |
| 0x01D     | GPIO_MODE0_4       |               |              |               | GPIO4_MODE          | GPIO3_MODE          | GPIO2_MODE          | GPIO1_MODE          | GPIO0_MODE          |  |
| 0x01E     | GPIO_OUT0_2        | GPIO2_OUT     |              | GPIO1_OUT     |                     |                     | GPIO0_OUT           |                     |                     |  |
| 0x01F     | GPIO_OUT3_4        |               |              |               | GPIO4_OUT           |                     | GPIO3_OUT           |                     |                     |  |
| Power sup | oply control       |               |              |               | •                   |                     |                     |                     |                     |  |
| 0x020     | BUCK2_CONT         |               | VBUCK2_GPI   |               |                     | BUCK2_CONF          | BUCK2_GPI           |                     | BUCK2_EN            |  |
| 0x021     | BUCK1_CONT         |               | VBUCK1_GPI   |               |                     | BUCK1_CONF          | BUCK1_GPI           |                     | BUCK1_EN            |  |
| 0x022     | BUCK4_CONT         |               | VBUCK4_GPI   |               |                     | BUCK4_CONF          | BUCK4_GPI           |                     | BUCK4_EN            |  |
| 0x024     | BUCK3_CONT         |               | VBUCK3_GPI   |               |                     | BUCK3_CONF          | BUCK3_GPI           |                     | BUCK3_EN            |  |
| 0x026     | LDO1_CONT          | LDO1_CONF     | VLDO1_GPI    |               |                     | LDO1_PD_DIS         | LDO1_GPI            |                     | LDO1_EN             |  |
| 0x027     | LDO2_CONT          | LDO2_CONF     | VLDO2_GPI    |               |                     | LDO2_PD_DIS         | LDO2_GPI            |                     | LDO2_EN             |  |
| 0x028     | LD03_CONT          | LDO3_CONF     | VLDO3_GPI    |               |                     | LDO3_PD_DIS         | LDO3_GPI            |                     | LDO3_EN             |  |
| 0x029     | LDO4_CONT          | LDO4_CONF     | VLDO4_GPI    |               |                     | LDO4_PD_DIS         | LDO4_GPI            |                     | LDO4_EN             |  |
| 0x032     | DVC_1              | VLDO4_SEL     | VLDO3_SEL    | VLDO2_SEL     | VLDO1_SEL           | VBUCK3_SEL          | VBUCK4_SEL          | VBUCK2_SEL          | VBUCK1_SEL          |  |
|           | ndar and alarm     | VEDO4_GEE     | VEDOU_OLL    | VEDOZ_OEE     | VEDO1_OLL           | VBOOKS_GEE          | VBOOK4_GEE          | VDOORZ_OLL          | VBOOKI_OLL          |  |
| 0x040     | COUNT_S            | RTC_READ      |              | COUNT_SEC     |                     |                     |                     |                     |                     |  |
| 0x041     | COUNT_MI           | NTO_NEAD      |              | COUNT_MIN     |                     |                     |                     |                     |                     |  |
| 0x042     | COUNT_H            |               |              | 000111_1/1111 | COUNT_HOUR          |                     |                     |                     |                     |  |
| 0x043     | COUNT_D            |               |              |               | COUNT_DAY           |                     |                     |                     |                     |  |
| 0x044     | COUNT_MO           |               |              |               | COONT_DAT           | COUNT_MONTH         |                     |                     |                     |  |
| 0x044     |                    |               | MONITOR      | COUNT_YEAR    |                     | COUNT_WONTH         |                     |                     |                     |  |
|           | COUNT_Y            | ALADM CTATUC  | MONITOR      |               |                     |                     |                     |                     |                     |  |
| 0x046     | ALARM_S            | ALARM_STATUS  |              | ALARM_SEC     |                     |                     |                     |                     |                     |  |
| 0x047     | ALARM_MI           |               |              | ALARM_MIN     | ALABA LIQUID        |                     |                     |                     |                     |  |
| 0x048     | ALARM_H            |               |              |               | ALARM_HOUR          |                     |                     |                     |                     |  |
| 0x049     | ALARM_D            |               |              | I             | ALARM_DAY           | T                   |                     |                     |                     |  |
| 0x04A     | ALARM_MO           |               | l            | TICK_WAKE     | TICK_TYPE           | ALARM_MONTH         |                     |                     |                     |  |
| 0x04B     | ALARM_Y            | TICK_ON       | ALARM_ON     | ALARM_YEAR    |                     |                     |                     |                     |                     |  |
| 0x04C     | SECOND_A           | SECONDS_A     |              |               |                     |                     |                     |                     |                     |  |
| 0x04D     | SECOND_B           | SECONDS_B     |              |               |                     |                     |                     |                     |                     |  |
| 0x04E     | SECOND_C           | SECONDS_C     |              |               |                     |                     |                     |                     |                     |  |
| 0x04F     | SECOND_D           | SECONDS_D     |              |               |                     |                     |                     |                     |                     |  |
| Power Ser |                    |               |              |               |                     |                     |                     |                     |                     |  |
| 0x081     | SEQ                | NXT_SEQ_START |              |               |                     | SEQ_POINTER         |                     |                     |                     |  |
| 0x082     | SEQ_TIMER          | SEQ_DUMMY     |              |               |                     | SEQ_TIME            |                     |                     |                     |  |
| 0x083     | ID_2_1             | LD02_STEP     |              |               | LDO1_STEP           |                     |                     |                     |                     |  |
| 0x084     | ID_4_3             | LDO4_STEP     |              |               |                     | LDO3_STEP           |                     |                     |                     |  |
| 0x088     | ID_12_11           | PD_DIS_STEP   |              |               |                     |                     |                     |                     |                     |  |
| 0x089     | ID_14_13           | BUCK2_STEP    |              |               |                     | BUCK1_STEP          |                     |                     |                     |  |
| 0x08A     | ID_16_15           | BUCK3_STEP    |              |               |                     | BUCK4_STEP          |                     |                     |                     |  |
| 0x08D     | ID_22_21           | GP_FALL1_STEP |              |               |                     | GP_RISE1_STEP       |                     |                     |                     |  |
| 0x08E     | ID_24_23           | GP_FALL2_STEP |              |               |                     | GP_RISE2_STEP       |                     |                     |                     |  |



| A -d -d - | Register                 | 7             | 6                                    | 5              | 4             | 3             | 2                                | 1            | 0          |  |
|-----------|--------------------------|---------------|--------------------------------------|----------------|---------------|---------------|----------------------------------|--------------|------------|--|
| Addr      |                          |               | 0                                    | 3              | 4             | GP_RISE3_STEP | 2                                | 1            | U          |  |
| 0x08F     | ID_26_25                 | GP_FALL3_STEP |                                      |                |               | GP_RISE4_STEP |                                  |              |            |  |
| 0x090     | ID_28_27                 | GP_FALL4_STEP |                                      |                |               |               |                                  |              |            |  |
| 0x091     | ID_30_29                 | GP_FALL5_STEP |                                      |                |               | GP_RISE5_STEP |                                  |              |            |  |
| 0x092     | ID_32_31                 | EN32K_STEP    |                                      |                |               | WAIT_STEP     |                                  |              |            |  |
| 0x095     | SEQ_A                    | POWER_END     |                                      |                |               | SYSTEM_END    |                                  |              |            |  |
| 0x096     | SEQ_B                    | PART_DOWN     |                                      |                |               | MAX_COUNT     |                                  |              |            |  |
| 0x097     | WAIT                     | WAIT_DIR      |                                      | TIME_OUT       | WAIT_MODE     | WAIT_TIME     |                                  |              |            |  |
| 0x098     | EN_32K                   | EN_32KOUT     |                                      | OUT_CLOCK      | DELAY_MODE    | CRYSTAL       | STABILISATION_TI                 | ME           |            |  |
| 0x099     | RESET                    | RESET_EVENT   |                                      | RESET_TIMER    |               |               |                                  |              |            |  |
| Power sup |                          |               |                                      |                |               | T             |                                  |              |            |  |
| 0x09A     | BUCK_ILIM_A              |               |                                      |                |               | BUCK3_ILIM    |                                  |              |            |  |
| 0x09B     | BUCK_ILIM_B              |               |                                      |                |               | BUCK4_ILIM    |                                  |              |            |  |
| 0x09C     | BUCK_ILIM_C              | BUCK2_ILIM    |                                      |                |               | BUCK1_ILIM    |                                  |              |            |  |
| 0x09D     | BUCK2_CFG                | BUCK2_MODE    |                                      | BUCK2_PD_DIS   |               |               |                                  |              |            |  |
| 0x09E     | BUCK1_CFG                | BUCK1_MODE    |                                      | BUCK1_PD_DIS   |               |               |                                  |              |            |  |
| 0x09F     | BUCK4_CFG                | BUCK4_MODE    |                                      | BUCK4_PD_DIS   | BUCK4_VTT_EN  | BUCK4_VTTR_EN |                                  |              |            |  |
| 0x0A0     | BUCK3_CFG                | BUCK3_MODE    |                                      | BUCK3_PD_DIS   |               |               |                                  |              |            |  |
| 0x0A3     | VBUCK2_A                 | BUCK2_SL_A    | VBUCK2_A                             |                |               |               |                                  |              |            |  |
| 0x0A4     | VBUCK1_A                 | BUCK1_SL_A    | VBUCK1_A                             |                |               |               |                                  |              |            |  |
| 0x0A5     | VBUCK4_A                 | BUCK4_SL_A    | VBUCK4_A                             |                |               |               |                                  |              |            |  |
| 0x0A7     | VBUCK3_A                 | BUCK3_SL_A    | VBUCK3_A                             | T              |               |               |                                  |              |            |  |
| 0x0A9     | VLDO1_A                  | LDO1_SL_A     |                                      | VLDO1_A        |               |               |                                  |              |            |  |
| 0x0AA     | VLDO2_A                  | LDO2_SL_A     |                                      | VLDO2_A        |               |               |                                  |              |            |  |
| 0x0AB     | VLDO3_A                  | LDO3_SL_A     |                                      | VLDO3_A        |               |               |                                  |              |            |  |
| 0x0AC     | VLDO4_A                  | LDO4_SL_A     |                                      | VLDO4_A        |               |               |                                  |              |            |  |
| 0x0B4     | VBUCK2_B                 | BUCK2_SL_B    | VBUCK2_B                             |                |               |               |                                  |              |            |  |
| 0x0B5     | VBUCK1_B                 | BUCK1_SL_B    | VBUCK1_B                             |                |               |               |                                  |              |            |  |
| 0x0B6     | VBUCK4_B                 | BUCK4_SL_B    | VBUCK4_B                             |                |               |               |                                  |              |            |  |
| 0x0B8     | VBUCK3_B                 | BUCK3_SL_B    | VBUCK3_B                             | T              |               |               |                                  |              |            |  |
| 0x0BA     | VLDO1_B                  | LDO1_SL_B     |                                      | VLDO1_B        |               |               |                                  |              |            |  |
| 0x0BB     | VLDO2_B                  | LDO2_SL_B     |                                      | VLDO2_B        |               |               |                                  |              |            |  |
| 0x0BC     | VLDO3_B                  | LDO3_SL_B     |                                      | VLDO3_B        |               |               |                                  |              |            |  |
| 0x0BD     | VLDO4_B                  | LDO4_SL_B     |                                      | VLDO4_B        |               |               |                                  |              |            |  |
|           | ger control              |               |                                      |                |               |               |                                  |              |            |  |
| 0x0C5     | BBAT_CONT                | BCHG_ISET     |                                      |                |               | BCHG_VSET     |                                  |              |            |  |
|           | Trim and Configuratio    |               |                                      |                |               |               |                                  |              |            |  |
| 0x105     | INTERFACE                | IF_BASE_ADDR  |                                      |                | I             |               |                                  |              |            |  |
| 0x106     | CONFIG_A                 |               | PM_IF_HSM                            | PM_IF_FMP      | PM_IF_V       | IRQ_TYPE      | PM_O_TYPE                        |              | PM_I_V     |  |
| 0x107     | CONFIG_B                 |               | VDD_HYST_ADJ                         |                | I             | VDD_FAULT_ADJ | T                                |              |            |  |
| 0x108     | CONFIG_C                 |               | BUCK3_CLK_INV                        |                | BUCK4_CLK_INV | BUCK1_CLK_INV | BUCK_ACTV_DIS<br>CHRG            |              |            |  |
| 0x109     | CONFIG_D                 |               |                                      | FORCE_RESET    |               |               | SYSTEM_EN_RD                     | NIRQ_MODE    | GPI_V      |  |
| 0x10A     | CONFIG_E                 |               |                                      |                | BUCK3_AUTO    |               | BUCK4_AUTO                       | BUCK2_AUTO   | BUCK1_AUTO |  |
| 0x10C     | CONFIG_G                 |               |                                      |                |               | LDO4_AUTO     | LDO3_AUTO                        | LDO2_AUTO    | LDO1_AUTO  |  |
| 0x10D     | CONFIG_H                 |               | BUCK1_FCM                            | BUCK2_FCM      |               | BUCK_MERGE    |                                  |              |            |  |
| 0x10E     | CONFIG_I                 | LDO_SD        | INT_SD_MODE HOST_SD_MODE KEY_SD_MODE |                |               |               | WATCHDOG_SD nonkey_sd Nonkey_pin |              |            |  |
| 0x10F     | CONFIG_J                 | IF_RESET      | TWOWIRE_TO                           | RESET_DURATION | l             | SHUT_DELAY    |                                  | KEY_DELAY    |            |  |
| 0x110     | CONFIG_K                 |               |                                      |                | GPIO4_PUPD    | GPIO3_PUPD    | GPIO2_PUPD                       | GPIO1_PUPD   | GPIO0_PUPD |  |
| 0x112     | CONFIG_M                 | OSC_FRQ       |                                      |                |               | WDG_MODE      |                                  | NRESETREQ_PU |            |  |
| Customer  | Customer device specific |               |                                      |                |               |               |                                  |              |            |  |



| Addr  | Register    | 7                | 6    | 5 | 4 | 3   | 2 | 1 | 0 |
|-------|-------------|------------------|------|---|---|-----|---|---|---|
| 0x121 | GP_ID_0     | GP_0 (Note 1)    |      |   |   |     |   |   |   |
| 0x122 | GP_ID_1     | GP_1 (Note 1)    |      |   |   |     |   |   |   |
| 0x123 | GP_ID_2     | GP_2 (Note 1)    |      |   |   |     |   |   |   |
| 0x124 | GP_ID_3     | GP_3 (Note 1)    |      |   |   |     |   |   |   |
| 0x125 | GP_ID_4     | GP_4 (Note 2)    |      |   |   |     |   |   |   |
| 0x126 | GP_ID_5     | GP_5 (Note 2)    |      |   |   |     |   |   |   |
| 0x127 | GP_ID_6     | GP_6 (Note 2)    |      |   |   |     |   |   |   |
| 0x128 | GP_ID_7     | GP_7 (Note 2)    |      |   |   |     |   |   |   |
| 0x129 | GP_ID_8     | GP_8 (Note 2)    |      |   |   |     |   |   |   |
| 0x12A | GP_ID_9     | GP_9 (Note 2)    |      |   |   |     |   |   |   |
| 0x12B | GP_ID_10    | GP_10            |      |   |   |     |   |   |   |
| 0x12C | GP_ID_11    | GP_11            |      |   |   |     |   |   |   |
| 0x12D | GP_ID_12    | GP_12            |      |   |   |     |   |   |   |
| 0x12E | GP_ID_13    | GP_13            |      |   |   |     |   |   |   |
| 0x12F | GP_ID_14    | GP_14            |      |   |   |     |   |   |   |
| 0x130 | GP_ID_15    | GP_15            |      |   |   |     |   |   |   |
| 0x131 | GP_ID_16    | GP_16            |      |   |   |     |   |   |   |
| 0x132 | GP_ID_17    | GP_17            |      |   |   |     |   |   |   |
| 0x133 | GP_ID_18    | GP_18            |      |   |   |     |   |   |   |
| 0x134 | GP_ID_19    | GP_19            |      |   |   |     |   |   |   |
| 0x181 | DEVICE_ID   | DEV_ID           |      |   |   |     |   |   |   |
| 0x182 | VARIANT_ID  | MRC              |      |   |   | VRC |   |   |   |
| 0x183 | CUSTOMER_ID | CUST_ID (Note 3) |      |   |   | ·   |   |   |   |
| 0x184 | CONFIG_ID   | CONFIG_REV (Not  | e 3) |   |   |     |   |   |   |

- Note 1 Dialog recommends customers use GP\_ID\_0 to GP\_ID\_3 for serialization, ini file configuration traceability, and so on
- **Note 2** GP\_ID\_4 to GP\_ID\_9 are used by the In-Circuit Programmer for production serialization and programming traceability
- Note 3 OTP variant number (should be considered read-only). CONFIG\_ID must not be 0x00 as the OTP would not be loaded when the PMIC starts. This is not an issue if the value in the seed ini file is not altered.



### **Appendix B Command Line Tool User Guide**

The Command Line Tool provides a method for production line automation. The Command Line Tool replaces the GUI. The Dialog Programmer Board is still required. The tool only works with a single Programmer Board.

### **B.1** Installation

The Command Line Tool is provided with the In-Circuit Programming Kit on the USB stick. It can also be downloaded from the Dialog Support Site.

The default install folder is C:\Dialog Semiconductor\Power Management\ Please make a note of your chosen installation folder during the installation process.

The tool cannot be run from the Windows icon. Instead, the tool must be run from a DOS command prompt or called by another program.

### **B.2** Running the Tool

The tool is called by executing da906x\_icp.exe. The file extension is optional and therefore the tool can be called using da906x\_icp. The commands are not case-sensitive. The tool supports three main modes:

PROGRAM: program a device to a specified ini file

VERIFY: verify a device against a specified ini file

DEBUG: debug a device by dumping its OTP contents to a file

Syntax help is available using da906x icp -help

### **B.2.1** Programming

Syntax: da906x icp -program <config.ini>

Example: da906x icp -program DA9061-66 IMX6UL AUTOBOOT 0v1 1B54.ini

#### NOTE

The -program option includes verification after programming. The -verify option is intended for checking the contents of a device that has previously been programmed.

Calling da906x icp.exe returns one of the codes listed in Table 8.

#### **Table 8: Return Codes**

| Return Code | Туре                     | Comment                                                      |
|-------------|--------------------------|--------------------------------------------------------------|
| 0           | PASS                     | OTP matches .ini file, or .log file written ok               |
| 1           | USB ERROR                | Dialog Programmer Board not detected or driver not installed |
| 2           | READ OTP FAILED          | No device communication, or OTP read failed                  |
| 3           | INI ERROR                | File parse error                                             |
| 4           | PROGRAMMING NOT POSSIBLE | OTP already programmed and cannot reprogram                  |
| 5           | PROGRAMMING FAILED       | Programming failed and part was unchanged                    |
| 6           | VERIFY FAILED            | Non-matching configuration or device partially programmed    |
| 7           | LOG ERROR                | File write/access error                                      |
| 8           | PROGRAM ERROR            | Exception or other error                                     |



#### **B.2.2** Verification

If a device is to be checked without programming, the -verify option can be used.

Syntax: da906x icp -verify <config.ini>

Example: da906x icp -verify DA9061-66 IMX6UL AUTOBOOT 0v1 1B54.ini

### B.2.3 Debug

The -debug option is used only for debug.

Syntax: da906x\_icp -debug <filename.txt>
Example: da906x icp -debug trace1.txt

This reads the OTP content and dumps it to the specified filename.

#### **B.2.4** Verbose Mode

The verbose argument is useful for debug.

#### Examples:

```
da906x_icp -program DA9061-66_IMX6UL_AUTOBOOT_0v1_1B54.ini -verbose da906x_icp -verify DA9061-66_IMX6UL_AUTOBOOT_0v1_1B54.ini -verbose
```

The information is sent to the standard output, stdout.

#### **B.2.5** Command Line Serialization Feature

As explained in Section 5.4, a number can be stored in the PMIC registers GP\_ID\_4 to GP\_ID\_9. This can be used for any customer production purpose. For example, the number can be a static value that represents the system part number or skew. It can be a serial number to provide board-level manufacturing traceability. The value should be generated by the host PC, which might also be the controller for the system tester. The serial number is programmed at the same time as the other OTP data:

```
Syntax: da906x icp -program <config.ini> -serial num <serial num>
```

#### Examples:

```
da906x_icp -program DA9061-66_IMX6UL_AUTOBOOT_0v1_1B54.ini -serial_num 002
da906x_icp -program DA9061-66_IMX6UL_AUTOBOOT_0v1_1B54.ini -serial_num AA00FFCC0002
da906x icp -program DA9061-66_IMX6UL_AUTOBOOT_0v1_1B54.ini -serial_num 0xAA00FFCC0002
```

The number is always parsed as hexadecimal digits. The 0x prefix is optional. Leading zeros are not required.

Once a serial number has been written, bits that remain as zeros can later be overwritten using re-programming (over-programming). It is therefore possible to repeat the programming with a new serial number where bits are changed from 0 to 1. If the new serial number requires bits to be changed from 1 to 0, then the programming will fail and return an error.

#### **B.2.5.1** Masking the Serial Number

It is sometimes necessary to mask the serial number when verifying a device or during re-programming (over-programming). The <code>-mask\_serial\_num</code> option can be used in both situations.

#### Examples:

```
da906x_icp -program DA9061-66_IMX6UL_AUTOBOOT_0v1_1B54.ini -mask_serial_num da906x_icp -verify DA9061-66_IMX6UL_AUTOBOOT_0v1_1B54.ini -mask_serial_num
```



The -serial num and -mask serial num are never used together.

### **B.2.6** Software Version

The tool version can be recalled:

Syntax: da906x\_icp -version

This returns the software version, sent to the standard output, stdout.

### **B.2.7 Command Abbreviations**

The commands can be abbreviated.

- -h for -help
- -p for -program
- -v for -verify
- -d for -debug
- -s for -serial\_num
- -m for -mask\_serial\_num

© 2022 Renesas Electronics



### **Appendix C SmartCanvas Software Overview**

SmartCanvas is included in the Dialog DA906x evaluation kits and is the GUI used with the kit evaluation board. The GUI provides a visual representation of the device registers and of the PMIC operation state. The software (Figure 10) allows interaction with the PMIC, and can be used to read or write to device registers, for testing prototype configurations, and to program socketed devices. The SmartCanvas user manual is accessible via the GUI Help menu and is also available from the Dialog support site [4]. The SmartCanvas software can be separately downloaded from the Dialog Support Site.

Power Commander mode (PC Mode) is a powerful feature of Dialog PMICs that allows prototyping of OTP configurations without having to burn a device's OTP. PC Mode starts a device using the configuration taken from an external ini file instead of the device's own programmed (or blank) configuration. These ini files are compatible with the In-Circuit Programmer and therefore the same ini files can be used to program parts for volume manufacturing.

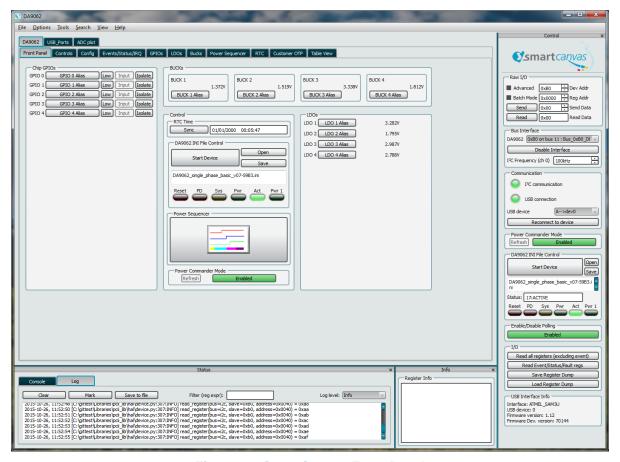



Figure 10: SmartCanvas Front Panel



### **Revision History**

| Revision | Date        | Description                                                |
|----------|-------------|------------------------------------------------------------|
| 3.0      | 18-Feb-2022 | File was rebranded with new logo, copyright and disclaimer |
| 2.0      | 06-Jun-2018 | Section 4:                                                 |
|          |             | Added seed ini files for DA9063 and DA9063L                |
|          |             | Section 7:                                                 |
|          |             | Replaced DA9061-00 with DA9061-A0                          |
|          |             | Replaced DA9062-00 with DA9062-A0                          |
| 1.2      | 15-Mar-2018 | Removed command option abbreviations -verb, -he and -hel   |
| 1.1      | 13-Feb-2018 | Added Serialization feature details to Section 5.4         |
|          |             | Added Command Line Tool description as Appendix B          |
| 1.0      | 21-Aug-2018 | Revised to reflect use of DA906x-00 parts                  |
|          |             | Revised ini file names in Table 2                          |
|          |             | Added Figure 6                                             |



### **Status Definitions**

| Status               | Definition                                                                                                                   |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| DRAFT                | The content of this document is under review and subject to formal approval, which may result in modifications or additions. |  |
| APPROVED or unmarked | The content of this document has been approved for publication.                                                              |  |

### **RoHS Compliance**

Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

#### **IMPORTANT NOTICE AND DISCLAIMER**

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

#### **Trademarks**

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

#### **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <a href="https://www.renesas.com/contact-us/">www.renesas.com/contact-us/</a>.