
 APPLICATION NOTE

R01AN2849EJ0101 Rev. 1.01 Page 1 of 48
Feb. 27, 2024

RL78/G13
Self-Programming (Received Data via CSI) CC-RL

Introduction
This application note gives the outline of flash memory reprogramming using a self-programming technique. In this
application note, flash memory is reprogrammed using the flash memory self-programming library Type01.

The sample program described in this application note limits the target of reprogramming to the boot area. For details
on the procedures for performing self-programming and for reprogramming the entire area of code flash memory, refer
to RL78/G13 Microcontroller Flash Memory Self-Programming Execution (R01AN0718E) Application Note.

Target Device
RL78/G13

When applying the sample program covered in this application note to another microcomputer, modify the program
according to the specifications for the target microcomputer and conduct an extensive evaluation of the modified
program.

R01AN2849EJ0101
Rev. 1.01

Feb. 27, 2024

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 2 of 48
Feb. 27, 2024

Contents

1. Specifications .. 4
1.1 Outline of the Flash Memory Self-Programming Library ... 4
1.2 Code Flash Memory ... 5
1.3 Flash Memory Self-Programming ... 7
1.3.1 Boot Swap Function ... 7
1.3.2 Flash Memory Reprogramming ... 9
1.3.3 Flash Shield Window.. 10

1.4 How to Get the Flash Memory Self-Programming Library... 11

2. Operation Check Conditions ... 12

3. Related Application Notes .. 12

4. Description of the Hardware ... 13
4.1 Hardware Configuration Example ... 13
4.2 List of Pins to be Used ... 14

5. Description of the Software .. 15
5.1 Communication Specifications .. 15
5.1.1 START Command ... 15
5.1.2 WRITE Command ... 15
5.1.3 END Command ... 15
5.1.4 Communication Sequence ... 16

5.2 Operation Outline .. 17
5.3 File Configuration .. 19
5.4 List of Option Byte Settings .. 20
5.5 On-chip Debug Security ID .. 20
5.6 Link Option ... 21
5.7 List of Constants .. 22
5.8 List of Functions .. 22
5.9 Function Specifications .. 23
5.10 Flowcharts .. 25
5.10.1 Initialization Function ... 26
5.10.2 System Initialization Function ... 27
5.10.3 I/O Port Setup .. 28
5.10.4 CPU Clock Setup ... 29
5.10.5 SAU0 Setup ... 30
5.10.6 CSI Setup .. 31
5.10.7 Main Processing ... 33
5.10.8 Starting the CSI10 .. 35
5.10.9 Data Reception via CSI10 ... 36
5.10.10 Receive Packet Analysis ... 39
5.10.11 Flash Memory Self-Programming Execution ... 40
5.10.12 Flash Memory Self-Programming Initialization ... 41
5.10.13 Flash Memory Reprogramming Execution .. 43

5.11 Operation Check Procedure .. 46
5.11.1 Making Checks with a Debugger ... 46

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 3 of 48
Feb. 27, 2024

6. Sample Code ... 48

7. Documents for Reference ... 48

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 4 of 48
Feb. 27, 2024

1. Specifications
This application note explains a sample program that performs flash memory reprogramming using a self-programming
library.

The sample program displays the information about the current version of the library on the LCD. Subsequently, the
program receives data (reprogramming data) from the sending side and, after turning on the LED indicating that it is
accessing flash memory, carries out self-programming to rewrite the code flash memory with the reprogramming data.
When the rewrite is completed, the sample program turns off the LED and displays the information about the new
version on the LCD.

Table 1.1 lists the peripheral functions to be used and their uses.

Table 1.1 Peripheral Functions to be Used and their Uses

Peripheral Function Use
Channel 2 of serial array unit 0 Receives data via CSI.
Port I/O Displays text on the LCD.

Turns on and off the LED.
Outputs the BUSY signal. Note

Note: The BUSY signal indicates whether communication is enabled or disabled. When it is set to 0, it indicates
communication is enabled. When it is set to 1, it indicates communication is disabled.

1.1 Outline of the Flash Memory Self-Programming Library
The flash memory self-programming library is a software product that is used to reprogram the data in the code flash
memory using the firmware installed on the RL78 microcontroller.

The contents of the code flash memory can be reprogrammed by calling the flash memory self-programming library
from a user program.

To do flash memory self-programming, it is necessary for the user program to perform initialization for flash memory
self -programming and to execute the C or assembler functions that correspond to the library functions to be used.

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 5 of 48
Feb. 27, 2024

1.2 Code Flash Memory
The configuration of the RL78/G13 (R5F100LE) code flash memory is shown below.

Figure 1.1 Code Flash Memory Configuration

Vector table area
128 bytes

Boot
cluster 0

CALLT table area
64 bytes

Option byte area
4 bytes

On-chip debug security ID area
10 bytes

Program area

Vector table area
128 bytes

CALLT table area
64 bytes

Option byte area
4 bytes

On-chip debug security ID area
10 bytes

Program area

00000H

0007FH
00080H

000BFH
000C0H

000C3H
000C4H

000CDH
000CEH

00FFFH
01000H

0107FH
01080H

010BFH
010C0H

010C3H
010C4H

010CDH
010CEH

0FFFFH

Boot
cluster 1

01FFFH

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 6 of 48
Feb. 27, 2024

Caution: When the boot swap function is used, the option byte area (000C0H to 000C3H) in boot cluster 0 is
swapped with the option byte area (010C0H to 010C3H) in boot cluster 1. Accordingly, place the same
values in the area (010C0H to 010C3H) as those in the area (000C0H to 000C3H) when using the boot swap
function.

The features of the RL78/G13 code flash memory are summarized below.

Table 1.2 Features of the Code Flash Memory

Item Description
Minimum unit of erasure and
verification

1 block (1024 bytes)

Minimum unit of programming 1 word (4 bytes)
Security functions

Block erasure, programming, and boot area reprogramming protection are
supported.
(They are enabled at shipment)
It is possible to disable reprogramming and erasure outside the specified window
only at flash memory self-programming time using the flash shield window.
Security settings programmable using the flash memory self-programming library

Caution: The boot area reprogramming protection setting and the security settings for outside the flash shield window
are disabled during flash memory self-programming.

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 7 of 48
Feb. 27, 2024

1.3 Flash Memory Self-Programming
The RL78/G13 is provided with a library for flash memory self-programming. Flash memory self-programming is
accomplished by calling functions of the flash memory self-programming library from the reprogramming program.

The flash memory self-programming library for the RL78/G13 controls flash memory reprogramming using a
sequencer (a dedicated circuit for controlling flash memory). The code flash memory cannot be referenced while
control by the sequencer is in progress. When the user program needs to be run while the sequencer control is in
progress, therefore, it is necessary to relocate part of the segments for the flash memory self-programming library and
the reprogramming program in RAM when erasing or reprogramming the code flash memory or making settings for the
security flags. If there is no need to run the user program while the sequencer control is in progress, it is possible to
keep the flash memory self-programming library and reprogramming program on ROM (code flash memory) for
execution.

1.3.1 Boot Swap Function
When reprogramming of the area where vector table data, the basic functions of the program, and flash memory
self-programming library are allocated fails due to a temporary power blackout or a reset caused by an external factor,
the data that is being reprogrammed will be corrupted, as the result of which the restarting of the user program or
reprogramming cannot be accomplished when a reset is subsequently performed. This problem is be avoided by the
introduction of the boot swap function.

The boot swap function swaps between boot cluster 0 which is the boot program area and boot cluster 1 which is the
target of boot swapping. A new program is written into boot cluster 1 before reprogramming is attempted. This boot
cluster 1 is swapped with boot cluster 0 and boot cluster 1 is designated as the boot program area. In this configuration,
even when a temporary power blackout occurs while the boot program area is being reprogrammed, the system boot
will start at boot cluster 1 on the next reset start, thus ensuring the normal execution of the programs.

The outline image of boot swapping is shown in the figure below.

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 8 of 48
Feb. 27, 2024

Figure 1.2 Outline of Boot Swapping

Boot cluster 1 Erased

Old boot program Boot cluster 0

(1) Erasing boot cluster 1
Call the FSL_Erase function to erase boot cluster 1 (blocks 4 to 7).

Boot cluster 1 New boot program writing

Old boot program Boot cluster 0

(2) Writing the new boot program into boot cluster 1
Call the FSL_Write function to write the new boot program into boot cluster 1 and call the
FSL_IVerify function to verify boot cluster 1.
The steps that have been performed up to here ensure that the programs will run
normally even when the programming of the new boot program fails due to a temporary
power blackout or reset because the system boot is started by the old boot program.

Boot cluster 1 New boot program

Old boot program Boot cluster 0

Boot swap

(3) Setting the boot swap bit
Call the FSL_InvertBootFlag function to invert the state of the boot flag.
When a temporary power blackout or reset occurs after the state of the boot flag is
inverted, the programs will run normally because the system boot is started by the new
boot program whose reprogramming has been completed.

(4) When a reset occurs
When a reset occurs, boot clusters 0 and 1 are swapped.

Boot cluster 0 Old boot program

New boot program Boot cluster 1

(5) Boot swapping completed

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 9 of 48
Feb. 27, 2024

1.3.2 Flash Memory Reprogramming
This subsection describes the outline image of reprogramming using the flash memory self-programming technique.
The program that performs flash memory self-programming is placed in boot cluster 0.

The sample program covered in this application note limits the target of reprogramming to the boot area. For details on
the procedures for perform self-programming and for reprogramming the entire area of code flash memory, refer to
RL78/G13 Microcontroller Flash Memory Self-Programming Execution (R01AN0718E) Application Note.

Figure 1.3 Outline of Flash Memory Reprogramming (1/2)

Boot cluster 1

Boot program Boot cluster 0

User program

(1) Erasing the block to be reprogrammed

00000H

00FFFH
01000H

01FFFH
02000H

0FFFFH

Erase

Boot cluster 1

Boot program Boot cluster 0

User program

(2) Writing and verifying the block to be reprogrammed

00000H

00FFFH
01000H

01FFFH
02000H

0FFFFH

Write

(3) Repeat the cycle of erasing, writing, and verifying the block up to the last block.

Boot cluster 1 New boot program

Boot program Boot cluster 0

New user program

00000H

00FFFH
01000H

01FFFH
02000H

0FFFFH

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 10 of 48
Feb. 27, 2024

Figure 1.4 Outline of Flash Memory Reprogramming (2/2)

1.3.3 Flash Shield Window
The flash shield window is one of security mechanisms used for flash memory self-programming. It disables the write
and erase operations on the areas outside the designated window only during flash memory self-programming.

The figure below shows the outline image of the flash shield window on the area of which the start block is 08H and
the end block is 1FH.

Figure 1.5 Outline of the Flash Shield Window

Block 07H
•
•

Block 00H 00000H

01FFFH

Block 1FH (end block)
•
•

Block 08H (start block) 02000H

07FFFH

Block 3FH (end block)
•
•

Block 20H (start block) 08000H

0FFFFH

Flash shield range
(programming disabled)

Flash shield range
(programming disabled)

Window range
(programming enabled)

(4) Rewriting the boot flag and resetting

New boot program

Boot program

New user program

00000H

00FFFH
01000H

01FFFH
02000H

0FFFFH

Boot swap

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 11 of 48
Feb. 27, 2024

1.4 How to Get the Flash Memory Self-Programming Library
Before compiling the sample program, please download the latest flash self-programming library and copy the library
files to the following folder below “r01an2849_flash”.

 incrl78 folder : fsl.h, fsl.inc, fsl_types.h

 librl78 folder : fsl.lib

The flash memory self-programming library can be obtained from the following URL:

http://www.renesas.com/products/tools/flash_prom_programming/flash_libraries/index.jsp

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 12 of 48
Feb. 27, 2024

2. Operation Check Conditions
The sample code described in this application note has been checked under the conditions listed in the table below.

Table 2.1 Operation Check Conditions

Item Description
Microcontroller used RL78/G13 (R5F100LEA)
Operating frequency • High-speed on-chip oscillator (HOCO) clock: 32 MHz

• CPU/peripheral hardware clock: 32 MHz
Operating voltage 5.0 V (Operation is possible over a voltage range of 2.9 V to 5.5 V.)

LVD operation (VLVD): Reset mode which uses 2.81 V (2.76 V to 2.87
V)

Integrated development environment
(CS+)

CS+ V8.11.00 from Renesas Electronics Corp.

C compiler (CS+) CC-RL V1.13.00 from Renesas Electronics Corp.
Integrated development environment
(e2 studio)

e2 studio V2024-01 (24.1.0) from Renesas Electronics Corp.

C compiler (e2 studio) CC-RL V1.13.00 from Renesas Electronics Corp.
Board to be used Renesas Starter Kit for RL78/G13 (R0K50100LS000BE)
Flash memory self-programming library
(Type, Ver)

FSLRL78 Type01, Ver 3.00 Note

Note: Use and evaluate the latest version.

3. Related Application Notes
The application notes that are related to this application note are listed below for reference.

• RL78/G13 Initialization (R01AN2575E) Application Note
• RL78/G13 Serial Array Unit for 3-Wire Serial I/O (Master Transmission/Reception) (R01AN2547E) Application

Note
• RL78/G13 Serial Array Unit for 3-Wire Serial I/O (Slave Transmission/Reception) (R01AN2711E) Application

Note

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 13 of 48
Feb. 27, 2024

4. Description of the Hardware

4.1 Hardware Configuration Example
Figure 4.1 shows an example of the hardware configuration used for this application note.

Figure 4.1 Hardware Configuration
Cautions: 1. The purpose of this circuit is only to provide the connection outline and the circuit is simplified

accordingly. When designing and implementing an actual circuit, provide proper pin treatment and
make sure that the hardware's electrical specifications are met (connect the input-only ports separately
to VDD or VSS via a resistor).

 2. VDD must be held at not lower than the reset release voltage (VLVD) that is specified as LVD.

RES
(implemented on the CPU
board)

For on-chip debugger

RESET

VDD

RL78/G13

EVDD

EVDD
VDD

EVSS

VSS

REGC

P40/TOOL0

P03/SI10

VDD

R0K50100LS000BE

P140

Sending side
(sending reprogramming

data)

P70
P71
P72
P73
P54
P55

Debug LCD

LED0

EVDD

P04/SCK10

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 14 of 48
Feb. 27, 2024

4.2 List of Pins to be Used
Table 4.1 lists pins to be used and their functions.

Table 4.1 Pins to be Used and their Functions

Pin Name I/O Description
P03/ANI16/SI10/RxD1/SDA10 Input CSI serial data receive pin
P04/SCK10/SCL10 Input CSI serial clock input pin
P52 Output LED0 (indicating flash memory access status) on/off control
P54 Output Debug LCD control
P55 Output Debug LCD control
P70/KR0/SCK21/SCL21 Output Debug LCD control
P71/KR1/SI21/SDA21 Output Debug LCD control
P72/KR2/SO21 Output Debug LCD control
P73/KR3/SO01 Output Debug LCD control
P140 Output BUSY signal Note

Note: The BUSY signal indicates whether communication is enabled or disabled. When it is set to 0, it indicates
communication is enabled. When it is set to 1, it indicates communication is disabled.

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 15 of 48
Feb. 27, 2024

5. Description of the Software

5.1 Communication Specifications
The sample program covered in this application note receives reprogramming data via the CSI bus for flash memory
self-programming. The sending side sends three commands, i.e., the START, WRITE, and END commands. The
sample program takes actions according to the command it received, and, if the command terminates normally, sets the
BUSY signal to the high level. If the command terminates abnormally, the program returns no response, displays
"ERROR!" on the LCD, and suppresses the execution of the subsequent operations. This section describes the
necessary CSI communication settings and the specifications for the commands.

Table 5.1 CSI Communication Settings

Transfer mode Single transfer mode
Data bit length [bit] 8
Data transfer direction MSB first
Data transmission/reception timing Type 1
Transfer clock External clock (slave) which operates

with a clock from master

5.1.1 START Command
When the sample program receives the START command, it performs initialization processing for flash memory
self-programming. When the command terminates normally, the program sets the BUSY signal to the high level. In the
case of an abnormal termination, the sample program displays "ERROR!" on the LCD and suppresses the execution of
the subsequent operations.

5.1.2 WRITE Command
When the sample program receives the WRITE command, it writes the data it received into flash memory, and
performs verify processing each time it completes the write of one block. The sample program sets the BUSY signal to
the high level on normal termination of the command. In the case of an abnormal termination, the sample program
displays "ERROR!" on the LCD and suppresses the execution of the subsequent operations.

5.1.3 END Command
When the sample program receives the END command, it performs verify processing on the block that is currently
being written. If the verification terminates normally, the program inverts the state of the boot flag, then generates a
reset for boot swapping. In the case of an abnormal termination, the sample program displays "ERROR!" on the LCD
and suppresses the execution of the subsequent operations.

* The checksum is the sum of the command and data fields in units of bytes.

START code
(0x01)

Data length
(0x0002)

Command
(0x02)

Data
(None)

Checksum
(1 byte)

START code
(0x01)

Data length
(0x0102)

Command
(0x03)

Data
(256 bytes)

Checksum
(1 byte)

START code
(0x01)

Data length
(0x0002)

Command
(0x04)

Data
(None)

Checksum
(1 byte)

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 16 of 48
Feb. 27, 2024

5.1.4 Communication Sequence
This sample program takes actions according to the sequence described below upon receipt of a command from the
sending side.

(1) Sample program:

Sets the BUSY signal to the high level and notifies the sending side that command reception is enabled.

(2) Sending side:

Sends the START command.

(3) Sample program:

Turns on LED1 which indicates that flash memory is being accessed, sets the BUSY signal to the low level, and
notifies the sending side that command reception is disabled. The program then performs initialization for flash
memory self-programming. It sets the BUSY signal to the high level and notifies the sending side that command
reception is enabled upon normal termination.

(4) Sending side:

Sends the WRITE command and reprogramming data (256 bytes).

(5) Sample program:

Sets the BUSY signal to the low level and notifies the sending side that command reception is disabled. It writes
the data it received into the code flash memory. The write address starts at 0x1000 (start of boot cluster 1).
Subsequently, it is incremented by the receive data size (size of reprogramming data: 256 bytes) each time the
sample program receives the WRITE command and reprogramming data.

The program performs verify processing when the rewrite of 1 block (1024 bytes) is completed.

When all of these steps terminate normally, the sample program sets the BUSY signal to the high level and
notifies the sending side that command reception is enabled.

(6) Steps (4) and (5) are repeated until the reprogramming of all data is completed.

(7) Sending side:

Sends the END command.

(8) Sample program:

Sets the BUSY signal to the low level and notifies the sending side that command reception is disabled. The
program performs verify processing on the block that is currently subjected to reprogramming. It then inverts
the state of the boot flag, and generates a reset after turning off LED0 which indicates that flash memory is
being accessed.

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 17 of 48
Feb. 27, 2024

5.2 Operation Outline
This application note explains a sample program that performs flash memory reprogramming using a self-programming
library.

The sample program displays the information about the current version of the library on the LCD. Subsequently, the
program receives data (reprogramming data) from the sending side and, after turning on the LED indicating that it is
accessing flash memory, carries out self-programming to rewrite the code flash memory with the reprogramming data.
When reprogramming is completed, the sample program turns off the LED and displays the information about the new
version on the LCD.

(1) Initializes the SAU0 channel 2.

<Setting conditions>

• Uses the SAU0 channel 2 as CSI.
• Uses the P03/SI10 pin for data input.
• Uses the P04/SCK10 pin for the operation clock.
• Selects the single transfer mode as the transfer mode.
• Sets the data length to 8 bits.
• Sets the order of data transfer mode to MSB first.
• Sets the data transmission/reception timing to type 1.
• Selects the external clock as a transfer clock.

(2) Sets up the I/O port.

<Setting conditions>

• LED on/off control port (LED0): Sets P52 for output.
• BUSY signal output port: Sets P140 for output.

(3) Disables interrupts.

(4) Starts the CSI10.

(5) Initializes the LCD and displays on the LCD the string that is set to the constant LCD_STRING.

(6) Sets P140 (BUSY signal) to the high level and notifies the sending side of the transmission-enabled state.

(7) Enters the HALT mode and waits for data from the sending side.

• Switches into the normal operation mode from the HALT mode upon a CSI transfer end interrupt request.

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 18 of 48
Feb. 27, 2024

(8) Upon receipt of a START command (0x02) from the sending side, performs initialization for
self-programming.

• Sets P52 to the low level and turn on LED0 indicating that flash memory is being accessed.
• Sets P140 (BUSY signal) to the low level and notify the sending side of the transmission-disabled state.
• Calls the FSL_Init function to initialize the flash memory self-programming environment and makes the following

settings:
Voltage mode : Full-speed mode
CPU operating frequency : 32 [MHz]
Status check mode : Status check internal mode

• Calls the FSL_Open function to start flash memory self-programming (starting the flash memory environment).
• Calls the FSL_PrepareFunctions function to make available the flash memory functions (standard reprogramming

functions) that are necessary for the RAM executive.
• Calls the FSL_PrepareExtFunctions function to make available the flash memory functions (extended functions)

that are necessary for the RAM executive.
• Calls the FSL_GetFlashShieldWindow function to get the start and end blocks of the flash shield window.
• If the start block of the flash shield window is a block other than block 0 or if the end block is a block other than

block 63, calls the FSL_SetFlashShieldWindow function to set the start block of the flash shield window to block 0
and the end block to block 63.

(9) Sets the write destination address to 0x1000 (start of boot cluster 1).

(10) Sets P140 (BUSY signal) to the high level and notifies the sending side of the transmission-enabled state.

(11) Receives the WRITE command (0x03) and reprogramming data (256 bytes).

(12) Sets P140 (BUSY signal) to the low level and notifies the sending side of the transmission-disabled state.

(13) Computes the reprogramming target block from the write destination address.

(14) Calls the FSL_BlankCheck function to check whether the reprogramming target block has already been
reprogrammed.

(15) If the reprogramming target block is reprogrammed, calls the FSL_Erase function to erase the
reprogramming target block.

(16) Calls the FSL_Write function to write the received data at the write destination address.

(17) Adds the write size to the write destination address.

(18) Sets P140 (BUSY signal) to the high level and notifies the sending side of the transmission-enabled state.

(19) Receives the WRITE command and reprogramming data (256 bytes) or the END command (0x04).

(20) Repeats steps (16) to (19) until 1 block (1024 bytes) of programming is completed or an END command
(0x04) is received from the sending side. Proceed with the next step when 1 block 1024 bytes) of
programming is completed or an END command (0x04) is received from the sending side.

(21) Calls the FSL_IVerify function to verify the reprogramming target block.

(22) Repeats steps (13) to (21) unless an END command (0x04) is received from the sending side. Proceeds with
the next step when an END command is received.

(23) Calls the FSL_InvertBootFlag function to invert the state of the boot flag. Boot clusters 0 and 1 will then be
swapped at reset time.

(24) Turns off LED0 indicating that flash memory is being accessed, then calls the FSL_ForceReset function to
generate an internal reset.

Caution: When flash memory self-programming could not be terminated normally (error occurring during
processing), the sample program displays "ERROR!" on the LCD and suppresses the execution of the
subsequent operations.

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 19 of 48
Feb. 27, 2024

5.3 File Configuration
Table 5.2 lists the additional functions for files that are automatically generated in the integrated development
environment and other additional files.

Table 5.2 List of Additional Functions and Files

File Name Outline Remarks
r_main.c Main module Additional functions:

R_MAIN_PacketAnalyze
R_MAIN_SelfInitialize
R_MAIN_SelfExecute
R_MAIN_WriteExecute

r_cg_serial_user.c SAU module

Additional functions:
R_CSI10_ReceiveStart

lcd.c DebugLCD module Controls DebugLCD included in
Renesas Starter Kit for RL78/G13.

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 20 of 48
Feb. 27, 2024

5.4 List of Option Byte Settings
Table 5.3 summarizes the settings of the option bytes.

Table 5.3 Option Byte Settings

Address Setting Description
000C0H/010C0H 11101111B Disables the watchdog timer.

(Stops counting after the release from the reset status.)
000C1H/010C1H 01111111B LVD reset mode 2.81 V (2.76 V to 2.87 V)
000C2H/010C2H 11101000B HS mode, HOCO: 32 MHz
000C3H/010C3H 10000100B Enables the on-chip debugger

Erases the data in the flash memory when on-chip debug security ID
authentication fails.

The option bytes of the RL78/G13 comprise the user option bytes (000C0H to 000C2H) and on-chip debug option byte
(000C3H).

The option bytes are automatically referenced and the specified settings are configured at power-on time or the reset is
released. When using the boot swap function for self-programming, it is necessary to set the same values that are set in
000C0H to 000C3H also in 010C0H to 010C3H because the bytes in 000C0H to 000C3H are swapped with the bytes in
010C0H to 010C3H.

5.5 On-chip Debug Security ID
The RL78/G13 has the on-chip debug security ID area allocated to addresses 000C4H to 000CDH of flash memory to
preclude the memory contents from being sneaked by the unauthorized third party.

When using the boot swap function for self-programming, it is necessary to set the same values that are set in 000C4H
to 000CDH also in 010C4H to 010CDH because bytes in 000C4H to 000CDH are swapped with the bytes in 010C4H
to 010CDH.

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 21 of 48
Feb. 27, 2024

5.6 Link Option
The –start option, which is one of the link options, is provided for allocating the Flash Self-Programming Library
Type01 to a ROM area.

Use the –start option to specify all sections for which setting are required by the Flash Self-Programming Library
Type01.

Caution: For details on the link option procedures, refer to RL78 Compiler CC-RL User’s Manual (R20UT3123E).

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 22 of 48
Feb. 27, 2024

5.7 List of Constants
Table 5.4 lists the constants for the sample program.

Table 5.4 Constants for the Sample Program

Constant Setting Description
LCD_DISPLAY “Ver 1.0 ” String to be displayed on the LCD (version information)
ERR_DISPLAY “ERROR! “ String to be displayed on the LCD at occurrence of error
NORMAL_END 0x00 Normal termination
ERROR 0xFF Abnormal termination
NO_RECIEVE 0x00 Command reception state: Not received
START_CODE 0x01 Command reception state: START code received
PACKET_SIZE 0x02 Command reception state: Data length received
START 0x02 START command
WRITE 0x03 WRITE command
END 0x04 END command
FULL_SPEED_MODE 0x00 Argument to flash memory self-programming library initialization

function: Set operation mode to full-speed mode.
FREQUENCY_32M 0x20 Argument to flash memory self-programming library initialization

function:
RL78/G13's operating frequency = 32 MHz

INTERNAL_MODE 0x01 Argument to flash memory self-programming library initialization
function: Turn on status check internal mode.

START_BLOCK_NUM 0x00 Start block number of flash shield window
END_BLOCK_NUM 0x3F End block number of flash shield window
BLOCK_SIZE 0x400 One block size of code flash memory (1024 bytes)
TXSIZE 0x01 Size of response data to be sent to the sending side
RXSIZE 0x102 Size of receive buffer
PORT_LOW 0 Low level of BUSY signal port
PORT_HIGH 1 High level of BUSY signal port

5.8 List of Functions
Table 5.5 lists the functions that are used in this sample program.

Table 5.5 List of Functions

Function Name Outline
R_CSI10_Start Starts CSI10.
R_CSI10_ReceiveStart Receives data via CSI10.
R_MAIN_PacketAnalyze Analyzes receive data.
R_MAIN_SelfExecute Executes flash memory self-programming.
R_MAIN_SelfInitialize Executes initialization for flash memory self-programming.
R_MAIN_WriteExecute Executes self-programming.

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 23 of 48
Feb. 27, 2024

5.9 Function Specifications
This section describes the specifications for the functions that are used in the sample program.

[Function Name] R_MAIN_PacketAnalyze
Synopsis Analyze receive data.
Header r_cg_macrodriver.h

r_cg_cgc.h
r_cg_port.h
r_cg_serial.h
r_cg_userdefine.h

Declaration uint8_t R_MAIN_PacketAnalyze(uint16_t rxlength, uint8_t *rxbuf)
Explanation This function checks the parameters of the command received, and computes and compares

the checksum to check whether the received data is correct.
Arguments rxlength Address of area storing receive data length [in

bytes]
 rxbuf Address of receive data buffer

Return value START command received: START
WRITE command received: WRITE
END command received: END
Command parameter error or checksum error: ERROR

Remarks None

[Function Name] R_CSI10_Start
Synopsis Start CSI10.
Header r_cg_macrodriver.h

r_cg_serial.h
r_cg_userdefine.h

Declaration void R_CSI10_Start(void)
Explanation This function clears a CSI10 interrupt request flag (CSIIF10 = 0). It starts the CSI10 after an

interrupt is enabled (CSIMK10 = 0).
Arguments None

Return value None
Remarks None

[Function Name] R_CSI10_ReceiveStart
Synopsis Receive data via CSI10.
Header r_cg_macrodriver.h

r_cg_serial.h
r_cg_userdefine.h

Declaration uint8_t R_CSI10_ReceiveStart(uint16_t *rxlength, uint8_t *rxbuf)
Explanation This function stores the receive data in the receive buffer (rxbuf) and the receive data length

[bytes] in rxlength.
Arguments rxlength Address of area storing receive data length [in

bytes]
 rxbuf Address of receive data buffer

Return value Normal termination: NORMAL_END
Parameter error (txlength is smaller than 0): ERROR

Remarks None

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 24 of 48
Feb. 27, 2024

[Function Name] R_MAIN_SelfExecute
Synopsis Execute flash memory self-programming.
Header r_cg_macrodriver.h

r_cg_cgc.h
r_cg_port.h
r_cg_serial.h
r_cg_userdefine.h
fsl.h
fsl_types.h

Declaration void R_MAIN_SelfExecute(void)
Explanation This function executes flash memory self-programming.
Arguments None

Return value None
Remarks None

[Function Name] R_MAIN_WriteExecute
Synopsis Execute flash memory reprogramming.
Header r_cg_macrodriver.h

r_cg_cgc.h
r_cg_port.h
r_cg_serial.h
r_cg_userdefine.h
fsl.h
fsl_types.h

Declaration uint8_t R_MAIN_WriteExecute(uint32_t WriteAddr)
Explanation This function rewrites the data in the code flash memory.
Arguments WriteAddr Write start address

Return value Normal termination: NORMAL_END
Abnormal termination: ERROR

Remarks None

[Function Name] R_MAIN_SelfInitialize
Synopsis Execute initialization for flash memory self-programming.
Header r_cg_macrodriver.h

r_cg_cgc.h
r_cg_port.h
r_cg_serial.h
r_cg_userdefine.h
fsl.h
fsl_types.h

Declaration uint8_t R_MAIN_SelfExecute(void)
Explanation This function executes initialization prior to flash memory self-programming.
Arguments None

Return value Normal termination: FSL_OK
Parameter error: FSL_ERR_PARAMETER
Erase error: FSL_ERR_ERASE
Internal verify error: FSL_ERR_IVERIFY
Write error: FSL_ERR_WRITE
Flow error: FSL_ERR_FLOW

Remarks None

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 25 of 48
Feb. 27, 2024

5.10 Flowcharts
Figure 5.1 shows the overall flow of the sample program described in this application note.

Figure 5.1 Overall Flow

Start

Initialization function
hdwinit()

The option bytes are referenced before the
initialization function is called.

End

Main processing
main()

Display the string specified in constant
LCD_DISPLAY on the LCD and wait for receive
data (self-programming).

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 26 of 48
Feb. 27, 2024

5.10.1 Initialization Function
Figure 5.2 shows the flowchart for the initialization function.

Figure 5.2 Initialization Function

hdwinit()

System initialization function
R_Systeminit()

Disable interrupts IE ← 0

return

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 27 of 48
Feb. 27, 2024

5.10.2 System Initialization Function
Figure 5.3 shows the flowchart for the system initialization function.

Figure 5.3 System Initialization Function

R_Systeminit()

Set up I/O ports

R_PORT_Create()

Set up CPU clock

 R_CGC_Create()

Set up peripheral I/O redirection
function

PIOR register ← 00H

return

Set up SAU0

R_SAU0_Create()

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 28 of 48
Feb. 27, 2024

5.10.3 I/O Port Setup
Figure 5.4 shows the flowchart for I/O port setup.

Figure 5.4 I/O Port Setup

Note: Refer to the section entitled "Flowcharts" in RL78/G13 Initialization (R01AN2575E) Application Note for

the configuration of the unused ports.
Caution: Provide proper treatment for unused pins so that their electrical specifications are observed. Connect each of

any unused input-only ports to VDD or VSS via a separate resistor.

R_PORT_Create()

return

Set up P140 for output

Set up P52 for output P52 bit ← 1
PM52 bit ← 0

Set up unused port Note

P140 bit ← 1
P140 bit ← 0

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 29 of 48
Feb. 27, 2024

5.10.4 CPU Clock Setup
Figure 5.5 shows the flowchart for CPU clock setup.

Figure 5.5 CPU Clock Setup

Caution: For details on the procedure for setting up the CPU clock (R_CGC_Create ()), refer to the section entitled
"Flowcharts" in RL78/G13 Initialization (R01AN2575E) Application Note.

R_CGC_Create()

return

Select CPU/peripheral hardware clock
(fCLK)

Set up high-speed system
clock/subsystem clock

CMC register ← 00H:
High-speed system clock: Input port mode
Sub-system clock: Input port mode

MSTOP bit ← 1: Stop X1 oscillator circuit.
MCM0 bit ← 0: Select high-speed OCO clock (fIH) as

main system clock (fMAIN).
XTSTOP bit ← 1: Stop XT1 oscillator circuit.

CSS bit ← 0: Selects main system clock (fMAIN) as
CPU/peripheral hardware clock (fCLK).

HIOSTOP bit ← 0: Start high-speed on-chip oscillator.

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 30 of 48
Feb. 27, 2024

5.10.5 SAU0 Setup
Figure 5.6 shows the flowchart for SAU0 setup.

Figure 5.6 SAU0 Setup

R_SAU0_Create()

return

Set up operation of SAU0
Operation clock 0 (CK00): 32 MHz

Supply clock signal to SAU0 SAU0EN bit ← 1

Set up CSI10
R_CSI10_Create()

SPS0 register ← 0000H

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 31 of 48
Feb. 27, 2024

5.10.6 CSI Setup
Figure 5.7 shows the flowchart for CSI10 setup (1/2). Figure 5.8 shows the flowchart for CSI10 setup (2/2).

Figure 5.7 CSI10 Setup (1/2)

R_IICA0_Create()

Stop channel 2 ST0 register ← 0004H

CSIMK10 bit ← 1
CSIIF10 bit ← 0

Disable INTCSI10 interrupt and clear
interrupt request flag

CSIPR110 bit ← 1
CSIPR010 bit ← 1

Set INTCSI10 interrupt priority level to 3
(lowest)

SIR02 register ← 0007H Clear error flag

Set up communication behavior for
SAU channel 2

• Only reception
• Clock/data phase: Type 1
• Transfer order: MSB first
• Data length: 8 bits

A

Set up operation mode for
SAU channel 2

• Operation clock of channel 2:

CK00
• Transfer clock of channel 2:

Clock input from SCK10 pin
• Operation mode of channel 2:

CSI mode
• Interrupt source of channel 2:

Transfer end interrupt

SMR02 register ← 4020H

SCR02 register ← 4007H

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 32 of 48
Feb. 27, 2024

Figure 5.8 CSI10 Setup (2/2)

Disable CSI10 output SOE02 bit ← 0

Set up SCK10 pin (input mode)

PMC03 bit ← 0
PM03 bit ← 1

Set up SI10 pin (input mode)

PM04 bit ← 1

return

A

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 33 of 48
Feb. 27, 2024

5.10.7 Main Processing
Figure 5.9 shows the flowchart for main processing (1/2). Figure 5.10 shows the flowchart for main processing (2/2).

Figure 5.9 Main Processing (1/2)

rxbuf ← Receive data
rxlength ← Receive data length
ret ← NORMAL_END / ERROR

Data reception terminated
normally?

LCD initialization
InitialiseDisplay()

Switch into HALT mode

B

Display string specified in constant
LCD_DISPLAY.

Yes

Restore from HALT mode on CSI
transfer interrupt request.

No (Branch if ret is not NORMAL_END)

Display string on LCD
DisplayString()

Receive CSI10 data
R_CSI10_ReceiveStart()

Start CSI10
R_CSI10_Start()

main()

C

Disable interrupts IE ← 0

Set BUISY signal to enable
communication

P140 bit ← PORT_HIGH

Analyze received packet
R_MAIN_PacketAnalyze()

ret ← START / WRITE / END /
ERROR

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 34 of 48
Feb. 27, 2024

Figure 5.10 Main Processing (2/2)

B

START command received?

Yes

No (Branch if ret is not START)

Execute flash memory
self-programming

R_MAIN_SelfExecute()

Display string on LCD
DisplayString()

C

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 35 of 48
Feb. 27, 2024

5.10.8 Starting the CSI10
Figure 5.11 shows the flowchart for starting the CSI10.

Figure 5.11 Starting the CSI10

R_CSI10_Start()

return

Enable receive interrupt CSIIF10 bit ← 0
CSIMK10 bit ← 0

Start CSI10 SS0 register ← 0004H

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 36 of 48
Feb. 27, 2024

5.10.9 Data Reception via CSI10
Figure 5.12 shows the flowchart for data reception via the CSI10 (1/3). Figure 5.13 shows the flowchart for data
reception via the CSI10 (2/3). Figure 5.14 shows the flowchart for data reception via the CSI10 (3/3).

Figure 5.12 Data Reception via CSI10 (1/3)

R_IICA0_ReceiveStart()

Receive data present?

Yes

No (Branch if the BFF01 bit in the
SSR02 register is set to 0)

Initialize receive status rxstatus ← NO_RECEIVE

Set return value to normal termination ret ← NORMAL_END

Initialize data length receive counter
Initialize data receive counter

lencount ← 0
datacount ← 0

Initialize receive data length Argument: *rxlength ← 0xFFFF I

Read receive data

No ((SSR02 & 0x27) is not 0x20)

D E

Branch according to value of rxstatus Receive status?

NO_RECEIVE

Set BUSY signal to disable
communication

rxdata ← SIO10 register

No error?

E

Yes

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 37 of 48
Feb. 27, 2024

Figure 5.13 Data Reception via CSI10 (2/3)

No (Branch if rxdata is not
START_CODE)

Change receive status

rxstatus ← START_CODE

G H

Set return value to abnormal
termination

 ret ← ERROR

START_CODE

Start code received?

Yes

D E

Store receive data

Update counter

Data length reception complete?

len[lencount] ← rxdata

lencount++

Change receive status

rxstatus ← PACKET_SIZE

Yes

Store data length

Argument: *rxlength ←
 len[0] << 8 | len[1]

No (Branch if lencount is
not 2)

F

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 38 of 48
Feb. 27, 2024

Figure 5.14 Data Reception via CSI10 (3/3)

G

All data bytes received?

Yes

No (Branch if datacount equals *rxlength
and ret is NORMAL_END)

I return (ret)

Store receive data

rxbuf++
datacount++

Update pointer and counter

default

H

Argument: *rxbuf ← rxdata

PACKET_SIZE

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 39 of 48
Feb. 27, 2024

5.10.10 Receive Packet Analysis
Figure 5.15 shows the flowchart for receive packet analysis.

Figure 5.15 Receive Packet Analysis

R_MAIN_PacketAnalyze()

return (ret)

Initialize loop counter

count ← 0

Initialize checksum

checksum ← 0

Checksum computation complete?
No (Branch if argument: (rxlength – 1) ! = count)

Add to checksum

checksum ←

checksum + rxbuf[count]

Update loop count

count++

Checksum match?

Yes

No (Branch if rxbuf[rxlength] != checksum)

Set return value to received command

ret ← rxbuf[0]

Yes

Received command normal?

Yes

Set return value to abnormal termination

ret ← ERROR

No (Branch if rxbuf[0] is not START,
or not WRITE, or not END)

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 40 of 48
Feb. 27, 2024

5.10.11 Flash Memory Self-Programming Execution
Figure 5.16 shows the flowchart for flash memory self-programming execution.

Figure 5.16 Flash Memory Self-Programming Execution

R_MAIN_SelfExecute()

WriteAddr ← 0x1000
Set to start of boot cluster 1. Set up write destination address

P52 bit ← 0 Turn on LED0

Flash memory
self-programming initialization

R_MAIN_SelfInitialize()

ret ← FSL_OK /
FSL_ERR_PARAMETER /

 FSL_ERR_ERASE /
FSL_ERR_IVERIFY /

 FSL_ERR_WRITE /
FSL_ERR_FLOW

Initialization terminated normally?
No (Branch if ret is not FSL_OK)

Execute data write
R_MAIN_WriteExecute()

Send normal response (0x01).
ret ← NORMAL_END / ERROR

Reset
FSL_ForceReset()

Internal reset generated

P52 bit ← 1 Turn off LED0

Write terminated normally?
No (Branch if ret is not FSL_OK)

Yes

Close flash memory
self-programming environment

FSL_Close()

Display “ERROR.”

Display string on LCD
DisplayString()

Yes

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 41 of 48
Feb. 27, 2024

5.10.12 Flash Memory Self-Programming Initialization
Figure 5.17 shows the flowchart for flash memory self-programming initialization (1/2). Figure 5.18 shows the
flowchart for flash memory self-programming initialization (2/2).

Figure 5.17 Flash Memory Self-Programming Initialization (1/2)

Flash memory
self-programming

environment initialization
FSL_Init()

J

Initialization terminated normally?

Yes

No (Branch if ret is not FSL_OK)

K

R_MAIN_SelfInitialize()

Block number retrieval successful?

Yes

No (Branch if ret is not FLS_OK)

Voltage mode: Full-speed mode
CPU operating frequency: 32 [MHz]
Status check mode:
Status check internal mode
ret ← FSL_OK / FSL_ERR_PARAMETER

Declare start of flash memory
self-programming

FSL_Open()

Prepare for use of flash memory
functions (standard

reprogramming functions)
FSL_PrepareFunctions()

Prepare for use of flash memory
functions (extended functions)
FSL_PrepareExtFunctions()

Get flash shield window start/end
block numbers

FSL_GetFlashShieldWindow()

ShieldWindow. fsl_start_block_u16
 ← Start block number
ShieldWindow.fsl_end_block_u16
 ← End block number
ret ← FSL_OK / FSL_ERR_FLOW

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 42 of 48
Feb. 27, 2024

Figure 5.18 Flash Memory Self-Programming Initialization (2/2)

J

All blocks programmable?

Yes

return (ret)

No (Branch if ShieldWindow.fsl_startblock_u16 is not
0 or ShieldWindow.fsl_end_block_u16 is not 63)

K

Flash shield window setup
FSL_SetFlashShieldWindow()

Set to:
Start block: 0
End block: 63

ret ← FSL_OK / FSL_ERR_PARAMETER /
 FSL_ERR_ERASE / FSL_ERR_IVERIFY /
 FSL_ERR_WRITE / FSL_ERR_FLOW

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 43 of 48
Feb. 27, 2024

5.10.13 Flash Memory Reprogramming Execution
Figure 5.19 shows the flowchart for flash memory reprogramming execution (1/3). Figure 5.20 shows the flowchart for
flash memory reprogramming execution (2/3). Figure 5.21 shows the flowchart for flash memory reprogramming
execution (3/3).

Figure 5.19 Flash Memory Reprogramming Execution (1/3)

R_MAIN_WriteExecute()

Data reception successful?

Yes

rxbuf ← Receive data
rxlength ← Receive data length
ret ← NORMAL_END / ERROR

Yes

Set BUSY signal to enable
communication

P140 bit ← PORT_HIGH

Receive data via CSI
R_CSI10_ReceiveStart()

Initialize reprogramming count of
reprogramming target block

Compute reprogramming target block

WriteCount ← 0

WriteBlock ← WriteAddr / 0x400

Blank check error OK?

Blank check on specified
block

FSL_BlankCheck()

Erase specified block
FSL_Erase()

ret ← FSL_OK /
FSL_ERR_PARAMETER /

 FSL_ERR_PROTECTION /
 FSL_ERR_ERASE /

 FSL_ERR_FLOW

No (Branch if ret is FSL_ERR_BLANKCHECK)

L M

P

No (Branch if ret is other than NORMAL_END)

Q

ret ← FSL_OK /
FSL_ERR_PARAMETER /

 FSL_ERR_BLANKCHECK /
 FSL_ERR_FLOW

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 44 of 48
Feb. 27, 2024

Figure 5.20 Flash Memory Reprogramming Execution (2/3)

Normal termination?

Yes

No (Branch if ret is not FLS_OK)

Receive packet analysis
R_MAIN_PacketAnalyze()

N O

L

WRITE command
received?

Write to specified address
FSL_Write()

Write to specified address
successful?

Update write destination address WriteAddr ← WriteAddr + (rxlength - 2)

Yes

Yes

ret ← FSL_OK /
FSL_ERR_PARAMETER /

 FSL_ERR_PROTECTION /
 FSL_ERR_WRITE /

 FSL_ERR_FLOW

No (Branch if ret is not FLS_OK)

No (Branch if com is not WRITE)

com ← START / WRITE / END / ERROR

Increment count of reprogramming for
block to be reprogrammed WriteCount ← WriteCount + 1

Set BUSY signal to enable
communication

P140 bit ← PORT_HIGH

rxbuf ← Receive data
rxlength ← Receive data length
ret ← NORMAL_END / ERROR

Receive data via CSI
R_CSI10_ReceiveStart()

M

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 45 of 48
Feb. 27, 2024

Figure 5.21 Flash Memory Reprogramming Execution (3/3)

N O

Anything other than WRITE command
received or 1 block reprogramming

complete?
P

No (Branch if com is not WRITE or
WriteCount is less than 4)

END command received?

Yes

Yes

Verify specified block
FSL_IVerify()

ret ← FSL_OK /
FSL_ERR_PARAMETER /

 FSL_ERR_PROTECTION /
 FSL_ERR_FLOW

Verification successful?

Yes

Invert boot flag
FSL_InvertBootFlag()

ret ← FSL_OK /
FSL_ERR_PARAMETER /

 FSL_ERR_PROTECTION /
 FSL_ERR_ERASE /
 FSL_ERR_FLOW
 FSL_ERR_ERASE

1-block reprogramming
complete?

ret ← FSL_OK /
FSL_ERR_PARAMETER /

 FSL_ERR_PROTECTION /
 FSL_ERR_FLOW

Set return value to
ERROR

 ret ← ERROR

Verification successful?

Yes

Verify specified block
FSL_IVerify()

No (Branch if com is not END)

No (Branch if WriteCount
is not 4)

Yes

No (Branch if ret is not
FLS_OK)

1

END command received?

Yes

return (ret)

Q

No (Branch if com is not END)

No (Branch if ret is not
FLS_OK)

1

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 46 of 48
Feb. 27, 2024

5.11 Operation Check Procedure
Change the string defined in the constant LCD_DISPLAY that is defined in r_cg_userdefine.h for the sample program
and rebuild the project. Flash memory self-programming is carried out by sending the HEX file that is generated as the
reprogramming data from the sending side. Refer to Section 5.1, Communication Specifications, for the specifications
for the communication between the sending side and this sample program.

For example, the operation of the sample program will look like as shown below when the value of the constant
LCD_DISPLAY is changed to "Ver 2.0."

(1) "Ver 1.0" is displayed on the LCD.

The constant LCD_DISPLAY is defined as "Ver 1.0" by this sample program.

(2) Send a START command from the sending side to initiate communication.

After the START command is sent, communication between the sending side and this sample program proceeds
as specified in Section 5.1, Communication Specifications.

(3) When the sample program receives a WRITE command and reprogramming data and starts flash memory
self-programming, LED0 on the RSK board turns on.

(4) LED0 turns off when the sample program receives an END command.

(5) A reset occurs and "Ver 2.0" is displayed on the LCD.

5.11.1 Making Checks with a Debugger
When flash memory self-programming is executed with a debugger (E1 emulator) connected, it becomes unable to
check the execution of the program correctly with the debugger after the reprogramming. To check the program
execution with the debugger after reprogramming, it is necessary to change the HEX file that is to be used as
reprogramming data from the state established immediately when it is generated by CS+.

More specifically, it is necessary to rewrite the reset vector (address 0x00000) to the address where the monitor
program is placed and to add changes to a part of the monitor program (addresses 0x000CE to 0x0000D3) as shown
below.

Address CS+ Output State Change To
0x00000

(Reset vector)
0xD8 0xD0

0x000CE 0xFF 0xD8
0x000CF 0xFF 0x00
0x000D0 0xFF 0xEC
0x000D1 0xFF 0xFD
0x000D2 0xFF 0xFF
0x000D3 0xFF 0x00

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 47 of 48
Feb. 27, 2024

[Data for normal operation check (CS+ output state)]
/* 0000 */ 0xD8, 0x00, 0xFF, 0xFF, 0x56, 0x65, 0x72, 0x20, 0x32, 0x2E, 0x30, 0x20, 0x00, 0x20, 0x45, 0x52,

/* 0010 */ 0x52, 0x4F, 0x52, 0x21, 0x20, 0x00, 0xFE, 0x0F, 0x00, 0xDF, 0x0A, 0xC7, 0x52, 0x12, 0x56, 0x04,

/* 0020 */ 0xFE, 0x11, 0x00, 0xC6, 0xD7, 0x52, 0x1F, 0xD7, 0xC1, 0x51, 0xF3, 0x50, 0x03, 0x5F, 0x90, 0x08,

/* 0030 */ 0x61, 0x48, 0xC0, 0xD7, 0xC7, 0xC5, 0xC1, 0x66, 0x75, 0x30, 0x80, 0x08, 0x16, 0xBF, 0x04, 0x08,

/* 0040 */ 0xFC, 0xF8, 0xFF, 0x0E, 0xD2, 0xDF, 0x10, 0xC3, 0x65, 0x73, 0xF2, 0xA8, 0x02, 0x14, 0x61, 0xE9,

/* 0050 */ 0x99, 0xA5, 0x82, 0x93, 0xDF, 0xF8, 0xC2, 0xC0, 0xC4, 0xC6, 0xD7, 0xFF, 0xFF, 0x00, 0xFF, 0xFF,

/* 0060 */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

/* 0070 */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

/* 0080 */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

/* 0090 */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

/* 00A0 */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

/* 00B0 */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

/* 00C0 */ 0xEF, 0x7F, 0xE8, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,

/* 00D0 */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x61, 0xCF, 0x51, 0x00, 0x71, 0x8C, 0x71, 0x09,

•

•

•

[Data for debugger operation check]
/* 0000 */ 0xD0, 0x00, 0xFF, 0xFF, 0x56, 0x65, 0x72, 0x20, 0x32, 0x2E, 0x30, 0x20, 0x00, 0x20, 0x45, 0x52,

/* 0010 */ 0x52, 0x4F, 0x52, 0x21, 0x20, 0x00, 0xFE, 0x0F, 0x00, 0xDF, 0x0A, 0xC7, 0x52, 0x12, 0x56, 0x04,

/* 0020 */ 0xFE, 0x11, 0x00, 0xC6, 0xD7, 0x52, 0x1F, 0xD7, 0xC1, 0x51, 0xF3, 0x50, 0x03, 0x5F, 0x90, 0x08,

/* 0030 */ 0x61, 0x48, 0xC0, 0xD7, 0xC7, 0xC5, 0xC1, 0x66, 0x75, 0x30, 0x80, 0x08, 0x16, 0xBF, 0x04, 0x08,

/* 0040 */ 0xFC, 0xF8, 0xFF, 0x0E, 0xD2, 0xDF, 0x10, 0xC3, 0x65, 0x73, 0xF2, 0xA8, 0x02, 0x14, 0x61, 0xE9,

/* 0050 */ 0x99, 0xA5, 0x82, 0x93, 0xDF, 0xF8, 0xC2, 0xC0, 0xC4, 0xC6, 0xD7, 0xFF, 0xFF, 0x00, 0xFF, 0xFF,

/* 0060 */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

/* 0070 */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

/* 0080 */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

/* 0090 */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

/* 00A0 */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

/* 00B0 */ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

/* 00C0 */ 0xEF, 0x7F, 0xE8, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xD8, 0x00,

/* 00D0 */ 0xEC, 0xFD, 0xFF, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0x61, 0xCF, 0x51, 0x00, 0x71, 0x8C, 0x71, 0x09,

•

•

•

This sample program generates a reset by inverting the state of the boot flag and carries out boot swapping after
rewriting boot cluster 1. The FSL_ForceReset function of the flash memory self-programming library is used to
generate the reset. When this function is executed with a debugger (E1 emulator) connected, a break will occur and
processing stop. After the break occurs, it is necessary to manually effect a reset and execute the program again.

Change address 00000H
from D8H to D0H.

Change addresses 000CEH to 000D3H from
FFH, FFH, FFH, FFH, FFH, FFH to D8H, 00H, ECH, FDH, FFH, 00H.

RL78/G13 Self-Programming (CSI) CC-RL

R01AN2849EJ0101 Rev. 1.01 Page 48 of 48
Feb. 27, 2024

6. Sample Code
The sample code is available on the Renesas Electronics Website.

7. Documents for Reference
RL78/G13 User's Manual: Hardware (R01UH0146E)

RL78 Family User's Manual: Software (R01US0015E)

RL78 Family Flash Self Programming Library Type01 User’s Manual (R01US0050E)

 (The latest versions of the documents are available on the Renesas Electronics Website.)

Technical Updates/Technical Brochures

 (The latest versions of the documents are available on the Renesas Electronics Website.)

Website and Support
Renesas Electronics Website
• http://www.renesas.com/index.jsp

Inquiries
• http://www.renesas.com/contact/

A-1

Revision Record RL78/G13 Self-Programming (CSI)

Rev. Date
Description

Page Summary
1.00 Jan. 29, 2016 — First edition issued
1.01 Feb. 27, 2024 12 Updated operation check conditions

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Specifications
	1.1 Outline of the Flash Memory Self-Programming Library
	1.2 Code Flash Memory
	1.3 Flash Memory Self-Programming
	1.3.1 Boot Swap Function
	1.3.2 Flash Memory Reprogramming
	1.3.3 Flash Shield Window

	1.4 How to Get the Flash Memory Self-Programming Library

	2. Operation Check Conditions
	3. Related Application Notes
	4. Description of the Hardware
	4.1 Hardware Configuration Example
	4.2 List of Pins to be Used

	5. Description of the Software
	5.1 Communication Specifications
	5.1.1 START Command
	5.1.2 WRITE Command
	5.1.3 END Command
	5.1.4 Communication Sequence

	5.2 Operation Outline
	5.3 File Configuration
	5.4 List of Option Byte Settings
	5.5 On-chip Debug Security ID
	5.6 Link Option
	5.7 List of Constants
	5.8 List of Functions
	5.9 Function Specifications
	5.10 Flowcharts
	5.10.1 Initialization Function
	5.10.2 System Initialization Function
	5.10.3 I/O Port Setup
	5.10.4 CPU Clock Setup
	5.10.5 SAU0 Setup
	5.10.6 CSI Setup
	5.10.7 Main Processing
	5.10.8 Starting the CSI10
	5.10.9 Data Reception via CSI10
	5.10.10 Receive Packet Analysis
	5.10.11 Flash Memory Self-Programming Execution
	5.10.12 Flash Memory Self-Programming Initialization
	5.10.13 Flash Memory Reprogramming Execution

	5.11 Operation Check Procedure
	5.11.1 Making Checks with a Debugger

	6. Sample Code
	7. Documents for Reference

