

Application Note

ClockMatrix™ Oscillator Compensation

R31AN0004EU0100 Rev.1.0
May 10, 2021

 Page 1
© 2021 Renesas Electronics

This application note explains how to implement oscillator compensation in ClockMatrix to improve the holdover
performance of a system. It introduces different methods for predicting how oscillators change frequency as the
system runs. It also explains the programming of the registers needed to compensate the oscillator frequency for
the entire device or for each channel separately.

Contents
1. Introduction .. 2

2. Available Techniques for Holdover Accuracy .. 2
2.1 OCXO/TCXO Learning for Long-Term Time Holdover .. 2
2.2 Smart-OCXO Compensation for Long-Term Time Holdover .. 3

3. Implementing per channel CPU Based Techniques with ClockMatrix ... 4
3.1 Example Calculation .. 6

3.1.1. Example 1 - Correct by -3.5ppm ... 6
3.1.2. Example 2 - Correct by +3.5ppm .. 6

4. Implementing SysDPLL based Offset with CPU Based Techniques .. 7
4.1 Pseudocode Implementation of Technique ... 7

5. Example Bench Test .. 8

6. Revision History .. 9

ClockMatrix™ Oscillator Compensation Application Note

R31AN0004EU0100 Rev.1.0
May 10, 2021

 Page 2

1. Introduction
The system uses the frequency stability of the oscillator to maintain phase stability. During holdover, some PTP
applications are required to maintain 1µs over 24 hours versus the locked phase, while a high quality
uncompensated OCXO will only maintain 1µs for about 1 hour. A system can meet these stricter requirements
by using an algorithm running on an external CPU to model the oscillator frequency variation versus time and
temperature and write these corrections to the ClockMatrix device. These external algorithms allow the system
to meet the phase holdover specification.

An oscillator manufacturer describes its products with different frequency specifications: offset (calibration),
aging (drift), temperature stability (frequency versus temperature) and stability versus other parameters (like
voltage or load). The offset (or calibration) is the frequency difference between the output and its nominal
frequency. A PLL can remove a stable offset versus an external reference. The aging (or drift) is a variation of
the offset over time in units of frequency change per day or frequency change per year. The temperature stability
will depend on the type of oscillator. For an OCXO, the use of insulation around the crystal oscillator with a
heating element in the package will keep the crystal at a constant temperature. This minimizes the impact of
temperature on frequency variation so the drift is the more significant factor. For a TCXO, temperature effects
are more significant. The oscillator manufacturer should be able to provide a model of frequency change versus
temperature for their oscillators. In addition, an oscillator will have frequency variation versus voltage and load,
but a telecom system should be able to control for these effects via voltage regulators and buffering the clock
signal.

2. Available Techniques for Holdover Accuracy
For an uncompensated oscillator, the DPLL will provide holdover filtering in the DPLL channel. While it is good
for some applications, it will not be sufficient since it only measures the average long-term historical frequency of
the oscillator versus the reference. Any future change in the oscillator frequency will cause a similar error in the
holdover performance.

To improve the holdover performance, the system must predict the future changes in the oscillator frequency.
There are two different approaches to the modeling of frequency variation: learning the performance based on
local measurements of the oscillator versus a system input or using model parameters measured for each
oscillator during manufacturing.

2.1 OCXO/TCXO Learning for Long-Term Time Holdover
For this method, the system will implement a standard model in external software to vary frequency over time.
This algorithm could be common for different models and oscillator manufacturers. The model would have to
learn the aging of the oscillator. Optionally, it would also have to model the effects of temperature by comparing
the measured frequency versus an external temperature sensor near the oscillator accessible via an I2C
interface. The customer or oscillator vendor must provide the correction algorithm. The algorithm must also
provide controlled, precise adjustments to minimize wander transfer to the outputs of the DPLL channels.

The system calculates the model parameters when locked to a reference, but needs to apply these adjustments
when in locked and holdover states to provide better long-term time holdover performance. A typical system
would use SyncE or GNSS (GPS) derived reference to provide the nominal frequency for accurate modeling.

As shown in Figure 1, there are two parts to this method: the compensation algorithm running on the external
CPU and the compensation of the OCXO frequency input which is within the ClockMatrix device.

A simple learning algorithm would measure the offset and drift of the oscillator versus a good external reference
while the external reference is available. It would continue to make adjustments to keep the frequency of the
oscillator plus the adjustment stable when the reference was removed and the system goes to holdover.

ClockMatrix™ Oscillator Compensation Application Note

R31AN0004EU0100 Rev.1.0
May 10, 2021

 Page 3

Timing Card Primary
CPU

Oscillator
Compensation

Algorithm

ClockMatrix

nCXO

GNSS

PTP

SETS – T0

SETS – T4

Oscillator
Compensation

GNSS
Receiver

1 PPS (1 Hz)

SyncE Clock

 Figure 1. General Aging Compensation for Long-Term Time Holdover

2.2 Smart-OCXO Compensation for Long-Term Time Holdover
A second method for frequency adjustments uses a temperature sensor and frequency modeling parameters
from a smart-OCXO. The smart-OCXO contains parameters for a frequency variation model supplied by the
manufacturer. The manufacturer-supplied model will vary the frequency with temperature and time. The
manufacturer will individually characterize each oscillator in the factory. The vendor will characterize each smart-
OCXO over temperature before shipping, then it stores the values in an internal smart-OCXO EEPROM
accessible via an I2C interface. More information about the models used are available from each vendor.

Similar to the previous method, the algorithm automatically compensates a DPLL channel via controlled, precise
adjustments to minimize noise transfer to the outputs. The adjustments are applied independent of the DPLL’s
state but will have the most impact when the DPLL is in holdover. Unlike the previous section, this method does
not depend on a local reference.
As shown in

Figure 2, the system uses the temperature sensor and the parameters from the smart oscillator as the external
input for the model.

ClockMatrix™ Oscillator Compensation Application Note

R31AN0004EU0100 Rev.1.0
May 10, 2021

 Page 4

Timing Card Primary
CPU

Oscillator
Modeling
Algorithm

ClockMatrix

nCXO

GNSS

PTP

SETS – T0

SETS – T4

Oscillator
Compensation

Temp
Sensor

Figure 2. OCXO/TCXO Learning for Long-Term Time Holdover

3. Implementing per channel CPU Based Techniques with
ClockMatrix

For implementing the frequency adjustments on ClockMatrix the
DPLL_CTRL_0.DPLL_COMBO_SW_VALUE_CNFG register can be used. This register needs to be set for each
channel by the external software. It is used in conjunction with the System DPLL combo bus feature when
System DPLL is locked to external TCXO or OCXO. The value of this register is included in the summation that
includes the output of the digital loop filter (or frequency write), the primary combo bus value and the secondary
combo bus value. The summed frequency offsets control DCO frequency. Figure 3 shows the channel block
diagram from the GUI and the location where the firmware adds this value.

ClockMatrix™ Oscillator Compensation Application Note

R31AN0004EU0100 Rev.1.0
May 10, 2021

 Page 5

Figure 3. Location of Sum for DPLL_COMBO_SW_VALUE_CNFG Register in Channel

For this register, each channel would have the System DPLL as a combo mode source, and the
DPLL_CTRL_{N}.DPLL_COMBO_SW_VALUE_CNFG register would have to be set for each channel as the
adjustment.

The offset range is ±15625ppm while the range of a DPLL or DCO channel is ±244ppm. The value is stored as a
signed 48-bit FFO in units of 2 ^ (-53).

Figure 4 shows the exact conversion between an offset and the value for this register. This equation is from the
ClockMatrix datasheet in the “Write-Frequency” Mode section. The approximate conversion is:
FCW = (FFO/1E6)/(2^-53).

Figure 4. Conversion of FFO to FCW Register Value

When programming the DPLL_COMBO_SW_VALUE_CNFG register, the value will change the frequency after
the highest address register byte is written to this register since every register in DPLL_CTRL_{N} module is a
trigger register. Figure 5 shows the definition of the DPLL_COMBO_SW_VALUE_CNFG register from the device
Programming Guide.

ClockMatrix™ Oscillator Compensation Application Note

R31AN0004EU0100 Rev.1.0
May 10, 2021

 Page 6

Figure 5. Definition of DPLL_COMBO_SW_VALUE_CNFG Register

3.1 Example Calculation
This section shows a sample conversion of a ppm value to the 48-bit signed value needed for the
DPLL_COMBO_SW_VALUE_CNFG register.

3.1.1. Example 1 - Correct by -3.5ppm
-3.5ppm = -3.5E-6

Using the approximate equation:

Value = int(-3.5E-6/(2^(-53))) = -31,525,197,391

Register = 2^48 -31,525,197,391 (since negative)

= 281443451513264 => 0xFFF8 A8F3 A9B1

Using the exact equation:

-3.5ppm => 0xfff8 a8f1 faae

3.1.2. Example 2 - Correct by +3.5ppm
3.5ppm = 3.5E-6

Using the approximate equation:

Value = int(3.5E-6/2^(-53)) = 31,525,197,392

Register = 31,525,197,392 => 0x0007 570c 564f

Using the exact equation:

3.5ppm => 0x0007 570a a74e

Renesas Application Engineering can provide example Python scripts to implement the conversion for reference.

ClockMatrix™ Oscillator Compensation Application Note

R31AN0004EU0100 Rev.1.0
May 10, 2021

 Page 7

4. Implementing SysDPLL based Offset with CPU Based
Techniques

For this method, the user adjusts the SysDPLL frequency directly and the other channels use the SysDPLL
frequency via the combo bus. The advantage of this method is that the SysDPLL frequency is used for input
reference monitoring (including the fractional frequency offset measurement) and is used by the DPLLs as a
reference for all calculations including fast lock and other internal processes.

Normally, the other DPLLs will filter any frequency change on the SysDPLL output. The individual adjustments
still need to be small to prevent the other DPLLs from unlocking or increasing the wander generation on the
outputs.

The simplified procedure to implement this technique is:

1. Get offset between XO_DPLL and “good” reference from SyncE or GNSS (GPS) receiver.
2. Get temperature from external sensor (if needed for model).
3. Process the measured offset (and temperature coefficient model) for oscillator to get FFO adjustment (a

more complicated algorithm will limit the frequency step in a single change, but get the correct offset over
time via a software frequency change limit).

4. Set SysDPLL to holdover.
5. Change nominal SysDPLL reference frequency to account for calculate offset from model.
6. Set SysDPLL to original mode (locked to XO_DPLL or reference input pin).

4.1 Pseudocode Implementation of Technique
When implementing this code, the holdover time should be as short as possible since the crystal accuracy will
define the accuracy of the SysDPLL output during holdover. Since the SysDPLL bandwidth is wide, it will relock
quickly to the OCXO once the adjustment is set. For a real system, the system should use a more complicated
algorithm instead of using the offset between the “good” reference and the OCXO input shown in this section.
The most important part of this example is the sequence of registers reads and writes for the ClockMatrix device.

goodRef #reference used for measurement of XO from SyncE or GNSS

oldMode = Read SYS_DPLL.SYS_DPLL_MODE.STATE_MODE

curRef = Read SYS_DPLL.SYS_DPLL_REF_PRIORITY_1

goodRefFFOValue = Read STATUS.IN{goodRef}_MON_FREQ_STATUS.FFO

goodRefFFOUnits = Read Get STATUS.IN{goodRef}_MON_FREQ_STATUS.FFOUNIT

goodRefFFO = goodRefFFOValue * goodRefFFOUnits #the FFO measurement is relative to the
XO_DPLL input

If curRef = 0x12 (XO_DPLL)

 #frequency of XO_DPLL input is M/N in Hz

 xoFreqM = Read SYS_DPLL_XO.XO_FREQ.M

 xoFreqN = Read SYS_DPLL_XO.XO_FREQ.N

 xoFreqM = xoFreqM * (1 – goodRefFFO) #replace with customer algorithm

 Write SYS_DPLL.SYS_DPLL_MODE.STATE_MODE to 3 (force holdover)

 Write SYS_DPLL_XO.XO_FREQ.M to xoFreqM

 Write SYS_DPLL.SYS_DPLL_MODE.STATE_MODE to oldMode

ClockMatrix™ Oscillator Compensation Application Note

R31AN0004EU0100 Rev.1.0
May 10, 2021

 Page 8

Else

 #curRef is refX

 #frequency of XO_DPLL input is M/N in Hz
 xoFreqM = Read INPUT_{curRef}.IN_FREQ.M
 xoFreqN = Read INPUT_{curRef}.IN_FREQ.N
 xoFreqM = xoFreqM * (1 – goodRefFFO) #uses instantaneous frequency for this simple
example
 Write INPUT_{curRef}.IN_FREQ.M to xoFreqM
 Write SYS_DPLL.SYS_DPLL_MODE.STATE_MODE to 3 (force holdover)
 Rewrite INPUT_{curRef}.MODE #trigger register for INPUT_{curRef] module
 Set SYS_DPLL.SYS_DPLL_MODE.STATE_MODE as oldMode #keep holdover as short as possible

5. Example Bench Test
To test the frequency-learning algorithm in Section 2.1, the bench would need a “good” input to measure the drift
of OCXO. In a real system, this would come from a GNSS receiver. For a bench test, this would come from a
function generator locked to the lab reference. Once the system is locked to this reference for a sufficient
amount of time to allow the algorithm used to learn the oscillator parameters, the user puts the system into
holdover.

In Figure 6, the output of importance is from the PTP channel. Normally, this would be 1Hz (1 PPS) with a tight
phase holdover requirement. The GNSS input reference block in the ClockMatrix device measures the frequency
difference between the frequency of 1-PPS input clock and OCXO input. The figure shows PTP (DCO) channel
as the channel for measurement but the test can also be run with a SyncE (DPLL) channel or GNSS (up-
convert) channel.

Input Reference

OCXO

SysDPLL SysAPLL

Crystal

PTP
DCO

Output Integer
DividerDCO

DPLL
GNSS Up-convert

20 mHz

Output Integer
DividerDCO

GNSS Receiver
(GPS)
1 PPS

PTP Clock Updates

Figure 6. Example Bench Test Configuration

ClockMatrix™ Oscillator Compensation Application Note

R31AN0004EU0100 Rev.1.0
May 10, 2021

 Page 9

6. Revision History

Revision Date Description

0.1 May 10, 2021 Initial release.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	1. Introduction
	2. Available Techniques for Holdover Accuracy
	2.1 OCXO/TCXO Learning for Long-Term Time Holdover
	2.2 Smart-OCXO Compensation for Long-Term Time Holdover

	3. Implementing per channel CPU Based Techniques with ClockMatrix
	3.1 Example Calculation
	3.1.1. Example 1 - Correct by -3.5ppm
	3.1.2. Example 2 - Correct by +3.5ppm

	4. Implementing SysDPLL based Offset with CPU Based Techniques
	4.1 Pseudocode Implementation of Technique

	5. Example Bench Test
	6. Revision History

