RENESAS

R32C/100 Series

Rewriting ROM Area Using EW1 Mode of CPU Rewrite Mode

REJ05B1394-0100 Rev.1.00

APPLICATION NOTE

1. Abstract

This application note describes an example of rewriting the embedded flash memory using the EW1 mode in CPU rewrite mode.

2. Introduction

The application example described in this document applies to the following microcomputer (MCU): MCU: R32C/118 Group

This program can be used with other R32C/100 Series MCUs which have the same special function registers (SFRs) as the R32C/118 Group. Check the user's manual for any additions or modifications to functions. Careful evaluation is recommended before using this application note.

3. Setting Procedure

3.1 CPU Rewrite Mode

In CPU rewrite mode, the CPU executes software commands to rewrite the flash memory. The CPU accesses the flash memory via the dedicated flash memory rewrite buses instead of the CPU buses. Figure 3.1 shows the Flash Memory Access Path in CPU Rewrite Mode.

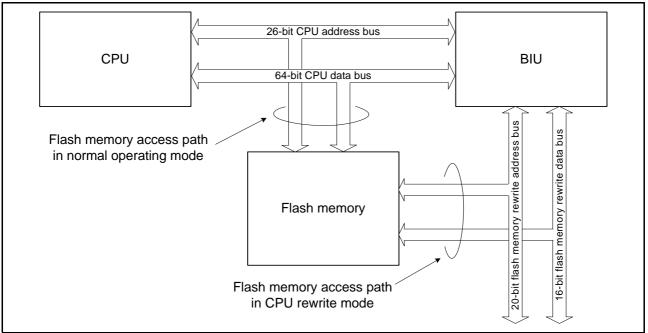


Figure 3.1 Flash Memory Access Path in CPU Rewrite Mode

3.2 EW1 Mode Features

EW1 mode allows the user to rewrite the user ROM and the data areas by issuing program and erase commands from the CPU rewrite program.

In EW1 mode, peripheral interrupts are not accepted during programming and erasing. Table 3.1 shows the EW1 Mode Features.

Table 3.1EW1 Mode Features

Item	Content
CPU operating modes	Single-chip mode
Rewrite program executable spaces	Internal spaces other than specified blocks to be rewritten, inter- nal RAM
Restrictions on software commands	 Do not execute either the program or the block erase command for blocks where the rewrite control programs are written to Do not execute the read status register command Execute the enter read lock bit status mode command in RAM Execute the enter read protect bit status mode command in RAM
Mode state after program/erase operation	Read array mode
CPU state during program/erase operation	In a hold state (I/O ports maintain the state before the command was executed)
Flash memory state detection	Reading the FMSR0 register by a program
Other restrictions	Disable interrupts (except NMI) and DMA transfer during pro- gram/erase operation

3.3 Flash Memory Rewrite Bus Timing

Bus setting for flash memory rewrite should be performed by the FEBC0 and/or FEBC3 registers. Refer to "Flash Memory Rewrite Bus Timing" and "Electrical Characteristics" for the appropriate bus setting.

Note that registers FEBC0 and FEBC3 in memory expansion mode share respective addresses with registers EBC0 and EBC3, That is, registers EBC0 and EBC3 should be set again after rewriting the FEBC0 and FEBC3 registers.

(1) Clock Conditions

MCU operates in single-chip mode and PLL mode before entering EW1 mode.

Table 3.2 lists the Clock Conditions after entering PLL mode. Table 3.3 lists the Clock-associated Registers Settings.

Table 3.2 Clock Conditions

Clock Name	Frequency
Main clock	16 MHz
PLL clock	100 MHz
Base clock	50 MHz
CPU clock	50 MHz
Peripheral bus clock	25 MHz
Peripheral clock source	25 MHz

Register Name	Setting Value	Comments
PLC0	04h	Refer to the user's manual for details.
PLC1	03h	Same as above
PM3	40h	Bits PM36 and PM35 are 10b (peripheral clock source: divided by 4)
CCR	1Fh	Bits BCD1 and BCD0 are 11b (base clock: divided by 2) Bits CCD1 and CCD0 are 11b (CPU clock: no division) Bits PCD1 and PCD0 are 01b (peripheral bus clock: divided by 2) BCS bit is 0 (base clock source: PLL clock selected)
PBC	0504h	Refer to the user's manual for details.
EBC0	0000h	Leave values as they are after reset due to operating in single-chip mode

Table 3.3 Clock-associated Registers Settings

(2) Flash Memory Conditions

Table 3.4 lists the flash memory standard values. These values are subject to change. Refer to "Electrical Characteristics" in the user's manual for details.

Symbol	Characteristics	Val	Value		
Symbol	Characteristics	Min.	Max.	Unit	
tcR	Read cycle time	200		ns	
tsu(S-R)	Chip-select setup time for read	200		ns	
th(R-S)	Chip-select hold time after read	0		ns	
tsu(A-R)	Address setup time for read	200		ns	
th(R-A)	Address hold time after read	0		ns	
tw(R)	Read pulse width	100		ns	
tcW	Write cycle time	200		ns	
tsu(S-W)	Chip-select setup time for write	elect setup time for write 0		ns	
th(W-S)	Chip-select hold time after write	30		ns	
tsu(A-W)	Address setup time for write	0		ns	
th(W-A)	Address hold time after write	30		ns	
tw(W)	Write pulse width	50		ns	

Table 3.4 Flash Memory CPU Rewrite Mode Timing

(3) Calculating the Necessary Number of Cycles

Calculate the number of cycles necessary to access the flash memory based on the clock and flash memory conditions for the setting value.

The reference clock is the base clock selected by setting bits BCD1 and BCD0 in the CCR register. The base clock is 50 MHz as listed in Table 3.2. Therefore, the value becomes 20 ns per cycle. The number of cycles in Table 3.5 are the values from Table 3.4 based on this cycle value.

Symbol	Va	Value		Су	cles	Unit
Symbol	Min.	Max.	– Unit	Min.	Max.	Offic
tcR	200		ns	10		Cycles
tsu(S-R)	200		ns	10		Cycles
th(R-S)	0		ns	0		Cycles
tsu(A-R)	200		ns	10		Cycles
th(R-A)	0		ns	0		Cycles
tw(R)	100		ns	5		Cycles
tcW	200		ns	10		Cycles
tsu(S-W)	0		ns	0		Cycles
th(W-S)	30		ns	1.5		Cycles
tsu(A-W)	0		ns	0		Cycles
th(W-A)	30		ns	1.5		Cycles
tw(W)	50		ns	2.5		Cycles

Table 3.5 Required Number of Cycles

(4) Bus Timing

The bus timing is determined based on the peripheral bus clock in Table 3.3 and Table 3.5.

The value of bits MPY1 and MPY0 that are determined by the peripheral bus clock, and the flash memory read and write cycles are required to determine the bus timing.

Table 3.6 shows the correlation between bits MPY1 and MPY0 and bits FWR4 to FWR0, and the number of read cycles when the peripheral bus clock is divided by 2.

Table 3.7 shows the correlation between bits MPY1 and MPY0, bits FSUW1 and FSUW0, and bits FWW1 and FWW0 and the number of write cycles when the peripheral bus clock is divided by 2. The shaded region indicates the setting value when both of the clock and cycle conditions are met.

Refer to the user's manual for details on the peripheral bus clock divided by 3 or divided by 4.

					MP'	Y1 and MP	PY0 Bit Settings			
FWR3 to FWR0 Bit FWR4 Bit		10b				11b				
	ings	Settings		тру	/=3			тру	′ = 4	
	0	0	tsu(S-R), tsu(A-R)	tw(R)	tcR	th(R-S), th(R-A)	tsu(S-R), tsu(A-R)	tw(R)	tcR	th(R-S), th(R-A)
0000b	<i>wr</i> = 1		4	3	4	0	6	5	6	0
00000	WI = 1	1	6	5	6	0	6	5	6	0
0001b	<i>wr</i> = 2	0	8	7	8	0	10	9	10	0
00010	WI = Z	1	8	7	8	0	10	9	10	0
0101b	wr = 3	0	10	9	10	0	14	13	14	0
01010	WI = 3	1	12	11	12	0	14	13	14	0
0110b	wr = 4	0	14	13	14	0	18	17	18	0
UTIUD	WI = 4	1	14	13	14	0	18	17	18	0
1010b	wr = 5	0	16	15	16	0	22	21	22	0
10100	WI = 5	1	18	17	18	0	22	21	22	0
1011b	<i>wr</i> = 6	0	20	19	20	0	26	25	26	0
10110	WI = 0	1	20	19	20	0	26	25	26	0
1111b	wr = 7	0	22	21	22	0	30	29	30	0
	vvi = i	1	24	23	24	0	30	29	30	0

Table 3.6Read Cycle and Bit Settings: MPY1 and MPY0, and FWR4 to FWR0 When Peripheral
Bus Clock is Divided by 2 (unit: cycles)

Table 3.7Write Cycle and Bit Settings: MPY1 and MPY0, FSUW1 and FSUW0, and FWW1 and
FWW0 When Peripheral Bus Clock is Divided by 2 (unit: cycles)

						MP	Y1 and M	PY0 Bit Set	tings		
FSUW1 and FWW1 and		V1 and	10b				11b				
	FSUW0 Bit FWW0 Bit			<i>mpy</i> = 3				<i>mpy</i> = 4			
Sen	tings	Se	ttings	tsu(S-W), tsu(A-W)	tw(W)	tcW	th(W-S), th(W-A)	tsu(S-W), tsu(A-W)	tw(W)	tcW	th(W-S), th(W-A)
		00b	<i>ww</i> = 1	1	3	6	2	1	4	6	1
00b	<i>suw</i> = 0	01b	<i>ww</i> = 2	1	6	8	1	1	8	10	1
000	SUW = 0	10b	<i>ww</i> = 3	1	9	12	2	1	12	14	1
		11b	<i>ww</i> = 4	1	12	14	1	1	16	18	1
		00b	<i>ww</i> = 1	4	3	8	1	5	4	10	1
016	01b <i>suw</i> = 1	01b	<i>ww</i> = 2	4	6	12	2	5	8	14	1
010		10b	<i>ww</i> = 3	4	9	14	1	5	12	18	1
		11b	<i>ww</i> = 4	4	12	18	2	5	16	22	1
		00b	<i>ww</i> = 1	7	3	12	2	9	4	14	1
10b	<i>suw</i> = 2	01b	<i>ww</i> = 2	7	6	14	1	9	8	18	1
TUD	<i>Suw</i> = 2	10b	<i>ww</i> = 3	7	9	18	2	9	12	22	1
		11b	<i>ww</i> = 4	7	12	20	1	9	16	26	1
	11b <i>suw</i> = 3	00b	<i>ww</i> = 1	10	3	14	1	13	4	18	1
116		01b	<i>ww</i> = 2	10	6	18	2	13	8	22	1
		10b	<i>ww</i> = 3	10	9	20	1	13	12	26	1
		11b	<i>ww</i> = 4	10	12	24	2	13	16	30	1

(5) Bus Timing Settings

Table 3.8 lists the optimal bus timing settings when the clock conditions and the flash memory conditions are met based on Table 3.6 and Table 3.7.

Bit Symbol	Value	Function
FWR3 to FWR0	0101b	<i>wr</i> = 3
FWR4	0	No pulse width extension
FSUW1 and FSUW0	00b	<i>suw</i> = 0
FWW1 and FWW0	10b	<i>ww</i> = 3
MPY1 and MPY0	10b	<i>mpy</i> = 3 (peripheral bus clock divided by 2)

Table 3.8 Bus Timing Optimal Settings

When the bus timing is set in each bit of the FEBC0 register, FEBC0 is 5885h. Figure 3.2 shows the FEBC0 register setting.

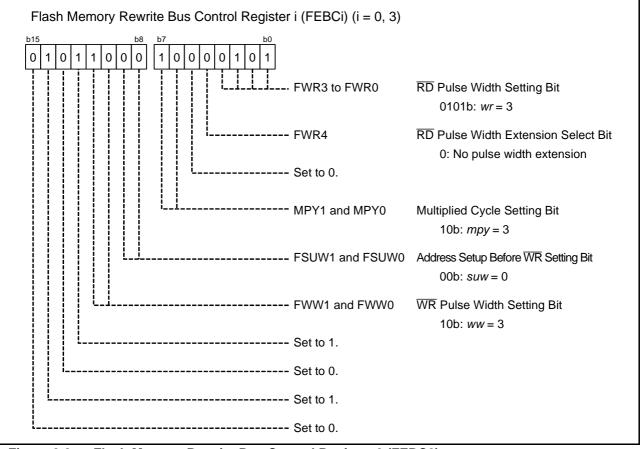


Figure 3.2 Flash Memory Rewrite Bus Control Register 0 (FEBC0)

(6) CPU Operating Mode and Flash Memory Rewrite

To rewrite the flash memory, the bus setting using by the FEBC0 and/or FEBC3 registers is required.

For exclusive use of single-chip mode, the FEBC3 register is not used. In this mode, do not change the reset value of registers CB01, CB12, and CB23. The bus setting for both the program area and data area can be performed using the FEBC0 register.

In cases other than the above, when the CPU operation is performed in memory expansion mode more than once, set registers CB01, CB12, and CB23 according to each setting range as shown in Table 3.9. The bus setting for program area and data area can be performed by the FEBC0 register and FEBC3 register, respectively. Note that registers FEBC0 and FEBC3 in memory expansion mode share respective addresses with registers EBC0 and EBC3. That is, when the FEBCi register is set for the flash memory rewrite, the setting value for the EBCi register is accordingly changed (i = 0, 3). This may cause external devices allocated to the CS0 space and/or CS3 space in CPU rewrite mode to become inaccessible.

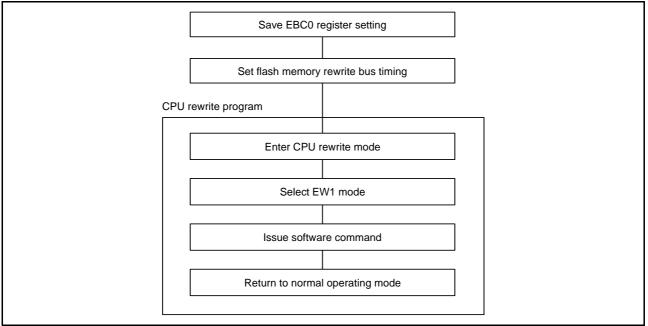
Table 3.9 lists the details of bus setting for the flash memory rewrite in each CPU operating mode.

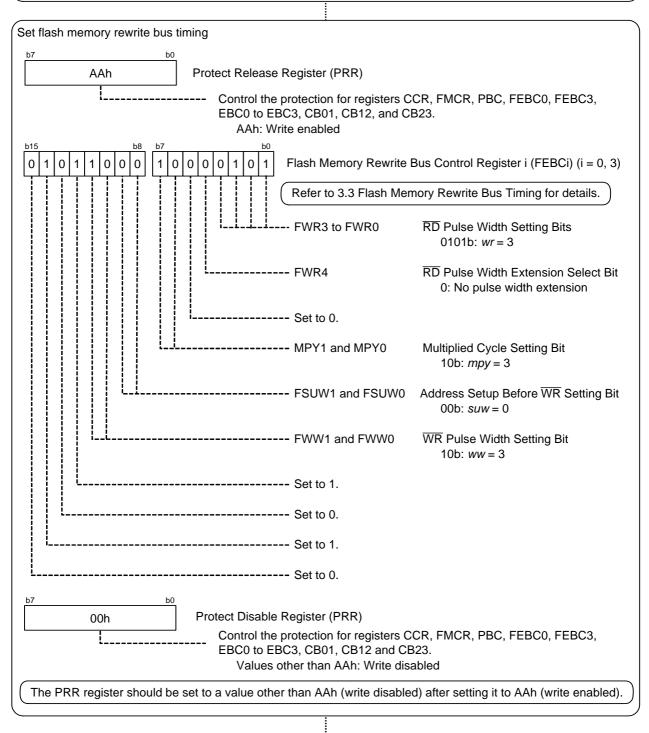
ltem	CPU Operating Mode				
nem	Single-chip mode	Memory expansion mode			
CB01 register	Hold the reset value 00h	Setting range: 04h to F8h Set value higher than that for the CB12 register			
CB12 register	Hold the reset value 00h	Setting range: 03h to F7h Set value higher than that for the CB23 register and lower than that for the CB01 register			
CB23 register	Hold the reset value 00h	Setting range: 02h to F6h Set value lower than that for the CB12 register			
Bus setting for program area	FEBC0 register	FEBC0 register			
Bus setting for data area	FEBC0 register	FEBC3 register			
Status of $\overline{CS0}$ space and $\overline{CS3}$ space after the FEBCi register is set	N/A	 Separate bus format 16-bit bus width RDY ignored 			
Restrictions	None	 HOLD is ignored In CPU rewrite mode, external devices become inaccessible to data with the bus format set for CS0 space and/or CS3 space as multiplexed bus The change in bus timing may cause external devices in the CS0 space and/or CS3 space to become inaccessible 			

Table 3.9 CPU Operating Mode and Flash Memory Rewrite

3.4 Setting Procedure

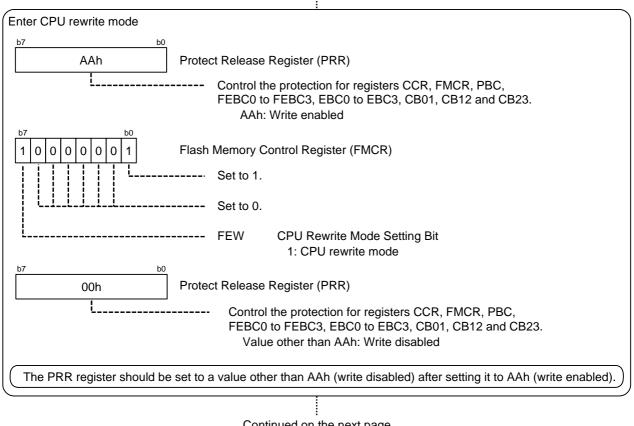
Figure 3.3 shows the CPU Rewrite Mode (EW1 Mode) Execution Flow.



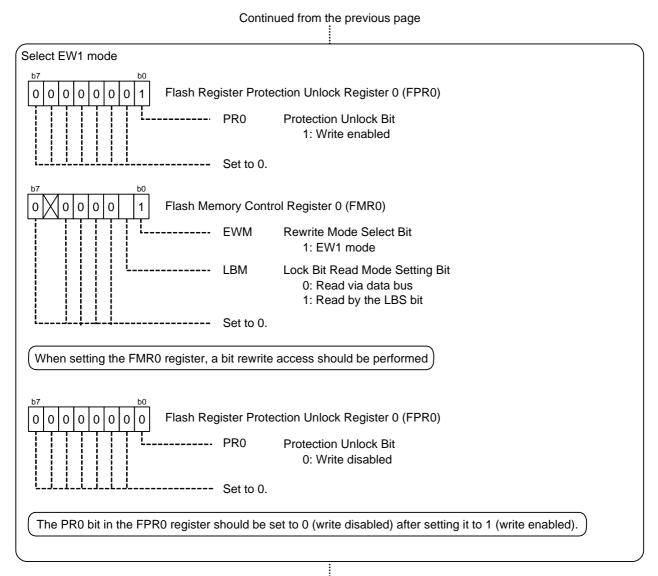

Figure 3.3 CPU Rewrite Mode (EW1 Mode) Execution Flow

3.5 Register Settings

Save EBC0 register setting


The EBC0 register and the FEBC0 register share a common address. Save the setting value in the EBC0 register to the internal RAM.

Continued on the next page



Continued from the previous page

Continued on the next page

: Continued on the next page

Continued from the previous page Issue software command (first command) Issue the embedded flash memory software command (first command). Issue software command (second command or later) The following register setting is required to execute multiple flash memory commands. Before issuing the last command, wait until the final command accept busy flag in flash memory control register 0 becomes 0. b0 1 0 0 Flash Memory Control Register 0 (FMR0) i. EWM **Rewrite Mode Select Bit** 1: EW1 mode _____ LBM Lock Bit Read Mode Setting Bit 0: Read via data bus 1: Read by the LBS bit Lock Bit Status Flag LBS -----0: Locked 1: Unlocked Read Ready Flag RRDY 0: Busy 1: Ready Final Command Accept Busy Flag _____ FCA 0: Final command accept ready 1: Final command accept busy -----Set to 0. Next, issue the embedded flash memory software command (last command).

Continued on the next page

Return to normal operating mode and restore to EBC0 register setting		Continued from the previous page
b0 Protect Release Register (PRR) Control the protection for registers CCR, FMCR, PBC, FEBC0, FEBC3, EBC0 to EBC3, CB01, CB12 and CB23. AAh: Write enabled b7 b0 Flash Memory Control Register (FMCR) Flash Memory Control Register (FMCR) FEW CPU Rewrite Mode Setting Bit 0: Normal operating mode b15 b0 FEW CPU Rewrite Mode Setting Bit 0: Normal operating mode b15 b0 Protection Release Register (PRR) Control the protection for registers CCR, FMCR, PBC, FEBC0, FEBC3, EBC0 to EBC3, CB01, CB12 and CB23. AAh: Write disabled		
AAh Protect Release Register (PRR) Image: control the protection for registers CCR, FMCR, PBC, FEBC0, FEBC3, EBC0 to EBC3, CB01, CB12 and CB23. AAh: Write enabled Image: control the protection for registers CCR, FMCR, PBC, FEBC0, FEBC3, EBC0 to EBC3, CB01, CB12 and CB23. AAh: Write enabled Image: control the protection for registers CCR, FMCR, PBC, FEBC0, FEBC3, EBC0 to EBC3, CB01, CB12 and CB23. CB14, CB14, CB14	Return to normal operating mod	e and restore to EBC0 register setting
Control the protection for registers CCR, FMCR, PBC, FEBC0, FEBC3, EBC0 to EBC3, CB01, CB12 and CB23. AAh: Write enabled The protection Register (FMCR) AAh: Write one control Register (FMCR) Filesh Memory Control Register (EBC0, EBC3) External Bus Control Register (EBC0, EBC3) Filesh Memory Control Register (PRR) Control the protection for registers CCR, FMCR, PBC, FEBC0, FEBC3, EBC0 to EBC3, CB01, CB12 and CB23. Value other than AAh: Write disabled Filesh Memory Control Register (FMCR) Filesh Memory Control Register (PRR) Filesh Memory Control Register (PRR) Filesh Memory Control Register (CRR, PBC, FEBC0, FEBC3, EBC0 to EBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC0, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC0, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC0, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC0, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC0, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC0, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC0, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC0, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC0, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC0, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC0, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC0, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC3, CB01, CB12 and CB23. Filesh Control Register (FMCR, PBC, FEBC3, CB01, CB12 and CB23. File	b7 b0	
EBC0 to EBC3, CB01, CB12 and CB23. AAh: Write enabled	AAh	Protect Release Register (PRR)
0 0	l	EBC0 to EBC3, CB01, CB12 and CB23.
b15 b8 b7 b0 External Bus Control Register (EBC0, EBC3)		Flash Memory Control Register (FMCR)
b15 b8 b7 b0 External Bus Control Register (EBC0, EBC3)		Set to 1.
0: Normal operating mode b15 b8 b7 b0 External Bus Control Register (EBC0, EBC3) 		Set to 0.
External Bus Control Register (EBC0, EBC3) External Bus Control Register (EBC0, EBC3) External Bus Control Register (EBC0, EBC3) Protection Release Register (PRR) Control the protection for registers CCR, FMCR, PBC, FEBC0, FEBC3, EBC0 to EBC3, CB01, CB12 and CB23. Value other than AAh: Write disabled	L	•
b7 b0 00h Protection Release Register (PRR) Control the protection for registers CCR, FMCR, PBC, FEBC0, FEBC3, EBC0 to EBC3, CB01, CB12 and CB23. Value other than AAh: Write disabled	b15 b8 b7	
00h Protection Release Register (PRR) Control the protection for registers CCR, FMCR, PBC, FEBC0, FEBC3, EBC0 to EBC3, CB01, CB12 and CB23. Value other than AAh: Write disabled	L	Reset the value saved in the internal RAM.
Control the protection for registers CCR, FMCR, PBC, FEBC0, FEBC3, EBC0 to EBC3, CB01, CB12 and CB23. Value other than AAh: Write disabled	b7 b0	
EBC0 to EBC3, CB01, CB12 and CB23. Value other than AAh: Write disabled	00h	Protection Release Register (PRR)
The PRR register should be set to any value other than AAh (write disabled) after setting it to AAh (write enabled).		EBC0 to EBC3, CB01, CB12 and CB23.
The PRR register should be set to any value other than AAh (write disabled) after setting it to AAh (write enabled).	(
	The PRR register should be se	t to any value other than AAh (write disabled) after setting it to AAh (write enabled).

3.6 Notes on Flash Memory Rewriting

- (1) Note on Power Supply
- Keep the supply voltage constant within the range specified in the electrical characteristics while a rewrite operation on the flash memory is in progress. If the supply voltage goes beyond the guaranteed value, the device cannot be guaranteed.
- (2) Note on Hardware Reset
- Do not perform a hardware reset while a rewrite operation on the flash memory is in progress.
- (3) Note on Flash Memory Protection
- If an ID code written in an assigned address has an error, any read/write operation on the flash memory in standard serial I/O mode is disabled.
- (4) Notes on Programming
- . Do not set the FEW bit in the FMCR register to 1 (CPU rewrite mode) in low speed mode or low power mode.
- The program, block erase, lock bit program, and protect bit program software commands are interrupted by an NMI, a watchdog timer interrupt, an oscillator stop detection interrupt, or a low voltage detection interrupt. If any of the software commands above are interrupted, erase the corresponding block and then execute the same command again. If the block erase command is interrupted, the lock bit and protect bit values become undefined. Therefore, disable the lock bit, and then execute the block erase command again.
- (5) Notes on Interrupts
- Interrupts assigned to the relocatable vector table should not be accepted during program/erase operations.
- The watchdog timer interrupt should not be generated.
- If an NMI, a watchdog timer interrupt, an oscillator stop detection interrupt, or a low voltage detection interrupt is generated, the flash memory module automatically enters read array mode. Therefore this interrupt is enabled even during a rewrite operation. However, the rewrite operation in progress is aborted by an interrupt and registers FMR0 and FRSR0 are reset. When the interrupt handler has ended, set the EWM bit in the FMR0 register to 1 (EW1 mode) and the LBD bit in the FMR1 register to 1 (lock bit protection disabled) to re-execute the rewrite operation.
- (6) Notes on Rewrite Control Program
- Do not rewrite blocks having the rewrite control program.
- (7) Note on Number of Programming/Erase Operations and Software Command Execution Time
- The time to execute software commands (program, block erase, lock bit program, and protect bit program) increases as the number of program and erase operations increases. If the number of program and erase operations exceed the minimum endurance value specified in the electrical characteristics, it may take an unpredictable amount of time to execute the software commands. The wait time for executing software commands should be set much longer than the execution time specified in the electrical characteristics.
- (8) Other Notes
- The required time to perform program/erase operations specified in the electrical characteristics found in the user's manual can be guaranteed within the minimum values of programming/erasure endurance specified in the same table. Even if the number of programming/erasure exceeds the minimum endurance value, the program/erase operation may be performed.
- Chips repeatedly programmed and erased for debugging should not be used for commercial products.

4. Sample Program

A sample program can be downloaded from the Renesas Electronics website.

4.1 Description of the Sample Program

In the sample program, the MCU starts up in PLL mode, enters CPU rewrite mode (EW1 mode) triggered by an INTO interrupt request, and stores data in block A (addresses 61000h to 61FFFh) and block 7 (addresses FFFA0000h to FFFAFFFFh). Block A and block 7 are block-erased and then programmed in the sample program. Figure 4.1 shows the Sample Program Memory Map.

The sample program execution status can be confirmed by the status of port P4. Table 4.1 shows the Port P4 Status.

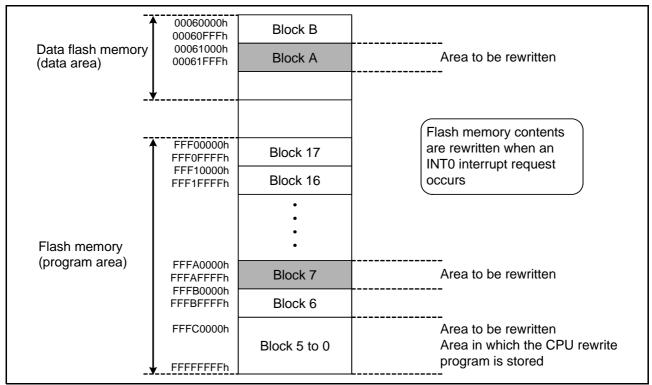
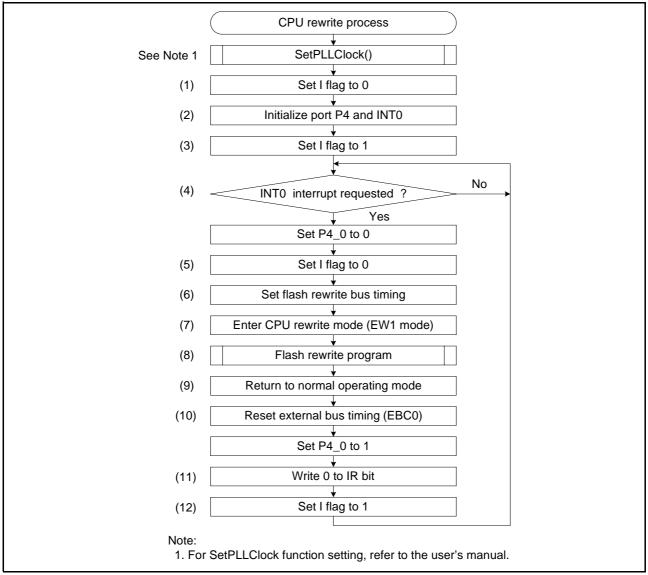


Figure 4.1 Sample Program Memory Map


Table 4.1 Port P4 Status

P4	Output Status 0			
14	1	0		
P4_0	Stopped	Rewriting CPU		
P4_1	Program erase successfully completed	Erase error occurred		
P4_2	Program successfully completed	Program error occurred		

4.2 Program Flowchart

Figure 4.2 shows the entire process of the sample program.

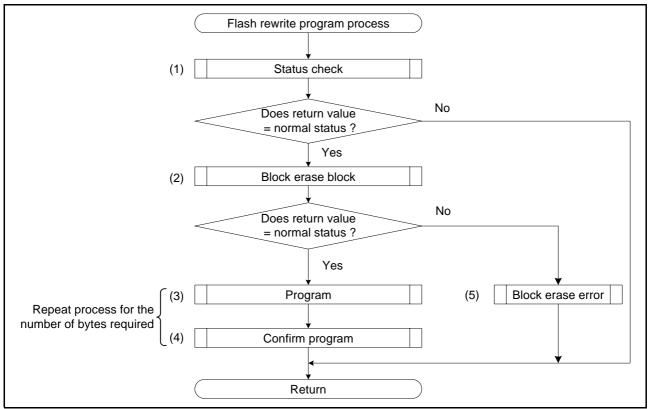


Figure 4.3 shows the process flowchart of the CPU rewrite program. Repeat program process for data to be written.

Figure 4.3 Flash Rewrite Program on RAM

(1) Block Erase

Figure 4.4 shows the flowchart of Block Erase Function. Write commands to the flash memory in 16-bit units.

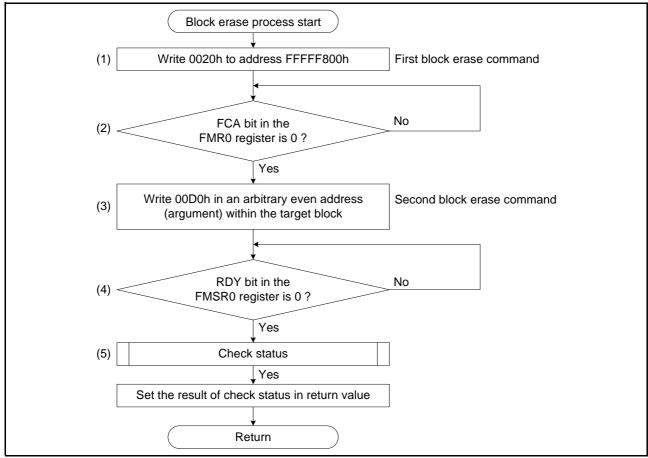


Figure 4.4 Block Erase Function

(2) Block Erase Error

Figure 4.5 shows the flowchart of Block Erase Error Function. Write commands to the flash memory in 16-bit units. When an erase error occurs in the block erase command, reexecute the block erase command after executing the clear status register command. Repeat the block erase at least three times after the erase error stops occurring.

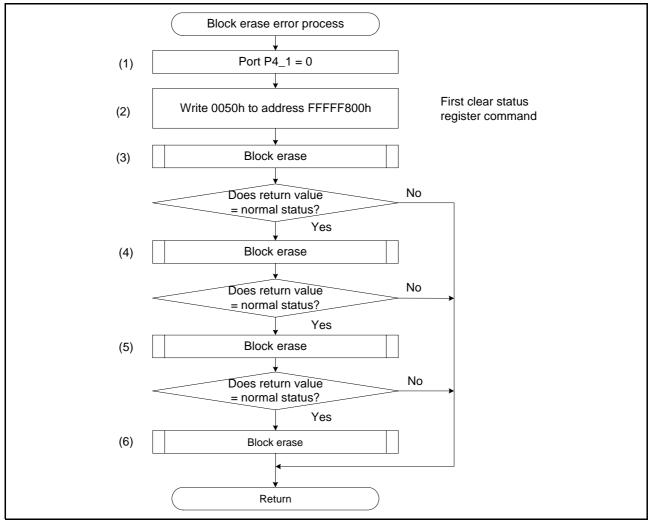
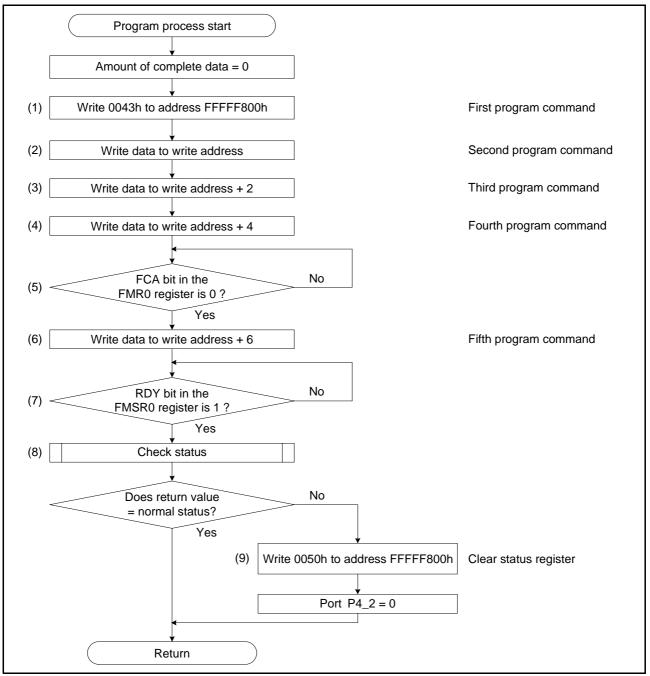



Figure 4.5 Block Erase Error Function

(3) Program

Figure 4.6 shows the flowchart of Program Function. Write commands to the flash memory in 16-bit units. This program is executed in 64-bit units (4 words). The second through the fifth commands are a series of commands. Fix the 29 upper bits of the write address. In the 3 lower bits, set the following values in the order shown starting from the second command: 000b-010b-100b-110b (0h-2h-4h-6h or 8h-Ah-Ch-Eh).

(4) Program confirmation

Figure 4.7 shows the flowchart of Program Confirmation Function. Confirm whether the value written in the program function is the value expected.

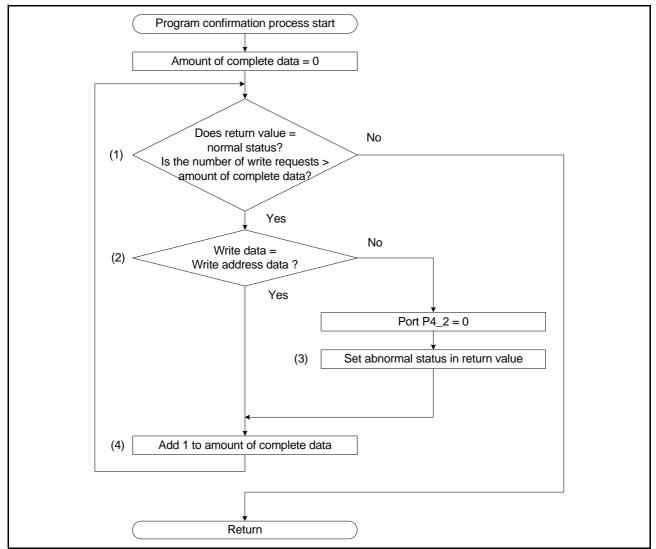


Figure 4.7 Program Confirmation Function

(5) Status Check

Figure 4.8 shows the flowchart of Status Check Function. When an error occurs, execute the clear status register command, then handle the error. If erase errors or program errors occur frequently even though the program is correct, the corresponding block may be disabled.

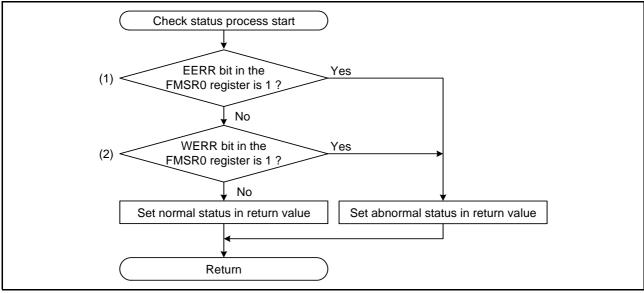


Figure 4.8 Status Check Function

5. Reference Documents

User's Manual R32C/118 Group User's Manual Rev.1.00 The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News The latest information can be downloaded from the Renesas Electronics website.

C compiler manual R32C/100 Family C compiler package V.1.02 C compiler user manual Rev.2.00 The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website http://www.renesas.com/

Inquiries http://www.renesas.com/inquiry

R32C/100 Series Rewriting ROM Area Using EW1 Mode of CPU Rewrite Mode

Rev.	Date	Description	
		Page	Summary
1.00	May 28, 2010	-	First Edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for which the soften where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of soften an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of uses of any expression product of the prior written consent of Renesas Electronics.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renease Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renease Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renease Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renease Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpog GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpog Const Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-12-827-1551, Fax: +86-21-6887-7858 Renease Electronics (Shanghai) Co., Ltd. 10n1 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 Renease Electronics Hong Kong Limited Unit 1801-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +88-2486-9318, Fax: +882-2486-9022/9044e, 1845-24817-9400, Fax: +882-2486-9022/9044e, 1945-063 Fu Shing North Road Taipei, Taiwan Tel: +882-2486-9300, Fax: +882-24175-9670 Renease Electronics Magagore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +68-2413-2400, Fax: +885-24175-9670 Renease Electronics Magagore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +68-2413-2400, Fax: +885-24175-9670 Renease Electronics Malaysia Sch.Bhd. Unit 906, Block B, Menara Amoorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9300, Fax: +882-355-9510