
 APPLICATION NOTE

R01AN6130ES0131 Rev.1.31 Page 1 of 60
Dec.13.23

RX Family
CAN FD API Using Firmware Integration Technology
Introduction
The Renesas CAN FD (Controller Area Network with Flexible Data Rate) Application Programming Interface
enables you to send, receive, and monitor data on the CAN bus. This manual explains the usage of this API
and some of the features of the CAN FD peripheral.

Target Devices
The following is a list of devices that are currently supported by this API:

• RX660 Group

• RX26T Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family

• GCC for Renesas RX

• IAR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “7.1 Confirmed Operation
Environment.”

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 2 of 60
Dec.13.23

Contents

1. Overview ... 4
1.1 Basics .. 4
1.1.1 Flexible Data (FD) ... 4
1.1.2 Bit Rate Calculation ... 5
1.1.3 Error Handing .. 7
1.1.4 DLC Checking ... 7
1.1.5 FD Payload Overflow .. 7
1.2 Communication Layers .. 7
1.3 Using the FIT CAN FD module .. 7
1.3.1 Using FIT CAN FD module in C++ project .. 7
1.4 Physical Connection .. 7
1.5 The CAN FD Buffer ... 8

2. API Information .. 11
2.1 Hardware Requirements ... 11
2.2 Hardware Resource Requirements ... 11
2.2.1 Peripheral Required .. 11
2.2.2 Other Peripherals Used ... 11
2.3 Software Requirements ... 11
2.4 Limitations ... 11
2.4.1 RAM Location Limitations .. 11
2.5 Supported Toolchain ... 11
2.6 Interrupt Vector .. 11
2.7 Header Files .. 11
2.8 Integer Types ... 12
2.9 Configuration ... 12
2.10 Interfaces and Instances ... 18
2.10.1 CAN interface .. 18
2.10.2 CAN FD instance ... 27
2.11 Instance Structure ... 31
2.12 Code Size .. 33
2.13 Callback Functions .. 34
2.14 Adding the CAN FD FIT Module to Your Project ... 34
2.15 “for”, “while” and “do while” statements ... 35

3. API Functions .. 36
Summary ... 36
Return Codes ... 36
R_CANFD_Open ... 37
R_CANFD_Close ... 38

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 3 of 60
Dec.13.23

R_CANFD_Write ... 39
R_CANFD_Read ... 40
R_CANFD_ModeTransition ... 41
R_CANFD_InfoGet .. 42
R_CANFD_CallbackSet... 43
Example ... 44

4. Pin Setting ... 49

5. Demo Projects ... 50
5.1 Adding a Demo to a Workspace .. 50
5.1.1 Import and Debug Project with e2 studio ... 50
5.1.2 Run Demo ... 50
5.2 The Renesas Debug Console ... 51

6. Test Modes .. 52
6.1 Channel Specific Test Mode ... 52
6.1.1 Basic test mode ... 52
6.1.2 Listen Only mode = Bus Monitoring .. 52
6.1.3 Loopback ... 53
6.1.3.1 Internal loopback mode - Test node without CAN bus .. 53
6.1.3.2 External loopback mode - Test node on bus... 55
6.1.4 Restricted operation .. 55
6.2 Global test mode enable register .. 55

7. Appendices .. 56
7.1 Confirmed Operation Environment .. 56
7.2 Troubleshooting ... 59

Related Technical Updates ... 59

Revision History .. 60

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 4 of 60
Dec.13.23

1. Overview
The CAN FD module can be used to communicate over CAN networks, optionally using Flexible Data
(CAN FD) to accelerate the data phase. A variety of message filtering and buffer options are
available.

1.1 Basics
Features

• Compatibility
o Send and receive CAN 2.0 and CAN FD frames on the same channel
o Data transfer rate: Arbitration phase up to 1 Mbps. With FD, Data phase up to 8 Mbps
o ISO 11898-1:2015 compliant

• Buffers
o 32 global receive Message Buffers (RX MBs)
o 2 global receive FIFOs (RX FIFOs)
o 4 transmit Message Buffers (TX MBs) per channel
o One common FIFO that can be configured as a receive FIFO or transmit FIFO

• Filtering
o Up to 128 filter rules across both channels
o Each rule can be individually configured to filter based on:

 ID
 Standard or Extended ID (IDE bit)
 Data or Remote Frame (RTR bit)
 ID/IDE/RTR mask
 Minimum DLC (data length) value

• Interrupts
o Configurable Global RX FIFO Interrupt

 Configurable per FIFO
 Interrupt at a certain depth or on every received message

o Channel TX Interrupt
o Global Error

 DLC Check
 Message Lost
 FD Payload Overflow

o Channel Error
 Bus Error
 Error Warning
 Error Passive
 Bus-Off Entry
 Bus-Off Recovery
 Overload
 Bus Lock
 Arbitration Loss
 Transmission Aborted

1.1.1 Flexible Data (FD)

Flexible Data is an extension of the CAN protocol allowing for messages up to 64 bytes and higher
data bitrates, among other features. The CAN FD driver supports the following:

• Sending and receiving FD messages
• Bitrate switching for data phase (up to 8 MHz)
• Manual and automatic setting of the error state (ESI) bit

To specify one or more of these options when transmitting set can_frame_t::options with combined
values from canfd_frame_options_t. Received messages will automatically have this field filled, if
applicable.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 5 of 60
Dec.13.23

#define CAN_FD_DATA_LENGTH_CODE (64) //Data Length code for FD frame

/* Configure a frame to write 64 bytes with bitrate switching (BRS) enabled */
 g_canfd_tx_frame.id = CAN_EXAMPLE_ID;

 g_canfd_tx_frame.id_mode = CAN_ID_MODE_STANDARD;

 g_canfd_tx_frame.type = CAN_FRAME_TYPE_DATA;

 g_canfd_tx_frame.data_length_code = CAN_FD_DATA_LENGTH_CODE;

 g_canfd_tx_frame.options = CANFD_FRAME_OPTION_FD | CANFD_FRAME_OPTION_BRS;

Note

When using bitrate switching be sure to configure the Data Bitrate as desired in the “Smart Configurator”.

1.1.2 Bit Rate Calculation

The bit rate of the CAN FD peripheral is manually set through the “Smart Configurator”.

The CAN FD peripheral uses either PLL or the main oscillator as its clock source. To achieve an exact bitrate
the CAN FD source clock or divisor may need to be adjusted to meet the criteria in the formula below:

Bitrate = canfd_clock_hz / ((time_segment_1 + time_segment_2 + 1) * prescaler)

For CAN FD, the possible values for each element are as follows:

Element Min Max (Nominal) Max (Data)
Bitrate - 1 Mbps 8 Mbps
Time Segment 1 2 Tq 256 Tq 32 Tq
Time Segment 2 2 Tq 128 Tq 16 Tq
Sync Jump Width 1 Tq Time Segment 2 Time Segment 2
Prescaler 1 1024 256

Use the Components tab of the “Smart Configurator” to configure the CAN FD clock source/divisor as
well as to set the frequency of PLL or the main oscillator.

The Sync Jump Width option specifies the maximum number of time quanta that the sample point
may be delayed by to account for differences in oscillators on the bus. It should be set to a value
between 1 and the configured Time Segment 2 value depending on the maximum permissible clock
error.

The following relations between frequencies must apply if the CAN FD module is to be used.

• PCLKA: PCLKB = 2:1
• PCLKB ≥ CANFDCLK
• PCLKB ≥ CANFDMCLK

Formulas to calculate the bitrate register settings.

PCLK is the peripheral clock frequency, PCLKB.

fcan = PCLK or EXTAL

The prescaler scales the CAN FD peripheral clock down with a factor.

fcanclk = fcan/prescaler

One Time Quantum is one clock period of the CAN FD clock.

Tq =1/fcanclk

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 6 of 60
Dec.13.23

Tqtot is the total number of CAN FD peripheral clock cycles during one CAN FD bit time and is by
the peripheral built by the sum of the “time segments” and “SS” which is always 1. In the code, Tqtot
is shown to be

BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL) / (CANFD_BRP * BITRATE * BSP_CFG_PCKB_DIV)

Set these macros so that a Tqtot is found which is not larger than accepted by the CANFD registers.

Note: CANFD_BRP defined in user program

 BITRATE as expected bitrate

 See the HW-manual’s table of examples for bitrate settings.

Another restriction is:

Tqtot = TSEG1 + TSEG2 + SS (TSEG1 must be > TSEG2)

SS is always 1. SJW is often given by the bus administrator. Select 1 <= SJW <= 4.

Example calculate the bitrate register settings
CAN FD BITRATE Settings
Consult Section 33.4.1 "Initialization of CAN Clock, Bit Timing and Bit Rate" in the RX660 User's
Manual (R01UH0937EJ) for details.

CCLKS is 0(running on PCLK which is PCLKB), that is,
FCANFD = PCLK = PCLKB.
CANFD_BRP = Bit Rate Prescaler.
FCANFDCLK = FCANFD / CANFD_BRP
P = value selected in BRP[9:0] bits in BCR (P = 0 to 1023). P + 1 = CANFD_BRP.
TQTOT = Nr CANFD clocks in one CANFD bit = FCANFDCLK/BITRATE.

With CCLKS = 0, and using r_bsp macros we get:
FCANFD = (BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL / BSP_CFG_PCKB_DIV) (Eq. 1)
TQTOT = (FCANFD / (CANFD_BRP * BITRATE)) (Eq. 2)

Eq. (1) in (2):
TQTOT = (BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL / BSP_CFG_PCKB_DIV)/(CANFD_BRP *
BITRATE)), or
TQTOT = (BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL) / (CANFD_BRP * BITRATE *
BSP_CFG_PCKB_DIV) (Eq. 3)
Example: Desired bit rate 500 kbps.
 Try CANFD_BRP = 4. Equation 3:
 TQTOT = (24000000 * 10) / (4 * 500000 * 4) = 30. This is too large. TQTOT can be max 25.
 Try CANFD_BRP = 5.
 TQTOT =
 (BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL) / (CANFD_BRP * BITRATE *
BSP_CFG_PCKB_DIV)
 = (24000000 * 10) / (5 * 500000 * 4) = ***24***
 TQTOT = 24 = TSEG1 + TSEG2 + SS:
 Try:
 SS = 1 Tq always.
 TSEG1 = 15 Tq
 TSEG2 = 8 Tq
 ============
 SUM = 24

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 7 of 60
Dec.13.23

1.1.3 Error Handing

The CAN FD peripheral provides two types of error interrupts: Channel and Global. As the names
imply, each channel has its own Channel Error interrupt but there is only one Global Error interrupt.
Only the configured channel will receive callbacks for Global Errors.
Error interrupt callbacks will pass either CAN_EVENT_ERR_CHANNEL or CAN_EVENT_ERR_GLOBAL in
the can_callback_args_t::event field. A second field, can_callback_args_t::error, provides the actual
error code as canfd_error_t. Cast to this enum to retrieve the error condition.
1.1.4 DLC Checking

When DLC Checking is enabled messages are checked against the destination.minimum_dlc value of
each AFL rules. If the data length of a message is less than this value, the message will be rejected.

When DLC checking is set to "DLC Replacement Enable" in the “Smart Configurator” any data in excess
of the minimum DLC setting will be truncated and the DLC value for the frame will be set to match.

1.1.5 FD Payload Overflow

When an FD message is received with a DLC larger than the destination buffers an FD Payload
Overflow interrupt is thrown (if configured). When Payload Overflow is set to "Truncate" the message
will still be accepted but only data up to the buffer capacity will be preserved. The DLC value is
unchanged in this case; any data beyond this value in the can_frame_t::data array should not be
used.

1.2 Communication Layers
The figure below shows the CAN FD communication layers, with the application layer at the top and the
hardware layer at the bottom.

Application

Renesas CAN FD API

CAN FD peripheral

MCU/transceivers/CANbus

1.3 Using the FIT CAN FD module
1.3.1 Using FIT CAN FD module in C++ project
For C++ project, add FIT CAN FD module interface header file within extern “C”{}:
Extern “C”
{

#include “r_smc_entry.h”
#include “r_canfd_rx_if.h”

}

1.4 Physical Connection
The Protocol Controller of the CAN FD peripheral in your CAN FD MCU must be connected to a bus
transceiver located outside the chip via the CAN FD Transmit (CTXn) and receive (CRXn) MCU pins.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 8 of 60
Dec.13.23

1.5 The CAN FD Buffer

Buffers

The CAN FD driver provides three types of buffers: Transmit Message Buffers (TX MBs), Receive
Message Buffers (RX MBs) and FIFO Buffers. The total number of FIFO buffers is three (two receive FIFOs
(RX FIFOs) + one common FIFO).

TX Message Buffers

TX MBs is used for transmission only. Refer to the hardware manual for your device for information
on which TX MBs are available.

Note

The CAN FD peripheral continually scans TX MBs for new data. Depending on the provided clock it
may be possible to write to multiple TX MBs before transmission begins. In this case, messages will
be sent in the priority specified by the Transmission Priority option in the “Smart Configurator”.

RX Message Buffers

RX MBs are for reception only and may only hold one message at a time.
No interrupts are provided for RX MBs in this software. Use R_CANFD_InfoGet and R_CANFD_Read to poll
and read them, respectively.

RX FIFOs

RX FIFOs provide interrupt-driven queue functionality for receiving messages. 2 RX FIFOs are
available. All FIFOs have the following capabilities:

• Up to 64 bytes payloads
• Up to 48 message capacity

Once an interrupt is fired it will continue to fire until the FIFO is emptied, and all messages have been
passed to user code via the callback. When using the threshold interrupt mode, a FIFO can be
checked for data and read between interrupts by calling R_CANFD_InfoGet and R_CANFD_Read,
respectively.

RX Buffer Pool

The RAM allocated to the receive message buffers and FIFO buffers is limited to 16 messages (1216 bytes)
when the payload size is set to 64 bytes. Do not configure the receive message buffers and FIFO buffers that
exceed this maximum limit. CAN FD module does not have the function to check the validity of the
configuration.

Limitations

Developers should be aware of the following limitations when using CAN FD:

• RX MBs interrupt is available in the RX MCUs that have CAN FD hardware; however it is not
supported in this software. To use them in an application one of the following is recommended: Use
R_CANFD_InfoGet to determine if any RX MBs have received data, then use R_CANFD_Read to
obtain it.

• The CAN FD peripheral has a limited amount of buffer pool RAM available for allocating RX
MBs and FIFO stages. See the RX Buffer Pool section above for more information.

• When switching modes with R_CANFD_ModeTransition a delay of up to several CAN frames
may be incurred. Consult Section 33.3.3.2 "Timing of Channel Mode Change" in the RX660
User's Manual (R01UH0937EJ) for details.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 9 of 60
Dec.13.23

Message Filtering (Acceptance Filter List)
To filter messages to the desired message buffer or FIFO the CAN FD peripheral uses an Acceptance
Filter List (AFL). Each entry in the AFL provides a rule to check a message against along with
destination and other filtering information. When a message is received the CAN FD peripheral
internally checks against every configured AFL rule for the channel. If a match is found the message
is transferred to the destination(s) specified in the rule. See structure of an AFL entry at canfd_afl_entry_t
below:

/** AFL Entry */
typedef struct st_canfd_afl_entry_t
{
 uint32_t id : 29; ///< ID to match against
 uint32_t rs : 1;
 can_frame_type_t frame_type : 1; ///< Frame type (Data or Remote)
 can_id_mode_t id_mode : 1; ///< ID mode (Standard or Extended)

 uint32_t mask_id : 29; ///< ID Mask
 uint32_t rs1 : 1;
 uint32_t mask_frame_type : 1; ///< Only accept frames with the
configured frame type
 uint32_t mask_id_mode : 1; ///< Only accept frames with the
configured ID mode

 canfd_minimum_dlc_t minimum_dlc : 4; ///< Minimum DLC value to accept
(valid when DLC Check is enabled)
 uint32_t rs2 : 4;
 canfd_rx_mb_t rx_buffer : 8; ///< RX Message Buffer to receive
messages accepted by this rule
 uint32_t rs3 : 16;
 canfd_rx_fifo_t fifo_select_flags; ///< RX FIFO(s) to receive messages
accepted by this rule
} canfd_afl_entry_t;

For an example configuration refer to the AFL Example below.

AFL Example

The below is an example Acceptance Filter List (AFL) declaration with one rule.

/* Acceptance filter array parameters
CANFD_CFG_AFL_CH0_RULE_NUM = 1 */
/* Acceptance filter array parameters */
#define CANFD_FILTER_ID (0x00001000)
#define MASK_ID (0x0FFFF000)
#define MASK_ID_MODE (1)
#define ZERO (0U) //Array Index value

const canfd_afl_entry_t p_canfd0_afl[CANFD_CFG_AFL_CH0_RULE_NUM] =
{
 /* Accept a message with Extended ID 0x1000-0x1FFF */
 /* Specify the ID, ID type and frame type to accept. */
 {

CANFD_FILTER_ID,
0,
CAN_FRAME_TYPE_DATA,
CAN_ID_MODE_EXTENDED,
MASK_ID,
0,
ZERO,
MASK_ID_MODE,

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 10 of 60
Dec.13.23

(canfd_minimum_dlc_t)ZERO,
0,
CANFD_RX_MB_0,
0,
CANFD_RX_FIFO_0
},

};

void main(void)
{
 g_canfd0_extended_cfg.p_afl = p_canfd0_afl;
 err = R_CANFD_Open(&g_canfd0_ctrl, &g_canfd0_cfg);
}

Consult Section 33.5 "Filtering Using Acceptance Filter List (AFL)" in the RX660
User's Manual (R01UH0937EJ) for details.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 11 of 60
Dec.13.23

2. API Information
The names of the APIs of the CAN FD FIT module follow the Renesas API naming standard.

2.1 Hardware Requirements
This driver requires that your MCU supports the following peripheral:

• CAN FD Module (CAN FD)

2.2 Hardware Resource Requirements
This section details the hardware peripherals that this driver requires. Unless explicitly stated, these
resources must be reserved for the driver, and cannot be used elsewhere in the application.

2.2.1 Peripheral Required
CAN FD Module (CAN FD)

2.2.2 Other Peripherals Used
The driver requires I/O port pins to be assigned for CAN FD bus receive and transmit signals. Assigned pins
may not be used for GPIO.

The driver optionally uses GPIO port pins for Standby and Enable corresponding to each CAN FD channel.

2.3 Software Requirements
This driver is dependent upon the following FIT module:

• Renesas Board Support Package (r_bsp) v7.20 or higher

2.4 Limitations
2.4.1 RAM Location Limitations
In FIT, if a value equivalent to NULL is set as the pointer argument of an API function, error might be
returned due to parameter check. Therefore, do not pass a NULL equivalent value as pointer argument to an
API function.
The NULL value is defined as 0 because of the library function specifications. Therefore, the above
phenomenon would occur when the variable or function passed to the API function pointer argument is
located at the start address of RAM (address 0x0). In this case, change the section settings or prepare a
dummy variable at the top of the RAM so that the variable or function passed to the API function pointer
argument is not located at address 0x0.
In the case of the CCRX project (e2 studio V7.5.0), the RAM start address is set as 0x4 to prevent the
variable from being located at address 0x0. In the case of the GCC project (e2 studio V7.5.0) and IAR project
(EWRX V4.12.1), the start address of RAM is 0x0, so the above measures are necessary.
The default settings of the section may be changed due to the IDE version upgrade. Please check the
section settings when using the latest IDE.

2.5 Supported Toolchain
This driver has been confirmed to work with the toolchain listed in 7.1 Confirmed Operation Environment.

2.6 Interrupt Vector
When CAN TX and CAN RX interrupts are used, make sure the respective interrupt are mapped to a
software configurable interrupt. This can be done in “r_bsp_interrupt_config.h”

2.7 Header Files
All API calls and their supporting interface definitions are located in “r_canfd.h”.

Build-time configuration options are selected or defined in the file "r_canfd_rx_config.h”.

To reference CAN FD API elements in this FIT Module from your code include the following:

#include “r_canfd_rx_if.h”

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 12 of 60
Dec.13.23

2.8 Integer Types
This software uses ANSI C99. These types are defined in stdint.h.

2.9 Configuration
It will be necessary to make modifications to the r_canfd_rx_config.h file to customize the application for
desired functionality. It is not recommended to change the r_canfd_rx.c file, which contains the Renesas
CAN FD API driver function, but this may be merited to add some features not available with the API.

If installing this software by using the “Smart Configurator” in e2 studio, the configuration settings for this FIT
module are made through the Smart Configurator “Components-> Property” view. Otherwise,
r_canfd_rx_config.h can be edited manually using the following tables as a guide.

Configuration options in r_canfd_rx_config.h

CANFD_CFG_PARAM_CHECKING_ENABLE
(BSP_CFG_PARAM_CHECKING_ENABLE)

1: Parameter checking is included in
the build.
0: Parameter checking is omitted
from the build.
Setting this #define to
BSP_CFG_PARAM_CHECKING_E
NABLE utilizes the system default
setting.

CANFD_CFG_AFL_CH0_RULE_NUM 32

Number of acceptance filter list rules
dedicated to Channel 0.
 Any value (0~32)
 Default value is 32.

CANFD_CFG_FD_PROTOCOL_EXCEPTION 0

Select whether to enter the protocol
exception handling state when a
RES bit is sampled recessive as
defined in ISO 11898-1.
 (0) = Enabled (ISO 11898-1)
(default)

(R_CANFD_GFDCFG_PXEDIS_Ms
k) = Disabled

CANFD_CFG_GLOBAL_ERR_SOURCES 0x3

Select which errors should trigger
an interrupt.
(0x3) (default)
(R_CANFD_GCR_DEIE_Msk | 0x3)
(R_CANFD_GCR_MLIE_Msk | 0x3)
(R_CANFD_GCR_POIE_Msk | 0x3)
(R_CANFD_GCR_DEIE_Msk |
R_CANFD_GCR_MLIE_Msk | 0x3)
(R_CANFD_GCR_DEIE_Msk |
R_CANFD_GCR_POIE_Msk | 0x3)
(R_CANFD_GCR_MLIE_Msk |
R_CANFD_GCR_POIE_Msk | 0x3)
(R_CANFD_GCR_DEIE_Msk |
R_CANFD_GCR_MLIE_Msk |
R_CANFD_GCR_POIE_Msk | 0x3)

CANFD_CFG_TX_PRIORITY (R_CANFD_GCFG_TPRI_Msk)

Select how messages should be
prioritized for transmission. In either
case, lower numbers indicate higher
priority.
 (0) = Message ID
 (R_CANFD_GCFG_TPRI_Msk) =
Buffer Number (default)

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 13 of 60
Dec.13.23

Configuration options in r_canfd_rx_config.h

CANFD_CFG_DLC_CHECK 0

When enabled received messages
will be rejected if their DLC field is
less than the value configured in the
associated AFL rule.
If 'DLC Replacement Enable' is
selected and a message passes the
DLC check the DLC field is set to
the value in the associated AFL rule
and any excess data is discarded.
 (0) = Disabled (default)
 (R_CANFD_GCFG_DCE_Msk) =
Enabled
 (R_CANFD_GCFG_DCE_Msk |
R_CANFD_GCFG_DRE_Msk) =
DLC Replacement Enable

CANFD_CFG_FD_OVERFLOW 0

Configure whether received
messages larger than the
destination buffer should be
truncated or rejected.
 (0) = Reject (default)
 (R_CANFD_GCFG_TPRI_Msk) =
Truncate

CANFD_CFG_CANFDCLK_SOURCE 0

Configure the CAN FD Clock source
to be either PLL (default) or crystal
direct.
 (0) = PLL (default)
 (1) = Crystal direct

CANFD_CFG_RXMB_NUMBER 0

Number of message buffers
available for reception. As there is
no interrupt for message buffer
reception it is recommended to use
RX FIFOs instead.
 Set this value to 0 to disable RX
Message Buffers.
 Any value (0~32)
 Default value is 0.

CANFD_CFG_RXMB_SIZE 0

Payload size for all RX Message
Buffers.
 (0) = 8 bytes (default)
 (1) = 12 bytes
 (2) = 16 bytes
 (3) = 20 bytes
 (4) = 24 bytes
 (5) = 32 bytes
 (6) = 48 bytes
 (7) = 64 bytes

CANFD_CFG_GLOBAL_ERR_IPL 12

This interrupt is fired for each of the
error sources selected below.
 Any value (0) ~ (15)
 Default value is (12)

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 14 of 60
Dec.13.23

Configuration options in r_canfd_rx_config.h

CANFD_CFG_RX_FIFO_IPL 12

Selects whether to include
parameter checking in the code.

BSP_CFG_PARAM_CHECKING_E
NABLE = Default (BSP).
 Any value (0) ~ (15)
Default value is (12).

CANFD_CFG_RXFIFO0_INT_THRESHOLD 3U

Set the interrupt threshold value for
RX FIFO 0. This setting is only
applicable when the Interrupt Mode
is set to 'At Threshold Value'.
 (0U) = 1/8 full
 (1U) = 1/4 full
 (2U) = 3/8 full
 (3U) = 1/2 full (default)
 (4U) = 5/8 full
 (5U) = 3/4 full
 (6U) = 7/8 full
 (7U) = full

CANFD_CFG_RXFIFO0_DEPTH 3

Select the number of stages for RX
FIFO 0.
 (1) = 4 stages
 (2) = 8 stages
 (3) = 16 stages (default)
 (4) = 32 stages
 (5) = 48 stages

CANFD_CFG_RXFIFO0_PAYLOAD 7

Select the message payload size for
RX FIFO 0.
 (0) = 8 bytes
 (1) = 12 bytes
 (2) = 16 bytes
 (3) = 20 bytes
 (4) = 24 bytes
 (5) = 32 bytes
 (6) = 48 bytes
 (7) = 64 bytes (default)

CANFD_CFG_RXFIFO0_INT_MODE
((R_CANFD_RFCR_RFIE_Msk | R_CANFD_RFCR_RFIM_Msk))

Set the interrupt mode for RX FIFO
0. Threshold mode will only fire an
interrupt each time an incoming
message crosses the threshold
value set below.
 (0) = Disabled
 (R_CANFD_RFCR_RFIE_Msk) =
At Threshold Value
 (R_CANFD_RFCR_RFIE_Msk |
R_CANFD_RFCR_RFIM_Msk) =
Every Frame (default)

CANFD_CFG_RXFIFO0_ENABLE 1
Enable or disable RX FIFO 0.
 (0) = Disabled
 (1) = Enabled (default)

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 15 of 60
Dec.13.23

Configuration options in r_canfd_rx_config.h

CANFD_CFG_RXFIFO1_INT_THRESHOLD 3U

Set the interrupt threshold value for
RX FIFO 1. This setting is only
applicable when the Interrupt Mode
is set to 'At Threshold Value'.
 (0U) = 1/8 full
 (1U) = 1/4 full
 (2U) = 3/8 full
 (3U) = 1/2 full (default)
 (4U) = 5/8 full
 (5U) = 3/4 full
 (6U) = 7/8 full
 (7U) = full

CANFD_CFG_RXFIFO1_DEPTH 3

/* Select the number of stages for
RX FIFO 1.
 (1) = 4 stages
 (2) = 8 stages
 (3) = 16 stages (default)
 (4) = 32 stages
 (5) = 48 stages

CANFD_CFG_RXFIFO1_PAYLOAD 7

Select the message payload size for
RX FIFO 1.
 (0) = 8 bytes
 (1) = 12 bytes
 (2) = 16 bytes
 (3) = 20 bytes
 (4) = 24 bytes
 (5) = 32 bytes
 (6) = 48 bytes
 (7) = 64 bytes (default)

CANFD_CFG_RXFIFO1_INT_MODE
((R_CANFD_RFCR_RFIE_Msk | R_CANFD_RFCR_RFIM_Msk))

Set the interrupt mode for RX FIFO
1. Threshold mode will only fire an
interrupt each time an incoming
message crosses the threshold
value set below.
 (0) = Disabled
 (R_CANFD_RFCR_RFIE_Msk) =
At Threshold Value
 (R_CANFD_RFCR_RFIE_Msk |
R_CANFD_RFCR_RFIM_Msk) =
Every Frame (default)

CANFD_CFG_RXFIFO1_ENABLE 0
Enable or disable RX FIFO 0.
 (0) = Disabled (default)
 (1) = Enabled

CANFD0_EXTENDED_CFG_TXMB0_TXI_ENABLE 0ULL
CANFD0_EXTENDED_CFG_TXMB1_TXI_ENABLE 0ULL
CANFD0_EXTENDED_CFG_TXMB2_TXI_ENABLE 0ULL
CANFD0_EXTENDED_CFG_TXMB3_TXI_ENABLE 0ULL

Select TX Message buffers should
trigger an interrupt when
transmission is complete.
 Disabled = 0ULL (default)
 Enabled = (1ULL << 0)

CANFD0_EXTENDED_CFG_WARNING_ERROR_INTERRUPTS
0U

Select Error Warning interrupt
sources to enable.
 Disabled = 0ULL (default)
 Enabled =
R_CANFD_CHCR_EWIE_Msk

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 16 of 60
Dec.13.23

Configuration options in r_canfd_rx_config.h

CANFD0_EXTENDED_CFG_PASSING_ERROR_INTERRUPTS
0U

Select error passive interrupt
sources to enable.
 Disabled = 0U (default)
 Enabled =
R_CANFD_CHCR_EPIE_Msk

CANFD0_EXTENDED_CFG_BUS_OFF_ENTRY_ERROR_INTER
RUPTS 0U

Select which channel bus-Off Entry
error interrupt sources to enable.
 Disabled = 0U (default)
 Enabled =
R_CANFD_CHCR_BOEIE_Msk

CANFD0_EXTENDED_CFG_BUS_OFF_RECOVERY_ERROR_IN
TERRUPTS 0U

Select channel bus-Off Recovery
error interrupt sources to enable.
 Disabled = 0U (default)
 Enabled =
R_CANFD_CHCR_BORIE_Msk

CANFD0_EXTENDED_CFG_OVERLOAD_ERROR_INTERRUPT
S 0U

Select channel overload error
interrupt sources to enable.
 Disabled = 0U (default)
 Enabled =
R_CANFD_CHCR_OLIE_Msk

CANFD0_CFG_IPL 12

This interrupt is fired for each of the
error sources selected below.
 Any value (0) ~ (15)
 Default value is (12).

CANFD0_BIT_TIMING_CFG_BRP 1

Specify clock divisor for nominal
bitrate.
 Any value (1~1024)
 Default value is (1).

CANFD0_BIT_TIMING_CFG_TSEG1 29

Select the Time Segment 1 value.
Check module usage notes for how
to calculate this value.
 Any value (2~256)
 Default value is (29).

CANFD0_BIT_TIMING_CFG_TSEG2 10

Select the Time Segment 2 value.
Check module usage notes for how
to calculate this value.
 Any value (2~128)
 Default value is (10).

CANFD0_BIT_TIMING_CFG_SJW 4

Select the Synchronization Jump
Width value. Check module usage
notes for how to calculate this value.
 Any value (1~128)
 Default value is (4).

CANFD0_DATA_TIMING_CFG_BRP 1
Specify clock divisor for data bitrate.
 Any value (1~1024)
 Default value is (1).

CANFD0_DATA_TIMING_CFG_TSEG1 5

Select the Time Segment 1 value.
Check module usage notes for how
to calculate this value.
 Any value (2~32)
 Default value is (5).

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 17 of 60
Dec.13.23

Configuration options in r_canfd_rx_config.h

CANFD0_DATA_TIMING_CFG_TSEG2 2

Select the Time Segment 2 value.
Check module usage notes for how
to calculate this value.
 Any value (2~16)
 Default value is (2).

CANFD0_DATA_TIMING_CFG_SJW 1

Select the Synchronization Jump
Width value. Check module usage
notes for how to calculate this value.
 Any value (1~16)
 Default value is (1).

CANFD0_EXTENDED_CFG_DELAY_COMPENSATION 1

When enabled the CAN FD module
will automatically compensate for
any transceiver or bus delay
between transmitted and received
bits.
When manually supplying bit timing
values with delay compensation
enabled be sure the data prescaler
is 2 or smaller for correct operation.
 (0) = Disabled
 (1) = Enabled (default)
 Default value is (1).

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 18 of 60
Dec.13.23

struct can_info_t

struct can_bit_timing_cfg_t

enum can_event_t

struct can_frame_t

struct can_callback_args_t

struct can_cfg_t

struct can_api_t

struct can_instance_t

typedef void can_ctrl_t

2.10 Interfaces and Instances

This section describes structures in r_canfd_rx/inc

2.10.1 CAN interface

This section describes structures in r_canfd_rx/inc/ r_can_api.h

The CAN interface provides common features and interaction methods of different implementations of CAN
drivers. These common features and interaction methods allow upper layer caller function to be able to swap
in and out different CAN driver modules which provide the same features. In this Application Note, CAN
interface is implemented by CAN FD

CAN interface supports following features:

• Full-duplex CAN communication
• Generic CAN parameter setting
• Interrupt driven transmit/receive processing
• Callback function support with returning event code
• Hardware resource locking during a transaction

Implemented by:
• Controller Area Network - Flexible Data (r_canfd)

Data Structures

Enumerations

Typedefs

enum can_id_mode_t

enum can_frame_type_t

enum can_operation_mode_t

enum can_test_mode_t

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 19 of 60
Dec.13.23

◆ can_info_t

struct can_info_t

CAN status info

Data Fields

uint32_t status Useful information
from the CAN status
register.

uint32_t rx_mb_status RX Message Buffer
New Data flags.

uint32_t rx_fifo_status RX FIFO Empty flags.

uint8_t error_count_transmit Transmit error count.

uint8_t error_count_receive Receive error count.

uint32_t error_code Error code, cleared
after reading.

◆ can_bit_timing_cfg_t

struct can_bit_timing_cfg_t

CAN bit rate configuration.

Data Fields

uint32_t baud_rate_prescaler Baud rate prescaler.
Valid values: 1 -
1024.

uint32_t time_segment_1 Time segment 1 control.

uint32_t time_segment_2 Time segment 2 control.

uint32_t synchronization_jump_width Synchronization jump
width.

◆ can_frame_t

struct can_frame_t

CAN data Frame

Data Fields

uint32_t id CAN ID.

can_id_mode_t id_mode Standard or Extended ID
(IDE).

can_frame_type_t type Frame type (RTR).

uint8_t data_length_code CAN Data Length Code
(DLC).

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 20 of 60
Dec.13.23

uint32_t options Implementation-
Specific options

uint8_t data[CAN_DATA_BUFFER_LEN
G TH]

CAN data.

◆ can_callback_args_t

struct can_callback_args_t

CAN callback parameter definition

Data Fields

uint32_t channel Device channel number.

can_event_t event Event code.

uint32_t error Error code.

union uint32_t mailbox Mailbox number of interrupt
source.

uint32_t buffer Buffer number of interrupt
source.

can_frame_t * p_frame DEPRECATED Pointer to the
received frame.

void const * p_context Context provided to user
during callback

can_frame_t frame Received frame data.

◆ can_cfg_t

struct can_cfg_t

CAN Configuration

Data Fields

uint32_t channel
 CAN channel.

can_bit_timing_cfg_t * p_bit_timing
 CAN bit timing.

void(* p_callback)(can_callback_args_t *p_args)
 Pointer to callback function.

void const * p_context

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 21 of 60
Dec.13.23

 User defined callback context.

void const * p_extend
 CAN hardware dependent configuration.

uint8_t ipl
 Error/Transmit/Receive interrupt priority.

◆ can_api_t

struct can_api_t

Shared Interface definition for CAN

Data Fields

fsp_err_t(*open)(can_ctrl_t *const p_ctrl, can_cfg_t const *const p_cfg)

fsp_err_t(*write)(can_ctrl_t *const p_ctrl, uint32_t buffer_number, can_frame_t *const p_frame)

fsp_err_t(*read)(can_ctrl_t *const p_ctrl, uint32_t buffer_number, can_frame_t *const p_frame)

fsp_err_t(*close)(can_ctrl_t *const p_ctrl)

fsp_err_t(*modeTransition)(can_ctrl_t *const p_api_ctrl, can_operation_mode_t operation_mode,
can_test_mode_t test_mode)

fsp_err_t(*infoGet)(can_ctrl_t *const p_ctrl, can_info_t *const p_info)

fsp_err_t(*callbackSet)(can_ctrl_t *const p_api_ctrl, void(*p_callback)(can_callback_args_t *),
void const *const p_context, can_callback_args_t *const p_callback_memory)

Field Documentation

◆ open

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 22 of 60
Dec.13.23

fsp_err_t(* can_api_t::open) (can_ctrl_t *const p_ctrl, can_cfg_t const *const p_cfg)

Open function for CAN device

Implemented as

R_CANFD_Open()

Parameters

 [in] p_ctrl Pointer to the CAN control
block. Must be declared by
user.

[in] can_cfg_t Pointer to CAN configuration
structure. All elements of this
structure must be set by user

◆ write

fsp_err_t(* can_api_t::write) (can_ctrl_t *const p_ctrl, uint32_t buffer_number, can_frame_t *const
p_frame)

Write function for CAN device

Implemented as

R_CANFD_Write()

Parameters

 [in] p_ctrl Pointer to the CAN control
block.

[in] buffer_number Buffer number (mailbox or
message buffer) to write to.

[in] p_frame Pointer for frame of CAN ID,
DLC, data and frame type to
write.

◆ read

fsp_err_t(* can_api_t::read) (can_ctrl_t *const p_ctrl, uint32_t buffer_number, can_frame_t *const p_frame)

Read function for CAN device

Implemented as

R_CANFD_Read()

Parameters

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 23 of 60
Dec.13.23

 [in] p_ctrl Pointer to the CAN control
block.

[in] buffer_number Message buffer (number) to
read from.

[in] p_frame Pointer to store the CAN ID,
DLC, data and frame type.

◆ close

fsp_err_t(* can_api_t::close) (can_ctrl_t *const p_ctrl)

Close function for CAN device

Implemented as

R_CANFD_Close()

Parameters
 [in] p_ctrl Pointer to the CAN control

block.

◆ modeTransition

fsp_err_t(* can_api_t::modeTransition) (can_ctrl_t *const p_api_ctrl, can_operation_mode_t
operation_mode, can_test_mode_t test_mode)

Mode Transition function for CAN device

Implemented as

R_CANFD_ModeTransition()

Parameters

 [in] p_api_ctrl Pointer to the CAN control
block.

[in] operation_mode Destination CAN operation
state.

[in] test_mode Destination CAN test state.

◆ infoGet

fsp_err_t(* can_api_t::infoGet) (can_ctrl_t *const p_ctrl, can_info_t *const p_info)

Get CAN channel info.

Implemented as

R_CANFD_InfoGet()

Parameters

 [in] p_ctrl Handle for channel (pointer
to channel control block)

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 24 of 60
Dec.13.23

[out] p_info Memory address to return
channel specific data to.

◆ callbackSet

fsp_err_t(* can_api_t::callbackSet) (can_ctrl_t *const p_api_ctrl,
void(*p_callback)(can_callback_args_t *), void const *const p_context, can_callback_args_t
*const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_CANFD_CallbackSet()

Parameters

 [in] p_ctrl Control block set in
can_api_t::open call.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here are
only valid during the callback.

◆ can_instance_t

struct can_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

can_ctrl_t * p_ctrl Pointer to the control
structure for this instance.

can_cfg_t const * p_cfg Pointer to the
configuration structure for
this instance.

can_api_t const * p_api Pointer to the API
structure for this instance.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 25 of 60
Dec.13.23

◆ can_ctrl_t

typedef void can_ctrl_t

CAN control block. Allocate an instance specific control block to pass into the CAN FD API calls.
Implemented as

o canfd_instance_ctrl_t

◆ can_event_t

enum can_event_t

CAN event codes

Enumerator

CAN_EVENT_ERR_WARNING Error Warning event.

CAN_EVENT_ERR_PASSIVE Error Passive event.

CAN_EVENT_ERR_BUS_OFF Bus Off event.

CAN_EVENT_BUS_RECOVERY Bus Off Recovery event.

CAN_EVENT_MAILBOX_MESSAGE_LOST Mailbox has been overrun.

CAN_EVENT_ERR_BUS_LOCK Bus lock detected (32 consecutive
dominant bits).

CAN_EVENT_ERR_CHANNEL Channel error has occurred.

CAN_EVENT_TX_ABORTED Transmit abort event.

CAN_EVENT_RX_COMPLETE Receive complete event.

CAN_EVENT_TX_COMPLETE Transmit complete event.

CAN_EVENT_ERR_GLOBAL Global error has occurred.

CAN_EVENT_TX_FIFO_EMPTY Transmit FIFO is empty.

◆ can_operation_mode_t

enum can_operation_mode_t

CAN Operation modes

Enumerator

CAN_OPERATION_MODE_NORMAL CAN Normal Operation Mode.

CAN_OPERATION_MODE_RESET CAN Reset Operation Mode.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 26 of 60
Dec.13.23

CAN_OPERATION_MODE_HALT CAN Halt Operation Mode.

CAN_OPERATION_MODE_SLEEP CAN Sleep Operation Mode.

CAN_OPERATION_MODE_GLOBAL_OPERATION CAN FD Global Operation Mode.

CAN_OPERATION_MODE_GLOBAL_RESET CAN FD Global Reset Mode.

CAN_OPERATION_MODE_GLOBAL_HALT CAN FD Global Halt Mode.

CAN_OPERATION_MODE_GLOBAL_SLEEP CAN FD Global Sleep Mode.

◆ can_test_mode_t

enum can_test_mode_t

CAN Test modes

Enumerator

CAN_TEST_MODE_DISABLED CAN Test Mode Disabled.

CAN_TEST_MODE_LISTEN CAN Test Listen Mode.

CAN_TEST_MODE_LOOPBACK_EXTERNAL CAN Test External Loopback Mode.

CAN_TEST_MODE_LOOPBACK_INTERNAL CAN Test Internal Loopback Mode.

CAN_TEST_MODE_INTERNAL_BUS CAN FD Internal CAN Bus
Communication Test Mode.

◆ can_id_mode_t

enum can_id_mode_t

CAN ID modes

Enumerator

CAN_ID_MODE_STANDARD Standard IDs of 11 bits used.

CAN_ID_MODE_EXTENDED Extended IDs of 29 bits used.

◆ can_frame_type_t

enum can_frame_type_t

CAN frame types

Enumerator

CAN_FRAME_TYPE_DATA Data frame.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 27 of 60
Dec.13.23

struct canfd_afl_entry_t

struct canfd_instance_ctrl_t

CAN_FRAME_TYPE_REMOTE Remote frame.

2.10.2 CAN FD instance

This section describes structures in r_canfd_rx/inc/ r_canfd.h

CAN FD instance is one of the actual implementations of CAN interface. The CAN FD instance uses the
enumerations, data structures, and API prototypes from the CAN interface

Data Structures

Enumerations

◆ canfd_instance_ctrl_t

struct canfd_instance_ctrl_t

CAN FD Instance Control Block

Data Fields
can_cfg_t const * p_cfg Pointer to the configuration

structure

uint32_t open Open status of channel

can_operation_mode_t operation_mode Can operation mode

can_test_mode_t test_mode Can test mode

void (* p_callback)(can_callback_args_t *) Pointer to callback

can_callback_args_t * p_callback_memory Pointer to optional callback
argument memory

void const * p_context Pointer to context to be
passed into callback function

struct canfd_global_cfg_t
struct canfd_extended_cfg_t

enum canfd_tx_mb_t

enum canfd_error_t

enum canfd_rx_buffer_t

enum canfd_status_t

enum canfd_rx_mb_t

enum canfd_frame_options_t

enum canfd_rx_fifo_t

enum canfd_minimum_dlc_t

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 28 of 60
Dec.13.23

◆ canfd_afl_entry_t

struct canfd_afl_entry_t

AFL Entry
Data Fields

uint32_t id ID to match against

can_frame_type_t frame_type Frame type (Data or
Remote)

can_id_mode_t id_mode ID mode (Standard or
Extended)

uint32_t mask_id ID Mask

uint32_t mask_frame_type Only accept frames with the
configured frame type

uint32_t mask_id_mode Only accept frames with the
configured ID mode

canfd_minimum_dlc_t minimum_dlc Minimum DLC value to
accept (valid when DLC
Check is enabled)

canfd_rx_mb_t rx_buffer RX Message Buffer to
receive messages accepted
by this rule

canfd_rx_fifo_t fifo_select_flags RX FIFO(s) to receive
messages accepted by this
rule

◆ canfd_global_cfg_t

struct canfd_global_cfg_t

CAN FD Global Configuration
Data Fields

uint32_t global_interrupts Global control options (GCR register
setting)

uint32_t global_config Global configuration options (GCFG
register setting)

uint32_t rx_fifo_config[2] RX FIFO configuration (RFCRn
register settings)

uint32_t rx_mb_config Number and size of RX Message
buffers (RMCR register setting)

uint8_t global_err_ipl Global Error interrupt priority.

uint8_t rx_fifo_ipl RX FIFO interrupt priority.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 29 of 60
Dec.13.23

◆ canfd_extended_cfg_t

struct canfd_extended_cfg_t

CAN FD Extended Configuration

Data Fields

canfd_afl_entry_t const * p_afl AFL rules list.

uint32_t txmb_txi_enable Array of TX Message
Buffer enable bits.

uint32_t error_interrupts Error interrupts enable bits.

can_bit_timing_cfg_t * p_data_timing FD Data Rate (when
bitrate switching is
used)

uint8_t delay_compensation FD Transceiver Delay
Compensation (enable
or disable)

canfd_global_cfg_t * p_global_cfg Global configuration
(global error callback
channel only)

◆ canfd_status_t

enum canfd_status_t

CAN FD Status

Enumerator

CANFD_STATUS_RESET_MODE Channel in Reset mode.

CANFD_STATUS_HALT_MODE Channel in Halt mode.

CANFD_STATUS_SLEEP_MODE Channel in Sleep mode.

CANFD_STATUS_ERROR_PASSIVE Channel in error-passive state.

CANFD_STATUS_BUS_OFF Channel in bus-off state.

CANFD_STATUS_TRANSMITTING Channel is transmitting.

CANFD_STATUS_RECEIVING Channel is receiving.

CANFD_STATUS_READY Channel is ready for communication.

CANFD_STATUS_ESI At least one CAN FD message was
received with the ESI flag set.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 30 of 60
Dec.13.23

◆ canfd_error_t

enum canfd_error_t

CAN FD Error Code

Enumerator

CANFD_ERROR_CHANNEL_BUS Bus Error.

CANFD_ERROR_CHANNEL_WARNING Error Warning (TX/RX error count over
0x5F)

CANFD_ERROR_CHANNEL_PASSIVE Error Passive (TX/RX error count over
0x7F)

CANFD_ERROR_CHANNEL_BUS_OFF_ENTR
Y

Bus-Off State Entry.

CANFD_ERROR_CHANNEL_BUS_OFF_RECO
VERY

Recovery from Bus-Off State.

CANFD_ERROR_CHANNEL_OVERLOAD Overload.

CANFD_ERROR_CHANNEL_BUS_LOCK Bus Locked.

CANFD_ERROR_CHANNEL_ARBITRATION_L
OSS

Arbitration Lost.

CANFD_ERROR_CHANNEL_STUFF Stuff Error.

CANFD_ERROR_CHANNEL_FORM Form Error.

CANFD_ERROR_CHANNEL_ACK ACK Error.

CANFD_ERROR_CHANNEL_CRC CRC Error.

CANFD_ERROR_CHANNEL_BIT_RECESSIVE Bit Error (recessive) Error.

CANFD_ERROR_CHANNEL_BIT_DOMINANT Bit Error (dominant) Error.

CANFD_ERROR_CHANNEL_ACK_DELIMITER ACK Delimiter Error.

CANFD_ERROR_GLOBAL_DLC DLC Error.

CANFD_ERROR_GLOBAL_MESSAGE_LOST Message Lost.

CANFD_ERROR_GLOBAL_PAYLOAD_OVERF
LOW

FD Payload Overflow.

CANFD_ERROR_GLOBAL_TXQ_OVERWRITE TX Queue Message Overwrite.

CANFD_ERROR_GLOBAL_TXQ_MESSAGE_L
OST

TX Queue Message Lost.

CANFD_ERROR_GLOBAL_CH0_SCAN_FAIL Channel 0 RX Scan Failure.

CANFD_ERROR_GLOBAL_CH1_SCAN_FAIL Channel 1 RX Scan Failure.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 31 of 60
Dec.13.23

CANFD_ERROR_GLOBAL_CH0_ECC Channel 0 ECC Error.

CANFD_ERROR_GLOBAL_CH1_ECC Channel 1 ECC Error.

◆ canfd_tx_mb_t

enum canfd_tx_mb_t

CAN FD Transmit Message Buffer (TX MB)

◆ canfd_rx_buffer_t

enum canfd_rx_buffer_t

CAN FD Receive Buffer (MB + FIFO)

◆ canfd_rx_mb_t

enum canfd_rx_mb_t

CAN FD Receive Message Buffer (RX MB)

◆ canfd_rx_fifo_t

enum canfd_rx_fifo_t

CAN FD Receive FIFO (RX FIFO)

◆ canfd_minimum_dlc_t

enum canfd_minimum_dlc_t

CAN FD AFL Minimum DLC settings

◆ canfd_frame_options_t

enum canfd_frame_options_t

CAN FD Frame Options

Enumerator

CANFD_FRAME_OPTION_ERROR Error state set (ESI).

CANFD_FRAME_OPTION_BRS Bit Rate Switching (BRS) enabled.

CANFD_FRAME_OPTION_FD Flexible Data frame (FDF).

2.11 Instance Structure
The CANFD source code created an instance structure to use this module:

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 32 of 60
Dec.13.23

It includes:

• A pointer(p_ctrl) to the control structure

• A pointer(p_cfg) to the configuration structure

• A pointer(p_api) to the instance API structure

The control, configuration, and instance API structure have been created with the default value in the file
“r_canfd_data.c”.

Below is the instance structure(g_canfd0) which has been created for channel 0 with the control
structure(g_canfd0_ctrl), the configuration structure(g_canfd0_cfg) and the instance API structure
(g_canfd_on_canfd).

Example:
/* Instance structure to use CAN FD module channel 0. */
const can_instance_t g_canfd0 =
{

.p_ctrl = &g_canfd0_ctrl,

.p_cfg = &g_canfd0_cfg,

.p_api = &g_canfd_on_canfd
};

canfd_instance_ctrl_t g_canfd0_ctrl;
can_cfg_t g_canfd0_cfg =
{

.channel = 0,

.p_bit_timing = &g_canfd0_bit_timing_cfg,

.p_callback = NULL,

.p_extend = &g_canfd0_extended_cfg,

.p_context = NULL,

.ipl = CANFD0_CFG_IPL,
 };

/* Config Nominal bit rate */
can_bit_timing_cfg_t g_canfd0_bit_timing_cfg =
{

.baud_rate_prescaler = CANFD0_BIT_TIMING_CFG_BRP,

.time_segment_1 = CANFD0_BIT_TIMING_CFG_TSEG1,

.time_segment_2 = CANFD0_BIT_TIMING_CFG_TSEG2,

.synchronization_jump_width = CANFD0_BIT_TIMING_CFG_SJW
};
canfd_extended_cfg_t g_canfd0_extended_cfg =
{

.p_afl = NULL,

.txmb_txi_enable = (CANFD0_EXTENDED_CFG_TXMB0_TXI_ENABLE
 | CANFD0_EXTENDED_CFG_TXMB1_TXI_ENABLE
 | CANFD0_EXTENDED_CFG_TXMB2_TXI_ENABLE
 | CANFD0_EXTENDED_CFG_TXMB3_TXI_ENABLE | 0ULL),

.error_interrupts = (CANFD0_EXTENDED_CFG_WARNING_ERROR_INTERRUPTS
 | CANFD0_EXTENDED_CFG_PASSING_ERROR_INTERRUPTS
 | CANFD0_EXTENDED_CFG_BUS_OFF_ENTRY_ERROR_INTERRUPTS
 | CANFD0_EXTENDED_CFG_BUS_OFF_RECOVERY_ERROR_INTERRUPTS
 | CANFD0_EXTENDED_CFG_OVERLOAD_ERROR_INTERRUPTS | 0U),

.p_data_timing = &g_canfd0_data_timing_cfg, .delay_compensation =
CANFD0_EXTENDED_CFG_DELAY_COMPENSATION,

.p_global_cfg = &g_canfd_global_cfg,
};

/* Config data rate */
can_bit_timing_cfg_t g_canfd0_data_timing_cfg =
{

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 33 of 60
Dec.13.23

.baud_rate_prescaler = CANFD0_DATA_TIMING_CFG_BRP,

.time_segment_1 = CANFD0_DATA_TIMING_CFG_TSEG1,

.time_segment_2 = CANFD0_DATA_TIMING_CFG_TSEG2,

.synchronization_jump_width = CANFD0_DATA_TIMING_CFG_SJW
};
#ifndef CANFD_PRV_GLOBAL_CFG
#define CANFD_PRV_GLOBAL_CFG
canfd_global_cfg_t g_canfd_global_cfg =
{

.global_interrupts = CANFD_CFG_GLOBAL_ERR_SOURCES,

.global_config = (CANFD_CFG_TX_PRIORITY | CANFD_CFG_DLC_CHECK
 | ((1U == CANFD_CFG_CANFDCLK_SOURCE)? R_CANFD_GCFG_DLLCS_Msk: 0U)
 | CANFD_CFG_FD_OVERFLOW),
 .rx_mb_config = (CANFD_CFG_RXMB_NUMBER | (CANFD_CFG_RXMB_SIZE <<
R_CANFD_RMCR_PLS_Pos)),

.global_err_ipl = CANFD_CFG_GLOBAL_ERR_IPL,
 .rx_fifo_ipl = CANFD_CFG_RX_FIFO_IPL,

.rx_fifo_config =
{
((CANFD_CFG_RXFIFO0_INT_THRESHOLD << R_CANFD_RFCR_RFITH_Pos)

 | (CANFD_CFG_RXFIFO0_DEPTH << R_CANFD_RFCR_FDS_Pos)
 | (CANFD_CFG_RXFIFO0_PAYLOAD << R_CANFD_RFCR_PLS_Pos) |
(CANFD_CFG_RXFIFO0_INT_MODE) | (CANFD_CFG_RXFIFO0_ENABLE)),
 ((CANFD_CFG_RXFIFO1_INT_THRESHOLD << R_CANFD_RFCR_RFITH_Pos)
 | (CANFD_CFG_RXFIFO1_DEPTH << R_CANFD_RFCR_FDS_Pos)
 | (CANFD_CFG_RXFIFO1_PAYLOAD << R_CANFD_RFCR_PLS_Pos) |
(CANFD_CFG_RXFIFO1_INT_MODE) | (CANFD_CFG_RXFIFO1_ENABLE)),

},
};
#endif

/* CANFD function pointers */
/* g_canfd_on_canfd in the file "r_canfd_rx.c" */
const can_api_t g_canfd_on_canfd =
{
 .open = R_CANFD_Open,
 .close = R_CANFD_Close,
 .write = R_CANFD_Write,
 .read = R_CANFD_Read,
 .modeTransition = R_CANFD_ModeTransition,
 .infoGet = R_CANFD_InfoGet,
 .callbackSet = R_CANFD_CallbackSet,
};

2.12 Code Size
The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.9 Configuration. The table lists reference values when the C compiler’s compile
options are set to their default values, as described in 2.5 Supported Toolchains. The compile option default
values are optimization level: 2, optimization type: for size, and data endianness: little-endian. The code size
varies depending on the C compiler version and compile options.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 34 of 60
Dec.13.23

Area Build Settings Size (byte)
CCRX GCC IAR

ROM With Parameter Checking 2610 2856 3144

ROM Without Parameter Checking 2194 2240 2472

RAM 136 128 4

Maximum stack usage 304

2.13 Callback Functions
In this module, a callback function set up by the user is called when either of the following conditions is met.

(1) Global interrupts:

 Receive FIFO interrupt.

 Global error interrupt: DLC Error Detect, Message Lost Detect, Payload Overflow Detect.

(2) Channel interrupts:

 Channel transmit interrupt: Successful transmission interrupt.

 Channel error interrupt: Error Warning Detect, Error Passive Detect, Bus-Off Entry Detect, Bus-
Off Recovery Detect, Overload Detect.

The callback function is set up by storing the address of the user function in the p_callback argument of
g_canfd0_cfg structure. The default value of the p_callback argument is NULL. User can change it into the
user function by changing the value of the p_callback argument.

See example below to change the value of the p_callback argument from NULL to User_callback:
void User_callback(can_callback_arg_t *g_args);

void main(void)
{
 g_canfd0_cfg.p_callback = User_callback;
 R_CANFD_Open(&g_canfd0_ctrl, &g_canfd0_cfg);
}

void User_callback(can_callback_arg_t *g_args)
{
 User_program();
}

2.14 Adding the CAN FD FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends using “Smart
Configurator” described in (1) or (2). However, “Smart Configurator” only supports some RX devices. Please
use the methods of (3) for unsupported RX devices.

(1) Adding the FIT module to your project using “Smart Configurator” in e2 studio.
By using the “Smart Configurator” in e2 studio, the FIT module is automatically added to your project.
Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using “Smart Configurator” on CS+
By using the “Smart Configurator Standalone version” in CS+, the FIT module is automatically added to
your project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 35 of 60
Dec.13.23

2.15 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example:
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
 /* The delay period needed is to make sure that the PLL has stabilized. */
}

for statement example:
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
 g_protect_counters[i] = 0;
}

do while statement example:
/* Reset completion waiting */
do
{
 reg = phy_read(ether_channel, PHY_REG_CONTROL);
 count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /*
WAIT_LOOP */

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 36 of 60
Dec.13.23

3. API Functions
The API is a set of functions that allow you to use CAN FD without having to commit attention to all the
details of setting up the CAN FD peripheral, to be able to easily have your application communicate with
other nodes on the network.

CAN FD configuration and communication are accomplished via the CAN FD SFR (Special Function
Register) Registers described in the MCU’s HW manual. As the registers in the CAN FD peripheral must be
configured and read in the proper sequence to achieve useful communication, a CAN FD API greatly
simplifies this. The API takes numerous tedious issues and does them for you.

After initializing the peripheral through the R_CANFD_Open function, all you need to do is use the
receive(R_CANFD_Read) and transmit(R_CANFD_Write) API calls, and regularly check for any CAN FD
error states. As well as you can close the CAN FD channel by the R_CANFD_Close function or switch to a
different test mode through the R_CANFD_ModeTransition function.

For details refer to below.

Summary

The following functions are included in this design:
Function Name Description
R_CANFD_Open() Open and configure the CAN FD channel for operation.
R_CANFD_Close() Close the CAN FD channel.
R_CANFD_Write() Write data to the CAN FD channel.
R_CANFD_Read() Read data from a CAN FD Message Buffer or FIFO.
R_CANFD_ModeTransition() Switch to a different channel, global or test mode.
R_CANFD_InfoGet() Get CAN FD state and status information for the channel.
R_CANFD_CallbackSet() Updates the user callback with the option to provide memory

for the callback argument structure.

Return Codes
API Return Codes Description
FSP_SUCCESS Action completed successfully.
FSP_ERR_IP_CHANNEL_NOT_PRESENT Requested channel does not exist on this device.
FSP_ERR_ASSERTION A critical assertion has failed.
FSP_ERR_CAN_INIT_FAILED Hardware initialization failed.
FSP_ERR_CLOCK_INACTIVE Inactive clock specified as system clock.
FSP_ERR_CAN_TRANSMIT_NOT_READY Transmit in progress.
FSP_ERR_INVALID_ARGUMENT Invalid input parameter.
FSP_ERR_INVALID_MODE Unsupported or incorrect mode.
FSP_ERR_NOT_OPEN Requested channel is not configured or API not open.
FSP_ERR_IN_USE Channel/peripheral is running/busy.
FSP_ERR_ALREADY_OPEN Requested channel is already open in a different

configuration.
FSP_ERR_NO_CALLBACK_MEMORY Non-secure callback memory not provided for non-

secure callback.
FSP_ERR_BUFFER_EMPTY No data available in buffer.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 37 of 60
Dec.13.23

R_CANFD_Open
Open and configure the CAN FD channel for operation.

Format
fsp_err_t R_CANFD_Open (can_ctrl_t * const p_api_ctrl,
 can_cfg_t const * const p_cfg);

Parameters
p_api_ctrl

Pointer to the CAN control block. Must be declared by user.
Consult Section 2.11 Instance Structure for details.

p_cfg
Pointer to CAN configuration structure. All elements of this structure must be set by user.
Consult Section 2.11 Instance Structure for details.

Return Values
FSP_SUCCESS Channel opened successfully.
FSP_ERR_ALREADY_OPEN Driver already open.
FSP_ERR_IN_USE Channel is already in use.
FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel does not exist on this MCU.
FSP_ERR_ASSERTION A required pointer was NULL.
FSP_ERR_CAN_INIT_FAILED The provided nominal or data bitrate is invalid.
FSP_ERR_CLOCK_INACTIVE CAN FD source clock is disabled (PLL or PLL2).

Properties
Prototyped in r_canfd.h
Implemented in r_canfd_rx.c

Description
Open and configure the CAN FD channel for operation.

Example
/* Initialize the CAN FD module */
 R_CANFD_Open(&g_canfd0_ctrl, &g_canfd0_cfg)

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 38 of 60
Dec.13.23

R_CANFD_Close
Close the CAN FD channel.

Format
fsp_err_t R_CANFD_Close (can_ctrl_t *const p_api_ctrl);

Parameters
p_api_ctrl

Pointer to the CAN control block.
Consult Section 2.11 Instance Structure for details.

Return Values
FSP_SUCCESS Channel closed successfully.
FSP_ERR_NOT_OPEN Control block not open.
FSP_ERR_ASSERTION Null pointer presented.

Properties
Prototyped in r_canfd.h
Implemented in r_canfd_rx.c

Description
Close the CAN FD channel.

Example
/* Close the CAN FD module */
 R_CANFD_Close(&g_canfd0_ctrl);

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 39 of 60
Dec.13.23

R_CANFD_Write
Write data to the CAN FD channel.

Format
fsp_err_t R_CANFD_Write (can_ctrl_t *const p_api_ctrl,
 uint32_t buffer,
 can_frame_t *const p_frame);

Parameters
p_api_ctrl

Pointer to the CAN control block.
Consult Section 2.11 Instance Structure for details.

buffer
Buffer number (mailbox or message buffer) to write to.

p_frame
Pointer for frame of CAN ID, DLC, data and frame type to write.

Return Values
FSP_SUCCESS Operation succeeded.
FSP_ERR_NOT_OPEN Control block not open.
FSP_ERR_CAN_TRANSMIT_NOT_READY Transmit in progress, cannot write data at this time.
FSP_ERR_INVALID_ARGUMENT Data length or buffer number invalid.
FSP_ERR_INVALID_MODE An FD option was set on a non-FD frame.
FSP_ERR_ASSERTION Null pointer presented

Properties
Prototyped in r_canfd.h
Implemented in r_canfd_rx.c

Description
Write data to the CAN FD channel.

Example
#define CAN_BUFFER_NUMBER_0 (0U) //buffer number
can_frame_t g_canfd_tx_frame; //CAN FD transmit frame

/* Fill tx frame data that is to be sent*/
 for(uint16_t j = 0; j < SIZE_8; j++)
 {
 g_canfd_tx_frame.data[j] = (uint8_t) (j + 1);
 }

/* Send data on the bus */
 err = R_CANFD_Write(&g_canfd0_ctrl, CAN_BUFFER_NUMBER_0, &g_canfd_tx_frame);

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 40 of 60
Dec.13.23

R_CANFD_Read
Read data from a CAN FD Message Buffer or FIFO.

Format
fsp_err_t R_CANFD_Read (can_ctrl_t *const p_api_ctrl, uint32_t buffer,

 can_frame_t *const p_frame);

Parameters
p_api_ctrl

Pointer to the CAN control block.

Consult Section 2.11 Instance Structure for details.
buffer

Message buffer (number) to read from.
p_frame

Pointer to store the CAN ID, DLC, data and frame type.

Return Values
FSP_SUCCESS Operation succeeded.
FSP_ERR_NOT_OPEN Control block not open.
FSP_ERR_INVALID_ARGUMENT Buffer number invalid.
FSP_ERR_ASSERTION p_api_ctrl or p_frame is NULL.
FSP_ERR_BUFFER_EMPTY Buffer or FIFO is empty.

Properties
Prototyped in r_canfd.h
Implemented in r_canfd_rx.c

Description
Read data from a CAN FD Message Buffer or FIFO.

Example
#define ZERO (0U)
can_frame_t g_canfd_rx_frame;

/* Read the input frame received */
 err = R_CANFD_Read(&g_canfd0_ctrl, ZERO, &g_canfd_rx_frame);

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 41 of 60
Dec.13.23

R_CANFD_ModeTransition
Switch to a different channel, global or test mode.

Format
fsp_err_t R_CANFD_ModeTransition (can_ctrl_t *const p_api_ctrl,
 can_operation_mode_t operation_mode,
 can_test_mode_t test_mode);

Parameters
p_api_ctrl

Pointer to the CAN control block.
Consult Section 2.11 Instance Structure for details.

operation_mode
Destination CAN FD operation state.

test_mode
Destination CAN FD test state.

Return Values
FSP_SUCCESS Operation succeeded.
FSP_ERR_NOT_OPEN Control block not open.
FSP_ERR_ASSERTION Null pointer presented.
FSP_ERR_INVALID_MODE Cannot change to the requested mode from
 the current global mode.

Properties
Prototyped in r_canfd.h
Implemented in r_canfd_rx.c

Description
Switch to a different channel, global or test mode.

Example
/* Switch to external loopback mode */
 R_CANFD_ModeTransition(&g_canfd0_ctrl, CAN_OPERATION_MODE_NORMAL,
(can_test_mode_t) CAN_TEST_MODE_LOOPBACK_EXTERNAL);

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 42 of 60
Dec.13.23

R_CANFD_InfoGet
Get CAN FD state and status information for the channel.

fsp_err_t R_CANFD_InfoGet (can_ctrl_t *const p_api_ctrl,

 can_info_t *const p_info);

Parameters
p_api_ctrl

Handle for channel (pointer to channel control block)
Consult Section 2.11 Instance Structure for details.

p_info
Memory address to return channel specific data to.

Return Values
FSP_SUCCESS Operation succeeded.
FSP_ERR_NOT_OPEN Control block not open.
FSP_ERR_ASSERTION Null pointer presented.

Properties
Prototyped in r_canfd.h
Implemented in r_canfd_rx.c

Description
Get CAN FD state and status information for the channel.

Example
#define RESET_VALUE (0x00)
/* Variable to store rx frame status info*/
 can_info_t can_rx_info =
 {
 .error_code = RESET_VALUE,
 .error_count_receive = RESET_VALUE,
 .error_count_transmit = RESET_VALUE,
 .rx_fifo_status = RESET_VALUE,
 .rx_mb_status = 1,
 .status = RESET_VALUE,
 };

/* Get CAN FD status*/
 R_CANFD_InfoGet(&g_canfd0_ctrl, &can_rx_info);

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 43 of 60
Dec.13.23

R_CANFD_CallbackSet
Updates the user callback with the option to provide memory for the callback argument structure.
Implements can_api_t::callbackSet..

Format
fsp_err_t R_CANFD_CallbackSet (can_ctrl_t *const p_api_ctrl,
 void(*)(can_callback_args_t *) p_callback,
 void const *const p_context,
 can_callback_args_t *const p_callback_memory);

Parameters
p_api_ctrl

Control block set in can_api_t::open call.
Consult Section 2.11 Instance Structure for details.

p_callback
Callback function to register

p_context
Pointer to send to callback function

p_callback_memory
Pointer to volatile memory where callback structure can be allocated. Callback
arguments allocated here are only valid during the callback.

Return Values
FSP_SUCCESS Callback updated successfully.
FSP_ERR_ASSERTION A required pointer is NULL.
FSP_ERR_NOT_OPEN The control block has not been opened.
FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and p_callback_memory is either

secure or NULL.

Properties
Prototyped in r_canfd.h
Implemented in r_canfd_rx.c

Description
Updates the user callback with the option to provide memory for the callback argument structure.

Example
/* Config callback function */
 R_CANFD_CallbackSet(&g_canfd0_ctrl, canfd_callback, NULL, NULL);

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 44 of 60
Dec.13.23

Example
Basic Example

This is a basic example of minimal use of the CAN FD module in an application. It is implemented with
classic CAN. If have a new message coming, the program will read it. Or the User can press sw2 to send a
message to a CAN bus.
Note

It is recommended to use RX FIFOs for reception as there are no interrupts for RX message buffers
in this software.

#define CAN_BUFFER_NUMBER_0 (0U) //buffer number
#define ZERO (0U)
#define CAN_ID (0x1100) //ID of transmit frame
#define CAN_CLASSIC_FRAME_DATA_BYTES (8U) //Data Length code for classic frame
#define SIZE_8 (8u)
extern can_bit_timing_cfg_t g_canfd0_bit_timing_cfg; /* extern to change default
value */
can_frame_t g_canfd_tx_frame; //CAN FD transmit frame
can_frame_t g_canfd_rx_frame;
#define RESET_VALUE (0x00)

/* Variable to store rx frame status info*/
 can_info_t can_rx_info =
 {
 .error_code = RESET_VALUE,
 .error_count_receive = RESET_VALUE,
 .error_count_transmit = RESET_VALUE,
 .rx_fifo_status = RESET_VALUE,
 .rx_mb_status = 1,
 .status = RESET_VALUE,
 };
/* Acceptance filter array parameters
CANFD_CFG_AFL_CH0_RULE_NUM = 1 */
/* Acceptance filter array parameters */
#define CANFD_FILTER_ID (0x00001000)
#define MASK_ID (0x0FFFF000)
#define MASK_ID_MODE (1)
#define ZERO (0U) //Array Index value
const canfd_afl_entry_t p_canfd0_afl[CANFD_CFG_AFL_CH0_RULE_NUM] =
{
 /* Accept a message with Extended ID 0x1000-0x1FFF */
 /* Specify the ID, ID type and frame type to accept. */
 {

CANFD_FILTER_ID,
0,
CAN_FRAME_TYPE_DATA,
CAN_ID_MODE_EXTENDED,
MASK_ID,
0,
ZERO,
MASK_ID_MODE,
(canfd_minimum_dlc_t)ZERO,
0,
CANFD_RX_MB_0,
0,
CANFD_RX_FIFO_0
},

};

void main(void)

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 45 of 60
Dec.13.23

{
 g_canfd0_extended_cfg.p_afl = p_canfd0_afl;
 /* Nominal rate: 1Mbps; DLL: 40M Hz. */
 g_canfd0_bit_timing_cfg.baud_rate_prescaler = 1;
 g_canfd0_bit_timing_cfg.synchronization_jump_width = 1;
 g_canfd0_bit_timing_cfg.time_segment_1 = 20;
 g_canfd0_bit_timing_cfg.time_segment_2 = 19;

 /* Fill tx frame data that is to be sent*/
 for(uint16_t j = 0; j < SIZE_8; j++)
 {
 g_canfd_tx_frame.data[j] = (uint8_t) (j + 1);
 }

 R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_MPC);

 /* Set CRX0 pin */
 PORT3.PMR.BIT.B3 = 0U;
 PORT3.PDR.BIT.B3 = 0U;
 MPC.P33PFS.BYTE = 0x10U;
 PORT3.PMR.BIT.B3 = 1U;
 PORT3.PDR.BIT.B3 = 0U;

 /* Set CTX0 pin */
 PORT3.PMR.BIT.B2 = 0U;
 PORT3.PDR.BIT.B2 = 0U;
 MPC.P32PFS.BYTE = 0x10U;
 PORT3.PMR.BIT.B2 = 1U;
 PORT3.PDR.BIT.B2 = 1U;

 R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_MPC);

 fsp_err_t err;
 /* Initialize the API. */
 err = R_CANFD_Open(&g_canfd0_ctrl, &g_canfd0_cfg);

while(1)
{
 /* Check whether having the new message... */
 can_read_operation();

 /* press sw2 to send a message to a CAN bus */
 read_switches();
}

/* Call sw2_func() when press sw2 */
void sw2_func(void)
{
 can_operation();
}/* end sw2_func() */

void can_operation(void)
{

 /* Update transmit frame parameters */
 g_canfd_tx_frame.id = CAN_ID;
 g_canfd_tx_frame.id_mode = CAN_ID_MODE_EXTENDED;
 g_canfd_tx_frame.type = CAN_FRAME_TYPE_DATA;

 /* Classic CAN 8 bytes */
 g_canfd_tx_frame.data_length_code = CAN_CLASSIC_FRAME_DATA_BYTES;

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 46 of 60
Dec.13.23

 g_canfd_tx_frame.options = ZERO;

 /* Transmission of data over classic CAN frame */
 can_write_operation(g_canfd_tx_frame);
}

static void can_write_operation(can_frame_t can_transmit_frame)
{
 fsp_err_t err = FSP_SUCCESS;

 /* Transmit the data from buffer #0 with tx_frame */
 err = R_CANFD_Write(&g_canfd0_ctrl, CAN_BUFFER_NUMBER_0,
&can_transmit_frame);
}

void can_read_operation(void)
{
 fsp_err_t err = FSP_SUCCESS;

 /* Get the status information for CAN FD transmission */
 err = R_CANFD_InfoGet(&g_canfd0_ctrl, &can_rx_info);

 /* Check if the data is received in FIFO */
 if(can_rx_info.rx_mb_status)
 {
 /* Read the input frame received */
 err = R_CANFD_Read(&g_canfd0_ctrl, ZERO, &g_canfd_rx_frame);
 }
}

Flexible Data

This example demonstrates sending an FD message with bitrate switching (Nominal rate = 1Mbps, Data rate
= 8Mbps). If have a new message coming, the program will read it. Or the User can press switch 2 to send a
message to a CAN bus

#define CAN_BUFFER_NUMBER_0 (0U) //buffer number
#define ZERO (0U)
#define CAN_ID (0x1100) //ID of transmit frame
#define CAN_FD_DATA_LENGTH_CODE (64U) //Data Length code for classic frame
#define SIZE_64 (64u)
extern can_bit_timing_cfg_t g_canfd0_bit_timing_cfg; /* extern to change default
value */
extern can_bit_timing_cfg_t g_canfd0_data_timing_cfg; /* extern to change
default value */
can_frame_t g_canfd_tx_frame; //CAN FD transmit frame
can_frame_t g_canfd_rx_frame;
#define RESET_VALUE (0x00)

/* Variable to store rx frame status info*/
 can_info_t can_rx_info =
 {
 .error_code = RESET_VALUE,
 .error_count_receive = RESET_VALUE,
 .error_count_transmit = RESET_VALUE,
 .rx_fifo_status = RESET_VALUE,
 .rx_mb_status = 1,
 .status = RESET_VALUE,
 };
/* Acceptance filter array parameters
CANFD_CFG_AFL_CH0_RULE_NUM = 1 */

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 47 of 60
Dec.13.23

/* Acceptance filter array parameters */
#define CANFD_FILTER_ID (0x00001000)
#define MASK_ID (0x0FFFF000)
#define MASK_ID_MODE (1)
#define ZERO (0U) //Array Index value
const canfd_afl_entry_t p_canfd0_afl[CANFD_CFG_AFL_CH0_RULE_NUM] =
{
 /* Accept a message with Extended ID 0x1000-0x1FFF */
 /* Specify the ID, ID type and frame type to accept. */
 {

CANFD_FILTER_ID,
0,
CAN_FRAME_TYPE_DATA,
CAN_ID_MODE_EXTENDED,
MASK_ID,
0,
ZERO,
MASK_ID_MODE,
(canfd_minimum_dlc_t)ZERO,
0,
CANFD_RX_MB_0,
0,
CANFD_RX_FIFO_0
},

};

void main(void)
{
 g_canfd0_extended_cfg.p_afl = p_canfd0_afl;
 /* Nominal rate: 1Mbps; DLL: 40M Hz. */
 g_canfd0_bit_timing_cfg.baud_rate_prescaler = 1;
 g_canfd0_bit_timing_cfg.synchronization_jump_width = 1;
 g_canfd0_bit_timing_cfg.time_segment_1 = 20;
 g_canfd0_bit_timing_cfg.time_segment_2 = 19;

 /* Data rate: 8Mbps; DLL: 40M Hz. */
 g_canfd0_data_timing_cfg.baud_rate_prescaler = 1;
 g_canfd0_data_timing_cfg.synchronization_jump_width = 1;
 g_canfd0_data_timing_cfg.time_segment_1 = 2;
 g_canfd0_data_timing_cfg.time_segment_2 = 2;

 /* Fill tx frame data that is to be sent*/
 for(uint16_t j = 0; j < SIZE_64; j++)
 {
 g_canfd_tx_frame.data[j] = (uint8_t) (j + 1);
 }

 R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_MPC);

 /* Set CRX0 pin */
 PORT3.PMR.BIT.B3 = 0U;
 PORT3.PDR.BIT.B3 = 0U;
 MPC.P33PFS.BYTE = 0x10U;
 PORT3.PMR.BIT.B3 = 1U;
 PORT3.PDR.BIT.B3 = 0U;

 /* Set CTX0 pin */
 PORT3.PMR.BIT.B2 = 0U;
 PORT3.PDR.BIT.B2 = 0U;
 MPC.P32PFS.BYTE = 0x10U;
 PORT3.PMR.BIT.B2 = 1U;

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 48 of 60
Dec.13.23

 PORT3.PDR.BIT.B2 = 1U;

 R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_MPC);

 fsp_err_t err;
 /* Initialize the API. */
 err = R_CANFD_Open(&g_canfd0_ctrl, &g_canfd0_cfg);

while(1)
{
 /* Check whether having the new message... */
 can_read_operation();

 /* press sw2 to send a message to a CAN bus */
 read_switches();
}

/* Call sw2_func() when press sw2 */
void sw2_func(void)
{
 canfd_operation();
}/* end sw2_func() */

void canfd_operation(void)
{

 /* Update transmit frame parameters */
 g_canfd_tx_frame.id = CAN_ID;
 g_canfd_tx_frame.id_mode = CAN_ID_MODE_EXTENDED;
 g_canfd_tx_frame.type = CAN_FRAME_TYPE_DATA;

 /* FD CAN 64bytes*/
 g_canfd_tx_frame.data_length_code = CAN_FD_DATA_LENGTH_CODE;
 g_canfd_tx_frame.options = CANFD_FRAME_OPTION_FD | CANFD_FRAME_OPTION_BRS;

 /* Transmission of data over FD CAN frame */
 can_write_operation(g_canfd_tx_frame);
}
void can_read_operation(void)
{
 fsp_err_t err = FSP_SUCCESS;

 /* Get the status information for CAN FD transmission */
 err = R_CANFD_InfoGet(&g_canfd0_ctrl, &can_rx_info);

 /* Check if the data is received in FIFO */
 if(can_rx_info.rx_mb_status)
 {
 /* Read the input frame received */
 err = R_CANFD_Read(&g_canfd0_ctrl, ZERO, &g_canfd_rx_frame);
 }
}
static void can_write_operation(can_frame_t can_transmit_frame)
{
 fsp_err_t err = FSP_SUCCESS;

 /* Transmit the data from buffer #0 with tx_frame */
 err = R_CANFD_Write(&g_canfd0_ctrl, CAN_BUFFER_NUMBER_0,
&can_transmit_frame);
}

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 49 of 60
Dec.13.23

4. Pin Setting
To use the CAN FD FIT module, assign input/output signals of the peripheral function to pins with the multi-
function pin controller (MPC). The pin assignment is referred to as the “Pin Setting” in this document.

Please perform the pin setting after calling the R_CANFD_Open function.

When performing the pin setting in the e2 studio, the Pin Setting feature of the Smart Configurator can be
used. When using the Pin Setting feature, a source file is generated according to the option selected in the
Pin Setting window in the Smart Configurator. Then pins are configured by calling the function defined in the
source file. Refer to Table 4.1 Function Output by the Smart Configurator for details.

Table 4.1 Function Output by the Smart Configurator

MCU Used Function to be Output Remarks
All MCUs R_CANFD_PinSet_CANFDx x: Channel number

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 50 of 60
Dec.13.23

5. Demo Projects
Demo projects include function main() that utilizes the FIT module and its dependent modules (e.g. r_bsp).
This FIT module includes the following demo projects.

5.1 Adding a Demo to a Workspace
Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To
add a demo project to a workspace, select File>Import>General>Existing Projects into Workspace, then click
“Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

The demo CAN FD application code is in the ../src directory, namely in files main.c and switches.c.

To run the demo, import the e2studio project archive r01an6130esxxxx-rx-canfd.zip into e2 studio as
explained below.

5.1.1 Import and Debug Project with e2 studio
(a) New workspace
Create an empty folder, where you want the workspace.

Start e2 studio, and point to above folder when e2 studio asks what workspace to open.

Click Workbench icon (bottom right in blue intro-screen).

Continue with next step below.

(b) Existing workspace
Select Import.

Select General => Existing Projects into workspace. ("Create new projects from an archive file or directory.")

If the code is a zipped, previously exported archive:

Browse to the archive zip-file and select it.

If the code is an e2 studio project directory with source code (with a .project file):
Browse to the root directory of the project. (The folder containing the “.project” file.) Make sure to check
box "Copy project to workspace" if you want the code to be local to the workspace (where the .metadata
directory is).

Click "Finish".

You have now imported this project into the workspace. You can go ahead and import other projects into the
same workspace.

(c) Run the code
Create a debug session, download and run the code.

5.1.2 Run Demo
Included in the package is a demonstration of receiving and transmitting data at Nominal and Data Bit Rate
of 1 Mbps and 5 Mbps respectively.

The demo can physically be set up a few different ways:

Program two boards and connect them together over the CAN bus.

Use a CAN FD bus monitor, e.g. Kvaser Leaf Pro HS v2, to send and receive frames to/from the demo.

With CAN_TEST_MODE_LOOPBACK_INTERNAL is used, communication is internally and no external bus
is needed

(a) Operation
The demo transmits and receives frames with the default TX-ID as CAN_ID and RX_ID as
CANFD_FILTER_ID. The demo starts up by setting callback function to canfd0_callback, and initializing

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 51 of 60
Dec.13.23

necessary I/O pins of the CAN FD module. Then R_CANFD_Open is called to open the CAN FD module. If it
is opened successfully, the program runs into a loop which checks whether there are new messages or
which switch is pressed.

(b) User action
Press SW1 to transmit and receive a message in the internal loop-back test mode.

Press SW2 to send a message to the CAN FD analyzer or other board.

5.2 The Renesas Debug Console
Enabling trace data from the E1/E20 to the e2 studio Debug Console allows you to output data from your
application in real-time. This means you have the ability to use printf() statements in C to send trace strings
to the standard output. Standard output will in this case be the E1/E20 debug register.

To use this set BSP_CFG_IO_LIB_ENABLE to 1 in ../r_config/r_bsp_config.h.

The macro should automatically enable code in order to make the Debug Console available, but there are
certain actions you must take.

1. Make sure INIT_IOLIB() is called. See resetprog.c.

2. The code in lowlvl.c should contain functions charput and charget so that E1/E20 debug registers
are used for the lowest level I/O processing. charput for example must contain

/* Wait for transmit buffer to be empty */
while(0 != (E1_DBG_PORT.DBGSTAT & TXFL0EN));

3. Include <stdio.h> in any files where you wish to use printf-statements.

To any file where printf() is called, add
#if BSP_CFG_IO_LIB_ENABLE
 #include <stdio.h>
#endif

4. In e2 studio, depending on version, it may be necessary to add the Debug Console window by
clicking on both icons “1/0” and “Pin Console” as shown below. Both must be on so the print
buffer in E1/E20 can be emptied and not block code execution.

Figure 1. Buttons to control the Debug Console.

5. Press the I/O button for the console in e2 studio again if the console seems unresponsive. If nothing
is printed, press the Clear icon a few times. (The icon partially concealed by the red border.)

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 52 of 60
Dec.13.23

6. Test Modes
The CANFD module can be configured into test modes to allow testing of certain features. These features
are provided only for special purposes and care must be taken when configuring the CANFD module in the
test modes.
The test modes can be broadly split into two groups:

• Channel specific test modes
• Global test mode (the current source code does not support global test mode)

6.1 Channel Specific Test Mode
CAN FD channel can be configured into following test modes:

- Basic test mode
- Listen-only mode
- External loop back mode
- Internal loop back mode
- Restricted operation mode (the current source code does not support this test mode)

Use R_CANFD_ModeTransition to switch to a test mode.

6.1.1 Basic test mode
The basic test mode should be used when a particular test setting needs to be enabled other than when in
listen-only and self-test modes.

6.1.2 Listen Only mode = Bus Monitoring
In Listen Only mode, or Bus Monitoring, the node is quiet. A node in Listen Only mode will not acknowledge
messages or send Error frames etc. This enables you to test your node without affecting bus traffic.

Caution:

1. Do not transmit frames from the Listen Only node. That is not a correct behavior, and the CAN FD
module has not been designed for this.

2. If you only have two nodes on the network and one of them is Listen Only, the other node will not get
any ACKs and will keep trying to send over and over.

3. Mark entering listen only mode clearly in your code, so you remember to disable Listen Only mode
again.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 53 of 60
Dec.13.23

Figure 2. Listen-only mode node: Do not send ACK or error message

A node in Listen Only mode will not acknowledge messages or send Error frames etc.

Listen Only is useful for bringing up a new node that has been added to an existing CAN bus. The mode can
be used for a recently connected node’s application to ensure that frames have properly been received
before going live.

A common usage is to detect a bus’s communication speed before letting the new unit go ‘live’. Listen Only
is not a part of the Bosch CAN specification, but is required by ISO-11898 for bitrate detection.

6.1.3 Loopback
With loopback modes, the node will itself also receive any messages it sends if a buffer is configured to
receive the same message. This can be useful for testing an application, or self-diagnosis during application
debug.

6.1.3.1 Internal loopback mode - Test node without CAN bus
Internal Loopback mode, or Self-Test mode, allows you to communicate via the CAN FD buffers without
connecting to a bus. The node acknowledges its own data with the ACK bit in the data frame. The node also
stores its own transmitted messages into a receive buffer if it was configured for that CAN FD ID. This is
normally not possible.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 54 of 60
Dec.13.23

Figure 3. CAN internal loopback mode

CAN Internal Loopback mode let you test the functionality of a node without having a CAN bus connected.

Internal Loopback can be convenient when testing as this mode allows the CAN FD controller to run without
sending CAN FD errors due to no ACKs received when the node is alone on the bus, it acknowledges
transmitted frames itself.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 55 of 60
Dec.13.23

6.1.3.2 External loopback mode - Test node on bus
External Loopback is like Internal Loopback with the differences that there must be a CAN bus connected to
the node, and that the messages is also transmitted onto the bus. Just like internal loopback, a sent
message is acknowledged by the node itself so the node can be alone on the bus. This is an advantage as
nodes can be tested standalone.

Figure 4. External loopback: Send a message over the CAN bus and receive the message on the

same node

The message is transmitted onto the CAN bus and can be received back on the same node. This is
convenient when testing code and when a node is alone on the bus.

6.1.4 Restricted operation
The current source code does not support restricted operation mode.

6.2 Global test mode enable register
The current source code does not support global test mode.

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 56 of 60
Dec.13.23

7. Appendices
7.1 Confirmed Operation Environment
This section describes confirmed operation environment for the CAN FD FIT module.

Table 7.1 Confirmed Operation Environment (Rev.1.31)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 23.10.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202305
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.1.31
Board used -

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 57 of 60
Dec.13.23

Table 7.2 Confirmed Operation Environment (Rev.1.30)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 22.10.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.1.30
Board used Renesas Flexible Motor Control Kit for RX26T (Part Number:

RTK0EMXE70S00020BJ)

Table 7.3 Confirmed Operation Environment (Rev.1.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 22.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.1.20
Board used Renesas Starter Kit for RX660 (product number. RTK556609HC10000BJ)

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 58 of 60
Dec.13.23

Table 7.4 Confirmed Operation Environment (Rev.1.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 22.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.1.10
Board used Renesas Starter Kit for RX660 (product number. RTK556609HC10000BJ)

Table 7.5 Confirmed Operation Environment (Rev.1.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 22.4.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.1.00
Board used Renesas Starter Kit for RX660 (product number. RTK556609HC10000BJ)

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 59 of 60
Dec.13.23

7.2 Troubleshooting
(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

 Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(R01AN1826)”

 Using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using this FIT module, the board support package FIT module (BSP module) must also be added
to the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_canfd_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

(3) Q: I have added the FIT module to the project and built it. Then I got an error for when the configuration
setting is wrong.

A: The setting in the file “r_canfd_rx_config.h” may be wrong. Check the file “r_canfd_rx_config.h”. If there
is a wrong setting, set the correct value for that. Refer to 2.9 Configuration for details.

Related Technical Updates
This module reflects the content of the following technical updates.

None

RX Family CAN FD API Using Firmware Integration Technology

R01AN6130ES0131 Rev.1.31 Page 60 of 60
Dec.13.23

Revision History

Rev. Date
Description
Page Summary

1.00 May.31.2022 — First release.
1.10 Jun.28.2022

52, 53
58

Program

Updated demo projects.
7.1 Confirmed Operation Environment:
Added Table for Rev.1.10
Updated demo projects.

1.20 Jan.06.2023

58

Program

7.1 Confirmed Operation Environment:
Added Table for Rev.1.20
Fixed TXRF flag not cleared in the function
canfd_channel_tx_isr().

1.30 Mar.31.2023

1
35
58

Program

Added support for RX26T.
Added code size corresponding to RX26T.
7.1 Confirmed Operation Environment:
Added Table for Rev.1.30
Added support for RX26T.

1.31 Dec.13.2023

34, 49

56

Program

Deleted the description of FIT configurator from "2.14 Adding
the CAN FD FIT Module to Your Project", "4. Pin Settings".
7.1 Confirmed Operation Environment:
Added Table for Rev.1.31.
Added WAIT_LOOP comments.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Basics
	1.1.1 Flexible Data (FD)
	1.1.2 Bit Rate Calculation
	1.1.3 Error Handing
	1.1.4 DLC Checking
	1.1.5 FD Payload Overflow

	1.2 Communication Layers
	1.3 Using the FIT CAN FD module
	1.3.1 Using FIT CAN FD module in C++ project

	1.4 Physical Connection
	1.5 The CAN FD Buffer

	2. API Information
	2.1 Hardware Requirements
	2.2 Hardware Resource Requirements
	2.2.1 Peripheral Required
	2.2.2 Other Peripherals Used

	2.3 Software Requirements
	2.4 Limitations
	2.4.1 RAM Location Limitations

	2.5 Supported Toolchain
	2.6 Interrupt Vector
	2.7 Header Files
	2.8 Integer Types
	2.9 Configuration
	2.10 Interfaces and Instances
	2.10.1 CAN interface
	2.10.2 CAN FD instance

	2.11 Instance Structure
	2.12 Code Size
	2.13 Callback Functions
	2.14 Adding the CAN FD FIT Module to Your Project
	2.15 “for”, “while” and “do while” statements

	3. API Functions
	Summary
	Return Codes
	R_CANFD_Open
	R_CANFD_Close
	R_CANFD_Write
	R_CANFD_Read
	R_CANFD_ModeTransition
	R_CANFD_InfoGet
	R_CANFD_CallbackSet
	Example

	4. Pin Setting
	5. Demo Projects
	5.1 Adding a Demo to a Workspace
	5.1.1 Import and Debug Project with e2 studio
	5.1.2 Run Demo

	5.2 The Renesas Debug Console

	6. Test Modes
	6.1 Channel Specific Test Mode
	6.1.1 Basic test mode
	6.1.2 Listen Only mode = Bus Monitoring
	6.1.3 Loopback
	6.1.3.1 Internal loopback mode - Test node without CAN bus
	6.1.3.2 External loopback mode - Test node on bus

	6.1.4 Restricted operation

	6.2 Global test mode enable register

	7. Appendices
	7.1 Confirmed Operation Environment
	7.2 Troubleshooting

	Related Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

