

APPLICATION NOTE

RL78/G14, R8C/36M Group

Migration Guide from R8C to RL78: Data Transfer Controller

R01AN1503EJ0100 Rev. 1.00 Dec. 2, 2013

Abstract

This document describes how to migrate from the R8C/36M Group data transfer controller (DTC) to the RL78/G14 data transfer controller (DTC).

Products

RL78/G14, R8C/36M Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Contents

1. Differences Between the R8C/36M Group and RL78/G14	3
2. Register Compatibility	3
3. Comparison of DTC Settings	. 4
3.1 DTC Activation Enable	. 4
3.2 Transfer Size	5
3.3 Allocation of DTC Control Data Area and DTC Vector Table Area	6
4. Differences in DTC Operation	7
4.1 Activation Sources	
4.1.1 R8C/36M Group	
4.1.2 RL78/G14	
4.2 Allocation of DTC Control Data Area	
4.2.1 R8C/36M Group	
4.2.2 RL78/G14	
4.3 Differences in Normal Mode	
4.3.1 R8C/36M Group	
4.3.2 RL78/G14	
4.4 Number of DTC Execution Cycles (Clocks)	
4.5 DTC Pending Instruction	
4.6 DTC Response Time	
5. Reference Documents	14

1. Differences Between the R8C/36M Group and RL78/G14

Table 1.1 lists the differences between the R8C/36M Group DTC and RL78/G14 DTC.

Table 1.1 Differences

Item	R8C/36M Group	RL78/G14
Activation sources	39	 31 (Note 1) 39 (Note 2)
Transferable address space	64 Kbytes (00000h to 0FFFFh)	64 Kbytes (00000h to 0FFFFh, excluding general-purpose registers)
Maximum size of block to be transferred	Normal mode: 256 bytesRepeat mode: 255 bytes	 Normal mode (8-bit transfer): 256 bytes Normal mode (16-bit transfer): 512 bytes
Unit of transfers	Byte	8 bits/16 bits
Power control/DTC operation in standby mode	 Wait mode: DTC activation sources are not generated before entering wait mode or during wait mode Stop mode: DTC activation sources are not generated before entering stop mode or during stop mode 	 HALT mode: Enabled ^(Note 3) STOP mode: Enabled SNOOZE mode: Disabled ^(Note 4)
DTC control area, DTC vector table area	Fixed	Relocatable (RAM address set by the DTCBAR register)

Note: 1. For 30-, 32-, 36-, 40-, 44-, 48-, 52-, and 64-pin packages only.

2. For 80 and 100-pin packages only.

- 3. RTC operation is disabled in low power consumption RTC mode (the RTCLPC bit in the OSMC register is 1).
- 4. DTC activation sources can be accepted.

2. Register Compatibility

Register compatibility between the R8C/36M Group DTC and RL78/G14 DTC is listed in Table 2.1.

Table 2.1 Register Compatibility

Item	R8C/36M Group	RL78/G14
Data block size setting	DTBLSj register	DTBLSj register (Note)
DTC activation enable register	 DTCENi register (i = 0 to 6) 	 DTCENi register (i = 0 to 4)
Non-maskable interrupt generate	DTCTL register NMIF bit	N/A
Data size select	N/A	DTCCRj register SZ bit
DTC base address register	N/A	DTCBAR register

j = 0 to 23

Note: For 8-bit transfer, 1 to 256 bytes can be specified. For 16-bit transfer, 2 to 512 bytes can be specified.

3. Comparison of DTC Settings

3.1 DTC Activation Enable

Set the DTCENi register to enable or disable DTC activations by interrupt sources (R8C/36M Group: i = 0 to 6, RL78/G14: i = 0 to 4). Interrupt sources selected by setting bits DTCENi0 to DTCENi7 in the DTCENi register differ for the R8C/36M Group and RL78/G14.

Table 3.1 lists the compatibility between R8C/36M Group interrupt sources and bits DTCENi0 to DTCENi7. Table 3.2 lists the compatibility between RL78/G14 interrupt sources and bits DTCENi0 to DTCENi7.

Register	DTCENi7	DTCENi6	DTCENi5	DTCENi4	DTCENi3	DTCENi2	DTCENi1	DTCENi0
	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
DTCEN0	INT0	INT1	INT2	INT3	INT4	N/A	N/A	N/A
DTCEN1	Key input	A/D	UART0	UART0	UART1	UART1	UART2	UART2
DICENT	Rey input	conversion	reception	transmission	reception	transmission	reception	transmission
			Voltage	Voltage			Timer RC	Timer RC
	SSU/I ² C	SSU/I ² C bus	Monitor	Monitor			input-	input-
DTCEN2	bus receive	transmit data	2/comparator	1/comparator	N/A	N/A	capture/	capture/
	data full	empty	A2	A1			compare-	compare-
			/ <u>2</u>				match A	match B
	Timer RC	Timer RC	Timer RD0	Timer RD0	Timer RD0	Timer RD0	Timer RD1	Timer RD1
	input-	input-	input-	input-	input-	input-	input-	input-
DTCEN3	capture/	capture/	capture/	capture/	capture/	capture/	capture/	capture/
	compare-	compare-	compare-	compare-	compare-	compare-	compare-	compare-
	match C	match D	match A	match B	match C	match D	match A	match B
	Timer RD1	Timer RD1						
	input-	input-						
DTCEN4	capture/	capture/	N/A	N/A	N/A	N/A	N/A	N/A
	compare-	compare-						
	match C	match D						
					Timer RF	Timer RF		Timer RG input-
DTCEN5	N/A	N/A	Timer RE	Timer RF	compare-	compare-	Timer RF	capture/
			-	-	match 0	match 1	capture	compare-
								match A
	Timer RG							
	input-				-			
DTCEN6	capture/	Timer RA	N/A	Timer RB	Flash ready	N/A	N/A	N/A
	compare-				status			
	match B							

Table 3.1 Correspondences Between Bits DTCENi0 to DTCENi7 (i = 0 to 6) and Interrupt Sources

Register	DTCENi7 Bit	DTCENi6 Bit	DTCENi5 Bit	DTCENi4 Bit	DTCENi3 Bit	DTCENi2 Bit	DTCENi1 Bit	DTCENi0 Bit
DTCEN0	Reserved	INTP0	INTP1	INTP2	INTP3	INTP4	INTP5	INTP6
DTCEN1	INTP7	Key input	A/D conversion end	UART0 reception transfer end/ CSI01 transfer end or buffer empty/ IIC01 transfer end	UART0 transmission transfer end/ CSI00 transfer end or buffer empty/ IIC00 transfer end	UART1 reception transfer end/ CSI11 transfer end or buffer empty/ IIC11 transfer end	UART1 transmission transfer end/ CSI10 transfer end or buffer empty/ IIC10 transfer end	UART2 reception transfer end/ CSI21 transfer end or buffer empty/ IIC21 transfer end
DTCEN2	UART2 transmission transfer end/CSI20 transfer end or buffer empty/ IIC20 transfer end	UART3 reception transfer end/ CSI31 transfer end or buffer empty/ IIC31 transfer end (Note 1)	UART3 transmission transfer end/ CSI30 transfer end or buffer empty/ IIC30 transfer end (Note 1)	End of channel 0 of timer array unit 0 count or capture	End of channel 1 of timer array unit 0 count or capture	End of channel 2 of timer array unit 0 count or capture	End of channel 3 of timer array unit 0 count or capture	End of channel 0 of timer array unit 1 count or capture
DTCEN3	End of channel 1 of timer array unit 1 count or capture (Note 1)	End of channel 2 of timer array unit 1 count or capture (Note 1)	End of channel 3 of timer array unit 1 count or capture (Note 1)	Timer RD compare match A0	Timer RD compare match B0	Timer RD compare match C0	Timer RD compare match D0	Timer RD compare match A1
DTCEN4	Timer RD compare match B1	Timer RD compare match C1	Timer RD compare match D1	Timer RG compare match A	Timer RG compare match B	Timer RJ0 underflow	Comparator detection 0 (Note 2)	Comparator detection 1 (Note 2)

Table 3.2 Correspondences Between Interrupt Sources and Bits DTCENi0 to DTCENi7

i = 0 to 4

Notes: 1. For 80 and 100-pin packages only.

2. Only applicable for MCUs with a code flash memory of 96 KB or more.

3.2 Transfer Size

In RL78/G14 normal mode, transfer size can be specified as 8-bit transfer or 16-bit transfer. Set the SZ bit in the DTCCRj register (j = 0 to 23) to specify the transfer size. Table 3.3 lists the functions of the SZ bit.

Table 3.3 SZ Bit Functions

SZ Bit	Transfer Data Size Selection
0	8 bits
1	16 bits

3.3 Allocation of DTC Control Data Area and DTC Vector Table Area

The DTC control data area and DTC vector table area are allocated differently between the R8C/36M Group and RL78/G14. In the R8C/36M Group, they are allocated at fixed addresses. In RL78/G14, set the DTCBAR register to specify the vector address to store the start address of the DTC control data area, and the DTC control data area address. The DTCBAR register value is used as a higher 8-bit address to generate a 16-bit address. Figure 3.1 shows a memory map when the DTCBAR register is set to FBH.

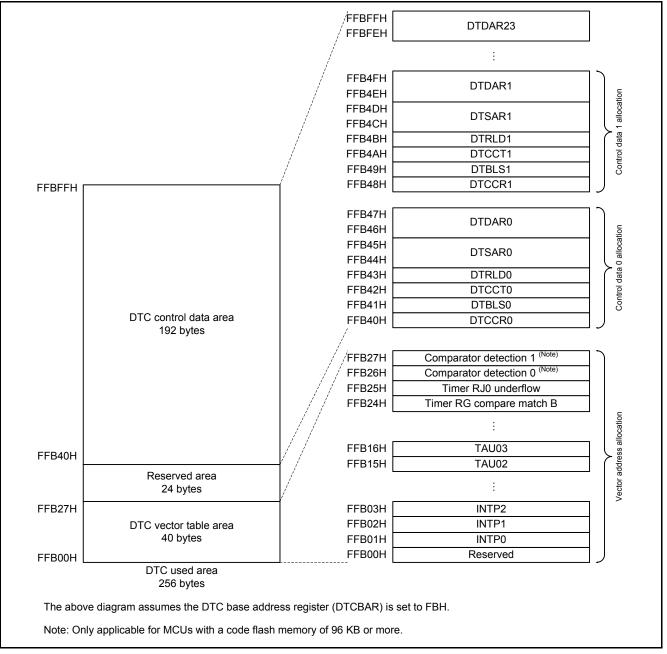


Figure 3.1 Memory Map When the DTCBAR Register is Set to FBH

4. Differences in DTC Operation

4.1 Activation Sources

4.1.1 R8C/36M Group

If multiple activation sources are simultaneously generated, the DTC activation will be performed according to the DTC activation source priority. Table 4.1 and Table 4.2 list the DTC activation sources and DTC vector addresses.

Interrupt Request Source	Interrupt Name	Source No.	DTC Vector Address	Priority
External input	INTO	0	2C00h	High
	INT1	1	2C01h	▲
	ĪNT2	2	2C02h	
	INT3	3	2C03h	
	INT4	4	2C04h	
Key input	Key input	8	2C08h	
A/D	A/D conversion	9	2C09h	
UART0	UART0 reception	10	2C0Ah	
	UART0 transmission	11	2C0Bh	
UART1	UART1 reception	12	2C0Ch	
	UART1 transmission	13	2C0Dh	
UART2	UART2 reception	14	2C0Eh	
	UART2 transmission	15	2C0Fh	
SSU/I ² C bus	Receive data full	16	2C10h	
	Transmit data empty	17	2C11h	
Voltage detection	Voltage monitor 2/comparator A2	18	2C12h	
circuit	Voltage monitor 1/comparator A1	19	2C13h	
Timer RC	Input-capture/compare-match A	22	2C16h	
	Input-capture/compare-match B	23	2C17h	
	Input-capture/compare-match C	24	2C18h	
	Input-capture/compare-match D	25	2C19h	
Timer RD0	Input-capture/compare-match A	26	2C1Ah	
	Input-capture/compare-match B	27	2C1Bh	
	Input-capture/compare-match C	28	2C1Ch	
	Input-capture/compare-match D	29	2C1Dh	
Timer RD1	Input-capture/compare-match A	30	2C1Eh	
	Input-capture/compare-match B	31	2C1Fh	
	Input-capture/compare-match C	32	2C20h	
	Input-capture/compare-match D	33	2C21h	

Table 4.1 DTC Activation Sources and DTC Vector Address (1/2)

Interrupt Request Source	Interrupt Name	Source No.	DTC Vector Address	Priority
Timer RE	Timer RE	42	2C2Ah	1
Timer RF	Timer RF	43	2C2Bh	
	Compare-match 0	44	2C2Ch	
	Compare-match 1	45	2C2Dh	
	Capture	46	2C2Eh	
Timer RG	Input-capture/compare-match A	47	2C2Fh	
	Input-capture/compare-match B	48	2C30h	
Timer RA	Timer RA	49	2C31h	
Timer RB	Timer RB	51	2C33h	↓
Flash memory	Flash ready status	52	2C34h	Low

Table 4.2 DTC Activation Sources and DTC Vector Address (2/2)

4.1.2 RL78/G14

If DTC activation sources conflict, their priority levels are determined in order to select the source for activation when the CPU acknowledges the DTC transfer. Table 4.3 and Table 4.4 list the DTC activation sources and vector addresses.

Table 4.3	DTC Activation Sources and Vector Address (1/2)
-----------	---	------

DTC Activation Sources	Source No.	Vector Address	Priority
Reserved	0	Address set in DTCBAR register +00H	High
INTP0	1	Address set in DTCBAR register +01H	▲
INTP1	2	Address set in DTCBAR register +02H	
INTP2	3	Address set in DTCBAR register +03H	
INTP3	4	Address set in DTCBAR register +04H	
INTP4	5	Address set in DTCBAR register +05H	
INTP5	6	Address set in DTCBAR register +06H	
INTP6	7	Address set in DTCBAR register +07H	
INTP7	8	Address set in DTCBAR register +08H	
Key input	9	Address set in DTCBAR register +09H	
A/D conversion end	10	Address set in DTCBAR register +0AH	
UART0 reception transfer end/CSI01 transfer end or buffer empty/IIC01 transfer end	11	Address set in DTCBAR register +0BH	
UART0 transmission transfer end/CSI00 transfer end or buffer empty/IIC00 transfer end	12	Address set in DTCBAR register +0CH	
UART1 reception transfer end/CSI11 transfer end or buffer empty/IIC11 transfer end	13	Address set in DTCBAR register +0DH	
UART1 transmission transfer end/CSI10 transfer end or buffer empty/IIC10 transfer end	14	Address set in DTCBAR register +0EH	
UART2 reception transfer end/CSI21 transfer end or buffer empty/IIC21 transfer end	15	Address set in DTCBAR register +0FH	
UART2 transmission transfer end/CSI20 transfer end or buffer empty/IIC20 transfer end	16	Address set in DTCBAR register +10H	
UART3 reception transfer end/CSI31 transfer end or buffer empty/IIC31 transfer end ^(Note)	17	Address set in DTCBAR register +11H	
UART3 transmission transfer end/CSI30 transfer end or buffer empty/IIC30 transfer end (Note)	18	Address set in DTCBAR register +12H	
End of channel 0 of timer array unit 0 count or capture	19	Address set in DTCBAR register +13H	
End of channel 1 of timer array unit 0 count or capture	20	Address set in DTCBAR register +14H	
End of channel 2 of timer array unit 0 count or capture	21	Address set in DTCBAR register +15H	
End of channel 3 of timer array unit 0 count or capture	22	Address set in DTCBAR register +16H	

Note: Applicable for 80-, and 100-pin packages only.

Table 4.4 DTC Activation Sources and Vector Address (2/2)

DTC Activation Sources	Source No.	Vector Address	Priority
End of channel 0 of timer array unit 1 count or capture ^(Note 1)	23	Address set in DTCBAR register +17H	
End of channel 1 of timer array unit 1 count or capture ^(Note 1)	24	Address set in DTCBAR register +18H	
End of channel 2 of timer array unit 1 count or capture ^(Note 1)	25	Address set in DTCBAR register +19H	
End of channel 3 of timer array unit 1 count or capture ^(Note 1)	26	Address set in DTCBAR register +1AH	
Timer RD compare match A0	27	Address set in DTCBAR register +1BH	
Timer RD compare match B0	28	Address set in DTCBAR register +1CH	
Timer RD compare match C0	29	Address set in DTCBAR register +1DH	
Timer RD compare match D0	30	Address set in DTCBAR register +1EH	
Timer RD compare match A1	31	Address set in DTCBAR register +1FH	
Timer RD compare match B1	32	Address set in DTCBAR register +20H	
Timer RD compare match C1	33	Address set in DTCBAR register +21H	
Timer RD compare match D1	34	Address set in DTCBAR register +22H	
Timer RG compare match A	35	Address set in DTCBAR register +23H	
Timer RG compare match B	36	Address set in DTCBAR register +24H	
Timer RJ0 underflow	37	Address set in DTCBAR register +25H	
Comparator detection 0 (Note 2)	38	Address set in DTCBAR register +26H	♦
Comparator detection 1 (Note 2)	39	Address set in DTCBAR register +27H	Low

Notes: 1. Applicable for 80-, and 100-pin packages only.

2. Applicable for MCUs with a code flash memory greater than 96 KB only.

4.2 Allocation of DTC Control Data Area

4.2.1 R8C/36M Group

Control data is allocated from the start address in the following order: Registers DTCCRj, DTBLSj, DTCCTj, DTRLDj, DTSARj, and DTDARj (j = 0 to 23). Table 4.5 lists the control data allocation addresses.

Register Symbol	DTCCRj	DTBLSj	DTCCTj	DTRLDj	DTSARj (Lower 8 Bits)	DTSARj (Higher 8 Bits)	DTDARj (Lower 8 Bits)	DTDARj (Higher 8 Bits)
DTCD0	2C40h	2C41h	2C42h	2C43h	2C44h	2C45h	2C46h	2C47h
DTCD1	2C48h	2C49h	2C4Ah	2C4Bh	2C4Ch	2C4Dh	2C4Eh	2C4Fh
DTCD2	2C50h	2C51h	2C52h	2C53h	2C54h	2C55h	2C56h	2C57h
DTCD3	2C58h	2C59h	2C5Ah	2C5Bh	2C5Ch	2C5Dh	2C5Eh	2C5Fh
DTCD20	2CE0h	2CE1h	2CE2h	2CE3h	2CE4h	2CE5h	2CE6h	2CE7h
DTCD21	2CE8h	2CE9h	2CEAh	2CEBh	2CECh	2CEDh	2CEEh	2CEFh
DTCD22	2CF0h	2CF1h	2CF2h	2CF3h	2CF4h	2CF5h	2CF6h	2CF7h
DTCD23	2CF8h	2CF9h	2CFAh	2CFBh	2CFCh	2CFDh	2CFEh	2CFFh

 Table 4.5
 R8C/36M Group Control Data Allocation Address

4.2.2 RL78/G14

Control data is allocated from the start address in the following order: Registers DTCCRj, DTBLSj, DTCCTj, DTRLDj, DTSARj, and DTDARj (j = 0 to 23). The higher 8 bits for start addresses 0 to 23 are set by the DTCBAR register, and the lower 8 bits are separately set according to the vector table assigned to each activation source. Table 4.6 lists the control data allocation address when the DTCBAR register is set to FBH.

The area to allocate the DTC control data and vector table depends on the MCU and use of conditions. For more information, refer to the RL78/G14 User's Manual: Hardware.

Start Address	DTCCRj	DTBLSj	DTCCTj	DTRLDj	DTSARj (Lower 8 Bits)	DTSARj (Higher 8 Bits)	DTDARj (Lower 8 Bits)	DTDARj (Higher 8 Bits)
0	FFB40H	FFB41H	FFB42H	FFB43H	FFB44H	FFB45H	FFB46H	FFB47H
1	FFB48H	FFB49H	FFB4AH	FFB4BH	FFB4CH	FFB4DH	FFB4EH	FFB4FH
2	FFB50H	FFB51H	FFB52H	FFB53H	FFB54H	FFB55H	FFB56H	FFB57H
3	FFB58H	FFB59H	FFB5AH	FFB5BH	FFB5CH	FFB5DH	FFB5EH	FFB5EH
20	FFBE0H	FFBE1H	FFBE2H	FFBE3H	FFBE4H	FFBE5H	FFBE6H	FFBE7H
21	FFBE8H	FFBE9H	FFBEAH	FFBEBH	FFBECH	FFBEDH	FFBEEH	FFBEFH
22	FFBF0H	FFBF1H	FFBF2H	FFBF3H	FFBF4H	FFBF5H	FFBF6H	FFBF7H
23	FFBF8H	FFBF9H	FFBFAH	FFBFBH	FFBFCH	FFBFDH	FFBFEH	FFBFFH

Table 4.6 RL78/G14 Control Data Allocation Address

4.3 Differences in Normal Mode

4.3.1 R8C/36M Group

1 to 256 bytes of data are transferred by one activation.

4.3.2 RL78/G14

1 to 256 bytes of data are transferred by one activation during 8-bit transfer, and 2 to 512 bytes during 16-bit transfer.

4.4 Number of DTC Execution Cycles (Clocks)

The number of cycles (clocks) to read the control data when the DTC is activated differs between the R8C/36M Group and RL78/G14. Table 4.7 lists the differences in the number of control data read cycles (clocks).

Table 4.7 Differences in the Number of Control Data Read Cycles

	R8C/36M Group	RL78/G14
Control data read	5 cycles	4 clocks

The number of cycles to read or write data differs between the R8C/36M Group and RL78/G14. Table 4.8 lists the number of clock cycles required for data read and write in the R8C/36M Group. Table 4.9 lists the number of clock cycles required for data read and write in RL78/G14.

Table 4.8 R8C/36M Group Number of Clock Cycles Required for Data Read and Data Write

Operation	Unit of Transfers	Internal RAM (During DTC Transfers)		Internal ROM	Internal ROM	SFR (Word Access)		SFR (Byte	SFR (DTC Control Data Area)	
		Even address	Odd address	(Program ROM)	(Data Flash)	Even address	Odd address	Access)	Even address	Odd address
Data read	1-byte SK1	1		1	2	2		2	1	
	2-byte SK2	1	2	2	4	2	4	4	1	2
Data write	1-byte SL1	1	I	N/A	N/A		2	2		1
	2-byte SL2	1	2	N/A	N/A	2	4	4	1	2

Table 4.9 RL78/G14 Number of Clock Cycles Required for Data Read and Data Write

Operation	RAM	Code Flash	Data Flash	Special Function	Extended Special Function Register (2 nd SFR)		
Operation			Memory	Register (SFR)	No Wait State	Wait States	
Data read	1	2	4	1	1	1 + number of wait states (Note)	
Data write	1	N/A	N/A	1	1	1 + number of wait states (Note)	

Note: The number of wait states differs depending on the specifications of the register allocated to the extended special function register (2nd SFR) to be accessed.

4.5 DTC Pending Instruction

Even if a DTC transfer request is generated, DTC transfer is held immediately after the instructions below. Also, the DTC is not activated between PREFIX instruction code and the instruction immediately after that code.

- Call/return instruction
- Unconditional branch instruction
- Conditional branch instruction
- Read access instruction for code flash memory
- Bit manipulation instructions for IFxx, MKxx, PRxx, and PSW, and 8-bit manipulation instruction that has the ES register as operand
- Instruction for accessing the data flash memory

Notes: 1. When a DTC transfer request is acknowledged, all interrupt requests are held until DTC transfer is completed.

2. While the DTC is held pending by the DTC pending instruction, all interrupt requests are held.

4.6 DTC Response Time

The DTC response time is the time from when the DTC activation source is detected until DTC transfer starts. The DTC response time does not include the number of DTC execution clocks.

Note that the response from the DTC may be further delayed under the conditions below. The number of delayed clock cycles differs depending on the conditions.

- When executing an instruction from the internal RAM Maximum response time: 20 clocks
- When executing a DTC pending instruction (refer to 4.5 DTC Pending Instruction) Maximum response time: Maximum response time for each condition + execution clock cycles for the instruction to be held under the condition.
- When accessing the TRJ0 register that wait occurs Maximum response time: Maximum response time for each condition + 1 clock

5. Reference Documents

User's Manual: Hardware RL78/G14 User's Manual: Hardware Rev.2.00 R8C/36M Group User's Manual: Hardware Rev.1.01 The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website <u>http://www.renesas.com</u>

Inquiries

http://www.renesas.com/contact/

REVISION HISTORY

RL78/G14, R8C/36M Group Migration Guide from R8C to RL78: Data Transfer Controller

Rev.	Date	Description			
Rev.	Dale	Page	Summary		
1.00	Dec. 2, 2013	_	First edition issued		

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

- 1. Handling of Unused Pins
 - Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on
 - The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

- 3. Prohibition of Access to Reserved Addresses
 - Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different type number, confirm that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

- Notice
 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
- "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Pax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Milliboard Road, Boume End, Buckinghamshire, SL8 5FH, U.K Tel: +4-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Dusseldorf, Germany Tel: +49-211-65030, Fax: +449-211-6503-1327 Renesas Electronics (China) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChuntu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +862-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Thi 24, 205, AZIA Center, No.1233 Luljazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +82-21-8677-1816, Fax: +852-16887-7888 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Luljazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +82-21-8677-1818, Fax: +852-2886-9022/9044 Renesas Electronics Gina Con, Ltd. Tel: +886-2-8175-9800, Fax: +886 2-8175-9870 Renesas Electronics Taiwan Co., Ltd. 137, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9800, Fax: +886 2-8175-9870 Renesas Electronics Mangapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949 Tel: +65-6213-0200, Fax: +865-213-0300 Renesas Electronics Korea Co., Ltd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +805-2803-737, Fax: +802-37-959501 Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +822-258-3737, Fax: +825-258-5141
