

# RL78/G24

# Timer RG2 Buffer Operation in PWM Mode

#### Introduction

This application note explains a method to output a PWM waveform using buffer operation in PWM mode of RL78/G24 Timer RG2.

## Target Device

RL78/G24

When applying the sample program covered in this application note to another microcomputer, modify the program according to the specifications for the target microcomputer and conduct an extensive evaluation of the modified program.



# Contents

| 1. Specifications                                                    | 3  |
|----------------------------------------------------------------------|----|
| 1.1 Specification overview                                           | 3  |
| 1.2 Operation overview                                               | 4  |
| 1.3 Explanation of Duty Change Processing                            | 5  |
| 1.3.1 Duty Cycle Changes from Initial output to Duty 90%             | 5  |
| 1.3.2 Duty Cycle Change from 90% to 80% to 10%, or 10% to 20% to 90% | 7  |
| 1.3.3 Duty Cycle Change from 10% to 0%                               | 9  |
| 1.4 Duty Cycle Change from 0% to 10%                                 | 11 |
| 1.4.1 (Reference information) 100% Duty Cycle Output                 | 13 |
| 2. Operation Confirmation Conditions                                 | 15 |
| 3. Hardware Description                                              | 16 |
| 3.1 Example of Hardware Configuration                                | 16 |
| 3.2 List of used Pins                                                | 16 |
| 4. Software Description                                              | 17 |
| 4.1 Smart Configurator Settings                                      | 17 |
| 4.1.1 System Configuration                                           | 17 |
| 4.1.2 Component Configurations                                       | 19 |
| 4.2 Folder Structure                                                 | 20 |
| 4.3 List of Option Byte Settings                                     | 21 |
| 4.4 List of Constants                                                | 21 |
| 4.5 List of Global Variables                                         | 22 |
| 4.6 List of Functions                                                | 22 |
| 4.7 Function Specifications                                          | 23 |
| 4.8 Flowchart                                                        | 24 |
| 4.8.1 Main Process                                                   | 24 |
| 4.8.2 R_Config_TRG_Create_UserInit Function                          | 24 |
| 4.8.3 r_Config_TRG_interrupt function                                | 25 |
| 5. Sample Code                                                       | 26 |
| 6. Reference Documents                                               | 26 |
| Revision History                                                     | 27 |



#### 1. Specifications

#### **1.1 Specification overview**

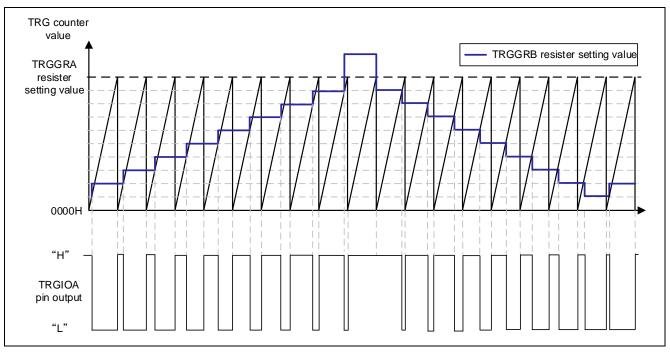

A PWM waveform with a 100µs period is output. The PWM waveform changes its duty each time the predetermined period elapses. In this application note, the active level is defined as "low" and the inactive level as "high".

Table 1-1 lists the peripheral functions and their purposes, and Figure 1-1 shows the output waveform of the PWM.

#### **Table 1-1 Peripheral Functions and Their Usage**

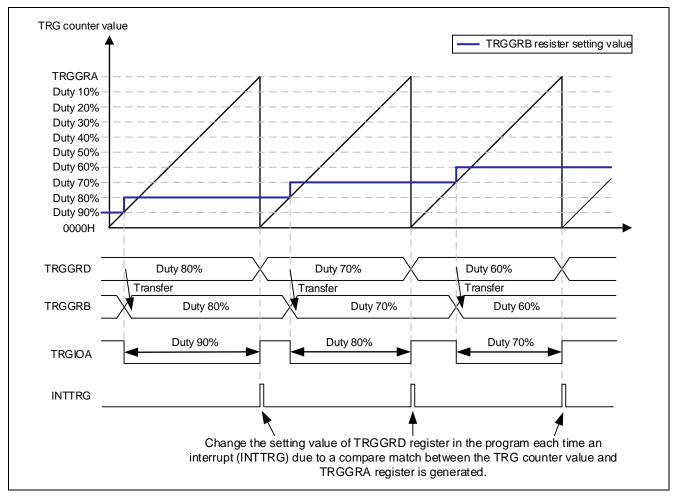
| Peripheral | Usage      |
|------------|------------|
| Timer RG2  | PWM output |







#### **1.2 Operation overview**


Using PWM mode, a PWM waveform with a 100 $\mu$ s period is output from the TRGIOA terminal. The duty of the PWM waveform changes sequentially: 90% -> 80% -> ... -> 10% -> 0% -> 10% -> ... -> 90% with each cycle. The duty change is triggerd by the TRGGRA compare match interrupt (INTTRG).

The settings are as follows:

- <Settings>
- · Timer RG2's count source uses fCLK (48MHz).
- $\cdot$  The TRG counter is cleared by a compare match with the TRGGRA register.
- $\cdot$  The TRGGRD register is used as the TRGGRB buffer register.
- · The TRGGRC register is not used as the TRGGRA buffer register.
- · The TRGGRA compare match interrupt (INTTRG) is utilized.

Figure 1-2 shows the buffer operation and the rewrite timing of the buffer register (TRGGRD).

Figure 1-2 Buffer operation and rewrite timing of the buffer register (TRGGRD)



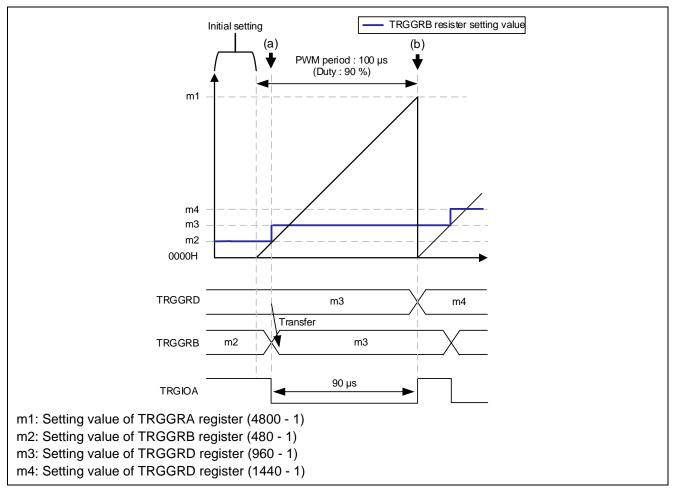
#### 1.3 Explanation of Duty Change Processing

In this section, we will explain the hardware operation and software processing during duty change, divided into several scenarios.

Additionally, the PWM cycle is commonly set to 100 [ $\mu$ s].

When the PWM cycle is 100 [ $\mu$ s], the value of the TRGGRA register is 4799, as derived from the equation below:

#### 1.3.1 Duty Cycle Changes from Initial output to Duty 90%


Active Level L: 90 [µs] = (1 / 48 [MHz]) × (TRGGRA - TRGGRB)

= 20.83 [ns] × 4319 Inactive Level H: 10 [µs] = (1 / 48 [MHz]) × (TRGGRB + 1)

= 20.83 [ns] × (479 + 1)

Figure 1-3 and Table 1-2 show the operation when setting the output from initial to 90% duty.

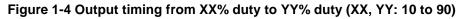
#### Figure 1-3 Timing of Initial Output to 90% Duty Output

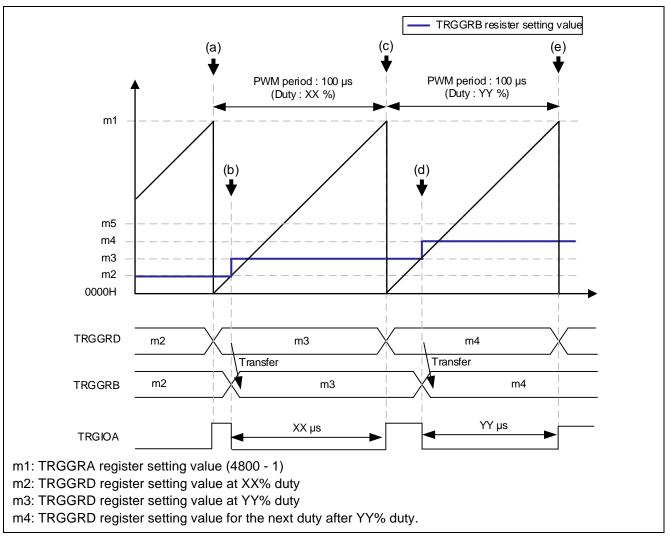




#### Table 1-2 Timing of Initial Output to 90% Duty Output

|                 | Hardware Processing                                                                                                                                                                   | Software Processing                                                                                                                                                                                        |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial Setting | _                                                                                                                                                                                     | <ul> <li>Set the TRG counter clear condition to match the TRGGRA register.</li> <li>Set the TRGGRA register (m1).</li> <li>Set the TRGGRB register (m2).</li> <li>Set the TRGGRD register (m3).</li> </ul> |
|                 | Output the initial state "H" from the TRGIOA pin.                                                                                                                                     | <ul> <li>Set the operation mode to PWM mode.</li> </ul>                                                                                                                                                    |
|                 | Start the counter of the Timer RG2.                                                                                                                                                   | • Start the counter of Timer RG2.                                                                                                                                                                          |
| (a)             | <ul> <li>TRG counter matches the TRGGRB register<br/>(m2).</li> <li>Transfer the TRGGRD register (m3) to the<br/>TRGGRB register.</li> <li>Output "L" from the TRGIOA pin.</li> </ul> | _                                                                                                                                                                                                          |
| (b)             | <ul> <li>The value of the TRG counter matches the value of the TRGGRA register (m1).</li> <li>Clear the TRG counter to "0000H".</li> <li>Output "H" from the TRGIOA pin.</li> </ul>   | • Set the TRGGRD register (m4).                                                                                                                                                                            |





# **1.3.2 Duty Cycle Change from 90% to 80%... to 10%, or 10% to 20%... to 90%** Active Level L: (100 - N) [μs] = (1 / 48 [MHz]) × (TRGGRA - M) Inactive Level H: N [μs] = (1 / 48 [MHz]) × (TRGGRB + 1) = 20.83 [ns] × (M + 1)

**Table 1-3** shows duty cycle and the TRGGRB register setting values.

| Duty (%)                          | 90  | 80  | 70   | 60   | 50   | 40   | 30   | 20   | 10   |
|-----------------------------------|-----|-----|------|------|------|------|------|------|------|
| Inactive level H (N [µs])         | 10  | 20  | 30   | 40   | 50   | 60   | 70   | 80   | 90   |
| TRGGRB register setting value (M) | 479 | 959 | 1439 | 1919 | 2399 | 2879 | 3359 | 3839 | 4319 |

Figure 1-4Table 1-4 shows the operation during the output settings from XX% duty to YY% duty (XX, YY: 10 to 90).





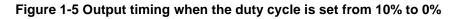


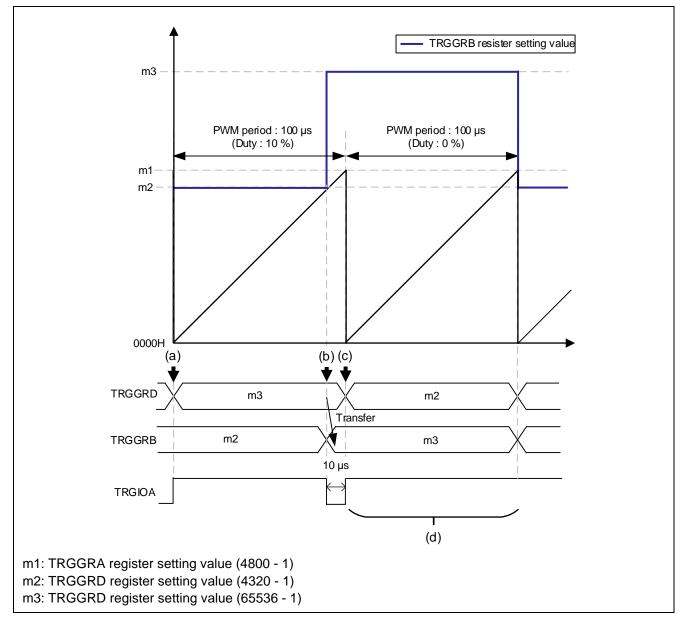
#### Table 1-4 Output timing from XX% duty to YY% duty (XX, YY: 10 to 90)

|     | Hardware Processing                                                       | Software Processing      |
|-----|---------------------------------------------------------------------------|--------------------------|
| (a) | TRG counter matches TRGGRA register     (m1)                              | Set TRGGRD register (m3) |
|     | <ul> <li>TRG counter is cleared to "0000H".</li> </ul>                    |                          |
|     | Output "H" from TRGIOA pin                                                |                          |
| (b) | <ul> <li>TRG counter matches TRGGRB register<br/>(m2)</li> </ul>          | —                        |
|     | <ul> <li>Transfer TRGGRD register (m3) to<br/>TRGGRB register.</li> </ul> |                          |
|     | Output "L" from TRGIOA pin                                                |                          |
| (c) | TRG counter matches TRGGRA register     (m1)                              | Set TRGGRD register (m4) |
|     | • TRG counter is cleared to "0000H".                                      |                          |
|     | Output "H" from TRGIOA pin                                                |                          |
| (d) | TRG counter matches TRGGRB register     (m3)                              | _                        |
|     | Transfer TRGGRD register (m4) to<br>TRGGRB register.                      |                          |
|     | Output "L" from TRGIOA pin                                                |                          |
| (e) | TRG counter matches TRGGRA register     (m1)                              | Set TRGGRD register (m5) |
|     | • TRG counter is cleared to "0000H".                                      |                          |
|     | Output "H" from TRGIOA pin.                                               |                          |



#### 1.3.3 Duty Cycle Change from 10% to 0%


Active level L: 10 [ $\mu$ s] = (1 / 48 [MHz]) × (TRGGRA - TRGGRB)


= 20.83 [ns] × 480

Inactive level H: 90 [ $\mu$ s] = 1/48MHz × (TRGGRB + 1)

= 20.83 [ns] × (4319 + 1)

Figure 1-5, Table 1-5 shows the operation when the duty cycle is set from 10% to 0%.







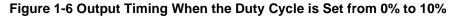
#### Table 1-5 Output timing when the duty cycle is set from 10% to 0%

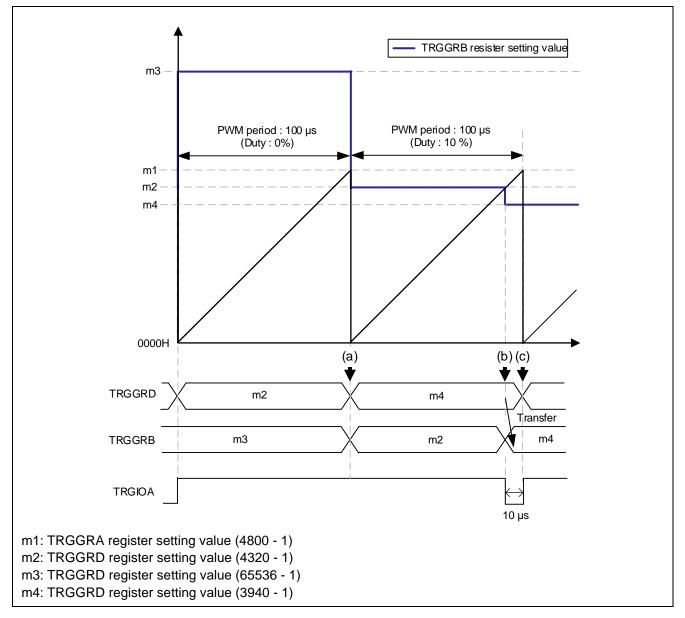
|     | Hardware Processing                                                             | Software Processing      |
|-----|---------------------------------------------------------------------------------|--------------------------|
| (a) | TRG counter matches TRGGRA register     (m1)                                    | Set TRGGRD register (m3) |
|     | <ul> <li>TRG counter clears to "0000H"</li> </ul>                               |                          |
|     | Output "H" from TRGIOA pin                                                      |                          |
| (b) | TRG counter matches TRGGRB register     (m2)                                    | -                        |
|     | <ul> <li>Transfer TRGGRD register (m3) value to<br/>TRGGRB register.</li> </ul> |                          |
|     | Output "L" from TRGIOA pin                                                      |                          |
| (C) | TRG counter matches TRGGRA register     (m1)                                    | Set TRGGRD register (m2) |
|     | TRG counter clears to "0000H"                                                   |                          |
|     | Output "H" from TRGIOA pin                                                      |                          |
| (d) | No match between TRG counter and<br>TRGGRB register (m3)                        | -                        |
|     | <ul> <li>No change in TRGIOA pin output.<sup>NOTE 1</sup></li> </ul>            |                          |

NOTE 1. If a value exceeding the TRGGRA register is set in the TRGGRB register, the TRG counter will never match the TRGGRB register, resulting in a duty cycle of 0%.



## 1.4 Duty Cycle Change from 0% to 10%


Active level L: 10 [µs] = (1 / 48 [MHz]) × (TRGGRA - TRGGRB)


= 20.83 [ns] × 480

Inactive level H: 90 [ $\mu$ s] = (1 / 48 [MHz]) × (TRGGRB + 1)

= 20.83 [ns] × (4319 + 1)

Figure 1-6, Table 1-6 shows the operation when the duty cycle is set from 0% to 10%.

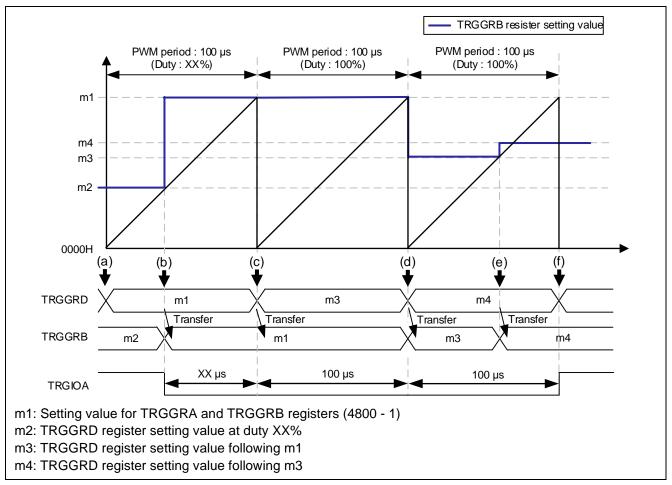






#### Table 1-6 Output Timing When the Duty Cycle is Set from 0% to 10%

|     | Hardware Processing                                                                                                                                              | Software Processing                |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| (a) | -                                                                                                                                                                | • Set TRGGRB register (m2). NOTE 1 |
|     |                                                                                                                                                                  | • Set TRGGRD register (m4). NOTE 1 |
| (b) | <ul> <li>TRG counter matches with TRGGRB register (m2)</li> <li>Transfer TRGGRD register (m4) to TRGGRB register.</li> <li>Output "L" from TRGIOA pin</li> </ul> |                                    |
| (c) | <ul> <li>TRG counter matches with TRGGRA<br/>register (m1)</li> <li>Clear TRG counter to "0000H"</li> <li>Output "H" from TRGIOA pin</li> </ul>                  | Set TRGGRD register                |


NOTE 1: When duty cycle is 0%, the TRG counter value will never match the TRGGRB register value, so no buffer transfer occurs. To change the duty cycle from 0%, you need to programmatically write values to the TRGGRD and TRGGRB registers.



#### 1.4.1 (Reference information) 100% Duty Cycle Output

Although not utilized in this application note, it is possible to output a 100% duty cycle by setting the value of the TRGGRB register to the same as the value of the TRGGRA register. The timing chart of the PWM waveform output from the TRGIOA pin is shown in the following **Figure 1-7** and **Table 1-7**.







|     | Hardware Processing                                    | Software Processing            |
|-----|--------------------------------------------------------|--------------------------------|
| (a) | • The TRG counter matches the TRGGRA register (m1).    | • Set the TRGGRD register (m1) |
|     | <ul> <li>The TRG counter clears to "0000H".</li> </ul> |                                |
|     |                                                        |                                |

#### Table 1-7 Output Timing When the Duty Cycle is set to 100%

| <ul> <li>The TRG counter clears to "0000H".</li> <li>The TRGIOA pin outputs "H".</li> <li>The TRG counter matches the TRGGRB register (m2).</li> <li>The TRGGRD (m1) register is transferred to the TRGGRB register.</li> <li>The TRGIOA pin outputs "L".</li> <li>The TRGIOA pin outputs "L".</li> <li>The TRG counter matches both the TRGGRB register (m1). NOTE 1</li> <li>The TRG counter clears to "0000H".</li> <li>The TRG Counter matches both the TRGGRB register.</li> <li>The TRG counter matches both the TRGGRB register (m1). NOTE 1</li> <li>The TRG Counter clears to "0000H".</li> <li>The TRG counter matches both the TRGGRB register is transferred to the TRGGRB register.</li> <li>(d)</li> <li>The TRG counter matches both the TRGGRB register (m1). NOTE 1</li> <li>The TRG counter matches both the TRGGRB register (m1). NOTE 1</li> <li>The TRG counter matches the TRGGRB register (m3). NOTE 1</li> <li>The TRG counter matches the TRGGRB register.</li> <li>(e)</li> <li>The TRG counter matches the TRGGRB register (m3).</li> <li>The TRGGRD (m4) register is transferred to the TRGGRB register.</li> <li>(f)</li> <li>The TRG counter matches the TRGGRA register (m1).</li> <li>The TRG counter clears to "0000H".</li> <li>The TRG counter matches the TRGGRA register (m1).</li> <li>The TRG counter clears to "0000H".</li> <li>The TRG counter clears to "0000H".</li> </ul>                                                                                                                                                                     |     | register (m1).                                  |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------|--------------------------------|
| (b)       • The TRG counter matches the TRGGRB register (m2).       • The TRGGRD (m1) register is transferred to the TRGGRD register.       • The TRGIOA pin outputs "L".         (c)       • The TRG counter matches both the TRGGRA register and the TRGGRB register (m1). NOTE 1       • Set the TRGGRD register (m3)         (c)       • The TRG counter clears to "0000H".       • Set the TRGGRD register (m3)         (d)       • The TRG counter matches both the TRGGRB register (m1). NOTE 1       • Set the TRGGRD register (m4)         (d)       • The TRG counter matches both the TRGGRB register (m1). NOTE 1       • Set the TRGGRD register (m4)         (d)       • The TRG counter clears to "0000H".       • Set the TRGGRD register (m4)         (e)       • The TRG counter matches the TRGGRB register (m1). NOTE 1       • Set the TRGGRD register (m4)         (f)       • The TRG counter matches the TRGGRB register.       -         (f)       • The TRG counter matches the TRGGRA register (m1).       • Set the TRGGRD register         (f)       • The TRG counter matches the TRGGRA register (m1).       • Set the TRGGRD register                                                                                                                                                                                                                                                                                                                                                                                                                      |     | • The TRG counter clears to "0000H".            |                                |
| register (m2).The TRGGRD (m1) register is transferred<br>to the TRGGRB register.<br>• The TRGIOA pin outputs "L".Set the TRGGRD register (m3)(c)• The TRG counter matches both the<br>TRGGRA register and the TRGGRB<br>register (m1). NOTE 1<br>• The TRG counter clears to "0000H".<br>• The TRGGRD (m1) register is transferred<br>to the TRGGRB register.• Set the TRGGRD register (m3)(d)• The TRG counter matches both the<br>TRGGRA register and the TRGGRB<br>register (m1). NOTE 1<br>• The TRG counter matches both the<br>TRGGRA register and the TRGGRB<br>register (m1). NOTE 1<br>• The TRG counter clears to "0000H".• Set the TRGGRD register (m4)(d)• The TRG counter clears to "0000H".<br>• The TRGGRD (m3) register is transferred<br>to the TRGGRB register.• Set the TRGGRD register (m4)(e)• The TRG counter matches the TRGGRB<br>register (m3).<br>• The TRGGRD (m4) register is transferred<br>to the TRGGRB register(f)• The TRG counter matches the TRGGRA<br>register (m1).<br>• The TRG counter clears to "0000H". |     | The TRGIOA pin outputs "H".                     |                                |
| to the TRGGRB register.• The TRGIOA pin outputs "L".(c)• The TRG counter matches both the<br>TRGGRA register and the TRGGRB<br>register (m1). NOTE 1• Set the TRGGRD register (m3)• The TRG counter clears to "0000H".• The TRGGRD (m1) register is transferred<br>to the TRGGRB register.• Set the TRGGRD register (m4)(d)• The TRG counter matches both the<br>TRGGRA register and the TRGGRB<br>register (m1). NOTE 1• Set the TRGGRD register (m4)(d)• The TRG counter matches both the<br>TRGGRA register and the TRGGRB<br>register (m1). NOTE 1• Set the TRGGRD register (m4)(e)• The TRG counter clears to "0000H".• Set the TRGGRD register (m4)(f)• The TRG counter matches the TRGGRA<br>register (m1).<br>• The TRGGRD (m4) register is transferred<br>to the TRGGRB register(f)• The TRG counter matches the TRGGRA<br>register (m1).<br>• The TRG counter clears to "0000H".• Set the TRGGRD register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) |                                                 | _                              |
| (c)• The TRG counter matches both the<br>TRGGRA register and the TRGGRB<br>register (m1). NOTE 1<br>• The TRG counter clears to "0000H".<br>• The TRGGRD (m1) register is transferred<br>to the TRGGRB register.• Set the TRGGRD register (m3)(d)• The TRG counter matches both the<br>TRGGRA register and the TRGGRB<br>register (m1). NOTE 1<br>• The TRG counter clears to "0000H".• Set the TRGGRD register (m4)(d)• The TRG counter matches both the<br>TRGGRA register and the TRGGRB<br>register (m1). NOTE 1<br>• The TRG counter clears to "0000H".• Set the TRGGRD register (m4)(e)• The TRG counter matches the TRGGRB<br>register (m3).<br>• The TRGGRD (m4) register is transferred<br>to the TRGGRB register(f)• The TRG counter matches the TRGGRA<br>register (m1).<br>• The TRG counter matches the TRGGRA<br>register (m1).<br>• The TRG counter matches the TRGGRA<br>register.• Set the TRGGRD register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                 |                                |
| TRGGRA register and the TRGGRB<br>register (m1). NOTE 1• The TRG counter clears to "0000H".• The TRGGRD (m1) register is transferred<br>to the TRGGRB register.(d)• The TRG counter matches both the<br>TRGGRA register (m1). NOTE 1• The TRG counter clears to "0000H".• The TRG counter clears to "0000H".• The TRGGRD (m3) register is transferred<br>to the TRGGRB register.(e)• The TRG counter matches the TRGGRB<br>register (m3).• The TRGGRD (m4) register is transferred<br>to the TRGGRB register.(f)• The TRG counter matches the TRGGRA<br>register (m1).• The TRG counter matches the TRGGRA<br>register (m3).• The TRGGRD (m4) register is transferred<br>to the TRGGRB register.(f)• The TRG counter matches the TRGGRA<br>register (m1).• The TRG counter clears to "0000H".                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | <ul> <li>The TRGIOA pin outputs "L".</li> </ul> |                                |
| <ul> <li>The TRGGRD (m1) register is transferred to the TRGGRB register.</li> <li>(d)</li> <li>The TRG counter matches both the TRGGRA register and the TRGGRB register (m1). NOTE 1</li> <li>The TRG counter clears to "0000H".</li> <li>The TRGGRD (m3) register is transferred to the TRGGRB register.</li> <li>(e)</li> <li>The TRG counter matches the TRGGRB register (m3).</li> <li>The TRGGRD (m4) register is transferred to the TRGGRB register.</li> <li>(f)</li> <li>The TRG counter matches the TRGGRA register (m1).</li> <li>The TRG counter clears to "0000H".</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (C) | TRGGRA register and the TRGGRB                  | • Set the TRGGRD register (m3) |
| to the TRGGRB register.(d)• The TRG counter matches both the<br>TRGGRA register and the TRGGRB<br>register (m1). NOTE 1• Set the TRGGRD register (m4)• The TRG counter clears to "0000H".• The TRGGRD (m3) register is transferred<br>to the TRGGRB register.• Set the TRGGRD register (m4)(e)• The TRG counter matches the TRGGRB<br>register (m3)(f)• The TRG counter matches the TRGGRA<br>register (m1).• Set the TRGGRD register(f)• The TRG counter matches the TRGGRA<br>register (m1).• Set the TRGGRD register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | • The TRG counter clears to "0000H".            |                                |
| <ul> <li>TRGGRA register and the TRGGRB register (m1). NOTE 1</li> <li>The TRG counter clears to "0000H".</li> <li>The TRGGRD (m3) register is transferred to the TRGGRB register.</li> <li>(e)</li> <li>The TRG counter matches the TRGGRB register (m3).</li> <li>The TRGGRD (m4) register is transferred to the TRGGRB register.</li> <li>(f)</li> <li>The TRG counter matches the TRGGRA register (m1).</li> <li>The TRG counter clears to "0000H".</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                                 |                                |
| <ul> <li>The TRGGRD (m3) register is transferred to the TRGGRB register.</li> <li>The TRG counter matches the TRGGRB register (m3).</li> <li>The TRGGRD (m4) register is transferred to the TRGGRB register.</li> <li>The TRG counter matches the TRGGRA register (m1).</li> <li>The TRG counter clears to "0000H".</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (d) | TRGGRA register and the TRGGRB                  | • Set the TRGGRD register (m4) |
| to the TRGGRB register.         (e)       • The TRG counter matches the TRGGRB register (m3).         • The TRGGRD (m4) register is transferred to the TRGGRB register.         (f)       • The TRG counter matches the TRGGRA register (m1).         • The TRG counter clears to "0000H".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | • The TRG counter clears to "0000H".            |                                |
| <ul> <li>register (m3).</li> <li>The TRGGRD (m4) register is transferred to the TRGGRB register.</li> <li>(f)</li> <li>The TRG counter matches the TRGGRA register (m1).</li> <li>The TRG counter clears to "0000H".</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                                                 |                                |
| to the TRGGRB register.         (f)       • The TRG counter matches the TRGGRA register (m1).         • The TRG counter clears to "0000H".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (e) |                                                 | _                              |
| register (m1).<br>• The TRG counter clears to "0000H".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                                                 |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (f) |                                                 | Set the TRGGRD register        |
| The TRGIOA pin outputs "H".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | The TRG counter clears to "0000H".              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | The TRGIOA pin outputs "H".                     |                                |

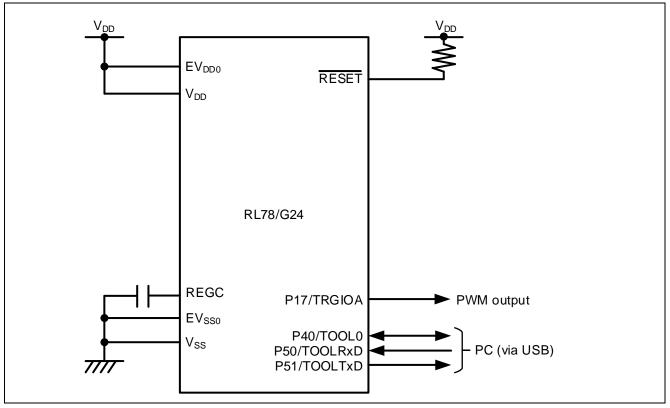
NOTE 1. When the value of the TRGGRB register and the TRGGRA register are the same, even if the TRG counter value matches the TRGGRB register value, the output value does not change.



## 2. Operation Confirmation Conditions

The sample code described in this application note has been confirmed under the following conditions.

| Table 2-1 | Operation | Confirmation | Conditions |
|-----------|-----------|--------------|------------|
|-----------|-----------|--------------|------------|


| Item                                | Description                                                                |
|-------------------------------------|----------------------------------------------------------------------------|
| MCU used                            | RL78/G24 (R7F101GLG)                                                       |
| Operating frequency                 | High-Speed On-Chip Oscillator Clock (fHOCO): 8MHz                          |
|                                     | · PLL Oscillator Circuit Output (fPLL): 96MHz                              |
|                                     | · CPU/Peripheral Hardware Clock (fCLK): 48MHz                              |
| Operating voltage                   | · 3.3V (Can operate between 2.7V to 5.5V)                                  |
|                                     | LVD0 Operation (VLVD0): Reset Mode                                         |
|                                     | Rising edge = 2.97V                                                        |
|                                     | Falling edge = 2.91V                                                       |
| Integrated development              | CS+ for CC V8.10.00 Manufactured by Renesas Electronics                    |
| environment (CS+)                   |                                                                            |
| C compiler (CS+)                    | CC-RL V1.12.01 Manufactured by Renesas Electronics                         |
| Integrated development              | e <sup>2</sup> studio 2023-07 (23.7.0) Manufactured by Renesas Electronics |
| environment (e <sup>2</sup> studio) |                                                                            |
| C compiler (e <sup>2</sup> studio)  | CC-RL V1.12.00 Manufactured by Renesas Electronics                         |
| Integrated development              | IAR Embedded Workbench for Renesas RL78 V4.21.1 Manufactured by            |
| Environment (IAR)                   | IAR Systems                                                                |
| C compiler (IAR)                    |                                                                            |
| Smart Configurator                  | V.1.7.0                                                                    |
| Board Support Package               | V.1.60                                                                     |
| (r_bsp)                             |                                                                            |
| Emulator                            | CS+, e <sup>2</sup> studio: COM port                                       |
|                                     | IAR: E2 Emulator Lite                                                      |
| Board used                          | RL78/G24 Fast Prototyping Board (RTK7RLG240C00000BJ)                       |



#### 3. Hardware Description

#### 3.1 Example of Hardware Configuration

Figure 3-1 shows the hardware configuration example used in the sample code for this application.





- Note 1. This simplified circuit diagram was created to show an overview of connections only. When actually designing your circuit, make sure the design includes appropriate pin handling and meets electrical characteristic requirements (connect each input-only port to VDD or VSS through a resistor).
- Note 2. Connect any pins whose name begins with EVSS to VSS, and any pins whose name begins with EVDD to VDD, respectively.
- Note 3. VDD must not be lower than the reset release voltage (VLVD0) that is specified for the LVD0.

#### 3.2 List of used Pins

Table 3-1 shows the pins used and their functions.

Table 3-1 Pins Used and Their Functions

| Pin name   | I/O    | Function   |
|------------|--------|------------|
| P17/TRDIOA | Output | PWM output |

Caution: In this application note, only the used pins are processed. When actually designing your circuit, make sure the design includes sufficient pin processing and meets electrical characteristic requirements.



#### 4. Software Description

#### 4.1 Smart Configurator Settings

This section presents the settings of the Smart Configurator used in this sample program. The items and settings in each table for the Smart Configurator are described as they appear in the configuration screen.

#### 4.1.1 System Configuration

The system configuration used in this sample program are shown below.

Note that the system settings used in this sample program are the same for the integrated development environments e2 studio and CS+, but different for IAR. Please adjust the settings appropriately according to the environment you are using.

Firstly, Figure 4-1 shows the system configuration used in this sample program (for e2 studio and CS+).

If you are conducting a COM port debug on the RL78/G24 Fast Prototyping Board (RTK7RLG240C00000BJ), it is necessary to set the integrated development environments (e2 studio and CS+) appropriately. For details, please refer to the "RL78/G24 Fast Prototyping Board User's Manual (R20UT5091)", specifically "7.1 Using COM Port Debugging with the e<sup>2</sup> studio" and "7.2 Using COM Port Debugging in CS+".

#### Figure 4-1 System Configuration (e<sup>2</sup> studio, CS+)

| ▼ On-chip debug setting            |                                        |          |
|------------------------------------|----------------------------------------|----------|
| On-chip debug operation setting    | 9                                      |          |
| ◯ Unused                           | ○ Use emulator                         | COM Port |
| Emulator setting                   |                                        |          |
| ○ E2                               | E2 Lite                                | heck     |
| Pseudo-RRM/DMM function set        | ting                                   | IECK     |
| ◯ Unused                           | <ul> <li>Used</li> </ul>               |          |
| Start/Stop function setting        |                                        |          |
| Unused                             | ⊖ Used                                 |          |
| Monitoring point function settin   | g                                      |          |
| Unused                             | Used                                   |          |
| Trace function setting             |                                        |          |
| ◯ Unused                           | <ul> <li>Used</li> </ul>               |          |
| Security ID setting                |                                        |          |
| Use security ID                    |                                        |          |
| Security ID                        | 0x000000000000000000000000000000000000 |          |
| Security ID authentication failure | setting                                |          |
| Do not erase flash memory of       | data Check                             |          |



Figure 4-2 shows the system configurations used in this sample program for IAR.



| ✓ On-chip debug setting                                      |                                        |          |
|--------------------------------------------------------------|----------------------------------------|----------|
| On-chip debug operation setting                              | Use emulator                           | COM Port |
| Emulator setting<br>C E2                                     | • E2 Lite                              |          |
| Pseudo-RRM/DMM function setting O Unused                     | ● Used                                 | Check    |
| Start/Stop function setting <ul> <li>Unused</li> </ul>       | ◯ Used                                 |          |
| Monitoring point function setting <ul> <li>Unused</li> </ul> | 🔿 Used                                 |          |
| Trace function setting O Unused                              | () Used                                |          |
| Security ID setting<br>Use security ID<br>Security ID        | 0x000000000000000000000000000000000000 |          |



#### 4.1.2 Component Configurations

This section presents the component configurations used in this sample program.

| ltem               | Content      |
|--------------------|--------------|
| Component          | PWM output   |
| Configuration Name | Config_TRG   |
| Function           | PWM function |
| Resource           | TRG          |

#### Table 4-1 Component Configurations (Timer RG2)

#### Figure 4-3 Configuration of Timer RG2

| fclk ~                  | (Clock frequency: 4 | 48000 kHz)                                                                                                                                   |
|-------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Rising edge 🛛 😪         |                     |                                                                                                                                              |
|                         |                     |                                                                                                                                              |
| Count continues at TR   | GGRA/TRGGRB cor     | npare match 🛛 🗸                                                                                                                              |
| Clear by TRGGRA com     | pare match          | ~                                                                                                                                            |
|                         |                     |                                                                                                                                              |
| General register        | ~                   |                                                                                                                                              |
| Buffer register of TRGO | GRB 🗸               |                                                                                                                                              |
|                         |                     | Change to "Buffer resister of TRGG                                                                                                           |
| 100                     | µs ~                | (Actual value: 100)                                                                                                                          |
| 90                      | (%)                 | (Actual value: 90)                                                                                                                           |
| percentage of "L")      | Change to "90       | )"                                                                                                                                           |
| ting                    |                     |                                                                                                                                              |
| TP0 low-level input     |                     |                                                                                                                                              |
| Forced cutoff disabled  | ~                   |                                                                                                                                              |
|                         |                     |                                                                                                                                              |
| natch interrupt         |                     |                                                                                                                                              |
| natch interrupt         |                     |                                                                                                                                              |
| upt                     |                     |                                                                                                                                              |
|                         | Rising edge         | Rising edge<br>Count continues at TRGGRA/TRGGRB cor<br>Clear by TRGGRA compare match<br>General register<br>Buffer register of TRGGRB<br>100 |



#### 4.2 Folder Structure

Table 4-2 shows the structure of the source files/header files used in the sample code. Note that files automatically generated by the integrated development environment and files from the BSP environment are excluded.

 Table 4-2
 Folder Structure

| Folde | er/File Name                                | Description                                      | Generated<br>by Smart<br>Configurat<br>or |
|-------|---------------------------------------------|--------------------------------------------------|-------------------------------------------|
| \r01a | n6785_trg2_pwm <dir><sup>NOTE 1</sup></dir> | Sample code folder                               |                                           |
| \s    | c <dir></dir>                               | Program storage folder                           |                                           |
|       | main.c                                      | Sample code source file                          |                                           |
|       | \smc_gen <dir></dir>                        | Smart configurator generated folder              | $\checkmark$                              |
|       | \Config_TRG <dir></dir>                     | TRG program storage folder                       | $\checkmark$                              |
|       | Config_TRG.c                                | TRG source file                                  | $\checkmark$                              |
|       | Config_TRG.h                                | TRG header file                                  | $\checkmark$                              |
|       | Config_TRG_user.c                           | TRG interrupt source file                        | $\checkmark$                              |
|       | ¥general <dir></dir>                        | Initialization and common program storage folder | $\checkmark$                              |
|       | ¥r_bsp <dir></dir>                          | BSP program storage folder                       | $\checkmark$                              |
|       | ¥r_config <dir></dir>                       | Program storage folder                           | $\checkmark$                              |

Note: "<DIR>" indicates a directory.

Note 1: The sample code for IAR contains the r01an6785\_trg2\_pwm.ipcf file. For details on the .ipcf file, please refer to "RL78 Smart Configurator User's Guide: IAR" (R20AN0581).



# 4.3 List of Option Byte Settings

Figure 4-3 shows the option byte settings.

| Table 4-3 | Option Byte Settings | 5 |
|-----------|----------------------|---|
|-----------|----------------------|---|

| Address       | Setting Value    | Description                                                                                   |
|---------------|------------------|-----------------------------------------------------------------------------------------------|
| 000C0H/040C0H | 1110 1111B (EFH) | Watchdog Timer stopped operation (Count stops after reset release)                            |
| 000C1H/040C1H | 1111 1011B (FBH) | LVD0 reset mode. Detection voltage: Rising 2.97V / Falling 2.91V                              |
| 000C2H/040C2H | 1110 1010B (EAH) | Flash operation mode: High-speed main mode. High-<br>speed on-chip oscillator frequency: 8MHz |
| 000C3H/040C3H | 1000 0101B (85H) | On-chip debug operation allowed                                                               |

#### 4.4 List of Constants

Table 4-4 shows the constants used in the sample code.

#### Table 4-4 Constants used in the sample code

| Name              | Setting Value                   | Description                                       |
|-------------------|---------------------------------|---------------------------------------------------|
| DUTY_DEC          | 0U                              | Duty decrease mode (decreasing in 10% increments) |
| DUTY_INC          | 11U                             | Duty increase mode (increasing in 10% increments) |
| DUTY_INC_END      | 18U                             | Duty increase mode end                            |
| PWM_CYCLE         | _12BF_TRG_TRG<br>GRA_VALUE + 1  | PWM cycle value                                   |
| PWM_CYCLE_10_STEP | PWM_CYCLE / 10                  | Value of PWM cycle divided into 10 stages         |
| DUTY_90           | (PWM_CYCLE_10<br>_STEP * 1) - 1 | Value at 90% duty                                 |
| DUTY_80           | (PWM_CYCLE_10<br>_STEP * 2) - 1 | Value at 80% duty                                 |
| DUTY_70           | (PWM_CYCLE_10<br>_STEP * 3) - 1 | Value at 70% duty                                 |
| DUTY_60           | (PWM_CYCLE_10<br>_STEP * 4) - 1 | Value at 60% duty                                 |
| DUTY_50           | (PWM_CYCLE_10<br>_STEP * 5) - 1 | Value at 50% duty                                 |
| DUTY_40           | (PWM_CYCLE_10<br>_STEP * 6) - 1 | Value at 40% duty                                 |
| DUTY_30           | (PWM_CYCLE_10<br>_STEP * 7) - 1 | Value at 30% duty                                 |
| DUTY_20           | (PWM_CYCLE_10<br>_STEP * 8) - 1 | Value at 20% duty                                 |
| DUTY_10           | (PWM_CYCLE_10<br>_STEP * 9) - 1 | Value at 10% duty                                 |
| DUTY_0            | 0xFFFF                          | Value at 0% duty                                  |



#### 4.5 List of Global Variables

Table 4-5 shows the variables used in the sample code.

| Table 4-5 | Variables | used in | n the samp | e code |
|-----------|-----------|---------|------------|--------|
|-----------|-----------|---------|------------|--------|

| Туре           | Variable Name  | Contents                              | Function that uses the variable |
|----------------|----------------|---------------------------------------|---------------------------------|
| uint8_t        | g_duty_mode    | Duty Mode Setting                     | r_Config_TRG_interrupt          |
| uint8_t        | g_trgsr0_dummy | Dummy variable for TRGSR0<br>Register | r_Config_TRG_interrupt          |
| const uint16_t | g_trggrd_tbl[] | Duty Change Table Data                | r_Config_TRG_interrupt          |

#### 4.6 List of Functions

Table 4-6 lists the functions used in the sample code. However, functions generated by the Smart Configurator that have not been modified are excluded.

Table 4-6 List of Functions

| Function Name                | Description                                  | Source File       |
|------------------------------|----------------------------------------------|-------------------|
| main                         | Main Process                                 | main.c            |
| R_Config_TRG_Create_UserInit | Initial value setting for TRGGRD<br>Register | Config_TRG_user.c |
| r_Config_TRG_interrupt       | Duty Change Processing                       | Config_TRG_user.c |



Remarks

# 4.7 Function Specifications

The function specifications of the sample code are presented.

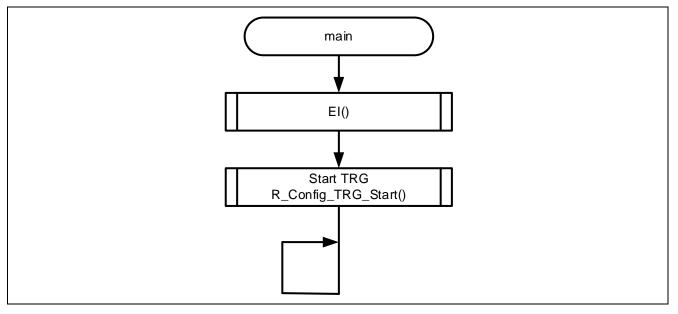
| ſ | Function  | Name] | main |
|---|-----------|-------|------|
| 1 | I UNCLION | namej | main |

| Outline                          | Main process                                                                           |  |  |  |  |
|----------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|
| Header                           | r_smc_entry.h                                                                          |  |  |  |  |
| Declaration                      | void main (void);                                                                      |  |  |  |  |
| Explanation                      | Start the operation of Timer RG2.                                                      |  |  |  |  |
| Arguments                        | -                                                                                      |  |  |  |  |
| Return value                     | -                                                                                      |  |  |  |  |
| Remarks                          | -                                                                                      |  |  |  |  |
|                                  |                                                                                        |  |  |  |  |
|                                  |                                                                                        |  |  |  |  |
| [Function Name]                  | R_Config_TRG_Create_UserInit                                                           |  |  |  |  |
| [Function Name]<br>Outline       | R_Config_TRG_Create_UserInit<br>Initialize TRGGRD register                             |  |  |  |  |
|                                  |                                                                                        |  |  |  |  |
| Outline                          | Initialize TRGGRD register                                                             |  |  |  |  |
| Outline<br>Header                | Initialize TRGGRD register<br>Config_TRG.h                                             |  |  |  |  |
| Outline<br>Header<br>Declaration | Initialize TRGGRD register<br>Config_TRG.h<br>void R_Config_TRG_Create_UserInit(void); |  |  |  |  |

[Function Name] r\_Config\_TRG\_interrupt

-

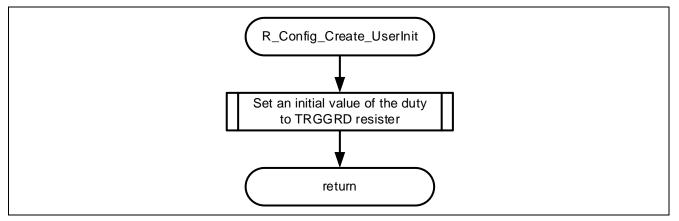
| Outline      | Change the Duty Cycle                                     |
|--------------|-----------------------------------------------------------|
| Header       | Config_TRG.h                                              |
| Declaration  | <pre>static voidnear r_Config_TRG_interrupt (void);</pre> |
| Explanation  | -                                                         |
| Arguments    | -                                                         |
| Return value | -                                                         |
| Remarks      | -                                                         |
|              |                                                           |




#### 4.8 Flowchart

#### 4.8.1 Main Process

Figure 4-4 shows the flowchart for the main process.

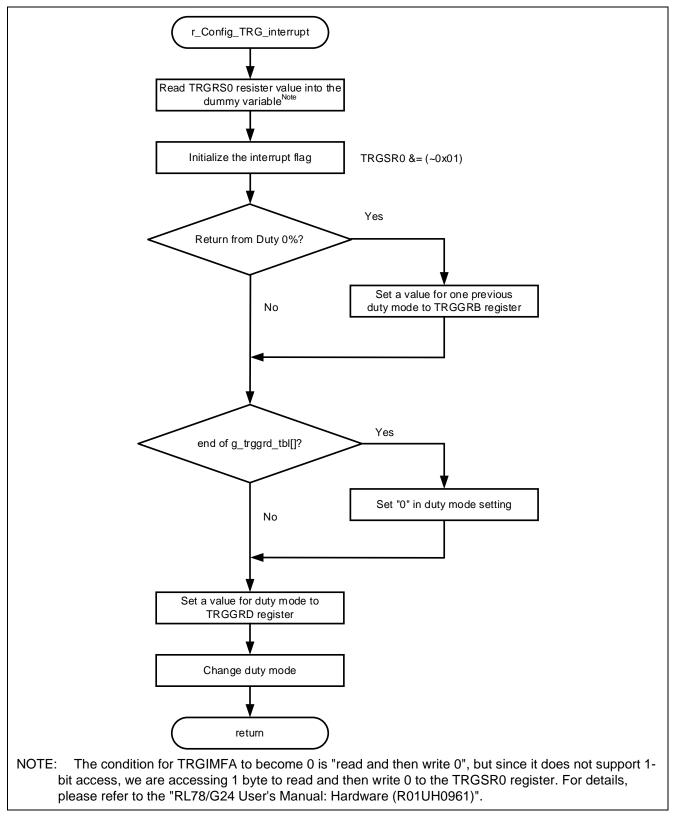

#### Figure 4-4 Main Process



#### 4.8.2 R\_Config\_TRG\_Create\_UserInit Function

Figure 4-5 shows the flowchart for R\_Config\_TRG\_Create\_UserInit function.

#### Figure 4-5 R\_Config\_TRG\_Create\_UserInit Function






#### 4.8.3 r\_Config\_TRG\_interrupt function

Figure 4-6 shows the flowchart for r\_Config\_TRG\_interrupt function.





RENESAS

#### 5. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

#### 6. Reference Documents

RL78/G24 User's Manual: Hardware (R01UH0961) RL78 family User's Manual: Software (R01US0015) RL78/G24 Fast Prototyping Board User's Manual (R20UT5091) RL78 Smart Configurator User's Gude: CS+ (R20AN0580) RL78 Smart Configurator User's Gude: e2 studio (R20AN0579) RL78 Smart Configurator User's Gude: IAR (R20AN0581) (The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest version can be downloaded from the Renesas Electronics website.)

#### Website and Support

Renesas Electronics Website <a href="http://www.renesas.com/">http://www.renesas.com/</a>

Inquiries http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.



# **Revision History**

|      |           | Description |               |
|------|-----------|-------------|---------------|
| Rev. | Date      | Page        | Summary       |
| 1.00 | Sep.07.23 | -           | First Edition |
|      |           |             |               |



# General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

#### 1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

#### 2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

#### 6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between  $V_{IL}$  (Max.) and  $V_{IH}$  (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between  $V_{IL}$  (Max.) and  $V_{IH}$  (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

#### Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
  "Standard": Computers: office and visual equipment: test and measurement equipment: equipment: bare

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
   Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

#### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

#### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

## **Contact information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <a href="http://www.renesas.com/contact/">www.renesas.com/contact/</a>.