
 Application Note

R11AN0346EU0100 Rev.1.00 Page 1 of 29
Oct 24, 2018

Renesas Synergy™ Platform

NetX™ and NetX Duo™ SNMP Agent
Module Guide
Introduction
This module guide will enable you to effectively use a module in your own design. Upon completion of this guide, you
will be able to add this module to your own design, configure it correctly for the target application, and write code using
the included application project code as a reference and efficient starting point. References to more detailed API
descriptions and suggestions of other application projects that illustrate more advanced uses of the module are available
on the Renesas Synergy™ Knowledge Base (as described in the References section at the end of this document) and
should be valuable resources for creating more complex designs.
The Simple Network Management Protocol (SNMP) is an Internet Standard protocol for collecting and organizing
information about managed devices on IP networks and for modifying that information to change device behavior.

There are three versions of SNMP, version 1, version 2, and version 3. Version 1 has been largely replaced by version
2. Version 3 is the same as version 2 for the most part except for one important difference. It supports authentication
and encryption, so it is SNMP with security built in.

Note: Except where noted, NetX Duo SNMP Agent is identical to the NetX SNMP Agent. For setting up the IP
instance for IPv6 in NetX Duo, see the NetX Duo User Guide for the Renesas Synergy™ Platform.

This document provides an overview of the key elements related to the NetX Duo SNMP Agent implementation on the
Renesas Synergy Platform. The primary focus of this document is on the addition and configuration of the NetX Duo
SNMP module to a Renesas Synergy Platform project. For more details on the operation of this module, consult the NetX
Duo™ SNMP Agent User Guide for the Renesas Synergy™ Platform document. This document is available as part of an
X-Ware™ and NetX™ Component Documents for Renesas Synergy™ zip file from the Renesas Synergy Gallery
(https://synergygallery.renesas.com/ssp/support#read).

Figure 1 NetX Duo SNMP Agent Organization, Options, and Stack Implementations

R11AN0346EU0100
Rev.1.00

Oct 24, 2018

https://synergygallery.renesas.com/ssp/support#read

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 2 of 29
Oct 24, 2018

Figure 2 NetX SNMP Agent Organization, Options, and Stack Implementations
This document is divided into the following sections which can be read independently (by a more experienced Synergy
developer) or in series (by developers new to the Synergy Platform).

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 3 of 29
Oct 24, 2018

Contents

1. NetX Duo SNMP Agent APIs Overview ... 4

2. NetX Duo SNMP Agent Operational Overview ... 9
2.1 SNMP Data Types ... 10
2.2 SNMPv3 Security .. 10
2.3 Usernames in SNMP ... 11
2.4 Error Reports ... 11
2.5 SNMP Manager ... 11
2.6 NetX Duo SNMP Agent Important Operational Notes and Limitations ... 12
2.6.1 Explanation of the Example MIB Table ... 13
2.7 NetX Duo SNMP Agent Limitations ... 14

3. Including the NetX Duo SNMP Agent in an Application .. 14

4. Configuring the NetX Duo SNMP Agent Module .. 16
4.1 Configuration Settings for the NetX Duo SNMP Agent Low Level Drivers ... 18
4.2 Clock Configuration ... 21
4.3 Pin Configuration ... 21

5. Using the NetX Duo SNMP Agent in an Application ... 21

6. NetX Duo SNMP Agent Application Project ... 23

7. Customizing NetX Duo SNMP Agent for a Target Application .. 25

8. Running the NetX Duo SNMP Agent Application Project ... 25

9. Conclusion ... 27

10. Next Steps ... 27

11. Reference Information ... 27

Revision History .. 29

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 4 of 29
Oct 24, 2018

1. NetX Duo SNMP Agent APIs Overview
The NetX Duo SNMP Agent defines APIs for creating and deleting the SNMP Agent instance, and getting its messages.
A complete list of the available APIs, an example API call, and a short description of each can be found in the
following table. A table of return status values follows.

Table 1 NetX SNMP Agent API Summary

API Call Example Description
nx_snmp_agent_authenticate_key_use(NX_
SNMP_AGENT *agent_ptr,
NX_SNMP_SECURITY_KEY *key);

Register a previously created authentication key with
the SNMP Agent for SNMP Agent responses.

nx_snmp_agent_auth_trap_key_use(NX_SN
MP_AGENT *agent_ptr,
NX_SNMP_SECURITY_KEY *key);

Register a previously created authentication key with
the SNMP Agent for SNMP trap messages.

nx_snmp_agent_community_get(NX_SNMP_
AGENT *agent_ptr, UCHAR
**community_string_ptr);

Retrieve the community string from the SNMP manager
GET or GETNEXT request. The SNMP Agent should
compare that to its own community string (see the
nx_snmp_agent_public_string_test API description).

nx_snmp_agent_context_engine_set(NX_SN
MP_AGENT *agent_ptr, UCHAR
*context_engine, UINT context_engine_size);

Set the context engine ID of the SNMP Agent. Must
specify the size of the ID string. Only used in SNMPv3
to identify the Agent to the SNMP Manager.

nx_snmp_agent_context_name_set(NX_SN
MP_AGENT *agent_ptr, UCHAR
*context_name, UINT context_name_size);

Set the context name of the SNMP Agent. This string
must be null terminated and the size of the name must
be specified. This name must be known to the SNMP
Manager. Only used in SNMPv3.

nx_snmp_agent_create(NX_SNMP_AGENT
*agent_ptr, CHAR *snmp_agent_name, NX_IP
*ip_ptr, VOID *stack_ptr, ULONG stack_size,
NX_PACKET_POOL *pool_ptr,
UINT (*snmp_agent_username_process)(struct
NX_SNMP_AGENT_STRUCT *agent_ptr,
UCHAR *username),

UINT (*snmp_agent_get_process)(struct
NX_SNMP_AGENT_STRUCT *agent_ptr,
UCHAR *object_requested,
NX_SNMP_OBJECT_DATA *object_data),

UINT (*snmp_agent_getnext_process)(struct
NX_SNMP_AGENT_STRUCT *agent_ptr,
UCHAR *object_requested,
NX_SNMP_OBJECT_DATA *object_data),

UINT (*snmp_agent_set_process)(struct
NX_SNMP_AGENT_STRUCT *agent_ptr,
UCHAR *object_requested,
NX_SNMP_OBJECT_DATA *object_data));

Create the SNMP Agent and set the Agent thread task
size, packet pool for transmitting SNMP messages, and
user defined callbacks for handling GET, GETNEXT,
SET and username requests.

nx_snmp_agent_current_version_get(NX_S
NMP_AGENT *agent_ptr, UINT *version);

Obtain the current version of SNMP based on the last
message received.

nx_snmp_agent_delete(NX_SNMP_AGENT
*agent_ptr);

Delete the previously created SNMP agent.

nx_snmp_agent_md5_key_create(NX_SNMP
_AGENT *agent_ptr, UCHAR *password,
NX_SNMP_SECURITY_KEY *destination_key);

Create a key based on a supplied password and SNMP
Agent context engine ID using the MD5 algorithm. This
key can be used for authentication or encryption.

nx_snmp_agent_privacy_key_use(NX_SNMP
_AGENT *agent_ptr,
NX_SNMP_SECURITY_KEY *key);

Register a previously created security key with the
SNMP Agent for encrypting and decrypting SNMPv3
messages.

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 5 of 29
Oct 24, 2018

API Call Example Description
nx_snmp_agent_priv_trap_key_use(NX_SN
MP_AGENT *agent_ptr,
NX_SNMP_SECURITY_KEY *key);

Register a previously created security key with the
SNMP Agent for encrypting SNMPv3 trap messages.

nx_snmp_agent_private_string_set(NX_SNM
P_AGENT *agent_ptr, UCHAR *private_string);

Register a null terminated privacy string to the SNMP
Agent. Only used in SNMP1 and SNMPv2.

nx_snmp_agent_private_string_test(NX_SN
MP_AGENT *agent_ptr, UCHAR
*community_string, UINT *is_private);

The SNMP Agent compares the privacy string in a SET
request with the its own privacy string to determine if
the SET request will be permitted.

nx_snmp_agent_public_string_set(NX_SNM
P_AGENT *agent_ptr, UCHAR *public_string);

Register a null terminated public string to the SNMP
Agent. Only used in SNMP1 and SNMPv2.

nx_snmp_agent_public_string_test(NX_SNM
P_AGENT *agent_ptr, UCHAR
*community_string, UINT *is_public);

The SNMP Agent compares the public string in a GET
or GETNEXT request with the its own public string to
determine if the request will be permitted.

nx_snmp_agent_request_get_type_test(NX_
SNMP_AGENT *agent_ptr, UINT *is_get_type);

Determine if the last SNMP packet received was a
GET, GETNEXT, or GET_BULK_REQUEST request
type (returns TRUE) or a SET request (returns FALSE).
Intended for use in the username callback for type of
request received and checking public or private strings
in the request message.

nx_snmp_agent_set_interface(NX_SNMP_A
GENT *agent_ptr, UINT if_index);

Determine on which network interface to run the SNMP
Agent protocol. The default interface is the primary (0)
interface.

nx_snmp_agent_sha_key_create(NX_SNMP_
AGENT *agent_ptr, UCHAR *password,
NX_SNMP_SECURITY_KEY *destination_key);

Create a key based on a supplied password and SNMP
Agent context engine ID using the SHA1 algorithm.
This key can be used for authentication or encryption.

nx_snmp_agent_start(NX_SNMP_AGENT
*agent_ptr);

Start the SNMP Agent thread task. This task waits to
receive SNMP messages and formulates the response
to the SNMP Manager.

nx_snmp_agent_stop(NX_SNMP_AGENT
*agent_ptr);

Stop the SNMP Agent thread task. The SNMP Agent
thread can be restarted by calling the
nx_snmp_agent_start API.

nx_snmp_agent_trap_send(NX_SNMP_AGE
NT *agent_ptr, ULONG ip_address, UCHAR *
community, UCHAR *enterprise, UINT
trap_type, UINT trap_code, ULONG
elapsed_time, NX_SNMP_TRAP_OBJECT
*object_list_ptr);

Send a trap message in SNMPv1. This does not result
from a request from the SNMP Manager. The SNMP
application sends out traps as needed.

nx_snmp_agent_trapv2_send(NX_SNMP_AG
ENT *agent_ptr, ULONG ip_address, UCHAR
*community, UINT trap_type, ULONG
elapsed_time, NX_SNMP_TRAP_OBJECT
*object_list_ptr);

Send a trap message in SNMPv2. This does not result
from a request from the SNMP Manager. The SNMP
application sends out traps as needed.

nx_snmp_agent_trapv3_send(NX_SNMP_AG
ENT *agent_ptr, ULONG ip_address, UCHAR *
username, UINT trap_type, ULONG
elapsed_time, NX_SNMP_TRAP_OBJECT
*object_list_ptr);

Send a trap message in SNMPv3. This does not result
from a request from the SNMP Manager. The SNMP
application sends out traps as needed. Both the SNMP
agent and browser must previously agree on the
security (authentication and encryption) settings.

nx_snmp_agent_trapv2_oid_send(NX_SNMP
_AGENT *agent_ptr, ULONG ip_address,
UCHAR *community, UCHAR *oid, ULONG
elapsed_time, NX_SNMP_TRAP_OBJECT
*object_list_ptr);

Send a trap message in SNMPv2. This differs from
nx_snmp_agent_trapv2_send in that it allows the caller
to specify the OID directly.

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 6 of 29
Oct 24, 2018

API Call Example Description
nx_snmp_agent_trapv3_oid_send(NX_SNMP
_AGENT *agent_ptr, ULONG ip_address,
UCHAR * username, UCHAR *oid, ULONG
elapsed_time, NX_SNMP_TRAP_OBJECT
*object_list_ptr);

Send a trap message in SNMPv3. This differs from
nx_snmp_agent_trapv3_send in that it allows the caller
to specify the OID directly.

nx_snmp_agent_v3_context_boots_set(NX_
SNMP_AGENT *agent_ptr, UINT boots);

Set the number of times the SNMP Agent has rebooted
since the last communication with the SNMP Manager.
Used in SNMPv3 only.

nx_snmp_agent_version_set(NX_SNMP_AG
ENT *agent_ptr, UINT enabled_v1, UINT
enable_v2, UINT enable_v3);

Determine which type of SNMP packets the SNMP
Agent will process. The application can choose V1, V2
and/or V3. Packets received from which the SNMP
Agent is not enabled are dropped.

**nxd_snmp_agent_trap_send(NX_SNMP_A
GENT *agent_ptr, NXD_ADDRESS
*ip_address, UCHAR *community, UCHAR
*enterprise, UINT trap_type, UINT trap_code,
ULONG elapsed_time,
NX_SNMP_TRAP_OBJECT *object_list_ptr);

Send a trap message in SNMPv1 over IPv6. Note that
this takes an NXD_ADDRESS *ip_address instead of
ULONG ip_address.

**nxd_snmp_agent_trapv2_send(NX_SNMP_
AGENT *agent_ptr, NXD_ADDRESS
*ip_address, UCHAR * community, UINT
trap_type, ULONG elapsed_time,
NX_SNMP_TRAP_OBJECT *object_list_ptr);

Send a trap message in SNMPv2. Note that this takes
an NXD_ADDRESS *ip_address instead of ULONG
ip_address. The ip_address is the destination IP
address of the trap message.

**nxd_snmp_agent_trapv3_send(NX_SNMP_
AGENT *agent_ptr, NXD_ADDRESS
*ip_address, UCHAR *username, UINT
trap_type, ULONG elapsed_time,
NX_SNMP_TRAP_OBJECT *object_list_ptr);

Send a trap message in SNMPv3. Note that this takes
an NXD_ADDRESS *ip_address instead of ULONG
ip_address. The ip_address is the destination IP
address of the trap message.

**nxd_snmp_agent_trapv2_oid_send(NX_SN
MP_AGENT *agent_ptr, NXD_ADDRESS
*ip_address, UCHAR *community, UCHAR *oid,
ULONG elapsed_time,
NX_SNMP_TRAP_OBJECT *object_list_ptr);

Send a trap message in SNMPv2. Note that this takes
an NXD_ADDRESS *ip_address instead of ULONG
ip_address. The ip_address is the destination IP
address of the trap message.

**nxd_snmp_agent_trapv3_oid_send(NX_SN
MP_AGENT *agent_ptr, NXD_ADDRESS
*ip_address, UCHAR * username, UCHAR *oid,
ULONG elapsed_time,
NX_SNMP_TRAP_OBJECT *object_list_ptr);

Send a trap message in SNMPv3. Note that this takes
an NXD_ADDRESS *ip_address instead of ULONG
ip_address. The ip_address is the destination IP
address of the trap message.

**Not available in NetX SNMP Agent.
For all API referencing a user name, see the discussion in section Usernames in SNMP in Section 3
for more details about community and security user names in SNMP.

The following API calls are for processing data items into the SNMP Agent response. The snmp_mib_helper.h file in
the module guide project defines the Management Information Base (MIB) database used in this project. It uses these
functions for setting the value of each object in the MIB database.

API Call Example Description
nx_snmp_object_copy(UCHAR
*source_object_name, UCHAR
*destination_object_name);

This copies the string pointed to by source_object_name into
the destination_object_name buffer (typically a trap
message).

nx_snmp_object_counter_get(VOID
*source_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This extracts the counter data from the location pointed to by
source_ptr into the object data. Also used internally to copy
internal counters of SNMPv3 statistics into error messages in
SNMPv3 messages.

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 7 of 29
Oct 24, 2018

API Call Example Description
nx_snmp_object_counter_set(VOID
*destination_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This sets the value of data extracted from the object_data into
the location pointed to by the destination_ptr.

nx_snmp_object_counter64_get(VOI
D *source_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This extracts the counter data from the location pointed to by
source_ptr into the object data. The difference with
nx_snmp_object_counter_get is the value is 64 bits instead of
32 bits in size.

nx_snmp_object_counter64_set(VOI
D *destination_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This sets the value of data extracted from the object_data into
the location pointed to by the destination_ptr. The difference
with nx_snmp_object_counter_set is the value is 64 bits
instead of 32 bits in size.

nx_snmp_object_compare(UCHAR
*requested_object, UCHAR
*reference_object);

This compares the two input objects and if equal returns
NX_SUCCESS.

nx_snmp_object_end_of_mib(VOID
*not_used_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This appends an END_OF_MIB_VIEW macro as the input
object’s value. This signals the end of the MIB. See the
snmp_mib_helper.h for an example.

nx_snmp_object_gauge_get(VOID
*source_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This sets the input object to type SNMP GAUGE and places
the value pointed to by the source_ptr into the object value.

nx_snmp_object_gauge_set(VOID
*destination_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This verifies the input object is an SNMP GAUGE data type,
and extracts the value into the location pointed to by the
destination pointer.

nx_snmp_object_id_get(VOID
*source_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This function retrieves the object ID from the specified source
location and writes it into the object data value.

nx_snmp_object_id_set(VOID
*destination_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This function retrieves the ASCII string from the input object
and writes it to the area pointed to by the destination pointer.

nx_snmp_object_integer_get(VOID
*source_ptr,
NX_SNMP_OBJECT_DATA
*object_data)

This retrieves the object integer from the specified source
location and stores it to the object data.

nx_snmp_object_integer_set(VOID
*destination_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This retrieves the integer from the input object and places it in
the destination.

nx_snmp_object_ip_address_get
(VOID *source_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This retrieves the IP address from the specified source
location and stores it to the object data.

nx_snmp_object_ip_address_set
(VOID *destination_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This retrieves the IP address from the input object and places
it in the destination.

**nx_snmp_object_ipv6_address_ge
t (VOID *source_ptr,

This retrieves the IPv6 address from the specified source
location and stores it to the object data.

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 8 of 29
Oct 24, 2018

API Call Example Description
NX_SNMP_OBJECT_DATA
*object_data);
**nx_snmp_object_ipv6_address_se
t (VOID *destination_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This retrieves the IPv6 address from the input object and
places it in the destination.

nx_snmp_object_octet_string_get
(VOID *source_ptr,
NX_SNMP_OBJECT_DATA
*object_data, UINT length);

This retrieves the string data from the specified source
location and stores it to the object data.

nx_snmp_object_octet_string_set
(VOID *destination_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This retrieves the string from the input object and places it in
the destination.

nx_snmp_object_no_instance(VOID
*not_used_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This function places a no-instance value
(NX_SNMP_ANS1_NO_SUCH_INSTANCE) in the object
data.

nx_snmp_object_not_found(VOID
*not_used_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This function places a not-found value
(NX_SNMP_ANS1_NO_SUCH_OBJECT) in the object data.

nx_snmp_object_string_get(VOID
*source_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This function retrieves the ASCII string from the specified
source location and stores it to the object data.

nx_snmp_object_string_set(VOID
*destination_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This retrieves the ASCII string from the input object and
stores it to the destination.

nx_snmp_object_timetics_get(VOID
*source_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This function retrieves the data of type timer ticks from the
specified source location and stores it to the object data.

nx_snmp_object_timetics_set(VOID
*destination_ptr,
NX_SNMP_OBJECT_DATA
*object_data);

This retrieves the timer tick from the input object and stores it
to the destination.

**Not available in NetX SNMP Agent.
Note: For more detailed descriptions of operation and definitions for the function data structures, typedefs, defines,

API data, API structures and function variables, review the associated Express Logic User’s Manual accessible
as described in the Reference section at the end of this document.

Table 2 Error Status Return Values

Name Description
NX_SUCCESS API Call Successful
NX_PTR_ERROR* Invalid input pointer parameter
NX_SNMP_UNSUPPORTED_AUTHENTICATION* The authentication key is of an unknown or

unsupported type (for example, not MD5 or SHA).
NX_SNMP_INVALID_PDU_ENCRYPTION* The encryption key is of an unknown or

unsupported type (for example, not MD5 or SHA).
NX_IP_ADDRESS_ERROR* IP address supplied in a trap send API is null or

invalid.

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 9 of 29
Oct 24, 2018

NX_SNMP_ERROR Internal processing error, such as, not able to
append data into the SNMP response.

NX_NOT_ENABLED SNMP Agent is not enabled with the correct
security settings for certain operations such as
sending messages or processing authentication
and encryption keys.

NX_SNMP_ERROR_TOOBIG Data exceeds the size of the response buffer or
exceed the allowable size of the parameter for
example, NX_SNMP_MAX_USER_NAME.

**NX_SNMP_INVALID_IP_PROTOCOL_ERROR An IPv6 address is received in a trap send API but
the NetX Duo library is not enabled for IPv6.

Note: Internal NetX operations may return Common Error Codes. See the SSP Reference Manual listed in the
Reference Section at the end of this document for a definition of all relevant Error codes.

*These are error codes that are only returned if error checking is enabled. See the NetX User Guide for the Renesas
Synergy™ Platform for more details on error checking services in NetX.

**These error codes do not apply to NetX SNMP Agent.

2. NetX Duo SNMP Agent Operational Overview
The SNMP Agent module makes use of the underlying NetX/NetX Duo stack to perform operations, along with NetX
MD5, NetX SHA1, and NetX DES modules for authentication and encryption in SNMP v3 operation.

The reader must be familiar with the general use of SNMP and how OID strings are constructed to describe object
databases. If not, there are abundant sources online for the lengthy introduction of how SNMP works and what MIB
trees are for describing data set. This document explains how NetX supports SNMP Agent and how to implement the
NetX Duo SNMP Agent application.

The NetX Duo SNMP Agent requires a previously created NetX IP instance and a packet pool to send SNMP messages
and traps to the SNMP manager. The packet pool can be the same one used by the IP instance or a separate packet pool.
Whichever packet pool is used by the SNMP Agent, it must have a payload large enough for SNMP responses which
can be quite large, particularly for responding to a GETBULK request. The recommended packet payload is the device
MTU (typically 1518 bytes). Because the NetX Duo SNMP Agent utilizes UDP services, UDP must be enabled on the
IP instance.

Synergy auto-generated code creates the IP instance, packet pool(s), SNMP Agent instance, and enables UDP.

The SNMP Agent module is created and the community read and write usernames (public and private, respectively) are
registered to the SNMP Agent by the auto generated code, if Auto Initialization property is enabled (default is enabled).
Otherwise, the application creates it with the nx_snmp_agent_create API and sets the community strings with the
nx_snmp_agent_public_string_set and nx_snmp_agent_private_string_set APIs. With SNMP creation, the user defined
callback functions for handling Username, GET, GETNEXT, or SET requests are registered with the SNMP Agent, and
the Agent can verify the identity of the SNMP Manager with the community strings (in SNMPv2 at least). The SNMP
Properties section and Explanation of the Example MIB Table section provide more detail about the handlers and how
they access an MIB database.

SNMP protocol has three versions, version 1 which is virtually out of date, version 2, and version 3 which has
authentication and encryption security. NetX Duo SNMP Agent supports all versions. By default, it is enabled for all
three so it can respond to SNMPv1, v2, or v3 queries. To modify this, the application can call the
nx_snmp_agent_version_set API to enable or disable each protocol separately.

SNMP also requires an MIB database that associates object data with user defined functions for accessing or setting the
specified data. The SNMP project in this module guide comes with a simple MIB database in the snmp_mib_helper.h
file which the developer can use as is or customize for their own MIB database.

The application thread entry function need only wait for the network link to be enabled using the nx_ip_status_check
API. SNMP set up is complete, assuming SNMPv3 security is not required. SNMPv3 security is described in more
detail in the SNMPv3 Security section below. After the network is enabled, the SNMP Agent can be started and start
listening for and responding to SNMP Manager queries. The application can send trap messages directly to the SNMP
Manager as needed (no request from the SNMP Manager required).

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 10 of 29
Oct 24, 2018

2.1 SNMP Data Types
IPv4 addresses are handled as ULONG data types. IPv6 addresses are, however, handled as octet strings. This is
because of the complexity of the IPv6 128 addressing with the optional ‘::’ formatting to eliminate one or more zero
bytes. Formatting IPv6 octet strings into the full 128 bits array is left to the application callback functions.

SNMP Agent supports 64 data types (counter64 data type) and long form integers. A long form integer is where the
length of the integer cannot be contained in 1 byte. These are relatively rare. More information about Type Length
Variable (TLV) processing of integers in ASN1 BER can be found in most SNMP text books or numerous sources
online (https://en.wikipedia.org/wiki/X.690#BER_encoding).

Octet strings must have a defined length in the MIB table (stored in the length table of the module guide project in
snmp_mib_helper.h). Unlike string types which are delimited by the null (0x0) character, octet strings are not delimited.
Therefore, the callback functions for setting and getting data into and out of the MIB table respectively save the current
data size. This will be explained in more specific detail in the “Explanation of the Example MIB Table” section
elsewhere in this document.

2.2 SNMPv3 Security
SNMPv3 by itself is a complex subject. Entire books have been written on the subject. This document assumes that the
reader has a basic understanding of authentication and encryption (sometimes referred to as privacy) security settings in
SNMPv3.

The SNMP Agent needs additional setup compared with SNMPv1 or SNMPv2. It needs to set the engine boot count,
(the agent is referred to as the ‘engine’ and boot means number of times rebooted since its last SNMP session). It also
needs to set the engine context ID, which is an octet string of user defined size.

To enable authentication, the application creates an authentication key using either the MD5 or SHA key type. All keys
require a password. If the key is successfully created, it must be registered to the SNMP Agent.

If privacy security is desired, the application must create privacy key, using either the MD5 or SHA key type. All keys
require a password. If the key is successfully created, it must be registered to the SNMP Agent.

Note: Privacy security requires authentication security to be enabled, while authentication does not require privacy
security to be enabled.

Traps in SNMPv3 can also enable authentication and privacy and require yet another set of keys. Traps need not have
the same security as the SNMP Agent responses. For example, the SNMP Agent may require authentication of
SNMPv3 requests and responses, while SNMPv3 traps may be sent with no security.

When the SNMP Manager wishes to contact the SNMP Agent using SNMPv3, there is a discovery protocol where it
sends a simple query with all encryption and authentication parameters in the SNMP v3 header set to NULL. The
SNMP Agent sends a report with only its context engine ID set. The Manager responds with a getnext query with the
boot count and engine boot time set, plus its user name, and its authentication and privacy parameters, if such security is
enabled, filled in. The SNMP Agent then confirms the handshake with a response message and its own engine ID, boot
count, and boot time filled in and, if enabled, the authentication and privacy parameters. At this point, the SNMP Agent
is ready to handle Manager requests and the Manager will accept SNMPv3 traps from the SNMP Agent.

Note: The Manager and Agent security settings must match. If one uses only Authentication, the other can only use
Authentication. And they must use the same key type and same password for computing the security parameters.

Even if this is all handled, this handshake can sometimes be tricky depending on the quality of the SNMP Manager.
Most of them are not expecting the SNMP Agent to be in a development process, so they expect a sequential increase of
the boot count with each SNMP session, and accurate update of engine boot time (within 150 seconds of what the
SNMP Manager expects to be the boot time). This is not always practical for testing and debugging the SNMP Agent
applications. Depending on the SNMP Manager tool, sometimes the easiest solution is to restart both Agent and
Manager so that time and boot count is reset to zero.

https://en.wikipedia.org/wiki/X.690%23BER_encoding

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 11 of 29
Oct 24, 2018

2.3 Usernames in SNMP
SNMPv1 and SNMPv2: For getting (reading) data from the MIB table, the SNMP Agent/Browser have a shared
community string, which defaults to “public” in this module guide project. For setting (writing) data into the MIB table,
the SNMP Agent/Browser have a shared private string, which defaults to “private” in this module guide project. For
trap messages, the third input, UCHAR *community should be the same as the public (community) string registered
with the SNMP Agent.

Public and private strings can be set by calling the nx_snmp_agent_private_string_set and
nx_snmp_agent_public_string_set API.

SNMPv3: When the SNMP Agent receives a request from the SNMP Manager, internally it calls its
snmp_agent_username_process callback as it processes the SNMP request. This callback should compare the security
name received from the SNMP Manager/browser against its own security name. If they don’t match, the username
callback should return an error. The API for sending trap messages has a username input as the third input, UCHAR
*username. This should be set to the SNMP security name. Currently there is no direct way to access the SNMP Agent
security name. In the module guide project, the nxd_snmp_agent_trapv3_oid_send accesses the security name directly
for the UCHAR *username input:
nx_snmp_agent_trapv3_send(snmp_ptr, mib_address,
 (UCHAR *)&snmp_ptr -> nx_snmp_agent_v3_security_user_name[0],
 SNMP_TRAP_COLDSTART, temp, &trap_list[0]);

2.4 Error Reports
Error reports are sent out by the SNMP Agent if the SNMPv3 handshake fails.

Errors in SNMPv2 or SNMPv3 in processing data received from the SNMP Manager, or creating the response to the
query result in the SNMP Agent response containing the error information added to the object list in the message body
with a non-zero error-index, and error-status indicating error type. Normally, error-index is zero and error-status is
“noError” as shown in the packet trace detail below.

2.5 SNMP Manager
This project was developed using MG-Soft for the reasonably priced, not too complex SNMP Manager tool. There are
other SNMP Manager tools but some are quite complex (industrial level) and are 70 MB or more in size. SNMP
Manager ‘freeware’ do not always support SNMPv3 protocol to the letter.

Set up the Manager to use the same authentication (enabled/disabled, and same key type MD5 or SHA). Same is the
case with encryption, if enabled. For Trap security, these require a separate set of keys. It is recommended to use the
same key type for traps. Viewers discretion is recommended for using same passwords.

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 12 of 29
Oct 24, 2018

2.6 NetX Duo SNMP Agent Important Operational Notes and Limitations
NetX Duo SNMP Agent features are as follows:

• The NetX Duo SNMP Agent is compliant with RFC1155, RFC1157, RFC1215, RFC1901, RFC1905, RFC1906,
RFC1907, RFC1908, RFC2571, RFC2572, RFC2574, RFC2575, RFC 3414, and related RFCs. RFC 3414 defines
SNMPv3.

• The SNMP Agent does not have Datagram Transport Layer Security (DTLS) support.
• The NetX Duo SNMP Agent supports SNMP version 1, 2, and 3. The SNMPv3 implementation supports MD5 and

Secure Hash Algorithm 1 (SHA-1) authentication, and Data Encryption Standard (DES) encryption.
• Provides a mechanism to register callbacks for handling Get Username, GET, SET, GETNEXT requests when

creating an SNMP agent.

A Few Comments about SNMP Agent Properties

Section 6 has more details on the recommended settings of the SNMP Agent. However, there are a few properties which
require some discussion.

• UDP port number - The SNMP Agent socket is bound to the port defined in this property. By default, it is set to
161. To send traps, it should send the Trap Destination Port. By default, this is set to 162.

• SNMP Version [x] - To disable any of the SNMP versions, set the SNMP Version [x] properties accordingly. At
run time, enabling or disabling versions is accomplished by calling the nx_snmp_agent_version_set API.

• Minimum SNMP packet size - This is somewhat misnamed in that it allows the SNMP Agent to specify to the
SNMP Manager the maximum size SNMPv3 message it can send or receive. All SNMPv3 implementations must
support at least 484 bytes. This should be based on the packet pool payload used by the SNMP Agent. If the payload
is 1518 bytes, there should be 1518 bytes – IP header – UDP header for SNMP message including the header, or
1518 – 54 = 1474 bytes.

• Max User Name Size - This is the limit on the size of the public string, also referred to as the community string.
Used in SNMPv2 for how the SNMP Manger identifies itself to the SNMP Agent.

For SNMPv3 only
• Max trap Key Size - Size of trap security key. There is usually no reason to change the default value of 64.
• Max security Key Size - Size of SNMP agent security key. There is usually no reason to change the default value

of 64.
• Max trap Name Size - This property is not in use.
• Max context string size - This is the size limit on the context engine ID, which is part of the Global data in the

SNMPv3 header.
• Interval between SNMP packet processing (timer ticks) - This property is not in use.

Common properties
• Read Community String - Set the public string (defaults to “public”) and use to verify the SNMP Manager Get

requests to read from MIB data.
• Write Community String - Set the private string (defaults to “private”) and use to verify the SNMP Manager Set

requests to write to MIB data.
• SNMP agent instance id - This property is not in use.
• Name of generated initialization function - This defaults to snmp_agent_init0 and is called if Auto Initialization

is enabled. It can be replaced with a user defined function. Alternatively, if Auto Initialization is disabled, the
creation of the SNMP Agent must be done by the application.

• Auto Initialization - If this is set to disabled, the application must create the NetX Duo SNMP Agent, and set the
public and private strings.

• Handler functions - Each type of query for data in the MIB database requires user-defined callback function. For
the GET Request handler, the callback function takes as input a pointer to the SNMP agent, an object requested (a
string comprising the OID of the object), and an object into which to store the data. These callback functions are
defined in the list of API in Section 2. A more detailed explanation of how the handlers work is provided in the
Explanation of the Example MIB Table section below.

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 13 of 29
Oct 24, 2018

2.6.1 Explanation of the Example MIB Table
The module guide comes with a small MIB defined in the snmp_mib_helper.h file. It defines the MIB table structure,
and populates it with entries, each with a unique OID and get/set function as appropriate. The Get, GetNext, and Set
callback functions assigned to the SNMP agent locate the OID in the table, and invoke the Get or Set function
depending on whether the SNMP query type is GET or SET. The SNMP Agent Get/Set function, in turn, retrieves or
sets the data in the MIB database. An example is as follows:

1. The SNMP Agent thread task receives a GET request from the SNMP Manager.
2. It calls the GET request callback registered to it such as, mib_get_processing. The application must define this

function as follows:
UINT mib2_get_processing(NX_SNMP_AGENT *agent_ptr,

 UCHAR *object_requested,

 NX_SNMP_OBJECT_DATA *object_data)

This is the general structure of the example MIB table in snmp_mib_helper.h:
typedef struct MIB_ENTRY_STRUCT

{

 UCHAR *object_name;

 void *object_value_ptr;

 UINT (*object_get_callback)(VOID *source_ptr,

 NX_SNMP_OBJECT_DATA *object_data);

 UINT (*object_set_callback)(VOID *destination_ptr,

 NX_SNMP_OBJECT_DATA *object_data);

} MIB_ENTRY;

 Following is a typical entry in the MIB table:
{(UCHAR *) "1.3.6.1.2.1.3.1.1.2.0",

 &atPhysAddress[0],

 nx_snmp_object_octet_string_get,

 nx_snmp_object_octet_string_set,

 0},

The first field is the object name, which in SNMP parlance is the OID string. The second field is the value of the
OID, which is also defined in the snmp_mib_helper.h:
UCHAR atPhysAddress[] = {0x00,0x04,0xac,0xe3,0x1d,0xc5};

 /* atPhysAddress:OctetString RW */

The next two fields are the get and set handler function pointers. In this case the data is read/write, and the caller
should use the nx_snmp_object_octet_string_get and nx_snmp_object_octet_string_set to retrieve data from and
write data into the MIB database respectively.

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 14 of 29
Oct 24, 2018

3. The mib2_get_processing() performs the following logic for a GET query:
A. Go through the list of MIB objects in the mib2_mib table.
B. Compare the UCHAR *object_requested with each object name (also an OID string) in the mib2_mib table [for

example, object_name = "1.3.6.1.2.1.3.1.1.2.0"].
C. If not found, return a non-zero error status to the caller (SNMP Agent thread task). The SNMP Agent will then

respond by sending the SNMP Manager an error message.
D. If found, determine if there is a read function for that object in the mib2_mib table

(mib2_mib[i].object_get_callback is nx_snmp_object_octet_string_get() in this case).
E. Call the SNMP callback function for reading an octet string, nx_snmp_object_string_get, with a pointer to the

data source, in this case the value of the object [object_value_ptr] and a pointer to the destination object to store
it to:
status = (mib2_mib[i].object_get_callback)(mib2_mib[i].object_value_ptr,

 object_data);

The above line corresponds to this API call:
nx_snmp_object_octet_string_get(mib2_mib[i].object_value_ptr,

 object_data);

F. Return success or failure if able to perform the GET. If successful, the SNMP Agent sends a response message
with no errors to the SNMP Manager.

The only difference for a SET request is that before calling the write function for octet strings,
nx_snmp_object_octet_string_set, the set handler (set_mib_processing) applies the length of the octet string (if the
object is an OCTET STRING type) to the object:
 if (object_data -> nx_snmp_object_data_type ==
NX_SNMP_ANS1_OCTET_STRING)
 {
 mib2_mib[i].length = object_data ->
nx_snmp_object_octet_string_size;
 }

Then it calls the write function

status = (mib2_mib[i].object_set_callback)(mib2_mib[i].object_value_ptr,
 object_data);

The reference to “mib2” in the user-defined handler names comes from the RFC 1213 specification, which redefined
the Management Information Base for SNMP to MIB-II.

2.7 NetX Duo SNMP Agent Limitations
This version of the NetX Duo SNMP Agent has the following constraints:
• No support for RMON
• SNMP v3 Inform messages are not supported
• SNMP Agent does not support OPAQUE or NSAP data types
• There is no IPv6 data type yet in SNMP. IPv6 addresses are taken as is in the octet string data type. Formatting

IPv6 octet strings into the full 128 bits array is left to the application callback functions.

3. Including the NetX Duo SNMP Agent in an Application
This section describes how to include the NetX Duo SNMP Agent in an application using the SSP configurator.

Note: This section assumes that you are familiar with creating a project, adding threads, adding a stack to a thread
and configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few
chapters in the SSP User’s Manual to learn how to manage each of these important steps in creating SSP based
applications.

To add the NetX Duo SNMP Agent to an application, simply add it to a thread using the Stacks Selection Sequence
given in the table below. (The default name for the NetX Duo SNMP Agent is g_snmp_agent0 and this is shown in the
below table. This name can be changed in the associated Properties window).

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 15 of 29
Oct 24, 2018

Resource ISDE Tab Stacks Selection Sequence
g_snmp_agent0 NetX SNMP Agent Threads New Stack> X-Ware> NetX> Protocols> NetX

SNMP Agent
g_snmp_agent0 NetX Duo SNMP
Agent

Threads New Stack> X-Ware> NetX Duo> Protocols>
NetX Duo SNMP Agent

When the NetX Duo SNMP Agent is added to the Thread Stack, as shown in the following figure, the configurator
automatically adds the needed lower level drivers. Any drivers that need additional configuration information will be
box text highlighted in red. Modules with a gray band are individual modules that stand alone. Modules with a blue
band are shared or common and need only be added once, since they can be used by multiple stacks. Modules with a
pink band can require the selection of lower level drivers. Sometimes these are optional or recommended and this is
indicated in the block with the inclusion of this text. If the addition of lower level drivers is required, the module
description will include “Add” in the text. Clicking on any pink banded modules will bring up the “New” icon and then
will show the possible choices.

The SNMP Agent needs a packet pool for its creation. Select the Add NetX Packet Pool with the pink band connected
to the NetX Duo SNMP Agent block. Choose to use the same packet pool created for the NetX IP instance,
g_packet_pool0. This is shown in the following figure. Or, choose to create a new packet pool and fill in the properties
box to specify size of payload and number of packets. If choosing this option, the packet pool block directly below the
SNMP Agent element in the following figure would indicate a different packet pool, g_packet_pool1 by default.

Figure 3 NetX SNMP Agent Stack

Figure 4 NetX Duo SNMP Agent Stack

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 16 of 29
Oct 24, 2018

4. Configuring the NetX Duo SNMP Agent Module
The NetX Duo SNMP Agent module must be configured by the user for the desired operation. The SSP configuration
window will automatically identify, by highlighting the block in red, any required configuration selections, such as
Interrupts or operating modes, which must be configured for lower level modules, for successful operation. Furthermore,
only those properties that can be changed without causing conflicts are available for modification. Other properties are
‘locked’ and not available for changes and are identified with a lock icon for the ‘locked’ property in the Property window
in the ISDE. This approach simplifies the configuration process and makes it much less error prone than previous ‘manual’
approaches to configuration. The available configuration settings and defaults for all the user accessible properties are
given in the properties tab within the SSP Configurator, and are shown in the following tables for easy reference.

One of the properties most often identified as requiring a change is the Interrupt Priority. This configuration setting is
available with the Properties window of the associated module. Simply select the indicated module and then view the
properties window. The Interrupt settings are often toward the bottom of the properties list, so scroll down until they
become available. Also, the Interrupt Priorities listed in the properties window in the ISDE will include an indication as
to the validity of the setting based on the MCU targeted (CM4 or CM0+). This level of detail is not included in the
following configuration properties tables, but is easily visible with the ISDE when configuring Interrupt Priority levels.

Note: You may want to open your ISDE and create the NetX Duo SNMP Agent and explore the property settings in
parallel with looking over the Configuration Table Settings that follow. This will help orient you and can be a
useful ‘hands-on’ approach to learning the ins and outs of developing with SSP.

Table 3 Configuration Settings for NetX Duo SNMP Agent
ISDE Property Setting Description
Properties common to all SNMP instances in a project
Internal thread stack
size (bytes)*

4096 SNMP Agent Thread stack size. Larger
than most NetX application thread stacks
but this is a very large implementation.

SNMP agent priority* 3
Default: 16

SNMP Agent Thread task priority It should
be set to a lower priority than the IP
thread task priority. A lower priority means
a higher priority number with 1 being the
highest assignable priority. If the IP
instance is set to 3, the SNMP Agent
thread should be assigned to 4 or lower
depending on the application
requirements.

Type of service for
SNMP responses

Normal SNMP Agent UDP Socket service type

Fragment enable for
SNMP PDU requests

Don’t Fragment Indicate to the SNMP Manager if it is ok to
send fragmented packets. Usually not
recommended for the high overhead of
processing and potential for draining
packet pools down.

SNMP Socket time to
live

128 NMP socket time to live selection

Agent timeout (timer
ticks)

100 Time out for internal operations such as
allocating packets

Max octet string size
(bytes)

255 Maximum length of an OID octet string

Max context string size
(bytes)

32 Maximum length for the context engine
string. This is how the SNMP agent
identifies itself in SNMPv3.

Maximum User name
Size (bytes)

64 Maximum length of user name. This is
how the SNMP agent identifies itself in
SNMPv2.

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 17 of 29
Oct 24, 2018

ISDE Property Setting Description
Max security Key Size
(bytes)

64 Maximum length of either authentication
or encryption key in SNMPv3

Minimum SNMP packet
size (bytes)

560 This is the maximum message size
advertised by packets sent by the SNMP
Agent to the browser.

UDP port number 161 Socket port for the SNMP Agent socket to
bind to

Trap destination port 162 Destination port for the SNMP Agent trap
messages to the SNMP Manager

Max trap Name Size NA No longer in use

Max trap Key Size NA No longer in use

Interval between SNMP
packet processing timer
ticks

NA No longer in use

SNMP Version 1 Enabled SNMP agent is set to Enabled for SNMP
Version 1

SNMP Version 2 Enabled SNMP agent is set to Enabled for SNMP
Version 2

SNMP Version 3 Enabled SNMP agent is set to Enabled for SNMP
Version 3

Properties specific to each instance of SNMP Agent*
Name g_snmp_agent0 Name of the SNMP instance
Read Community String public ‘User name’ to identify the SNMP

Manager to the SNMP Agent for requests
for reading data from the MIB in SNMPv2.

Write Community String private ‘User name’ to identify the SNMP
Manager to the SNMP Agent for requests
for writing data to the MIB in SNMPv2.

Name of SNMP
Username* Handler

mib2_username_processin
g (Default:
sf_snmp0_username_handler)

This is a user defined callback function
pointer registered with the SNMP Agent
when it is created. It is used to verify the
username (or community string) in the
requests received from the SNMP
Manager.

Name of SNMP GET
Handler*

mib2_get_processing
(Default:
sf_snmp0_get_handler)

This is a user defined callback function
pointer registered with the SNMP Agent
when it is created. It is used to find the
object specified in a GET request from the
SNMP Manager and fill in the data for that
object from the MIB.

Name of SNMP
GETNEXT Handler*

mib2_getnext_processing
(Default:
sf_snmp0_getnext_handler)

This is a user defined callback function
pointer registered with the SNMP Agent
when it is created. It is used to find the
object specified in a GETNEXT request
from the SNMP Manager and fill in the
data for that object from the MIB. This
handler is also used in the GETBULK
request processing.

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 18 of 29
Oct 24, 2018

ISDE Property Setting Description
Name of SNMP SET
Handler*

mib2_set_processing
(Default:
sf_snmp0_set_handler)

This is a user defined callback function
pointer registered with the SNMP Agent
when it is created. It is used to find the
object specified in a SET request from the
SNMP Manager and fill in the data for that
object from the MIB.

Name of generated
initialization function

snmp_agent_init0 If Auto Initialization is enabled, this
function is run before the thread entry
function is called. The default
snmp_agent_init0 creates the SNMP
Agent using the handlers described
above, and the SNMP Agent thread task
using the stack size and priority property
settings in this table.

Auto Initialization Enable If enabled, the function set as the
generated initialization function is called
before the thread entry function. If set to
disabled, the thread entry function must
create the SNMP Agent.

SNMP agent instance id NA Not in use
*These properties will have no effect if Auto initialization is set to Disable. That is because the function that uses these
parameters in the nx_snmp_agent_create API is not called.

In some cases, settings other than the defaults for stack modules can be desirable. For example, it might be useful to select
different MAC or IP addresses. The configurable properties for the lower level stack modules are given in the following
sections for completeness and as a reference.

Note: Most of the property settings for modules are fairly intuitive and usually can be determined by inspection of the
associated properties window from the SSP configurator.

4.1 Configuration Settings for the NetX Duo SNMP Agent Low Level Drivers
Typically, only a small number of settings must be modified from the default for lower level drivers and these are
indicated with the red text in the Thread Stack block. Notice that some of the configuration properties must be set to a
certain value for proper framework operation and will be locked to prevent user modification. The following table
identifies all the settings within the properties section for the module.

Table 4 Configuration for the Application Thread

ISDE Property Setting Description
Symbol snmp_agent_thread Symbol name
Name SNMP Agent App Thread Thread name
Stack Size (bytes) 4096 Stack size for thread entry application
Priority 3 Thread priority (1 is highest)
Auto start Enabled If Auto start is set to Enabled, code is automatically

generated that initializes ThreadX and NetX, and
creates the SNMP Agent and application thread for
example, my_snmp_agent_thread_entry().

Time slicing interval 1 Minimum time slice for how long thread runs
Stack size less than 4k may not be large enough. This will be evidenced if the thread entry application makes an SNMP
API call for example, nx_snmp_agent_trapv2_send and the system hangs (crashes). It is recommended not to use
SNMP Agent Thread because that is the default name that the auto generated code gives the SNMP Agent task thread.
The application thread priority should generally be less than the IP thread task for best network performance.

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 19 of 29
Oct 24, 2018

Table 5 Configuration for the NetX and NetX Duo IP Instance

ISDE Property Setting Description
Name g_ip0 Module name
IPv4 Address (use commas
for separation)

192, 168, 0, 2 SNMP Agent IPv4 Address on the local
network where the module guide project will
run

Subnet Mask (use commas
for separation)

255, 255, 255, 0 Subnet Mask selection

Default Gateway Address
(use commas for separation)

0, 0, 0, 0 If the SNMP Manager is not on the local
network, this must be a non-zero IP address

IPv6 Global Address** (use
commas for separation)

0x2001, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x1

SNMP Agent IPv6 Address (should not be the
same as the SNMP Manager which also
defaults to the same address!) if using IPv6

IPv6 Link Local
Address**(use commas for
separation, all zeros mean
use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0

Link local address is set automatically based
on MAC address; used only for IPv6 networks.

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size (bytes) selection.
This is the recommended setting but it can be
modified if required.

IP Helper Thread Priority 3 IP Helper Thread Priority selection. In a busy
network environment or an application
requiring very high throughput, this priority may
be set to 1.

ARP Enable (Locked) ARP selection
ARP Cache Size (bytes) 512 ARP Cache Size in Bytes selection
Reverse ARP Enable, Disable (Default:

Disable)
Reverse ARP selection

TCP Enable, Disable (Default:
Enable)

TCP selection

UDP Enable (Locked) UDP selection

ICMP Enable, Disable (Default:
Enable)

ICMP selection

IGMP Enable, Disable (Default:
Enable)

IGMP selection

IP fragmentation Enable, Disable (Default:
Disable)

IP fragmentation selection

Name of generated
initialization function

ip_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable (Default:
Enable)

Auto initialization selection

Link status change callback NULL Link status change callback selection

**NetX Duo IP instance only

Table 6 Configuration for the NetX Common

ISDE Property Setting Description
No configurable properties

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 20 of 29
Oct 24, 2018

Table 7 Configuration for NetX Packet Pool Instance on g_packet_pool0

ISDE Property Setting Description
Name g_packet_pool0 Module name
Packet Size in Bytes 1568 Packet size selection; Set to >= device MTU as

these packets will be used to receive packets
which may have as much data as the MTU.

Number of Packets in Pool 16 Number of packets in pool selection. 16 packets
will suffice but if heavier network traffic is
expected, this number can be increased to 32
or higher.

Name of generated
initialization function

packet_pool_init0 Name of generated initialization function
selection

Auto Initialization Enable, Disable
(Default: Enable)

Auto initialization selection

Table 8 Configuration for NetX Port Ether

ISDE Property Setting Description
Parameter Checking BSP, Enabled, Disabled

(Default: BSP)
Enable or disable the parameter checking

Channel 0 Phy Reset Pin IOPORT_PORT_09_PIN_03 Channel 0 Phy reset pin selection
Channel 0 MAC Address
High Bits

0x00002E09 Channel 0 MAC address high bits selection

Channel 0 MAC Address
Low Bits

0x0A0076C7 Channel 0 MAC address low bits selection

Channel 1 Phy Reset Pin IOPORT_PORT_08_PIN_06 Channel 1 Phy reset pin selection
Channel 1 MAC Address
High Bits

0x00002E09 Channel 1 MAC address high bits selection

Channel 1 MAC Address
Low Bits

0x0A0076C8 Channel 1 MAC address low bits selection

Number of Receive
Buffer Descriptors

8 Number of receive buffer descriptors selection

Number of Transmit
Buffer Descriptors

32 Number of transmit buffer descriptors selection

Ethernet Interrupt Priority Priority 0 (highest)-15
(lowest), Disabled (Default:
Priority 12)

Ethernet interrupt priority selection; the priority
used for this module guide project is Priority
12. This is lower priority than the IP thread
task which is set to 1 (recommended)

Link status monitoring
method

PHY Polling Link status monitoring method

Name g_sf_el_nx Module name
Channel 1 Channel selection
MAC address change
callback

NULL MAC address change callback selection

Unknown packet receive
Callback

NULL Unknown packet receive callback selection

Note: The above setting examples and defaults are for a project using the Synergy S7G2. Other MCUs may
have different default values and available configuration settings.

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 21 of 29
Oct 24, 2018

4.2 Clock Configuration
The ETHERC peripheral module uses PCLKA as its clock source. The PCLKA frequency is set by using the SSP
configurator clock tab, prior to a build, or by using the CGC Interface at run-time.

4.3 Pin Configuration
The ETHERC peripheral module uses pins on the MCU to communicate to external devices. I/O pins must be selected
and configured as required by the external device. The first table below illustrates the method for selecting the pins
within the SSP configuration window and the next table illustrates an example selection for the pins.

Note: For some peripherals, the Operation Mode selection mode determines what peripheral signals are available and
thus what MCU pins are required.

Table 9 Pin Selection Sequence for ETHERC1 Module

Resource ISDE Tab Pin selection Sequence
ETHERC Pins Select Peripherals > Connectivity:ETHERC > ETHERC1.RMII

Note: The above selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Table 10 Pin Configuration Settings for ETHERC1

Pin Configuration
Property

Settings Description

Operation Mode Disabled, Custom, RMII
(Default: Disabled)

Select RMII as the Operation Mode for ETHERC1

Pin Group
Selection

Mixed, _A only
(Default: _A only)

Pin group selection

REF50CK P701 REF50CK Pin
TXD0 P700 TXD0 Pin
TXD1 P406 TXD1 Pin
TXD_EN P405 TXD_EN Pin
RXD0 P702 RXD0 Pin
RXD1 P703 RXD1 Pin
RX_ER P704 RX_ER Pin
CRS_DV P705 CRS_DV Pin
MDC P403 MDC Pin
MDIO P404 MDIO Pin

Note: The above example settings are for a project using the Synergy S7G2 and the SK-S7G2 Kit. Other
Synergy Kits and other Synergy MCUs may have different available pin configuration settings.

5. Using the NetX Duo SNMP Agent in an Application
The steps for creating NetX Duo SNMP Agent in the Configurator are:
1. Add NetX Duo SNMP Agent Instance by choosing X-Ware -> NetX Duo -> Protocols -> NetX Duo SNMP

Agent, or X-Ware -> NetX -> Protocols -> NetX SNMP Agent in the NetX environment. This automatically adds
the IP instance and IP default packet pool g_packet_pool0.

2. Click on Add Network Driver and choose NetX Port Ether. It should look like the figure below (the MD5, DES
and SHA1 block is for the authentication which requires encryption).

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 22 of 29
Oct 24, 2018

Figure 5 Thread Stack for the NetX SNMP Agent

Figure 6 Thread Stack for the NetX Duo SNMP Agent

3. Wait for the network link to be enabled with the nx_ip_status_check API.
4. If not using SNMPv3 security, skip to step 12 to start the SNMP Agent. If the Auto Initialization property is not set

or if the public and private community names are not set in the respective property settings, make sure these steps
are performed:
A. Set the public community name using the nx_snmp_agent_public_string_set API
B. Set the private community name using the nx_snmp_agent_private_string_set API.

5. Set the SNMP Agent (“engine”) context ID using the nx_snmp_agent_context_engine_set API. This is typically a
MAC address but it can be any octet string.

6. Set the SNMP Agent boot count in the application source file using the nx_snmp_agent_v3_context_boots_set API.
7. If authentication is desired, create a key for authentication using the nx_snmp_agent_md5_key_create API for an

MD5 key, or the nx_snmp_agent_sha_key_create API for an SHA1 key.
8. Register the key to the SNMP Agent using the nx_snmp_agent_authenticate_key_use API.
9. If privacy/encryption is desired, create another key, using the either of the two API mentioned above.
10. Register the key to the SNMP Agent using the nx_snmp_agent_privacy_key_use API.
11. For trap authentication, create a key for authentication using the nx_snmp_agent_md5_key_create API for an MD5

key, or the nx_snmp_agent_sha_key_create API for an SHA1 key and register it with
nx_snmp_agent_auth_trap_key_use.

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 23 of 29
Oct 24, 2018

12. For trap privacy, create a key for privacy using the nx_snmp_agent_md5_key_create API for an MD5 key, or the
nx_snmp_agent_sha_key_create API for an SHA key and register it with nx_snmp_agent_priv_trap_key_use.

13. Ensure that the SNMP Manager has the same security settings and passwords for all the keys as the SNMP Agent.
14. Start the SNMP Agent by calling the nx_snmp_agent_start API.
15. To send a trap message for SNMPv3 once the SNMP thread task is started, use the nx_snmp_agent_trapv3_send

API. The module guide project demonstrates how to create the objects and add them to an SNMPv3 trap message.
16. To send a trap message in SNMPv2, use the nx_snmp_agent_trapv2_send API. The module guide project

demonstrates how to create the objects and add them to an SNMPv2 trap message.
17. Stop the SNMP Agent task at any time by calling nx_snmp_agent_stop.
The above common steps are illustrated in a typical operational flow diagram in the following figure.

Figure 7 Flow Diagram of a Typical NetX Duo SNMP Agent Application

6. NetX Duo SNMP Agent Application Project
The Application Project associated with this Module Guide demonstrates the above steps in a full design. The project
can be found using the link provided in the Reference Section at the end of this document. You may want to import and
open the Application Project within ISDE and view the configuration settings for the NetX Duo SNMP Agent Module.
You can also read over the code in snmp_agent_thread_entry.c and NetXDuo_SNMP_Agent_mg_ap.c*, which is used
to illustrate the NetX Duo SNMP Agent APIs in a complete design.

*While the file name specifies NetX Duo, the same file will work fine in a NetX environment.

The Application Project demonstrates the typical use of the NetX Duo SNMP Agent APIs. The Application Project
main thread entry initializes the NetX Duo SNMP Agent Framework. After waiting for the network to be enabled, it
then sets up and runs an SNMP session for a specified time period. After the time expires, the SNMP Agent thread task
is stopped, and the application reports the session statistics as well as any errors that occurred.

Table 11 Software and Hardware Resources Used by the Application Project

Resource Revision Description
e2 studio 6.2.0 Integrated Solution Development Environment
SSP 1.4.0 Synergy Software Platform
IAR EW for Synergy 8.21.1 IAR Embedded Workbench® for Renesas Synergy™
SSC 6.2.0.R20180102 Synergy Standalone Configurator

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 24 of 29
Oct 24, 2018

Resource Revision Description
SK-S7G2 v3.0 to v3.3 Starter Kit

The snmp_agent_thread_entry.c, NetXDuo_SNMP_Agent_mg_ap.c, and NetXDuo_SNMP_Agent_mg_ap.h files are
located in the project once it has been imported into the ISDE. You can open these files within the ISDE and follow
along with the description provided to help identify key uses of APIs.

The properties for the SNMP Agent and IP stack are described in section 4. The entries which are highlighted in yellow
may need to be changed to suit your application environment.

The flow diagram of the SNMP Agent module guide application project is shown in the following figure.

Figure 8 NetX Duo SNMP Agent Application Project Flow Diagram
In the module guide project, the SNMP Agent is enabled for SNMPv2 and SNMPv3, which means that it will respond
to both SNMPv2 and SNMPv3 queries. It is also enabled for authentication and encryption. Lastly, it is also set up to
send a series of trap messages (in SNMPv2 and SNMPv3) to the SNMP Manager.

The snmp_agent_thread_entry function waits for the network to be enabled (#1 of the flow chart). The SNMP Agent is
already created but not started. For the SNMPv3 protocol, however, it must also set the context engine ID and number
of boots before starting (#2 and #3).

It then sends a set of parameters in the run_snmp_session function for setting up and running an SNMP session as
follows:

Create and register an MD5 authentication key (#4 and #5) for SNMP manager queries using the following APIs:
• nx_snmp_agent_md5_key_create
• nx_snmp_agent_authenticate_key_use

Create and register an MD5 authentication key for SNMPv3 trap messages (#6 and #7) for SNMP manager queries
using the following APIs:
• nx_snmp_agent_md5_key_create
• nx_snmp_agent_auth_trap_key_use

Create and register an MD5 encryption key for SNMP Manager queries (#8 and #9) for SNMP manager queries using
the following APIs:

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 25 of 29
Oct 24, 2018

• nx_snmp_agent_md5_key_create
• nx_snmp_agent_privacy_key_use

Create and register an MD5 encryption key for SNMPv3 trap messages (#10 and #11) for SNMP manager queries using
the following APIs:
• nx_snmp_agent_md5_key_create
• nx_snmp_agent_priv_trap_key_use

Authentication and encryption need not use the same algorithm but it is recommended practice to do so. The SNMP
Agent thread task can now be started (step 12) by calling the nx_snmp_agent_start API.

The input to run_snmp_session also specifies if the SNMP Agent should send traps and how long to let the SNMP
thread task run (in timer ticks) before stopping the SNMP session. If send_traps is set to NX_TRUE, the following two
APIs are used to send SNMPv2 and SNMPv3 traps (step 13 and step 14):
• nx_snmp_agent_trapv3_send
• nx_snmp_agent_trapv2_send

When the session time expires, run_session_snmp stops the session by calling nx_snmp_agent_stop (step 15) AND
returns to the caller.

Then, run_snmp_session calls a utility function, snmp_session_stats_retrieve (step 16), to report session statistics, such
as the number of requests received, responses sent, and traps sent. It also calls a function, snmp_session_errors_retrieve
(step 17) to check for SNMP session errors (bad packets received, internal errors, and so forth) tracked by the SNMP
Agent handling SNMP message processing. These errors are different from the errors, if there are any, that
run_snmp_session reports back to snmp_agent_thread_entry as a result of creating session keys and sending traps.

The debug output uses the printf utility in the Renesas Virtual Debug console in Synergy or the Terminal IO option in
IAR.

Note: The above description assumes that you are familiar with using printf() the Debug Console in the Synergy
Software Package. If you are unfamiliar with this, refer to the “How do I Use Printf() with the Debug Console in
the Synergy Software Package Knowledge Base article, as described in the References section at the end of this
document. Alternatively, the user can see results using the watch variables in the debug mode.

7. Customizing NetX Duo SNMP Agent for a Target Application
The NetX Duo SNMP Agent project shares a packet pool with the IP instance. That packet pool has only 16 packets for
both IP thread tasks, receiving packets and SNMP Agent sending messages to the server. In a real-world application, you
might need to increase the number of packets particularly if the SNMP manager(s) make GET BULK queries which ‘walk’
the MIB database tree and generate a large flow of packets.

Encryption may not be necessary, as authentication at least guarantees that the data is not tampered with. Encryption
requires considerable processing and can slow down throughput, so if it is not needed, it is recommended to disable it.

8. Running the NetX Duo SNMP Agent Application Project
To run the NetX Duo SNMP Agent Application project and to see it executing on a target kit, you can simply import it
into your ISDE, compile and run debug.

Note: The following steps are described in sufficient detail for someone experienced with the basic flow through the
Synergy development process. If these steps are not familiar, refer to the first few chapters of the SSP User’s
Manual for a description on how to accomplish these steps.

1. Import and build the example project included with this module guide according to the Synergy Project Import
Guide (11an0023eu0120-synergy-ssp-import-guide.pdf).

2. Connect to the host PC via a micro USB cable to J19 on SK-S7G2.
3. Connect an ethernet cable to J11 to the local network (if using Ethernet).
4. Start the application.
5. Start the SNMP Manager (or at least have it initiate contact with the SNMP Agent).
6. For up to the length of time specified by the run_snmp_session function, send queries to the SNMP Agent from the

SNMP Manager.
7. Verify that the SNMP Manager makes a successful “Discovery” (establishes a connection) with the SNMP Agent

and accepts trap messages. Most SNMP browser (manager) tools have a log utility to track messaging between the
Agent and Manager.

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 26 of 29
Oct 24, 2018

Note: It is beyond the scope of this document to discuss how to use an SNMP Manager. It is assumed that the user is
already familiar with SNMP protocol and SNMP tools. The SNMP Manager (browser) used for this project is
the MG-Soft MIB Browser Professional Developer’s Edition. Be aware that cheap or free SNMP utilities
sometimes do not always properly follow SNMPv3 protocol.

8. When run_snmp_session and snmp_agent_thread_entry have completed, the output can be viewed in the Renesas
Debug Console. A successful session from the SNMP project run in the e2 studio environment is shown in Figure 9.

Figure 9 Debug Console Output from a Successful NetX Duo SNMP Agent Session
Figure 10 shows the log capture of SNMP Manager ‘handshake’ with NetX Duo SNMP Agent Project from the MG-
Soft MIB Browser application. The green light on the lower right indicates that the Discovery process was successful.
The security level indicates both Authentication and Privacy (encryption).

Figure 10 Log capture of SNMP Manager ‘handshake’ with NetX Duo SNMP Agent Project from the
MG-Soft MIB Browser application

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 27 of 29
Oct 24, 2018

Figure 11 shows the log capture of SNMP Manager capture from the MG-Soft MIB Browser of the SNMP v2 trap and
the SNMP v3 trap messages from the NetX Duo SNMP Agent Project from the MG-Soft MIB Browser application. The
highlighted entry of an SNMP v3 trap message shows both Authentication and Privacy (encryption).

Figure 11 Log capture of SNMP Manager capture from MG-Soft MIB Browser of SNMPv2 trap and
SNMPv3 trap messages from the NetX Duo SNMP Agent Project from the MG-Soft MIB Browser

application

9. Conclusion
This Module Guide has provided all the background information needed to select, add, configure and use the module in
an example project. Many of these steps were time consuming and error prone activities in previous generations of
embedded systems. The Renesas Synergy Platform makes these steps much less time consuming and removes the
common errors, like conflicting configuration settings or incorrect selection of low level drivers. The use of high level
APIs, as demonstrated in the Application Project illustrate additional development time savings by allowing work to
begin at a high level, avoiding the time required in older development environments to use or, in some cases, create low
level drivers.

10. Next Steps
After you have mastered this NetX Duo SNMP Agent project, you will need to acquire or build your own MIB
databases and add logic for updating the information in the database in real time. The GET, GETNEXT, SET handlers
may require greater complexity to handle real world demands rather than simply report back a fixed value as they do in
this project. There are hundreds of standardized MIB databases for all types of industry networks. Trap messages should
be generated from real time events from the outside world rather than the simple traps sent in the project.

11. Reference Information
To find the most up to date reference materials and their locations, visit the Synergy Knowledge Base and do a search
for the module name and include “module guide references” in the search.

For example, if you are looking for the References for the r_doc module, visit https://en-
us.knowledgebase.renesas.com/English_Content/Renesas_Synergy%E2%84%A2_Platform/Renesas_Synergy_Knowle
dge_Base and enter “r_doc module guide references” in the search bar. The search will bring up a list of results, and the
top one will be the References Page for that Module Guide. The following URL will take you directly to the search
results for the example.

https://en-
us.knowledgebase.renesas.com/Special:Search?fpid=230&search=r_doc%20module%20guide&path=&limit=55&page
=1&q=r_doc%20module%20guide%20references&tags=

https://en-us.knowledgebase.renesas.com/English_Content/Renesas_Synergy%E2%84%A2_Platform/Renesas_Synergy_Knowledge_Base
https://en-us.knowledgebase.renesas.com/English_Content/Renesas_Synergy%E2%84%A2_Platform/Renesas_Synergy_Knowledge_Base
https://en-us.knowledgebase.renesas.com/English_Content/Renesas_Synergy%E2%84%A2_Platform/Renesas_Synergy_Knowledge_Base
https://en-us.knowledgebase.renesas.com/Special:Search?fpid=230&search=r_doc%20module%20guide&path=&limit=55&page=1&q=r_doc%20module%20guide%20references&tags
https://en-us.knowledgebase.renesas.com/Special:Search?fpid=230&search=r_doc%20module%20guide&path=&limit=55&page=1&q=r_doc%20module%20guide%20references&tags
https://en-us.knowledgebase.renesas.com/Special:Search?fpid=230&search=r_doc%20module%20guide&path=&limit=55&page=1&q=r_doc%20module%20guide%20references&tags

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 28 of 29
Oct 24, 2018

Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components and
related documentation, and get support.

Synergy Software renesassynergy.com/software
 Synergy Software Package renesassynergy.com/ssp
 Software add-ons renesassynergy.com/addons
 Software glossary renesassynergy.com/softwareglossary

Development tools renesassynergy.com/tools

Synergy Hardware renesassynergy.com/hardware
 Microcontrollers renesassynergy.com/mcus
 MCU glossary renesassynergy.com/mcuglossary
 Parametric search renesassynergy.com/parametric

Kits renesassynergy.com/kits

Synergy Solutions Gallery renesassynergy.com/solutionsgallery
 Partner projects renesassynergy.com/partnerprojects

Application projects renesassynergy.com/applicationprojects

Self-service support resources:

Documentation renesassynergy.com/docs
Knowledgebase renesassynergy.com/knowledgebase
Forums renesassynergy.com/forum
Training renesassynergy.com/training
Videos renesassynergy.com/videos
Chat and web ticket renesassynergy.com/support

http://renesassynergy.com/software
http://renesassynergy.com/ssp
http://renesassynergy.com/addons
http://renesassynergy.com/softwareglossary
http://renesassynergy.com/tools
http://renesassynergy.com/hardware
http://renesassynergy.com/mcus
http://renesassynergy.com/mcuglossary
http://renesassynergy.com/parametric
http://renesassynergy.com/kits
http://renesassynergy.com/solutionsgallery
http://renesassynergy.com/partnerprojects
http://renesassynergy.com/applicationprojects
http://renesassynergy.com/docs
http://renesassynergy.com/knowledgebase
http://renesassynergy.com/forum
http://renesassynergy.com/training
http://renesassynergy.com/videos
http://renesassynergy.com/support

Renesas Synergy™ Platform NetX™ and NetX Duo™ SNMP Agent
Module Guide

R11AN0346EU0100 Rev.1.00 Page 29 of 29
Oct 24, 2018

Revision History

Rev. Date
Description
Page Summary

1.00 Oct 24, 2018 - Initial version

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.comSALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.2

(Rev.4.0-1 November 2017)

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

	1. NetX Duo SNMP Agent APIs Overview
	2. NetX Duo SNMP Agent Operational Overview
	2.1 SNMP Data Types
	2.2 SNMPv3 Security
	2.3 Usernames in SNMP
	2.4 Error Reports
	2.5 SNMP Manager
	2.6 NetX Duo SNMP Agent Important Operational Notes and Limitations
	2.6.1 Explanation of the Example MIB Table

	2.7 NetX Duo SNMP Agent Limitations

	3. Including the NetX Duo SNMP Agent in an Application
	4. Configuring the NetX Duo SNMP Agent Module
	4.1 Configuration Settings for the NetX Duo SNMP Agent Low Level Drivers
	4.2 Clock Configuration
	4.3 Pin Configuration

	5. Using the NetX Duo SNMP Agent in an Application
	6. NetX Duo SNMP Agent Application Project
	7. Customizing NetX Duo SNMP Agent for a Target Application
	8. Running the NetX Duo SNMP Agent Application Project
	9. Conclusion
	10. Next Steps
	11. Reference Information
	Revision History

