
 Application Note

R01AN6611EJ0101 Rev.1.01 Page 1 of 74

Nov.30.22

RA4W1 Group

Virtual UART Sample Application with Simple Connection APIs

Introduction

This application note provides the simple connection APIs which can simply establish Bluetooth Low Energy®
connection and data exchange. And provides the virtual UART sample application as an example of simple
connection APIs usage.

Target Device

RA4W1 Group

Related Document

Bluetooth Core Specification (https://www.bluetooth.com)

RA4W1 Group User’s Manual: Hardware (R01UH0883)

Renesas Flexible Software Package (FSP) User’s Manual

Renesas e2 studio 2021-04 or higher User’s Manual: Quick Start Guide (R20UT4989)

EK-RA4W1 Quick Start Guide (R20QS0015)

RA4W1 Group BLE sample application (R01AN5402)

Bluetooth LE Profile API Document User’s Manual (R11UM0154)

Related Environments
Refer to section 1.3.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of
such marks by Renesas Electronics Corporation is under license. Other trademarks and registered
trademarks are the property of their respective owners.

https://www.bluetooth.com/

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 2 of 74

Nov.30.22

Contents

1. Overview ... 4

1.1 Simple connection APIs .. 4

1.2 Virtual UART sample application ... 4

1.3 Directory/File Structure .. 5

1.4 Operating environments .. 6

2. Simple Connection API Specification ... 7

2.1 API reference ... 7

2.1.1 R_BLE_SC_Init ... 7

2.1.2 R_BLE_SC_Scan .. 12

2.1.3 R_BLE_SC_Connection .. 14

2.1.4 R_BLE_SC_DisConnection ... 18

2.1.5 R_BLE_SC_SetAddress ... 20

2.1.6 R_BLE_SC_GetAddress ... 22

2.1.7 R_BLE_SC_SetConnectionAddress ... 23

2.1.8 R_BLE_SC_GetConnectionAddress ... 24

2.1.9 R_BLE_SC_SetConnectionInterval... 25

2.1.10 R_BLE_SC_GetConnectionInterval .. 26

2.1.11 R_BLE_SC_SetPhy .. 27

2.1.12 R_BLE_SC_GetPhy .. 29

2.1.13 R_BLE_SC_SetMode .. 30

2.1.14 R_BLE_SC_GetMode ... 31

2.1.15 R_BLE_SC_SendData .. 32

2.1.16 R_BLE_SC_GetConnDevice ... 37

2.1.17 R_BLE_SC_GetSemaphoreHandle .. 38

2.1.18 R_BLE_SC_Close ... 40

2.2 Macros ... 41

2.3 Required peripheral module .. 41

3. Virtual UART Sample Application .. 42

3.1 What is Virtual UART sample application.. 42

3.2 Operation Flow .. 43

3.3 AT command and VUART modes ... 44

3.4 AT command reference ... 45

3.4.1 AT -DS ... 46

3.4.2 AT -C ... 47

3.4.3 AT -H ... 48

3.4.4 AT -AP ... 49

3.4.5 AT -CI .. 50

3.4.6 AT -AS ... 51

3.4.7 AT -P ... 52

3.4.8 AT -M ... 53

3.4.9 AT -S ... 54

3.4.10 AT -E ... 55

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 3 of 74

Nov.30.22

3.4.11 AT -V ... 56

3.4.12 AT -R ... 57

3.5 How to use the VUART App .. 58

3.5.1 Setup ... 58

3.5.1.1 Import projects ... 58

3.5.1.2 Generate with FSP configurator .. 60

3.5.1.3 Build and programming ... 61

3.5.2 Demo ... 62

3.5.2.1 Power on and advertising .. 62

3.5.2.2 Scan .. 62

3.5.2.3 Connect ... 63

3.5.2.4 Send message .. 65

3.5.2.5 Disconnect ... 66

4. How to use SC APIs in the user application ... 67

4.1 Import related codes .. 67

4.2 Configure the required peripheral module ... 69

4.3 [THIS SECTION IS NO LONGER USED] ... 70

4.4 Implementation .. 71

Revision History .. 74

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products .. 75

Notice ... 76

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 4 of 74

Nov.30.22

1. Overview

This application note provides the simple connection APIs which can simply establish Bluetooth Low Energy®
connection and data exchange. And provides the virtual UART sample application as an example of simple
connection APIs usage.

1.1 Simple connection APIs

Simple connection APIs (Hereafter SC APIs) are wrapper APIs for RM_BLE_ABS and R_BLE API, which
provides as a part of the Flexible software package and QE for BLE. The SC APIs provide a simple way to
establish Bluetooth LE connection and GATT-based data exchange. Refer to chapter 2 about specification,
usage, and required GATT database for using the APIs.

1.2 Virtual UART sample application

The virtual UART sample application (Hereafter VUART App) is an example project using the SC APIs. The
user can learn the usage of the SC APIs from the VUART App. And the user can use the SC APIs by
importing the APIs into the user's application project based on the procedures shown in chapter 4. The
sample application provides the following functionality.

 Simple AT command function to control and configure Bluetooth LE connection.

 Send/receive characters or binary data to/from a remote device over Bluetooth LE
communication.

Figure 1. Operating environment of VUART App

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 5 of 74

Nov.30.22

This application note includes the following example project.

Table 1. Example projects

Example project Description

ra4w1_simple_connection_baremetal.zip Virtual UART sample application for baremetal environment.
This application can perform both server and client roles.

ra4w1_simple_connection_freertos.zip Virtual UART sample application for FreeRTOS environment.
This application can perform both server and client roles.

ra4w1_simple_connection_azurertos.zip Virtual UART sample application for AzureRTOS environment.
This application can perform both server and client roles.

1.3 Directory/File Structure

The directory/file Structure of the VUART App is the following.

ra4w1_simple_connection_xxxxx

| configuration.xml FSP configuration file

|

+---ra_xxx (Files generated by the FSP configurator)

|

\---src VUART App

 | app_main.c VUART App main process

 | at_command.c AT command implementation file

 |

 +---app_lib (Application library for CLI)

 |

 \---SimpleConnection_API Simple Connection API library

 | simple_connection_api.c Simple Connection API source

 | simple_connection_api.h Simple Connection API header

 |

 +---ble (GATT database, profiles)

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 6 of 74

Nov.30.22

1.4 Operating environments

Table 2 shows the hardware requirements for building and debugging BLE software.

Table 2. Hardware requirements

Hardware Description

Host PC Windows® 10 PC with USB interface.

MCU Board The MCU used must support BLE functions.

EK-RA4W1 [RTK7EKA4W1S00000BJ]

Notice

It is necessary to 2 pcs of EK-RA4W1 when confirming data exchange by using example

project which listed in Table 1.

Refer to EK-RA4W1 Quick Start Guide (R20QS0015) about usage of EK-FRA4W1.

On-chip debugging emulators The EK-RA4W1 has an on-board debugger (J-Link OB). Therefore it is not necessary to

prepare an emulator.

USB cables Used to connect to the MCU board.

Table 3 shows the software requirements for build and debugging BLE software.

Table 3. Software requirements

Software Version Description

GCC

environment

e² studio 2022-07 Integrated development environment (IDE) for Renesas devices.

GCC ARM Embedded V10.3.1 C/C++ Compiler. (download from e2 studio installer)

Renesas Flexible

Software Package

(FSP)

V4.0.0 Software package for making applications for the RA

microcontroller series.

SEGGER J-Flash V7.68b Tool for programming the on-chip flash memory of

microcontrollers.

Integer types It uses ANSI C99 “Exact width integer types”. These types are

defined in stdint.h.

Endian Little-endian

Terminal emuator VT-100 compatible (e.g. teraterm)

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 7 of 74

Nov.30.22

2. Simple Connection API Specification

This chapter describes the specification of the simple connection APIs (SC APIs).

2.1 API reference

This section describes the SC APIs reference. The user can also refer to the Virtual UART sample
application, which is listed in Table 1, about the actual usage of these SC APIs.

2.1.1 R_BLE_SC_Init

R_BLE_SC_Init API performs,

 Initialize Bluetooth LE protocol stack included with FSP.

➢ Refer to item 5) about services and GATT database structure to use SC APIs.

 Register the user callback function.

➢ Events that happened as a result of the user using SC APIs will be notified to this callback
function.

 Start legacy advertising.

➢ Will be broadcasted scannable and connectable advertising (ADV_IND). For details of
advertising, refer to item 6) about detailed advertising parameters.

It is necessary to call this API before using other SC APIs.

1) Declaration

ble_status_t R_BLE_SC_Init (simple_connection_event_cb_t cb, char *p_DeviceName);

Type definition of simple_connection_event_cb_t is following.

typedef void (*simple_connection_event_cb_t)(uint16_t type,

ble_status_t result,

st_ble_seq_data_t *p_data);

Table 4. simple_connection_event_cb_t

Parameter Direction Description

type [in] The type of Simple Connection API event.

Refer to the following sections for the detail of each event.

result [in] The result of the Simple Connection API event. Refer to Renesas
Flexible Software Package (FSP) User’s Manual about ble_status_t
specification.

p_data [in] Event data notified by Simple Connection API event. Refer to the
following sections for the detail of each event. And refer to
R11UM0154 about st_ble_seq_data_t definition.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 8 of 74

Nov.30.22

2) Parameters

To use this API, it is necessary to specify the following parameters as an argument.

Table 5. Parameters

Parameter Direction Description

cb in Callback function to be registered with this API.

p_DeviceName In This parameter will appear in the local name field of scan response
data and the device name characteristic of the GAP service. The
length of this parameter should be 11 bytes or less. This parameter is
mandatory and should be specified by ASCII characters except for
the NULL character.

3) Return values

The return values of this API are the following.

Table 6. Return values

Error Code Description

BLE_SUCCESS (0x0000) Success

BLE_ERR_INVALID_PTR (0x0001) cb or DeviceName is specified as NULL.

BLE_ERR_INVALID_ARG (0x0003) The length of DeviceName is longer than 11 bytes.

DeviceName is empty or includes the NULL character.

BLE_ERR_INVALID_OPERATION (0x0009) Failed to initialize Bluetooth LE stack or profiles.

4) Events

None.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 9 of 74

Nov.30.22

5) Services

 In order to exchange data using SC APIs, the following service is required.

 Simple Connection Service

➢ UUID : D68C0001-A21B-11E5-8CB8-0002A5D5C51B

The service includes the following four characteristics.

 Simple Connection Indication

➢ UUID : D68C0002-A21B-11E5-8CB8-0002A5D5C51B (Indicatable)

 Simple Connection Write
➢ UUID : D68C0003-A21B-11E5-8CB8-0002A5D5C51B (Writable)

 Simple Connection Notification

➢ UUID : D68C0004-A21B-11E5-8CB8-0002A5D5C51B (Notifiable)

 Simple Connection Write Without Response
➢ UUID : D68C0005-A21B-11E5-8CB8-0002A5D5C51B (Write without response)

R_BLE_SC_Init API will register the following GATT database, which includes those mandatory services and
characteristics, to the Bluetooth LE stack.

Table 7. GATT database structure

Service
Attribute

handle

Attribute

type
Properties Definition Note

GAP service 0x0001 0x2800 Read GAP Service Declaration

 0x0002 0x2803 Read Device Name characteristic Declaration

 0x0003 0x2A00 Read/Write Device Name characteristic Value

 0x0004 0x2803 Read Appearance characteristic Declaration

 0x0005 0x2A01 Read Appearance characteristic Value

 0x0006 0x2803 Read
Peripheral Preferred Connection Parameters

characteristic Declaration

 0x0007 0x2A04 Read
Peripheral Preferred Connection Parameters

characteristic value

 0x0008 0x2803 Read
Central Address Resolution Characteristic

Declaration

 0x0009 0x2AA6 Read
Central Address Resolution characteristic

value

 0x000A 0x2803 Read
Resolvable Private Address Only

characteristic Declaration

 0x000B 0x2AC9 Read
Resolvable Private Address Only

characteristic value

GATT

service
0x000C 0x2800 Read GATT Service Declaration

 0x000D 0x2803 Read Service Changed characteristic Declaration

 0x000E 0x2A05 Indication Service Changed characteristic value

 0x000F 0x2902 Read/Write
Client Characteristic Configuration

descriptor

Simple

connection

service

0x0010 0x2800 Read Simple Connection Service Declaration
UUID : D68C0001-A21B-11E5-8CB8-

0002A5D5C51B

 0x0011 0x2803 Read
Simple Connection Indication Characteristic

Declaration

UUID : D68C0002-A21B-11E5-8CB8-

0002A5D5C51B

Indication (Server -> Client)

 0x0012 See Note Read/Indication
Simple Connection Indication characteristic

value
Attribute value length = 244 octets.

 0x0013 0x2902 Read/Write
Client Characteristic Configuration

descriptor

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 10 of 74

Nov.30.22

Service
Attribute

handle

Attribute

type
Properties Definition Note

 0x0014 0x2803 Read
Simple Connection Write Characteristic

Declaration

UUID : D68C0003-A21B-11E5-8CB8-

0002A5D5C51B

Write (Client->Server)

 0x0015 See Note Read/Write
Simple Connection Write characteristic

value
Attribute value length = 244 octets.

 0x0016 0x2803 Read
Simple Connection Notification

Characteristic Declaration

UUID : D68C0004-A21B-11E5-8CB8-

0002A5D5C51B

Notification (Server->Client)

 0x0017 See Note Read/Notification
Simple Connection Notification characteristic

value
Attribute value length = 244 octets.

 0x0018 0x2902 Read/Write
Client Characteristic Configuration

descriptor

 0x0019 0x2803 Read
Simple connection Write without Response

characteristic Declaration

UUID : D68C0005-A21B-11E5-8CB8-

0002A5D5C51B

Write without response

(Client->Server)

 0x001A See Note

Read/Write

without

Response

Simple Connection Write without Response

characteristic value
Attribute value length = 244 octets.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 11 of 74

Nov.30.22

6) Advertising parameters and data structure

Scannable and connectable advertising (ADV_IND) PDU will be broadcasted after calling this API. The
advertising parameters and advertising data structure are shown in Table 8. Advertising data and scan
response data follow the AD structure format defined by Bluetooth Core Specification.

Table 8. Advertising parameters

Parameter Value

Interval 20 [msec]

Channel Map All channels (Ch.37, 38, 39) were used.

Own Bluetooth address type The user can choose a public address or a static random
address by configuring the R_BLE_SC_ADDRESS_IN_USE
macro. Refer to section 2.2 about the macro specification.

Own Bluetooth address One of the following will be used:

 The identity address configured by R_BLE_SC_SetAddress
API

 The properties of the BLE_Driver FSP module, which
describes in the FSP configuration

Refer to section 2.1.5 about R_BLE_SC_SetAddress API and
R01AN5402 section4.2.4 about FSP configuration.

Advertising Type Scannable and connectable (ADV_IND)

Advertising data Includes,

 Simple connection service UUID

D68C0001-A21B-11E5-8CB8-0002A5D5C51B

Scan response data Includes

 Simple connection service UUID

D68C0001-A21B-11E5-8CB8-0002A5D5C51B

 Complete local name

Specified p_Devicename.

7) Note

 This API is blocking API. Therefore, this API will be occupied the MCU until the initialization is
completed. And the user should not use this API in the interrupt handler.

 R_BLE_Execute and SC blocking APIs should not call in the user callback function to avoid a
deadlock condition. See the note in the following section for which APIs are classified as blocking
APIs.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 12 of 74

Nov.30.22

2.1.2 R_BLE_SC_Scan

R_BLE_SC_Scan API performs an active scan and finds advertising PDU, which includes Simple
Connection Service UUID (D68C0001-A21B-11E5-8CB8-0002A5D5C51B) as advertising/scan response
data. Refer to item 2) about scan parameters. And the API returns the BD addresses and the device name of
the discovered device(s).

1) Declaration

R_BLE_SC_Scan (uint8_t scan_device_limit, st_simple_find_device_t * p_Devices)

2) Parameters

To use this API, it is necessary to specify the following parameters as an argument.

Table 9. Parameters

Direction Parameter Name Description

[in] scan_device_limit The number of the device to discover. When the number of the
discovered device reaches this parameter, the scan will terminate. This
parameter should be less than the R_BLE_SC_DEV_MAX macro.

[out] p_Devices BD address and device name of discovered devices.

3) Return values

The return values of this API are the following.

Table 10. Return value

Error Code Description

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_Devices pointer is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) scan_device_limit is larger than the R_BLE_SC_DEV_MAX
macro or specified as zero.

BLE_ERR_INVALID_STATE(0x0008) The BLE stack is not running.

BLE_ERR_INVALID_OPERATION(0x0009) The API has called in an interrupt handler or an event
callback.

BLE_ERR_UNSPECIFIED(0x0013) Other errors.

4) Events

None.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 13 of 74

Nov.30.22

5) Scan parameters

This API will be performed the scan procedure according to the following parameters.

Table 11. Scan parameters

Parameter Value

Scan interval 60 [msec]

Scan window 30 [msec]

Scan period 7.68 [sec]

 This API will be occupied the MCU until 7.68 seconds after
starting the scan.

Scan type Active scanning

Scan filter Simple connection service UUID (D68C0001-A21B-11E5-8CB8-
0002A5D5C51B).

 Find advertising PDU which includes Simple Connection
Service UUID (D68C0001-A21B-11E5-8CB8-
0002A5D5C51B) as advertising / scan response data.

Duplicate filter Yes

6) Note

 This API is blocking API. Therefore, this API will be occupied the MCU until 7.68 seconds after
starting the scan. And the user should not use this API in the interrupt handler and the callback
function specified in R_BLE_AC_Init API.

 This API cannot use when choosing compact as BLE_Driver FSP module configuration.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 14 of 74

Nov.30.22

2.1.3 R_BLE_SC_Connection

R_BLE_SC_Connection API performs,

 Establish a Connection with another device.

➢ Refer to item 5) about connection parameters.

➢ This API does not support connections with multiple devices.

 Stop legacy advertising that started when executing R_BLE_SC_Init API.

 Perform service discovery.

 Perform pairing.

 Enable Notification and Indication by configuring Simple Connection Indication Characteristic
Declaration characteristic (D68C0002-A21B-11E5-8CB8-0002A5D5C51B) and Simple Connection
Notification Characteristic Declaration characteristic (D68C0004-A21B-11E5-8CB8-
0002A5D5C51B).

1) Declaration

ble_status_t R_BLE_SC_Connection (uint8_t type, uint8_t *p_address, uint16_t *p_conn_hdl)

2) Parameters

To use this API, it is necessary to specify the following parameters as an argument.

Table 12. Parameters

Direction Parameter Name Description

[in] type The address type of target BD address.

BLE_GAP_ADDR_PUBLIC (0x00) : Public address

BLE_GAP_ADDR_RAND (0x01) : Static random address

[in] p_address The target BD address.

The value specified by the R_BLE_SetConnectionAddress API will be
used when All zero value is passed.

[out] p_conn_hdl The connection handle.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 15 of 74

Nov.30.22

3) Return values

The return values of this API are the following.

Table 13. Return value

Error Code Description

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_address or p_conn_hdl is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The Target BD address is invalid, or the type of target
address is out of range.

BLE_ERR_INVALID_STATE(0x0008) Already establish a connection with another device or BLE
stack is not running.

BLE_ERR_INVALID_OPERATION(0x0009) The API has called in an interrupt handler or an event
callback.

BLE_ERR_CONTEXT_FULL(0x000B) The API call could not be processed because the Host
Stack queue was full.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Memory cannot allocate to proceed with this API.

BLE_ERR_NOT_FOUND(0x000D) Encryption failed because the remote device had lost the
LTK.

BLE_ERR_RSP_TIMEOUT(0x0011) The connection has been canceled due to a connection
procedure timeout.

BLE_ERR_UNSPECIFIED(0x0013) Other error.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 16 of 74

Nov.30.22

4) Events

This API will notify the following events to the callback function registered by the R_BLE_SC_Init API.

Table 14. Events

Event Code Description

R_BLE_SCX_EVENT_CONN_IND
(0x0041)

This event will be notified when,

1) Enabled indication by Simple Connection Indication
Characteristic Declaration characteristic (D68C0002-
A21B-11E5-8CB8-0002A5D5C51B).

2) Enabled notification by Simple Connection Notification
Characteristic Declaration characteristic (D68C0004-
A21B-11E5-8CB8-0002A5D5C51B).

 result

The result will be notified as ble_status_t type. Refer to
Renesas Flexible Software Package (FSP) User’s
Manual about ble_status_t specification.

 Event Data

The Event Data will be notified as st_ble_seq_t type. In
the case of items 1) and 2), the data member of Event
Data includes configured CCCD value.

Refer to R11UM0154 about st_ble_seq_data_t
definition.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 17 of 74

Nov.30.22

5) Connection parameters

This API will be established a connection with another device according to the following parameters.

Table 15. Connection parameters

Parameter Value

Connection Interval Default value is 7.5 [msec]. the user can configure the
connection interval by using R_BLE_SC_SetConnectionInterval
API.

Supervision timeout 1,193 [msec]

Slave latency 0

Connection PHY The default configuration is LE 1M PHY. The user can
configure PHY by using R_BLE_SC_SetgPHY() API after a
connection is established.

Own Bluetooth address type The user can choose a public address or a static random
address by using the R_BLE_SC_ADDRESS_IN_USE macro.
Refer to section 2.2 about the macro specification.

Own Bluetooth address One of the following will be used:

 The identity address configured by
R_BLE_SC_SetAddress API

 The properties of the BLE_Driver FSP module, which
describes in the FSP configuration

Refer to section 2.1.5 about R_BLE_SC_SetAddress API and
R01AN5402 section4.2.4 about FSP configuration.

Connection Timeout 10 [sec].

 If connectable advertising PDUs cannot find during this
period, the connection request will be canceled.

6) Note

 This API is blocking API. Therefore, this API will be occupied the MCU until the connection has
been completed or canceled due to Connection Timeout, which describes in item 5). And the user
should not use this API in the interrupt handler and the callback function specified in
R_BLE_AC_Init API.

 This API cannot use when choosing compact as BLE_Driver FSP module configuration.
 The address type and identity address of the connection target device will be specified by the

argument of this API or R_BLE_SC_SetConnectionAddress API. Refer to section 2.1.7.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 18 of 74

Nov.30.22

2.1.4 R_BLE_SC_DisConnection

R_BLE_SC_DisConnection API disconnects the current connection. After successfully disconnecting the
connection, this API will automatically start legacy advertising. The restarted advertising parameter is based
on Table 8.

1) Declaration

ble_status_t R_BLE_SC_DisConnection (uint16_t conn_hdl)

2) Parameters

To use this API, it is necessary to specify the following parameters as an argument.

Table 16. Parameters

Direction Parameter Name Description

[in] conn_hdl Connection handle.

3) Return values

The return values of this API are the following.

Table 17. Return value

Error Code Description

BLE_SUCCESS(0x0000) Success

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The connection handle passed as the argument is invalid.

BLE_ERR_INVALID_STATE(0x0008) The connection is not established, or the host stack is not
running.

BLE_ERR_INVALID_OPERATION(0x0009) The API has called in an interrupt handler or an event
callback.

BLE_ERR_CONTEXT_FULL(0x000B) The API call could not be processed because the Host
Stack queue was full.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Memory cannot allocate to proceed with this API.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 19 of 74

Nov.30.22

4) Events

This API will notify the following events to the callback function registered by the R_BLE_SC_Init API.

Table 18. Events

Event Code Description

R_BLE_SCX_EVENT_DISCONN_IND
(0x0042)

The connection has been disconnected. The following
result code and event data will be notified to the callback
function when this event has happened.

 result

The result will be notified as ble_status_t type. Refer to
Renesas Flexible Software Package (FSP) User’s
Manual about ble_status_t specification.

 Event Data

None.

5) Note

 This API is blocking API. Therefore, this API will be occupied the MCU until the connection has
been disconnected. And the user should not use this API in the interrupt handler and callback
function specified in R_BLE_AC_Init API.

 This API cannot use when choosing compact as BLE_Driver FSP module configuration.
 The reason for disconnection is always 0x0013 (Remote User Terminated Connection).

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 20 of 74

Nov.30.22

2.1.5 R_BLE_SC_SetAddress

R_BLE_SC_SetAddress API configures the own identity address. The store destination of the identity
address has been configured by the Device Specific Data Flash Block property of the BLE_Driver FSP
module, which describes in the FSP configuration.

 Store in the volatile area

➢ This API will restart the Host stack to activate the new address.

 Store in the non-volatile area

➢ Immediately reflect the new address.

Refer to section 4.2.4 in R01AN5402 about identity address adaptation flow.

1) Declaration

ble_status_t R_BLE_SC_SetAddress (uint8_t type, uint8_t *p_address)

2) Parameters

To use this API, it is necessary to specify the following parameters as an argument.

Table 19. Parameters

Direction Parameter Name Description

[in] type Identity address type.

BLE_GAP_ADDR_PUBLIC (0x00) : Public address

BLE_GAP_ADDR_RAND (0x01) : Static random address

[in] p_address Identity address. The length of the identity address should be 6 octets.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 21 of 74

Nov.30.22

3) Return values

The return values of this API are the following.

Table 20. Return value

Error Code Description

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_address is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The type parameter is out of range.

BLE_ERR_INVALID_STATE(0x008) The host stack is not running or has already established a
connection with another device.

BLE_ERR_INVALID_OPERATION(0x0009) Failed to configure identity address, or the API has called in
an interrupt handler or an event callback.

BLE_ERR_CONTEXT_FULL(0x000B) The API call could not be processed because the Host
Stack queue was full.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Memory cannot allocate to proceed with this API.

4) Events

None.

5) Note

 This API is blocking API. Therefore, this API will be occupied the MCU until the identity address
has been configured. And the user should not use this API in the interrupt handler and the callback
function specified in R_BLE_AC_Init API.

 This API cannot be used while a connection with another device exists..

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 22 of 74

Nov.30.22

2.1.6 R_BLE_SC_GetAddress

R_BLE_SC_GetAddress API gets the current own identity address.

1) Declaration

ble_status_t R_BLE_SC_GetAddress (uint8_t type, uint8_t *p_address)

2) Parameters

To use this API, it is necessary to specify the following parameters as an argument.

Table 21. Parameters

Direction Parameter Name Description

[in] type Identity address type.

BLE_GAP_ADDR_PUBLIC (0x00) : Public address

BLE_GAP_ADDR_RAND (0x01) : Static random address

[out] p_address Pointer for identity address.

3) Return values

The return values of this API are the following.

Table 22. Return value

Error Code Description

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_address is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The type parameter is out of range.

BLE_ERR_INVALID_STATE(0x008) The host stack is not running or has already established a
connection with another device.

BLE_ERR_INVALID_OPERATION(0x0009) Failed to configure identity address, or the API has called in
an interrupt handler or an event callback.

BLE_ERR_CONTEXT_FULL(0x000B) The API call could not be processed because the Host
Stack queue was full.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Memory cannot allocate to proceed with this API.

4) Events

None.

5) Note

This API is blocking API. Therefore, this API will be occupied the MCU until the identity address has
been configured. And the user should not use this API in the interrupt handler and callback function
specified in R_BLE_AC_Init API.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 23 of 74

Nov.30.22

2.1.7 R_BLE_SC_SetConnectionAddress

R_BLE_SC_SetConnectionAddress API configures the connection target BD address.

The target address will be used to establish a connection with another device by using
R_BLE_SC_Connection API.

1) Declaration

ble_status_t R_BLE_SC_SetConnectionAddress (uint8_t type, uint8_t * p_address)

2) Parameters

To use this API, it is necessary to specify the following parameters as an argument.

Table 23. Parameters

Direction Parameter Name Description

[in] type Identity address type.

BLE_GAP_ADDR_PUBLIC (0x00) : Public address

BLE_GAP_ADDR_RAND (0x01) : Static random address

[in] p_address Identity address. The length of the identity address should be 6 octets.

3) Return values

The return values of this API are the following.

Table 24. Return value

Error Code Description

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_address is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The type parameter is out of range.

BLE_ERR_INVALID_STATE(0x008) Already establish a connection with another device.

4) Events

None.

5) Note

 This API cannot be used while a connection with another device exists.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 24 of 74

Nov.30.22

2.1.8 R_BLE_SC_GetConnectionAddress

R_BLE_SC_GetConnectionAddress API gets the current target BD address.

1) Declaration

ble_status_t R_BLE_SC_GetConnectionAddress (uint8_t *p_type, uint8_t *p_address)

2) Parameters

To use this API, it is necessary to specify the following parameters as an argument.

Table 25. Parameters

Direction Parameter Name Description

[out] p_type Identity address type.

BLE_GAP_ADDR_PUBLIC (0x00) : Public address

BLE_GAP_ADDR_RAND (0x01) : Static random address

[out] p_address Pointer for Identity address.

3) Return values

The return values of this API are the following.

Table 26. Return value

Error Code Description

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_type or p_address is specified as NULL.

4) Events

None.

5) Note

None.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 25 of 74

Nov.30.22

2.1.9 R_BLE_SC_SetConnectionInterval

R_BLE_SC_SetConnectionInterval API configures the connection interval, which will be used when
establishing a connection with another device by using R_BLE_SC_Connection API.

1) Declaration

ble_status_t R_BLE_SC_SetConnectionInterval (uint16_t interval)

2) Parameters

To use this API, it is necessary to specify the following parameters as an argument.

Table 27. Parameters

Direction Parameter Name Description

[in] Interval Connection interval.

Connection interval [msec] = interval * 1.25.

Valid range is 0x0006 - 0x0C80.

3) Return values

The return values of this API are the following.

Table 28. Return value

Error Code Description

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The interval parameter is out of range.

BLE_ERR_INVALID_STATE(0x008) Already establish a connection with another device.

4) Events

None.

5) Note

 This API cannot be used while a connection with another device exists.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 26 of 74

Nov.30.22

2.1.10 R_BLE_SC_GetConnectionInterval

R_BLE_SC_GetConnectionInterval API gets the current connection interval.

1) Declaration

ble_status_t R_BLE_SC_GetConnectionInterval (uint16_t * p_interval)

2) Parameters

To use this API, it is necessary to specify the following parameters as an argument.

Table 29. Parameters

In/out Parameter Name Description

[out] p_interval. Connection interval.

Connection interval [msec] = *(p_interval) * 1.25.

3) Return values

The return values of this API are the following.

Table 30. Return value

Error Code Description

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_interval is specified as NULL.

4) Events

None.

5) Note

None.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 27 of 74

Nov.30.22

2.1.11 R_BLE_SC_SetPhy

R_BLE_SC_SetPhy API configures the Tx / Rx PHY.

1) Declaration

ble_status_t R_BLE_SC_SetPhy (uint16_t conn_hdl, uint8_t phy)

2) Parameter

To use this API, it is necessary to specify the following parameters as an argument.

Table 31. Parameters

Direction Parameter Name Description

[in] conn_hdl Connection handle.

[in] phy The PHY to be used.

The valid range is,

 BLE_GAP_SET_PHYS_HOST_PREF_1M (0x01) : LE 1M PHY

BLE_GAP_SET_PHYS_HOST_PREF_2M (0x02) : LE 2M PHY

BLE_GAP_SET_PHYS_HOST_PREF_CD (0x04) : LE Coded PHY (S=8)

3) Return values

The return values of this API are the following.

Table 32. Return value

Error Code Description

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The phy parameter is out of range, or the conn_hdl
parameter is invalid.

BLE_ERR_UNSUPPORTED(0x0007) BLE_Driver FPS module's current configuration does not
support this feature.

BLE_ERR_INVALID_STATE(0x0008) The connection has not been established, or the host stack
is not running.

BLE_ERR_CONTEXT_FULL(0x000B) The API call could not be processed because the Host
Stack queue was full.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Memory cannot allocate to proceed this API.

4) Events

None.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 28 of 74

Nov.30.22

5) Note

 The user can use this API after establishing a connection with another device.

 This API does not support asymmetric PHY.

 This API does not support S=2 coding.

 Coded PHY can be used when choosing extended as BLE_Driver FSP module configuration.

 LE 2M PHY can be used when choosing extended or balance configuration as BLE_Driver FSP
module configuration.

 This API cannot use when choosing compact as BLE_Driver FSP module configuration.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 29 of 74

Nov.30.22

2.1.12 R_BLE_SC_GetPhy

R_BLE_SC_SetPhy API gets the current Tx / Rx PHY.

1) Declaration

ble_status_t R_BLE_SC_GetPhy (uint16_t conn_hdl, uint8_t * p_phy_in_use)

2) Parameters

To use this API, it is necessary to specify the following parameters as an argument.

Table 33. Parameters

Direction Parameter Name Description

[in] conn_hdl Connection handle.

[out] p_phy_in_use The PHY to be used.

0x01: LE 1M PHY

0x02: LE 2M PHY

0x03: LE Coded PHY (S=8)

3) Return values

The return values of this API are the following.

Table 34. Return value

Error Code Description

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_phy_in_use is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The conn_hdl parameter is invalid.

BLE_ERR_UNSUPPORTED(0x0007) BLE_Driver FPS module's current configuration does not
support this feature.

BLE_ERR_INVALID_STATE(0x0008) The PHY update is in progress, or no active connection
exists.

BLE_ERR_CONTEXT_FULL(0x000B) The API call could not be processed because the Host
Stack queue was full.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Memory cannot allocate to proceed with this API.

4) Events

None.

5) Note

 The user can use this API after establishing a connection with another device.

 This API does not support when choosing compact as BLE_Driver FSP module configuration.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 30 of 74

Nov.30.22

2.1.13 R_BLE_SC_SetMode

R_BLE_SC_SetMode API chooses the GATT communication method from Notification / Write without
response or Indication / Write.

1) Declaration

ble_status_t R_BLE_SC_SetMode (uint8_t mode)

2) Parameters

To use this API, it is necessary to specify the following parameters as an argument.

Table 35. Parameters

Direction Parameter Name Description

[in] mode GATT communication method. The valid range is,

R_BLE_SC_RESPONSE (0x00, default setting)

 Server -> Client : Indication

 Client -> Server : Write

R_BLE_SC_NORESPONSE (0x01)

Server -> Client : Notification

 Client -> Server : Write without response

3) Return values

The return values of this API are the following.

Table 36. Return value

Error Code Description

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The mode parameter is out of range.

BLE_ERR_INVALID_STATE(0x0008) The connection has not been established, or the host stack
is not running.

4) Events

None.

5) Note

The user can use this API after establishing a connection with another device.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 31 of 74

Nov.30.22

2.1.14 R_BLE_SC_GetMode

R_BLE_SC_GetMode API gets the GATT communication method in use.

1) Declaration

ble_status_t R_BLE_SC_GetMode (uint8_t * p_mode)

2) Parameters

To use this API, it is necessary to specify the following parameters as an argument.

Table 37. Parameters

Direction Parameter Name Description

[out] p_mode GATT communication method. The valid range is,

R_BLE_SC_RESPONSE (0x00, default setting)

 Server -> Client : Indication

 Client -> Server : Write

R_BLE_SC_NORESPONSE (0x01)

Server -> Client : Notification

 Client -> Server : Write without response

3) Return values

The return values of this API are the following.

Table 38. Return value

Error Code Description

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_mode is specified as NULL.

4) Events

None.

5) Note

 The user can use this API after establishing a connection with another device.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 32 of 74

Nov.30.22

2.1.15 R_BLE_SC_SendData

R_BLE_SC_SendData API transmits the PDU to the opposite device according to the GATT communication
method specified by R_BLE_SC_SetMode API.

1) Declaration

ble_status_t R_BLE_SC_SendData ((uint16_t conn_hdl, uint8_t *p_data, uint16_t len)

2) Parameters

To use this API, it is necessary to specify the following parameters as an argument.

Table 39. Parameters

Direction Parameter Name Description

[in] conn_hdl Connection handle.

[in] p_data Pointer to send data.

[in] len Length of send data. The maximum data length is (MTU size - 3) octets.

MTU size can be configured by the MTU Size Configured property of the
BLE_Drievr FSP module.

3) Return values

The return values of this API are the following.

Table 40. Return value

Error Code Description

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_data is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The conn_hdl parameter is invalid, or the len parameter is
out of range.

BLE_ERR_INVALID_STATE(0x0008) The connection has not been established, or the host stack
is not running.

BLE_ERR_CONTEXT_FULL(0x000B) The API call could not be processed because the Host
Stack queue or the internal buffer was full.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Memory cannot allocate to proceed with this API.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 33 of 74

Nov.30.22

4) Events

This API will notify the following events to the callback function registered by the R_BLE_SC_Init API..

Table 41. Events (Server side)

Event Code Description

R_BLE_SCS_EVENT_WRITE_COMP

(0x0001)

This event will be notified when the server has
received a write request PDU to Simple Connection
Write characteristic (D68C0003-A21B-11E5-8CB8-
0002A5D5C51B).

 result

The result will be notified as ble_status_t type.
Refer to Renesas Flexible Software Package
(FSP) User’s Manual about ble_status_t
specification.

 Event Data

The Event Data will be notified as
st_ble_seq_data_t type and included
characteristic value. Refer to R11UM0154
about st_ble_seq_data_t definition.

R_BLE_SCS_EVENT_WRITE_WO_RESP_COMP

(0x0002)

This event will be notified when the server has
received a write without request PDU to Simple
Connection Write without Response characteristic
(D68C0005-A21B-11E5-8CB8-0002A5D5C51B).

 result

The result will be notified as ble_status_t type.
Refer to Renesas Flexible Software Package
(FSP) User’s Manual about ble_status_t
specification.

 Event Data

The Event Data will be notified as
st_ble_seq_data_t type and included
characteristic value.Refer to R11UM0154
about st_ble_seq_data_t definition.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 34 of 74

Nov.30.22

Event Code Description

R_BLE_SCS_EVENT_INDICATION_CFM

(0x0003)

This event will be notified when the server has
received indication confirmation PDU to Simple
Connection Indication characteristic (D68C0005-
A21B-11E5-8CB8-0002A5D5C51B).

 result

The result will be notified as ble_status_t type.
Refer to Renesas Flexible Software Package
(FSP) User’s Manual about ble_status_t
specification.

 Event Data

The Event Data will be notified as
st_ble_seq_data_t type and included
characteristic value.Refer to R11UM0154 about
st_ble_seq_data_t definition.

Table 42. Events (Client side)

Event Code Description

R_BLE_SCC_EVENT_WRITE_RSP

(0x0011)

This event will be notified when the client has
received a write response PDU to Simple
Connection Write characteristic (D68C0003-A21B-
11E5-8CB8-0002A5D5C51B).

 result

The result will be notified as ble_status_t type.
Refer to Renesas Flexible Software Package
(FSP) User’s Manual about ble_status_t
specification.

 Event Data

The Event Data will be notified as
st_ble_seq_data_t type and included
characteristic value. Refer to R11UM0154
about st_ble_seq_data_t definition.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 35 of 74

Nov.30.22

Event Code Description

R_BLE_SCC_EVENT_INDICATION_COMP

(0x0012)

This event will be notified when the client has
received indication PDU from Simple Connection
Indication characteristic (D68C0002-A21B-11E5-
8CB8-0002A5D5C51B).

 result

The result will be notified as ble_status_t type.
Refer to Renesas Flexible Software Package
(FSP) User’s Manual about ble_status_t
specification.

 Event Data

The Event Data will be notified as
st_ble_seq_data_t type and included
characteristic value.Refer to R11UM0154
about st_ble_seq_data_t definition.

R_BLE_SCC_EVENT_NOTIFICATION_COMP
(0x0013)

This event will be notified when the client has
received notification PDU from Simple Connection
Notification characteristic (D68C0004-A21B-11E5-
8CB8-0002A5D5C51B).

 result

The result will be notified as ble_status_t type.
Refer to Renesas Flexible Software Package
(FSP) User’s Manual about ble_status_t
specification.

 Event Data

The Event Data will be notified as
st_ble_seq_data_t type and included
characteristic value.Refer to R11UM0154 about
st_ble_seq_data_t definition.

R_BLE_SCC_EVENT_ERROR_RSP

(0x0031)

The event will be notified when the client has
received an error response from the server side.

 result

The result will be notified as ble_status_t type.
Refer to Renesas Flexible Software Package
(FSP) User’s Manual about ble_status_t
specification.

 Event Data

None.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 36 of 74

Nov.30.22

5) Internal Buffer

It is not possible to send data within the period between the Write Request and Response or the Indication
and Confirmation. The data should be lost when the user tries to send data within the period.

To avoid such a data loss, This API has a 244 octets internal buffer. The behavior of the internal buffer is
shown below.

Figure 2. The behavior of the internal buffer

6) Note

 The user can use this API after establishing a connection with another device.
 The user should not use this API in the interrupt handler and the callback function specified in

R_BLE_AC_Init API.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 37 of 74

Nov.30.22

2.1.16 R_BLE_SC_GetConnDevice

R_BLE_SC_GetConnDevice API returns following variables.

 Connection handle

 Remote address type

 Remote address

 Exchanged MTU size

1) Declaration

ble_status_t R_BLE_SC_GetConnDevice(uint16_t *p_conn_hdl,

uint8_t *p_type,

uint8_t *p_address,

uint16_t *mtu)

2) Parameters

To use this API, it is necessary to specify the following parameters as an argument.

Table 43. Parameters

Direction Parameter Name Description

[out] *p_conn_hdl Pointer to store connection handle.

[out] *p_type Pointer to store remote address type.

[out] *p_address Pointer to store remote address.

[out] *mtu Pointer to store MTU size.

3) Return values

The return values of this API are the following.

Table 44. Return value

Error Code Description

BLE_SUCCESS(0x0000) Success

4) Events

None.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 38 of 74

Nov.30.22

2.1.17 R_BLE_SC_GetSemaphoreHandle

R_BLE_SC_GetSemaphoreHandle API returns the task handle when the user makes their own application
on FreeRTOS or AzureRTOS environment.

Bluetooth LE application needs to call R_BLE_Execute API periodically. A task that periodically calls
R_BLE_Execute API is created by R_BLE_SC_Init API. Task handle obtained by
R_BLE_SC_GetSemaphoreHandle API is used when the user explicitly switches the context to the task that
periodically calls R_BLE_Execute API.

1) Declaration

void *R_BLE_SC_GetSemaphoreHandle(void)

2) Parameters

None.

3) Return values

The return value of R_SC_BLE_GetSemaphoreHandle API varies depending on the type of RTOS as
follows.

Table 45. Return value

RTOS Synchronization Type

(See Note)

Return value Type

FreeRTOS Event Group Event group handle EventGroupHandle_t

FreeRTOS Semaphore Semaphore handle SemaphoreHandle_t

AzureRTOS N/A Semaphore handle TX_SEMAPHORE

4) Events

None.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 39 of 74

Nov.30.22

5) Note

In FSP4.0 or later, in order to improve the overhead of the task switching in the FreeRTOS
environment, the context switch method to the task that periodically calls R_BLE_Execute API can be
selected from Event Group and Semaphore by Synchronization Type property of BLE Driver FSP
module.

Figure 3. Synchronization Type property of BLE Driver FSP module

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 40 of 74

Nov.30.22

2.1.18 R_BLE_SC_Close

R_BLE_SC_Close performs,

 Terminate the BLE stack by using RM_BLE_ABS_Close API.

 Clear the callback registration configured by R_BLE_SC_Init API.

1) Declaration

ble_status_t R_BLE_SC_Close(void)

2) Parameters

None.

3) Return values

None.

4) Events

None.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 41 of 74

Nov.30.22

2.2 Macros

This section describes the macro definition, which can be changed by the user. In the attached sample
project listed in Table 1. Example projects, these macros are described in simple_connection_api.h.

Table 46. Macro definition for user settings

Macro Description

R_BLE_SC_LOG_OUTPUT Specify whether output GAP/GATT operation log or not.

0 : Log output is disabled
1 : Log output is enabled (Default)

R_BLE_SC_PAIRING_REQUIRE Specify whether it requires pairing or not when the opposite
device tries to access to own device's characteristic.

0 : Pairing is not required
1 : Pairing is required (Default)

R_BLE_SC_ADDRESS_IN_USE Specify whether to use a public address or a static random
address as the own address.

0x00 : Public address
0x01 : Static random address (Default)

R_BLE_SC_DEV_MAX The maximum number of devices that can be found by
R_BLE_SC_Scan() API. The default value is 10.

2.3 Required peripheral module

SC APIs require one channel of General PWM Timer (32bit).

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 42 of 74

Nov.30.22

3. Virtual UART Sample Application

This chapter describes the Virtual UART Sample Application(hereafter VUART App).

3.1 What is Virtual UART sample application

The virtual UART sample application (hereafter VUART App.) is an example project using the SC APIs. The
VUART App. provides following functionality,

 Simple AT command function to control and configure Bluetooth LE connection.

➢ Refer to section 3.4 about AT command specification.

➢ Each AT command is a wrapper function for SC APIs.

 Send/receive characters or binary data to/from a remote device over Bluetooth LE
communication.

➢ Refer to section 2.1.1 about the required GATT database.

Figure 4. Operating environment of VUART App

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 43 of 74

Nov.30.22

3.2 Operation Flow

The VUART App. has the following states shown in Table 47.

Table 47. States of the VUART App

State Description

Advertising Advertising will be automatically started after power-ON.

Scanning Scanning will be started by at -ds command and find the device which supports
the Simple Connection Service.

Initiating Establish a connection with another device by using at -c command.

Client A client of the Simple Connection Service.

Server A server of the Simple Connection Service.

Figure 5 shows state transition by AT commands.

Figure 5. State transition diagram of the VUART App

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 44 of 74

Nov.30.22

3.3 AT command and VUART modes

The VUART App. has the following operation modes:

 AT command mode

➢ Parses and executes AT commands input via terminal emulator.

 VUART mode

➢ Send characters entered from the terminal emulator to the opposite device by using
R_BLE_SC_SendData API.

When the device is in the Advertising, Scanning, or Initiating state, only AT command mode is available.
When the device is in the Connection State(Client, Server), both AT command and VUART modes are
available.

There are two methods to switch operation modes:

 Execute at -v command: can be used when entering VUART mode.

 Push SW1 of the EK-RA4W1 board: can be used when entering both VUART mode and AT
command mode.

Figure 6 shows the transition between AT command and VUART modes.

Figure 6. The transition between AT command and VUART modes

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 45 of 74

Nov.30.22

3.4 AT command reference

The following sections describe AT command specification. Most of the AT commands are a wrapper of SC
APIs. The correspondence between AT command and SC APIs are following.

Table 48. The correspondence between AT command and SC APIs

AT command Wrapping SC APIs features

at -ds R_BLE_SC_Scan Scanning,

at -c R_BLE_SC_Connection Initiating.

at -h R_BLE_SC_Disconnection Disconnect,

at -ap R_BLE_SC_SetConnectionAddress

R_BLE_SC_GetConnectionAddress

Set/Get initiation target device address.

at -cI R_BLE_SetConnectionInterval

R_BLE_GetConnectionInterval

Set/Get connection interval.

at -as R_BLE_SC_SetAddress

R_BLE_SC_GetAddress

Set/Get the own device address.

at -p R_BLE_SC_SetPHY

R_BLE_SC_GetPHY

Set/Get PHY to use.

at -m R_BLE_SC_SetMode

R_BLE_SC_GetMode

Set/Get procedure to write Simple

connection service characteristic from,

write or write without response (client)

indication or notification (server)

at -s None Display the current connection state.

at -e None Enable/Disable local echo,

at -v None Enter the VUART mode.

at -r None Reset .

Note: It is necessary to use lowercase when entering the AT commands on the console. ex) at -ds

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 46 of 74

Nov.30.22

3.4.1 AT -DS

at -ds command is a wrapper of the R_BLE_SC_Scan API. This command performs scanning to detect the
device(s) that support the Simple Connection Service.

The scan will stop when:

 The number of discovered device(s) reaches scan_device_limit, which is specified by the user as
AT command parameter.

 7.68 [sec] have passed from the AT command entered.

When the scan stops, the following information will be displayed to the terminal emulator:

 BD address and its type.

 Device Name.

Table 49. at-ds command

AT -DS command

Format : at -ds (scan_device_limit)

Parameters : scan_device_limit The number of device(s) to

discover. If omitted,

#R_BLE_SC_DEV_MAX (10) will

be applied.

Usage : $at -ds

XX:XX:XX:XX:XX:XX rnd VUART#1

YY:YY:YY:YY:YY:YY pub VUART#2

ZZ:ZZ:ZZ:ZZ:ZZ:ZZ rnd VUART#3

at -ds : success

The address and address type of the detected devices will be

displayed at the end.

$at -ds 1

XX:XX:XX:XX:XX:XX rnd VUART#1

at -ds : success

The scan stops when one device has been detected.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 47 of 74

Nov.30.22

3.4.2 AT -C

at -c command is a wrapper of the R_BLE_SC_Connection API. This AT command performs initiating
procedure. This command requires the BD address of the device to connect. There are two ways to specify
the address:

 Specify as an argument of at -c command.

 Specify by using at -ap command before using at -c command.

Table 50. at-c command

AT -C command

Format : at -c (addr) (addr_type)

Parameters : (addr) The address of the device to connect.

(addr_type) The address type of the device to connect.

 pub : Public Address

 rnd : Random Address

Usage : $at -c

at -c : connection handle = 0xXX

at -c : success

Connects to the device specified by the AT-AP command in

advance.

$at -c D1:45:9E:1D:AD:C7 rnd

at -c : connection handle = 0xXX

at -c : success

Connect to the device that random address is D1:45:9E:1D:AD:C7.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 48 of 74

Nov.30.22

3.4.3 AT -H

at -h command is a wrapper of the R_BLE_SC_DisConnection API. This command will disconnect the
current connection.

Table 51. at-h command

AT -H command

Format : at -h [conn_hdl]

Parameters : [conn_hdl] The connection handle of the connection to disconnect.

Usage : $at -h 0x20

at -h : disconnected handle = 0x20

at -h: success

Disconnects the connection that connection handle is 0x20.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 49 of 74

Nov.30.22

3.4.4 AT -AP

at -ap command is a wrapper of the R_BLE_SC_SetConnectionAddress API and
R_BLE_SC_GetConnectionAddress API. This command specifies the BD address of the device to connect.
This command should be executed before at -c command.

Table 52. at-ap command

AT -AP command

Format : at -ap [addr] [addr_type]

at -ap ?

Parameters : [addr] The address of the device to connect.

[addr_type] The address type of the device to connect.

 pub : Public Address

 rnd : Random Address

? Get the current address and address type that is

specified.

Usage : $at -ap 74:90:50:FF:FF:FF pub

at -ap : set success

Set 74:90:50:FF:FF:FF as the public address of the connection

target.

$at -ap ?

Target Address = 74:90:50:FF:FF:FF

Target Address Type = Public

at -ap : get success

Get the current address and address type that is specified.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 50 of 74

Nov.30.22

3.4.5 AT -CI

at -ci command is a wrapper of the R_BLE_SC_SetConnectionInterval API and the
R_BLE_SC_GetConnectionInterval API. This command performs,

 Configuring the connection interval used when establishing a connection.

 Getting the current connection interval configuration.

The connection interval value configured by this at -ci command will only be applied when establishing a

connection. If the user wants to change the connection interval by using this command, it is necessary to

disconnect the current connection.

Table 53. at-ci command

AT -CI command

Format : at -ci [conn_intv]

at -ci ?

Parameters : [conn_intv] Set the connection interval value.

 Time(ms) = conn_intv * 1.25.

? Get the current connection interval setting.

Usage: $at -ci 0x28

at -ci : set success

Set the connection interval to 50ms(0x28 * 1.25 = 50ms).

$at -ci ?

at -ci : get success (Connection Interval = 0x28)

Get the current connection interval setting.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 51 of 74

Nov.30.22

3.4.6 AT -AS

at -as command is a wrapper of the R_BLE_SC_SetAddress API and R_BLE_SC_GetAddress API.

This command performs:

 Setting the own identify address and its type.

 Getting the current configuration of the own identify address and its type.

Table 54. at-as command

AT -AS command

Format : at -as [addr] [addr_type]

at -as ?

Parameters : [addr] The address to set.

[addr_type] The type of address.

 pub : Public Address

 rnd : Random Address

? Get the current configuration of the own address and

its type.

Usage : $at -as 74:90:50:FF:FF:FF pub

Public Address = 74:90:50:FF:FF:FF

at -as : set success

Set 74:90:50:FF:FF:FF as the own public address.

$at -as ?

Public Address = XX:XX:XX:XX:XX:XX

Static Address = YY:YY:YY:YY:YY:YY

at -as : get success

Get the current own address and address type.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 52 of 74

Nov.30.22

3.4.7 AT -P

at -p command is a wrapper of the R_BLE_SC_SetPhy API and the R_BLE_SC_GetPhy API.

This command performs:

 Updates the PHY of the current connection.

 Gets the PHY used in the current connection.

This command is available when a connection is already established.

Table 55. at-p command

AT -P command

Format : at -p [conn_hdl] [phy]

at -p [conn_hdl] ?

Parameters : [conn_hdl] The handle of the connection to change PHY.

[phy] The PHY to set.

1M : 1M PHY.

2M : 2M PHY.

CD : Coded PHY.

? Get the current PHY.

Usage : $at -p 0x20 2M

at -p : set success

Sets the PHY of the connection with handle 0x20 to 2M PHY.

$at -p 0x20 ?

Phy = 2M

at -p : get success

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 53 of 74

Nov.30.22

3.4.8 AT -M

at -mAT -M command is a wrapper of the R_BLE_SC_SetMode API and the R_BLE_SC_GetMode API.

This command performs:

 Sets the GATT communication method.

 Gets the current configuration of the GATT communication method.

Table 56. at-m command

AT -M command

Format : at -m [mode]

at -m ?

Parameters : [mode] The data sending mode to set.

resp :

Use the GATT communication method with a

response

(Client: Write, Server: Indication).

noresp :

Use the GATT communication method without a

response

(Client: Write w/o Resp, Server: Notification).

? Get the current configuration of the GATT

communication method.

Usage : $at -m resp

at -m : set success

Sets the GATT communication method to "resp".

$at -m ?

Response

at -m : get success

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 54 of 74

Nov.30.22

3.4.9 AT -S

at -s command displays the current connection status.

Table 57. at-s command

AT -S command

Format : at -s

Parameters : None.

Usage : $at -s

at-s: DISCONNECT

No connection exists.

$at -s

at-s: CONNECT

Connection exists.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 55 of 74

Nov.30.22

3.4.10 AT -E

at -e command sets the local echo.

Table 58. at-e command

AT -E command

Format : at -e [on/off]

Parameters : [on/off] on : Enable local echo.

off : Unbale local echo.

Usage : $at -e on

at-e: Success.

Enable local echo.

$at -e off

at-e: Success.

Unbale local echo.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 56 of 74

Nov.30.22

3.4.11 AT -V

at-v command enters the VUART mode. Also, refer to section 3.3 about the usage of this command.

Table 59. at-v command

AT -V command

Format : at -v

Parameters : None

Usage : $at -v

app_main : VUART mode.

Enter the VUART mode.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 57 of 74

Nov.30.22

3.4.12 AT -R

at -v command resets the MCU.

Table 60. at-r command

AT -R command

Format : at -r

Parameters : None

Usage : $at -r

!! MCU software reset !!

BLE_VS_EVENT_GET_ADDR_COMP result:0x0000, param_len:8

addr:D2:8F:B9:18:F9:0F rnd on current register

receive BLE_GAP_EVENT_ADV_ON result : 0x0000, adv_hdl :

0x0000

app_main : Simple Connection API successfully initialized.

Resets the MCU.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 58 of 74

Nov.30.22

3.5 How to use the VUART App

This section describes how to use the VUART App. Refer to section 1.4 about the required environment to
use the VUART App.

3.5.1 Setup

3.5.1.1 Import projects

To import sample projects listed in Table 1, follow the steps below:

1. Launch the e2studio and select the workspace directory.

Figure 7. Select workspace

2. Select File -> Import.

Figure 8. File menu

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 59 of 74

Nov.30.22

3. Select Existing Projects into Workspace and click Next button.

Figure 9. Select an import wizard

4. Select the root directory. Click Browse… button, and select the demo project folder. Click Finish button
to import the demo project.

Figure 10. Import projects

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 60 of 74

Nov.30.22

3.5.1.2 Generate with FSP configurator

Generate source code of FSP modules before building the sample project.

1. Click configuration.xml to open the FSP configurator.

Figure 11. Click configuration.xml

2. Click “Generate Project Content” button.

Figure 12. Click "Generate Project Content"

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 61 of 74

Nov.30.22

3. Check the following folders are generated: ra, ra_gen, ra_cfg.

Figure 13. Check generated folders

3.5.1.3 Build and programming

Refer to Chapter 4 and Chapter 5 in " Renesas e2 studio 2021-04 or higher User’s Manual: Quick Start
Guide" (R20UT4989).

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 62 of 74

Nov.30.22

3.5.2 Demo

This section describes the behaviors of the VUART App. It is necessary to 2pcs of EK-RA4W1 to perform
data exchange.

3.5.2.1 Power on and advertising

Power on both of EK-RA4W1. After the power of the EK-RA4W1 is turned on, Advertising will be
automatically started. Then, the following message will be displayed on the terminal emulator.

BLE_VS_EVENT_GET_ADDR_COMP result:0x0000, param_len:8

 addr:D2:8F:B9:18:F9:0F rnd on current register

receive BLE_GAP_EVENT_ADV_ON result : 0x0000, adv_hdl : 0x0000

app_main : Simple Connection API successfully initialized.

Figure 14. Power on and advertising

3.5.2.2 Scan

Execute at -ds command either one of EK-RA4W1 turned on in section 3.5.2.1 to find a device that supports
simple connection service. Refer to section 3.4.1 for detail of at -ds command. After executing at -ds
command, the following message will be displayed on the terminal emulator.

$ at -ds 1

DD:51:F4:60:70:7C rnd ff 0000

DD:51:F4:60:70:7C rnd ff 0000

receive BLE_GAP_EVENT_SCAN_OFF result : 0x0000

DD:51:F4:60:70:7C rnd VUART#1

at-ds: Success.

$

Figure 15. Scanning(Scanner)

Start scanning

The discovered device(its address,
address type, device name)

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 63 of 74

Nov.30.22

3.5.2.3 Connect

Execute at -c command to connect to another EK-RA4W1 VUART App device. Refer to section 3.4.2 about
the usage of at -c command. The following example connects to the device whose address is
DD:51:F4:60:70:7C rnd(Static random address). The device which executes at -c command becomes GATT
Client. The opposite device becomes GATT Server. After executing at -c command, the following message
will be displayed on the Client side of the terminal emulator.

$ at -c DD:51:F4:60:70:7C rnd

receive BLE_GAP_EVENT_ADV_OFF result : 0x0000,
adv_hdl : 0x0000

receive BLE_GAP_EVENT_CONN_IND result : 0x0000

gap: connected conn_hdl:0x0040, addr:DD:51:F4:60:70:7C rnd

receive BLE_GAP_EVENT_DATA_LEN_CHG result : 0x0000, conn_hdl : 0x0040

tx_octets : 0x00fb

tx_time : 0x0848

rx_octets : 0x00fb

rx_time : 0x0848

receive BLE_GAP_EVENT_ENC_CHG result : 0x0000

receive BLE_GAP_EVENT_PEER_KEY_INFO

LTK : 4ce256e138dcf6926e836027c124fc0c

receive BLE_GAP_EVENT_PAIRING_COMP result : 0x0000

sec : 0x01, mode : 0x02, bond : 0x01, key_size : 0x10

Simple Connection Callback: Connection is Established.

Connection handle =0040, MTU size = 247

at-c: Connection established. handle=0x0040

at-c: Success.

$

Figure 16. Connecting(Client)

Start a connection procedure

Connection established

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 64 of 74

Nov.30.22

Then, the following message will be displayed on the Server side of the terminal emulator.

receive BLE_GAP_EVENT_CONN_IND result : 0x0000

gap: connected conn_hdl:0x0020, addr:D2:8F:B9:18:F9:0F rnd

receive BLE_GAP_EVENT_ADV_OFF result : 0x0000, adv_hdl : 0x0000

receive BLE_GAP_EVENT_DATA_LEN_CHG result : 0x0000, conn_hdl : 0x0020

tx_octets : 0x00fb

tx_time : 0x0848

rx_octets : 0x00fb

rx_time : 0x0848

receive BLE_GAP_EVENT_ENC_CHG result : 0x0000

receive BLE_GAP_EVENT_PEER_KEY_INFO

LTK : 4ce256e138dcf6926e836027c124fc0c

receive BLE_GAP_EVENT_PAIRING_COMP result : 0x0000

sec : 0x01, mode : 0x02, bond : 0x01, key_size : 0x10

Simple Connection Callback: Connection is Established.

Connection handle =0020, MTU size = 247

Simple Connection Callback: Notification is ready to send.

Simple Connection Callback: Connection is Established.

Connection handle =0020, MTU size = 247

Simple Connection Callback: Indication is ready to send.

Figure 17. Connecting(Server)

Connection established

Notification is enabled by the Client

Indication is enabled by the Client

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 65 of 74

Nov.30.22

3.5.2.4 Send message

Following is an example of sending a string from client to server.

1) To send messages from client to server, change the operation mode of the client side from AT
command mode to VUART mode by using at -v command.

$ at -v

$ app_main : VUART mode.

Figure 18. Enter the VUART mode by at -v command(Client)

2) Type “vuart 1234567890” in the client side of the terminal emulator. The client side will send the string
by the Write procedure.

$ at -v

$ app_main : VUART mode.

vuart 1234567890

Figure 19. Send a message(Client)

3) The string “vuart 1234567890” will be displayed on the server side of the terminal emulator.

vuart 1234567890

Figure 20. Receive the message on the opposite device(Server)

4) To resume the AT command mode, push SW1 on the client side of the EK-RA4W1 board.

$ at -v

$ app_main : VUART mode.

vuart 1234567890

$ app_main : AT command mode.

Figure 21. Resume to the AT command mode(Client)

Note: If the user wants to send a string from server to client, do the same steps on the server side. In that
case, the server will send a string by using the Indication procedure.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 66 of 74

Nov.30.22

3.5.2.5 Disconnect

To disconnect the current connection, enter at -h command. Both the Client and the Server can be started
the disconnection procedure. In this demo, the Client starts the disconnection procedure.

After executing at -h command, the following message will be displayed on the client side of the terminal
emulator.

$ at -h 0x40

receive BLE_GAP_EVENT_DISCONN_IND result : 0x0000

gap: disconnected conn_hdl:0x0040, addr:DD:51:F4:60:70:7C rnd, reason:0x16

Simple Connection Callback: Link is disconnected.

receive BLE_GAP_EVENT_ADV_ON result : 0x0000, adv_hdl : 0x0000

at-h: Disconnection success. connection handle = 0x0040

$

Figure 22. Disconnected(Client)

The following message will be displayed on the server side of the terminal emulator.

receive BLE_GAP_EVENT_DISCONN_IND result : 0x0000

gap: disconnected conn_hdl:0x0020, addr:D2:8F:B9:18:F9:0F rnd, reason:0x13

Simple Connection Callback: Link is disconnected.

receive BLE_GAP_EVENT_ADV_ON result : 0x0000, adv_hdl : 0x0000

Figure 23. Disconnected(Server)

Start a disconnection prosedure

disconnected

Restart advertising

disconnected

Restart advertising

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 67 of 74

Nov.30.22

4. How to use SC APIs in the user application

This section describes how to use SC APIs in the user application.

4.1 Import related codes

1. Create an application project by referring “RA4W1 Group BLE sample application” (R01AN5402)
chapter 4 and “Bluetooth LE Profile API Document User’s Manual” (R11UM0154).

2. Copy the SimpleConnection_API folder from the attached example project with this APN to the src
folder of the user application project made in item 1. If the user wants to use the command line
interface, also copy the app_lib folder to the src folder of the application project.

Figure 24. Copy the SimpleConnection_API folder

Copy

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 68 of 74

Nov.30.22

3. Add the Simple_Connection_API folder to the include path by editing the user application project
property.

Figure 25. Add include path

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 69 of 74

Nov.30.22

4.2 Configure the required peripheral module

The SC APIs require one channel of General PWM Timer (32bit), as mentioned in section 2.3. The user
needs to add/configure the timer according to the following steps.

1. Open the FSP configurator. Click configuration.xml.

Figure 26. Open the FSP configurator

2. Add a timer for SC APIs. Click New Stack -> Timers -> Timer, General PWM (r_gpt).

Figure 27. Add a timer for SC APIs

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 70 of 74

Nov.30.22

The timer properties are the following. Properties not listed in the table can be left as default values.

Table 61. General PWM Timer configurartions

Item Value

General / Name The user can assign a preferred name.

Need to assign the same value to the
R_BLE_SC_TIMER_INSTANCE macro of
Simple_Connection_API.c.

General /Channel Select from Channel 0 to 3.

General /Mode Periodic

General /Period 1

General / Period Unit Seconds

Interrupts / Overflow Crest Interrupt Priority 7

Interrupts / Callback NULL

3. Click Generate Project Content button.

4.3 [THIS SECTION IS NO LONGER USED]

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 71 of 74

Nov.30.22

4.4 Implementation

The sample code is shown in Code 1, Code 2 and Code 3. The examples are the minimum implementation
that performs Initialize(and Advertising), Scanning, Connection, and sending data from client to server on the
bearmetal environment. R_BLE_SCS_EVENT_WRITE_COMP event will be notified on the server side of the
application when receiving data from the client side. The user can add the following Code 1, Code 2 and
Code 3 to hal_entry.c.

#include “simple_connection_api.h”

#define ROLE_CLIENT (1)

void user_callback(uint16_t type, ble_status_t result, st_ble_seq_data_t *p_param);

uint8_t *g_p_received_data;

const char g_message[] = "MESSAGE\n";

Code 1. The sample code (declaration)

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 72 of 74

Nov.30.22

void hal_entry(void)

{

 ble_status_t ret;

 uint16_t conn_hdl;

 st_simple_find_device_t p_devices;

 /* Initialize and Advertising */

 ret = R_BLE_SC_Init(user_callback, "SC_DEVICE#1");

 if(BLE_SUCCESS != ret){ return; }

#if 1 == ROLE_CLINET

 /* Scanning the SC service device */

 ret = R_BLE_SC_Scan(1, &p_devices);

 if(BLE_SUCCESS != ret){ return; }

 /* Initiate a connection to the device detected */

 ret = R_BLE_SC_Connection(p_devices.find_device[0].addr_type,

 p_devices.find_device[0].address,

 &conn_hdl);

 if(BLE_SUCCESS != ret){ return; }

 /* Change the PHY to 2M */

 ret = R_BLE_SC_SetPhy(conn_hdl, BLE_GAP_SET_PHYS_HOST_PREF_2M);

 /* Wait for the PHY change complete */

 ret = BLE_ERR_INVALID_STATE;

 while(BLE_SUCCESS != ret)

 {

 R_BLE_Execute();

 ret = R_BLE_SC_GetPhy(conn_hdl, &phy_in_use);

 }

 /* Send a message */

 ret = R_BLE_SC_SendData(conn_hdl, (uint8_t*)g_message, (uint16_t)strlen(g_message));

 if(BLE_SUCCESS != ret){ return; }

#endif

 while(1)

 {

 /* Add your own code */

 R_BLE_Execute();

 }

}

Code 2. The sample code (main routine)

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 73 of 74

Nov.30.22

void user_callback(uint16_t type, ble_status_t result, st_ble_seq_data_t *p_param)

{

 FSP_PARAMETER_NOT_USED(result);

 switch (type) {

 case R_BLE_SCX_EVENT_CONN_IND:

 /* Add your code when establishing connection */

 break;

 case R_BLE_SCX_EVENT_DISCONN_IND:

 /* Add your code when disconnection has been happened */

 break;

 case R_BLE_SCS_EVENT_WRITE_COMP:

 {

 /* Add your code when write procedure has been completed (Server side only) */

 g_p_received_data = p_param->data;

 } break;

 case R_BLE_SCS_EVENT_WRITE_WO_RESP_COMP:

 /* Add your code when write without response procedure has been completed (Server side only) */

 break;

 case R_BLE_SCS_EVENT_INDICATION_CFM:

 /* Add your code when receive confirmation PDU (Server side only) */

 break;

 case R_BLE_SCC_EVENT_WRITE_RSP:

 /* Add your code when receive write response PDU (Client side only) */

 break;

 case R_BLE_SCC_EVENT_INDICATION_COMP:

 /* Add your code when receive indication PDU (Client side only) */

 break;

 case R_BLE_SCC_EVENT_NOTIFICATION_COMP:

 /* Add your code when receive notification PDU (Client side only) */

 break;

 case R_BLE_SCC_EVENT_ERROR_RSP:

 /* Add your code when receive error response PDU (Client side only) */

 break;

 }

}

Code 3. The sample code(user_callback)

R_BLE_Execute and SC blocking APIs should not call in the user callback function to avoid a deadlock
condition. See the note in section 2.1.X for which APIs are classified as blocking API.

 Application Note

R01AN6611EJ0101 Rev.1.01 Page 74 of 74

Nov.30.22

Revision History

Rev. Date Description

Page Summary

1.00 Oct.28.2022 — First edition issued.

1.01 Nov.30.2022 — The attached VUART sample application has been updated for

FSP4.0 or later.

 The following sections were updated.

 2.1.1 R_BLE_SC_Init

➢ Add note on the usage of the user callback function.

➢ Fix the description of the

R_BLE_SCX_EVENT_CONN_IND event notification

timing on table 14.

 2.1.12 R_BLE_SC_GetPhy

➢ Fix the description of the

BLE_ERR_INVALID_STATE(0x0008) error on table 34.

 2.1.17 R_BLE_SC_GetSemaphoreHandle

➢ Change Table 45.

 Remove section 4.3.

 Add PHY update procedure from LE 1M PHY to LE 2M PHY to

Code 2.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Simple connection APIs
	1.2 Virtual UART sample application
	1.3 Directory/File Structure
	1.4 Operating environments

	2. Simple Connection API Specification
	2.1 API reference
	2.1.1 R_BLE_SC_Init
	2.1.2 R_BLE_SC_Scan
	2.1.3 R_BLE_SC_Connection
	2.1.4 R_BLE_SC_DisConnection
	2.1.5 R_BLE_SC_SetAddress
	2.1.6 R_BLE_SC_GetAddress
	2.1.7 R_BLE_SC_SetConnectionAddress
	2.1.8 R_BLE_SC_GetConnectionAddress
	2.1.9 R_BLE_SC_SetConnectionInterval
	2.1.10 R_BLE_SC_GetConnectionInterval
	2.1.11 R_BLE_SC_SetPhy
	2.1.12 R_BLE_SC_GetPhy
	2.1.13 R_BLE_SC_SetMode
	2.1.14 R_BLE_SC_GetMode
	2.1.15 R_BLE_SC_SendData
	2.1.16 R_BLE_SC_GetConnDevice
	2.1.17 R_BLE_SC_GetSemaphoreHandle
	2.1.18 R_BLE_SC_Close

	2.2 Macros
	2.3 Required peripheral module

	3. Virtual UART Sample Application
	3.1 What is Virtual UART sample application
	3.2 Operation Flow
	3.3 AT command and VUART modes
	3.4 AT command reference
	3.4.1 AT -DS
	3.4.2 AT -C
	3.4.3 AT -H
	3.4.4 AT -AP
	3.4.5 AT -CI
	3.4.6 AT -AS
	3.4.7 AT -P
	3.4.8 AT -M
	3.4.9 AT -S
	3.4.10 AT -E
	3.4.11 AT -V
	3.4.12 AT -R

	3.5 How to use the VUART App
	3.5.1 Setup
	3.5.1.1 Import projects
	3.5.1.2 Generate with FSP configurator
	3.5.1.3 Build and programming

	3.5.2 Demo
	3.5.2.1 Power on and advertising
	3.5.2.2 Scan
	3.5.2.3 Connect
	3.5.2.4 Send message
	3.5.2.5 Disconnect

	4. How to use SC APIs in the user application
	4.1 Import related codes
	4.2 Configure the required peripheral module
	4.3 [THIS SECTION IS NO LONGER USED]
	4.4 Implementation

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

