
 APPLICATION NOTE

R01AN0749EG0201 Rev.2.01 Page 1 of 50
Mar 04, 2014

RL78 Family
VDE Certified IEC60730/60335 Self Test Library

Introduction

Today, as automatic electronic controls systems continue to expand into many diverse applications, the requirement of
reliability and safety are becoming an ever increasing factor in system design.

For example, the introduction of the IEC60730 safety standard for household appliances requires manufactures to
design automatic electronic controls that ensure safe and reliable operation of their products.

The IEC60730 standard covers all aspects of product design but Annex H is of key importance for design of
Microcontroller based control systems. This provides three software classifications for automatic electronic controls:

1. Class A: Control functions, which are not intended to be relied upon for the safety of the equipment.

Examples: Room thermostats, humidity controls, lighting controls, timers, and switches.

2. Class B: Control functions, which are intended to prevent unsafe operation of the controlled equipment.

Examples: Thermal cut-offs and door locks for laundry equipment.

3. Class C: Control functions, which are intended to prevent special hazards

Examples: Automatic burner controls and thermal cut-outs for closed.

Appliances such as washing machines, dishwashers, dryers, refrigerators, freezers, and Cookers / Stoves will tend to fall
under the classification of Class B.

This Application Note provides guidelines of how to use flexible sample software routines to assist with compliance
with IEC60730/60335 class B safety standards. These routines have been certified by VDE Test and Certification
Institute GmbH. A copy of the Test Certificate is available in the download package for this Application Note together
with the certified self test library source code and the test harness IAR project

Although these routines were developed using IEC60730/60335 compliance as a basis, they can be implemented in any
system for self testing of Renesas Microcontroller families.

These software routines provided are designed to be used after the system power on, or reset condition and also during
the application program execution. The end user has the flexibility of what routines are included and how to integrate
these routines into their overall application system design. This document and the accompanying test harness code
provide examples of how to do this.

Note. This document is based on the European Norm EN60335-1:2002/A1:2004 Annex R, in which the Norm IEC
60730-1 (EN60730-1:2000) is used in some points. The Annex R of the mentioned Norm contains just a single sheet
that jumps to the IEC 60730-1 for definitions, information and applicable paragraphs.

R01AN0749EG0201
Rev.2.01

Mar 04, 2014

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 2 of 50
Mar 04, 2014

Target Devices

RL78 Family

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 3 of 50
Mar 04, 2014

Contents

1. Self Test Libraries Introduction ... 4
• CPU Registers ... 4
• Invariable Memory ... 4
• Variable Memory ... 4
• System Clock .. 4

2. Self Test Library Functions ... 5
2.1 CPU Register Tests... 5
2.2 Invariable Memory Test – Flash ROM .. 12
2.3 Variable memory - SRAM ... 16
2.4 System Clock Test .. 22

3 Example Usage ... 27
3.1 CPU Verification .. 27
3.2 Flash ROM Verification ... 28
3.3 RAM Verification .. 29
3.4 System Clock Verification ... 30

4 Benchmarking ... 31

4.1 Development Environment .. 31
4.2 IAR Embedded Workbench Settings ... 31
5 Resources ... 38
6 Additional Hardware Resources .. 43
7 VDE Certification Status .. 49

Website and Support ... 50

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 4 of 50
Mar 04, 2014

1. Self Test Libraries Introduction
The self test library (STL) provides self test functions covering the CPU registers, internal memory and system clock.
The library test harness provides an Application Programmers Interface (API) for each of the self test modules, which
are described in this applications note. These can be used in customer’s application wherever required.

For the purposes of VDE certification, the self test library functions are built as separate modules. The IAR Embedded
Workbench test harness allows each of the tests functions to be selected in turn and run as a stand alone function. In
order to minimise the affects of the optimisation in the C compiler and minimise resources used, all of the self test
library files have been written in assembler. The default build of the test harness C files has been built with the
optimisation set to “None” in the IAR Embedded workbench.

All of the STL modules and test harness files are MISRA-C compliant

The system hardware requirements include that at least two independent clock sources are available, e.g. Crystal /
ceramic oscillator and an independent oscillator or external input source. The requirement is needed to provide an
independent clock reference for monitoring the system clock. The RL78 is able to provide these using the High speed
and Low speed internal oscillators which are independent of each other.

Equally the application can provide a more accurate external reference clock or external crystal/resonators for the main
system clock can equally be used.

Figure 1 Self Test Library (STL) Configuration

The following CPU self test functions are included in the RL78 self test library.

• CPU Registers
The following CPU registers tests are included in this library
All CPU working Registers in all four register banks, Stack Pointer (SP), Processor Status
word (PSW), Extension registers ES and CS.
Internal data path are verified as part of the correct operation of these register tests
IEC Reference - IEC 60730: 1999+A1:2003 Annex H - Table H.11.12.7

• Invariable Memory
This tests the MCU internal Flash memory
IEC Reference - IEC 60730: 1999+A1:2003 Annex H - Table H.11.12.7

• Variable Memory
This tests the Internal SRAM memory
IEC Reference - IEC 60730: 1999+A1:2003 Annex H - Table H.11.12.7

• System Clock
Verifies the system clock operation and correct frequency against a reference clock source
IEC Reference - IEC 60730: 1999+A1:2003 Annex H - Table H.11.12.7

fin

Sub
ClockHS

Oscillator
LS

Oscillator

Application
Software STL

Call

Return

fin

Sub
ClockHS

Oscillator
LS

Oscillator

Application
Software STL

Call

Return

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 5 of 50
Mar 04, 2014

2. Self Test Library Functions

2.1 CPU Register Tests

This section describes CPU register tests routines. The test harness control file ‘main.c’ provides examples of the API
for each of the CPU register tests using “C” language.

These modules test the fundamental aspects of the CPU operation. Each of the API functions has a return value in order
to indicate the result of a test.

Each of the test modules saves the original contents of the register(s) under test and restores the contents on completion.

The following CPU registers are tested:

• Working registers and Accumulator: AX, HL, DE, BC in Register Banks 0 – 3

Figure 2 Working Register Configuration

• Stack Pointer (SP)

Figure 3 Stack Pointer Configuration

• Processor Status Word (PSW)

Figure 4 PSW Register Configuration

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 6 of 50
Mar 04, 2014

• Code Address Extension Register (CS)

Figure 5 Working Register Configuration

• Data Address Extension Register (ES)

Figure 6 Working Register Configuration

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 7 of 50
Mar 04, 2014

2.1.1 CPU Register Tests - Software API

Table 1: Source files: CPU Working Registers Tests

STL File name Header Files

stl_RL78_registertest.asm None

Test Harness File Names Header Files

main.c

stl_global_data_example.c

stl_main_example_support function.c

stl_peripheralinit.c

stl.h

main.h

stl_gobal_data_example.h

Syntax

bool stl_RL78_registertest(void)

Description

This module tests the RL78 working registers and accumulators.

Registers AX, HL, DE, BC in all three register banks (Banks 0, 1, 2, 3)

These registers are tested as16bit registers.

The following tests are performed for each register:

 1. Write h'5555 to the register being tested.

 2. Read back and check they are equal.

 3. Write h'AAAA to the register being tested.

 4. Read back and check they are equal.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

The original register contents are restored on completion of the test

The function “indicate_test_result.c” will be called by the test harness control files (main.c) to process the test result

Note Function “indicate_test_result.c “is located in the module stl_main_example_support function.c

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool
Test Result Status returned in CPU Register A

0 = Test passed. 1 = Test or parameter check failed

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 8 of 50
Mar 04, 2014

Table 2: Source files: CPU Registers Tests – PSW

STL File name Header Files

stl_RL78_registertest_psw.asm stl.h

Test Harness File Names Header Files

main.c

stl_global_data_example.c

stl_main_example_support function.c

stl_peripheralinit.c

main.h

stl_gobal_data_example.h

Syntax

bool stl_RL78_registertest_psw(void)

Description

Test the 8bit Processor Status Word (PSW) register

The following tests are performed:

 1. Write h'55 to the register being tested.

 2. Read back and check it is equal.

 3. Write h'AA to the register being tested.

 4. Read back and check that it is equal.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

The original register content is restored on completion of the test

The function “indicate_test_result.c” will be called by the test harness control files (main.c) to process the test result

Note Function “indicate_test_result.c “is located in the module stl_main_example_support function.c

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool
Test Result Status returned in CPU Register A

0 = Test passed. 1 = Test or parameter check failed

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 9 of 50
Mar 04, 2014

Table 3: Source files: CPU Registers Tests - SP

STL File name Header Files

stl_RL78_registertest_stack.asm stl.h

Test Harness File Names Header Files

main.c

stl_global_data_example.c

stl_main_example_support function.c

stl_peripheralinit.c

main.h

stl_gobal_data_example.h

Syntax

bool stl_RL78_registertest_stack(void)

Description

Test the 16bit Stack Pointer (SP) register

The following tests are performed:

 1. Write h'5555 to the register being tested.

 2. Read back and check it is equal.

 3. Write h'AAAA to the register being tested.

 4. Read back and check that it is equal.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

The original register content is restored on completion of the test

The function “indicate_test_result.c” will be called by the test harness control files (main.c) to process the test result

Note Function “indicate_test_result.c “is located in the module stl_main_example_support function.c

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool
Test Result Status returned in CPU Register A

0 = Test passed. 1 = Test or parameter check failed

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 10 of 50
Mar 04, 2014

Table 4: Source files: CPU Registers Tests - CS

STL File name Header Files

stl_RL78_registertest_cs.asm stl.h

Test Harness File Names Header Files

main.c

stl_global_data_example.c

stl_main_example_support function.c

stl_peripheralinit.c

main.h

stl_gobal_data_example.h

Syntax

bool stl_RL78_registertest_cs(void)

Description

Test the 8bit code extension (CS) register

The following tests are performed:

 1. Write h'05 to the register being tested.

 2. Read back and check it is equal.

 3. Write h'0A to the register being tested.

 4. Read back and check that it is equal.

Please note that the top 4 bit are fixed to “0”

It is the calling function’s responsibility to ensure no interrupts occur during this test.

The original register content is restored on completion of the test

The function “indicate_test_result.c” will be called by the test harness control files (main.c) to process the test result

Note Function “indicate_test_result.c “is located in the module stl_main_example_support function.c

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool
Test Result Status returned in CPU Register A

0 = Test passed. 1 = Test or parameter check failed

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 11 of 50
Mar 04, 2014

Table 5: Source files: CPU Registers Tests - ES

STL File name Header Files

stl_RL78_registertest_es.asm stl.h

Test Harness File Names Header Files

main.c

stl_global_data_example.c

stl_main_example_support function.c

stl_peripheralinit.c

main.h

stl_gobal_data_example.h

Syntax

bool stl_RL78_registertest_es(void)

Description

Test the 8bit data extension (ES) register

The following tests are performed:

 1. Write h'05 to the register being tested.

 2. Read back and check it is equal.

 3. Write h'0A to the register being tested.

 4. Read back and check that it is equal.

Please note that the top 4 bit are fixed to “0”

It is the calling function’s responsibility to ensure no interrupts occur during this test.

The original register content is restored on completion of the test

The function “indicate_test_result.c” will be called by the test harness control files (main.c) to process the test result
Note Function “indicate_test_result.c “is located in the module stl_main_example_support function.c
Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

bool
Test Result Status returned in CPU Register A

0 = Test passed. 1 = Test or parameter check failed

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 12 of 50
Mar 04, 2014

2.2 Invariable Memory Test – Flash ROM

This section describes the Flash memory test using CRC routines. CRC is a fault / error control technique which
generates a single word or checksum to represent the contents of memory. A CRC checksum is the remainder of a
binary division with no bit carry (XOR used instead of subtraction), of the message bit stream, by a predefined (short)
bit stream of length n + 1, which represents the coefficients of a polynomial with degree n. Before the division "n”
zeros are appended to the message stream. CRCs are popular because they are simple to implement in binary hardware
and are easy to analyse mathematically.

The Flash ROM test can be verified by generating a reference CRC value for the contents of the ROM and storing this
in memory. During the memory self test the same CRC algorithm is used to generate a CRC value, which is compared
with the reference CRC value. The technique recognises all one-bit errors and a high percentage of multi-bit errors.

The complicated part of using CRCs is if you need to generate a CRC value that will then be compared with other CRC
values produced by other CRC generators. This proves difficult because there are a number of factors that can change
the resulting CRC value even if the basic CRC algorithm is the same. This includes the combination of the order that
the data is supplied to the algorithm, the assumed bit order in any look-up table used and the required order of the bits
of the actual CRC value. Both the hardware and software self test functions are able to executed iteratively, thus
allowing the option of a full CRC calculation to be made or a CRC calculation of a smaller segments suitable to the
operation of the end application.. For a full calculation (or first part of an iterative calculation), a starting value of
h’0000 is used or the previous partial result is provided as the starting point for the next calculation stage.

The software implementation will produce the same result as the IAR Embedded workbench Standard tool chain using
the “extra options” as provided in the Linker configuration menu for CRC test harness projects. Therefore if you are
using the IAR tool chain to automatically insert a reference CRC into the ROM the value can be compared directly with
the one calculated.

The hardware module while using the same fundamental CRC algorithm uses a different data format for calculating the
reference CRC value. Here a compatible CRC calculation routine is provided as part of the test harness for reference.

2.2.1 CRC16-CCITT Algorithm
The RL78 includes a CRC module that includes support for the CRC16-CCITT. Using this software to drive the CRC
module produces this 16-bit CRC16-CCITT:

Software Algorithm

• CCITT 16 Polynomial = 0x1021 (x16 + x12 + x5 + 1)
• Input Data Width = 8 bits
• Data Input = Not Bit Reversed
• Initial value = 0x0000 or 16 bit previous partial result
• Calculated Result = 16 bits (not bit reversed)

Hardware Algorithm

• CCITT 16 Polynomial = 0x1021 (x16 + x12 + x5 + 1)
• Input Data Width = 8 bits
• Data Input = Bit Reversed
• Initial value = 0x0000 or 16 bit previous partial result
• Calculated Result = 16 bits (Bit reversed)

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 13 of 50
Mar 04, 2014

2.2.2 Software CRC - Software API

The functions in the remainder of this section are used to calculate a CRC value and verify its correctness against a
reference value stored in Flash ROM.

Table 6: Source files: Software CRC

 STL File name Header Files

stl_RL78_sw_crc.asm stl.h

Test Harness File Names Header Files

main.c

stl_global_data_example.c

stl_main_example_support function.c

stl_peripheralinit.c

main.h

stl_gobal_data_example.h

 Syntax

uint16_t stl_RL78_sw_crc_asm (uint16_t crc, CHECKSUM_CRC_TEST_AREA *p);

Description

This function calculates a CRC value over the address range supplied using the software CRC calculation module.
The start address and calculation range (Length) are passed by the calling function via the structure shown in the
table below. The partial or full calculated result is returned for verification (if required) against the reference CRC
value.

The function “indicate_test_result.c” will be called by the test harness control files (main.c) to process the test result
Note Function “indicate_test_result.c “is located in the module stl_main_example_support function.c
Input Parameters

uint16_t crc Value for starting the CRC calculation

CHECKSUM_CRC_TEST_AREA *p Pointer to the structure where the start address and calculation range is located

Output Parameters

NONE N/A

Return Values

uint16_t
16 bit calculated CRC value (Full or partial result) is returned in

CPU Register AX

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 14 of 50
Mar 04, 2014

Source files: Software CRC Parameter Structure

The following structure is implemented in the files stl.h and main.c and is used to provide calculation parameters for the
for the CRC function.

Syntax

static CHECKSUM_CRC_TEST_AREA checksum_crc;

Description

Structure declaration and instance providing the parameters to be passed to software CRC module
(stl_RL78_sw_crc.asm) by the calling function in main.c

Input Parameters

uint32_t length; Range (length = number of bytes +1) of memory to be tested.

uint32_t start_address Start address for CRC calculation

Output Parameters

NONE N/A

Return Values

NONE N/A

2.2.3 Hardware CRC - Software API

Table 7: Source files: Hardware CRC Calculation

STL File name Header Files

stl_RL78_peripheral_crc.asm <ior5f100le.h>

<ior5f100le_ext.h>

stl.h

Test Harness File Names Header Files

main.c

stl_global_data_example.c

stl_main_example_support function.c

stl_peripheralinit.c

main.h

stl_gobal_data_example.h

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 15 of 50
Mar 04, 2014

Syntax

uint16_t stl_RL78_peripheral_crc(uint16_t gcrc, CHECKSUM_CRC_TEST_AREA *p)

Description

This function calculates a CRC value over the address range supplied using the hardware CRC peripheral. The start
address and calculation range (Length) are passed by the calling function via the structure detailed in the table below.
The calculated result is returned. This can be either a partial result of full result depending upon the parameters
provided.

The function “indicate_test_result.c” will be called by the test harness control files (main.c) to process the test result
Note Function “indicate_test_result.c “is located in the module stl_main_example_support function.c

Input Parameters

uint16_t gcrc Value for starting the CRC calculation

CHECKSUM_CRC_TEST_AREA *p
Pointer to the structure where the start address and calculation range is
located

Output Parameters

NONE N/A

Return Values

uint16_t
16 bit calculated CRC value (Full or partial result) is returned in

CPU Register AX

Source files: Hardware CRC Parameter Structure

Syntax

static CHECKSUM_CRC_TEST_AREA checksum_crc;

Description

Structure declaration and instance providing the parameters to be passed to the hardware CRC module
(stl_RL78_peripheral_crc.asm) by the calling function in main.c.

Note: This is the same structure as used by the software CRC function.

Input Parameters

uint32_t length; Range (length = number of bytes + 1) of memory to be tested.

uint32_t start_address Start address for CRC calculation

Output Parameters

NONE N/A

Return Values

 N/A

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 16 of 50
Mar 04, 2014

2.3 Variable memory - SRAM

March Tests are a family of tests that are well recognised as an effective way of testing RAM.

A March test consists of a finite sequence of March elements, where a March element is a finite sequence of operations
applied to every cell in the memory array before proceeding to the next cell.

In general the more March elements the algorithm consists of, the better will be its fault coverage but at the expense of a
slower execution time.

The algorithms themselves are destructive (they do not preserve the current RAM values). It is the user’s responsibility
to preserve the Ram contents during testing after the application system has been initialised or while in operation The
system March C and March X test modules are design such that small parts of the Ram area can be tested, thus
minimising the need to provide a large temporary area to save the data under test. Additional version of the test module
(“stl_RL78_march_c_initial” and “stl_RL78_march_x_initial”), are included that are designed to run before the system
has been initialised, so that the complete memory area can be tested before starting the main application.

The area of RAM being tested can not be used during testing, making the testing of RAM used for the stack particularly
difficult. Practically this area can only be tested before the application C-Stack is initialised or after the application
operation is complete.

The following section introduces the specific March Tests.

2.3.1 Algorithms

(1) March C

The March C algorithm (van de Goor 1991) consists of 6 March elements with a total of 10 operations. It detects the
following faults:

1. Stuck At Faults (SAF)
• The logic value of a cell or a line is always 0 or 1.

2. Transition Faults (TF)
• A cell or a line that fails to undergo a 0→1 or a 1→0 transition.

3. Coupling Faults (CF)
• A write operation to one cell changes the content of a second cell.

4. Address Decoder Faults (AF)
• Any fault that affects address decoding:
• With a certain address, no cells can be accessed.
• A certain cell is never accessed.
• With a certain address, multiple cells are accessed simultaneously.
• A certain cell can be accessed by multiple addresses.

The usual March C algorithm employs 6 March elements:-

1. Write all zeros to array (<>(w0))
2. Starting at lowest address, read zeros, write ones, increment up array bit by bit. (>(r0,w1))
3. Starting at lowest address, read ones, write zeros increment up array bit by bit. (>(r0,w1))
4. Starting at highest address, read zeros, write ones, decrement down array bit by bit. (<(r0,w1))
5. Starting at highest address, read ones, write zeros, decrement down array bit by bit. (<(r1,w0))
6. Read all zeros from array. (<>(r0))

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 17 of 50
Mar 04, 2014

(2) March X

The March X algorithm is a simpler and therefore faster algorithm, but not as thorough as it consists of only four March
elements with a total of four operations

1. Stuck At Faults (SAF)
2. Transition Faults (TF)
3. Inversion Coupling Faults (Cfin)
4. Address Decoder Faults (AF)

These are the 4 March elements:-

1. Write all zeros to array (<>(w0))
2. Starting at lowest address, read zeros, write ones, increment up array bit by bit. (>(r0,w1))
3. Starting at highest address, read ones, write zeros, decrement down array bit by bit. (<(r1,w0))
4. Read all zeros from array. (<>(r0))

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 18 of 50
Mar 04, 2014

2.3.2 Variable Memory Test - Software API

2.3.2.1 System March C

The system March C test is designed to run after the application system has been initialised and is executed using
normal function call from the test harness, thus using some C stack resources. The module can be used to test part or all
of the Ram area, but as the test is destructive, care should be taken to buffer the area being tested Therefore it is not
advised to use this module to test the whole RAM memory area in a single operation.

This test is configured to use 8 bit RAM accesses, and can allow a single byte to be tested. However, for all faults types
to be detected it is important to test a data range bigger than one byte.

Table 8: Source files: System March C

STL File name Header Files

stl_RL78_march_c.asm stl.h

Test Harness File Names Header Files

main.c

stl_global_data_example.c

stl_main_example_support function.c

stl_peripheralinit.c

main.h

stl_gobal_data_example.h

Declaration

bool stl_RL78_march_c(uint16_t num, uint8_t *addr)

Description

This function tests the Ram memory using the March C algorithm over the address range supplied by the calling
function. The result status (Pass / Fail) is returned. This module is designed to be executed after the application
system has been initialised.

The function “indicate_test_result.c” will be called by the test harness control files (main.c) to process the test result
Note Function “indicate_test_result.c “is located in the module stl_main_example_support function.c

Input Parameters

uint8_t *addr Pointer to the start address of the RAM to be tested.

uint16_t num The range (Number of bytes +1) of the RAM to be tested.

Output Parameters

NONE N/A

Return Values

bool
Test status result is returned in CPU register A

0 = Test passed. 1 = Test or parameter check failed

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 19 of 50
Mar 04, 2014

2.3.2.2 System March X

The system March X self test function is the essentially the same as the system March C module except that it only
implements the reduced March X algorithm. The module is designed to run after the application system has been
initialised and so should not be used to test the whole memory area in a single operation.

This test is configured to use 8 bit RAM accesses, and can allow a single byte to be tested. However, for all faults types
to be detected it is important to test a data range bigger than one byte.

Table 9: Source files:

STL File name Header Files

stl_RL78_march_x.asm stl.h

Test Harness File Names Header Files

main.c

stl_global_data_example.c

stl_main_example_support function.c

stl_peripheralinit.c

main.h

stl_gobal_data_example.h

Declaration

bool stl_RL78_march_c(uint16_t num, uint8_t *addr)

Description

This function tests the Ram memory using the March X algorithm over the address range supplied by the calling
function. The result status (Pass / Fail) is returned. This module is designed to be executed after the application
system has been initialised.

The function “indicate_test_result.c” will be called by the test harness control files (main.c) to process the test result
Note Function “indicate_test_result.c “is located in the module stl_main_example_support function.c

Input Parameters

uint8_t *addr Pointer to the start address of the RAM to be tested.

uint16_t num The range (Number of bytes +1) of the RAM to be tested.

Output Parameters

NONE N/A

Return Values

bool
Test status result is returned in CPU register A

0 = Test passed. 1 = Test or parameter check failed

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 20 of 50
Mar 04, 2014

2.3.2.3 Initial March C

The initial March C test is designed to run before the application system has been initialised and is executed without
using function calls from the test harness. Entry to the self test is made by a “jump” from the modified “cstartup.s87”
module and return to “cstartup.s87” module is also made with a “jump”. The test status result is contained in the 8bit
accumulator (A). Therefore this module is designed to provide a complete RAM test before the system is started and the
“C” environment is initialised.

This test function is configured to use 8 bit RAM accesses.

Table 10: Source files:

STL File name Header Files

stl_RL78_march_c_initial.asm None

Test Harness File Names Header Files

ctsartup.s87 None

Declaration

stl_RL78_march_c_initial

Description

This function tests the Ram memory using the March C algorithm over the address range supplied by the calling
function. The result status (Pass / Fail) is returned. This module is designed to be executed before the application
system has been initialised and therefore does not use any function calls.

The function “indicate_test_result.c” will be called by the test harness control files (main.c) to process the test result
Note Function “indicate_test_result.c “is located in the module stl_main_example_support function.c

Input Parameters

CPU Register AX 16bit Register holding the start address of the RAM to be tested.

CPU Register BC 16bit Register holding the range (Number of bytes + 1) of the RAM to be tested.

Output Parameters

NONE N/A

Return Values

CPU Register A
Test status result

0 = Test passed. 1 = Test or parameter check failed

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 21 of 50
Mar 04, 2014

2.3.2.4 Initial March X

The initial March X test is designed to run before the application system has been initialised and is executed without
using function calls from the test harness. Entry to the self test is made by a “jump” from the modified “cstartup.s87”
module and return to “cstartup.s87” module is also made with a “jump”. The test status result is contained in the 8bit
accumulator (A). Therefore this module is designed to provide a complete RAM test before the system is started and the
“C” environment is initialised.

This test function is configured to use 8 bit RAM accesses.

Table 11: Source files:

STL File name Header Files

stl_RL78_march_x_initial.asm None

Test Harness File Names Header Files

ctsartup.s87 None

Declaration

stl_RL78_march_x_initial

Description

This function tests the Ram memory using the March X algorithm over the address range supplied by the calling
function. The result status (Pass / Fail) is returned. This module is designed to be executed before the application
system has been initialised and therefore does not use any function calls.

The function “indicate_test_result.c” will be called by the test harness control files (main.c) to process the test result
Note Function “indicate_test_result.c “is located in the module stl_main_example_support function.c

Input Parameters

CPU Register AX 16bit Register holding the start address of the RAM to be tested.

CPU Register BC 16bit Register holding the range (Number of bytes + 1) of the RAM to be tested.

Output Parameters

NONE N/A

Return Values

CPU Register A
Test status result in returned in register “A”

0 = Test passed. 1 = Test or parameter check failed.

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 22 of 50
Mar 04, 2014

2.4 System Clock Test

Two self test modules (hardware and software base) are provided for the RL78 self test library in order to be able to test
the internal system clock (CPU and Peripheral clocks). The software measurement module is included for backward
compatibility with previous products and also to allow for any RL78 devices where the Timer Array does not include
the additional hardware capability, or that the timer is used by the application and is not available to be used as part of
the MCU self tests. These modules can be used by the application to detect the correct operation and deviation in the
main system clock during operation of the application. Please note that if the internal low speed oscillator is used for
measurement, the accuracy of the system clock measurement will be reduced due the greater tolerance of the internal
low speed oscillator. Therefore only the relative operation of the system clock can be obtained, which should still be
sufficient to establish that the system clock is operating correctly and within acceptable limits.

The principle behind both measurement approaches is that if the operation frequency of the main clock deviates during
runtime from a predefined range, then this can be detected by the system. The accuracy of the measurement obviously
depends on the accuracy of the reference clock source. For example an external signal input or 32 KHz crystal can
provide a more accurate measurement of the system clock than the internal low speed oscillator. This however does
require the extra components.

A “Pass / Fail” status of the test is returned. Also implemented is a “No Reference Clock” detection scheme which
returns a different status value to the normal test, in order to identify the appropriate fault state. Both the software and
hardware measurement function use the same return status format.

The modules compare the measured (captured) time is within a reference window (upper and lower limit values) using
the user defined reference values set in the “stl_clocktest_h” header file. This header file defines the reference values
for both software and hardware measurements and also the input test port pin for the software measurement.

1. Hardware Measurement

All current RL78 devices include an option in the Timer Array Unit (TAU) that provides additional input capture
sources that are designed to be able test the system clock operation. The extra capture inputs are selected as part of the
“safety” register (TIS0) and include the following:-

• The internal Low-speed oscillator (fiL)

• External 32KHz Oscillator (Sub Clock) (fsub)

• External signal input (TIOn)

The example shown below is for the R5F100LE device, which has this feature implemented on TAU channel 5. The
timer channel used for other RL78 family members can vary, however the principles of this test capability remain the
same.

Figure 7 Timer Array Unit Channel 5 Configuration

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 23 of 50
Mar 04, 2014

The principle behind the hardware measurement is based on the input capture measurement of the reference clock in the
appropriate TAU channel. As this is a hardware capture measurement the time captured is the “period” of the reference
clock as a of the system clock. This is a more accurate method of measurement than the software approach.

The measurement sequence is

• Synchronise to the reference clock (Wait for first capture event)

• Wait for the next capture event

• Compare the value in the capture register against the high and lower limit reference values

The test harness provides an example based on the following settings

System clock = 32MHz

Reference Clock = 32KHz

Therefore the calculation is simply 32000000 / 32768 = 976 (h’3D0)

An allowance should be made for capture value variances in the upper and lower reference values

2. Software Measurement

The principle behind the software measurement is based on a software counter measuring the transition on the test port
pin. The actual comparison values can be a mix of calculation and measurement as it is difficult to fully calculate the
measurement value due to variances in the synchronisation and monitoring of the input state.

The measurement sequence is

• Synchronise to the reference clock (high to low transition on the input pin)

• Wait for the next low to high transition and then start the software counter

• Increment the software count until the next high to low transition

• Compare the software count value against the high and lower limit reference values

The basic calculation is based on the following equation

System Clock / (Reference Clock / 2) x the number of clock cycles executed in the count loop

Note: The measurement period of the software counter is based on half the reference clock

Using the example settings provided in the test harness project

The System clock is 32MHz and the reference clock is the Sub Clock 32KHz then the calculation is

32000000 / (32768 / 2) x Loop Count

The cycle count can be calculated as shown in the code extract in figure 8 below

½ the reference clock = 15.26uS (32KHz / 2)

The loop count of the measurement period (measure high time) is 6 clock cycles

At 32MHz this is 187.5nS (6 x 31.25nS)

Therefore the approximate software count for the test harness example is 15.26uS / 187nS = 82 (h’52)

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 24 of 50
Mar 04, 2014

Figure 8 Timer Array Unit Channel 5 Configuration

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 25 of 50
Mar 04, 2014

Table 12: Source files: Software Clock test

STL File name Header Files

stl_RL78_sw_clocktest.asm stl_clocktest.h

stl.h

Test Harness File Names Header Files

main.c

stl_global_data_example.c

stl_main_example_support function.c

stl_peripheralinit.c

main.h

stl_gobal_data_example.h

Declaration

bool stl_RL78_sw_clocktest(void)

Description

This function tests the system clock using a software measurement (software counter) process. The measured result
(software count) is compared against the upper and lower limit values defined in the clock test header file
(stl_clocktest.h), and the result status (Pass / Fail / No reference clock) is returned to the calling function.

The reference limits calculation is based on the following

System Clock / (Reference Clock / 2) x times the number of clock cycles executed in the count loop

The function “indicate_test_result.c” will be called by the test harness control files (main.c) to process the test result
Note Function “indicate_test_result.c “is located in the module stl_main_example_support function.c

Input Parameters

swMAXTIME Upper time limit compare value (Defined in stl_clocktest.h)

swMINTIME Lower time limit compare value (Defined in stl_clocktest.h)

TESTPORT Test Port Input Pin for external reference signal input (Defined in stl_clocktest.h)

Output Parameters

NONE N/A

Return Values

bool

Test status result returned in CPU register A

0 = Test passed.

1 = Test measurement failed (Outside the reference window)

2 = Test failed (No reference clock detected)

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 26 of 50
Mar 04, 2014

Table 13: Source files: Hardware Clock test

STL File name Header Files

stl_RL78_hw_clocktest.asm stl_clocktest.h

stl.h

Test Harness File Names Header Files

main.c

stl_global_data_example.c

stl_main_example_support function.c

stl_peripheralinit.c

main.h

stl_gobal_data_example.h

Declaration

bool stl_RL78_hw_clocktest(void)

Description

This function tests the system clock using the hardware measurement (TAU channel n) feature. The measured result
(capture value) is compared against the upper and lower limit values defined in the clock test header file
(stl_clocktest.h) and the result status (Pass / Fail / No reference clock) is returned to the calling function.

The function “indicate_test_result.c” will be called by the test harness control files (main.c) to process the test result
Note Function “indicate_test_result.c “is located in the module stl_main_example_support function.c

Input Parameters

hwMAXTIME Upper time limit compare value (Defined in stl_clocktest.h)

hwMINTIME Lower time limit compare value (Defined in stl_clocktest.h)

CAPTURE_interrupt_FLAG Timer channel Capture Interrupt Flag (Defined in stl_clocktest.h)

CAPTURE_Register_Addr Timer channel capture register address (Defined in stl_clocktest.h)

Output Parameters

NONE N/A

Return Values

bool

Test status result returned in CPU register A

0 = Test passed.

1 = Test measurement failed (Outside the reference window)

2 = Test failed (No reference clock detected)

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 27 of 50
Mar 04, 2014

3 Example Usage
In addition to the actual test software source files, the IAR Embedded Workbench test harness workspace is provided
which includes application examples demonstrating how the tests can be run. This code should be examined in
conjunction with this document to see how the various test functions are used.

The testing can typically be split into two parts:

1. Power-Up Tests.

These are tests can be run following a power on or reset. They should be run as soon as possible to ensure that
the system is working correctly. Tests that should be run are

1. All Ram using Initial March C (or initial March X)

2. All register tests

3. Flash Memory CRC Test

4. The clock test may be run at a later time depending on the initial clock speed if the maximum clock
speed is to be measured.

2. Periodic Tests.

These are tests that are run regularly throughout normal program operation. This document does not provide a
judgment of how often a particular test should be ran. How the scheduling of the periodic tests is performed is
up to the user depending upon how their application is structured.

1. Ram tests. These tests should use the “system” Ram test modules as these are designed to test the
memory in small once the system is initialised. They can be used in small in order to
minimise the size of the buffer area needed to save the application data.

2. Register Tests. These are dependant upon the application timing

3. Flash memory test. These modules are designed to be able to accumulate a CRC result over a
number of passes. In this way they can be used to suit the system operation

4. The clock test modules can be run at any time to suit the application timing

The following sections provide an example of how each test can be used.

3.1 CPU Verification
If a fault is detected by any of the CPU tests then this is very serious the aim of should be to get to a safe operating point,
where software execution is not relied upon, as soon as possible.

3.1.1 Power- Up Tests
All the CPU tests should be run as soon as possible following a reset.

3.1.2 Periodic
If testing the CPU registers periodically the function are designed to be run independently and so can be
operated at any time to suit the application. Each function restores the original register data on completion of
test so as not to corrupt the operation of the application system. It is important that interrupts are disabled
during these tests

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 28 of 50
Mar 04, 2014

3.2 Flash ROM Verification

The ROM is tested by calculating a CRC value over the complete range of the Flash memory contents and comparing
with a reference CRC value that must be added to a specific location in the ROM not included in the CRC calculation.

The IAR embedded workbench tool chain can be used to calculate and add a CRC value and placed at a location at a
location specified by the user. This can be done via an external utility or using the IAR tool to generate the reference
CRC value and place the reference value in memory. Please note that this utility can only be used when using the
“software” CRC module. To provide a reference value when using the on chip CRC peripheral, an external CRC
program can be used or alternatively an example of an internal application based reference generation is included in the
test harness project.

Figure 9: Adding Reference CRC

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 29 of 50
Mar 04, 2014

3.2.1 Power- Up Tests
All the ROM memory used must be tested at power up. Both hardware and software CRC modules are
capable of calculating the CRC value over the whole memory range.

3.2.2 Periodic
It is suggested that the periodic testing of Flash memory is done in stages, depending on the time available to
the application. The application will need to save the partially calculated result if using the software module.
This value can then be set as starting point for the next stage of the CRC calculation.

When using the hardware peripheral unit, the partial CRC result value could be left in the result register of
the hardware CRC peripheral unit, but it is advised to save this value and compare it before starting the next
part of the calculation.

In this way all of the Flash memory can be verified in time slots convenient to the application.

3.3 RAM Verification

When verifying the RAM it is important to remember the following points:

1. RAM being tested can not be used for anything else including the current stack.

2. Any test requires a RAM buffer where memory contents can be safely copied to and restored from.

3. The stack area cannot be tested after the system has been initialised, unless the content is relocated to a new
area and the stack pointer changed accordingly. Interrupts should not be serviced during this operation.

3.3.1 Power-Up
It is recommended to use the “initial Ram test modules (march C or March X), as these are specifically
design for testing all of the Ram area at power on or Reset. The modules have been designed without any
function call and so are suitable to be executed before the system and C-Stack are initialised as any
contents of the Ram memory will be destroyed.

3.3.2 Periodic
Periodic testing of the Ram memory is usually done in small stages, depending on the time available to the
application and the available space necessary to buffer the system Ram contents during testing. Each stage
provides a pass / fail status over the range specified, in this way all of the Ram memory can be verified time
slots convenient to the application.

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 30 of 50
Mar 04, 2014

3.4 System Clock Verification
If a fault is detected with the system clock then the aim of should be to get to a safe operating point, where system
can be controlled using a different known clock.

3.4.1 Power-Up
The system clock should be verified at power on or reset. It may be necessary to test the clock once the
system has been initialised and the full system clock frequency has been set and stabilised.

3.4.2 Periodic
Periodic testing of the system clock can be made at any time where the application has the time available.
This is because the reference clock is typically much slower that the system clock in order to increase the
accuracy of the clock measurement.

(i.e. System clock = 32 MHZ, Reference clock = 15 KHz)

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 31 of 50
Mar 04, 2014

4 Benchmarking

4.1 Development Environment

• IECUBE - QB-RL78G13-ZZZ-EE Full RL78/G13 In circuit Emulator

• QB-R5F100LE-TB RL78/G13 Target Board 64pin LQFP (10 x 10mm)

• Tool chain: IAR Embedded Workbench Version 1.20.1

MCU: R5F100LE (64KB Flash, 4KB RAM 64pin)

Internal Clock: 32 MHz High Speed Oscillator
System Clock = 32 MHz

External Sub Clock: 32 KHz

4.2 IAR Embedded Workbench Settings

The following show the specific options and setting set for the test harness project. The graphics only show those
options and settings that have been changed. All others are the default project settings set by the IAR Embedded
Workbench.

4.2.1 General Options

Figure 10 IAR EW General Options - Target Device

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 32 of 50
Mar 04, 2014

Figure 11 IAR EW General Options – Stack/Heap

Figure 12 IAR EW General Options – MISRA-C

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 33 of 50
Mar 04, 2014

4.2.2 Complier Settings

Figure 13 IAR EW Compiler Options - Language

Figure 14 IAR EW Compiler Options - Optimisation

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 34 of 50
Mar 04, 2014

Figure 15 IAR EW Compiler Options - Listings

Figure 16 IAR EW Compiler Options – Pre-processor Defined symbols

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 35 of 50
Mar 04, 2014

4.2.2.1 Defined Symbols

The following defined symbols are included in the Compiler options section. Each symbol is preset to enable the
conditional build options for each of the self test projects is selected.

Example shown below is for the “System” March C test

Table 14: Compiler Defined Symbols

IDBU_TB=1 Use the RL78/G13 target board as target hardware

sw_crc_test_enabled=0 Set configuration for Software CRC Self Test (disabled)

hw_peripheral_crc_test_enabled=0 Set configuration for Hardware CRC Self Test (disabled)

hw_clock_test_enabled=0 Set configuration for Hardware Clock Self Test (disabled)

sw_clock_test_enabled=0 Set configuration for Software Clock Self Test (disabled)

march_c_test_enabled=1 Set configuration for “System” March C Self Test (Enabled)

march_x_test_enabled=0 Set configuration for “System” March X Self Test (disabled)

register_test_enabled=0 Set configuration for Working Registers Self Test (disabled)

register_test_psw_enabled=0 Set configuration for PSW Register Self Test (disabled)

register_test_stack_enabled=0 Set configuration for Stack Pointer Register Self Test (disabled)

register_test_cs_enabled=0 Set configuration for Extended Code Address Register Self Test (disabled)

register_test_es_enabled=0 Set configuration for Extended Data Address Register Self Test (disabled)

4.2.3 Assembler Settings

Figure 17 IAR EW Assembler Options – Pre-processor Defined symbols

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 36 of 50
Mar 04, 2014

4.2.3.1 Defined Symbols

The following defined symbols are included in the IAR EW assembler options section.

Each symbol is preset to enable the conditional build options for each of the self test projects selected.

This differs from the compiler settings as if the symbol is omitted then the self test is disabled. If the symbol is included
then the test is enabled. The example shown in figure 17 above enables the “initial” March X test

Table 15: Assembler Defined Symbols

March_c_initial_test_enabled Set configuration for Initial March C test

March_x_initial_test_enabled Set configuration for Initial March X test

4.2.4 Linker Settings

Figure 18 IAR EW Linker Options – Output File settings

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 37 of 50
Mar 04, 2014

Figure 19 IAR EW linker Options – Listings (Map File)

Figure 20 IAR EW linker Options – Diagnostics

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 38 of 50
Mar 04, 2014

5 Resources
The following resource tables include only the resources and execution times needed for the self test modules. The
figures do not include data for the test harness files.

All timings are based on the following environment settings

MCU: R5F100LE (64KB Flash, 4KB RAM, 64 pin)

Internal Clock: 32 MHz High Speed Oscillator
System Clock = 32 MHz

External Sub Clock: 32 KHz

3.1 CPU Register Tests
Note: Optimisation should not be used for these tests.

3.1.1 Working Registers Test

Table 16: Working registers Resources

Measurement

Code size 178B

Stack usage (Module use plus function call) 12B

Data 1B

Execution time
320 cycles

10uS

3.1.2 PSW Register Test
Table 17: PSW Registers Resources

Measurement

Code size 43B

Stack usage (Module use plus function call) 6B

Data 1B

Execution time
32 cycles

1uS

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 39 of 50
Mar 04, 2014

5.1.3 Stack Pointer Register Test
Note: This test cannot be run on the E1 on Chip debugger.

Table 18: Stack Pointer Register Resources

Measurement

Code size (Bytes) 47

Stack usage (Module use plus function call) 6

Data 1

Execution time
30 cycles

0.8uS

5.1.4 Code Extension (CS) Register Test
Table 19: Code extension Register Resources

Measurement

Code size 43B

Stack usage (Module use plus function call) 6B

Data 1B

Execution time
31 cycles

0.97uS

5.1.5 Data Extension (ES) Register Test
Table 20: Data Extension Register Resources

Measurement

Code size 41B

Stack usage (Module use plus function call) 6B

Data 1B

Execution time
29 cycles

0.9uS

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 40 of 50
Mar 04, 2014

5.2 Flash ROM Test

5.2.1 Software CRC test
Table 21: Software CRC Test Resources

Measurement

Code size plus constants 616B

Stack usage (Module use plus function call) 6B

Data 2B

Execution time (Range = 51KB)
2496000 cycles

78mS

5.2.2 Hardware CRC test
Table 22: Hardware CRC Test Resources

Measurement

Code size 77B

Stack usage (Module use plus function call) 6B

Data 0B

Execution time (Range = 61KB)
1408000 cycles

44mS

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 41 of 50
Mar 04, 2014

5.3 RAM

5.3.1 System March C
Table 23: System March C Test Resources

Measurement

Code size 354B

Stack usage (Module use plus function call) 18B

Data 0B

Execution time (Range = 1.3KB)
476800
cycles

14.9mS

5.3.2 System March X
Table 24: System March X Test Resources

Measurement

Code size 298B

Stack usage (Module use plus function call) 18B

Data 0B

Execution time (Range = 57KB)
243200
cycles

7.6mS

5.3.3 Initial March C
Table 25: Initial March C Test Resources

Measurement

Code size 337B

Stack usage (Module use plus function call) 0B

Data 0B

Execution time (Range = 4KB)
1520000 cycles

47.5mS

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 42 of 50
Mar 04, 2014

5.3.4 Initial March X
Table 26: Initial March X Test Resources

Measurement

Code size 279B

Stack Usage (Module use plus function call) 0B

Data Usage 0B

Execution time (Range = 4KB)
768000 cycles

24mS

5.4 Clock Monitor
The execution time of this function is defined by the frequency of the reference clock therefore the execution time is not
measured.

Table 27: Software Clock Monitor Test Resources

Measurement

Code Size: Program + Data 65B

Data Usage 0B

Stack Usage (Module + function call) 8B

Execution time N/A

Table 28: Hardware Clock Monitor Test Resources

Measurement

Code Size 62B

Data Usage 0B

Stack Usage (Module + function call) 8B

Execution time N/A

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 43 of 50
Mar 04, 2014

6 Additional Hardware Resources
The following additional safety and self test features have been included in the RL78 series to provide support for
the user. While these additional functions have not been certified by VDE, they provide a valuable extra resource to
the user and are included here for reference.

6.1 Additional Safety Functions
The following additional safety functions have been included in the RL78 series MCU devices.

6.1.1 RAM Memory Parity Generator Checker

When enabled the function includes a parity check for each byte written to any location of the RAM
memory area. The Parity is generated when data is written to the Ram memory and checked when a location
is read from memory.

Please note that this function is available only for data accesses and does not apply to code executed from
Ram.

If a Ram parity error is detected, then an internal Reset is generated. The Reset source can be determined by
examining the “RESF” register. The “IAWRF” bit will be set if the invalid memory access was the source of
the Reset.

Figure 21 RAM Parity Error Checking

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 44 of 50
Mar 04, 2014

6.1.2 RAM Guard Protection

This is a write protection feature that when enabled allows data to be read from the selected Ram area, but
prohibits a write to these locations. No error is generated if a write occurs to this area

The Ram area available for this feature is limited and can be selected by the “GRAM0, GRAM1” bits as
shown in figure 22 below:

Figure 22 RAM Guard Protection

6.1.3 Invalid Memory Access Protection

This is a feature that provides additional protection for detection of an invalid memory access.

Please note that once the “IAWEN” bit is set in the “IAWCTL” register, it cannot be disabled except for a
Reset. Also if the Watchdog is enabled in the Flash memory Option Bytes registers, then the invalid memory
protection automatically enabled.

If an invalid memory access is detected, then an internal Reset is generated. The Reset source can be
determined by examining the “RESF” register. The “IAWRF” bit will be set if the invalid memory access
was the source of the Reset.

Figure 23 Invalid Memory Access Protection

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 45 of 50
Mar 04, 2014

6.1.4 I/O Port SFR Protection

This is a write protection feature that prohibits a write to the SFR registers. No error is generated if a write
occurs, but the write operation does not change the state of the registers involved.

Please note that the data port register (Pxx) cannot be protected.

The protection can be turned off, if a change is required for the SFR registers or for safety reasons the SFR
settings are refreshed by the application.

The following I/O port SFR registers can be protected with this function

PMxx, PUxx, PIMxx, POMxx, PMCxx, ADPC, and PIOR
Pxx cannot be guarded.

The Port I/O SFR registers can be guarded by the “GPORT” bit as shown in figure 24 below

Figure 24 I/O Port SFR Guard Protection

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 46 of 50
Mar 04, 2014

6.1.5 Interrupt SFR Protection

This is a write protection feature that prohibits a write to the Interrupt SFR registers. No error is generated if
a write occurs to this area, but the write operation does not change the state of the registers involved. The
protection can be turned off, if a change is required for the SFR registers or for safety reasons the SFR
settings are refreshed by the application.

The following interrupt registers can be protected with this function

IFxx, MKxx, PRxx, EGPx, and EGNx

The interrupt SFR registers can be guarded by the “GINT” bit as shown in figure 25 below

Figure 25 Interrupt SFR Guard Protection

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 47 of 50
Mar 04, 2014

6.1.6 Control Register Protection

This is a write protection feature that prohibits a write to the control registers. No error is generated if a write
occurs to this area, but the write operation does not change the state of the registers involved. The protection
can be turned off, if a change is required for the SFR registers or for safety reasons the SFR settings are
refreshed by the application.

The following control registers can be protected with this function

CMC, CSC, OSTS, CKC, PERx, OSMC, LVIM, LVIS, and RPECTL

The interrupt SFR registers can be guarded by the “GCSC” bit as shown in figure 26 below

Figure 26 Invalid Memory Access Protection

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 48 of 50
Mar 04, 2014

6.2 Additional Self Test Functions

The ADC includes additional inputs designed to help test the operation of the ADC. These include

• Temperature Sensor

• Internal Voltage Reference (1.44V)

• External Analogue Voltage Reference pins (AVrefP and AVrefM)

These internal analogue input pins can be used to verify the operation of the ADC against a known reference
point. The external pins can be set to (typically AVrefP < Vdd, AVrefM = Vss) additional measurement point
to establish the correct operation of the ADC.

Note the normal ADC input selection register (ADS) can be used for all inputs except the external reference
inputs which are set according to the table below.

Figure 27 ADC Self Test

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 49 of 50
Mar 04, 2014

7 VDE Certification Status

Module / Version V1.0 V1.1 V2.0 V3.0
stl_RL78_registertest.asm Y -- -- --
stl_RL78_registertest_psw.asm Y -- -- --
stl_RL78_registertest_stack.asm Y -- -- --
stl_RL78_registertest_cs.asm Y -- -- --
stl_RL78_registertest_es.asm Y -- -- --
stl_RL78_sw_crc.asm Y -- N --
stl_RL78_peripheral_crc.asm Y -- N --
stl_RL78_march_c.asm Y N N --
stl_RL78_march_x.asm Y -- N --
stl_RL78_march_c_initial.asm Y -- N --
stl_RL78_march_x_initial.asm Y -- N --
stl_RL78_sw_clocktest.asm Y -- -- --
stl_RL78_hw_clocktest.asm Y -- N *

Y = VDE Certified Module

-- = No Code Change affecting VDE Certified Module in this update

N = Module not VDE Certified. Module code changed in this update

* = Module Code Change in this update

RL78 Family VDE Certified IEC60730/60335 Self Test Library

R01AN0749EG0201 Rev.2.01 Page 50 of 50
Mar 04, 2014

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision History

Rev.

Date

Description
Section Summary

0.01 Jul 01, 2011 All Preliminary revision
0.02 Jul 21, 2011 All Updated and corrected preliminary for review
1.00 July 06, 2011 All First Release
1.01 Nov 16, 2011 P21 and P42

P28
All

Text correction - March C corrected to March X.
Removed error statement. Unknown origin.
Format Update for Headers and footers.

1.02 Feb 01, 2012

Jul 15, 2012

P15
P18 and P19
P22

P26

P49
P50

Removed text, as no return value required in this table.
Pointer changed from __far to normal.
Correction to system clock test description, Hardware
measurement.
Added “CAPTURE_Register_Addr” definition to Input
Parameter section in table.
Added module certification status
Updated Contact details

2.00 May 23, 2013 P31
P49

Update for IAR Embedded Workbench to V1.20.1
Updated module certification status table

2.01 Mar 04, 2014 P4
P50

Update of IEC Annex H references
Updated web information
Updated General Precautions page

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
⎯ The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 LanGao Rd., Putuo District, Shanghai, China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 3.0

