

APPLICATION NOTE

R01AN2180EJ0110

RX21A Group

Gain Calibration and Compensation with the Temperature Sensor Mar. 2, 2015 for the $\Delta\Sigma$ A/D Converter

Abstract

The RX21A Group has the function to satisfy the requirements of class 0.2S and 0.5S meters standardized in IEC62052-11 and IEC 62053-22.

The RX21A Group can amplify analog input using the on-chip PGA (programmable gain amplifier) providing the mechanism to reduce errors during amplifying. In the range of current $0.01 \text{ In} \le \text{I} \le \text{Imax}$, the measurement accuracy after calibration at the reference temperature satisfies the class 0.2S meter requirements standardized in IEC 62053-22.

The measurement values with the 24-bit $\Delta\Sigma$ A/D converter (DSAD) are influenced by temperature. However the temperature characteristics of the RX21A have been clarified. Thus the measured values can be compensated using the powerful calculation ability of the RX21A. Thus even if not using an external reference power supply with high precision, the measurement accuracy after compensation by the RX21A DSAD can satisfy the requirement for the class 0.5S meter standardized by IEC62052-11 and IEC 62053-22 in the temperature range from -25°C to +75°C.

This document describes calibration for DSAD gains in the RX21A Group and the method for compensating the temperature characteristics of the DSAD gain using the built-in temperature sensor.

Products

- RX21A Group 100-pin package with a ROM size between 256 KB and 512 KB

- RX21A Group 80-pin package with a ROM size between 256 KB and 512 KB

- RX21A Group 64-pin package with a ROM size between 256 KB and 512 KB

Note: Only the G version (operating temperature: -40°C to +105°C) of RX21A is the target device in this application note.

RX21A Group Gain Calibration and Compensation with the Temperature Sensor for the ΔΣ A/D Converter

Contents

1. Speci	fications	4
2. Opera	ation Confirmation Conditions	5
3. Refere	ence Application Note	5
	vare xample of the Hardware Configuration	
	ins Used	
	ration for Gain and Offset Errors	
	rrors of the DSAD	
	alculating the Calibration Values for Gains and the Offsets	
5.2.1		
5.2.2	Calibration with Sine Wave AC Power Supply	10
	m Gain Calibration	
6.1 C	alibrating the System Gain	11
	evice Gain	
6.3 In	fluences of External Input Resistor and Internal Input Resistor	12
7. Temp	erature Characteristics and Compensation	14
7.1 C	ompensating Temperature Characteristics	14
	oefficients of the Temperature Characteristics	
7.3 D	evice Gain	15
	BGR	
	put Impedance	
	fluences of External Load Resistor and Input Impedance	
	ompensation for the Temperature Characteristics of the System Gain	
8. Calibr	ation and Compensation Procedures	20
	ystem Gain Calibration and Compensation (Differential Input)	
	ystem Gain Calibration and Compensation (Single-Ended Input)	
9. Softwa	are	24
	peration Overview	
	equired Memory Size	
	le Composition	
	ption-Setting Memory	
	onstants	
	ariables	
	unctions	
	unction Specifications	
	lowcharts	
9.9.1		
9.9.2	с	
9.9.2		
9.9.3		
9.9.4		40

RX21A Group Gain Calibration and Compensation with the Temperature Sensor for the ΔΣ A/D Converter

	9.9.5	Compare Match 1 Interrupt Handler	47
	9.9.6	DSAD Initialization	48
	9.9.7	DSAD Conversion Start Processing	49
	9.9.8	Coefficient Initialization for Gain Calibration	50
	9.9.9	Coefficient Initialization for Gain Temperature Compensation	51
	9.9.10	System Gain Calibration	
	9.9.11	Temperature Compensation for the System Gain	53
	9.9.12	Obtaining DSAD Conversion Result at Calibration	54
	9.9.13	Obtaining DSAD Conversion Result	55
	9.9.14	DSAD Conversion Interrupt Handler	56
	9.9.15	A/D Converter and Temperature Sensor Initializations	57
	9.9.16	A/D Converter and Temperature Sensor Stop Processing	58
	9.9.17	Obtaining A/D Conversion Status	58
	9.9.18	Obtaining Temperature Sensor Measurement Result	59
	9.9.19	Obtaining Current Temperature	59
	9.9.20	Temperature Sensor Calibration Processing	59
	9.9.21	Temperature Sensor Measurement Processing	60
	9.9.22	Current Temperature Calculation	60
	9.9.23	A/D Conversion End Interrupt Handler	61
		ices (Calibration and Compensation Results)	
1(0.1 Res	ult of the System Gain Calibration	62
1(0.2 Res	ult of Temperature Compensations	
	10.2.1	Temperature Characteristics of the VBGR	63
	10.2.2	System Gain of the Differential Input Pins	64
	10.2.3	System Gain of Single-Ended Input Pin	66
11.	Sample	Code	68
12.	Referen	ce Documents	68

1. Specifications

With 7 channels of independent DSAD, different input voltages can concurrently be measured switching PGA gains. Then some errors will occur due to chip variations or temperature characteristics. When high accuracy is required on a DSAD conversion, the system gain including the external circuit such as sensor may have to be calibrated among channels and the temperature characteristics may have to be compensated. If the application cannot eliminate an offset with the bypass filter such as direct current measurement, an offset will also need to be calibrated.

The G version of the RX21A Group has the I/O registers ($\Delta\Sigma$ A/D input impedance calibration data register and $\Delta\Sigma$ A/D gain calibration data registers) which store the calibration data for input impedance and gains measured on each chip at factory shipping. With these calibration data, the user can calibrate gains for all channels by calibrating only one given gain.

The $\Delta\Sigma$ A/D input impedance calibration data register and the $\Delta\Sigma$ A/D gain calibration data registers are not included in the RX21A Group products other than the G version. In those products, the sample code handles the read value as 1 (no effect on a calculation) when it performs calculations. The sample code cannot be used for calibrating gains for all channels by calibrating one given gain. However, it can be used as a reference when calibrating among channels and compensating the temperature characteristics.

Table 1.1 lists the Peripheral Functions and Their Applications.

Peripheral Function	Application
24-bit $\Delta\Sigma$ A/D converter (DSAD)	Measures analog input voltage.
Temperature sensor (TEMPSa)	Measures an ambient temperature for the MCU.
10-bit A/D converter (AD)	Measures the temperature sensor output.
Compare match timer (CMT1)	Used as the start trigger source of DSAD conversion and used for start processing of the temperature sensor.
Event link controller (ELC)	Used as the start trigger of DSAD conversion.

Table 1.1 Peripheral Functions and Their Applications

2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1	Operation Confirmation C	onditions
		onantions

Item	Contents
MCU used	R5F521A8BGFP (RX21A Group G version)
	Main clock: 20 MHz
	System clock (ICLK): 50 MHz
Operating frequencies	 Peripheral module clock B (PCLKB): 25 MHz
	 Peripheral module clock C (PCLKC): 25 MHz
	Peripheral module clock D (PCLKD): 12.5 MHz
Operating voltage	3.3 V
Integrated development	Renesas Electronics Corporation
environment	High-performance Embedded Workshop Version 4.09.01
	Renesas Electronics Corporation
	C/C++ Compiler Package for RX Family V.1.02 Release 01
C compiler	Compile options -cpu=rx200 -output=obj="\$(CONFIGDIR)\\$(FILELEAF).obj" -debug -nologo (The default setting in the integrated development environment is used.)
iodefine.h version	Version 1.1B
Endian	Little endian
Operating mode	Single-chip mode
Processor mode	Supervisor mode
Sample code version	Version 1.10

3. Reference Application Note

For additional information associated with this document, refer to the following application notes.

- RX21A Group Initial Setting (R01AN1486EJ)
- RX21A Group Using the Temperature Sensor to Calculate the Ambient Temperature (R01AN1923EJ)
- RX21A Group $\Delta\Sigma$ A/D Converter User's Guide (R01AN1437EJ)
- RX Family Coding Example of Wait Processing by Software (R01AN1852EJ)

The sample code in this application note uses the initial setting functions and wait processing by the software in the reference application notes. The revision number of the reference application note is current as of when this application note was created. However, the latest version is always recommended. Visit the Renesas Electronics Corporation website to check and download the latest version.

4. Hardware

4.1 Example of the Hardware Configuration

Figure 4.1 shows the block diagram of functions used.

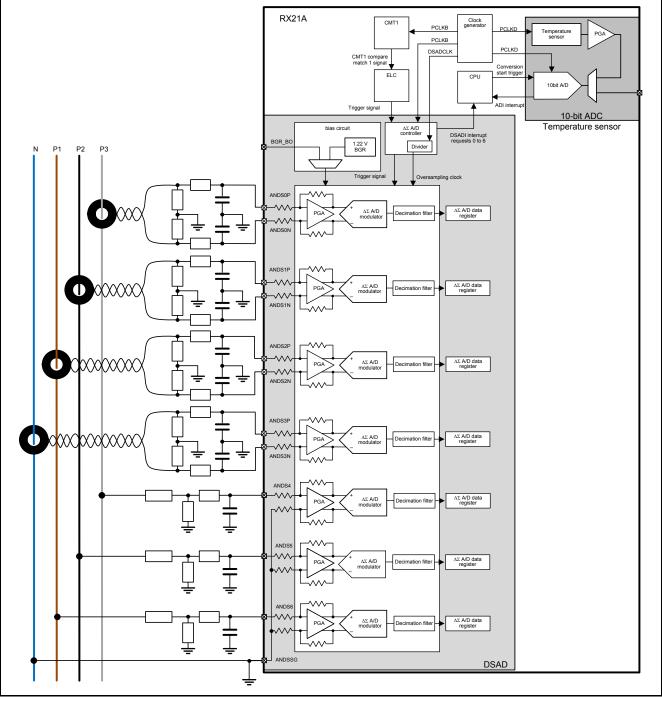


Figure 4.1 Block Diagram

4.2 Pins Used

Table 4.1 lists the Pins Used and Their Functions.

The number of pins in the sample code is set for the 100-pin package. When using products with less than 100 pins, select pins appropriate to the package used.

 Table 4.1
 Pins Used and Their Functions

Pin Name	I/O	Function
ANDS0P, ANDS0N	Input	Analog differential input pin, channel 0
ANDS1P, ANDS1N	Input	Analog differential input pin, channel 1
ANDS2P, ANDS2N	Input	Analog differential input pin, channel 2
ANDS3P, ANDS3N	Input	Analog differential input pin, channel 3
ANDS4	Input	Analog single-ended input pin, channel 4
ANDS5	Input	Analog single-ended input pin, channel 5
ANDS6	Input	Analog single-ended input pin, channel 6
ANDSSG	Input	Analog single-ended input pin, connected to the common signal ground
BGR_BO	Input	Reference external application terminal, the input is used as the internal reference voltage.

5. Calibration for Gain and Offset Errors

5.1 Errors of the DSAD

Figure 5.1 shows an Example of the DSAD I/O Characteristics.

The values of the $\Delta\Sigma$ A/D data registers are expressed as 32 bits of 2's complement. When the DSAD has the ideal characteristics, the formula becomes as follows:

Formula 5.1

```
(A/D conversion value) = (analog input voltage × gain) / (VREFDSH pin voltage) × 2^{23} × (t_{TRIG} / (t_{os} × 256))
```

However, the DSAD actually has gain and offset errors and the DSAD conversion value will be slightly different from the theoretical value. Furthermore, the sensor externally connected to the DSAD normally has gain and offset errors as well. To calculate an analog input voltage value with high accuracy based on the measured digital value, errors of gains and offsets need to be calibrated.

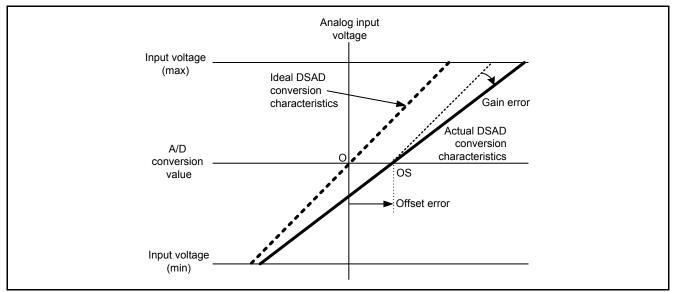


Figure 5.1 Example of the DSAD I/O Characteristics

5.2 Calculating the Calibration Values for Gains and the Offsets

Gain and offset can be calibrated by inputting voltages on two or more reference points to the DSAD input pins and measuring digital output values from each point beforehand.

When the voltage applied to the DSAD input pin is used as the reference voltage, gain and offset of RX21A itself (device gain and device offset) can be calculated. When the voltage or current applied to the sensor input section of the system is used as the reference value, gain and offset of a whole system including the sensor (system gain and system offset) can be calculated.

Calibration value error must be reduced as much as possible by averaging multiple measurement values when measuring the calibration value or by using the least squares method when calculating the calibration value.

DC power supply or sine wave AC power supply can be used for calibration.

5.2.1 Calibration with a DC Power Supply

Figure 5.2 shows the Method to Calculate the Calibration Values for Gain and Offset with DC Power Supply.

Calibration values for gain and offset can be calculated based on the measured values of two different DC voltages applied to the DSAD input pins.

When input voltages are yB and yC, and digital output values at them are xB and xC, the formula to calculate calibration values for gain and offset are as follows:

 $\frac{Formula 5.2}{Gain = (xC - xB) / (yC - yB)}$ $\frac{Formula 5.3}{Offset = xB - (xC - xB) / (yC - yB) \times yB}$

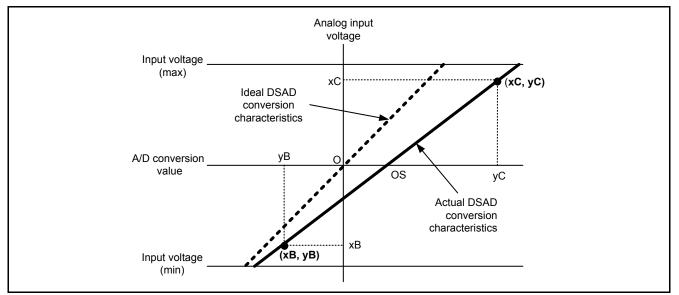


Figure 5.2 Method to Calculate the Calibration Values for Gain and Offset with DC Power Supply

5.2.2 Calibration with Sine Wave AC Power Supply

Figure 5.3 shows the Method to Calculate the Calibration Values for Gain and Offset with Sine Wave AC Power Supply.

When calculating the calibration values for gain and offset with sine wave AC power supply, formulas 5.2 and 5.3 are also used. In formula 5.2, values are assigned to xB and xC assuming that absolute values of positive and negative peak values of sine waves are same, and the minimum and maximum values of sine waves based on the digital values which are oversampled in the DSAD are assigned to yB and yC. And at this time, offset corresponds to the average value of the sine waves based on the digital values.

Calibration values for gain and offset can also be calculated using formula 5.4 instead of formula 5.2.

Formula 5.4 Gain = xRMS / yRMS

xRMS: RMS value of a sine wave based on the digital value

yRMS: RMS value of an input sine wave

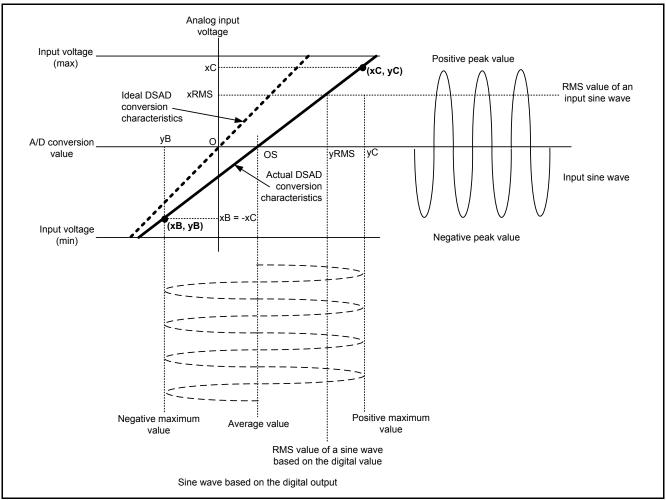


Figure 5.3 Method to Calculate the Calibration Values for Gain and Offset with Sine Wave AC Power Supply

6. System Gain Calibration

6.1 Calibrating the System Gain

System gain error is caused by the DSAD internal circuit for each selectable gain and external sensor input circuits. If related voltages are measured in multiple channels, the system gain error needs to be calibrated to reduce measurement error among channels.

With the finalized product, the system gain must be calibrated at least once for all channels while the external circuit is connected.

Figure 6.1 shows the concept of the gain calibration. The left chart shows raw gains, the center shows gains after compensating linearity mismatches among gains using the calibration data stored in the device, and the right shows gains after calibrating offset errors. Actual gains for channels appear in a variety of positions relative to the PGA gain settings (left chart). The gains are calibrated starting in order from gain x1 to make each gain be closer with fewer mismatches (center chart). Then offset errors are removed shown in the right chart.

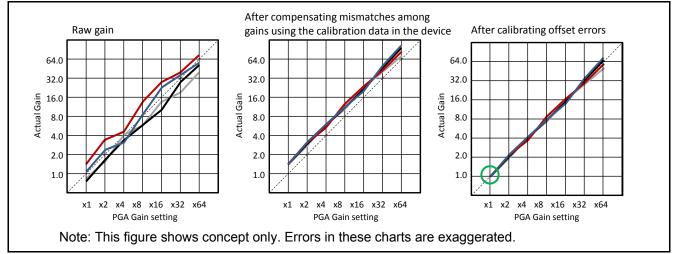


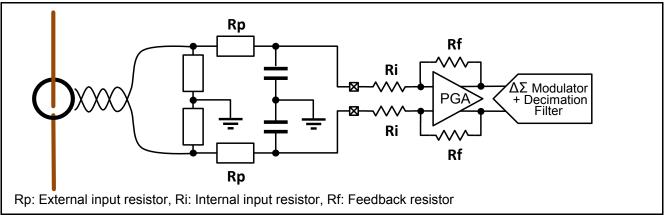
Figure 6.1 Gain Calibration

6.2 Device Gain

The calibration data for gains on each device (device gain) is measured and stored in the GCD[15:0] bits in the $\Delta\Sigma$ A/D gain calibration data registers (DSADGmXn) (m = 0 to 6, n = 1, 2, 4, 8, 16, and 32) before shipping.

The device gain for each channel with each gain setting can be obtained using the formula 6.1.

Note that the calibration data for gain x64 is not stored. Twice the gain x32 for the device gain of gain x64.


Formula 6.1 DeviceGain (m, n) = $n \times DSADGmXn.GCD[15:0] / 47971$ DeviceGain (m, 64) = DeviceGain (m, 32) \times 2

m: Input channel (0 to 6) n: Gain (1, 2, 4, 8, 16, and 32) selected with $\Delta\Sigma$ A/D gain select registers 0 to 6 (DSADGSRm)

6.3 Influences of External Input Resistor and Internal Input Resistor

Figure 6.2 shows the Connection Diagram of the Differential Input Channel.

Figure 6.2 Connection Diagram of the Differential Input Channel

A low-pass filter (anti-aliasing filter) composed of the external input resistor Rp and the capacitor must be connected to the input pins of the DSAD for preventing an aliasing error.

In this connection example, the input resistor is the sum of the internal input resistor Ri within the DSAD and the external input resistor Rp. Then the device gain is proportional to the ratio between the input resistor and the feedback resistor.

```
\frac{Formula \ 6.2}{DeviceGain} \ (m, n) \propto Rf(n) \ / \ \{ Ri(n) + Rp(m) \ \}
```

m: Input channel (0 to 3) n: Gain (1, 2, 4, 8, 16, 32 and 64) selected with $\Delta\Sigma$ A/D gain select registers 0 to 3 (DSADGSRm) Rf(n): Feedback resistor at gain n Ri(n): Internal input resistor at gain n Rp(m): External input resistor of channel m

Table 6.1 shows the internal resistor (Ri and Rf) for each gain setting.

DSADGSRm. GAIN[2:0]	Gain	Internal Input Resistor Ri(n)	Feedback Resistor Rf(n)	Gain of the ΔΣ Modulator
000b	x1	Ri ₀	Rf ₀	1
001b	x2	Ri ₀	2Rf ₀	1
010b	x4	Ri ₀	4Rf ₀	1
011b	x8	Ri ₀	8Rf ₀	1
100b	x16	Ri ₀ / 2	8Rf ₀	1
101b	x32	Ri ₀ / 2	8Rf ₀	2
110b	x64	Ri ₀ / 2	8Rf ₀	4

 Ri_0 and Rf_0 values in Table 6.1 are designed to 100 k Ω . In practice, these values vary depending on devices. This variation in Ri_0 is proportional to variation in impedance. Ri_0 can be expressed with formula 6.3 using the value of the IICD[15:0] bits in the $\Delta\Sigma$ A/D input impedance calibration data register (DSADIIC), which is measured and stored before shipping.

Formula 6.3

 $Ri_0 = 100.0 \times DSADIIC.IICD[15:0] / 32768 [k\Omega]$

The system gain is a product of the sensor gain and the device gain. The sensor gain is the gain on the circuit that inputs to the DSAD.

Formula 6.4

SystemGain (m, n) = SensorGain (m) \times DeviceGain (m, n)

m: Input channel (0 to 6)

n: Gain selected with $\Delta\Sigma$ A/D gain select registers 0 to 6 (DSADGSRm) (1, 2, 4, 8, 16, and 32) SystemGain (m, n): Total of the sensor gain and the device gain on channel m with gain setting n SensorGain (m): Sensor gain on channel m

When the gain setting is for x16, x32, and x64, the input resistor becomes half the value of the input resistor with gain setting for x1, x2, x4 and x8. Therefore the influence of the external input resistor Rp on the system gain varies depending on the gain setting. Formula 6.5 shows the influence ratio.

 $\begin{array}{l} \hline Formula \ 6.5 \\ SystemGain \ (n_{H} = 16, \ 32, \ 64) \ / \ SystemGain \ (n_{L} = 1, \ 2, \ 4, \ 8) \\ \propto \ \{Ri_{0} \ / \ 2 \ + \ Rp\} \ / \ (Ri_{0} \ + \ Rp) \\ \approx \ 1 \ + \ Rp \ / \ Ri_{0} \end{array}$

7. Temperature Characteristics and Compensation

7.1 Compensating Temperature Characteristics

If the device temperature varies, the device gain, the VBGR, and the temperature characteristics of input impedance cause DSAD measurement errors. The DSAD measurement errors can be reduced by compensating the system gain, which is calibrated as described in Section 6, using the temperature information for the device.

The device temperature is obtained using the built-in temperature sensor. The accuracy of the temperature measured with the temperature sensor affects the accuracy of gain compensation. Therefore the temperature sensor must be calibrated beforehand.

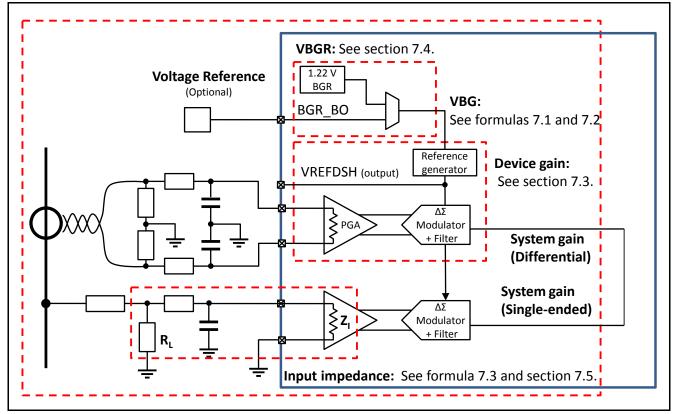


Figure 7.1 shows the Elements that Have Temperature Characteristics.

Figure 7.1 Elements that Have Temperature Characteristics

7.2 Coefficients of the Temperature Characteristics

Table 7.1 lists the Coefficients of the Temperature Characteristics in the RX21A Group.

Element		Coefficient Symbol		Value	Unit	
BGR		Quadratic slope	C _{BA}	-0.26 × 10 ⁻⁶	K ⁻²	
		Linear slope	C _{BB}	$5.5 imes 10^{-6}$	K ⁻¹	
	x1		C _{X1}	-5 × 10⁻ ⁶		
Device Gain	x2	Linear slope	C _{X2}	-4 × 10 ⁻⁶		
	x4		C _{X4}	-7 × 10⁻ ⁶		
	x8		C _{X8}	-2 × 10 ⁻⁶	K ⁻¹	
	x16		C _{X16}	-14 × 10 ⁻⁶		
	x32		C _{X32}	-14 × 10 ⁻⁶		
	x64		C _{X64}	-14 × 10 ⁻⁶		
Input impedance		Linear slope	Cz	-1200 × 10 ⁻⁶	K ⁻¹	

 Table 7.1
 Coefficients of the Temperature Characteristics in the RX21A Group

7.3 Device Gain

Figure 7.2 shows the theoretical temperature characteristics of the device gain when the reference voltage (VBG) assumes to have no temperature characteristics.

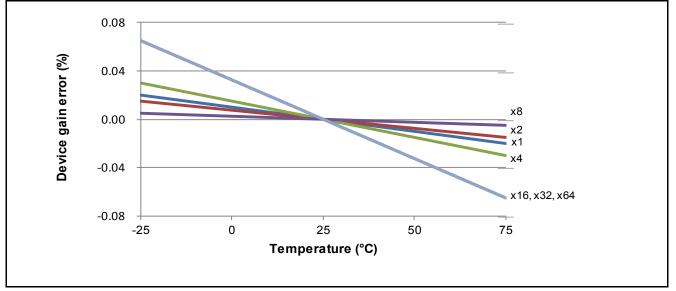


Figure 7.2 Theoretical Temperature Characteristics of the Device Gain When the Reference Voltage (VBG) Assumes to Have No Temperature Characteristics

The temperature characteristics of the device gain can be calculated with formula 7.1.

Formula 7.1 Device gain (Tj) = Device gain(Tj = 25) \times {1 + C_{Xn}(Tj - 25)}

Tj: Junction temperature on the chip [°C] C_{Xn} : (n = 1, 2, 4, 8, 16, 32, and 64): Coefficient of the temperature characteristics. Refer to Table 7.1 for coefficient values.

RENESAS

7.4 VBGR

The on-chip BGR voltage (VBGR) or the external reference voltage (BGR_BO) can be used as the reference voltage (VBG). When BGR_BO is used, the influence of the VBGR can be excluded. However, the temperature characteristics of BGR_BO need to be taken into account.

Figure 7.3 shows the Temperature Characteristics of the VBGR. The VBGR is adjusted to output 1.22 V at 25°C before shipping, however, it may drop up to 1.2189 V depending on the temperature.

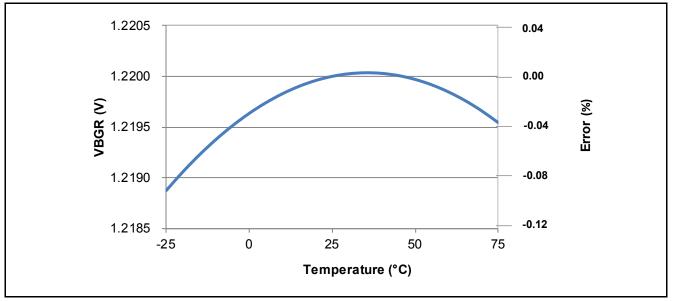
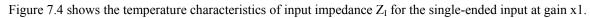
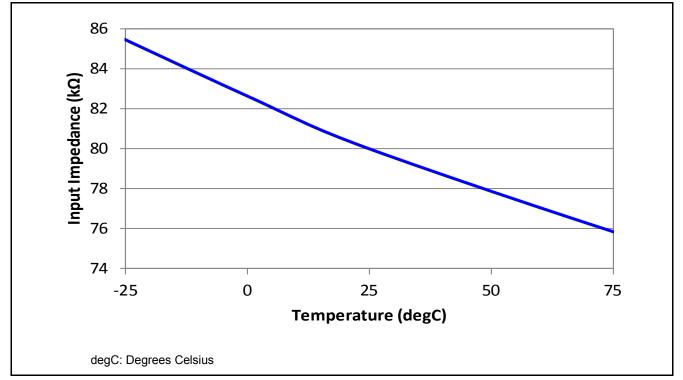


Figure 7.3 Temperature Characteristics of the VBGR

The temperature characteristics of the VBGR is calculated with formula 7.2.

Formula 7.2


 $VBGR(Tj) = VBGR(Tj = 25) \times \{1 + C_{BA}(Tj - 25)^2 + C_{BB}(Tj - 25)\}$


Tj: Junction temperature on the chip [°C]

 C_{BA} : Coefficient of quadratic slope. Refer to Table 7.1 for the coefficient values. C_{BB} : Coefficient of linear slope. Refer to Table 7.1 for coefficient values. VBGR(Tj = 25): Typical voltage of BGR: 1.220 [V]

7.5 Input Impedance

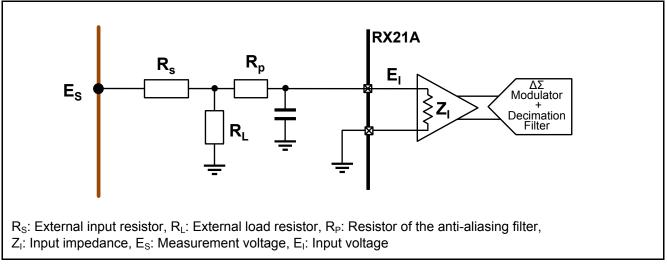
Figure 7.4 Temperature Characteristics of the Input Impedance for The Single-Ended Input at Gain x1

The temperature characteristic of input impedance Z_1 at each gain setting can be calculated with formula 7.3.

Formula 7.3

 Z_{I} (Tj) = Z_{I} (Tj = 25) × DSADIIC.IICD[15:0] / 32768 × {1 + C_{Z} × (Tj - 25)}

Tj: Junction temperature on the chip [°C]


 Z_{I} (Tj = 25): Typical value of the input impedance. The value differs depending on the gain setting. Refer to "Differential input voltage" and "Single-ended input voltage" in the $\Delta\Sigma$ A/D Conversion Characteristics section in the User's Manual: Hardware for details.

 C_7 : Coefficient. See Table 7.1 for coefficient values.

7.6 Influences of External Load Resistor and Input Impedance

Figure 7.4 shows the Connection Example of Single-Ended Input.

Figure 7.5 Connection Example of Single-Ended Input

In this connection example, when the input impedance becomes lower due to rise in temperature, electrical current flows through the external load resistor is reduced. Then the input voltage (Ei) to the DSAD is also reduced and the appearance of the system gain changes. Formula 7.4 shows the relations among the load resistor, the input impedance, and the system gain.

Formula 7.4

SystemGain
$$\propto E_S / E_I = [\{R_S \times (R_P + Z_I) + R_L \times (R_S + R_P + Z_I)\} / (R_L \times Z_I)]$$

 $\approx (1 + R_L / Z_I) \times (R_S / R_L) \propto 1 + R_L / Z_I$

R_P: Resistor of the anti-aliasing filter

RL: External load resistor

Z_I: Input impedance

* The approximation formula is when R_P is 100 Ω , R_L is 1.8 k Ω , Z_I is 80 k Ω , and R_S is 1.32 M Ω .

In Figure 6.2 Connection Diagram of the Differential Input Channel, when the output impedance from the sensor is low enough, even if the input impedance to the DSAD changes, the input voltage to the DSAD does not change. Thus influences on the system gain by the temperature characteristics of the input impedance can be ignored.

7.7 Compensation for the Temperature Characteristics of the System Gain

The system gain of the differential input is proportional to the device gain and is inversely proportional to the reference voltage VBG composed of the on-chip BGR or the external reference voltage.

The system gain of the single-ended impedance is influenced by the input impedance shown in formula 7.4.

System gain of the differential input

Formula 7.5

SystemGain (differential input) \propto Device gain / VBG

Device gain (Tj) = Davice gain (Tj = 25) \times {1 + C _{Xn} (Tj - 25)}	(from formula 7.1)
VBGR(Tj) = VBGR(Tj = 25) × {1 + $C_{BA}(Tj - 25)^2 + C_{BB}(Tj - 25)$ }	(from formula 7.2)

Formula 7.6

SystemGain (differential input) (Tj) \approx SystemGain (differential input) × {1 - C_{BA}(Tj - 25)² + (C_{Xn} - C_{BB})(Tj - 25)}

System gain of the single-ended input

Formula 7.7

 $\begin{array}{l} \mbox{SystemGain (single-ended input)} \propto \mbox{Device gain / VBG} \times (1 + R_L/Z_l) \\ R_L: \mbox{External load resistor } [\Omega] \\ Z_l: \mbox{Input impedance } [\Omega] \end{array}$

DeviceGain (Tj) = Davice gain (Tj = 25) \times {1 + C _{Xn} (Tj - 25)}	(from formula 7.1)
VBGR (Tj) = VBGR (Tj = 25) \times {1 + C _{BA} (Tj - 25) ² + C _{BB} (Tj - 25)}	(from formula 7.2)
Z_1 (Tj) = Z_1 (Tj = 25) × DSADIIC.IICD[15:0] / 32768 × {1 + C_Z × (Tj - 25)}	(from formula 7.3)

Formula 7.8

SystemGain (single-ended input) (Tj) \approx SystemGain (single-ended input) (Tj = 25) $\times \{1 - C_{BA}(Tj - 25)^2 + (C_{Xn} - C_{BB} + R_L / Z_I (Tj = 25) / DSADIIC.IICD[15:0] \times 32768 \times C_Z) (Tj - 25)\}$

8. Calibration and Compensation Procedures

This chapter describes calibration and compensation for the system gains of differential input channels and single-ended input channels, and calibration for offsets using formulas described in sections 6 and 7.

Conditions for calibration and compensation for input channels, and calibration for offsets are as follows:

- Reference temperature = 25° C (when inputting a voltage for a test)
- Voltage yB = 450 mV, yC = -450 mV

8.1 System Gain Calibration and Compensation (Differential Input)

This section describes the procedure for system gain calibration.

1. Calculate the linear coefficient (C_{Xn} - C_{BB}) used for temperature compensation and store the result in the appropriate variable. Then assign the quadratic coefficient to the appropriate variable.

Refer to Table 7.1 for details on C_{BA}, C_{Xn}, and C_{BB}.

SystemGain (m, 1) (differential input) (Tj)

(from formula 7.6)

≈ SystemGain (m, 1) (differential input) (Tj = 25) × {1 - C_{BA} (Tj - 25)² + (C_{Xn} - C_{BB})(Tj - 25)}

- 2. Calculate the sensor gain using the system. First initialize the DSAD and specify gains for all channels (e.g. gain x1).
- 3. Input the voltage (yB in Figure 5.2) for testing to the input pins for each channel in the system used.
- 4. Repeat DSAD conversion at a given cycle for an appropriate number of times and obtain the average of the conversion results.
- 5. Input the voltage (yC in Figure 5.2) for testing to the input pins for each channel.
- 6. Repeat DSAD conversion at a given cycle for an appropriate number of times and obtain the average of the conversion results.
- 7. Input 0 V voltage for testing, repeat DSAD conversion at a given cycle for an appropriate number of times and obtain the average of the conversion results, and measure the offset for each gain.
- Calculate the sensor gain using the DSAD conversion data obtained from the voltages at two points.
 SystemGain (m, 1) (Tj) = (xC xB) / {T_{TRIG} / (T_{OS} × 256)} / 2²³ (from formula 5.1) × VREFDSH voltage / (yC yB)
- 9. To perform temperature compensation for the sensor gain at the temperature when the DSAD conversion data has been obtained, perform temperature compensation for the result of formula 5.1.

SystemGain (m, n) (Tj) = SensorGain (m) (Tj) \times DeviceGain (m, n)	(from formula 6.4)
SystemGain (m, n) (differential input) (Tj)	(from formula 7.6)
≈ SystemGain (m, n) (differential input) (Tj = 25) × {1 - C_{BA} (Tj - 25) ² +	(C _{Xn} - C _{BB})(Tj - 25)}

Formula 8.1

SystemGain (m, 1) (Tj = 25) = SystemGain (m, 1) (Tj) / $\{1 - C_{BA}(Tj - 25)^2 + (C_{Xn} - C_{BB}) (Tj - 25)\}$ SensorGain (m) (Tj) = SystemGain (m, 1) (Tj = 25) / DeviceGain (m, 1)

10. Calculate the system gains for gains x1 to x8 based on the sensor gain obtained with formulas 6.1 and 8.1. DeviceGain (m, n) (Tj) = n × DSADGmXn.GCD[15:0] / 47971 (from formula 6.1)

SystemGain (m, n) (Tj) = SensorGain (m) \times DeviceGain (m, n) (from formula 6.4) Formula 8.2

```
SystemGain~(m,~n)~(Tj) = SensorGain~(m)~(Tj) \times n \times DSADGmXn.GCD[15:0]~/~47971
```

11. Compensate the system gains (formula 8.2) for gain x1 to gain x8 with a temperature.
 SystemGain (m, n) (differential input) (Tj) (from formula 7.6)

≈ SystemGain (m, n) (differential input) (Tj = 25) × {1 - $C_{BA}(Tj - 25)^2 + (C_{Xn} - C_{BB})(Tj - 25)}$

Formula 8.3

SystemGain (m, n) (differential input) (Tj)

≈ SystemGain (m, n) (Tj - 25) × {1 - $C_{BA}(Tj - 25)^2$ + (C_{Xn} - C_{BB}) (Tj - 25)}

12. Calculate the system gains for gains x16 to x32 based on formulas 6.1, and 6.3 to 6.5. DeviceGain (m, n) (Tj) = $n \times DSADGmXn.GCD[15:0] / 47971$ (from formula 6.1) Ri0 = 100.0 × DSADIIC.IICD[15:0] / 32768 [kΩ] (from formula 6.3) SystemGain (m, n) (Tj) = SensorGain (m) \times DeviceGain (m, n) (from formula 6.4) SystemGain (n = 16, 32, 64) (Tj) / SystemGain (n = 1, 2, 4, 8) (Tj) (from formula 6.5) ≈ 1 + Rp / Ri₀ Formula 8.4 ∴ SystemGain (m, n) (Tj) = SensorGain (m, 1) (Tj) / 1* / DSADGmX1.GCD[15:0] × 47971 × DSADGmXn.GCD[15:0] × n / 47971 × (1 + Rp / 100k × 32768 / DSADIIC.IICD[15:0]) * This formula is when the reference gain is set to gain x1. 13. Calculate the system gain for gain x64 based on formula 6.1. DeviceGain (m, 64) = DeviceGain (m, 32) \times 2 (from formula 6.1) Formula 8.5 SystemGain (m, 64) = SystemGain (m, 32) × 2 14. Compensate the system gain for gains x16 to x64 with a temperature. SystemGain (m, n) (differential input) (Tj) (from formula 7.6) ≈ SystemGain (m, n) (differential input) (Tj = 25) × {1 - C_{BA} (Tj - 25)² + (C_{Xn} - C_{BB})(Tj - 25)} Formula 8.6 SystemGain (m, n) = (Differential input) (Tj) ≈ SystemGain (m, n) (differential input) (Tj = 25) \times {1 - C_{BA}(Tj - 25)² + (C_{Xn} - C_{BB}) (Tj - 25)} Up to here, the calibration and compensation are complete. Step 15 is used when the temperature result is obtained in the main loop. 15. Compensate the measured result using the information of the system gain compensation after the temperature compensation.

Formula 8.7

(DSAD value after compensation) = ((value from any of DSADDR0 to DSADDR 3) -(gain offset value (result in step 7))) / SystemGain (m, n) (Tj = 25) × SystemGain (m, n) (differential input) (Tj)

8.2 System Gain Calibration and Compensation (Single-Ended Input)

This section describes the procedure for system gain calibration.

1. Calculate the linear coefficient ($C_{Xn} - C_{BB} + R_L / Z_I (Tj = 25) / DSADIIC.IICD[15:0] \times 32768 \times C_Z$) used for temperature compensation and store the result in an appropriate variable. Then assign the quadratic coefficient (CBA) to an appropriate variable.

Refer to Table 7.1 for details on C_{BA}, C_{Xn}, C_{BB}, and C_Z.

SystemGain (m, 1) (single-ended input) (Tj)

≈ SystemGain (m, 1) (single-ended input) (Tj = 25)

× {1 - $C_{BA}(Tj - 25)^2$ + (C_{Xn} - C_{BB} + R_L / Z_I (Tj = 25) / DSADIIC.IICD[15:0] × 32768 × C_Z) (Tj - 25)}

(from formula 7.8)

- 2. Calculate the sensor gain using the system. First initialize the DSAD and specify gains for all channels (e.g. gain x1).
- 3. Input the voltage (yB in Figure 5.2) for testing to the input pins for each channel in the system used.
- 4. Repeat DSAD conversion in a given cycle for an appropriate number of times and obtain the average of the conversion results.
- 5. Input the voltage (yC in Figure 5.2) for testing to the input pins for each channel.
- 6. Repeat DSAD conversion in a given cycle for an appropriate number of times and obtain the average of the conversion results.
- 7. Input 0 V voltage for testing, repeat DSAD conversion at a given cycle for an appropriate number of times and obtain the average of the conversion results, and measure the offset for each gain.
- 8. Calculate the sensor gain using the DSAD conversion data obtained from the voltages at two points.

SystemGain (m, 1) (Tj) = (xC - xB) / { T_{TRIG} / ($T_{OS} \times 256$)} / 2^{23} (from formula 5.1) × VREFDSH voltage / (yC - yB)

9. To perform temperature compensation for the sensor gain at the temperature when the DSAD conversion data has been obtained, perform temperature compensation for the result of formula 5.1.

SystemGain (m, n) (Tj) = SensorGain (m) (Tj) × DeviceGain (m, n) (from formula 6.4) SystemGain (m, n) (single-ended input) (Tj) (from formula 7.8) \approx SystemGain (m, n) (single-ended input) (Tj = 25) $\times \{1 - C_{BA}(Tj - 25)^2 + (C_{Xn} - C_{BB} + R_L / Z_I (Tj = 25) / DSADIIC.IICD[15:0] \times 32768 \times C_Z) (Tj - 25)\}$

Formula 8.8

 $\begin{array}{l} \hline SystemGain (m, 1) (Tj = 25) = SystemGain (m, 1) (Tj) / \{1 - C_{BA}(Tj - 25)^2 + (C_{Xn} - C_{BB} + R_L / Z_I (Tj = 25) / DSADIIC.IICD[15:0] \times 32768 \times C_Z) (Tj - 25) \} \\ \hline SensorGain (m) = SystemGain (m, 1) (Tj = 25) / DeviceGain (m, 1) \\ \end{array}$

 10. Calculate the system gains for gains x1 to x4 based on the sensor gain obtained with formulas 6.1 and 6.4.

 DeviceGain (m, n) (Tj) = n × DSADGmXn.GCD[15:0] / 47971
 (from formula 6.1)

 SystemGain (m, n) (Tj) = SensorGain (m) × DeviceGain (m, n)
 (from formula 6.4)

Formula 8.9

SystemGain (m, n) (Tj) = SensorGain (m) × n × DSADGmXn.GCD[15:0] / 47971
11. Compensate the system gains (formula 8.9) for gains x1 to x4 with a temperature. SystemGain (m, n) (single-ended input) (Tj) (from formula 7.8)
≈ SystemGain (m, n) (single-ended input) (Tj = 25)

$$\times \{1 - C_{BA}(Tj - 25)^2 + (C_{Xn} - C_{BB} + R_L / Z_I (Tj = 25) / DSADIIC.IICD[15:0] \times 32768 \times C_Z) (Tj - 25)\}$$

Formula 8.10

 $\begin{array}{l} \text{SystemGain (m, n) (differential input) (Tj)} \\ \approx \text{SensorGain (m) (Tj)} \times \text{DeviceGain (m, n)} \times \{1 - C_{\text{BA}}(Tj - 25)^2 + (C_{\text{Xn}} - C_{\text{BB}} + R_{\text{L}} / Z_{\text{I}}(Tj - 25) \\ / \text{DSADIIC.IICD[15:0]} \times 32768 \times C_{\text{Z}}) (Tj - 25) \} \end{array}$

12. Compensate the measured result using the information of the system gain compensation after the temperature compensation.

Formula 8.11

(DSAD value after compensation) = (value from any of DSADDR0 to DSADDR3) -(gain offset value (result in step 7)) / SystemGain (m, n) (Tj = 25) / SystemGain (m, n) (single-ended Input) (Tj)

9. Software

9.1 Operation Overview

After a reset, the DSAD values for calibration and compensation are obtained, the system gain is calibrated and compensated, the temperature sensor is calibrated, and then DSAD conversion is performed while the system gain is compensated for the DSAD using the temperature information obtained from the temperature sensor.

The DSAD values for calibration and compensation are measured for gains x2 to x64 at 0 V and at voltages of two points. The voltages at two points are used to calculate the sensor gain. The measurement results at 0 V for gains x2 to x64 are used as offset values. The offset value varies for each gain, thus the offset value needs to be obtained for all gains from x2 to x64.

The temperature sensor is calibrated using the A/D conversion results after a reset and the calibration values at 125°C stored internally. After the temperature sensor has been calibrated, the calibration results are used for calculating the temperature data.

DSAD conversion is triggered by CMT1 every 163.84 μ s and ten conversions are treated as one sampling. First two conversion results are discarded and the rest of eight results are used to calculate the sum. Then the sum is divided by 8 to obtain the average.

For A/D conversion used by the temperature sensor, 163.84 ms is counted by CMT1 610 times, A/D conversion is performed every 100 ms, six A/D conversion results are stored in the RAM, the maximum and minimum values are subtracted from the sum of the conversion results, and then the subtraction result is divided by 4 to obtain the average.

Figure 9.1 shows the Operation Timing Diagram.

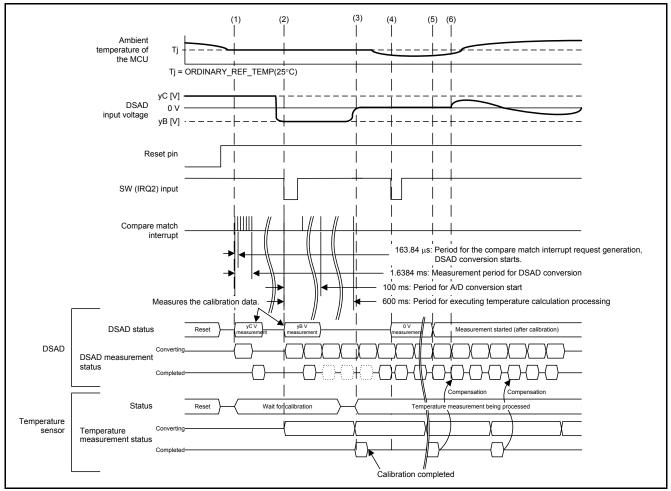


Figure 9.1 Operation Timing Diagram

- Reset is released with the voltage of yC [V] and temperature of ORDINARY_REF_TEMP, the initialization is performed, DSAD conversion values are obtained at yC [V] for each channel, and then a wait for the IRQ2 interrupt request is performed.
- (2) At an appropriate timing that the conversions can be completed, the voltage is changed to yB [V] and SW is pressed. Then the IRQ2 interrupt request is generated and DSAD conversion values at yB [V] are obtained for each channel. At the same time, the temperature sensor is started and the A/D conversion values at the temperature of ORDINARY_REF_TEMP are obtained.
- (3) A/D conversion results are obtained six times and the temperature sensor is calibrated.
- (4) At an appropriate timing that the calibration for the temperature sensor can be completed, the voltage is changed to 0 [V] and SW is pressed. Then the IRQ2 interrupt request is generated and DSAD conversion values at 0 [V] are obtained for each channel at all gains.
- (5) The DSAD conversion results are calibrated and compensated. At this point, the voltage and temperature held can be released.
- (6) The DSAD conversion results are compensated using the ambient temperature information obtained with the temperature sensor. The DSAD conversion result is compensated using the calculated compensation value.

The settings for the DSAD, CMT1, temperature sensor, and A/D converter are as follows:

DSAD

- Reference voltage generation: On-chip BGR circuit
- Gain setting: All gains for offset measurement. Gain x1 for measurements other than offset.
- A/D conversion end interrupt: Used
- Overwrite interrupt (interrupt by data register overwrite): Not used
- Input select: Input from analog input pins used.

CMT1

- Count clock: PCLK divided by 32
- Compare match interrupt period: 163.84 μ s
- Note: The period must be set with an integral multiple of t_{OS} , so the trigger period will be between $t_{OS} \times 256$ and $t_{OS} \times 768$.

Temperature sensor

• PGA gain ⁽¹⁾: 2.7 V \leq AVCC0 \leq 3.6 V ⁽²⁾

Notes:

- 1. PGA: Programmable Gain Amplifier
- 2. Change the parameter setting according to the system used.

A/D converter

- Operating mode: Single scan mode
- A/D conversion start trigger: Synchronous trigger (trigger from the temperature sensor)
- Sampling state count: 180 states (sampling time: 72 µs)
- Analog input disconnection detection assist: Not used.
- A/D-converted value addition mode: Not used.
- Self-diagnosis of 10-bit A/D converter: Not used.

9.2 Required Memory Size

Table 9.1 lists the Required Memory Size.

Table 9.1 Required Memory Size

Memory Used	Size	Remarks
ROM	7311 bytes	
RAM	2046 bytes	
Maximum user stack usage	80 bytes	
Maximum interrupt stack usage	0 bytes	

Note: The required memory sizes vary depending on the C compiler version and compile options.

9.3 File Composition

Table 9.2 lists the Files Used in the Sample Code, Table 9.3 lists the Standard Include Files, and Table 9.4 and Table 9.5 list the Functions and Setting Values in the Reference Application Notes. Files generated by the integrated development environment are not included in this table.

File Name	Outline
main.c	Main processing
dsad.c	Functions for DSAD gain calibration and temperature compensation
dsad.h	Header file for dsad.c
temps.c	Temperature sensor processing
temps.h	Header file for temps.c

Table 9.2 Files Used in the Sample Code

Table 9.3 Standard Include Files

File Name	Outline
stdbool.h	Defines macros associated with Boolean and its value.
stdint.h	Defines macros declaring the integer type with the specified width.
float.h	Defines various limit values relating to the limits of floating-point numbers.
machine.h	Defines types of intrinsic functions for the RX Family.

Table 9.4 Functions and Setting Values in the Reference Application Note (RX21A Group Initial Setting)

File Name	Function	Setting Value
r_init_stop_module.c	R_INIT_StopModule()	—
r_init_stop_module.h	—	—
r_init_non_existent_port.c	R_INIT_NonExistentPort()	—
r_init_non_existent_port.h	—	100-pin version is specified.
r_init_clock.c	R_INIT_Clock()	—
		Clock selection: No. 1 is specified.
r_init_clock.h	—	The PCLKD division ratio is changed to divide-by-16.

Table 9.5 Functions and Setting Values in the Reference Application Note (RX Family Coding Example of Wait Processing by Software)

File Name	Function	Setting Value
r_delay.c	R_DELAY_Us(unsigned long us, unsigned long khz)	Wait time is specified.
r_delay.h		_

9.4 Option-Setting Memory

Table 9.6 lists the Option-Setting Memory Configured in the Sample Code. When necessary, set a value suited to the user system.

Table 9.6	Option-Setting Mem	ory Configured in th	e Sample Code
-----------	---------------------------	----------------------	---------------

Symbol	Address	Setting Value	Contents
OFS0	FFFF FF8Fh to FFFF FF8Ch	FFFF FFFFh	The IWDT is stopped after a reset. The WDT is stopped after a reset.
OFS1	FFFF FF8Bh to FFFF FF88h	FFFF FFFFh	The voltage monitor 0 reset is disabled after a reset. HOCO oscillation is disabled after a reset.
MDES	FFFF FF83h to FFFF FF80h	FFFF FFFFh	Little endian

9.5 Constants

Table 9.7 to Table 9.13 list the Constants Used in the Sample Code.

Table 9.7 Constants Used in the Sample Code (dsad.c)

* The constants listed in the table can be changed by the user.

Constant	Setting Value	Contents
RIOTYP	100e3	Designed value of the internal input resistor [Ω]
CHIP_VER	1	Selection of the device version used.
BGR_CIRCUIT	1	Enable/disable setting of the BGR circuit
VALID_CHANNEL	0x7F	Selection of channels used (1: Used, 0: Not used) * With this, channels are associated with the corresponding bits (ch0 to ch6 correspond to bit 0 to bit 6, respectively).
VREFDSH_VOLT	600	Reference voltage (mV)
TRIG_MS	1 / 25.0f * 32 * 128	Setting value of t _{TRIG} (CMT1 cycle)
TOS_MS	1.0f / (25.0f / 8)	Setting value of t _{OS} (3.125 MHz: DSADCLK divided by 8)
SENSOR_CALC	TRIG_MS / (TOS_MS * 256)	Constant used for calculating the analog input voltage based on the A/D conversion value.

Table 9.8 Constants Used in the Sample Code (dsad.h)

* The constants listed in the table can be changed by the user.

Constant Name	Setting Value	Contents
DSAD_CH_NUM	7	Number of channels of the DSAD
DSAD_DIFFER_CH_NUM	4	Number of channels for the differential input
DSAD_SINGLE_CH_NUM	3	Number of channels for the single-ended input
DSAD_GAIN_NUM	7	Number of gains available in the DSAD
DSAD_DIFFER_GAIN_NUM	7	Number of gains available with the differential input channel
DSAD_SINGLE_GAIN_NUM	3	Number of gains available with the single-ended input channel
DSAD_DISCARD_CNT	2	Number of DSAD conversions to be discarded
DSAD_CNT_MAX	(DSAD_DISCARD _CNT+8)	Number of DSAD conversions ('2' for discarding + '8' for calculating the average)

Table 9.9 Constants Used in the Sample Code (dsad.h)

* The constants listed in the table cannot be changed by the user.

Constant Name	Setting Value	Contents
STA_DSAD_IDLE	0	DSAD in preparation
STA_DSAD_PATERN_0	1	DSAD conversion with yC [V]
STA_DSAD_PATERN_1	2	DSAD conversion with yB [V]
STA_DSAD_COMPESETE	3	DSAD conversion with 0 V
DSAD_GAIN_X1	0	
DSAD_GAIN_X2	1	
DSAD_GAIN_X4	2	
DSAD_GAIN_X8	3	Gain number to be selected
DSAD_GAIN_X16	4	
DSAD_GAIN_X32	5	
DSAD_GAIN_X64	6	

Table 9.10	Constant Used in the Sample Code (main.c)
------------	---

Constant Name	Setting Value	Contents
CMT_CYCLE_MS	610	A/D conversion cycle (163.84 μ s × 610 = approx. 100 ms)

Table 9.11 Constants Used in the Sample Code (temps.c)

Constant Name	Setting Value	Contents
HIGH_REF_TEMP	125	High reference temperature [°C]
ADCONV_IN_OPERATION	0xFFFF	A/D conversion value during A/D conversion being performed (invalid value)
SLOPE_COEFFICIENT_ TEMP	(HIGH_REF_TEMP – ORDINARY_REF_TEMP) * TEMP_ACCURACY	Temperature slope
ORDINARY_REF_TEMP_IN_ ACC	ORDINARY_REF_TEMP * TEMP_ACCURACY	Product of normal reference temperature (25°C) and temperature calculation accuracy

Table 9.12 Constants Used in the Sample Code (temps.h)

* The constants listed in the table can be changed by the user.

Constant Name	Setting Value	Contents	
		Selection of the PGA gain ⁽¹⁾	
SEL_PGAGAIN	GAIN_RANGE1	GAIN_RANGE0: 1.8 V \leq AVCC0 $<$ 2.7 V	
		GAIN_RANGE1: 2.7 V \leq AVCC0 \leq 3.6 V	
AVCC_VOLTAGE	3.3	Voltage [V] applied to the AVCC0 pin ⁽¹⁾	
VREF_VOLTAGE	3.3	Voltage [V] applied to the VREFH0 pin	
		Normal reference temperature [°C]	
ORDINARY_REF_TEMP	25	* When the setting value is 25, the normal reference	
		temperature is recognized as 25°C.	
TEMP_ACCURACY	10	Temperature calculation accuracy * Multiplying factor is specified. When the setting value is 10, the tenth place is included in calculations and when the setting value is 100, the hundredth place is included in calculations. Do not set a value other than multiplier of 10 or a negative value.	
CNV_CNT_MAX	6	Number of samplings for calculating the average * When the setting value is 6, A/D conversion results are obtained six times. The minimum and maximum values are discarded from the sum of the conversion results. The average of the remaining four values is used as the A/D conversion value.	

Note:

1. The conditions of an applied voltage to the AVCC0 pin and the PGA gain must be consistent. Otherwise the calculation result will not be correct.

Table 9.13 Constants Used in the Sample Code (temps.h)

* The constants listed in the table cannot be changed by the user.

Constant Name	Setting Value	Contents
GAIN_RANGE0 ⁽¹⁾	00h	PGA gain: 1.8 V \leq AVCC0 $<$ 2.7 V
GAIN_RANGE1 ⁽¹⁾	01h	PGA gain: 2.7 V \leq AVCC0 \leq 3.6 V
STA_AD_IDLE	0	A/D conversion status: Not operating
STA_AD_WAIT	1	A/D conversion status: Wait for completion of A/D conversion
STA_AD_FINISH	2	A/D conversion status: A/D conversion completed
TSCDR0_VALUE	(TEMPSCONST.TSCDR0 .BIT.TSCD)	TSCDR0 register value
TSCDR1_VALUE	(TEMPSCONST.TSCDR1 .BIT.TSCD)	TSCDR1 register value
TSCDR3_VALUE	(TEMPSCONST.TSCDR3 .BIT.TSCD)	TSCDR3 register value
HIGH_REF_POTENTIAL _VAL	Note 1	A/D conversion value of the high reference temperature (125°C)

Note:

1. The setting value differs depending on the PGA gain selected. The setting value for each PGA gain is shown below.

When 'GAIN_RANGE0' is selected: (uint16_t) (1.8 / VREF_VOLTAGE * TSCDR0_VALUE)

When 'GAIN RANGE1' is selected:

(uint16_t) ((2.7 / VREF_VOLTAGE * TSCDR1_VALUE) + ((3.3 / VREF_VOLTAGE *

TSCDR3_VALUE) - (2.7 / VREF_VOLTAGE * TSCDR1_VALUE)) * (AVCC_VOLTAGE - 2.7) / 0.6)

9.6 Variables

Table 9.14 lists the Global Variables (dsad.c), Table 9.15 to Table 9.17 list the static Variables, and Table 9.18 and Table 9.19 list the const Variables.

Table 9.14	Global Variables	(dsad.c)
------------	-------------------------	----------

Туре	Variable Name	Contents	Function
int32_t	g_dsad_data[DSAD_ CH_NUM]	Areas for ch0 to ch6 to store the DSAD conversion value after calibration and compensation	measure_dsad_calib measure_dsad Excep_DSAD_DSADI0 Excep_DSAD_DSADI1 Excep_DSAD_DSADI2 Excep_DSAD_DSADI3 Excep_DSAD_DSADI4 Excep_DSAD_DSADI5 Excep_DSAD_DSADI6
uint16_t	g_sel_ch_gain[DSAD _CH_NUM]	Area to store the specified gain. The value stored is used as the gain value. When a change is required, rewrite the value.	dsad_init R_DSAD_Calibration measure_dsad_calib measure_dsad
volatile float	g_compensated_gain [DSAD_CH_NUM]	System gain of the whole system after temperature compensation for each DSAD channel and gain setting	R_DSAD_CompensatedGain measure_dsad

 Table 9.15
 static Variables (main.c)

Туре	Variable Name	Contents	Function
static const bool	valid_dsad_channel [DSAD_CH_NUM]	Indicates whether each channel is available or not. Specify an appropriate value according to the user system.	main
static volatile uint16_t	cnt_cycle	Counter for the A/D conversion cycle	Excep_CMT1_CMI1

Туре	Variable Name	Contents	Function
static int16_t	high_ref_potential	A/D conversion value (= CAL ₁₂₅) of the high reference temperature (125°C)	temps_init temps_calibration
static volatile uint16_t	slope_potential	A/D conversion slope	temps_calibration temps_calc
static volatile int16_t	ordinary_potential	A/D conversion value (= CAL_{25}) of the normal reference temperature (25°C)	temps_calibration temps_calc
static volatile uint8_t	ad_status	A/D conversion status	main temps_get_ad_status temps_calibration temps_measurement Excep_AD_ADI
static volatile int16_t	now_temp	Current temperature calculated	temps_get_now_temp Excep_AD_ADI
static volatile uint16_t	now_potential	Current A/D conversion value	temps_calibration Excep_AD_ADI
static volatile uint16_t	buf_ad_value[CNT_ CNT_MAX]	Buffer for the A/D conversion value	Excep_AD_ADI
static volatile uint8_t	ad_smp_cnt	Pointer for writing the A/D conversion value	Excep_AD_ADI
static volatile uint16_t	ad_max_value	A/D conversion maximum value	Excep_AD_ADI
static volatile uint16_t	ad_min_value	A/D conversion minimum value	Excep_AD_ADI

Table 9.16	static	Variables	(temps.c)
------------	--------	-----------	-----------

Туре	Variable Name	Contents	Function
static volatile	uint16_t dsad_smp_cnt[DSAD _CH_NUM]	Number of times for reading the DSAD conversion result	Excep_DSAD_DSADI0 Excep_DSAD_DSADI1 Excep_DSAD_DSADI2
static int32_t	dsad_data_sum [DSAD_CH_NUM]	Area used to sum the DSAD conversion results	Excep_DSAD_DSADI3 Excep_DSAD_DSADI4 Excep_DSAD_DSADI5 Excep_DSAD_DSADI6
static uint16_t	dsad_comp_fin	Flag to check whether the DSAD value in each register has been read and the average of the values has been obtained.	measure_dsad_calib measure_dsad Excep_DSAD_DSADI0 Excep_DSAD_DSADI1 Excep_DSAD_DSADI2 Excep_DSAD_DSADI3 Excep_DSAD_DSADI4 Excep_DSAD_DSADI5 Excep_DSAD_DSADI6
static uint16_t	dsad_comp_status	Information of the status to check the progress of the calibration and compensation	measure_dsad_calib
static int32_t	dsad_comp_data [DSAD_CH_NUM] [DSAD_GAIN_NUM+ 2]	Area to store the averaged DSAD conversion result before calibration and compensation [ch][0]: Measurement result at yC [ch][1]: Measurement result at yB [ch][2] to [9]: Measurement result at 0V for each gain	R_DSAD_Calibration measure_dsad_calib measure_dsad
static volatile float	coef_temp_quad	Quadratic coefficient of the temperature characteristics for temperature compensation	R_DSAD_InternalCompensated R_DSAD_Calibration R_DSAD_CompensatedGain
static volatile float	coef_temp_linear [DSAD_CH_NUM] [DASD_GAIN_NUM]	Linear coefficient of the temperature characteristics for temperature compensation	R_DSAD_InternalCompensated R_DSAD_Calibration R_DSAD_CompensatedGain
static volatile float	device_gain [DSAD_CH_NUM] [DSAD_GAIN_NUM]	Device gain for DSAD channels with each gain setting at 25°C	R_DSAD_InternalCalibration R_DSAD_Calibration R_DSAD_CompensatedGain
static volatile float	sensor_gain [DSAD_CH_NUM]	Sensor gain for DSAD channels with each gain setting at 25°C in an external circuit such as a sensor	R_DSAD_Calibration R_DSAD_CompensatedGain
static volatile float	system_gain [DSAD_CH_NUM] [DSAD_GAIN_NUM]	System gain for DSAD channels with each gain setting at 25°C in the whole system gain including the sensor	R_DSAD_Calibration R_DSAD_CompensatedGain measure_dsad

Table 9.17	static	Variables	(dsad.c)
------------	--------	-----------	----------

 Table 9.18 const Variables (main.c)

Туре	Variable Name	Contents	Function
const float	g_dsad_ext_load_res [DSAD_SINGLE_CH_ NUM]	Value $[\Omega]$ of the external load resistor for single-ended input channels (channels 4 to 6). Specify an appropriate value according to the user system.	main R_DSAD_Internal Compensated

Table 9.19 const Variables (dsad.c)

Туре	Variable Name	Contents	Function
static const float	dsad_data_volt[3] [DSAD_CH_NUM]	Voltage [mV] when calibrating, compensating, or measuring an offset	R_DSAD_Calibration
static const float	typ_zi[DSAD_SINGLE _GAIN_NUM]	Typical value [Ω] of the input impedance (x1, x2, and x4) of the single-ended input. Refer to the $\Delta\Sigma$ A/D Conversion Characteristics section in the User's Manual: Hardware for details.	R_DSAD_Internal Compensated
static const float	coef_temp_cba	Quadratic coefficient of the temperature characteristics for the on-chip BGR. The coefficient value is listed in Table 7.1.	R_DSAD_Internal Compensated
static const float	coef_temp_cbb	Linear coefficient of the temperature characteristics for the on-chip BGR. The coefficient value is listed in Table 7.1.	R_DSAD_Internal Compensated
static const float	coef_temp_cxn[DSAD _GAIN_NUM]	Coefficient of the temperature characteristics for the device gain. The coefficient value is listed in Table 7.1.	R_DSAD_Internal Compensated
static const float	coef_temp_cz	Coefficient of the temperature characteristics for the input impedance. The coefficient value is listed in Table 7.1.	R_DSAD_Internal Calibration
static const float	gain_val[DSAD_GAIN_ NUM]	Gain amplification	R_DSAD_Internal Calibration

9.7 Functions

Table 9.20 lists the Functions.

Table 9.20 Functions

Function Name	Outline	File
main	Main processing	main.c
peripheral_init	Peripheral function initialization	main.c
cmt_init	CMT1 initialization	main.c
irq_init	IRQ2 initialization	main.c
Excep_CMT1_CMI1	Compare match 1 interrupt handler	main.c
dsad_init	DSAD initialization	dsad.c
dsad_start	DSAD conversion start processing	dsad.c
R_DSAD_InternalCalibration	Coefficient initialization for gain calibration	dsad.c
R_DSAD_InternalCompensated	Coefficient initialization for gain temperature compensation	dsad.c
R_DSAD_Calibration	System gain calibration	dsad.c
R_DSAD_CompensatedGain	Temperature compensation for the system gain	dsad.c
measure_dsad_calib	Obtaining DSAD conversion result at calibration	dsad.c
measure_dsad	Obtaining DSAD conversion result	dsad.c
Excep_DSAD_DSADIm (m = 0 to 6)	DSAD conversion interrupt handler	dsad.c
temps_init	A/D converter and temperature sensor initializations	temps.c
temps_close	A/D converter and temperature sensor stop processing	temps.c
temps_get_ad_status	Obtaining A/D conversion status	temps.c
temps_get_potential	Obtaining temperature sensor measurement result	temps.c
temps_get_now_temp	Obtaining current temperature	temps.c
temps_calibration	Temperature sensor calibration processing	temps.c
temps_measurement	Temperature sensor measurement processing	temps.c
temps_calc	Current temperature calculation	temps.c
Excep_AD_ADI	A/D conversion end interrupt handler	temps.c

9.8 Function Specifications

The following tables list the sample code function specifications.

main	
Outline	Main processing
Header	None
Declaration	void main(void)
Description	After the clock initialization, performs calibration of DSAD conversion, compensation by temperature, and calibration for the temperature sensor. Then performs DSAD conversion every 1.6384 ms and A/D conversion of the temperature sensor output every 100 ms. Compensates the DSAD conversion result by temperature using the temperature sensor output as needed.
Arguments	None
Return Value	None
peripheral init	
Outline	Peripheral initialization
Header	None
Declaration	static void peripheral_init(void)
Description	Initializes the peripheral functions used.
Arguments	None
Return Value	None
cmt_init	
Outline	CMT1 initialization
Header	None
Declaration	static void cmt_init(void)
Description	Initializes CMT1.
Arguments	None
Return Value	None
irq_init	
Outline	IRQ initialization
Header	None
Declaration	static void irq_init(void)
Description	Initializes IRQ2.
Arguments	None
Alguments	

Excep_CMT1_C	CMI1
Outline	Compare match 1 interrupt handler
Header	None
Declaration	static void Excep_CMT1_CMI1(void)
Description	Executes the interrupt handler every 163.84 µs. The counter is incremented every time an interrupt request is generated. When the counter reaches 610 times (approx. 100 ms), performs a temperature measurement. The compare match interrupt is used as the start trigger for the DSAD channels via the ELC.
Arguments	None
Return Value	None

dsad_init	
Outline	DSAD initialization
Header	dsad.h
Declaration	void dsad_init(void)
Description	Initializes the DSAD converter.
Arguments	None
Return Value	None

dsad_start

Outline	DSAD conversion start processing
Header	dsad.h
Declaration	void dsad_start(void)
Description	Starts operating the DSAD converter.
Arguments	None
Return Value	None

R DSAD InternalCalibration

Outline	Coefficient initialization for gain calibration
Header	dsad.h
Declaration	void R_DSAD_InternalCalibration(uint16_t channel)
Description	Prepares intermediate calculation results necessary for gain calibration.
Arguments	unit16_t channel: Input channel (0 to 6)
Return Value	None
Remarks	Execute this function before executing the R_DSAD_Calibration and
	R_DSAD_CompensatedGain functions. Otherwise calibration and compensation cannot
	be performed correctly.
	If the constant for the device version is specified as a version other than G, 32768 is used instead of the DSADIIC register value and 47974 is used instead of the DSADGmXn register without reading these registers.

R_DSAD_Intern	alCompensated	
Outline	Coefficient initialization for ga	ain temperature compensation
Header	dsad.h	
Declaration	void R_DSAD_InternalComp	ensated(uint16_t channel,
	const float dsad_ext_load_re	s[DSAD_SINGLE_CH_NUM])
Description	Prepares intermediate calcula gain.	ation results necessary for temperature compensation for
Arguments	unit16_t channel:	Input channel (0 to 6)
	const float dsad_ext_load_res[DSAD_ SINGLE_CH_NUM]:	External load resistor [Ω] for the single-ended input channels (channels 4 to 6).
Return Value Remarks	R_DSAD_CompensatedGair be performed correctly.	executing the R_DSAD_Calibration and functions. Otherwise calibration and compensation cannot version is specified as a version other than G version, 32768 SADIIC register.

R_DSAD_Calibra	ation
Outline	System gain calibration
Header	dsad.h
Declaration	void R_DSAD_Calibration(uint16_t channel)
Description	Calculates the gain for the specified channel before temperature compensation.
Arguments	unit16_t channel: Input channel (0 to 6)
Return Value	None
Remarks	Execute the R_DSAD_InternalCalibration and R_DSAD_InternalCompensated functions
	before executing this function. Otherwise calibration and compensation cannot be performed correctly.

R_DSAD_Comp	pensatedGain
Outline	Temperature compensation for the system gain
Header	r_dsad_compensate.h
Declaration	void R_DSAD_CompensatedGain(uint16_t channel, int16_t junction_temp)
Description	Calculates the system gain for the specified channel after temperature compensation.
Arguments	uint16_t channel: Input channel (0 to 6)
	int16_t junction_temp: The device temperature measured by the temperature sensor.
	The value should be from -40°C to +105°C.
Return Value	None
Remarks	Execute the R_DSAD_InternalCalibration, R_DSAD_InternalCompensated, and R_DSAD_Calibration functions before executing this function. Otherwise calibration and compensation cannot be performed correctly.

measure_dsad_	calib
Outline	Obtaining DSAD conversion result at calibration
Header	dsad.h
Declaration	void measure_dsad_calib(void)
Description	This function is used for calibration.
	Obtains measurement results of voltages at 2 points, which are used for calculating the
	sensor gain, obtains measurement results of voltages at 0 V for gains x2 to x64, and
	transfers the results to the RAM.
Arguments	None
Return Value	None
measure_dsad	
Outline	Obtaining DSAD conversion result
Header	dsad.h
Declaration	void measure_dsad(void)
Description	Performs calibration and compensation for the DSAD conversion results and transfer the
	processed result to the RAM.
Arguments	None
Return Value	None
Excep_DSAD_D	DSADIm (m = 0 to 6)
Outline	DSAD conversion interrupt handler
Header	dsad.h
Declaration	static void Excep_DSAD_DSADI0(void)
	static void Excep_DSAD_DSADI1(void)
	static void Excep_DSAD_DSADI2(void)
	static void Excep_DSAD_DSADI3(void)
	static void Excep_DSAD_DSADI4(void)
	static void Excep_DSAD_DSADI5(void)
	static void Excep DSAD DSADI6(void)
Description	Updates the number of times for obtaining conversion results, stores the DSAD
Decemption	conversion result in the RAM (as described below), and clears the interrupt request.
	Ten DSAD conversions are treated as one sampling. First two conversion results are
	discarded and the subsequent results are stored in the RAM. When the DSAD result has
	been obtained 10 times, the average of the eight results is calculated. The average is
	treated as the DSAD conversion result.
Arguments	None
Return Value	None
temps_init	
Outline	A/D converter and temperature sensor initializations
Header	temps.h
Declaration	static void temps_init(void)
Description	Initializes the A/D converter and the temperature sensor.
Arguments	None
Return Value	None

RX21A Group Gain Calibration and Compensation with the Temperature Sensor for the ΔΣ A/D Converter

temps_close	
Outline	A/D converter and temperature sensor stop processing
Header	temps.h
Declaration	static void temps_close(void)
Description	Stops the A/D converter and the temperature sensor.
Arguments	None
Return Value	None

temps_get_ad_s	status
Outline	Obtaining A/D conversion status
Header	temps.h
Declaration	uint8_t temps_get_ad_status(void)
Description	Obtains the current A/D conversion status.
Arguments	None
Return Value	uint8_t: A/D conversion status
	- STA_AD_IDLE: Not operating
	 STA_AD_WAIT: Waiting for completion of A/D conversion
	 STA_AD_FINISH: A/D conversion completed

Outline	Obtaining temperature sensor measurement result
Header	None
Declaration	static uint16_t temps_get_potential (void)
Description	Obtains the measured A/D conversion value.
Arguments	None
Return Value	uint16_t: A/D conversion value of the temperature sensor
	 ADCONV_IN_OPERATION: A/D conversion in process
	- Other than above: A/D conversion value

temps_	aet	now	temp

1 _0 _ 1	
Outline	Obtaining current temperature
Header	temps.h
Declaration	int16_t temps_get_now_temp (void)
Description	Obtains the current temperature.
Arguments	None
Return Value	uint16_t: Current temperature

temps_calibratio	n
Outline	Temperature sensor calibration processing
Header	temps.h
Declaration	void temps_calibration(void)
Description	Obtains the A/D conversion value at the normal reference temperature and stores it in the RAM.
Arguments	None
Return Value	None

RX21A Group Gain Calibration and Compensation with the Temperature Sensor for the ΔΣ A/D Converter

temps measurement				
· -				
Outline	Temperature sensor measurement processing			
Header	temps.h			
Declaration	void temps_measurement(void)			
Description	Starts measuring the current temperature.			
Arguments	None			
Return Value	None			

temps_calc	
Outline	Current temperature calculation
Header	None
Declaration	static int16_t temps_calc(uint16_t w_now_potential)
Description	Calculates temperature from the A/D conversion value passed with the argument.
Arguments	uint16_t w_now_potential: A/D conversion value
Return Value	int16_t: Current temperature [°C]

Excep_AD_ADI	
Outline	A/D conversion end interrupt handler
Header	None
Declaration	static void Excep_AD_ADI(void)
Description	Stores the A/D conversion value in the RAM when an A/D conversion has been completed. At the completion of the sixth A/D conversion, subtracts the maximum and minimum values from the sum of six conversion results, divides the subtraction result by 4 to get the average, and calculates the temperature based on the average.
Arguments	None
Return Value	None

9.9 Flowcharts

9.9.1 Main Processing

Figure 9.2 and Figure 9.3 show the Main Processing.

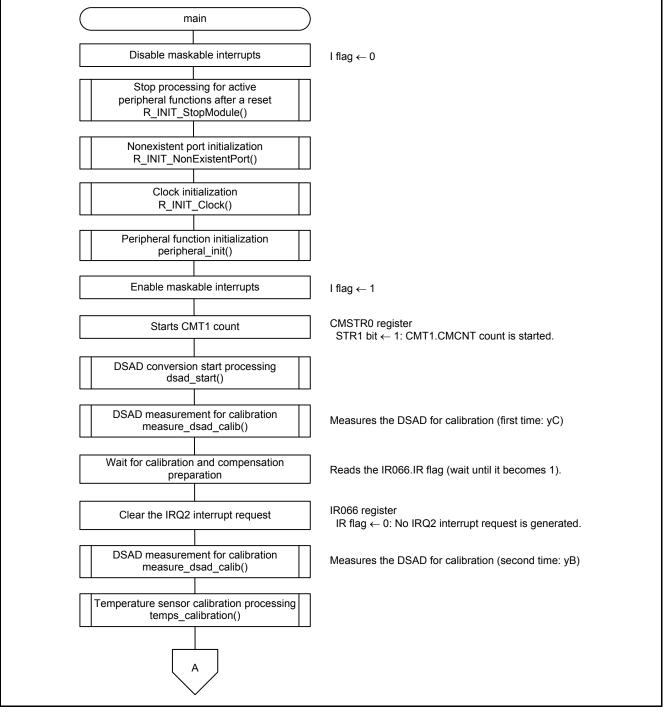


Figure 9.2 Main Processing (1/2)

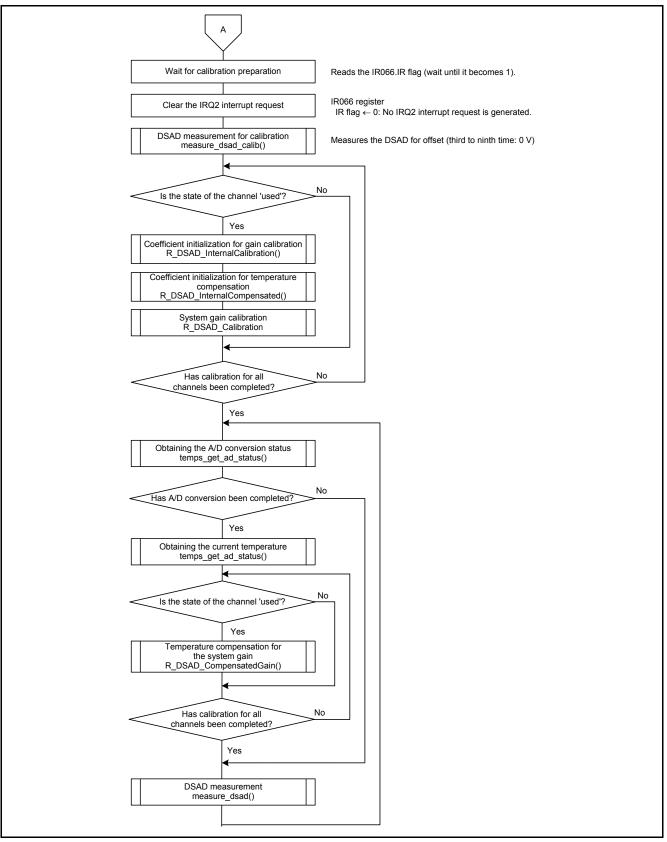
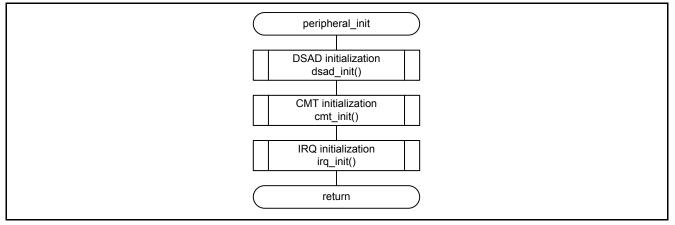



Figure 9.3 Main Processing (2/2)

9.9.2 Peripheral Function Initialization

Figure 9.4 shows the Peripheral Function Initialization.

9.9.3 CMT1 Initialization

Figure 9.5 shows the CMT1 Initialization.

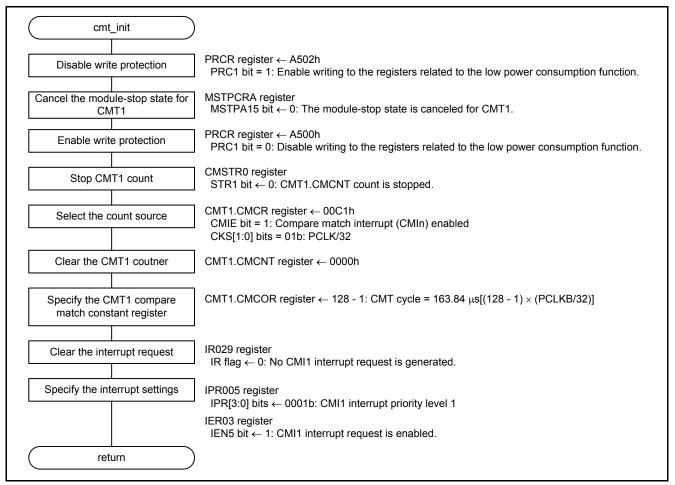


Figure 9.5 CMT1 Initialization

9.9.4 IRQ2 Initialization

Figure 9.6 shows the IRQ2 Initialization.

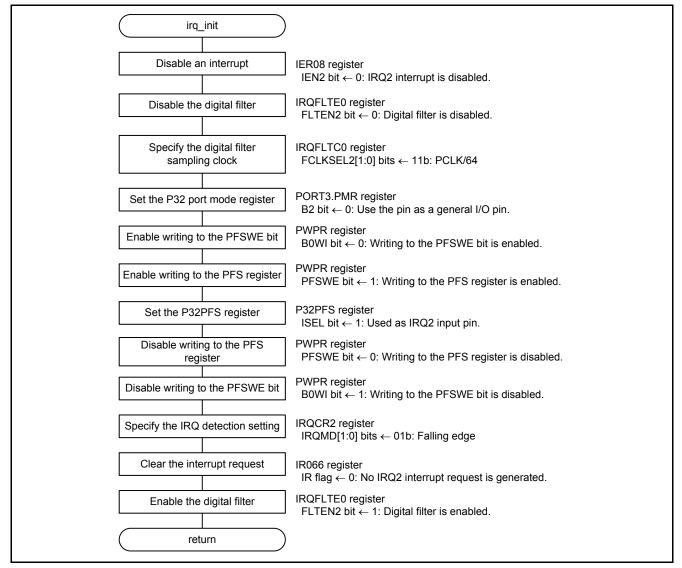


Figure 9.6 IRQ2 Initialization

9.9.5 Compare Match 1 Interrupt Handler

Figure 9.7 shows the Compare Match 1 Interrupt Handler.

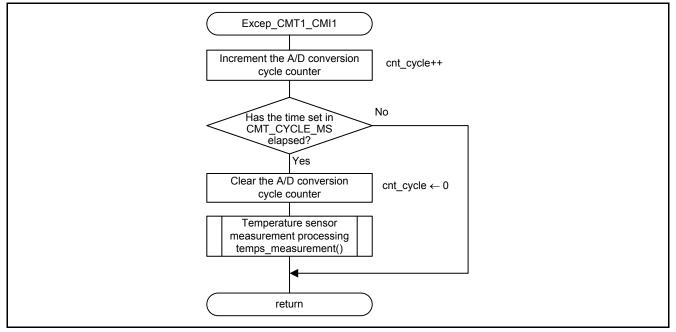
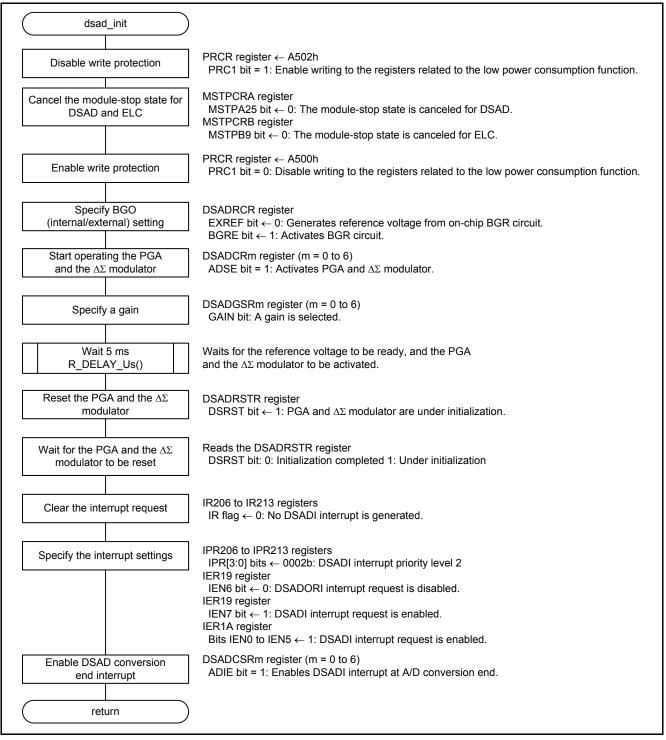



Figure 9.7 Compare Match 1 Interrupt Handler

9.9.6 DSAD Initialization

Figure 9.8 shows the DSAD Initialization for system gain calibration.

9.9.7 DSAD Conversion Start Processing

Figure 9.9 shows the DSAD Conversion Start Processing.

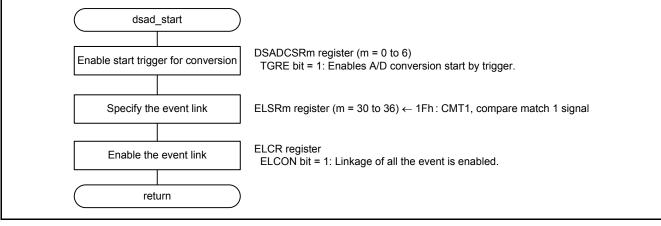


Figure 9.9 DSAD Conversion Start Processing

9.9.8 Coefficient Initialization for Gain Calibration

Figure 9.10 shows the Coefficient Initialization for Gain Calibration.

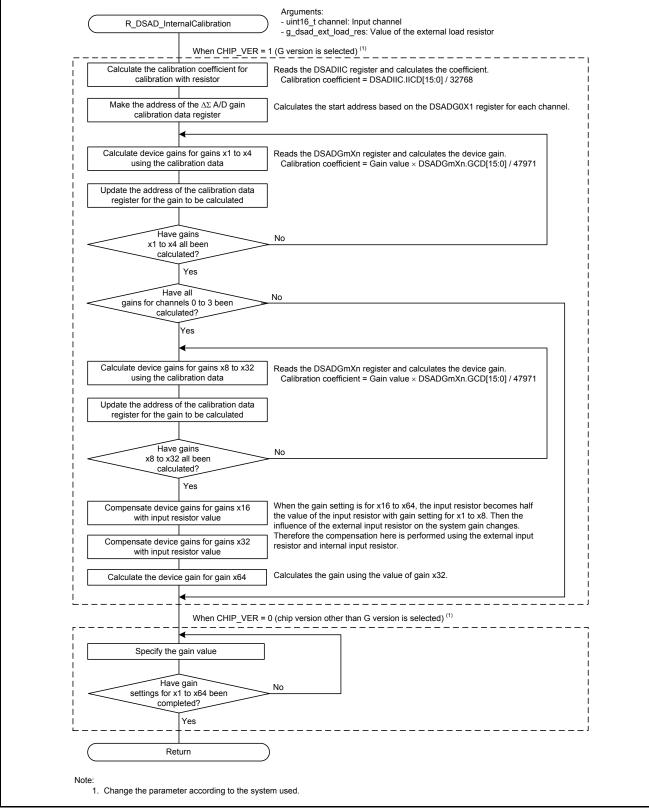


Figure 9.10 Coefficient Initialization for Gain Calibration

9.9.9 Coefficient Initialization for Gain Temperature Compensation

Figure 9.11 shows the Coefficient Initialization for Gain Temperature Compensation.

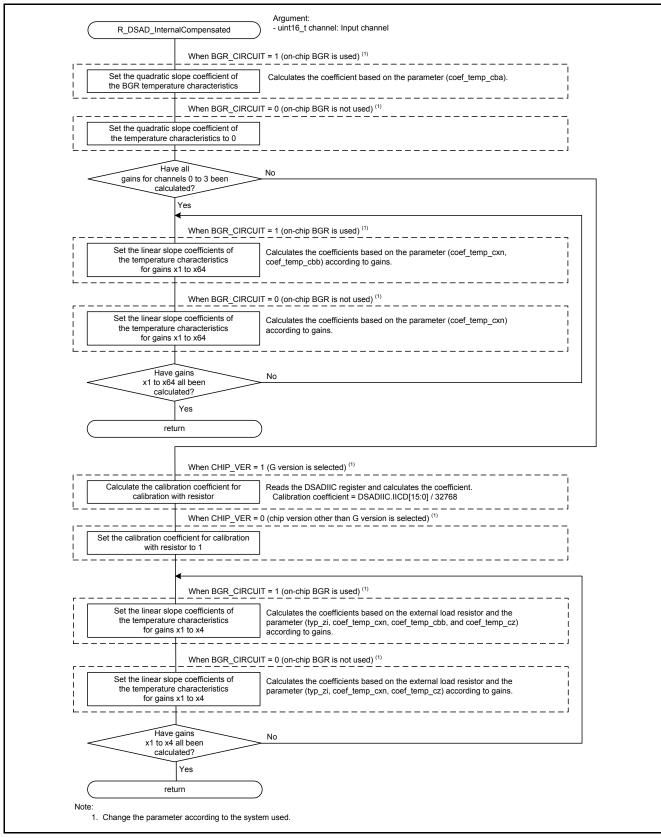


Figure 9.11 Coefficient Initialization for Gain Temperature Compensation

9.9.10 System Gain Calibration

Figure 9.12 shows the System Gain Calibration.

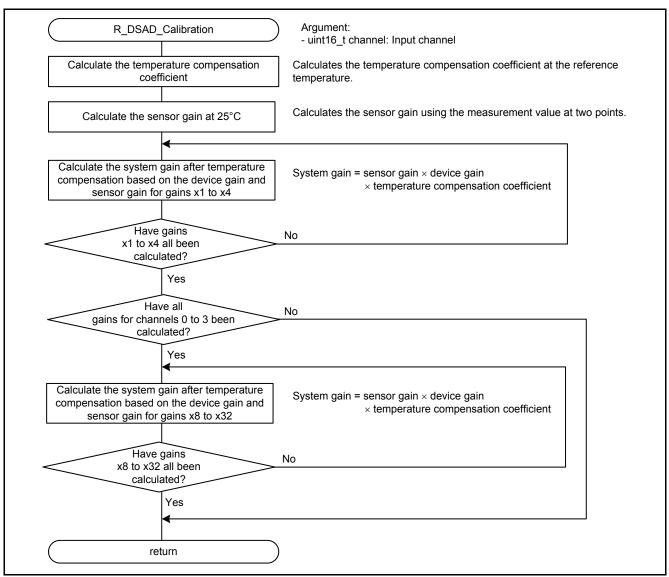


Figure 9.12 System Gain Calibration

9.9.11 Temperature Compensation for the System Gain

Figure 9.13 shows the Temperature Compensation for the System Gain.

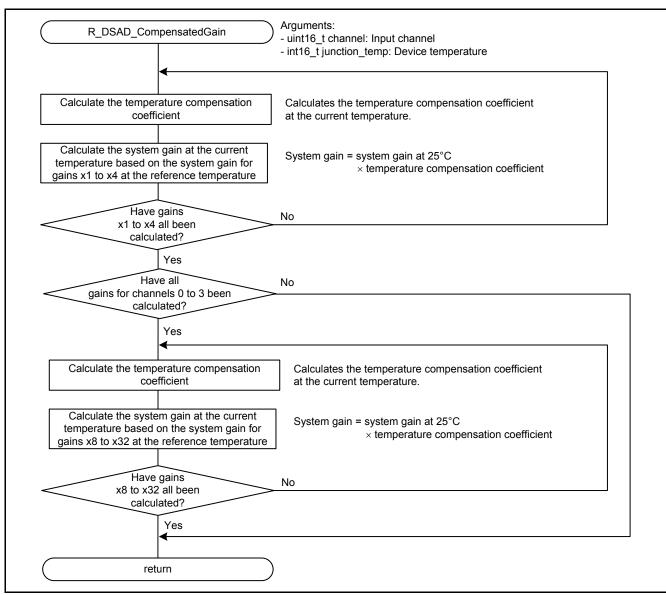


Figure 9.13 Temperature Compensation for the System Gain

9.9.12 Obtaining DSAD Conversion Result at Calibration

Figure 9.14 shows the Obtaining DSAD Conversion Result at Calibration.

Figure 9.14 Obtaining DSAD Conversion Result at Calibration

9.9.13 Obtaining DSAD Conversion Result

Figure 9.15 shows the Obtaining DSAD Conversion Result.

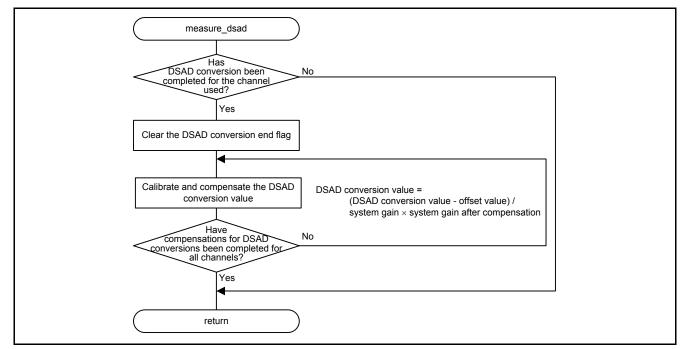


Figure 9.15 Obtaining DSAD Conversion Result

9.9.14 DSAD Conversion Interrupt Handler

Figure 9.16 shows the DSAD Conversion Interrupt Handler.

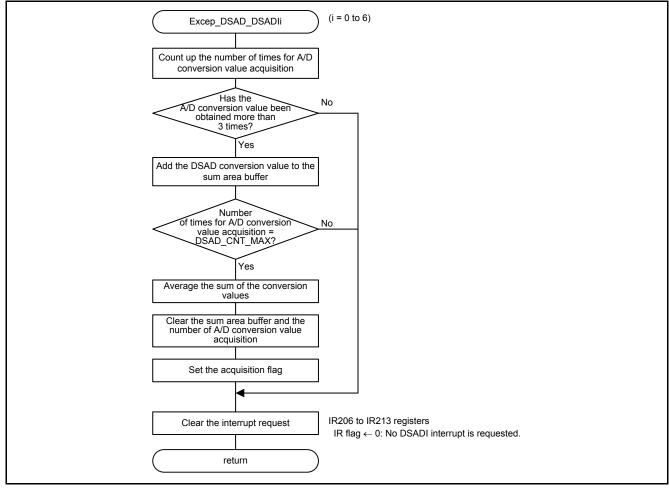


Figure 9.16 DSAD Conversion Interrupt Handler

9.9.15 A/D Converter and Temperature Sensor Initializations

Figure 9.17 shows the A/D Converter and Temperature Sensor Initializations.

Disable the AHD conversion and netrue HERC: register PCR (register + AD2) PRC (register + Charlo interrupting to the registers related to the low power consumption function. Cancel the module-stop state for AHD convertor and temperature service (register + AD2) PRC (register + AD2) PRC	temps	s_init	
Image: All the Convertence of the construction of the c			•
Cancel the module-stop state is canceled for the AD converter. MSTPCRA register MSTPRA State - 0. The module-stop state is canceled for the AD converter. MSTPRA State - 0. The module-stop state is canceled for the temperature sensor. Finable write protection PRCR register - 4000h MSTPRA State - 0. The module-stop state is canceled to the low power consumption function. Matter and temperature sensor PRCR register - 4000h ADCSR register - 000h Specify the AD conversion pins ADNSR register - 000h ADCSR register - 100h TSS bit = 1. AD conversion of temperature sensor output is performed. Specify the AD conversion stat ADSSTRT register - 000h Specify the AD conversion stat ADSCRR register - 00h Specify the AD conversion stat ADSCRR register - 00h Specify the AD conversion stat ADSCR register - 00h Specify the AD conversion stat ADSCR register Specify the AD conversion stat TSCR register Specify the AD conversion stat TSCR register			
Constraint mit module-stop state is canceled for the A/D converter. MSTPA2 bit - 0: The module-stop state is canceled for the A/D converter. MSTPA2 bit - 0: The module-stop state is canceled for the temperature sensor. PRC1 register - A500h PRC1 register - 0: Disable writing to the registers related to the low power consumption function. Wait 2 µs R_DELAY_U0() Set scan mode ADCSS register - 0000h ADCS register - 0100h Specify the A/D conversion state ADSSTRT register - 0100h TSS bit = 1: A/D conversion of temperature sensor output is performed. ADSTROR register Specify the A/D conversion stat ADSTROR register - 010h TSSR register TSSR register Specify the A/D conversion stat ADSTROR register (- 010h) TSSR register TSSR register Specify the A/D conversion state trigger. TSCR register (- 01h) TSCR register (- 01h) TSCR register (- 01h) Specify the A/D conversion state trigger. TSCR reg			
Lindow white production PRC1 bit = 0: Disable writing to the registers related to the low power consumption function. Wait 2 us R_DELAY_Us() Start A/D conversion after waiting 1 µs or longer when the module-stop state is canceled. ADCSR register ← 0000h ADCS bit = 0: Single scan mode ADCSR register ← 000h ADCS bit = 0: AND to AN6 are not subjected to conversion. Specify the A/D conversion pins ADAXSA register ← 0100h TSS bit = 1: A/D conversion of temperature sensor output is performed. Specify the sampling time ADSSTRT register ← 1000h TSS bit = 1: A/D conversion of temperature sensor output is performed. Specify the A/D conversion start trigger ADCSR register ← 1000h TSS bit = 1: A/D conversion to the started (approx. 72 µs) Specify the A/D conversion start trigger ADCSR register ← 1000h TSS AL(-0) bits = 0:10:10: Temperature sensor is used as the start trigger. Specify the A/D conversion start trigger ADCSR register TRC bit + -1: Enables A/D conversion to be started by the synchronous trigger. Specify the scan end interrupt sensor setting with the temperature sensor TSCR register TSCR register Specify the scan end interrupt setting ADCSR register ADCSR register Specify the scan end interrupt setting ADCSR register TSCR bit + -1: Enables AD interrupt generation upon scan completion. IWait the temperature sensor R_DELAY_Us() ADCSR register HR tig e - 0: No AD interrupt request IFR00 register IFR030 pit			MSTPA23 bit \leftarrow 0: The module-stop state is canceled for the A/D converter. MSTPCRB register
R_DELAY_Us() Start AD conversion after waiting 1 µs or longer when the module-stop state is canceled. ADCSR register ← 0000h ADCS bit = 0: Single scan mode ADANSA register ← 000 AANSA (sig) bits = 0: AND to AN6 are not subjected to conversion. Specify the AD conversion pilm ADANSA register ← 0100 TSS bit = 1: AD conversion of temperature sensor output is performed. Specify the ampling time ADSSTRT register ← 180: 180 states (approx. 72 µs) Specify the AD conversion start trigger ADSTRGR register ← 0400h TSS bit = 1: AD conversion to be started by the synchronous or asynchronous trigger. Specify the AD conversion start trigger ADSTRGR register ← 0400h TSS bit = 0: Tables AD conversion to be started by the synchronous or asynchronous trigger. Specify the AD conversion start trigger ADCSR register TSCR register ← 01n ¹⁰ PCAGAIN[1:0] bits = 01b: 2.7 V ≤ AVCC0 ≤ 3.6 V Select the PGA gain TSCR register TSCR register TSCR register TSCR triggister ADCSR register TSCR triggister ADCSR register TSCN bit ← 1: Enables AD interrupt generation upon scan completion. Wait the temperature sensor start time (#0) µs) ADCSR register R flag ← 0: No ADI interrupt generation upon scan completion. IPR30 [bit ← 1: CL DI bits ← 0.001b: ADI interrupt generation upon scan completion. IPR30 register IR flag ← 0: No ADI interrupt request IDE bit ← 1: ADI interrupt request IPR30 pregister IR flag ← 0: No ADI interrupt request is enabled. IDE bit ← 1: ADI interrupt request is enab	Enable write	e protection	
Set scal mode ADCS bit = 0: Single scan mode ADANSA register ← 00h ANASA register ← 00h Specify temperature sensor output to be A/D converted ADEXICR register ← 010h TSS bet = 1: A/D conversion of temperature sensor output is performed. Specify the sampling time ADSSTRT register ← 0400h Specify the A/D conversion start trigger ADSTRGR register ← 0400h Specify the A/D conversion start ADSTRGR register ← 0400h Specify the A/D conversion start ADSTRGR register ← 0400h TRSE bit ← 1: Enables A/D conversion to be started by the synchronous or asynchronous trigger. Specify the A/D convert start trigger ADSS Register TRGE bit ← 1: Enables A/D conversion to be started by the synchronous or asynchronous trigger. Specify the A/D convert start trigger TSCR register TRGE bit ← 1: Enables A/D conversion to be started by the synchronous or asynchronous trigger. Specify the scan end interrupt setting ADCSR register ADCSR register TSCR register ADCSR register ADCSR register ADCSR register ADCSR register ADCSR register ADCSR register ADCSR register ADCSR register ADCSR register IR flag ← 0: No ADI interrupt request <td></td> <td></td> <td>Start A/D conversion after waiting 1 μs or longer when the module-stop state is canceled.</td>			Start A/D conversion after waiting 1 μs or longer when the module-stop state is canceled.
Specify the AD conversion pins ANSA(6.0) bits = 0: AN0 to AN6 are not subjected to conversion. Specify temperature sensor output to be AD conversion ADEXICR register ← 0100h TSS bit = 1: A/D conversion of temperature sensor output is performed. Specify the AD conversion start trigger ADSSTRT register ← 180: 180 states (approx. 72 µs) Specify the AD conversion start trigger ADSSTRT register ← 0400h TRSA(4:0) bits = 0101b: Temperature sensor is used as the start trigger. Specify the AD converser start trigger ADCSR register TRSA(4:0) bits = 0101b: Z: TV ≤ AVCC0 ≤ 3.6 V Select the PGA gain TSCR register PGAGAIN(1:0) bits = 01b: 2: TV ≤ AVCC0 ≤ 3.6 V Enable the temperature sensor start time (60 µs) R_DELAY_US() TSCR register ADCSR register TSCR register Mat the temperature sensor start time (60 µs) R_DELAY_US() ADCSR register ADCSR register TSCR register TSCR register TSCN bit ← 1: Enables ADI interrupt generation upon scan completion. IPR38 register IR flag ← 0: No ADI Interrupt request IR098 register IR flag ← 0: No ADI Interrupt request is enabled. Obtain the high reference temperature return HIGH_REF_POTENTIAL_VAL ⁽²⁾ Notes: 1. Change the parameter according to the system used.	Set scar	n mode	
be A/D converted TSS bit = 1: A/D conversion of temperature sensor output is performed. Specify the sampling time ADSSTRT register ← 180: 180 states (approx. 72 µs) Specify the A/D conversion start trigger ADSTRGR register ← 0.00h TRSA(4:0) bits = 01010b: Temperature sensor is used as the start trigger. Specify the A/D converter start trigger setting with the temperature sensor ADCSR register TSCR register ← 0.1h ⁽¹⁾ PCACAIN[1:0] bits = 01b: 2.7 V ≤ AVCC0 ≤ 3.6 V Select the PGA gain TSCR register TSCR register ← 01h ⁽¹⁾ PCACAIN[1:0] bits = 01b: 2.7 V ≤ AVCC0 ≤ 3.6 V Enable the temperature sensor start time (80, is) R_DELAY_Us() ADCSR register ADCSR register TSEN bit ← 1: Enables the temperature sensor. Wait the temperature sensor start time (80, is) R_DELAY_Us() ADCSR register ADIE bit ← 1: Enables ADI interrupt generation upon scan completion. IR098 register IR flag ← 0: No ADI interrupt request IR098 register IPR93 0[bits ← 00:01b: ADI interrupt request is 1. IER00 register IPR93 0[bits ← 00:01b: ADI interrupt priority level is 1. IER00 register IEN2 bit ← 1: ADI interrupt request is enabled. Obtain the high reference temperature return high_ref_potential ← HIGH_REF_POTENTIAL_VAL ⁽²⁾ Notes: 1. Change the parameter according to the system used.	Specify the A/D	conversion pins	
Specify the A/D conversion start trigger ADSTRGR register ← DA00h TRSA[4:0] bits = 01010b: Temperature sensor is used as the start trigger. Specify the A/D conversion start trigger ADCSR register TRSCE bit < 1: Enables A/D conversion to be started by the synchronous or asynchronous trigger. EXTRG bit < 0: A/D conversion is started by the synchronous trigger.			
trigger TRSA[4:0] bits = 01010b: Temperature sensor is used as the start trigger. Specify the A/D converter start trigger. ADCSR register TRGE bit ← 0: A/D conversion to be started by the synchronous or asynchronous trigger. EXTRG bit ← 0: A/D conversion to be started by the synchronous trigger. Select the PGA gain TSCR register ← 01h (1) PGGAIN[1:0] bits = 01b: 2.7 V ≤ AVCC0 ≤ 3.6 V Enable the temperature sensor TSCR register TSCR register TSCR register TSCR register TSCR register TSCR register TSCR register TSCR register TSCR register ADCSR register TSCR register ADCSR register ADCSR register ADCSR register Note the (1) Enables ADI interrupt generation upon scan completion. IR098 register IR098 register IR1930 bits ← 0001b: ADI interrupt request IR098 register IR1930 bits ← 0001b: ADI interrupt priority level is 1. IER0C register IER0C register IER00 register IER0C	Specify the s	ampling time	ADSSTRT register \leftarrow 180: 180 states (approx. 72 µs)
Image: Section with the temperature sensor TRGE bit ← 1: Enables A/D conversion to be started by the synchronous or asynchronous trigger. Select the PGA gain TSCR register ← 01h ⁽¹⁾ PGAGAIN[1:0] bits = 01b: 2.7 V ≤ AVCC0 ≤ 3.6 V Enable the temperature sensor start time (80 µs) R_DELAY_US() ADCSR register Specify the scan end interrupt setting Image: Clear the interrupt request Image: Clear the interrupt request Image: Clear the interrupt request Image: Clear the high reference temperature Image: Clear the high reference temperature <tr< td=""><td></td><td></td><td></td></tr<>			
Select the PGA gain PGAGAĨN[1:0] bits = 01b: 2.7 V ≤ AVCC0 ≤ 3.6 V Enable the temperature sensor TSCR register TSEN bit ← 1: Enables the temperature sensor. Wait the temperature sensor start time (80 µs) R_DELAY_US() ADCSR register ADCSR register ADE bit ← 1: Enables ADI interrupt generation upon scan completion. IR098 register IR098 register IR189 ← 0: No ADI interrupt request IR1896 register IPR98 tegister IPR98 tegister IPR08 tegister IPR02 bit ← 1: ADI interrupt request is enabled. bitain the high reference temperature high_ref_potential ← HIGH_REF_POTENTIAL_VAL ⁽²⁾ Notes: 1. Change the parameter according to the system used.			TRGE bit \leftarrow 1: Enables A/D conversion to be started by the synchronous or asynchronous trigger.
Wait the temperature sensor start time (80 μs) R_DELAY_US() ADCSR register ADIC SR register ADIE bit ← 1: Enables ADI interrupt generation upon scan completion. Specify the scan end interrupt setting ADCSR register ADIE bit ← 1: Enables ADI interrupt generation upon scan completion. IR098 register IR098 register IR flag ← 0: No ADI interrupt request Enable interrupts IPR98 register IPR[3:0] bits ← 0001b: ADI interrupt priority level is 1. IER0C register IEN2 bit ← 1: ADI interrupt request is enabled. Obtain the high reference temperature return high_ref_potential ← HIGH_REF_POTENTIAL_VAL ⁽²⁾ Notes: 1. Change the parameter according to the system used.	Select the	PGA gain	
start time (80 µs) R_DELAY_Us() ADCSR register ADIE bit ← 1: Enables ADI interrupt generation upon scan completion. Specify the scan end interrupt setting ADCSR register ADIE bit ← 1: Enables ADI interrupt generation upon scan completion. IR098 register IR098 register IR flag ← 0: No ADI interrupt request IPR98 register IPR98 register IPR[3:0] bits ← 0001b: ADI interrupt priority level is 1. IER0C register IER0C register IEN2 bit ← 1: ADI interrupt request is enabled. Obtain the high reference temperature high_ref_potential ← HIGH_REF_POTENTIAL_VAL ⁽²⁾ Notes: 1. Change the parameter according to the system used.	Enable the temp	perature sensor	
Specify the scan end interrupt setting ADIE bit ← 1: Enables ADI interrupt generation upon scan completion. ADIE bit ← 1: Enables ADI interrupt generation upon scan completion. IR098 register IR flag ← 0: No ADI interrupt request IPR98 register IPR[3:0] bits ← 0001b: ADI interrupt priority level is 1. IER0C register IEN2 bit ← 1: ADI interrupt request is enabled. Obtain the high reference temperature high_ref_potential ← HIGH_REF_POTENTIAL_VAL ⁽²⁾ Notes: 1. Change the parameter according to the system used.	start time	e (80 μs)	
Clear the interrupt request IR flag ← 0: No ADI interrupt request IR flag ← 0: No ADI interrupt request IPR98 register IPR[3:0] bits ← 0001b: ADI interrupt priority level is 1. IER0C register IEN2 bit ← 1: ADI interrupt request is enabled. high_ref_potential ← HIGH_REF_POTENTIAL_VAL ⁽²⁾ Notes: 1. Change the parameter according to the system used.	Specify the scan e	nd interrupt setting	
IPR[3:0] bits ← 0001b: ADI interrupt priority level is 1. IER0C register IEN2 bit ← 1: ADI interrupt request is enabled. Obtain the high reference temperature high_ref_potential ← HIGH_REF_POTENTIAL_VAL ⁽²⁾ return Notes: 1. Change the parameter according to the system used.	Clear the inte	errupt request	
IEN2 bit ~ 1: ADI interrupt request is enabled. Obtain the high reference temperature high_ref_potential ~ HIGH_REF_POTENTIAL_VAL (2) return Notes: 1. Change the parameter according to the system used.	Enable ir	nterrupts	
return Notes: 1. Change the parameter according to the system used.			•
Notes: 1. Change the parameter according to the system used.	Obtain the high refe	erence temperature	$high_ref_potential \leftarrow HIGH_REF_POTENTIAL_VAL^{(2)}$
 Change the parameter according to the system used. 	retu	urn	
		parameter according	g to the system used.

Figure 9.17 A/D Converter and Temperature Sensor Initializations

9.9.16 A/D Converter and Temperature Sensor Stop Processing

Figure 9.18 shows the A/D Converter and Temperature Sensor Stop Processing.

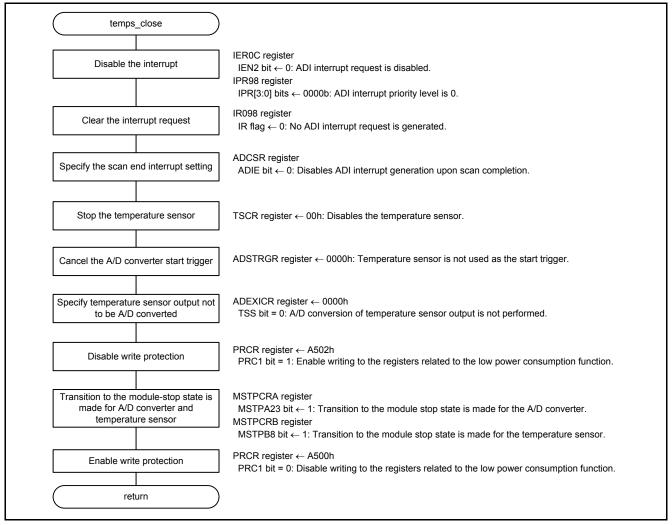
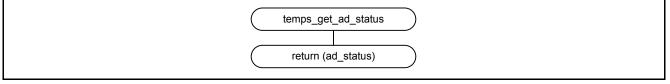
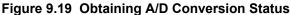




Figure 9.18 A/D Converter and Temperature Sensor Stop Processing

9.9.17 Obtaining A/D Conversion Status

Figure 9.19 shows the Obtaining A/D Conversion Status.

9.9.18 Obtaining Temperature Sensor Measurement Result

Figure 9.20 shows the Obtaining Temperature Sensor Measurement Result.

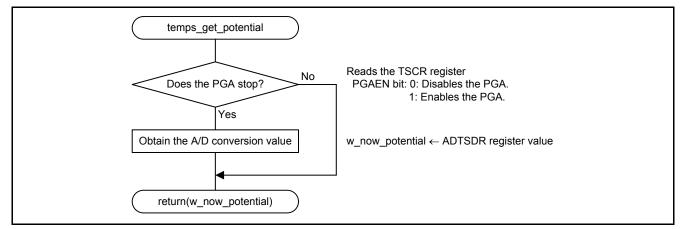


Figure 9.20 Obtaining Temperature Sensor Measurement Result

9.9.19 Obtaining Current Temperature

Figure 9.21 shows the Obtaining Current Temperature.

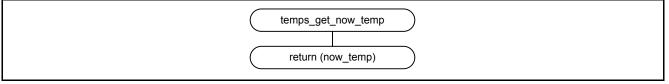


Figure 9.21 Obtaining Current Temperature

9.9.20 Temperature Sensor Calibration Processing

Figure 9.22 shows the Temperature Sensor Calibration Processing.

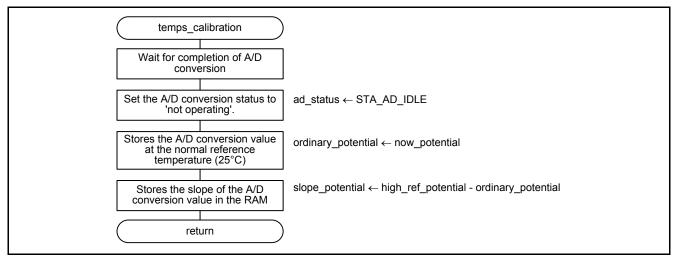


Figure 9.22 Temperature Sensor Calibration Processing

9.9.21 Temperature Sensor Measurement Processing

Figure 9.23 shows the Temperature Sensor Measurement Processing.

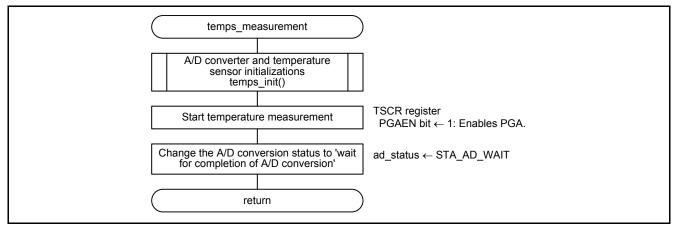


Figure 9.23 Temperature Sensor Measurement Processing

9.9.22 Current Temperature Calculation

Figure 9.24 shows the Current Temperature Calculation.

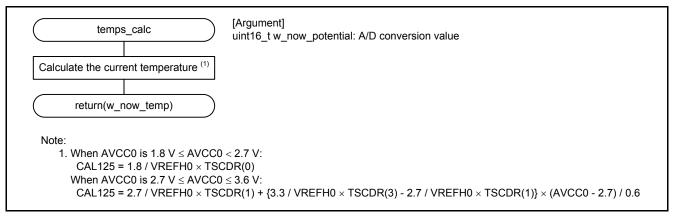


Figure 9.24 Current Temperature Calculation

9.9.23 A/D Conversion End Interrupt Handler

Figure 9.25 shows the A/D Conversion End Interrupt Handler.

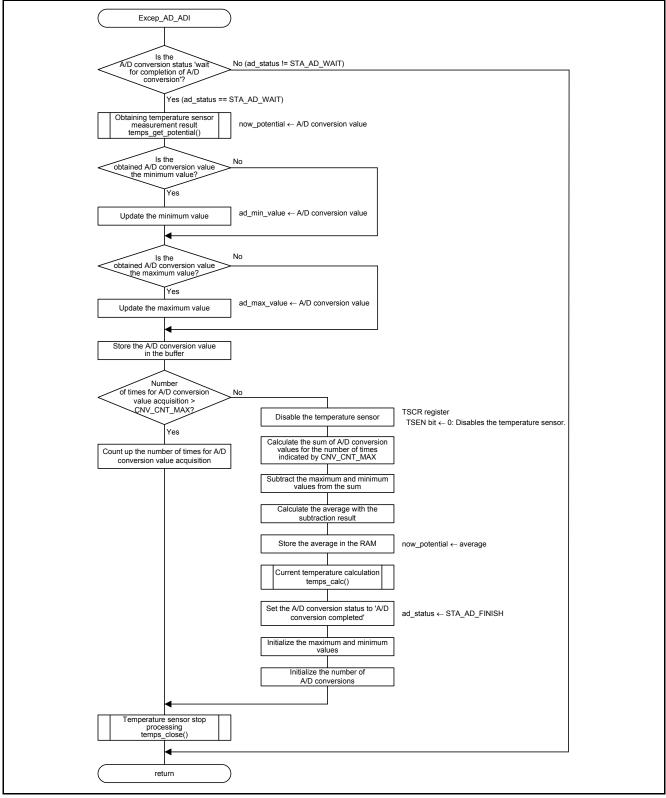


Figure 9.25 A/D Conversion End Interrupt Handler

10. Appendices (Calibration and Compensation Results)

This chapter analyzes the results of the system gain calibration and the temperature characteristic compensation.

10.1 Result of the System Gain Calibration

Figure 10.1 shows an example of the result for the system gain calibration. In the example, the gain is calibrated for each channel with each gain setting based on the gain with channel 0 and gain x4 using formulas 8.3 and 8.5 (for differential input, formula 8.11 for single-ended input). In the result, the gain errors have been reduced from 6 ppm to 2 ppm.

To make the gain measurement conditions consistent, in this example, 14.06 mV of voltage is input taking into account the limit of gain x32 (14.4 mV). To raise the precision of the calibration, use the test voltage and current appropriate to the reference gain selected.

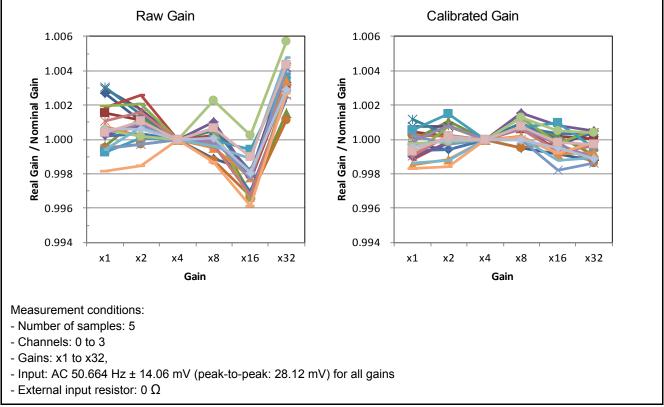


Figure 10.1 Result of the System Gain Calibration

10.2 Result of Temperature Compensations

10.2.1 Temperature Characteristics of the VBGR

The Figure 10.2 shows the Temperature Characteristics of the VBGR (Difference Between the Measured Values and Typical Values).

The typical VBGR voltage can be calculated by assigning the coefficients shown in Table 7.1 and the temperature measured by the temperature sensor to formula 7.2. If errors exist in temperatures, calculations for the typical VBGR also have errors.

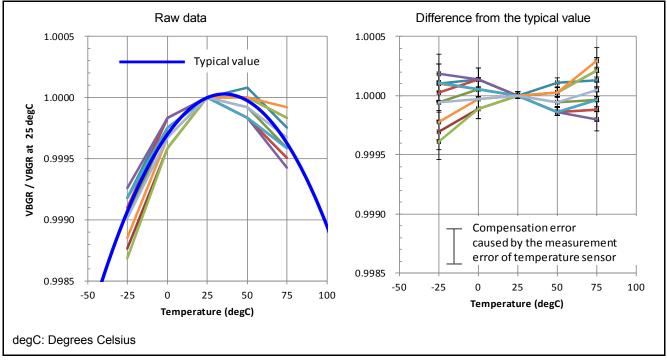


Figure 10.2 Temperature Characteristics of the VBGR (Difference Between the Measured Values and Typical Values)

The temperature characteristics of the VBGR can be decreased from 30 ppm/°C to 10 ppm/°C by compensating with formula 7.2.

Table 10.1 F	Results of the V	BGR Compensation
--------------	------------------	------------------

Reference Voltage Temperature Coefficient	-40 to +105 °C	
Electrical characteristics in the User's Manual: Hardware	±30 ppm/°C	
Maximum value of the raw data	+30 ppm/°C (-40°C to +25°C)	-24 ppm/°C (+25°C to +105°C)
Residual error after compensation	±10 ppm/°C	

System Gain of the Differential Input Pins 10.2.2

Figure 10.3 shows the System Gain of the Differential Input Pins.

The temperature characteristics are compensated to appear around 1.000 whereas they appear as parabola before compensation.

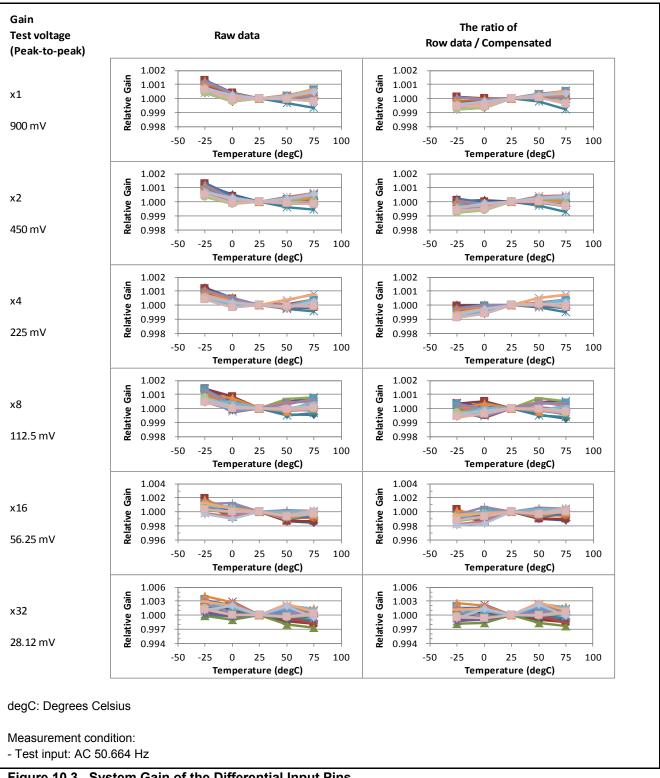


Figure 10.3 System Gain of the Differential Input Pins

Compensating the temperature characteristics of the system gains on the differential input pins can reduce differences in the temperature characteristics among devices and then the temperature characteristics appear as flat. Table 10.2 lists the Results of the Compensation for Temperature Characteristics of the System Gain on the Differential Input Pins.

Table 10.2	Results of the Compensation for Temperature Characteristics of the System Gain on the
D	Differential Input Pins

	Temperature Compensation Coefficient [ppm/K]			
Gain Setting	Raw data		Data after compensation	
	Every 25 K ⁽¹⁾	-25°C to +75°C ⁽²⁾	Every 25 K ⁽¹⁾	-25°C to +75°C ⁽²⁾
x1	-38	16	-24	14
	+21		+25	
x2	-39	14	-17	10
~~	+17	14	+23	10
x4	-31	15	-13	14
	+21		+24	14
x8	-48	18	-21	10
XO	+29		+30	10
x16	-96	33	-57	23
	+45		+64	23
x32	-136	41	-97	31
	+94	41	+111	31

Notes:

1. The range between -25°C and +75°C is divided every 25 K, the temperature characteristic coefficients are calculated for all divided ranges, and the minimum and maximum values are picked up and shown in the table.

2. Value calculated with the box method.

Temperature compensation coefficient = Gain range (maximum value - minimum value) / Temperature range (75 - (-25))

10.2.3 System Gain of Single-Ended Input Pin

Figure 10.4 shows the System Gain of the Single-Ended Input Pins. System gains are inversely proportional to temperatures in the temperature characteristics before compensation. After compensation, system gains are compensated to appear around 1.000.

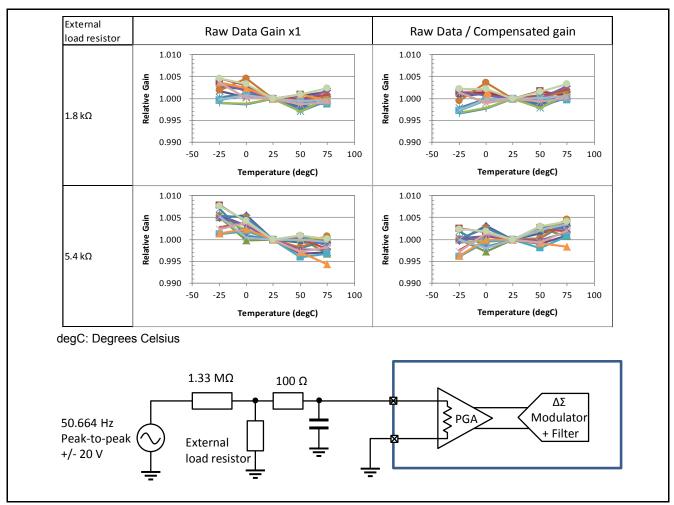


Figure 10.4 System Gain of the Single-Ended Input Pins

Compensating the temperature characteristics of the system gains on the single-ended input pins can reduce differences in temperature characteristics among devices and then the temperature characteristics appear as flat. Table 10.3 lists the Results of the Compensation for Temperature Characteristics of the System Gain on the Single-Ended Input Pins.

Table 10.3 Results of the Compensation for Temperature Characteristics of the System Gain on the Single-Ended Input Pins

Estemation	Temperature Characteristic Coefficient [ppm/K]			
External Load Resistor [kΩ]	Raw data		Data after compensation	
	Every 25 K ⁽¹⁾	-25°C to +75°C ⁽²⁾	Every 25 K ⁽¹⁾	-25°C to +75°C ⁽²⁾
1.0	-186	54	-145	40
1.8	+114	54	+167	43
5.4	-249	90	-136	55
5.4	+104	90	+176	55

Notes:

 The range between -25°C and +75°C is divided every 25 K, the temperature characteristic coefficients are calculated for all divided ranges, and the minimum and maximum values are picked up and shown in the table.

2. Value calculated with the box method.

Temperature compensation coefficient = Gain range (maximum value - minimum value) / Temperature range (75 - (-25))

11. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

12. Reference Documents

User's Manual: Hardware RX21A Group User's Manual: Hardware Rev.1.10 (R01UH0251EJ) The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News The latest information can be downloaded from the Renesas Electronics website.

User's Manual: Development Tools

RX Family C/C++ Compiler Package V.1.01 User's Manual Rev.1.00 (R20UT0570EJ) The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website <u>http://www.renesas.com</u>

Inquiries http://www.renesas.com/contact/

$\begin{array}{c} \text{RX21A Group Application Note} \\ \text{Gain Calibration and Compensation with the Temperature} \\ \text{Sensor for the } \Delta\Sigma \text{ A/D Converter} \end{array}$

Rev.	Date	Description	
Rev.		Page	Summary
1.00	Oct. 1, 2014	—	First edition issued
1.10	Mar. 2, 2015	—	Revised the structure and contents of the document.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or youtced by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tei: +1-905-237-2004
Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tei: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tei: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Te: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tef: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tei: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India Tei: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tei: +82-2-558-3737, Fax: +82-2-558-5141