
 APPLICATION NOTE

R01AN2166EJ0131 Rev.1.31 Page 1 of 85
Mar 01, 2025

RX Family
USB Basic Mini Host and Peripheral Driver (USB Mini Firmware)
Using Firmware Integration Technology

Introduction
This application note describes the USB basic firmware, which utilizes Firmware Integration Technology (FIT). This
module performs hardware control of USB communication. It is referred to below as the USB-BASIC-F/W FIT
module.

Target Device
RX111 Group
RX113 Group
RX231 Group
RX23W Group
RX261 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Related Documents
1. Universal Serial Bus Revision 2.0 specification

【http://www.usb.org/developers/docs/】
2. RX111 Group User’s Manual: Hardware (Document number. R01UH0365)
3. RX113 Group User’s Manual: Hardware (Document number. R01UH0448)
4. RX231 Group User’s Manual: Hardware (Document number. R01UH0496)
5. RX23W Group User’s Manual: Hardware (Document number. R01UH0823)
6. RX261 Group User’s Manual: Hardware (Document number. R01UH1045)

 Renesas Electronics Website

【http://www.renesas.com/】

 USB Devices Page
【http://www.renesas.com/prod/usb/】

R01AN2166EJ0131
Rev.1.31

Mar 01, 2025

http://www.usb.org/developers/docs/
http://www.renesas.com/
http://www.renesas.com/prod/usb/

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 2 of 85
Mar 01, 2025

Contents

1. Overview .. 3

2. Peripheral ... 6

3. Host... 13

4. API Functions .. 19

5. Callback Function (RTOS only) ... 53

6. Return Value of R_USB_GetEvent Function / Retrieval of USB Completion Events 54

7. Device Class Types ... 57

8. Configuration (r_usb_basic_mini_config.h) ... 58

9. Structures .. 62

10. USB Class Requests ... 66

11. DTC/DMA Transfer .. 74

12. Additional Notes .. 75

13. Creating an Application Program .. 80

14. Program Sample .. 84

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 3 of 85
Mar 01, 2025

1. Overview
The USB-BASIC-F/W FIT module performs USB hardware control. The USB-BASIC-F/W FIT module operates in
combination with one type of sample device class drivers provided by Renesas.
This module supports the following functions.

<Overall>
・ Supporting USB Host or USB Peripheral.
・ Device connect/disconnect, suspend/resume, and USB bus reset processing.
・ Control transfer on pipe 0.
・ Data transfer on pipes 1 to 9. (Bulk or Interrupt transfer)
・ This driver supports RTOS version (hereinafter called "RTOS") and Non-OS version (hereinafter called

"Non-OS"). RTOS uses the realtime OS. Non-OS does not use the real time OS.
・ The RTOS USB driver supports FreeRTOS and uITRON(RI600V4).

<Host mode>
・ In host mode, enumeration as Low-speed/Full-speed device (However, operating speed is different by devices

ability.)
・ Transfer error determination and transfer retry.

<Peripheral mode>
・ In peripheral mode, enumeration as USB Host of USB1.1/2.0/3.0.

1.1 Note
This application note is not guaranteed to provide USB communication operations. The customer should verify
operations when utilizing the USB device module in a system and confirm the ability to connect to a variety of
different types of devices.

1.2 Limitations
This driver is subject to the following limitations.

1. In USB host mode, the module does not support suspend during data transfer. Execute suspend only after
confirming that data transfer is complete.

2. Multiconfigurations are not supported.

3. Multiinterfaces are not supported.

4. The USB host and USB peripheral modes cannot operate at the same time.

5. USB Hub can not be connected in USB host mode.

6. DMA can not be used when using RX111 and RX113.

7. The FreeRTOS does not support RX111 and RX113.

8. The RTOS USB driver does not suppot GCC and IAR.

9. This USB driver does not support the error processing when the out of specification values are specified to
the arguments of each function in the driver.

10. This driver does not support the CPU transfer using D0FIFO/D1FIFO register.

1.3 Terms and Abbreviations
APL : Application program
CDP : Charging Downstream Port
DCP : Dedicated Charging Port
HBC : Host Battery Charging control
HCD : Host control driver of USB-BASIC-FW
HDCD : Host device class driver (device driver and USB class driver)
H/W : Renesas USB device
MGR : Peripheral device state maneger of HCD
Non-OS : USB Driver for OS less
PBC : Peripheral Battery Charging control

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 4 of 85
Mar 01, 2025

PCD : Peripheral control driver of USB-BASIC-FW
PDCD : Peripheral device class driver (device driver and USB class driver)
RSK : Renesas Starter Kits
RSSK : Renesas Solution Starter Kit
RTOS : USB driver for the real-time OS
USB : Universal Serial Bus
USB-BASIC-FW : USB Basic Mini Host and Peripheral Driver
Scheduler : Used to schedule functions, like a simplified OS.
Task : Processing unit

1.4 USB-BASIC-FW FIT module
User needs to integrate this module to the project using r_bsp. User can control USB H/W by using this module API
after integrating to the project.

1.5 Software Configuration
In peripheral mode, USB-BASIC-FW comprises the peripheral driver (PCD), and the application (APL). PDCD is the
class driver and not part of the USB-BASIC-F/W. See Table 1-1. In host mode, USB-BASIC-FW comprises the host
driver (HCD), the manager (MGR) and the application (APL). HDD and HDCD are not part of the USB-BASIC-F/W,
see Table 1-1
The peripheral driver (PCD) and host driver (HCD) initiate hardware control through the hardware access layer
according to messages from the various tasks or interrupt handler. They also notify the appropriate task when
hardware control ends, of processing results, and of hardware requests.
Manager manages the connection state of USB peripherals and performs enumeration. In addition, manager issues a
message to host driver when the application changes the device state.
The customer will need to make a variety of customizations, for example designating classes, issuing vendor-specific
requests, making settings with regard to the communication speed or program capacity, or making individual settings
that affect the user interface.

Device class driver (PDCD)

Peripheral Driver Task (PCD)

Application (APL)

USB Basic FIT module (r_usb_basic_mini)

Manager Task (MGR)

Host Driver Task (HCD)

1 USB Interrupt Handler

Hardware

Sc
he

du
le

r
（

no
n-

O
S）

Device class driver (HDCD)

Device driver (HDD)

Application (APL)

Peripheral Mode Host Mode

User Programming Layer (UPL)

Figure 1-1 USB Software Configuration of USB-BASIC-FW (Non-OS)

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 5 of 85
Mar 01, 2025

6 Device class driver (PDCD)

2 Peripheral Control Driver Task
(PCD)

4 Manager Task (MGR)

3 Host Control Driver Task (HCD)

1 USB Interrupt Handler

MCU

6 Device class driver (HDCD)
R

ea
l t

im
e

O
S

7 Application Task (APL)7 Application Task (APL)

Peripheral Mode Host Mode

USB Basic FIT Module (r_usb_basic_mini)

Figure 1-2 USB Software Configuration of USB-BASIC-FW (RTOS)

Table 1-1 Software function overview

No Module Name Function
1 H/W Access Layer Hardware control
2 USB Interrupt Handler USB interrupt handler

(USB packet transmit/receive end and special signal detection)
3 Peripheral Control Driver

(PCD)
Hardware control in peripheral mode
Peripheral transaction management

4 Host control driver
(HCD)

Hardware control in host mode
Host transaction management

5 Host Manager
(MGR)

Device state management
Enumeration
HCD control message determination

6 Device Class Driver --
7 Device Driver --
8 Application Provided by the customer as appropriate for the system.

1.6 Scheduler Function
A scheduler function manages requests generated by tasks and hardware according to their relative priority. When
multiple task requests are generated with the same priority, they are executed using a FIFO configuration. Requests
between tasks are implemented by transmitting and receiving messages.

1.7 Pin Setting
To use the USB FIT module, input/output signals of the peripheral function has to be allocated to pins with the
multi-function pin controller (MPC). Do the pin setting used in thie module before calling R_USB_Open function.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 6 of 85
Mar 01, 2025

2. Peripheral

2.1 Peripheral Control Driver (PCD)
2.1.1 Basic functions

PCD is a program for controlling the hardware. PCD analyzes requests from PDCD (not part of the USB-BASIC-F/W
FIT module) and controls the hardware accordingly. It also sends notification of control results using a user provided
call-back function. PCD also analyzes requests from hardware and notifies PDCD accordingly.
PCD accomplishes the following:

1. Control transfers. (Control Read, Control Write, and control commands without data stage.)
2. Data transfers. (Bulk, interrupt) and result notification.
3. Data transfer suspensions. (All pipes.)
4. USB bus reset signal detection and reset handshake result notifications.
5. Suspend/resume detections.
6. Attach/detach detection using the VBUS interrupt.

2.1.2 Issuing requests to PCD

API functions are used when hardware control requests are issued to the PCD and when performing data transfers.
Refer to chapter 4, API Functions for the API function.

2.1.3 USB requests

This driver supports the following standard requests.

1. GET_STATUS
2. GET_DESCRIPTOR
3. GET_CONFIGURATION
4. GET_INTERFACE
5. CLEAR_FEATURE
6. SET_FEATURE
7. SET_ADDRESS
8. SET_CONFIGURATION
9. SET_INTERFACE

This driver answers requests other than the above with a STALL response.
Note that, refer to chapter 10, USB Class Requests for the processing method when this driver receives the class
request or vendor request.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 7 of 85
Mar 01, 2025

2.2 API Information
This Driver API follows the Renesas API naming standards.

2.2.1 Hardware Requirements

This driver requires your MCU support the following features:

・ USB

2.2.2 Software Requirements

This driver is dependent upon the following packages:

・ r_bsp
・ r_dtc_rx (using DTC transfer)
・ r_dmaca_rx (using DMA transfer)

2.2.3 Operating Confirmation Environment

Table 2-1 shows the operating confirmation environment of this driver.

Table 2-1 Operation Confirmation Environment

Item Contents
C compiler Renesas Electronics C/C++ compiler for RX Family V.3.07.00

(The option "-lang=C99" is added to the default setting of IDE)
GCC for Renesas RX 8.3.0.202411
(The option "-std=gnu99" is added to the default setting of IDE)
IAR C/C++ Compiler for Renesas RX version 5.10.1

Real-Time OS FreeRTOS V.10.4.3
RI600V4 V.1.06

Endian Little Endian, Big Endian
USB Driver Revision Number Rev.1.31
Using Board Renesas Starter Kit for RX111

Renesas Starter Kit for RX113
Renesas Starter Kit for RX231
Renesas Solution Starter Kit for RX23W

Host Environment The operation of this USB Driver module connected to the following OSes has been
confirmed.

1. Windows® 8.1
2. Windows® 10

2.2.4 Usage of Interrupt Vector

Table 2-2 shows the interrupt vector which this driver uses.

Table 2-2 List of Usage Interrupt Vectors

Device Contents
RX111
RX113
RX231
RX23W
RX261

USBI0 Interrupt (Vector number: 36) / USBR0 Interrupt (Vector number: 90)
USB D0FIFO0 Interrupt (Vector number: 36) / USB D1FIFO0 Interrupt (Vector number: 37)

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 8 of 85
Mar 01, 2025

2.2.5 Timer

This driver (RTOS) uses a timer (CMT) in RX MCU. If a timer is to be used in the user system, use a timer other than
a timer is used by this driver.

2.2.6 Header Files

All API calls and their supporting interface definitions are located in r_usb_basic_mini_if.h.

2.2.7 Integer Types

This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These
types are defined in stdint.h.

2.2.8 Compile Setting

For compile settings, refer to chapter 8, Configuration.

2.2.9 ROM / RAM Size

The follows show ROM/RAM size of this driver.

1. CC-RX (Optimization Level: Default)

(1). Non-OS

 Checks arguments Does not check arguments
ROM size 17.3K bytes (Note 3) 17.0K bytes (Note 4)
RAM size 3.3K bytes 3.3K bytes

(2). RI600V4

 Checks arguments Does not check arguments
ROM size 29.8K bytes (Note 3) 29.5K bytes (Note 4)
RAM size 14.7K bytes 14.7K bytes

(3). FreeRTOS

 Checks arguments Does not check arguments
ROM size 33.8K bytes (Note 3) 33.5K bytes (Note 4)
RAM size 14.7K bytes 14.7K bytes

2. GCC (Optimization Level: -O2)

 Checks arguments Does not check arguments
ROM size 18.7K bytes (Note 3) 18.4K bytes (Note 4)
RAM size 3.2K bytes 3.2K bytes

3. IAR (Optimization Level: Medium)

 Checks arguments Does not check arguments
ROM size 15.0K bytes (Note 3) 14.8K bytes (Note 4)
RAM size 2.6K bytes 2.6K bytes

Note:

1. ROM/RAM size for BSP is included in the above size.

2. The above is the size when specifying RX V2 core option.

3. The ROM size of “Checks arguments” is the value when USB_CFG_ENABLE is specified to
USB_CFG_PARAM_CHECKING definition in r_usb_basic_mini_config.h file.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 9 of 85
Mar 01, 2025

4. The ROM size of “Does not check arguments” is the value when USB_CFG_DISABLE is specified to
USB_CFG_PARAM_CHECKING definition in r_usb_basic_mini_config.h file.

2.2.10 Argument

For the structure used in the argument of API function, refer to chapter 9, Structures.

2.2.11 “for”, “while” and “do while” statements.

In FIT module, when using “for”, “while” and “do while” statements (loop processing) in register reflection waiting
processing, etc., write comments with “WAIT_LOOP” as a keyword for these loop processing. Also, write in the FIT
documentation that “WAIT_LOOP” is written as a comment in these loop processes.

2.2.12 Adding the FIT Module to Your Project

This module must be added to each project in which it is used. Renesas recommends the method using the Smart
Configurator described in (1) or (3) below. However, the Smart Configurator only supports some RX devices. Please
use the methods of (2) or (4) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio

By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project. Refer to
“Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e2 studio

By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project. Refer to
“Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details.

(3) Adding the FIT module to your project using the Smart Configurator in CS+

By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added to your
project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(4) Adding the FIT module to your project on CS+

In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 10 of 85
Mar 01, 2025

2.3 API (Application Programming Interface)

For the detail of the API function, refer to chapter 4, API Functions.

2.4 Class Request
For the processing method when this driver receives the class request, refer to chapter 10, USB Class Requests.

2.5 Descriptor
2.5.1 String Descriptor

This USB driver requires each string descriptor that is constructed to be registered in the string descriptor table. The
following describes how to register a string descriptor.

1. First construct each string descriptor. Then, define the variable of each string descriptor in uint8_t* type.

Example descriptor construction)
uint8_t smp_str_descriptor0[] {
 0x04, /* Length */
 0x03, /* Descriptor type */
 0x09, 0x04 /* Language ID */
};
uint8_t smp_str_descriptor1[] =
{
 0x10, /* Length */
 0x03, /* Descriptor type */
 'R', 0x00,
 'E', 0x00,
 'N', 0x00,
 'E', 0x00,
 'S', 0x00,
 'A', 0x00,
 'S', 0x00
};
uint8_t smp_str_descriptor2[] =
{
 0x12, /* Length */
 0x03, /* Descriptor type */
 'C', 0x00,
 'D', 0x00,
 'C', 0x00,
 '_', 0x00,
 'D', 0x00,
 'E', 0x00,
 'M', 0x00,
 'O', 0x00
};

2. Set the top address of each string descriptor constructed above in the string descriptor table. Define the variables
of the string descriptor table as uint8_t* type.

Note:

The position set for each string descriptor in the string descriptor table is determined by the index values set in
the descriptor itself (iManufacturer, iConfiguration, etc.).
For example, in the table below, the manufacturer is described in smp_str_descriptor1 and the value of
iManufacturer in the device descriptor is “1”. Therefore, the top address "smp_str_descriptor1" is set at Index
“1” in the string descriptor table.

/* String Descriptor table */
uint8_t *smp_str_table[] =
{

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 11 of 85
Mar 01, 2025

 smp_str_descriptor0, /* Index: 0 */
 smp_str_descriptor1, /* Index: 1 */
 smp_str_descriptor2, /* Index: 2 */
};

3. Set the top address of the string descriptor table in the usb_descriptor_t structure member (pp_string). Refer to

chapter 9.4, usb_descriptor_t structure for more details concerning the usb_descriptor_t structure.

4. Set the number of the string descriptor which set in the string descriptor table to usb_descriptor_t structure
member (num_string). In the case of the above example, the value 3 is set to the member (num_string).

2.5.2 Other Descriptors
1. Please construct the device descriptor, configuration descriptor, and qualifier descriptor based on instructions

provided in the Universal Serial Bus Revision 2.0 specification(http://www.usb.org/developers/docs/) Each
descriptor variable should be defined as uint8_t* type.

2. The top address of each descriptor should be registered in the corresponding usb_descriptor_t function member.
For more details, refer to chapter 9.4, usb_descriptor_t structure.

2.6 Peripheral Battery Charging (PBC)
This driver supports PBC.

PBC is a H / W control program to operate the target device as a Portable Device for Battery Charging defined by the
USB Battery Charging Specification (Revision 1.2).

You can get the result of whether USB Host is the SDP or CPD by calling R_USB_GetInformation function. For
R_USB_GetInformation function, refer to chapter 4.13.

http://www.usb.org/developers/docs/

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 12 of 85
Mar 01, 2025

The processing flow of PBC is shown in Figure 2-1.

【Charging Port Detection】

USB State Change
(USB_STS_ATTACH)

BATCHGE = 1

Data Contact Detect

Primary Detection

Result

Secondary Detection

Charging Port

Result

BATCHGE = 0

USB State Charge
(USB_PORTENABLE)

SDP

CDP

【Data Contact Detect】

CNEN=1, IDPSRCE=1, RPDME=1
Software Wait 5[ms]

LNST

Software Wait 11[ms]

LNST

CNEN=0, IDPSRCE=0, RPDME=0

return COMP_SE0

SE0

SE0

not SE0

Timer++
Software Wait 1[ms]

not SE0

Timer > 600
No

Yes

CNEN=0, IDPSRCE=0, RPDME=0

return TIMEOUT

【Primary Detection】

VDPSRCE=1, IDMSINKE=1
Software Wait 42[ms]

Read CHGDETSTS

VDPSRCE=0, IDMSINKE=0
Software Wait 21[ms]

CHGDETSTS

return ChargingPort return SDP

0

1

【Secondary Detection】

VDMSRCE=1, IDPSINKE=1
Software Wait 42[ms]

Read PDDETSTS

VDMSRCE=0, IDPSINKE=0

PDDETSTS

return DCP return CDP

0

1

Figure 2-1 PBC processing flow

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 13 of 85
Mar 01, 2025

3. Host

3.1 Host Control Driver (HCD)
3.1.1 Basic function

HCD is a program for controlling the hardware. The functions of HCD are shown below.

1. Control transfer (Control Read, Control Write, No-data Control) and result notification.
2. Data transfer (bulk, interrupt) and result notification.
3. Data transfer suspension (all pipes).
4. USB communication error detection and automatic transfer retry
5. USB bus reset signal transmission and reset handshake result notification.
6. Suspend signal and resume signal transmission.
7. Attach/detach detection using ATCH and DTCH interrupts.

3.2 Host Manager (MGR)
3.2.1 Basic function

The functions of MGR are shown below.

1. Registration of HDCD.
2. State management for connected devices.
3. Enumeration of connected devices.
4. Searching for endpoint information from descriptors.

3.2.2 USB Standard Requests

MGR enumerates connected devices. The USB standard requests issued by MGR are listed below.

GET_DESCRIPTOR（Device Descriptor）
SET_ADDRESS
GET_DESCRIPTOR（Configuration Descriptor）
SET_CONFIGURATION
SET_FEATURE (HID only)
CLEAR_FEATURE (HID only)

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 14 of 85
Mar 01, 2025

3.3 API Information
This Driver API follows the Renesas API naming standards.

3.3.1 Hardware Requirements

This driver requires your MCU support the following features:

・ USB

3.3.2 Software Requirements

This driver is dependent upon the following packages:

・ r_bsp
・ r_dtc_rx (using DTC transfer)
・ r_dmaca_rx (using DMA transfer)

3.3.3 Operating Confirmation Environment

Table 3-1 shows the operating confirmation environment of this driver.

Table 3-1 Operation Confirmation Environment

Item Contents
C compiler Renesas Electronics C/C++ compiler for RX Family V.3.07.00

(The option "-lang=C99" is added to the default setting of IDE)
GCC for Renesas RX 8.3.0.202411
(The option "-std=gnu99" is added to the default setting of IDE)
IAR C/C++ Compiler for Renesas RX version 5.10.1

Real-Time OS FreeRTOS V.10.4.3
RI600V4 V.1.06

Endian Little Endian, Big Endian
USB Driver Revision Number Rev.1.31
Using Board Renesas Starter Kit for RX111

Renesas Starter Kit for RX113
Renesas Starter Kit for RX231
Renesas Solution Starter Kit for RX23W

3.3.4 Usage of Interrupt Vector

Table 3-2 shows the interrupt vector which this driver uses.

Table 3-2 List of Usage Interrupt Vectors

Device Contents
RX111
RX113
RX231
RX23W
RX261

USBI0 Interrupt (Vector number: 36) / USBR0 Interrupt (Vector number: 90)
USB D0FIFO0 Interrupt (Vector number: 36) / USB D1FIFO0 Interrupt (Vector number: 37)

3.3.5 Header Files

All API calls and their supporting interface definitions are located in r_usb_basic_mini_if.h.

3.3.6 Integer Types

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 15 of 85
Mar 01, 2025

This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These
types are defined in stdint.h.

3.3.7 Compile Setting

For compile settings, refer to chapter 8, Configuration..

3.3.8 ROM / RAM Size

The follows show ROM/RAM size of this driver.

1. CC-RX (Optimization Level: Default)

(1). Non-OS

 Checks arguments Does not check arguments
ROM size 18.7K bytes (Note 3) 18.4K bytes (Note 4)
RAM size 3.7K bytes 5.3K bytes

(2). RI600V4

 Checks arguments Does not check arguments
ROM size 35.4K bytes (Note 3) 35.1K bytes (Note 4)
RAM size 4.3K bytes 4.3K bytes

(3). FreeRTOS

 Checks arguments Does not check arguments
ROM size 31.9K bytes (Note 3) 31.6K bytes (Note 4)
RAM size 14.2K bytes 14.2K bytes

2. GCC (Optimization Level: -O2)

 Checks arguments Does not check arguments
ROM size 22.0K bytes (Note 3) 21.7K bytes (Note 4)
RAM size 3.3K bytes 5.1K bytes

3. IAR (Optimization Level: Medium)

 Checks arguments Does not check arguments
ROM size 15.8K bytes (Note 3) 15.6K bytes (Note 4)
RAM size 2.5K bytes 2.5K bytes

Note:

1. ROM/RAM size for BSP is included in the above size.

2. The above is the size when specifying RX V2 core option.

3. The ROM size of “Checks arguments” is the value when USB_CFG_ENABLE is specified to
USB_CFG_PARAM_CHECKING definition in r_usb_basic_mini_config.h file.

4. The ROM size of “Does not check arguments” is the value when USB_CFG_DISABLE is specified to
USB_CFG_PARAM_CHECKING definition in r_usb_basic_mini_config.h file.

3.3.9 Argument

For the structure used in the argument of API function, refer to chapter 9, Structures.

3.3.10 Adding the FIT Module to Your Project

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 16 of 85
Mar 01, 2025

This module must be added to each project in which it is used. Renesas recommends the method using the Smart
Configurator described in (1) or (3) below. However, the Smart Configurator only supports some RX devices. Please
use the methods of (2) or (4) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using “Smart Configurator” on e2 studio

By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project. Refer to
“Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e2 studio

By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project. Refer to
“Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details.

(3) Adding the FIT module to your project using the Smart Configurator in CS+

By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added to your
project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(4) Adding the FIT module to your project on CS+

In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

3.4 API (Application Programming Interface)
For the detail of the API function, refer to chapter 4, API Functions.

3.5 Class Request
For the processing method when this driver receives the class request, refer to chapter 10, USB Class Requests.

3.6 How to Set the Target Peripheral List (TPL)
By registering the Vendor ID (VID) and Product ID (PID) in the USB host, USB communication will only be enabled
for the USB device identified with a registered VID and PID.

To register a USB device in the TPL, specify the VID and PID as a set to the macro definitions listed in Table 3-3 in
the configuration file (r_usb_basic_mini_config.h file). The USB driver checks the TPL to make sure the VID and
PID of the connected USB device are registered. If registration is confirmed, USB communication with the USB
device is enabled. If the VID and PID are not registered in the TPL, USB communication is disabled.

If it is not necessary to register VID and PID in TPL, specify USB_NOVENDOR and USB_NOPRODUCT for the
TPL definitions listed in Table 3-3. When USB_NOVENDOR and USB_NOPRODUCT are specified, the USB driver
performs on TPL registration check, and this prevents situations from occurring in which USB communication is
prevented because of the check.

Table 3-3 TPL Definition

Macro definition name Description
USB_TPL_CNT Specify the number of USB devices to be supported.
USB_TPL Specify a VID/PID set for each USB device to be supported. (Always

specify in the order of VID first, PID second.)

== How to specify VID/PID in USB_TPL / USB_HUB_TP ==
#define USB_CFG_TPL 0x0011, 0x0022, 0x0033, 0x0044, 0x0055, 0x0066
 VID PID VID PID VID PID

Example 1) Register 3 USB devices
#define USB_CFG_TPLCNT 3
#define USB_CFG_TPL 0x0011, 0x0022, 0x0033, 0x0044, 0x0055, 0x0066

Example 2) VID and PID registration not required

USB device 1 USB device 2 USB device 3

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 17 of 85
Mar 01, 2025

#define USB_CFG_TPLCNT 1
#define USB_CFG_TPL USB_NOVENDOR,USB_NOPRODUCT

Note:

1. Set USB_CFG_TPLCNT to 1, even if USB_NOVENDOR and USB_NOPRODUCT are specified for the TPL
definitions in Table 3-3.

2. For the configuration file (r_usb_basic_mini_config.h), refer to chapter 8, Configuration
(r_usb_basic_mini_config.h).

3.7 Allocation of Device Addresses
In USB Host mode, the USB driver allocates device address value 1 to the connected USB devices.

3.8 Host Battery Charging (HBC)
This driver supports HBC.
HBC is the H/W control program for the target device that operates the CDP or the DCP as defined by the USB
Battery Charging Specification Revision 1.2.
Processing is executed as follows according to the timing of this driver. Refer to Figure 3-1.

VBUS is driven
Attach processing
Detach processing

Moreover, processing is executed in coordination with the PDDETINT interrupt.
There is no necessity for control from the upper layer.

You can get the result of Change Port Detection (CPD) by calling R_USB_GetInformation function.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 18 of 85
Mar 01, 2025

The processing flow of HBC is shown Figure 3-1.

VBUS Drive

DCP Build

BATCHGE=1, IDPSINKE=1,
PDDETINT=0, PDDEINTE=1

DRPD=0,
BATCHGE=1, DCPMODE=1

1 0

return

PDDETINT Interrupt

PDDETSTS

VDMSRCE = 1 VDMSRCE = 0

1 0

return

Cut chattering

VDMSRCE == 0 VDMSRCE == 1

Yes Yes

No No

ATTACH Process

BATCHGE=0, IDPSINKE=0,
PDDETINT=0, PDDEINTE=0

return

DETACH Process

BATCHGE=1, IDPSINKE=1,
PDDETINT=0, PDDEINTE=1

return

Figure 3-1 HBC processing flow

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 19 of 85
Mar 01, 2025

4. API Functions

Table 4-1 provides a list of API functions. These APIs can be used in common for all the classes. Use the APIs below
in application programs.

Table 4-1 List of API Functions

API Description

R_USB_Open() (Note1) Start the USB module
R_USB_Close() (Note1) Stop the USB module
R_USB_GetVersion() Get the driver version
R_USB_Read() (Note1) Request USB data read
R_USB_Write() (Note1) Request USB data write
R_USB_Stop() (Note1) Stop USB data read/write processing
R_USB_Suspend() (Note1) Request suspend
R_USB_Resume() (Note1) Request resume
R_USB_GetEvent() (Note1) Return USB-related completed events (Non-OS only)
R_USB_Callback() (Note1) Register a callback function (RTOS only)
R_USB_VbusSetting() (Note1) Sets VBUS supply start/stop.
R_USB_PullUp() (Note1) Pull-up enable/disable setting of D+/D- line
R_USB_GetInformation() Get information on USB device.
R_USB_PipeRead() (Note1) Request data read from specified pipe
R_USB_PipeWrite() (Note1) Request data write to specified pipe
R_USB_PipeStop() (Note1) Stop USB data read/write processing to specified pipe
R_USB_GetUsePipe() Get pipe number
R_USB_GetPipeInfo() Get pipe information

Note:

1. If the API of (Note 1) is executed on the same USB module by interrupt handling etc while the API of (Note 1)
is executing, this USB driver may not work properly.

2. The class-specific API function other than the above API is supported in Host Mass Storage Class. Refer to the
document (Document number: R01AN2169) for the class-specific API.

3. The class-specific API function other than the above API is supported in Host Human Interface Device Class.
Refer to the document (Document number: R01AN2168) for the class-specific API.

4. When USB_CFG_DISABLE is specified to USB_CFG_PARAM_CHECKING definition, the return value
USB_ERR_PARA is not returned since this driver does not check the argument. Refer to chapter 8,
Configuration for USB_CFG_PARAM_CHECKING definition.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 20 of 85
Mar 01, 2025

4.1 R_USB_Open

Power on the USB module and initialize the USB driver. (This is a function to be used first
when using the USB module.)

Format
usb_err_t R_USB_Open(usb_ctrl_t *p_ctrl, usb_cfg_t *p_cfg)

Arguments
p_ctrl Pointer to usb_ctrl_t structure area
p_cfg Pointer to usb_cfg_t structure area

Return Value
USB_SUCCESS Success
USB_ERR_PARA Parameter error
USB_ERR_BUSY Specified USB module now in use

Description
This function applies power to the USB module specified in the argument (p_ctrl).

Note
1. For details concerning the usb_ctrl_t structure, see chapter 9.1, usb_ctrl_t structure, and for the usb_cfg_t

structure, see chapter 9.3, usb_cfg_t structure.

2. Assign the device class type (see chapter 7, Device Class Types) to the member (type) of the usb_ctrl_t
structure. Does not assign USB_HCDCC and USB_PCDCC to this member (type). If USB_HCDCC or
USB_PCDCC is assinged, then USB_ERR_PARA will be returned.

3. In the usb_cfg_t structure member (usb_mode), specify “USB_HOST” to start up USB host operations and
“USB_PERI” to start up USB peripheral operations If these settings are not supported by the USB module,
USB_ERR_PARA will be returned.

4. Assign a pointer to the usb_descriptor_t structure to the member (p_usb_reg) of the usb_cfg_t structure. This
assignment is only effective if “USB_PERI” is assigned to the member (usb_mode). If “USB_HOST” is
assigned, then assignment to the member (p_usb_reg) is ignored.

5. If 0 (zero) is assigned to one of the arguments, then USB_ERR_PARA will be the return value.

6. Call R_BLE_Open before calling R_USB_Open when using RSSK(RX23W).

7. Do not call this API in the multiple tasks. (RTOS only)

8. Do not call this API in the following function.

(1). Interrupt function.

(2). Callback function regsitered by R_USB_Callback function.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 21 of 85
Mar 01, 2025

Examples

1. In the case of USB Host mode

void usb_host_application(void)
{
 usb_err_t err;
 usb_ctrl_t ctrl;
 usb_cfg_t cfg;
 :
 ctrl.type = USB_HCDC;
 cfg.usb_mode = USB_HOST;
 err = R_USB_Open(&ctrl, &cfg); /* Start USB module */
 if (USB_SUCCESS != err)
 {
 :
 }
 :
}

2. In the case of USB Peripheral
usb_descriptor_t smp_descriptor =
{

g_device,
g_config_f,
g_qualifier,
g_string

};
void usb_peri_application(void)
{
 usb_err_t err;
 usb_ctrl_t ctrl;
 usb_cfg_t cfg;
 :
 ctrl.type = USB_PCDC;
 cfg.usb_mode = USB_PERI;
 cfg.p_usb_reg = &smp_descriptor;
 err = R_USB_Open(&ctrl, &cfg); /* Start USB module */
 if (USB_SUCCESS != err)
 {
 :
 }
 :
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 22 of 85
Mar 01, 2025

4.2 R_USB_Close

Power off USB module.

Format
usb_err_t R_USB_Close(void)

Arguments

－

Return Value
USB_SUCCESS Success
USB_ERR_NOT_OPEN USB module is not open.

Description
This function terminates power to the USB module.

Note
1. Do not call this API in the multiple tasks. (RTOS only)

2. Do not call this API in the following function.

(1). Interrupt function.

(2). Callback function regsitered by R_USB_Callback function.

Example

void usr_application(void)
{
 usb_err_t err;
 usb_ctrl_t ctrl;
 :
 err = R_USB_Close();
 if (USB_SUCCESS != err)

{
 :

 }
 :
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 23 of 85
Mar 01, 2025

4.3 R_USB_GetVersion

Return API version number

Format
usb_err_t R_USB_GetVersion()

Arguments

－

Return Value
Version number

Description
The version number of the USB driver is returned.

Note

－

Example

void usr_application(void)
{
 uint32_t version;
 ：
 version = R_USB_GetVersion();
 ：
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 24 of 85
Mar 01, 2025

4.4 R_USB_Read

USB data read request

Format
usb_err_t R_USB_Read(usb_ctrl_t *p_ctrl, uint8_t *p_buf, uint32_t size)

Arguments
p_ctrl Pointer to usb_ctrl_t structure area
p_buf Pointer to area that stores read data
size Read request size

Return Value
USB_SUCCESS Successfully completed (Data read request completed)
USB_ERR_PARA Parameter error
USB_ERR_BUSY Data receive request already in process for USB device with same device address.
USB_ERR_NG Other error

Description
1. Bulk/interrupt data transfer

(1). Non-OS
Requests USB data read (bulk/interrupt transfer).
The read data is stored in the area specified by argument (p_buf).
After data read is completed, confirm the operation by checking the return value
(USB_STS_READ_COMPLETE) of the R_USB_GetEvent function. The received data size is set in member
(size) of the usb_ctrl_t structure. To figure out the size of the data when a read is complete, check the return
value (USB_STS_READ_COMPLETE) of the R_USB_GetEvent function, and then refer to the member (size) of
the usb_crtl_t structure.

(2). RTOS

Requests USB data read (bulk/interrupt transfer).
The read data is stored in the area specified by argument (p_buf).
It is possible to check for the completion of a data read based on an argument (USB_STS_READ_COMPLETE in
the member (event) of the usb_ctrl_t structure) to the callback function registered in the USB driver.
After confirming the argument to the callback function registered in the USB driver
(USB_STS_READ_COMPLETE in the member (event) of the usb_ctrl_t structure), reference the size member of
the usb_ctrl_t structure to ascertain the size of the data from the completed read.

2. Control data transfer

Refer to chapter 10, USB Class Requests for details.

Note
1. Please specify a multiple of MaxPacketSize to the 3rd argument (size).

2. This API only performs data read request processing. An application program does not wait for data read
completion by using this API.

3. When USB_SUCCESS is returned for the return value, it only means that a data read request was performed to
the USB driver, not that the data read processing has completed. The completion of the data read can be
checked by reading the return value (USB_STS_READ_COMPLETE) of the R_USB_GetEvent function.

4. When the read data is n times the maximum packet size and does not meet the read request size, the USB
driver assumes the data transfer is still in process and USB_STS_READ_COMPLETE is not set as the return
value of the R_USB_GetEvent function. (Non-OS)

5. If the data that has been read is not n times the maximum packet size and does not satisfy the read request size,
the USB driver will assume that the data transfer is still in progress, so it will not call the callback function that
provides notification that data reception is complete. (RTOS)

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 25 of 85
Mar 01, 2025

6. Before calling this API, assign the device class type (see chapter 7, Device Class Types) to the member (type)
of the usb_ctrl_t structure.

7. Do not assign a pointer to the auto variable (stack) area to the second argument (p_buf).

8. Specify the start address of the buffer area aligned on 2-byte boundary the for the 2nd argument (p_buf) when
using DMA/DTC transfer.

9. The size of area assigned to the second argument (p_buf) must be at least as large as the size specified for the
third argument (size). Allocate the area n times the max packet size when using DTC/DMA transer.

10. If 0 (zero) is assigned to one of the arguments, USB_ERR_PARA will be the return value.

11. In USB Host mode it is not possible to repeatedly call the R_USB_Read function. If the R_USB_Read function
is called repeatedly, then USB_ERR_BUSY will be the return value. To call the R_USB_Read function more
than once, first check the USB_STS_READ_COMPLETE return value from the R_USB_GetEvent function,
and then call the R_USB_Read function. (Non-OS)

12. In USB Peripheral mode it is not possible to repeatedly call the R_USB_Read function with the same value
assigned to the member (type) of the usb_crtl_t structure. If the R_USB_Read function is called repeatedly,
then USB_ERR_BUSY will be the return value. To call the R_USB_Read function more than once with the
same value assigned to the member (type) , first check the USB_STS_READ_COMPLETE return value from
the R_USB_GetEvent function, and then call the R_USB_Read function. (Non-OS)

13. In Vendor Class, use the R_USB_PipeRead function.

14. If this API is called after assigning USB_PCDCC, USB_HMSC, USB_PMSC, USB_HVND or USB_PVND to
the member (type) of the usb_crtl_t structure, then USB_ERR_PARA will be the return value.

15. In Host Mass Storage Class, to access storage media, use the FAT (File Allocation Table) API rather than this
API.

16. In the USB device is in the CONFIGURED state, this API can be called. If this API is called when the USB
device is in other than the CONFIGURED state, then USB_ERR_NG will be the return value.

17. Do not call this API in the following function.

(1). Interrupt function.

(2). Callback function regsitered by R_USB_Callback function.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 26 of 85
Mar 01, 2025

Example

1. Non-OS

uint8_t g_buf[512];
void usb_application(void)
{
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch (R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_WRITE_COMPLETE:
 :
 ctrl.type = USB_HCDC;
 R_USB_Read(&ctrl, g_buf, DATA_LEN);
 :
 break;
 case USB_STS_READ_COMPLETE:
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 27 of 85
Mar 01, 2025

2. RTOS

uint8_t g_buf[512];
/* Callback function */
void usb_apl_callback (usb_ctrl_t *p_ctrl, rtos_task_id_t task_id, uint8_t is_request)
{
 USB_APL_SND_MSG(task_id, (usb_msg_t *)p_ctrl);
}

void usb_application_task(void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 :
 case USB_STS_WRITE_COMPLETE:
 :
 ctrl.type = USB_HCDC;
 R_USB_Read(&ctrl, g_buf, DATA_LEN);
 :
 break;
 case USB_STS_READ_COMPLETE:
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 28 of 85
Mar 01, 2025

4.5 R_USB_Write

USB data write request

Format
usb_err_t R_USB_Write(usb_ctrl_t *p_ctrl, uint8_t *p_buf, uint32_t size)

Arguments
p_ctrl Pointer to usb_ctrl_t structure area
p_buf Pointer to area that stores write data
size Write size

Return Value
USB_SUCCESS Successfully completed (Data write request completed)
USB_ERR_PARA Parameter error
USB_ERR_BUSY Data write request already in process for USB device with same device address.
USB_ERR_NG Other error

Description
1. Bulk/Interrupt data transfer

(1). Non-OS

Requests USB data write (bulk/interrupt transfer).
Stores write data in area specified by argument (p_buf).
Set the device class type in usb_ctrl_t structure member (type).
Confirm after data write is completed by checking the return value (USB_STS_WRITE_COMPLETE) of the
R_USB_GetEvent function.
To request the transmission of a NULL packet, assign USB_NULL(0) to the third argument (size).

(2). RTOS

Requests USB data write (bulk/interrupt transfer).
Stores write data in area specified by argument (p_buf).
Set the device class type in usb_ctrl_t structure member (type).
It is possible to check for the completion of a data write based on an argument (USB_STS_WRITE_COMPLETE
in the member (event) of the usb_ctrl_t structure) to the callback function registered in the USB driver.
To request the transmission of a NULL packet, assign USB_NULL(0) to the third argument (size).

2. Control data transfer

Refer to chapter 10, USB Class Requests for details.

Note
1. This API only performs data write request processing. An application program does not wait for data write

completion by using this API.

2. When USB_SUCCESS is returned for the return value, it only means that a data write request was performed to
the USB driver, not that the data write processing has completed. The completion of the data write can be
checked by reading the return value (USB_STS_WRITE_COMPLETE) of the R_USB_GetEvent function.

3. Before calling this API, assign the device class type (see chapter 7, Device Class Types) to the member (type) of
the usb_ctrl_t structure.

4. Do not assign a pointer to the auto variable (stack) area to the second argument (p_buf).

5. Specify the start address of the buffer area aligned on 2-byte boundary the for the 2nd argument (p_buf) when
using DMA/DTC transfer.

6. If USB_NULL is assigned to the argument (p_ctrl), then USB_ERR_PARA will be the return value.

7. If a value other than 0 (zero) is set for the argument (size) and USB_NULL is assigned to the argument (p_buf),
then USB_ERR_PARA will be the return value.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 29 of 85
Mar 01, 2025

8. If the R_USB_Write function is called repeatedly, then USB_ERR_BUSY will be the return value. To call the
R_USB_Write function more than once, first check the USB_STS_WRITE_COMPLETE return value from the
R_USB_GetEvent function, and then call the R_USB_Write function. (Non-OS)

9. In USB Peripheral mode it is not possible to repeatedly call the R_USB_Write function with the same value
assigned to the member (type) of the usb_crtl_t structure. If the R_USB_Write function is called repeatedly, then
USB_ERR_BUSY will be the return value. To call the R_USB_Write function more than once with the same
value assigned to the member (type), first check the USB_STS_WRITE_COMPLETE return value from the
R_USB_GetEvent function, and then call the R_USB_Write function. (Non-OS)

10. In Vendor Class, use the R_USB_PipeWrite function.

11. If this API is called after assigning USB_HCDCC, USB_HMSC, USB_PMSC, USB_HVND or USB_PVND to
the member (type) of the usb_crtl_t structure, then USB_ERR_PARA will be the return value.

12. In Host Mass Storage Class, to access storage media, use the FAT (File Allocation Table) API rather than this
API.

13. This API can be called when the USB device is in the configured state. When the API is called in any other state,
USB_ERR_NG is returned.

14. Do not call this API in the following function.

(1). Interrupt function.

(2). Callback function regsitered by R_USB_Callback function.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 30 of 85
Mar 01, 2025

Example
1. Non-OS

void usb_application(void)
{
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch (R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_READ_COMPLETE:
 :
 ctrl.type = USB_HCDC;
 R_USB_Write(&ctrl, g_buf, 512);
 :
 break;
 case USB_STS_WRITE_COMPLETE:
 :
 break;
 :
 }
 }
}

2. RTOS

uint8_t g_buf[512];
/* Callback function */
void usb_apl_callback (usb_ctrl_t *p_ctrl, rtos_task_id_t task_id, uint8_t is_request)
{
 USB_APL_SND_MSG(USB_APL_MBX, (usb_msg_t *)p_ctrl);
}
void usb_application_task(void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :
 case USB_STS_READ_COMPLETE:
 :
 ctrl.type = USB_HCDC;
 R_USB_Write(&ctrl, g_buf, 512);
 :
 break;
 case USB_STS_WRITE_COMPLETE:
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 31 of 85
Mar 01, 2025

4.6 R_USB_Stop

USB data read/write stop request

Format
usb_err_t R_USB_Stop(usb_ctrl_t *p_ctrl, uint16_t type)

Arguments
p_ctrl Pointer to usb_ctrl_t structure area
type Receive (USB_READ) or send (USB_WRITE)

Return Value
USB_SUCCESS Successfully completed (stop completed)
USB_ERR_PARA Parameter error
USB_ERR_NG Other error

Description
This function is used to request a data read/write transfer be terminated when a data read/write transfer is
performing.
To stop a data read, set USB_READ as the argument (type); to stop a data write, specify USB_WRITE as the
argument (type).

Note

1. Before calling this API, assign the device class type to the member (type) of the usb_ctrl_t structure.

2. If USB_NULL is assigned to the argument (p_ctrl), then USB_ERR_PARA will be the return value.

3. If something other than USB_READ or USB_WRITE is assigned to the 2nd argument (type), then
USB_ERR_PARA will be the return value. When USB_NULL is set to the 2nd argument (type), this driver
operates the same processing as when USB_READ is set.

4. If USB_HCDCC is assigned to the member (type) and USB_WRITE is assigned to the 2nd argment (type), then
USB_ERR_PARA will be the return value.

5. If USB_PCDCC is assigned to the member (type) and USB_READ is assigned to the 2nd argment (type), then
USB_ERR_PARA will be the return value.

6. In USB Host mode, USB_ERR_NG will be the return value when this API can not stop the data read/write
request.

7. When the R_USB_GetEvent function is called after a data read/write stopping has been completed, the return
value USB_STS_READ_COMPLETE/USB_STS_WRITE_COMPLETE is returned.(Non-OS)

8. USB driver set USB_STS_READ_COMPLETE or USB_STS_WRITE_COMPLTE to the argument (the member
(event) of the usb_ctrl_t structure) in the callback function registered in the USB driver when a data read/write
stopping has been completed. (RTOS)

9. If this API is called after assigning USB_HMSC, USB_PMSC, USB_HVND or USB_PVND to the member
(type) of the usb_crtl_t structure, then USB_ERR_PARA will be the return value.

10. In Vendor Class, use the R_USB_PipeStop function.

11. Do not use this API for the Host Mass Storage Class.

12. This API can be called when the USB device is in the configured state. When the API is called in any other
state, USB_ERR_NG is returned.

13. Do not call this API in the following function.

(1). Interrupt function.

(2). Callback function regsitered by R_USB_Callback function.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 32 of 85
Mar 01, 2025

Example

1. Non-OS

void usb_application(void)
{
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch (R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_DETACH:
 :
 ctrl.type = USB_HCDC;
 R_USB_Stop(&ctrl, USB_READ); /* Receive stop */
 R_USB_Stop(&ctrl, USB_WRITE); /* Send stop */
 :
 break;
 :
 }
 }
}

2. RTOS
void usb_application_task(void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :
 case USB_STS_DETACH:
 :
 ctrl.address = adr;
 ctrl.type = USB_HCDC;
 R_USB_Stop(&ctrl, USB_READ); /* Receive stop */
 R_USB_Stop(&ctrl, USB_WRITE); /* Send stop */
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 33 of 85
Mar 01, 2025

4.7 R_USB_Suspend

Suspend signal transmission

Format
usb_err_t R_USB_Suspend(void)

Arguments

－

Return Value
USB_SUCCESS Successfully completed
USB_ERR_BUSY During a suspend request to the specified USB module, or when the USB

module is already in the suspended state
USB_ERR_NG Other error

Description
1. Non-OS

Sends a SUSPEND signal from the USB module.
After the suspend request is completed, confirm the operation with the return value (USB_STS_SUSPEND) of
the R_USB_GetEvent function.

2. RTOS

This function sends a SUSPEND signal from the USB module assigned to the member (module) of the
usb_ctrl_t structure.
It is possible to check for the completion of the suspend request based on an argument (USB_STS_SUSPEND in
the member (event) of the usb_ctrl_t structure) to the callback function registered in the USB driver.

Note
1. This API only performs a Suspend signal transmission. An application program does not wait for Suspend signal

transmission completion by using this API.

2. This API can only be used in USB host mode. If this API is used in USB Peripheral mode, then USB_ERR_NG
will be the return value.

3. This API does not support the Selective Suspend function.

4. When this API is called in the state of other than the configured or the suspend state, USB_ERR_NG is returned.

5. Do not call this API in the following function.

(1). Interrupt function.

(2). Callback function regsitered by R_USB_Callback function.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 34 of 85
Mar 01, 2025

Example
1. Non-OS

void usb_host_application(void)
{
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch (R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_NONE:
 :
 R_USB_Suspend();
 break;
 case USB_STS_SUSPEND:
 :
 break;
 :
 }
 }
}

2. RTOS

/* Callback function */
void usb_apl_callback (usb_ctrl_t *p_ctrl, rtos_task_id_t task_id, uint8_t is_request)
{
 USB_APL_SND_MSG(USB_APL_MBX, (usb_msg_t *)p_ctrl);
}

void usb_application_task(void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :
 R_USB_Suspend();
 break;
 case USB_STS_SUSPEND:
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 35 of 85
Mar 01, 2025

4.8 R_USB_Resume

Resume signal transmission

Format
usb_err_t R_USB_Resume(void)

Arguments

－

Return Value
USB_SUCCESS Successfully completed
USB_ERR_BUSY Resume already requested for same device address

(USB host mode only)

USB_ERR_NOT_SUSPEND USB device is not in the SUSPEND state.
USB_ERR_NG USB device is not the state to be able to request the remote

wakeup (USB peripheral mode only)

Description
1. Non-OS

This function sends a RESUME signal from the USB module.

After the resume request is completed, confirm the operation with the return value (USB_STS_RESUME) of the
R_USB_GetEvent function.

2. RTOS

This function sends a RESUME signal from the USB module assigned to the member (module) of the usb_ctrl_t
structure.
It is possible to check for the completion of the resume request based on an argument (USB_STS_RESUME in the
member (event) of the usb_ctrl_t structure) to the callback function registered in the USB driver.

Note
1. This API only performs a Resume signal transmission request. An application program does not wait for

Resume signal transmission completion by using this API.

2. Please call this API after calling the R_USB_Open function (and before calling the R_USB_Close function).

3. In USB Peripheral mode, this API can be used for sending RemoteWakeup signal only when receiving
SetFeature commnad which DEVICE_REMOTE_WAKEUP is specified to Feature Selector. If this API is called
before receiving the SetFeature command, then USB_ERR_NG will be the return value.

4. This API can be called when the USB device is in the suspend state. When the API is called in any other state,
USB_ERR_NOT_SUSPEND is returned.

5. Do not call this API in the following function.

(1). Interrupt function.

(2). Callback function regsitered by R_USB_Callback function.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 36 of 85
Mar 01, 2025

Example

1. Non-OS

void usb_application(void)
{
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch (R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_NONE:
 :
 R_USB_Resume();
 :
 break;
 case USB_STS_RESUME:
 :
 break;
 :
 }
 }
}

2. RTOS

/* Callback function */
void usb_apl_callback (usb_ctrl_t *p_ctrl, rtos_task_id_t task_id, uint8_t is_request)
{
 USB_APL_SND_MSG(USB_APL_MBX, (usb_msg_t *)p_ctrl);
}

void usb_application_task(void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :
 R_USB_Resume();
 :
 break;
 case USB_STS_RESUME:
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 37 of 85
Mar 01, 2025

4.9 R_USB_GetEvent

Get completed USB-related events

Format
usb_status_t R_USB_GetEvent(usb_ctrl_t *p_ctrl)

Arguments
p_ctrl Pointer to usb_ctrl_t structure area

Return Value
-- Value of completed USB-related events

Description
This function obtains completed USB-related events.

In USB host mode, the device address value of the USB device that completed an event is specified in the usb_ctrl_t
structure member (address) specified by the event’s argument. In USB peripheral mode, USB_NULL is specified in
member (address).

Note
1. Please call this API after calling the R_USB_Open function (and before calling the R_USB_Close function).

2. Refer to chapter 6, Return Value of R_USB_GetEvent Function / Retrieval of USB Completion Events for
details on the completed event value used as the API return value.

3. If there is no completed event when calling this API, then USB_STS_NONE will be the return value.

4. Please call this API in the main loop of the user application program.

5. Do not call this API in the interrupt function.

Example
void usb_host_application(void)
{
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch (R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_CONFIGURED:
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 38 of 85
Mar 01, 2025

4.10 R_USB_Callback

Register a callback function to be called upon completion of a USB-related event. (RTOS
only)

Format
void R_USB_Callback(usb_callback_t *p_callback)

Arguments
p_callback Pointer to the callback function

Return Value
--

Description
This function registers a callback function to be called when a USB-related event has completed.

When a USB-related event has completed, the USB driver will call the callback function that has been registered
using this API.

Note
1. Call this API after calling the R_USB_Open function (and before calling the R_USB_Close function).

2. For details regarding the USB event values that are specified as arguments to this API, see chapter 6, Return
Value of R_USB_GetEvent Function / Retrieval of USB Completion Events.

3. For information regarding callback functions, see chapter 5, Callback Function (RTOS only).

4. Do not call this API in the interrupt function.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 39 of 85
Mar 01, 2025

Example
void usb_apl_callback (usb_ctrl_t *p_ctrl)
{
 USB_APL_SND_MSG(USB_APL_MBX, (usb_msg_t *)p_ctrl);
}

void usb_application_task(void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 usb_cfg_t cfg;

 usb_pin_setting(); /* USB MCU pin setting */

 ctrl.type = USB_PCDC;
 cfg.usb_speed = USB_SUPPORT_SPEED; /* USB_HS/USB_FS */
 cfg.p_usb_reg = (usb_descriptor_t *)&usb_descriptor;
 R_USB_Open(&ctrl, &cfg); /* Initializes the USB module */

 R_USB_Callback(usb_apl_callback);

 while (1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);

 ctrl = *p_mess;

 switch (ctrl.event)
 {
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 40 of 85
Mar 01, 2025

4.11 R_USB_VbusSetting

VBUS Supply Start/Stop Specification

Format
usb_err_t R_USB_VbusSetting(uint16_t state)

Arguments
state VBUS supply start/stop specification

Return Value
USB_SUCCESS Successful completion (VBUS supply start/stop completed)
USB_ERR_PARA Parameter error
USB_ERR_NG Other error

Description
Specifies starting or stopping the VBUS supply.

Note
1. For information on setting the VBUS output of the power source IC for the USB Host to either Low Assert or

High Assert, see the setting of the USB_CFG_VBUS definition described in chapter 8, Configuration
(r_usb_basic_mini_config.h).

2. Assign "USB_ON" or "USB_OFF" to the second argument. Assign "USB_ON" in order to start the VBUS
supply, and assign "USB_OFF" in order to stop the VBUS supply. If the value other than USB_ON or
USB_OFF is assigned, then USB_ERR_PARA will be the return value. When USB_NULL is set to the
argument, this driver operates the same processing as when USB_OFF is set.

3. Use this API only when need the control of VBUS in the application program. (This driver does not control
VBUS after turning on VBUS in the initialization processing.)

4. This API is processed only in USB Host mode. If this API is called in USB Peripheral mode, then
USB_ERR_NG will be the return value.

5. Do not call this API in the following function.

(1). Interrupt function.

(2). Callback function regsitered by R_USB_Callback function.

Example

void usb_host_application(void)
{
 ：
 R_USB_VbusSetting(USB_ON); /* Start VBUS supply */
 ：
 ：
 R_USB_VbusSetting(USB_OFF); /* Stop VBUS supply */
 ：
 ：
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 41 of 85
Mar 01, 2025

4.12 R_USB_PullUp

Pull-up enable/disable setting of D+/D- line

Format
usb_err_t R_USB_PullUp(uint16_t state)

Arguments

state Pull-up enable/disable setting

Return Value

USB_SUCCESS Successful completion (Pull-up enable/disable setting completed)
USB_ERR_PARA Parameter error
USB_ERR_NG Other error

Description
This API enables or disables pull-up of D+/D- line.

Note
1. Assign "USB_ON" or "USB_OFF" to the argument(state). Assign "USB_ON" in order to enable pull-up, and

assign "USB_OFF" in order to disable pull-up. If the value other than USB_ON or USB_OFF is assigned, then
USB_ERR_PARA will be the return value. When USB_NULL is set to the argument, this driver operates the
same processing as when USB_OFF is set.

2. Use this API only when need the control of D+/D- line in the application program. (USB driver controls
D+/D- line when attaching or detaching to USB Host)

3. This API is processed only in USB Peripheral mode. If this API is called in USB Host mode, then
USB_ERR_NG will be the return value.

4. Do not call this API in the following function.

(1). Interrupt function.

(2). Callback function regsitered by R_USB_Callback function.

Example

void usb_peri_application(void)
{
 ：
 ：
 R_USB_PullUp(USB_ON); /* Pull-up enable */
 ：
 ：
 R_USB_PullUp(USB_OFF); /* Pull-up disable */
 ：
 ：
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 42 of 85
Mar 01, 2025

4.13 R_USB_GetInformation

Get USB device information

Format
usb_err_t R_USB_GetInformation(usb_info_t *p_info)

Arguments
p_info Pointer to usb_info_t structure area

Return Value
USB_SUCCESS Successful completion (VBUS supply start/stop completed)
USB_ERR_PARA Parameter error
USB_ERR_NG Other error

Description
This function gets the USB device information.

For information to be gotten, see chpater 9.6, usb_info_t structure.

Note
1. Call this API after calling the R_USB_Open function (and before calling the R_USB_Close function).

USB_ERR_NG will be the return vaule when calling this API before calling R_USB_Open function.

2. Do not assign USB_NULL to the second arugument (p_info). If USB_NULL is assigned, then USB_ERR_PARA
will be the return value.

Example
void usb_host_application(void)
{
 usb_info_t info;
 ：
 R_USB_GetInformation(&info);
 ：
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 43 of 85
Mar 01, 2025

4.14 R_USB_PipeRead

Request data read via specified pipe

Format
usb_err_t R_USB_PipeRead(usb_ctrl_t *p_ctrl, uint8_t *p_buf, uint32_t size)

Arguments
p_ctrl Pointer to usb_ctrl_t structure area
p_buf Pointer to area that stores data
size Read request size

Return Value
USB_SUCCESS Successfully completed
USB_ERR_PARA Parameter error
USB_ERR_NG Other error

Description
1. Non-OS

This function requests a data read (bulk/interrupt transfer) via the pipe specified in the argument.
The read data is stored in the area specified in the argument (p_buf).
After the data read is completed, confirm the operation with the R_USB_GetEvent function return value
(USB_STS_READ_COMPLETE). To figure out the size of the data when a read is complete, check the return
value (USB_STS_READ_COMPLETE) of the R_USB_GetEvent function, and then refer to the member (size) of
the usb_crtl_t structure.

2. RTOS

This function requests a data read (bulk/interrupt transfer) via the pipe specified in the argument.
The read data is stored in the area specified in the argument (p_buf).
It is possible to check for the completion of a data read based on an argument (USB_STS_READ_COMPLETE in
the member (event) of the usb_ctrl_t structure) to the callback function registered in the USB driver.
After confirming the argument to the callback function registered in the USB driver
(USB_STS_READ_COMPLETE in the event member of the usb_ctrl_t structure), reference the size member of the
usb_ctrl_t structure to ascertain the size of the data from the completed read.

Note
1. Please specify a multiple of MaxPacketSize to the 3rd argument (size).

2. This API only performs data read request processing. An application program does not wait for data read
completion by using this API.

3. When USB_SUCCESS is returned for the return value, it only means that a data read request was performed to
the USB driver, not that the data read processing has completed. The completion of the data read can be
checked by reading the return value (USB_STS_READ_COMPLETE) of the R_USB_GetEvent function.

4. When the read data is n times the max packet size and does not meet the read request size, the USB driver
assumes the data transfer is still in process and USB_STS_READ_COMPLETE is not set as the return value of
the R_USB_GetEvent function. (Non-OS)

5. If the data that has been read is not n times the maximum packet size and does not satisfy the read request size,
the USB driver will assume that the data transfer is still in progress, so it will not call the callback function that
provides notification that data reception is complete. (RTOS)

6. Before calling this API, assign the PIPE number (USB_PIPE1 to USB_PIPE9) to be used to the member (pipe)
of the usb_ctrl_t structure.

7. If something other than USB_PIPE1 through USB_PIPE9 is assigned to the member (pipe) of the usb_ctrl_t
structure, then USB_ERR_PARA will be the return value.

8. Do not assign a pointer to the auto variable (stack) area to the second argument (p_buf).

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 44 of 85
Mar 01, 2025

8. The size of area assigned to the second argument (p_buf) must be at least as large as the size specified for the
third argument (size). Allocate the area n times the max packet size when using DTC/DMA transer.

9. Specify the start address of the buffer area aligned on 2-byte boundary the for the 2nd argument (p_buf) when
using DMA/DTC transfer.

10. If 0 (zero) is assigned to one of the arguments, then USB_ERR_PARA will be the return value.

11. It is not possible to repeatedly call the R_USB_PipeRead function with the same value assigned to the member
(pipe) of the usb_crtl_t structure. If the R_USB_PipeRead function is called repeatedly, then USB_ERR_BUSY
will be the return value. To call the R_USB_PipeRead function more than once with the same value assigned
to the member (pipe), first check the USB_STS_READ_COMPLETE return value from the R_USB_GetEvent
function, and then call the R_USB_PipeRead function. (Non-OS)

12. In CDC/HID Class, to perform a Bulk/Interrupt transfer, use the R_USB_Read function rather than this API.
With Host Mass Storage Class, to perform data access to the MSC device, use the FAT (File Allocation Table)
API rather than this API.

13. Assign nothing to the member (type) of the usb_ ctrl_t structure. Even if the device class type or something is
assigned to the member (type), it is ignored.

14. To transfer the data for a Control transfer, use the R_USB_Read function rather than this API.

15. Enable one of USB_CFG_HVND_USB or USB_CFG_PVND_USE definition when using this API. If this API
is used when these definitions are not enabled, USB_ERR_NG is returned. For USB_CFG_HVND_USB or
USB_CFG_PVND_USE definition, refer to chapter 8, Configuration.

16. This API can be called when the USB device is in the configured state. When the API is called in any other
state, USB_ERR_NG is returned.

17. Do not call this API in the following function.

(1). Interrupt function.

(2). Callback function regsitered by R_USB_Callback function.

Example
1. Non-OS

uint8_t g_buf[512];
void usb_application(void)
{
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch (R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_WRITE_COMPLETE:
 :
 ctrl.pipe = USB_PIPE1;
 R_USB_PipeRead(&ctrl, g_buf, size);
 :
 break;
 case USB_STS_READ_COMPLETE:
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 45 of 85
Mar 01, 2025

2. RTOS

uint8_t g_buf[512];
/* Callback Function */
void usb_apl_callback (usb_ctrl_t *p_ctrl, rtos_task_id_t task_id, uint8_t is_request)
{
 USB_APL_SND_MSG(task_id, (usb_msg_t *)p_ctrl);
}

/* Application Task */
void usb_application_task(void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :
 case USB_STS_WRITE_COMPLETE:
 :
 ctrl.pipe = USB_PIPE1;
 R_USB_PipeRead(&ctrl, g_buf, size);
 :
 break;
 case USB_STS_READ_COMPLETE:
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 46 of 85
Mar 01, 2025

4.15 R_USB_PipeWrite

Request data write to specified pipe

Format
usb_err_t R_USB_PipeWrite(usb_ctrl_t *p_ctrl, uint8_t *p_buf, uint32_t size)

Arguments
p_ctrl Pointer to usb_ctrl_t structure area
p_buf Pointer to area that stores data
size Write request size

Return Value
USB_SUCCESS Successfully completed
USB_ERR_PARA Parameter error
USB_ERR_BUSY Specifed pipe now handling data receive/send request
USB_ERR_NG Other error

Description
1. Non-OS

This function requests a data write (bulk/interrupt transfer).
The write data is stored in the area specified in the argument (p_buf).
After data write is completed, confirm the operation with the return value (USB_STS_WRITE_COMPLETE) of the
R_USB_GetEvent function.
To request the transmission of a NULL packet, assign USB_NULL (0) to the third argument (size).

2. RTOS

This function requests a data write (bulk/interrupt transfer).
The write data is stored in the area specified in the argument (p_buf).
It is possible to check for the completion of a data write based on an argument (USB_STS_WRITE_COMPLETE in
the member (event) of the usb_ctrl_t structure) to the callback function registered in the USB driver.
To request the transmission of a NULL packet, assign USB_NULL (0) to the third argument (size).

Note
1. This API only performs data write request processing. An application program does not wait for data write

completion by using this API.

2. When USB_SUCCESS is returned for the return value, it only means that a data write request was performed
to the USB driver, not that the data write processing has completed. The completion of the data write can be
checked by reading the return value (USB_STS_WRITE_COMPLETE) of the R_USB_GetEvent function.

3. Before calling this API, assign the PIPE number (USB_PIPE1 to USB_PIPE9) to be used to the member (pipe)
of the usb_ctrl_t structure.

4. If something other than USB_PIPE1 through USB_PIPE9 is assigned to the member (pipe) of the usb_ctrl_t
structure, then USB_ERR_PARA will be the return value.

5. Do not assign a pointer to the auto variable (stack) area to the second argument (p_buf).

6. Specify the start address of the buffer area aligned on 2-byte boundary the for the 2nd argument (p_buf) when
using DMA/DTC transfer.

7. If 0 (zero) is assigned to the argument (p_ctrl or p_buf), then USB_ERR_PARA will be the return value.

8. It is not possible to repeatedly call the R_USB_PipeWrite function with the same value assigned to the member
(pipe) of the usb_crtl_t structure. If the R_USB_PipeWrite function is called repeatedly, then USB_ERR_BUSY
will be the return value. To call the R_USB_PipeWrite function more than once with the same value assigned
to the member (pipe), first check the USB_STS_WRITE_COMPLETE return value from the R_USB_GetEvent
function, and then call the R_USB_PipeWrite function. (Non-OS)

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 47 of 85
Mar 01, 2025

9. In CDC/HID Class, to perform a Bulk/Interrupt transfer, use the R_USB_Write function rather than this API.
In Host Mass Storage Class, to perform data access to the MSC device, use the FAT (File Allocation Table)
API rather than this API.

10. Assign nothing to the member (type) of the usb_ ctrl_t structure. Even if the device class type or something is
assigned to the member (type), it is ignored.

11. To transfer the data for a Control transfer, use the R_USB_Write function rather than this API.

12. Enable one of USB_CFG_HVND_USB or USB_CFG_PVND_USE definition when using this API. If this API
is used when these definitions are not enabled, USB_ERR_NG is returned. For USB_CFG_HVND_USB or
USB_CFG_PVND_USE definition, refer to chapter 8, Configuration.

13. This API can be called when the USB device is in the configured state. When the API is called in any other
state, USB_ERR_NG is returned.

14. Do not call this API in the following function.

(1). Interrupt function.

(2). Callback function regsitered by R_USB_Callback function.

Example

1. Non-OS

uint8_t g_buf[512];
void usb_application(void)
{
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch (R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_READ_COMPLETE:
 :
 ctrl.pipe = USB_PIPE2;
 R_USB_PipeWrite(&ctrl, g_buf, size);
 :
 break;
 case USB_STS_WRITE_COMPLETE:
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 48 of 85
Mar 01, 2025

2. RTOS

uint8_t g_buf[512];
/* Callback Function */
void usb_apl_callback (usb_ctrl_t *p_ctrl, rtos_task_id_t task_id, uint8_t is_request)
{
 USB_APL_SND_MSG(USB_APL_MBX, (usb_msg_t *)p_ctrl);
}

/* Application Task */
void usb_application_task(void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :
 case USB_STS_READ_COMPLETE:
 :
 ctrl.pipe = USB_PIPE2;
 R_USB_PipeWrite(&ctrl, g_buf, 512);
 :
 break;
 case USB_STS_WRITE_COMPLETE:
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 49 of 85
Mar 01, 2025

4.16 R_USB_PipeStop

Stop data read/write via specified pipe

Format
usb_err_t R_USB_PipeStop(usb_ctrl_t *p_ctrl)

Arguments
p_ctrl Pointer to usb_ctrl_t structure area

Return Value
USB_SUCCESS Successfully completed (stop request completed)
USB_ERR_PARA Parameter error
USB_ERR_NG Other error

Description
This function is used to terminate a data read/write operation.

Note

1. Before calling this API, specify the selected pipe number (USB_PIPE0 to USB_PIPE9) in the usb_ctrl_t
member (pipe).

2. If something other than USB_PIPE1 through USB_PIPE9 is assigned to the member (pipe) of the usb_ctrl_t
structure, then USB_ERR_PARA will be the return value.

3. USB_ERR_PARA will be the return value when USB_NULL is assigned to the argument (p_ctrl).

4. In USB Host mode, USB_ERR_NG will be the return value when this API can not stop the data read/write
request.

5. When the R_USB_GetEvent function is called after a data read/write stopping has been completed, the return
value USB_STS_READ_COMPLETE/USB_STS_WRITE_COMPLETE is returned. (Non-OS)

6. USB driver set USB_STS_READ_COMPLETE or USB_STS_WRITE_COMPLTE to the argument (the member
(event) of the usb_ctrl_t structure) in the callback function registered in the USB driver when a data read/write
stopping has been completed. (RTOS)

7. Assign nothing to the member (type) of the usb_ ctrl_t structure. Even if the device class type or something is
assigned to the member (type), it is ignored.

8. Enable one of USB_CFG_HVND_USB or USB_CFG_PVND_USE definition when using this API. If this API is
used when these definitions are not enabled, USB_ERR_NG is returned. For USB_CFG_HVND_USB or
USB_CFG_PVND_USE definition, refer to chapter 8, Configuration.

9. This API can be called when the USB device is in the configured state. When the API is called in any other state,
USB_ERR_NG is returned.

10. Do not call this API in the following function.

(1). Interrupt function.

(2). Callback function regsitered by R_USB_Callback function.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 50 of 85
Mar 01, 2025

Example

1. Non-OS

void usb_application(void)
{
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch (R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_DETACH:
 :
 ctrl.pipe = USB_PIPE1;
 R_USB_PipeStop(&ctrl);
 :
 break;
 :
 }
 }
}

2. RTOS

/* Callback Function */
void usb_apl_callback (usb_ctrl_t *p_ctrl, rtos_task_id_t task_id, uint8_t is_request)
{
 USB_APL_SND_MSG(USB_APL_MBX, (usb_msg_t *)p_ctrl);
}
/* Application Task */
void usb_application_task(void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :
 case USB_STS_DETACH:
 :
 ctrl.pipe = USB_PIPE1;
 R_USB_PipeStop(&ctrl);
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 51 of 85
Mar 01, 2025

4.17 R_USB_GetUsePipe

Get used pipe number from bit map

Format
usb_err_t R_USB_GetUsePipe(uint16_t *p_pipe)

Arguments
p_pipe Pointer to area that stores the selected pipe number (bit map information)

Return Value
USB_SUCCESS Successfully completed
USB_ERR_PARA Parameter error
USB_ERR_NG Other error

Description
Get the selected pipe number (number of the pipe that has completed initalization) via bit map information. The bit
map information is stored in the area specified in argument (p_pipe).

The relationship between the pipe number specified in the bit map information and the bit position is shown
below.

PIPE1PIPE2PIPE3PIPE4PIPE5PIPE6PIPE7PIPE8

0:Not used, 1: Used

PIPE0---- PIPE9------

10/10/10/10/10/10/10/10/10/100000

b0b1b2b3b4b5b6b7b8b9b10b11b12b13b14b15

--

0

For example, when PIPE1, PIPE2, and PIPE8 are used, the value “0x0107” is set in the area specified in argument
(p_pipe).

Note

1. Bit map information b0(PIPE0) is always set to "1".

2. USB_ERR_PARA will be the return value when USB_NULL is assigned to the argument (p_pipe).

3. This API can be called when the USB device is in the configured state. When the API is called in any other
state, USB_ERR_NG is returned.

Example

void usb_application(void)
{
 uint16_t usepipe;
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch (R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_CONFIGURED:
 :
 R_USB_GetUsePipe(&ctrl, &usepipe);
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 52 of 85
Mar 01, 2025

4.18 R_USB_GetPipeInfo

Get pipe information for specified pipe

Format
usb_err_t R_USB_GetPipeInfo(usb_ctrl_t *p_ctrl, usb_pipe_t *p_info)

Arguments
p_ctrl Pointer to usb_ctrl_t structure area
p_info Pointer to usb_pipe_t structure area

Return Value
USB_SUCCESS Successfully completed
USB_ERR_PARA Parameter error
USB_ERR_NG Other error

Description
This function gets the following pipe information regarding the pipe specified in the argument (p_ctrl) member
(pipe): endpoint number, transfer type, transfer direction and maximum packet size. The obtained pipe
information is stored in the area specified in the argument (p_info).

Note

1. Before calling this API, specify the pipe number (USB_PIPE1 to USB_PIPE9) in the usb_ctrl_t structure
member (pipe). When using two USB modules in the USB host mode, also specify the USB module number in
the member (module).

2. If 0 (zero) is assigned to one of the arguments, then USB_ERR_PARA will be the return value.

3. Refer to chapter 9.5, usb_pipe_t structure for details on the usb_pipe_t structure.

4. This function can be called when the USB device is in the configured state. When the API is called in any other
state, USB_ERR_NG is returned.

Example

void usb_host_application(void)
{
 usb_pipe_t info;
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch (R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_CONFIGURED:
 :
 ctrl.pipe = USB_PIPE3;
 R_USB_GetPipeInfo(&ctrl, &info);
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 53 of 85
Mar 01, 2025

5. Callback Function (RTOS only)
When a USB event has completed, the USB driver will call a callback function. A callback function is created by the
user as a user application program, and must be registered in the USB driver using the R_USB_Callback function.

A callback functions that is registered in the USB driver must support the arguments and return values shown below.

Arguments : usb_ctrl_t *p_ctrl // Pointer to a usb_ctrl_t structure area
 : rtos_task_id_t task_id // Task handle which USB event has completed
 : uint8_t is_request // Class request reception flag
Return values : void // None

Note:

(1). In addition to the USB completion event, a variety of information about the event is also set to the argument
(p_ctrl) by the USB driver. Be sure to notify the application task of the relevant argument information using
the real-time OS API.

(2). If the member (event) in the argument (p_ctrl) is the following, the task ID of the application task which calls
the API related to the event is set to the argument (task_id). In the other case, USB_NULL is set to the
argument (task_id).

a. USB_STS_READ_COMPLETE
b. USB_STS_WRITE_COMPLETE
c. USB_STS_REQUEST_COMPLETE (Note a)
d. USB_STS_SUSPEND (Note b)
e. USB_STS_RESUME (Note b)
f. USB_STS_MSC_CMD_COMPLETE

Note:

a. In USB Peripheral mode, when this driver received the class request with the no data status stage,
USB_NULL is set to the argument(task_id).

b. In USB Peripheral mode, USB_NULL is set to the argument(task_id).

(3). In USB Peripheral mode, when this driver received the class request, USB_ON is set to the argument
(is_request).In the other case, USB_OFF is set.When the argument (is_request) is USB_ON, the information
related the class request is set to the member (setup) in the argumet (p_ctrl).

Example)

void usb_apl_callback (usb_ctrl_t *p_ctrl, rtos_task_id_t task_id, uint8_t is_request)
{
 /* Notify application task of USB event information using the real-time OS API */
 USB_APL_SND_MSG(USB_APL_MBX, (usb_msg_t *)p_ctrl);
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 54 of 85
Mar 01, 2025

6. Return Value of R_USB_GetEvent Function / Retrieval of USB Completion
Events

(1). Non-OS

The return values for the R_USB_GetEvent function are listed in Table 6-1, Return Value of R_USB_GetEvent
Function / Retrieval of USB Completion Events. Make sure you describe a program in the application program to
be triggered by each return value from the R_USB_GetEvent function.

(2). RTOS

When a USB event has completed, the callback function that has been registered using the R_USB_Callback
function will be called by the USB driver. The member (event) of the argument to this callback function (the pointer
to the usb_ctrl_t structure) will be set to the USB event information for the completed event. In the application
program, be sure to define a callback function and, from inside that callback function, notify the application task of
the completed USB event by using API etc supported by the real time OS.

Table 6-1 Return Value of R_USB_GetEvent Function / Retrieval of USB Completion Events

Return Value Description Host Peri
USB_STS_DEFAULT USB device has transitioned to default state. No Yes
USB_STS_CONFIGURED USB device has transitioned to configured state. Yes Yes
USB_STS_SUSPEND USB device has transitioned to suspend state. No Yes
USB_STS_RESUME USB device has returned from suspend state. Yes Yes
USB_STS_DETACH USB device has been detached from USB host. Yes Yes
USB_STS_REQUEST USB device received USB request (Setup). No Yes
USB_STS_REQUEST_COMPLETE USB request data transfer/receive is complete; device

has transitioned to status stage.
Yes Yes

USB_STS_READ_COMPLETE USB data read processing is complete. Yes Yes
USB_STS_WRITE_COMPLETE USB data write processing is complete. Yes Yes
USB_STS_BC Attachment of USB device that supports battery

charging function detected.
Yes No

USB_STS_OVERCURRENT Overcurrent detected. Yes No
USB_STS_NOT_SUPPORT Unsupported USB device has been connected. Yes No
USB_STS_NONE No USB-related events. Yes Yes

Yes: Support, No: Not support

6.1 USB_STS_DEFAULT
Indicates that the device state of the USB device has transitioned to the Default state.

6.2 USB_STS_CONFIGURED
Indicates that the device state of the USB device has transitioned to the Configured state. The usb_ctrl_t structure is
set t the following information. In USB host mode, information is also set in the following usb_ctrl_t structure
member.

type : Device class type (USB host mode only) when USB device has transitioned to
configured state.

6.3 USB_STS_SUSPEND
Indicates that the device state of the USB device has transitioned to the Suspend state.

6.4 USB_STS_RESUME
Indicates that the USB device in the Suspend state has been resumed from the Suspend state by the Resume signal.

Note:

When in USB Host mode, indicates that the USB device has been resumed by the RemoteWakeUp signal from an
HID device.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 55 of 85
Mar 01, 2025

6.5 USB_STS_DETACH
Indicates that the USB device is in the Detached state from USB Host.

6.6 USB_STS_REQUEST
Indicates the state in which the USB device has received a USB request (Setup). Information is also set to the
following members of the usb_ctrl_t structure.

setup : Received USB request information (8 bytes)

Note:

1. When a request has been received for support of the no-data control status stage, even if the R_USB_GetEvent
function is called, USB_STS_REQUEST_COMPLETE is sent as the return value instead of
USB_STS_REQUEST. (Non-OS)

2. If a request for support of the no data control status stage is received, the event member will be set to
USB_STS_REQUEST_COMPLETE, and not to USB_STS_REQUEST. (RTOS)

3. For more details on USB request information (8 bytes) stored in member (setup), refer to chapter 9.2,
usb_setup_t structure.

6.7 USB_STS_REQUEST_COMPLETE
Indicates that the stage transits to the idle stage after the status stage of a control transfer is completed. In addition to
this, the following member of the usb_ctrl_t structure also has information.

status : Sets either USB_ACK / USB_STALL

Note:

When a request has been received for support of the no-data control status stage, USB request information (8 bytes) is
stored in the usb_ctrl_t structure member (setup). For more details on USB request information (8 bytes) stored in
member (setup), refer to chapter 9.2, usb_setup_t structure.

6.8 USB_STS_READ_COMPLETE
Indicates that a data read has been completed by R_USB_Read / R_USB_PipeRead. Information is also set in the
following usb_ctrl_t structure member.

type : Device class type of completed data read (only set when using R_USB_Read function)
size : Size of read data
pipe : Pipe number of completed data read
status : Read completion error information

Note:

1. In the case of the R_USB_PipeRead function, the member (pipe) has the PIPE number (USB_PIPE1 to
USB_PIPE9) for which data read is completed. In the case of the R_USB_Read function, USB_NULL is set to
the member (pipe).

2. For details on device class type, refer to chapter 7, Device Class Types.

3. The member (status) has the read completion error information. The error information set to this member is as
follows.

USB_SUCCESS : Data read successfully completed
USB_ERR_OVER : Received data size over
USB_ERR_SHORT : Received data size short
USB_ERR_NG : Data reception failed

(1). Even if the reception request size is less than MaxPacketSize × n, if MaxPacketSize × n bytes of data are
received, then USB_ERR_OVER is set.

For example, if MaxPacketSize is 64 bytes, the specified reception request size is 510 bytes (less than
MaxPacketSize × n), and the actual received data size is 512 bytes (MaxPacketSize × n), then
USB_ERR_OVER is set.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 56 of 85
Mar 01, 2025

(2). If the reception request size is less than MaxPacketSize × n and the actual received data size is less than this
reception request size, then USB_ERR_SHORT is set.

For example, if MaxPacketSize is 64 bytes, the specified reception request size is 510 bytes, and the actual
received data size is 509 bytes, then USB_ERR_SHORT is set.

(3). The read data size is set in the member size when the read completion error information is USB_SUCCESS
or USB_ERR_SHORT.

6.9 USB_STS_WRITE_COMPLETE
Indicates that a data read has been completed by R_USB_Write / R_USB_PipeWrite. Information is also set in the
following usb_ctrl_t structure member.

type : Device class type of completed data write (only set when using R_USB_Write function)
pipe : Pipe number of completed data write
status : Write completion error information

Note:

1. For R_USB_Write function: class type is set in the usb_ctrl_t structure member (type) and USB_NULL is set in
the member (pipe).

2. In the case of R_USB_PipeWrite function, the member (pipe) has the PIPE number (USB_PIPE1 to
USB_PIPE9) for which data write has been completed. In the case of the R_USB_Write function, USB_NULL is
set to the member (pipe).

3. For details on device class type, refer to chapter 7, Device Class Types.

4. The member (status) has the write completion error information. The error information set to this member is as
follows.

USB_SUCCESS : Data write successfully completed
USB_ERR_NG : Data transmission failed

6.10 USB_STS_BC
Indicates the state in which a USB Host / USB device that supports the battery charging feature has been connected.
Information is also set in the following usb_ctrl_t structure member.

6.11 USB_STS_OVERCURRENT
In USB Host mode, indicates that the overcurrent is detected. Information is also set in the following usb_ctrl_t
structure member.

6.12 USB_STS_NOT_SUPPORT
In USB Host mode, indicates that an unsupported USB device is connected, then USB_STS_NOT_SUPPORT will be
the return value.

6.13 USB_STS_NONE (for Non-OS)
When the R_USB_GetEvent function is called in the “no USB-related event” status, USB_STS_NONE is sent as the
return value. Information is also set in the following usb_ctrl_t structure member.

status : USB device status

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 57 of 85
Mar 01, 2025

7. Device Class Types
The device class types assigned to the member(type) of the usb_ctrl_t and usb_info_t structures are as follows. Please
specify the device class supported by your system.

Device class type Description
USB_HCDC Host Communication Device Class
USB_HCDCC Host Communication Device Class (Control Class)
USB_HHID Host Human Interface Device Class
USB_HMSC Host Mass Storage Device Class
USB_PCDC Peripheral Communication Device Class
USB_PCDCC Peripheral Communication Device Class (Control Class)
USB_PHID Peripheral Human Interface Device Class
USB_PMSC Peripheral Mass Storage Device Class
USB_HVNDR Host Vendor Class
USB_PVNDR Peripheral Vendor Class

Note:

1. Host Communication Device Class: When transmitting data in a bulk transfer, specify USB_HCDC in the
usb_ctrl_t structure member (type). When transmitting data in an interrupt transfer, specify USB_HCDC in the
usb_ctrl_t structure member (type).

2. Peripheral Communication Device Class: When transmitting data in a bulk transfer, specify USB_PCDC in the
usb_ctrl_t structure member (type). When transmitting data in an interrupt transfer, specify USB_PCDCC in the
usb_ctrl_t structure member (type).

3. For an application program, do not assign USB_HMSC, USB_PMSC, USB_HVND, and USB_PVND to the
member (type) of the usb_ctrl_t structure.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 58 of 85
Mar 01, 2025

8. Configuration (r_usb_basic_mini_config.h)

8.1 USB Host and Peripheral Common Configurations
Perform settings for the definitions below in both USB Host and USB Peripheral modes.

1. USB operating mode setting

Set the operating mode (Host/Peripheral) of the USB module for the definition of USB_CFG_MODE.

(1). USB Host mode
Set USB_CFG_HOST for the definition of USB_CFG_MODE.
#define USB_CFG_MODE USB_CFG_HOST

(2). USB Peripheral mode
Set USB_CFG_PERI for the definition of USB_CFG_MODE.
#define USB_CFG_MODE USB_CFG_PERI

2. Argument check setting

Specify whether to perform argument checking for all of the APIs listed in chapter 4, API Functions.

#define USB_CFG_PARAM_CHECKING USB_CFG_ENABLE // Checks arguments.
#define USB_CFG_PARAM_CHECKING USB_CFG_DISABLE // Does not check

arguments.

3. Device class setting

Enable the definition of the USB driver to be used among the definitions below.

 #define USB_CFG_HCDC_USE // Host Communication Device Class
 #define USB_CFG_HHID_USE // Host Human Interface Device Class
 #define USB_CFG_HMSC_USE // Host Mass Storage Class
 #define USB_CFG_HVNDR_USE // Host Vendor Class
 #define USB_CFG_PCDC_USE // Peripheral Communication Device Class
 #define USB_CFG_PHID_USE // Peripheral Human Interface Device Class
 #define USB_CFG_PMSC_USE // Peripheral Mass Storage Class
 #define USB_CFG_PVNDR_USE // Peripheral Vendor Class
#define USB_CFG_PCDC_2COM_USE // Peripheral Composite device(CDC VCOM 2Port)
#define USB_CFG_PCDC_PHID_USE // Peripheral Composite device(CDC + HID)
#define USB_CFG_PCDC_PMSC_USE // Peripheral Composite device(CDC + MSC)
#define USB_CFG_PHID_PMSC_USE // Peripheral Composite device(HID + MSC)

4. DTC use setting

 Specify whether to use the DTC.

#define USB_CFG_DTC USB_CFG_ENABLE // Uses DTC
#define USB_CFG_DTC USB_CFG_DISABLE // Does not use DTC

Note:

If USB_CFG_ENABLE is set for the definition of USB_CFG_DTC, be sure to set USB_CFG_DISABLE for the
definition of USB_CFG_DMA in 5 below.

5. DMA use setting

Specify whether to use the DMA.

#define USB_CFG_DMA USB_CFG_ENABLE // Uses DMA.
#define USB_CFG_DMA USB_CFG_DISABLE // Does not use DMA.

Note:

(1). Be sure to specify USB_CFG_DISABLE when using RX111/RX113.

(2). If USB_CFG_ENABLE is set for the definition of USB_CFG_DMA, be sure to set USB_CFG_DISABLE
for the definition of USB_CFG_DTC in 4 above.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 59 of 85
Mar 01, 2025

(3). If USB_CFG_ENABLE is set for the definition of USB_CFG_DMA, set the DMA Channel number for the
definition in 6 below.

6. DMA Channel setting

If USB_CFG_ENABLE is set in 5 above, set the DMA Channel number to be used.

#define USB_CFG_USB0_DMA_TX DMA Channel number // Transmission setting for
USB0 module

#define USB_CFG_USB0_DMA_RX DMA Channel number // Transmission setting for
USB0 module

Note:

(1). Set one of the DMA channel numbers from USB_CFG_CH0 to USB_CFG_CH3. Do not set the same DMA
Channel number.

(2). If DMA transfer is not used, set USB_CFG_NOUSE as the DMA Channel number.

(3). Be sure to specify the different DMA channel number to DMA sending and receiving when usng USB Host
Mass Storage classs.

The following is the spcifying example.
a. When using the DMA transfer for DMA sending and receiving

#define USB_CFG_USB0_DMA_TX USB_CFG_CH0
#define USB_CFG_USB0_DMA_RX USB_CFG_CH3

Note:
Be sure to specify USB PIPE1 and USB PIPE2 for DMA transfer.

b. When using DMA for data sending and not using DMA for data receiving using USB0 module
#define USB_CFG_USB0_DMA_TX USB_CFG_CH1

Note:
Specify the one of USB PIPE1 or USB PIPE2 for the sending USB PIPE (DMA transfer) and specify the
one of USB_PIPE3, USB_PIPE4 or USB_PIPE5 for the receiving USB PIPE.

7. Setting Battery Charging (BC) function

Set the Battery Charging function to be enabled or disabled as the following definition. Set USB_CFG_ENABLE
as the definition below in order to use the Battery Charging function.

#define USB_CFG_BC USB_CFG_ENABLE // Uses BC function.
#define USB_CFG_BC USB_CFG_DISABLE // Does not use BC function.

8. Interrupt Priority Level setting
Assign the interrupt priority level of the interrupt related to USB for USB_CFG_INTERRUPT_PRIORITY
definition.

#define USB_CFG_INTERRUPT_PRIORITY 3 // 1(low) – 15(high)

9. USB regulator setting
Specify whether your system uses USB regulator function supported by RX231 or not.

#define USB_CFG_REGULATOR USB_CFG_OFF // No use
#define USB_CFG_REGULATOR USB_CFG_ON // Use

Note:

This definition is ignored when using MCU except RX231.

8.2 Settings in USB Host Mode
 To make a USB module to work as a USB Host, set the definitions below according to the system to be used.

1. Setting power source IC for USB Host

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 60 of 85
Mar 01, 2025

Set the VBUS output of the power source IC for the USB Host being used to either Low Assert or High Assert.
For Low Assert, set USB_CFG_LOW as the definition below, and for High Assert, set USB_CFG_HIGH as the
definition below.

#define USB_CFG_VBUS USB_CFG_HIGH // High Assert
#define USB_CFG_VBUS USB_CFG_LOW // Low Assert

2. Setting USB port operation when using Battery Charging (BC) function
Set the Dedicated Charging Port (DCP) to be enabled or disabled as the following definition. If the BC function is
being implemented as the Dedicated Charging Port (DCP), then set USB_CFG_ENABLE as the definition below.
If USB_CFG_DISABLE is set, the BC function is implemented as the Charging Downstream Port (CDP).

#define USB_CFG_DCP USB_CFG_ENABLE // DCP enabled.
#define USB_CFG_DCP USB_CFG_DISABLE // DCP disabled.

Note:

If USB_CFG_ENABLE is set for this definition, then set USB_CFG_ENABLE for the definition of USB_CFG_BC
in above.

3. Setting Compliance Test mode
Set Compliance Test support for the USB Embedded Host to be enabled or disabled as the following definition.
To perform the Compliance Test, set USB_CFG_ENABLE as the definition below. When not performing the
Compliance Test, set USB_CFG_DISABLE as the definition below.

#define USB_CFG_COMPLIANCE USB_CFG_ENABLE // Compliance Test supported.
#define USB_CFG_COMPLIANCE USB_CFG_DISABLE // Compliance Test not supported.

4. Setting a Targeted Peripheral List (TPL)
Set the number of the USB devices and the VID and PID pairs for the USB device to be connected as necessary as
the following definition. For a method to set the TPL, see chapter 3.6, How to Set the Target Peripheral List
(TPL).

#define USB_CFG_TPLCNT Number of the USB devices to be connected.
#define USB_CFG_TPL Set the VID and PID pairs for the USB device to be

connected.

8.3 Settings in USB Peripheral Mode
To make a USB module to work as a USB Peripheral, set the definitions below according to the system to be used.

1. Request notification setting

Set whether this driver notifies the application program the reception of SET_INTERFACE,
SET_FEATURE/CLEAR_FEATURE request or not.

#define USB_CFG_REQUEST USB_CFG_ENABLE // Notification
#define USB_CFG_REQUEST USB_CFG_DISABLE // Not notification

Note:

This driver notifies the application program the request reception when Feature Selector (wValue) in the received
SET_FEATURE/CLEAR_FEATURE is DEVICE_REMOTE_WAKEUP .

8.4 Other Definitions
In addition to the above, the following definition is also provided in r_usb_basic_mini_config.h. Recommended
values have been set for these definitions, so only change them when necessary.

1. DBLB bit setting

Set or clear the DBLB bit in the pipe configuration register (PIPECFG) of the USB module using the
following definition.

#define USB_CFG_DBLB USB_CFG_DBLBON // DBLB bit set.
#define USB_CFG_DBLB USB_CFG_DBLBOFF // DBLB bit cleared.

 Note:

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 61 of 85
Mar 01, 2025

(1). The setting of the DBLB bitis performed for PIPE1 to PIPE5 being used. Therefore, in this configuration, it is
not possible to perform the pipe-specific settings for these bits.

(2). For details on the pipe configuration register (PIPECFG), refer to the MCU hardware manual.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 62 of 85
Mar 01, 2025

9. Structures
This chapter describes the structures used in the application program.

9.1 usb_ctrl_t structure
The usb_ctrl_t structure is used for USB data transmission and other operations.

typdef struct usb_ctrl {
 uint8_t pipe; /* Note 1 */
 uint8_t type; /* Note 2 */
 uint16_t status; /* Note 3 */
 uint32_t size; /* Note 4 */
 usb_set_up setup; /* Note 5 */
 void *p_data /* Note 6 */
} usb_ctrl_t;

Note:

1. Member (pipe) is used to specify the USB module pipe number. For example, specify the pipe number when
using the R_USB_PipeRead function or R_USB_PipeWrite function.

2. Member (type) is used to specify the device class type.
3. The USB device state or the result of a USB request command is stored in the member (status). The USB

driver sets in this member. Therefore, except when initializing the usb_crtl_t structure area or processing an
ACK/STALL response to a vendor class request, the application program should not write into this member.
For status status stage processing to a vendor class request, see chapter 10.2.3, Status Stage Processing.

4. Member (size) is used to set the size of data that is read. The USB driver sets this member. Therefore, the
application program should not write into this member.

5. Member (setup) is used to set the information about a class request.

6. Member (p_data) is used to set information other than the above.

9.2 usb_setup_t structure
The usb_setup_t structure is used when sending or receiving a USB class request. To send a class request to a USB
device (in USB Host mode), assign to the members of the usb_setup_t structure the information for the class request
to be sent. To obtain class request information from the USB Host (in USB Peripheral mode), refer to the members of
the usb_setup_t structure.

typedef struct usb_setup {
 uint16_t type /* Note 1 */
 uint16_t value; /* Note 2 */
 uint16_t index; /* Note 3 */
 uint16_t length; /* Note 4 */
} usb_setup_t;

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 63 of 85
Mar 01, 2025

Note:

1. In USB Host mode, the value assigned to the member (type) is set to the USBREQ register, and in USB
Peripheral mode, the value of the USBREQ register is set to the member (type).

2. In USB Host mode, the value assigned to the member (value) is set to the USBVAL register, and in USB
Peripheral mode, the value of the USBVAL register is set to the member (value).

3. In USB Host mode, the value assigned to the member (index) is set to the USBINDX register, and in USB
Peripheral mode, the value of the USBINDX register is set to the member (index).

4. In USB Host mode, the value assigned to the member (length) is set to the USBLENG register, and in USB
Peripheral mode, the value of the USBLENG register is set to the member (length).

5. For information on the USBREQ, USBVAL, USBINDX, and USBLENG registers, refer to the MCU user’s
manual.

9.3 usb_cfg_t structure
The usb_cfg_t structure is used to register essential information such as settings to indicate use of USB host or USB
peripheral as the USB module and to specify USB speed. This structure can only be used for the R_USB_Open
function listed in Table 4-1.

typdef struct usb_cfg {
 uint8_t usb_mode; /* Note 1 */
 usb_descriptor_t *p_usb_reg; /* Note 2 */
} usb_cfg_t;

Note:

1. Specify whether to use USB host or USB peripheral mode as the USB module in member (usb_mode). To select
USB host, set USB_HOST; to select USB peripheral, set USB_PERI in the member.

2. Please set USB speed of USB module. Set USB_FS when setting Full-speed and USB_LS when setting
Low-speed. If USB_HOST is set in the above 1, the settings will be ignored.

3. Specify the usb_descriptor_t type pointer for the USB device in member (p_usb_reg). Refer to chapter 9.4,
usb_descriptor_t structure for details on the usb_descriptor_t type. This member can only be set in USB
peripheral mode. If USB_HOST is set in the above 1, the settings will be ignored.

9.4 usb_descriptor_t structure
The usb_descriptor_t structure stores descriptor information such as device descriptor and configuration descriptor.
The descriptor information set in this structure is sent to the USB host as response data to a standard request during
enumeration of the USB host. This structure is specified in the R_USB_Open function argument.

typdef struct usb_descriptor {
 uint8_t *p_device; /* Note 1 */
 uint8_t *p_config_f; /* Note 2 */
 uint8_t **pp_string; /* Note 3 */
 uint8_t num_string; /* Note 4 */
} usb_descriptor_t;

Note:

1. Specify the top address of the area that stores the device descriptor in the member (p_device).

2. Specify the top address of the area that stores the Full-speed configuration descriptor in the member
(p_config_f).

3. Specify the top address of the string descriptor table in the member (pp_string). In the string descriptor table,
specify the top address of the areas that store each string descriptor.

usb_descriptor_t usb_descriptor =
{
 smp_device,
 smp_config_f,
 smp_string,

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 64 of 85
Mar 01, 2025

 3,
};

4. Specify the number of the string descriptor which set in the string descriptor table to the member (num_string).

9.5 usb_pipe_t structure
The USB driver sets information about the USB pipe (PIPE1 to PIPE9) in the usb_pipe_t structure. Use the
R_USB_GetPipeInfo function to reference the pipe information set in the structure.

typdef struct usb_pipe {
 uint8_t ep; /* Note 1 */
 uint8_t type; /* Note 2 */
 uint16_t mxps; /* Note 3 */
} usb_pipe_t;

Note:

1. The endpoint number is set in member (ep). The direction (IN/OUT) is set in the highest bit. When the highest
bit is “1”, the direction is IN, when “0”, the direction is OUT.

2. The transfer type (bulk/interrupt) is set in member (type). For a Bulk transfer, "USB_BULK" is set, and for an
Interrupt transfer, "USB_INT" is set.

3. The maximum packet size is set in member (mxps).

9.6 usb_info_t structure
The following information on the USB device is set for the usb_info_t structure by calling the
R_USB_GetInformation function.

typedef struct usb_info {
 uint8_t type; /* Note 1 */
 uint8_t speed; /* Note 2 */
 uint8_t status; /* Note 3 */
 uint8_t port; /* Note 4 */
} usb_info_t;

Note:

1. In USB Host mode, the device class type of the connected USB device is set for the member (type). In USB
Peripheral mode, the supporting device class type is set for the member (type). For information on the device
class types, see 7, Device Class Types. (In the case of PCDC, USB_PCDC is set in this member(type))

2. The USB speed (USB_FS/USB_LS) is set for the member (speed). In USB Host mode, if no USB device is
connected, then USB_NOT_CONNECT is set.

3. One of the following states of the USB device is set for the member (status).

USB_STS_DEFAULT : Default state
USB_STS_ADDRESS : Address state
USB_STS_CONFIGURED : Configured state
USB_STS_SUSPEND : Suspend state
USB_STS_DETACH : Detach state

4. The following information of the Battery Charging (BC) function of the device conected to the port is set to the
member (port).

USB_SDP : Standard Downstream Port
USB_CDP : Charging Downstream Port
USB_DCP : Dedicated Charging Port (USB Peripheral only)

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 65 of 85
Mar 01, 2025

9.7 usb_compliance_t structure
This structure is used when running the USB compliance test. The structure specifies the following USB-related
information:

typedef struct usb_compliance {
 usb_ct_status_t status; /* Note 1 */
 uint16_t vid; /* Note 2 */
 uint16_t pid; /* Note 3 */
} usb_compliance_t;

Note:

1. The member status can be set to the following values to indicate the status of the connected USB device:

USB_CT_ATTACH : USB device attach detected
USB_CT_DETACH : USB device detach detected
USB_CT_TPL : Attach detected of USB device listed in TPL
USB_CT_NOTTPL : Attach detected of USB device not listed in TPL
USB_CT_OVRCUR : Overcurrent detected
USB_CT_NORES : No response to control read transfer
USB_CT_SETUP_ERR : Setup transaction error occurred

2. The member vid is set to a value indicating the vendor ID of the connected USB device.

3. The member pid is set to a value indicating the product ID of the connected USB device.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 66 of 85
Mar 01, 2025

10. USB Class Requests
This chapter describes how to process USB class requests. As standard requests are processed by the USB driver, they
do not need to be included in the application program.

10.1 USB Host operations
10.1.1 USB request (setup) transfer

A USB request is sent to the USB device using the R_USB_Write function. The following describes the transfer
procedure.

1. Set USB_REQUEST in the usb_ctrl_t structure member (type).
2. Set the USB request (setup: 8 bytes) in the usb_ctrl_t structure member (setup) area. Refer to chapter 9.2,

usb_setup_t structure for details on how to set member (setup).
3. If the request supports the control write data stage, store the transfer data in a buffer. If the request supports the

control read data stage, reserve a buffer to store the data received from the USB device. Note: do not reserve
the auto-variable (stack) area of the buffer.

4. Specify the data buffer top address in the second argument of the R_USB_Write function, and the data size in
the third argument. If the request supports no-data control status stage, specify USB_NULL for both the second
and third arguments.

5. Call the R_USB_Write function.

10.1.2 USB request completion
1. Non-OS

Confirm the completion of a USB request with the return value (USB_STS_REQUEST_COMPLETE) of the
R_USB_GetEvent function. For a request that supports the control read data stage, the received data is stored in the
area specified in the second argument of the R_USB_Write function.

2. RTOS

It is possible to check for the completion of a USB request based on an argument to the callback function registered
in the USB driver (USB_STS_REQUEST_COMPLETE in the event member of the usb_ctrl_t structure). In the case
of a request for support of the control read data stage, the received data will be stored in the area specified by the
second R_USB_Write function.

Confirm the USB request results from the usb_ctrl_t structure member (status), which is set as follows.

status Description
USB_ACK Successfully completed
USB_STALL Stalled

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 67 of 85
Mar 01, 2025

10.1.3 USB request processing example
1. Non-OS

void usr_application (void)
{
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch(R_USB_GetEvent(&ctrl))
 {
 /* Request setting processing to ctrl.setup */
 :
 /* For request that supports control write data stage, set transfer data in g_buf area. */
 :
 ctrl.type = USB_REQUEST;
 R_USB_Write(&ctrl, g_buf, size); /* Send USB request (Setup stage). */
 break;
 case USB_STS_REQUEST_COMPLETE: /* USB request completed. */
 if(USB_ACK == ctrl.status) /* Confirm results of USB request. */
 {
 /* For request that supports control read data stage,
 store receive data in g_buf area. */
 :
 }
 break;
 :
 }
 }
}

2. RTOS

void usr_application_task (void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch(ctrl.event)
 {
 /* Request setting processing to ctrl.setup */
 :
 /* For request that supports control write data stage, set transfer data in g_buf area. */
 :
 ctrl.type = USB_REQUEST;
 R_USB_Write(&ctrl, g_buf, size); /* Send USB request (Setup stage). */
 break;
 case USB_STS_REQUEST_COMPLETE: /* USB request completed. */
 if(USB_ACK == ctrl.status) /* Confirm results of USB request. */
 {
 /* For request that supports control read data stage,
 store receive data in g_buf area. */
 :
 }
 break;
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 68 of 85
Mar 01, 2025

10.2 USB Peripheral operations
10.2.1 USB request (Setup)

1. Non-OS

Confirm receipt of the USB request (Setup) sent by the USB host with the return value (USB_STS_REQUEST) of
the R_USB_GetEvent function. The contents of the USB request (Setup: 8 bytes) are stored in the usb_ctrl_t
structure member (setup) area. Refer to chapter 9.2, usb_setup_t structure for a description of the settings for
member (setup).

2. RTOS

It is possible to check for the reception of a USB request (Setup) transmitted from the USB Host using an argument
to the callback function registered in the USB driver (USB_STS_REQUEST in the event member of the usb_ctrl_t
structure). The contents of the USB request (Setup: 8 bytes) are stored in the usb_ctrl_t structure member (setup)
area. Refer to chapter 9.2, usb_setup_t structure, for a description of the settings for member (setup).

Note:

Note that when a request for support of the no data status stage is received, the argument to the callback function
registered in the USB driver (the member (event) of the usb_ctrl_t structure) will be set to
USB_STS_REQUEST_COMPLETE, and not to USB_STS_REQUEST.

10.2.2 USB request data

The R_USB_Read function is used to receive data in the data stage and the R_USB_Write function is used to send
data to the USB host. The following describes the receive and send procedures.

1. Receive procedure

(1). Set the USB_REQUEST in the usb_ctrl_t structure member (type).

(2). In the R_USB_Read function, specify the pointer to area that stores data in the second argument, and the
requested data size in the third argument.

(3). Call the R_USB_Read function.

Note:

(1). Confirm receipt of the request data with the return value (USB_STS_REQUEST_COMPLETE) of the
R_USB_GetEvent function. (Non-OS)

(2). It is possible to check for the reception completion of a request data based on an argument to the callback
function registered in the USB driver (USB_STS_READ_COMPLETE in the member (event) of the usb_ctrl_t
structure). (RTOS)

2. Send procedure

(1). Set USB_REQUEST in the usb_ctrl_t structure member (type).

(2). Store the data from the data stage in a buffer. In the R_USB_Write function, specify the top address of the
buffer in the second argument, and the transfer data size in the third argument.

(3). Call the R_USB_Write function.

Note:

(1). Confirm receipt of the request data with the return value (USB_STS_REQUEST_COMPLETE) of the
R_USB_GetEvent function. (Non-OS)

(2). It is possible to check for the transmission completion of a request data based on an argument to the callback
function registered in the USB driver (USB_STS_REQUEST_COMPLETE in the member (event) of the
usb_ctrl_t structure). (RTOS)

10.2.3 Status Stage Processing
In the following case, this driver does not process to the status stage. The user need to process the status stage in the
application program. The user needs to process the status stage in the application program. For how to process the
status stage, see 10.2.4, Example USB request processing description.

(1). Case of responsing ACK to a class request that supports no-data control status stage

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 69 of 85
Mar 01, 2025

(2). Case of responsing STALL to a class request

Note:

When receiving a class r equest that support the data stage, this USB driver process the status stage after processing
the data stage.

10.2.4 Example USB request processing description
1. Request that supports control read data stage

(1). Non-OS

void usr_application (void)
{
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch(R_USB_GetEvent(&ctrl))
 {
 :
 case USB_REQUEST: /* Receive USB request */
 /* ctrl.setup analysis processing*/
 :
 /* data setup processing */
 :
 ctrl.type = USB_REQUEST;
 R_USB_Write(&ctrl, g_buf, size); /* data (data stage) send request */
 break;
 case USB_STS_REQUEST_COMPLETE:
 :
 break;
 :
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 70 of 85
Mar 01, 2025

(2). RTOS

void usr_application_task (void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :
 case USB_REQUEST: /* Receive USB request */
 /* ctrl.setup analysis processing*/
 :
 /* data setup processing */
 :
 ctrl.type = USB_REQUEST;
 R_USB_Write(&ctrl, g_buf, size); /* data (data stage) send request */
 break;
 case USB_STS_REQUEST_COMPLETE:
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 71 of 85
Mar 01, 2025

2. Request that supports control write data stage
(1). Non-OS

void usr_application (void)
{
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch(R_USB_GetEvent(&ctrl))
 {
 :
 case USB_REQUEST: /* Receive USB request */
 /* ctrl.setup analysis processing */
 :
 ctrl.type = USB_REQUEST;
 R_USB_Read(&ctrl, g_buf, size); /* data (data stage) receive request */
 break;
 case USB_STS_REQUEST_COMPLETE:
 :
 break;
 :
 }
 }
}

(2). RTOS

void usr_application_task (void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :
 case USB_REQUEST: /* Receive USB request */
 /* ctrl.setup analysis processing */
 :
 ctrl.type = USB_REQUEST;
 R_USB_Read(&ctrl, g_buf, size); /* data (data stage) receive request */
 break;
 case USB_STS_REQUEST_COMPLETE:
 :
 break;
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 72 of 85
Mar 01, 2025

3. Request that supports no-data control status stage (ACK response)

(1). ACK response

a. Non-OS

void usr_application (void)
{
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch(R_USB_GetEvent(&ctrl))
 {
 :
 case USB_REQUEST: /* Receive USB request */
 /* ctrl.setup analysis processing*/
 :
 ctrl.type = USB_REQUEST;
 ctrl.status = USB_ACK;
 R_USB_Write(&ctrl, (uint8_t *)USB_NULL, (uint32_t)USB_NULL);
 break;
 case USB_STS_REQUEST_COMPLETE:
 :
 break;
 :
 }
 }
}

b. RTOS

void usr_application_task (void)
{
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :
 case USB_STS_REQUEST:
 /* ctrl.setup analysis processing */
 :
 ctrl.type = USB_REQUEST:
 ctrl.status = USB_ACK;
 R_USB_Write(&ctrl, (uint8_t *)USB_NULL, (uint32_t)USB_NULL);
 break;
 case USB_STS_REQUEST_COMPLETE:
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 73 of 85
Mar 01, 2025

(2). STALL response

a. Non-OS

void usr_application (void)
{
 usb_ctrl_t ctrl;
 switch(R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_REQUEST:
 /* ctrl.setup analysis processing */
 :
 ctrl.type = USB_REQUEST:
 ctrl.status = USB_STALL;
 R_USB_Write(&ctrl, (uint8_t *)USB_NULL, (uint32_t)USB_NULL);
 break;
 case USB_STS_REQUEST_COMPLETE:
 if(USB_REQUEST == ctrl.type)
 {
 :
 }
 break;
 :
 }
}

b. RTOS

void usr_application_task (void)
{
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :
 case USB_STS_REQUEST:
 /* ctrl.setup analysis processing */
 :
 ctrl.type = USB_REQUEST:
 ctrl.status = USB_STALL;
 R_USB_Write(&ctrl, (uint8_t *)USB_NULL, (uint32_t)USB_NULL);
 break;
 case USB_STS_REQUEST_COMPLETE:
 :
 break;
 :
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 74 of 85
Mar 01, 2025

11. DTC/DMA Transfer

11.1 Basic Specification
The specifications of the DTC/DMA transfer sample program code included in USB-BASIC-FW are listed below.
USB Pipe 1 and Pipe2 can used DTC/DMA access.
Table11-1 shows DTC/DMA Setting Specifications.

Table11-1 DTC/DMA Setting Specifications

Setting Description
FIFO port used D0FIFO and D1FIFO port
Transfer mode Block transfer mode
Chain transfer Disabled
Address mode Full address mode
Read skip Disabled
Access bit width (MBW) 2-byte transfer: 16-bit width
USB transfer type BULK transfer
Transfer end Receive direction: BRDY interrupt

Transmit direction: D0FIFO/D1FIFO interrupt, BEMP interrupt

Note:

This driver does not support using DMA transfer and DTC transfer at the same time.

11.2 Notes
11.2.1 DTC transfer

Refer to "Special Note" described in the chapter "R_DTC_Open" in the application note "RX Family DTC module"
(Document No. R01AN1819).

11.2.2 Data Reception Buffer Size

The user needs to allocate the buffer area for more than n times the max packet size to store the receiving data.

11.2.3 USB Pipe
USB pipe which is used by DMA/DTC transfer is only PIPE1 and PIPE2. This driver does not work properly when
USB pipe except PIPE1 and PIPE2 is used for DMA/DTC transfer. When data transfer is performed by combining
DMA/DTC transfer and CPU transfer, use PIPE1 or PIPE2 for DTM/DTC transfer and use PIPE3, PIPE4 or PIPE5
for CPU transfer.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 75 of 85
Mar 01, 2025

12. Additional Notes

12.1 Vendor ID
Be sure to use the user’s own Vendor ID for the one to be provided in the Device Descriptor.

12.2 Compliance Test
In order to run the USB Compliance Test it is necessary to display USB device–related information on a display
device such as an LCD. When the USB_CFG_COMPLIANCE definition in the configuration file
(r_usb_basic_mini_config.h) is set to USB_CFG_ENABLE, the USB driver calls the function (usb_compliance_disp)
indicated below. This function should be defined within the application program, and the function should contain
processing for displaying USB device–related information, etc.

Function name : void usb_compliance_disp(usb_compliance_t *);
Argument : usb_compliance_t * Pointer to structure for storing USB information

Note:

1. The USB driver sets the USB device–related information in an area indicated by an argument, and the
usb_compliance_disp function is called.

2. For information on the usb_compliance_t structure, refer to chapter 9.7, usb_compliance_t structure.

3. When the USB_CFG_COMPLIANCE definition in r_usb_basic_mini_config.h is set to USB_CFG_ENABLE, it
is necessary to register the vendor ID and product ID in the TPL definition. For information on TPL definitions,
refer to chapter 3.6, How to Set the Target Peripheral List (TPL).

4. For a program sample of the usb_compliance_disp function, see 14.1, usb_compliance_disp function.

12.3 QE for USB
Copy the following file when using QE for USB V.1.2.1.

File Name : qe_usb_firm_setting.xml

Copy Source Folder : ProjectFolder/src/smc_gen/r_usb_basic_mini/utilities

Copy Destination Folder : ProjectFolder

Note:

The ProjectFolder means the folder where the .cproject file and the .project file are existed.

12.4 Configuration for BSP
Please change the setting value for the following definitions in the r_bsp_config.h file.

1. Specify 0x200 to BSP_CFG_ISTACK_BYTES definition.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 76 of 85
Mar 01, 2025

12.5 RTOS
12.5.1 FreeRTOS

1. Task Priority

The value from 8 to 11 is specified to the priority for USB driver task. Please specify the value from 0 to 7 to the
priority for the application task.

2. configMAX_PRIORITIES definition

Specify a value of 12 or more to configMAX_PRIORITIES definition defined in FreeRTOSConfig.h file when
using FreeRTOS.

12.5.2 RI600V4 (Configuration File Creation)
When using RI600V4, you need to create a configration file to register the OS resources used by USB driver with
RI600V4. Please create a configuration file based on the following information. For how to create a configuration
file, refer to RI600V4 user's manual.

1. USB Peripheral Definition

(1). Task Definition

name : ID_ USB_RTOS_PCD_TSK
entry_address : usb_pstd_pcd_task()
stack_size : 512
initial_start : OFF
exinf : 0

Note:

For this task priority, specify a prority higher than the application task priority.

(2). Mailbox Definition

a. Mailbox 1

name : ID_USB_RTOS_PCD_MBX
wait_queue : TA_FIFO
message_queue : TA_MFIFO

b. Mailbox 2

name : ID_USB_RTOS_PCD_SUB_MBX
wait_queue : TA_FIFO
message_queue : TA_MFIFO

(3). Fixed-size Memory Pool Definition

name : ID_USB_RTOS_DRIVER_MPF
section : BRI_HEAP
num_block : 64
siz_block : 64
wait_queue : TA_TFIFO

2. USB Host Definition

(1). Task Definition

a. Task 1

name : ID_USB_RTOS_HCD_TSK
entry_address : usb_hstd_hcd_task()
stack_size : 512
initial_start : OFF
exinf : 0

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 77 of 85
Mar 01, 2025

b. Task 2

name : ID_USB_RTOS_MGR_TSK
entry_address : usb_hstd_mgr_task()
stack_size : 512
initial_start : OFF
exinf : 0

Note:

Be sure to specify the task priority in the following order.

ID_USB_RTOS_HCD_TSK High Priority
ID_USB_RTOS_MGR_TSK ↓
Application Task Low Priority

(2). Mailbox Definition

a. Mailbox 1

name : ID_USB_RTOS_HCD_MBX
wait_queue : TA_FIFO
message_queue : TA_MFIFO

b. Mailbox 2

name : ID_USB_RTOS_HCD_SUB_MBX
wait_queue : TA_FIFO
message_queue : TA_MFIFO

c. Mailbox 3

name : ID_USB_RTOS_HCD_SUB_ADDR_MBX
wait_queue : TA_FIFO
message_queue : TA_MFIFO

d. Mailbox 4

name : ID_USB_RTOS_MRG_MBX
wait_queue : TA_FIFO
message_queue : TA_MFIFO

e. Mailbox 5

name : ID_USB_RTOS_CLS_MBX
wait_queue : TA_FIFO
message_queue : TA_MFIFO

(3). Fixed-size Memory Pool Definition

name : ID_USB_RTOS_DRIVER_MPF
section : BRI_HEAP
num_block : 64
siz_block : 64
wait_queue : TA_TFIFO

3. USB Host and USB Peripheral Common Definition

(1). System Definition

stack_size : System stack size
priority : Maximum task priority
system_IPL : Kernel interrupt mask level
tic_deno : 1

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 78 of 85
Mar 01, 2025

tic_nume : 1
context : FPSW, ACC

(2). System Clock Definition

timer : Hardware timer
template : Template file
timer_clock : PCLK frequency
IPL : 1 to system.system_IPL

(3). Fixed-size Memory Pool Definition

name : ID_USB_RTOS_DRIVER_MPF
section : BRI_HEAP
num_block : 64
siz_block : 64
wait_queue : TA_TFIFO

(4). Interrupt Definition

a. Interrupt 1

entry_address : usbfs_usbi_isr()
os_int : YES

b. Interrupt 2 (When using DMA tranfer)

entry_address : r_dmaca_intdmac0i_isr()
r_dmaca_intdmac1i_isr()
r_dmaca_intdmac2i_isr()
r_dmaca_intdmac3i_isr()
r_dmaca_intdmac74i_isr()

os_int : YES

Note:

Specify the following interrupt function in the entry_address item according to the DMA channel number
to be used. For example, if USB_CFG_CH1 is specified for USB_CFG_USB0_DMA_TX definition in the
r_usb_basic_config.h file, specify r_dmaca_intdmac1i_isr() in the entry_address item.

DMA Channel Number Function
DMA0 r_dmaca_intdmac0i_isr()
DMA1 r_dmaca_intdmac1i_isr()
DMA2 r_dmaca_intdmac2i_isr()
DMA3 r_dmaca_intdmac3i_isr()
DMA4 to DMA7 r_dmaca_intdmac74i_isr()

c. Interrupt 3 (When using DTC transfer)

entry_address : usb_cpu_d0fifo_int_hand
usb_cpu_d1fifo_int_hand

os_int : YES

Note:

For the entry_address item, specify the following interrupt function according to the PIPE used.

Use PIPE Function
PIPE1 (USB0 module) usb_cpu_d0fifo_int_hand()
PIPE2 (USB0 module) usb_cpu_d1fifo_int_hand()

For example, define the 2 interrupts when using PIPE1 and PIPE2 of USB0 module for the DTC transfer.

Example)

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 79 of 85
Mar 01, 2025

interrupt_vector[34] {
 entry_address = usb_cpu_d0fifo_int_hand();
 os_int = YES;
};

interrupt_vector[35] {
 entry_address = usb_cpu_d1fifo_int_hand();
 os_int = YES;
};

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 80 of 85
Mar 01, 2025

13. Creating an Application Program
This chapter explains how to create an application program using the API functions described throughout this
document. Please make sure you use the API functions described here when developing your application program.

13.1 Configuration
Set each configuration file (header file) in the r_config folder to meet the specifications and requirements of your
system. Please refer to chapter 8, Configuration about setting of the configuration file.

13.2 Descriptor Creation
For USB peripheral operations, your will need to create descriptors to meet your system specifications. Register the
created descriptors in the usb_descriptor_t function members. USB host operations do not require creation of special
descriptors.

13.3 Application Program Creation
13.3.1 Include
 Make sure you include the following files in your application program.

1. r_usb_basic_mini_if.h (Inclusion is obligatory.)

2. r_usb_xxxxx_mini_if.h (I/F file provided for the USB device class to be used)

3. kernel_id.h (case of using RI600V4)

4. Include a header file for FAT when creating the application program for Host Mass Storage Class.

5. Include any other driver-related header files that are used within the application program.

13.3.2 Initialization
1. USB pin settings

USB input/output pin settings are necessary to use the USB controller. The following is a list of USB pins that
need to be set. Set the following pins as necessary.

Table13-1 USB I/O Pin Settings for USB Peripheral Operation
Pin Name I/O Function

USB_VBUS input VBUS pin for USB communication

Table13-2 USB I/O Pin Settings for USB Host Operation
Pin Name I/O Function

USB_VBUSEN output VBUS output enabled pin for USB communication
USB_OVRCURA input Overcurrent detection pin for USB communication

Note:

Please refer to the corresponding MCU user’s manual for the pin settings in ports used for your application
program.

2. USB-related initialization

Call the R_USB_Open function to initialize the USB module (hardware) and USB driver software used for your
application program.

3. Creation and Registration of Callback Functions (RTOS only)

Use the R_USB_Callback function to create callback functions to register. After creation, register the callback
function in question in the USB driver using the R_USB_Callback function.
In addition to the USB completion event, a variety of information about the event is also set by the USB driver. Be
sure to notify the application task of the relevant argument information using the real timeOS API etc.

Example)

void usb_apl_callback (usb_ctrl_t *p_ctrl, rtos_task_id_t task_id, uint8_t is_request)
{

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 81 of 85
Mar 01, 2025

 /* Notify application task of USB event information using the real time OS API */
 USB_APL_SND_MSG(USB_APL_MBX, (usb_msg_t *)p_ctrl);
}

13.3.3 Descriptor Creation
For USB peripheral operations please create descriptors to meet your system specifications. Refer to chapter 2.5,
Descriptor for more details about descriptors. USB host operations do not require creation of special descriptors.

13.3.4 Creation of Main Routine / Application Program Tasks

1. Non-OS

Please describe the main routine in the main loop format. Make sure you call the R_USB_GetEvent function in
the main loop. The USB-related completed events are obtained from the return value of the R_USB_GetEvent
function. Also make sure your application program has a routine for each return value. The routine is triggered
by the corresponding return value.

Note:

a. Carry out USB data communication using the R_USB_Read, R_USB_Write, R_USB_PipeRead, and
R_USB_PipeWrite functions after checking the return value USB_STS_CONFIGURED of
R_USB_GetEvent function.

b. Use API supported by FAT when accessing to MSC device in the host mass storage class.

2. RTOS

Write application program tasks in loop format. In the main loop, be sure to call the real time OS API to retrieve
the information (USB completion events and the like) that is received as notifications from the callback function.
Write programs that correspond to the respective USB completion events, with the USB completion events
retrieved by the application task as a trigger.

Note:

a. When the USB device is in the Configured state, carry out USB data communication using the
R_USB_Read, R_USB_Write, R_USB_PipeRead, and R_USB_PipeWrite functions. It is possible to check
whether or not the USB device is in the Configured state using an argument to the callback function
registered in the USB driver (USB_STS_REQUEST_CONFIGURED in the event member of the usb_ctrl_t
structure).

b. Use API supported by FAT when accessing to MSC device in Host mass storage class.

13.3.5 Application program description example (CPU transfer)

1. When using the realtime OS other than RI600V4

Register the following in the realtime OS.

(1). Application Program Tasks

(2). The realtime OS features used by application tasks and callback functions

Note:

Set the priority of application program tasks to a priority value of 7 or lower.

2. When using RI600V4

Create the configuration file. For the configuration file, refer to chapter 12.5.2, RI600V4 (Configuration File
Creation).

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 82 of 85
Mar 01, 2025

13.3.6 Application program description example
1. Non-OS

#include "r_usb_basic_mini_if.h"
#include "r_usb_pcdc_mini_if.h"

void usb_peri_application(void)
{
 usb_ctrl_t ctrl;
 usb_cfg_t cfg;

 /* MCU pin setting */
 usb_pin_setting();

 /* Initialization processing */
 cfg.usb_mode = USB_PERI; /* Specify either USB host or USB peri */
 cfg.p_usb_reg = &smp_descriptor; /* Specify the top address of the descriptor table */
 R_USB_Open(&ctrl, &cfg);

 /* main routine */
 while(1)
 {
 switch(R_USB_GetEvent(&ctrl))
 {
 case USB_STS_CONFIGURED:
 case USB_STS_WRITE_COMPLETE:
 ctrl.type = USB_PCDC;
 R_USB_Read(&ctrl, g_buf, 64);
 break;
 case USB_STS_READ_COMPLETE:
 ctrl.type = USB_PCDC;
 R_USB_Write(&ctrl, g_buf, ctrl.size);
 break;
 default:
 break;
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 83 of 85
Mar 01, 2025

2. RTOS

#include "r_usb_basic_if.h"
#include "r_usb_pcdc_if.h"

/* Callback Function */
void usb_apl_callback(usb_ctrl_t *p_ctrl, rtos_task_id_t task_id, uint8_t is_request)
{
 /* Notify application program task of USB completion event */
 USB_APL_SND_MSG(task_id, (usb_msg_t *)p_ctrl);
}

/* Application Task */
void usb_application_task(void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 usb_cfg_t cfg;

 /* MCU pin setting */
 usb_pin_setting();

 /* Initialization processing */
 cfg.usb_mode = USB_PERI; /* Specify either USB host or USB peri */
 cfg.p_usb_reg = &smp_descriptor; /* Specify the top address of the descriptor table */
 R_USB_Open(&ctrl, &cfg);

 /* Register callback function */
 R_USB_Callback(usb_apl_callback);

 /* main routine */
 while(1)
 {
 /* Retrieve USB completion event about which notification was received from callback
 function */
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t *)&p_mess);

 ctrl = *p_mess;

 switch(ctrl.event)
 {
 case USB_STS_CONFIGURED:
 case USB_STS_WRITE_COMPLETE:
 ctrl.type = USB_PCDC;
 R_USB_Read(&ctrl, g_buf, 64);
 break;
 case USB_STS_READ_COMPLETE:
 ctrl.type = USB_PCDC;
 R_USB_Write(&ctrl, g_buf, ctrl.size);
 break;
 default:
 break;
 }
 }
}

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 84 of 85
Mar 01, 2025

14. Program Sample

14.1 usb_compliance_disp function
void usb_compliance_disp (usb_compliance_t *p_info)
{
 uint8_t disp_data[32];

 disp_data = (usb_comp_disp_t*)param;

 switch(p_info->status)
 {
 case USB_CT_ATTACH: /* Device Attach Detection */
 display("ATTACH ");
 break;

 case USB_CT_DETACH: /* Device Detach Detection */
 display("DETTACH");
 break;

 case USB_CT_TPL: /* TPL device connect */
 sprintf(disp_data,"TPL PID:%04x VID:%04x",p_info->pid, p_info->vid);
 display(disp_data);
 break;

 case USB_CT_NOTTPL: /* Not TPL device connect */
 sprintf(disp_data,"NOTPL PID:%04x VID:%04x",p_info->pid, p_info->vid);
 display(disp_data);
 break;

 case USB_CT_NOTRESP: /* Response Time out for Control Read Transfer */
 display("Not response");
 break;

 default:
 break;
 }

Note:

The display function in the above function displays character strings on a display device. It must be provided by
the customer.

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

R01AN2166EJ0131 Rev.1.31 Page 85 of 85
Mar 01, 2025

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

RX Family USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) Using Firmware Integration Technology

A-1

Revision Record

Rev.

Date
Description

Page Summary
1.00 Dec 1, 2014 — First edition issued
1.01 Jun 1, 2015 — RX231 is added in the target device
1.02 Dec 28, 2015 — 1. "USB_REGULATOR" definition is added newly in

"r_usb_basic_mini_config.h" file.
2. In Host mode, USB driver is changed so that the null packet is not sent

when the transmission data size of the control transfer is the max packet
size × n.

1.10 Nov 30, 2018 — 1. Supporting Smart Configurator.
2. Supporting DMA transfer
3. The following chapters are added.
(1). 3.7 Allocation of Device Addresses
(2). 5. Return Value of R_USB_GetEvent Function
(3). 6. Device Class Types
(4). 11. Additional Notes
(5). 12. Creating an Application Program
(6). 13. Program Sample
4. The following chapters are changed.
(1). 3.6 How to Set the Target Peripheral List (TPL)
(2). 4. API Functions
(3). 7. Configuration (r_usb_basic_mini_config.h)
(4). 8. Structures
(5). 9. USB Class Requests
(6). 10. DTC/DMA Transfer
5. The following chapters are deleted.
"How to Register Class Driver", "Task ID and Priority Setting", "Pipe
Information Table", "Scheduler"

1.11 May 31, 2019 — Support GCC compiler and IAR compiler.
1.12 Jun 30, 2019 — RX23W is added in the target device
1.20 Jun 1, 2020 — Support the real time OS.

Support Low-speed for USB Peripheral.
1.30 Jul 31, 2024 — RX261 is added in the target device.

Support the composite device.
1.31 Mar 01, 2025 — Change Disclaimer.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Note
	1.2 Limitations
	1.3 Terms and Abbreviations
	1.4 USB-BASIC-FW FIT module
	1.5 Software Configuration
	1.6 Scheduler Function
	1.7 Pin Setting

	2. Peripheral
	2.1 Peripheral Control Driver (PCD)
	2.1.1 Basic functions
	2.1.2 Issuing requests to PCD
	2.1.3 USB requests

	2.2 API Information
	2.2.1 Hardware Requirements
	2.2.2 Software Requirements
	2.2.3 Operating Confirmation Environment
	2.2.4 Usage of Interrupt Vector
	2.2.5 Timer
	2.2.6 Header Files
	2.2.7 Integer Types
	2.2.8 Compile Setting
	2.2.9 ROM / RAM Size
	2.2.10 Argument
	2.2.11 “for”, “while” and “do while” statements.
	2.2.12 Adding the FIT Module to Your Project

	2.3 API (Application Programming Interface)
	2.4 Class Request
	2.5 Descriptor
	2.5.1 String Descriptor
	2.5.2 Other Descriptors

	2.6 Peripheral Battery Charging (PBC)

	3. Host
	3.1 Host Control Driver (HCD)
	3.1.1 Basic function

	3.2 Host Manager (MGR)
	3.2.1 Basic function
	3.2.2 USB Standard Requests

	3.3 API Information
	3.3.1 Hardware Requirements
	3.3.2 Software Requirements
	3.3.3 Operating Confirmation Environment
	3.3.4 Usage of Interrupt Vector
	3.3.5 Header Files
	3.3.6 Integer Types
	3.3.7 Compile Setting
	3.3.8 ROM / RAM Size
	3.3.9 Argument
	3.3.10 Adding the FIT Module to Your Project

	3.4 API (Application Programming Interface)
	3.5 Class Request
	3.6 How to Set the Target Peripheral List (TPL)
	3.7 Allocation of Device Addresses
	3.8 Host Battery Charging (HBC)

	4. API Functions
	4.1 R_USB_Open
	4.2 R_USB_Close
	4.3 R_USB_GetVersion
	4.4 R_USB_Read
	4.5 R_USB_Write
	4.6 R_USB_Stop
	4.7 R_USB_Suspend
	4.8 R_USB_Resume
	4.9 R_USB_GetEvent
	4.10 R_USB_Callback
	4.11 R_USB_VbusSetting
	4.12 R_USB_PullUp
	4.13 R_USB_GetInformation
	4.14 R_USB_PipeRead
	4.15 R_USB_PipeWrite
	4.16 R_USB_PipeStop
	4.17 R_USB_GetUsePipe
	4.18 R_USB_GetPipeInfo

	5. Callback Function (RTOS only)
	6. Return Value of R_USB_GetEvent Function / Retrieval of USB Completion Events
	6.1 USB_STS_DEFAULT
	6.2 USB_STS_CONFIGURED
	6.3 USB_STS_SUSPEND
	6.4 USB_STS_RESUME
	6.5 USB_STS_DETACH
	6.6 USB_STS_REQUEST
	6.7 USB_STS_REQUEST_COMPLETE
	6.8 USB_STS_READ_COMPLETE
	6.9 USB_STS_WRITE_COMPLETE
	6.10 USB_STS_BC
	6.11 USB_STS_OVERCURRENT
	6.12 USB_STS_NOT_SUPPORT
	6.13 USB_STS_NONE (for Non-OS)

	7. Device Class Types
	8. Configuration (r_usb_basic_mini_config.h)
	8.1 USB Host and Peripheral Common Configurations
	8.2 Settings in USB Host Mode
	8.3 Settings in USB Peripheral Mode
	8.4 Other Definitions

	9. Structures
	9.1 usb_ctrl_t structure
	9.2 usb_setup_t structure
	9.3 usb_cfg_t structure
	9.4 usb_descriptor_t structure
	9.5 usb_pipe_t structure
	9.6 usb_info_t structure
	9.7 usb_compliance_t structure

	10. USB Class Requests
	10.1 USB Host operations
	10.1.1 USB request (setup) transfer
	10.1.2 USB request completion
	10.1.3 USB request processing example

	10.2 USB Peripheral operations
	10.2.1 USB request (Setup)
	10.2.2 USB request data
	10.2.3 Status Stage Processing
	10.2.4 Example USB request processing description

	11. DTC/DMA Transfer
	11.1 Basic Specification
	11.2 Notes
	11.2.1 DTC transfer
	11.2.2 Data Reception Buffer Size
	11.2.3 USB Pipe

	12. Additional Notes
	12.1 Vendor ID
	12.2 Compliance Test
	12.3 QE for USB
	12.4 Configuration for BSP
	12.5 RTOS
	12.5.1 FreeRTOS
	12.5.2 RI600V4 (Configuration File Creation)

	13. Creating an Application Program
	13.1 Configuration
	13.2 Descriptor Creation
	13.3 Application Program Creation
	13.3.1 Include
	13.3.2 Initialization
	13.3.3 Descriptor Creation
	13.3.4 Creation of Main Routine / Application Program Tasks
	13.3.5 Application program description example (CPU transfer)
	13.3.6 Application program description example

	14. Program Sample
	14.1 usb_compliance_disp function

