

Channel-to-channel isolated analog measurement system

Introduction

This document describes a system which has 4 pieces of Renesas microcontroller RX23E-A measuring temperature or voltage synchronously with channel-to-channel isolation. RX23E-A in each unit samples output voltage of thermocouple/RTD or pin input voltage with built-in 24-bit Δ - Σ A/D converter (DSAD) in cycle of approximate 1 msec, performs filter processing, and converts to temperature or voltage.

As an upper layer MCU, RX72M obtains temperature or voltage measured in each unit in cycles of 10 ms and transmits to PC via USB. As a result, 4-channel synchronous measurement can be realized within 1 ms.

Communication between 4 pieces of RX23E-A and RX72M is performed by a single channel 3-wire serial communication, and individual communications with the specified unit address and the broadcast communication are performed. This can reduce isolators comparing to 4-wire SPI communication which uses chip select.

Target Application:

- Analog input module
- Temperature controller
- Recorder

Appearance and Block Diagram of Channel-to-Channel Isolated Analog Measurement System

Target Device

RX23E-A (R5F523E6SDNF) RX72M (R5F572MNDDBD)

Contents

1. Overview	4
1.1 Function / Specification	4
1.2 Introduction of Renesas Electronics' Products	5
2. Related Documents	6
3. Environment for Operation Confirmation	7
4. System Configuration	8
5. Hardware Configuration	10
5.1 Communication Board	10
5.2 Multi-Channel Measurement Board	10
5.2.1 Descriptions of Circuits	10
6. Measurement Process	14
6.1 Temperature Measurement	14
6.1.1 A/D Conversion of Thermocouple and RTD	14
6.1.2 Filter Processing	15
6.1.2.1 Moving Average Filter	
6.1.2.2 Band Elimination Filter and Lowpass Filter	16
6.1.3 Temperature Calculation	17
6.2 Voltage Measurement	17
6.2.1 A/D Conversion of Input Voltage	17
6.2.2 Moving Average Filter	
6.2.3 Voltage Calculation	18
7. Sample Program	19
7.1 Communication Specification	19
7.1.1 Communication between Host and Measurement Unit	19
7.1.1.1 SPI Communication Specification	19
7.1.1.2 Communication Sequence	20
7.1.1.3 Packet Structure	
7.1.1.4 Command	
7.2 Measurement Processing (RX23E-A)	
7.2 Measurement recessing (rec202 /)	
7.2.2 Peripheral Functions and Pins Used	
7.2.2.1 AFE • DSAD0	27
7.2.2.2 RSPI0 · DMAC0 · DMAC1 · P17	
7.2.2.3 P30 · P31	31
7.2.3 Communication Process	

7.2.4 Program Configuration	
7.2.4.1 File Configuration	
7.2.4.2 Macro Definitions	35
7.2.4.3 Structures and Unions	
7.2.4.4 Functions	
7.3 Host Processing (RX72M)	41
7.3.1 Operation Overview	41
7.3.2 Peripheral Functions and Pins Used	43
7.3.2.1 SCI8	44
7.3.2.2 SCI6 · DMAC0 · DMAC3 · CMT0	45
7.3.2.3 CMT1	
7.3.2.4 P71	
7.3.3 Measurement Unit Communication Processing	
7.3.4 PC tool Communication Processing	49
7.3.5 Program Configuration	51
7.3.5.1 File Configuration	51
7.3.5.2 Macro Definitions	51
7.3.5.3 Structures and Unions	52
7.3.5.4 Functions	53
8. Importing a Project	57
8.1 Importing a Project into e2 studio	
	50
8.2 Importing a Project into CS+	
8.2 Importing a Project into CS+	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program 	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program 9.1 Memory Usage and Number of Execution Cycles 	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program 9.1 Memory Usage and Number of Execution Cycles 9.1.1 Measurement Processing (RX23E-A) 	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program 9.1 Memory Usage and Number of Execution Cycles 9.1.1 Measurement Processing (RX23E-A) 9.1.1.1 Build Conditions 9.1.1.2 Memory Usage 9.1.1.3 Number of Execution Cycles 	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program 9.1 Memory Usage and Number of Execution Cycles 9.1.1 Measurement Processing (RX23E-A) 9.1.1 Build Conditions 9.1.1.2 Memory Usage 9.1.1.3 Number of Execution Cycles 9.1.2 Host Processing (RX72M) 9.1.2.1 Build Conditions 	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program 9.1 Memory Usage and Number of Execution Cycles 9.1.1 Measurement Processing (RX23E-A) 9.1.1 Build Conditions 9.1.2 Memory Usage 9.1.2 Host Processing (RX72M) 9.1.2.1 Build Conditions 9.1.2.2 Memory Usage 9.1.2.3 Number of Execution Cycles 9.2 Example of Operation 9.2.1 Multi-channel Measurement 	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program 9.1 Memory Usage and Number of Execution Cycles 9.1.1 Measurement Processing (RX23E-A) 9.1.1.1 Build Conditions 9.1.2 Memory Usage 9.1.2 Host Processing (RX72M) 9.1.2.1 Build Conditions 9.1.2.2 Memory Usage 9.1.2.3 Number of Execution Cycles 9.2 Example of Operation 9.2.1 Multi-channel Measurement 9.2.2 Response Characteristics Appendix 1 Parts List of the Multi-channel Board Appendix 2 Circuit Diagrams of the Multi-channel Board 	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program 9.1 Memory Usage and Number of Execution Cycles 9.1.1 Measurement Processing (RX23E-A) 9.1.1.1 Build Conditions 9.1.2.1 Memory Usage 9.1.2.1 Build Conditions 9.1.2.2 Memory Usage 9.1.2.3 Number of Execution Cycles 9.2 Example of Operation 9.2.1 Multi-channel Measurement 9.2.2 Response Characteristics Appendix 1 Parts List of the Multi-channel Board Appendix 2 Circuit Diagrams of Multi-channel Board 	
 8.2 Importing a Project into CS+ 9. Operation Results with the Sample Program 9.1 Memory Usage and Number of Execution Cycles 9.1.1 Measurement Processing (RX23E-A) 9.1.1.1 Build Conditions 9.1.2 Memory Usage 9.1.2 Most Processing (RX72M) 9.1.2.1 Build Conditions 9.1.2.2 Memory Usage 9.1.2.3 Number of Execution Cycles 9.2 Example of Operation 9.2.1 Multi-channel Measurement 9.2.2 Response Characteristics Appendix 1 Parts List of the Multi-channel Board Appendix 3 Board Diagram of Multi-channel Board 	

1. Overview

Channel-to-Channel Isolated Analog Measurement System consists of Multi-channel measurement board which has 4 channel measurement unit, and Communication board which controls each measurement unit and acquires measurement results.

RX23E-A performs measurement processing in each measurement unit, and RX72M performs host processing on Communication board.

1.1 Function / Specification

Table 1-1 Specification of Channel-to-Channel Isolated Analog Measurement System

Item			Specification	Remarks
Operation voltage			22 to 36 [V]	typ. 24 [V]
Isolated withsta	and voltage	Primary vs Secondary	1500 [VAC]	Design value
Measurement r	result	Cycle	10.0 [ms]	
acquisition		Maximum error between channels	1.0 [ms]	
Measurement	Number of isola	ated measurement channels	4	
unit	Power consum	ption	150 [mW/ch]	
	Voltage	Absolute input	AVSS0 to AVCC0 [V]	AVSS0 = 0 [V]
	measurement	voltage range		AVCC0 = 5 [V]
				VREF =2.5[V]
		Differential input	±VREF	VREF = 2.5 [V]
		voltage range		
	Temperature	Measurement range	-75 to 251 [°C]	
	measurement	Sensor	K-Type Thermocouple	
		Reference junction	RTD (pt100)	
		compensation measurement		
	Sampling cycle		1.024 [ms/ch]	
Step response ti		time	70 [ms]	63.2% settling
				time
Ambient operation temperature			-40 to 85 [°C]	Design value

1.2 Introduction of Renesas Electronics' Products

Table 1-2 lists the Renesas Electronics' products used in this system.

-

Part No.	Part Name	Board	Quantity
RX23E-A (R5F523E6SDNF)	MCU (single unit DSAD)	Multi-channel measurement board	4
ISL85410	DC/DC Converter	Multi-channel measurement board	3
ISL80410	LDO	Multi-channel measurement board	4
RV1S9260A	Photocoupler	Multi-channel measurement board	8
PS9124	Photocoupler	Multi-channel measurement board	4
RX72M (R5F572MNDDBD)	MCU	Communication board	1
ISL80015	DC/DC converter	Communication board	1
ISL32740E	RS-485 driver	Communication board	1

(1) RX23E-A

Table 1-3 shows an overview of the specifications of RX23E-A used in this system.

RX23E-A has a low-noise 24-bit Δ - Σ A/D converter (DSAD) that allows high-precision measurement. DSAD has a programmable gain instrumentation amplifier (PGA) whose gain is selectable from x1, x2, x4, x8, x16, x32, x64, and x128. It also has an analog front-end (AFE) circuit suitable for sensor measurement of thermocouples, resistance temperature detectors, and strain gauges. Up to 6 channels can be measured by switching the analog multiplexer (AMUX) built in the AFE. In addition, it has one channel of the successive approximation 12-bit A/D converter (S12AD).

In this system, RX23E-A operates as microcontroller and AFE in each measurement unit, and transmits the measurement result of voltage or temperature to RX72M by SPI communication.

For details about RX23E-A, refer to "RX23E-A Group User's Manual: Hardware".

Table 1-3 Overview of the specifications of RX23E-A

Item	Description
Product group	RX23E-A
Part No.	R5F523E6SDNF (single unit DSAD)
CPU max. operating frequency	32 MHz
Bit count	32 bits
Package/pin count	HWQFN / 40 pins
ROM	256 KB
RAM	32 KB
Operating temperature range	-40°C to +85°C
Storage temperature range	-55°C to +125°C

(2) ISL85410

ISL85410 is a 1A synchronous buck regulator with input voltage range from 3 V to 40 V. This is easy to handle with high-efficiency, enables to configure a power supply with fewer components, and is suitable for various applications.

In this system, each configuration of power consisting of ISL85410 and a transformer supplies isolated power to 2 pieces of RX23E-A in the Multi-channel measurement board. Also it is used to supply 5 V power to the communication board as a non-isolated power supply.

(3) ISL80410

ISL80410 is a low-noise LDO with a wide input voltage range from 6 V to 40 V, variable output voltage from 2.5 V to 12 V, and no-load current consumption of 18 μ A.

In this system, it supplies 5 V power to RX23E-A.

(4) RV1S9260A

RV1S9260A is a high-speed photocoupler which consists of an AIGaAs LED on the input side and an integrated circuit with a photodiode on the output side. This product enables low current operation on 3.3/5 V power supply with high noise-tolerant CMR and high temperature operation up to Ta=125°C. This product is suitable for high-speed logic interface circuit.

In this system, it is used to isolate SPI communication signal (SCK, MOSI) between RX72M and RX223E-A.

(5) PS9124

The PS9124 is an optically coupled high-speed, active low type isolator containing an AlGaAs LED on the input side and a photodiode and a signal processing circuit on the output side on one chip.

In this system, this product is used to isolate SPI communication signal (MISO) between RX72M and RX23E-A. As PS9124 is open collector output, output of PS9124 becomes Hi-Z when output of RX23E-A with no-response is High or Hi-Z, so that this enables communication as a bus without occupying the MISO communication line.

(6) RX72M

The RX72M Group microcontrollers are high performance products operating at 240 MHz with RX's 3rd generation CPU core "RXv3 core". Double-precision floating-point processing instructions can significantly improve processing power. It incorporates an EtherCAT® slave controller and realizes a system configuration that requires a dedicated controller on a single chip, contributing to a reduction in the number of parts and space saving.

In this system, RX72M, as a host microcontroller, controls 4 pieces of RX23E-A on multi-channel measurement boards and transmits measurement results to PC by USB communication. Measurement results can be obtained with PC tool program of RSSKRX23E-A.

(7) ISL80015

ISL80015 is a highly efficient, monolithic, synchronous step-down DC/DC converters that can deliver up to 1.5 A of continuous output current from 2.7 V to 5.5 V input supply.

In this system, this product supplies 3.3 V for RX72M.

2. Related Documents

- R01UH0801 RX23E-A Group User's Manual: Hardware
- R20UT4542 RSSKRX23E-A User's Manual
- R20AN0540 Application Note RSSKRX23E-A PC Tool Program Operation Manual
- R01AN4747 Application Note RX23E-A Group Temperature Measurement Example Using a Thermocouple
- R01AN4799 Application Note RX23E-A Group Effective use of AFE and DSAD
- R01AN4661 Application Note RX72M Group Communications Board Hardware Manual included in "R01AN4882 Application Note RX72M Group Communications Board Sample Program Package"
- R01AN4359 Application Note RX Family RX DSP Library Version 5.0

3. Environment for Operation Confirmation

The environment for operation confirmation of each measurement unit and host processing are given in Table 3-1 and Table 3-2 respectively.

Table 3-1	Environment for O	peration Confirmation	of Measurement Unit
-----------	-------------------	-----------------------	---------------------

Item			Description
Board			Multi-channel measurement board (MULT-RX23E-A-1U-A)
		MCU	RX23E-A (R5F523E6SDNF)
			Power voltage (VCC, AVCC0): 5 V
			Operating frequency (ICLK): 32 MHz
			Peripheral operating frequency (PCLKB): 32 MHz (DSAD0、RSPI)
			DSAD operating frequency (fdr): 4 MHz
			DSAD modulator clock frequency (f _{MOD}): 0.5 MHz
Thermocouple			К-Туре
IDE			Renesas e ² studio 2021-07
Tool Chain			Renesas CC-RX V3.03.00
	End	lian	Little Endian
Emulator			E2 Emulator Lite

Table 3-2 Environment for Operation Confirmation of Host Processing

ltem		Description
Board		RX72M communication board (TS-RX72M-COM)
		TESSERA TECHNOLOGY INC.
	MCU	RX72M (R5F572MNDDBD)
		Power voltage (VCC): 3.3 V
		Operating frequency (ICLK): 240 MHz
		Peripheral Operating frequency (PCLKB): 60 MHz (SCI6, SCI8)
IDE		Renesas e ² studio 2021-07
Tool Chain		Renesas CC-RX V3.03.00
	Endian	Little Endian
Emulator		E2 Emulator Lite

4. System Configuration

Figure 4-1 shows the configuration of this system and Figure 4-2 shows the appearance of this system.

Figure 4-1 Configuration of This System

Channel-to-channel isolated analog measurement system

Figure 4-2 Appearance of This System

Measurement result can be monitored by using the Application tab of the PC tool program (hereafter called the "PC Tool") of RSSKRX23E-A which is shown in Figure 4-3.

Figure 4-3 Display Example of the PC Tool Program

5. Hardware Configuration

5.1 Communication Board

The communication board is TESSERA TECHNOLOGY INC TS-RX72M-COM with RX72M. For more detail, refer to "RX72M Group Communications Board Hardware Manual", or web page of TESSERA TECHNOLOGY INC. <u>https://www.tessera.co.jp/eng/products/ts-rx72m-com.html</u>.

5.2 Multi-Channel Measurement Board

5.2.1 Descriptions of Circuits

(1) Non-isolated Step-Down Power Supply Circuit

Figure 5-1 shows the non-isolated step-down power supply circuit using ISL85410. In this system, it is used with input voltage of 22 to 36 V and output voltage of 5 V. Output voltage of 5 V is supplied to the communication board TS-RX72M-COM via CN2.

Figure 5-1 Non-isolated Step-Down Power Supply Circuit

(2) Isolated Step-Down Power Supply Circuit

Figure 5-2 shows the isolated step-down power supply circuit, and it consists of ISL85410 as well as a nonisolated step-down power supply circuit. In this isolated step-down power supply circuit, isolation transformer of 1 input 2 output is used instead of coils. Primary voltage is set approximate 7.3 V and the secondary side outputs equivalent voltage since the winding ratio of a transformer is 1:1. This is rectified and smoothed with diode and capacitor on the secondary side and stabilized with LDO. Approximate 7 V input voltage is supplied to LDO due to the winding ratio and forward voltage drop across a diode. The LDO on the secondary side uses ISL80410. ISL80410 supplies 5V power to RX23E-A in each channel on the secondary side. In this configuration, 2 channels of isolated power supply are provided with a single power supply IC and a transformer.

EN pin of ISL85410 is connected to the port of RX72M, and activating and stopping of power supply can be performed from RX72M. EN pin is pulled up with 3.3 V power supply of RX72M. It is set so that a power supply of RX72M activates then ISL85410 activates and power is supplied to RX23E-A.

Figure 5-2 Isolated Step-Down Power Supply Circuit (around U2)

(3) Isolated Communication Circuit

Figure 5-3 shows the isolated communication circuit. In this system, SPI communication from RX72 on the communication board to 4 units of RX23E-A is performed. The CMOS output photocoupler RV1S9260A and the open collector output type photocoupler PS9124 are used to isolate communication channels. SCK and MOSI, which are output from RX72M, go through 4 pieces of RV1S9260A respectively (i.e., 8 pieces in total) and clock synchronization communication is performed. As there is not enough driving capacity to drive 4 photocouplers directly from RX72M, a buffer IC is inserted to U4 for communication.

The MISO signal transmits measurement results and operational status to RX72M via PS9124 from RX23E-A in each measurement unit. As PS9124 is open collector output, RX23E-A does not respond unless RX72M specifies and is Hi-Z in the idle state, so that communication lines are not occupied.

On activating, the unit address is read by pulling-up/down of I/O input of RX23E-A in each measurement unit and setting bit information. This enables to embed the same FW and reduce the workload for software management. The device to be communicated is specified by sending the unit address on communication. In this configuration, the target device of communication can be specified without providing chip select signal for device selection. As chip select signal is unnecessary, the number of photocouplers can be reduced and it contributes to the BOM cost reduction.

Channel-to-channel isolated analog measurement system

(4) Temperature Measurement Circuit

Figure 5-4 shows the temperature measurement circuit in this system.

Note that the hundreds place is referred to as "x" in part references hereafter of circuit descriptions: x = 1 for channel A, x=2 for channel B x=3 for channel C, and x=4 for channel D. (Ex. Rx27 indicates R227 for channel B.)

The thermocouple is connected to CNx01 for temperature measurement. For reference junction compensation, the resistance temperature detector RTDx01 is placed around the CNx01 and junction temperature is measured. The measurement of reference junction with RTD is performed by 4-wire ratiometric measurement.

Figure 5-4 Temperature Measurement Circuit

(5) Voltage Measurement Circuit

Figure 5-5 shows the voltage measurement circuit in this system. For voltage measurement, the signal source is connected to CNx01.

Figure 5-5 Voltage Measurement Circuit

6. Measurement Process

RX23E-A measures temperature or voltage by instruction from the host. The following describes each measurement process.

6.1 Temperature Measurement

Temperature measurement is conducted by using thermocouples with the reference junction temperature which is measured with RTD placed on the board. Figure 6-1 shows the procedure for calculating temperature of thermocouple from each A/D conversion value obtained by thermocouple and RTD.

Figure 6-1 Temperature Calculation Procedure

6.1.1 A/D Conversion of Thermocouple and RTD

By using the channel function of DSAD0, A/D conversion of each voltage of thermocouple and RTD is performed in this order. The sequence of A/D conversion of thermocouple and RTD is shown in Figure 6-2, and A/D conversion conditions are shown in Table 6-1.

In this example, A/D conversion is performed for thermocouple on CH0 and for RTD on CH1 by channel scan. Each A/D conversion value is acquired when a A/D conversion end interrupt flag ADI0 occurs. Completion of A/D conversion of a pair of CH0 and CH1 is detected with the scan end interrupt flag SCAND0 then the temperature calculation is processed.

For details of A/D conversion using channel function, refer to Application Note "RX23E-A Group Effective use of AFE and DSAD".

Figure 6-2 Sequence of A/D Conversion of Temperature Measurement

Table 6-1 DSAD0 Conversion Conditions of Temperature Measurement

Normal Mode: f_{MOD} = 0.5MHz

Channe	I	CH0: Thermocouple	CH1: RTD	Remarks
Setting	Input pin	+: AIN1	+: AIN7	
		-: AIN0	–: AIN6	
	PGA gain	x128	x32	
	Reference voltage	REFOUT – AVSS0	REF1P –	
			AVSS0	
	OSRn	32	32	Oversampling ratio setting
A/D conversion time 512 [µs]		512 [µs]	512 [µs]	a' + 4T _n
	A	259 [µs]		Time for switching channels and
	a'	256 [µs]		stabilization
	Tn	64 [µs]		Time for digital filter processing
				$T_n = OSR_n / f_{MOD}$
Data rate		976.5625 [sps/ch]		1 / total of A./D conversion time=
				1 / ((a'+4T ₁) + (a'+4T ₂))
Digital fi	lter gain	1		SINC4

6.1.2 Filter Processing

Filter processing is performed to remove the noise in A/D conversion value. In this example, moving average filter, band elimination filter, and lowpass filter are used to remove commercial power frequency noise and high frequency noise. Figure 6-3 shows the signal flow of filter processing and Figure 6-4 shows the frequency characteristics of filters. The expected attenuation of commercial power frequency noise by filter processing is 73dB at 50±0.3Hz and 64dB at 60±0.3Hz.

Figure 6-3 Filter Processing in Temperature Measurement

6.1.2.1 Moving Average Filter

Setting the suppression frequency in 10 Hz increment to reduce the commercial power frequency of 50 Hz and 60 Hz, average samples is calculated with the below formula assuming the output data rate of DSAD0 as output sampling frequency f_s .

Average Samples =
$$f_s/_{1stDip\ frequency} = \frac{976.5625}{_{10}} = 97.65625 \cong 98$$

According to above formula, average samples is 98.

6.1.2.2 Band Elimination Filter and Lowpass Filter

Band elimination filter is used to reinforce the removal of commercial power frequency noise by the moving average filter's removal, and lowpass filter is used to remove high frequency power.

Both filleters are calculated with cascade connection of IIR Biquad filter shown in Figure 6-5. IIR Biquad Filter API of "RX Family RX DSP Library Version 5.0" is used for calculation of Biquad filter. The transfer function of Biquad filter is shown below, and IIR Biquad filter design condition and coefficients are shown in Table 6-2.

Figure 6-5 IIR Biquad Filter

Table 6-2 IIR Biquad Filter Design Condition and Coefficients

Sampling Frequency = 976.5625 [Hz]

Item		Band Eliminate	Filter			Lowpass Filter
Design condition Characteristic:			Butterworth		Characteristic:	
	Lower passband edge frequency:		42 [Hz]		Butterworth	
		Lower stopband e	edge frequency:	48 [Hz}		Cut off frequency:
		Higher stopband	pband edge frequency: 62 [Hz]		100 [Hz]	
	Higher passband edge frequency:		70 [Hz]			
Passband Attenuation:		0.5 [dB]				
		Stopband Attenuation:		12 [dB]		
stage		1 2		3	4	5
Coefficients	b0	0.882516447	1	0.945210113	1	0.070192889
	b1	-1.658423596	-1.879198515	-1.776237442	-1.879198515	0.140385778
	b2	0.882516447	1	0.945210113	1	0.070192889
	a1	-1.790124941	-1.739501201	-1.875074887	-1.771797069	-1.123519837
	a2	0.887934131	0.87117146	0.95719745	0.939758826	0.404291392

6.1.3 Temperature Calculation

The measurement temperature is calculated with reference junction compensation from each A/D conversion value of thermocouple and RTD whose noise is reduced by moving average filter. For detail about temperature measurement using thermocouple, refer to Application Note "RX23E-A Group Temperature Measurement Example Using a Thermocouple".

6.2 Voltage Measurement

The procedure for voltage calculation is shown in Figure 6-6.

Figure 6-6 Voltage Calculation Procedure

6.2.1 A/D Conversion of Input Voltage

The A/D conversion of pin input voltage is performed with DSAD0. In this example, A/D conversion of input voltage is performed by setting CH2 of DSAD0. A/D conversion conditions are shown in Table 6-3.

Table 6-3 DSAD0 Conversion Conditions for Voltage Measurement

Normal Mode: $f_{MOD} = 0.5MHz$

Channe		CH2	Remarks
Setting	Input pin	+: AIN1	
		-: AIN0	
	PGA gain	x1	
	Reference	REFOUT – AVSS0	
	voltage		
	OSR	512	Oversampling ratio
Data rat	e	976.5625 [sps]	
Digital fi	lter gain	1	SINC4

6.2.2 Moving Average Filter

Same as temperature measurement, filter processing is performed to reduce the noise in A/D conversion value. In this example, the moving average filter is used to reduce the noise including commercial power frequency noise.

According to the conditions described in Table 6-3 DSAD0 Conversion Conditions for Voltage Measurement, the output data rate of DSAD0 is the same as that of temperature measurement, average samples is 98. Figure 6-7 shows the frequency characteristic of moving average filter.

Figure 6-7 Frequency Characteristic of Moving Average Filter

6.2.3 Voltage Calculation

The pin input voltage is calculated from the result of A/D conversion.

Assuming that the set gain of the PGA is G_{PGA2} , the digital filter gain is G_{DF2} , the full scale of A/D conversion value is 2^{24} and DSAD reference voltage is V_{REF2} , the pin input voltage V for A/D conversion result DATA is calculated with the formula below.

$$V = \frac{2 \cdot V_{REF2}}{2^{24} \cdot G_{PGA2} \cdot G_{DF2}} \cdot DATA$$

Based on the conditions in Table 6-3, G_{DF2} is 1.

7. Sample Program

This section describes the sample program.

7.1 Communication Specification

7.1.1 Communication between Host and Measurement Unit

The communication between host (RX72M) and each measurement unit (RX23E-A) is performed by SPI with the host as a master and the each measurement unit as a slave.

7.1.1.1 SPI Communication Specification

Table 7-1 shows the conditions of SPI communication and Figure 7-1 shows the timing chart.

Table 7-1 SPI Communication Conditions

Item	Condition
Transfer speed	1 Mbps
Bit length	8 bits
Parity	None
Format	MSB first
SPCK phase	No clock delay
SPCK polarity	No polarity reverse

Figure 7-1 SPI Communication Timing Chart

7.1.1.2 Communication Sequence

For SPI communication the host sends a request packet, and the measurement unit returns a response packet. Figure 7-2 shows the communication sequence.

The host specifies a unit address which is assigned to each measurement unit and sends packets. The unit address has an individual address and a common address for broadcast transmission from the host to all measurement units.

In response to the request packet sent to its own individual address, the measurement unit returns a ACK for reception and a NACK for non-reception. It does not return a response packet for a common address.

Host	Unit A		Unit B		Unit C		Unit E
Re	equest						
Res	sponse						
		Request					
		Response					
•				Request			
				Response			
•						Request	
						Response	
ommon address							
Host	Unit A		Unit B		Unit C		Unit D
	.						
re		request		request		request	

Figure 7-2 Communication Sequence

7.1.1.3 Packet Structure

Table 7-2 shows the packet structure and Table 7-3 shows the packet header structure.

Table 7-2Packet Structure

offset [Byte]	Item	Description
0	Unit Address	Individual address : 0Ah to 0Eh
		Common address : 0Fh
+1	Header	Packet header (ref. Table 7-3)
+2	Data Length	Attached data length : 0x00 to 0x7D
+3	Data	Attached data

Table 7-3 Packet Header Structure

Header	bit	ltem	Description
	b7 - b6	Identifier	10b : Valid ID (Fixed value)
	b5	Туре	0 : Request
			1 : Response
	b4	ACK/NACK	0 : ACK、1 : NACK
			Host : ACK fixed
	b3 - b0	Command	Ref. Table 7-4 Command List

7.1.1.4 Command

Table 7-4 shows the command list, and the details of each command are described hereafter.

Value	Command	Common address	Description
0x00	Negotiation	Disable	Acquisition of measurement unit function and
			Setting function
0x01 - 0x02	-	-	Reserved
0x03	Run	Enable	Start measurement
0x04	Stop	Enable	Stop measurement
0x05	GetData	Disable	Acquisition of measurement result
0x06 - 0x0F	-	-	Reserved

Table 7-4 Command List

(1) Negotiation

Host acquires the measurement function which the measurement unit supports, or sets the measurement function which the measurement unit performs. The host specifies the Mode as Get or Set. The measurement unit returns the supporting measurement function for Get or returns the specified measurement function for Set.

The table of packet structure is shown in Table 7-5 and the data configuration is shown in Table 7-6.

Table 7-5 Negotiation Packet Structure

Туре	Header	Data Length	Data	
Request	0x80	0x01	Mode: Get	
			(1byte)	
		0x02	Mode: Set	Function
			(1byte)	(1byte)
Response	0xA0	0x02	Mode	Function
			(1byte)	(1byte)

Table 7-6 Data Structure

Name	Value	Description
Mode	00h: Get 01h: Set	Get: Acquisition of the measurement function which the measurement unit has Set: Setting the measurement function on the measurement unit
Function	00000001b: Temperature measurement 00000010b: Voltage measurement others: reserved	Functions which the measurement unit supports

(2) Run

The host requests the measurement unit to start measuring. The packet structure is shown in Table 7-7.

Table 7-7Run Packet Structure

Туре	Header	Data Length	Data
Request	0x83	0x00	None
Response	0xA3		

(3) Stop

The host requests the measurement unit to stop measuring. The packet structure is shown in Table 7-8.

Туре	Header	Data Length	Data
Request	0x84	0x00	None
Response	0xA4		

(4) GetData

The host requests the measurement unit to transmit the measurement results. The measurement unit returns the specified measurement result in float format.

The packet structure is shown in Table 7-9 and the data structure is shown in Table 7-10.

 Table 7-9
 GetData Packet Structure

Туре	Header	Data Length	Data	
Request	0x85	0x01	Channel	
			(1byte)	
Response	0xA5	0x05	Channel	Measured Value
			(1byte)	(4byte)

Table 7-10Data Structure

Name	Value	
Channel	Temperature measurement function	Voltage measurement function
	0x00: Measuring junction temp.	0x00: Pin voltage
	0x01: Reference junction temp.	
	0x02: Measuring junction	
	thermoelectromotive force	
Measured Value	Measurement result (float format, MSB	first)

7.1.2 Communication between PC Tool and Host

The communication between the host (RX72M) and the PC tool is performed by PC tool program communication specification. For details, refer to the Application Note "RSSKRX23E-A PC Tool Program Operation Manual".

7.2 Measurement Processing (RX23E-A)

7.2.1 Operation Overview

RX23E-A measures temperature or voltage according to the measurement instruction from the host based on "7.1.1 Communication between Host and Measurement Unit" then transmits the measurement result in response to the request from the host.

Figure 7-3 shows the process flow of this sample program.

Figure 7-3 RX23E-A Program Flow

The following provides an overview of each process.

- Initialization
 - The following are performed.
 - Acquires the individual address for host communication.
 - Sets MISO pin to input mode.
 - Initializes communication and activating RSPI0, DMAC0 and DMAC1
- Acquires A/D conversion value
- Acquires A/D conversion value with the A/D conversion completion as a trigger.
- Measurement calculation process

Measurement calculation is performed with A/D conversion scan completion. In measurement calculation process, the temperature by thermocouples or the pin input voltage is measured according to the host instruction. For details, refer to "6.Measurement Process".

- Communication process
- Communication with the host is processed to set the measurement functions, start the measurement operations, and transmit the measurement results by commands. For details about communication process, refer to "7.2.3 Communication Process".

7.2.2 Peripheral Functions and Pins Used

The peripheral functions used in this sample program are listed in Table 7-11, and the used pins are listed in Table 7-12, and the unused pins and their handlings are listed in Table 7-13. The conditions for setting each peripheral function are described together.

The settings for peripheral functions are generated by using the code generation function of Smart Configurator (referred to as SC in the remainder of this manual).

Table 7-11Peripheral Functions Used

Peripheral function	Use	
AFE, DSAD0	A/D conversion of sensor output	
RSPI0	SPI communication with the host	
DMAC0	Data transfer with a receive buffer full interrupt of RSPI0 as a trigger	
DMAC1	Data transfer with a transmit buffer empty interrupt of RSPI0 as a	
	trigger	
P17	Switching IN/OUT of MISO pin	
P30、P31	Setting unit individual address	

Table 7-12 Pins Used

Pin No.	Pin name	I/O	Use
21	RSPCKA		Host communication
16	MOSIA		
15	MISOA / P17	I/O	
12	P30		Setting unit individual address
11	P31		
33	AINO	I	Negative input of thermocouple or measured voltage, BIAS applying for thermocouple
34	AIN1		Positive input of thermocouple or measured voltage
35	REF1N		For RTD measurement
36	REF1P		
37	AIN6		
38	AIN7		
40	AIN9	0	Excitation current output for RTD measurement

Table 7-13 Unused Pins and Their Handlings

Pin No.	Pin name	I/O	Handling of unused pin
4	P37	0	open, Low output
22	PC4	0	pull-down, Low output
6	P36	0	open, Low output
10	P35	I	pull-up
13	P27	0	open, Low output
14	P26	0	open, Low output
17	P15	0	open, Low output
18	P14	0	open, Low output
19	PH1	0	open, Low output
20	PH0	0	open, Low output
23	PB1	0	open, Low output
25	PB0	0	open, Low output
39	AIN8	I	AVSS
32	REF0P	I	AVCC
31	REF0N	I	AVSS
30	LSW	-	AVSS

7.2.2.1 AFE · DSAD0

The conditions for measuring temperature and voltage of AFE and DSAD0 are shown in Table 7-14 and Table 7-15. For temperature measurement, A/D conversion is performed by scan with setting channel 0 for measurement of thermocouple and channel 1 for that of RTD.

For voltage measurement, A/D conversion is performed with setting channel 2.

Table 7-14AFE Settings

Item		Setting	
		Temperature	Voltage Measurement
		Measurement	
Bias output	Enable bias output setting	Enable	Disable
setting	Pin output	AIN0	-
Excitation	Enable excitation current output	Enable	Disable
current output	Operating mode	2-channel output mode	-
setting	Excitation current	500µA	
	IEXC0 output pin	AIN9	
	IEXC0 disconnect detection assist	Disable	
	IEXC1 output pin	Output disabled	
	IEXC1 disconnect detection assist	Not used	
Low level voltage detection setting		Not used	
Low-side switch	control setting	Not used	

Note Temperature and voltage are measured by switching channel.

Table 7-15DSAD0 Settings

Item		Setting				
		Temperature Mea	surement	Voltage Measurement		
Analog inpu	ut chann	el setting	Channel 0	Channel 1	Channel 2	
ΔΣ A/D Cor	nverter c	operation voltage setting	3.6 V - 5.5 V (High	n precision)	·	
ΔΣ A/D Cor	nverter c	operation mode setting	Normal mode	Normal mode		
Operation of	lock set	ting	PCLKB/8 (4 MHz)			
Conversion	start tri	gger setting	Software trigger			
Interrupt setting	Enable	e ΔΣ A/D conversion etion interrupt (ADI0)	Enable			
	Priority	/	Level 0 (disabled)			
	Enable comple	e ΔΣ A/D conversion scan etion interrupt (SCANENDI0)	Enable			
	Priority	/	Level 0 (interrupt of	disabled)		
Voltage fau	lt and di	sconnection detection setting	Not used			
Analog inpu	ut	Positive input signal	AIN1	AIN7	AIN1	
setting		Negative input signal	AIN0	AIN6	AIN0	
		Reference input	REFOUT/AVSS0	REF1P/REF1N	REFOUT/AVSS0	
		Positive reference voltage buffer	-	Enable	-	
		Negative reference voltage buffer	-	Enable	-	
Amplifier se	etting	Amplifier selection	PGA			
		PGA gain setting	x128	x32	x1	
ΔΣ Α/D		A/D conversion mode	Normal operation			
conversion	setting	Data format	Two's complement			
		A/D conversion number	Immediate value mode, 1			
		Oversampling ratio	32		512	
(Output data rate)		(976.5625 SPS/ch) (976.5625 SPS)				
	Set offset calibration value		Not used (device of	default)		
		Set gain calibration value	Not used (device default)			
	Enable averaging data		Not used			
Disconnect detection assist setting		Not used				

Note: Temperature and voltage are measured by switching channel.

7.2.2.2 RSPI0 · DMAC0 · DMAC1 · P17

For communication with the host, RSPI0 is used in SPI clock synchronous mode (3-wire)/Slave transmission mode. To obtain receive data, DMAC0 is used, and to set transmit data, DMAC1 is used. If data is not transmitted, MISO pin is switched to P17 input in the high-impedance state.

The conditions for setting each peripheral function are listed below.

Table 7-16RSPI Settings

Item		Setting
Buffer access width	l	32 bits
Parity bit		Does not add the parity bit to transmit data and
		does not check the parity bit of receive data
Pin control setting	Output pin mode selection	CMOS output
Transfer data proce	essing	Data handled by DMAC
Interrupt setting	SPT0, SPRI0, SPEI0 priority	Level 15 (highest)
	Enable error interrupt (SPEI0)	Enable
Callback function	Transmission end	Enable
setting	Reception end	Disable
	Error detection	Disable
Command setting	Number of commands, number of	Number of command:1、Number of transfer
	frames	frame: 1
	Data length	8 bits
	Format	MSB-first
	RSPCK phase	Data variation on odd edge, data sampling on
		even edge
	RSPCK polarity	High when idle

Item		Setting		
		DMACO	DMAC1	
			On SPI	Others
			transmitting	
Activation so	urce	RSPI0 (SPRI0)	RSPI0 (SPTI0)	
Activation so	urce flag control	Clear interrupt flag of the activation source		
Transfer mod	le	Free running mode	Normal mode	Free running mode
Transfer data	a size	32 bits		
Block / Repe	at area setting	-	(Set on execution)	-
Source	Source address	0008 8384h (RSPI0.SPDR)	(Set on execution)	(Set on execution)
address		Fixed	Incremented	Incremented
setting	Specify the	-	-	
	transfer source as			
	extended repeat			
	area	-		
	Extended repeat			
	area			
Destination	Destination	(Set on execution)	0008 8384h (RSPI0	.SPDR)
address	address	Incremented	Fixed	
setting	Specify the	Enable	-	
	transfer			
	destination as			
	extended repeat			
			-	
	Extended repeat	Lower 9 bits of the address		
	area	(512 DYTES)		
Interrupt setti	ng	Not used		

Table 7-17 DMAC Settings

Note: DMAC1 is programmed to change its setting depending on conditions.

Table 7-18P17 Settings

Item		Setting	
		On SPI transmitting	Others
PORT1	P17	Out	In
		CMOS Out	
		High-drive output	

Note: Programmed to change its setting depending on conditions.

7.2.2.3 P30 · P31

To set unit addresses, P30 and P31 are used. The conditions of setting P30 and P31 are listed in Table 7-19 and setting unit addresses is shown in Table 7-20.

Table 7-19P30 and P31 Settings

ltem		Setting
PORT3	P30	In
	P31	In

Table 7-20 Unit Address Settings

Unit	Address	Input	
		P31	P30
А	0Ah (0Ah + 00b)	Low	Low
В	0Bh (0Bh + 01b)	Low	High
С	0Ch (0Ch + 10b)	High	Low
D	0Dh (0Dh + 11b)	High	High

7.2.3 Communication Process

Based on "7.1.1 Communication between Host and Measurement Unit", host communication process is performed to start measurement operations and transmit the measurement results. A flow of communication processes is shown in Figure 7-4.

The following provides an overview of each process.

Receive packet processing

Obtains a packet from the receive ring buffer, analyzes a command, performs processing corresponding to the command in the packet, and stores a response packet in the transmit buffer. Table 7-21 lists the commands supported by this program and the processes corresponding to the commands. For an unsupported command, a NACK is returned.

Table 7-21	Packets and Actions

Receive command	Processing	Response
Negotiation	Setting AFE/DSAD by specified	Return the measurement function of the
	function	measurement unit
Run	Start A/D conversion	-
Stop	Stop A/D conversion	-
GetData	-	Return the specified measurement results

The data stored in the transmit buffer is constituted by a response packet +FFh in the following description.

Packet transmission setting processing

If a transmission packet exists, the transmission setting is performed as below procedures. Figure 7-5 shows its operation.

- 1. Stops RSPI0
- 2. Sets DMAC1 in normal transfer mode, sets the number of transfers to "transmission packet length+ 1 byte", and enable transferring.
- 3. Switches MISO pin to output
- 4. Starts RSPI0

Figure 7-5 Packet Transmission Process Operation

- Packet transmission ending processing
 With RSPI0 transmit buffer empty interrupt (SPTI0) which occurs after completing the transfer of DMAC1, the following processes are performed. Figure 7-5 shows its operation.
 - 5. Switches MISO pin to input
 - 6. Stops RSPI0
 - 7. Sets DMAC1 in free running transfer mode and sets to transfer the fixed value FFh and enables transferring.
 - 8. Starts RSPI0

The ring buffer used for reception is for DMAC transmission to an extended repeat area, therefore, its address is arranged in the alignment adjusted for each buffer size. In this program, section name is declared "B_DMAC_REPEAT_AREA" and arrangement is set.

7.2.4 Program Configuration

7.2.4.1 File Configuration

Table 7-22File Configuration

Folder name, file name	Description
SrC	
∣ ⊢ smc_gen	Smart Configurator generation
│	
│	
│	
│	
│	
│	
│	
│ └ r_config	
│ └ r_pincfg	
⊢rx23ea_edge.c	Main processing
⊢r_ring_buffer_control_api.c	Ring buffer control program
⊢r_ring_buffer_control_api.h	Ring buffer control API definition
⊢r_sensor_common_api.c	Table search, linear interpolation process program
⊢r_sensor_common_api.h	Table search, linear interpolation process API definition
⊢r_thermocouple_api.c	Thermocouple measurement calculation program, temperature vs. thermoelectromotive force table
⊢r_thermocouple_api.h	Thermocouple measurement calculation API definition
⊢r_thermocouple_cfg.h	Definition of Thermocouple measurement condition
∣⊢r_rtd_api.c	Resistance temperature detector measurement calculation program,
	temperature vs. resistance value table
_ ⊢r_rtd_api.h	Resistance temperature detector measurement calculation API definition
r_rtd_cfg.h	Definition of Resistance temperature detector measurement condition
⊢r_voltage_api.c	Voltage measurement calculation program
└-r_voltage_api.h	Voltage measurement calculation API definition

7.2.4.2 Macro Definitions

Table 7-23rx23ea_dege.c Definition

Definition name	Туре	Value	Description
D_CAL_AVERAGE_NUM	int32_t	98	Number of moving average processing

Table 7-24 r_thermocouple_cfg.h Definitions

Definition name	Туре	Value	Description
D_TC_CFG_REFOUT	float	2.5F	REFOUT voltageV _{REF0} [V]
D_TC_CFG_PGA_GAIN	float	128.0F	Gain of PGA for thermocouple measurement G _{PGA0} [X]
D_TC_CFG_CODE_FS	int32_t	8388608	2 ²³
D_TC_CFG_DF_GAIN	float	1.0F	Digital filter gain

Table 7-25 r_thermocouple_api.h Definitions

Definition name	Туре	Value	Description
D_TC_GAIN	float	D_TC_CFG_REFOUT	Coefficient for conversion from A/D value to
		/ (D_TC_CFG_CODE_FS	thermoelectromotive force [μ V]
		* D_TC_CFG_PGA_GAIN	V_{REF0} . 106
		* D_TC_CFG_DF_GAIN)	$2^{23} \cdot G_{PGA0} \cdot G_{DF0}$
		* 1000000	
D_TC_OFFSET	float	0.0F	Thermoelectromotive force offset [μ V]
D_TC_TABLE_TEMP_MIN	float	-75.0F	Minimum temperature in the table [°C]
D_TC_TABLE_TEMP_MAX	float	251.0F	Maximum temperature in the table [°C]

Table 7-26 r_rtd_cfg.h Definitions

Definition name	Туре	Value	Description
D_RTD_CFG_TYPE	-	1	Resistance temperature detector
			1: 4-wire
			2: 3-wire
D_RTD_CFG_RREF	float	5100.0F	RREF resistance value $R_{REF}[\Omega]$
D_RTD_CFG_PGA_GAIN	float	32.0F	Gain of PGA for RTD measurement G _{PGA1} [X]
D_RTD_CFG_CODE_FS	int32_t	8388608	2 ²³
D_RTD_CFG_DF_GAIN	float	1.0F	Digital filter gain G _{DF1}
D_RTD_CFG_OFFSET	float	0.0F	RTD resistance value offset. [Ω]

Table 7-27 r_rtd_api.h Definitions

Definition name	Туре	Value	Description
D_RTD_GAIN	float	D_RTD_CFG_RREF	Coefficient for conversion from A/D value
		/ (D_RTD_CFG_CODE_FS	to RTD resistance value [Ω]
		* D_RTD_CFG_PGA_GAIN	R _{REF}
		* D_RTD_CFG_DF_GAIN)	$\overline{2^{23} \cdot G_{PGA1} \cdot G_{DF1}}$
D_RTD_TABLE_TEMP_MIN	float	-40.0F	Minimum temperature in the table [°C]
D_RTD_TABLE_TEMP_MAX	float	86.0F	Maximum temperature in the table [°C]

Table 7-28 r_voltage_api.h Definitions

Definition name	Туре	Value	Description
D_VOLTAGE_VREF	float	2.5F	VREF voltage V _{REF} [V]
D_VOLTAGE_PGA_GAIN	float	1.0F	Gain of PGA for pin voltage measurement GPGA [X]
D_VOLTAGE_CODE_FS	float	8388608.0F	2 ²³

7.2.4.3 Structures and Unions

Table 7-29 rx23ea_edge.c: Main Processing File Structures and Unions

Structure	st_unit_info_t		
type name			
Member	Туре	Name	Description
variable	uint32_t	addr	Unit address
	uint32_t	func	Measurement function
Union type name	u_measure_data_t		
Member	Туре	Name	Description
variable	float	dataf	float type measurement result data
	uint8_t	buf[4]	8-bit type measurement result data storage array

Table 7-30 r_ring_buffer_control_api.h: Ring Buffer Control Header File Structure

Structure type name	st_ring_buf_t		
Member	Туре	Name	Description
variable	uint8_t *	p_buf	Pointer to the ring buffer
	size_t	length	Ring buffer length
	uint32_t	r_index	Read index
	uint32_t	w_index	Write index

Table 7-31 r_sensor_common_api.h: Common calculation API Header File Structure

Structure	st_cal_moveavg_t				
type name					
Member	Туре	Name	Description		
variable	int32_t	count	Number of counts		
	int32_t	sumdata	Input data addition value		
	int32_t *	p_deldata	Pointer to the input data storage array		
	int32_t	avgnum	Number of moving average samples		

7.2.4.4 Functions

Table 7-32 rx23ea_edge.c Functions

	Return va	alue	Arg	ument		
Function name/Overview	Туре	Value	I/O	Туре	Name	Description
main	void	-	-	void	-	-
main function						
analysis_pakect	uint32_t	Response	Ι	const uint32_t	rcv_pkt[]	Receive packet storage array
According to a receive		packet	0	uint32_t	snd_pkt[]	Response packet storage
command and stores a response packet			I/O	st_unit_info_t *	p_info	Pointer to the measurement result transmission enable flag
			I	float	meas_buf[]	Measurement result storage array
get_packet Reads a single packet	size_t	Receive packet	I/O	st_ring_buf_t *	r_buf	Pointer to the receive ring buffer
from the receive ring buffer		length	0	uint32_t	rcv_pkt[]	Receive packet storage array
			I	const uint32_t	my_addr	Own unit address
strage_ad_data Obtains A/D conversion value	void	-	0	int32_t	dsad[]	A/D conversion value storage array

Table 7-33 r_ring_buffer_control_api.c Functions

	Return v	alue	Argument			
Function name/Overview	Туре	Value	I/O	Туре	Name	Description
R_RINGBUF_GetData	size_t	Number	Ι	st_ring_buf_t *	ary	Pointer to the ring buffer
Reads a specified number of		of bytes	0	uint8_t	data[]	Data storage array
bytes from the ring buffer		to read	T	size_t	len	Number of bytes to read
			T	bool	index_update	Index update flag
						true: Update
						false: Not update
R_RINGBUF_SetData	size_t	Number	0	st_ring_buf_t *	ary	Pointer to the ring buffer
Writes a specified number of		of bytes	Ι	uint8_t	data[]	Data storage array
bytes to the ring buffer		to write	Ι	size_t	len	Number of bytes to write
R_RINGBUF_GetDataLengt	size_t	Number	Ι	st_ring_buf_t *	ary	Pointer to the ring buffer
h		of bytes				
Reads the number of bytes		stored				
stored in the ring buffer						
R_RINGBUF_SetDataIndex	uint32_t	Index	0	st_ring_buf_t *	ary	Pointer to the ring buffer
Updates the index of the ring		value	- I	uint16_t	value	Index value
buffer			1	uint8_t	select	Target index
						0:Read、1:Write

	Return v	alue	Arg	ument		
Function name/Overview	Туре	Value	I/O	Туре	Name	Description
R_CALC_BinarySearch Does a binary search from the	uint16_t	Index value	I	const float *	p_data_table	Pointer to the search table (ascending order)
search table, and returns the index of a recent value that			I	uint16_t	table_size	Number of elements in the search table
does not exceed the data to search for			Ι	float	data	Data to search for
R_CALC_Lerp	float	Linear	Ι	float	x0	x0 value
From two points (x0, y0) and		interpolatio	I	float	y0	y0 value
(x1, y1), determines y for input		n results	I	float	x1	x1 value
x with liner interpolation			Ι	float	y1	y1 value
			Ι	float	х	X value
R_CALC_MovingAverage Returns the moving average	float	Moving average	I	const int32_t	data	Input data
processing result for input data	essing result for input data result I		I	st_cal_ moveavg_t *	p_cal_moveavg	Pointer to the moving average processing variable

Table 7-34 r_sensor_common_api.c Functions

Table 7-35 r_thermocouple_api.c Functions

	Return value		Arg	ument		
Function name/Overview	Туре	Value	I/O	Туре	Name	Description
R_TC_TempToEmf	float	Thermoelectromotive	Ι	float	temp	Temperature [°C]
Calculates the thermoelectromotive		force [µV]				
force of the thermocouple from the						
temperature						
R_TC_DsadToEmf	float	Thermoelectromotive	Т	float	dsad	A/D conversion value
Calculates the thermoelectromotive		force [µV]				
force of the thermocouple from the						
A/D conversion value						
R_TC_EmfToTemp	float	Temperature [°C]	Ι	float	emf	Thermoelectromotive force [µV]
Calculates the temperature from						
the thermoelectromotive force of						
the thermocouple						

Table 7-36 r_rtd_api.c Functions

	Return value		Argu	ument		
Function name/Overview	Туре	Value	I/O	Туре	Name	Description
R_RTD_DsadToTemp	float	Temperature [°C]	Ι	float	dsad	A/D conversion value
Calculates the temperature from						
the A/D conversion value						

Table 7-37 r_voltage_api.c Functions

	Return value		Arg	ument		
Function name/Overview	Туре	Value	I/O	Туре	Name	Description
R_VOLTAGE_DsadToVoltage	float	Voltage [V]	1	float	dsad	A/D conversion value
Calculates the pin voltage from the						
A/D conversion value						

Table 7-38 Config_DSAD0 User Defined Functions

	Return value		Argu	Argument				
Function name/Overview	Туре	Value	I/O	Туре	Name	Description		
R_DSAD0_IsConversionEnd	bool	false : Conversion	-	void	-	-		
Returns information as to whether		true : Conversion end						
A/D conversion is in progress with								
the conversion completion flag of								
DSAD0								
R_DSAD0_ClearConversionFlag	void	-	-	void	-	-		
Clears the conversion completion								
flag of DSAD0								
R_DSAD0_IsScanEnd	bool	false : Scan	-	void	-	-		
Returns information as to whether		true : Scan end						
scan is in progress with the scan								
completion flag of DSAD0								
R_DSAD0_ClearScanFlag	void	-	-	void	-	-		
Clears the scan completion flag of								
DSAD0								
R_DSAD0_CHnEN	void	-	I	uint32_t	ch	enable channel		
Enables the channel of DSAD0								
and Sets AFE Enable/Disable								

Table 7-39 Config_DMAC0 User Defined Functions

	Return value		Arg	Argument			
Function name/Overview	Туре	Value	I/O	Туре	Name	Description	
R_DMAC0_SetDestAddr	void	-	T	void *	p_addr	destination address	
Sets DMDAR of DMAC0							
R_DMAC0_GetDestAddr	void	-	-	void	-	-	
Returns DMDAR of DMAC0							
(macro function)							

Table 7-40 Config_DMAC1 User Defined Functions

	Return value		Arg	Argument				
Function name/Overview	Туре	Value	I/O	Туре	Name	Description		
R_DMAC1_SetSrcAddr	void	-	I	void *	p_addr	source address		
Sets DMSAR of DMAC1								
R_DMAC1_SetTxCount	void	-	I	uint32_t	cnt	transfer count		
Sets DMCRA of DMAC1								
R_DMAC1_SetFreerunMode	void	-	-	void	-	-		
Sets DMAC1 to free running								
mode								
R_DMAC1_SetNormalMode	void	-	I	uint32_t	cnt	transfer count		
Set DMAC1 to normal mode								

	Return value		Argument				
Function name/Overview	Туре	Value	I/O	Туре	Name	Description	
R_PORT_SetOpenMiso Sets P17/MISO pin to input	void	-	-	void	-	-	
(macro function)							
R_PORT_SetCmosMiso	void	-	-	void	-	-	
Sets P17/MISO pin to output							
(macro function))							
R_PORT_GetUnitAddr	uint32_t	Unit address	-	void	-	-	
Returns the unit address		additional value					
additional value							

Table 7-41 Config_PORT User Defined Functions

Table 7-42 Config_RSPI0 User Defined Functions

	Return value		Arg	Argument			
Function name/Overview	Туре	Value	I/O	Туре	Name	Description	
R_RSPI0_SendStart	void	-	-	void	-	-	
Starts RSPI0 transmission							
R_RSPI0_SendStop	void	-	-	void	-	-	
Stops RSPI0 transmission							
R_RSPI0_ReceiveStart	void	-	-	void	-	-	
Starts RSPI0 reception							

7.3 Host Processing (RX72M)

7.3.1 Operation Overview

RX72M performs the communication with PC tool. Based on "7.1.1 Communication between Host and Measurement Unit", according to Run command from the PC tool, it obtains the temperature or voltage, which 4 measurement units (RX23E-A) measured, in 10 msec cycle, and transfers to the PC tool.

Figure 7-6 shows the process flow of this sample program.

Figure 7-6 RX72M Program Flow

RX23E-A Group

The following provides an overview of each process.

- Initialization
 - The following are performed.
 - Initializes the communication buffer and the starts SCI6, DMAC0, and SCI8 operation
 - After waiting time for the measurement unit activates, acquires information and sets the measurement function by communication with the edge.
- Measurement value acquisition processing With CMT1 compare match (10 msec) as a trigger, acquires the measurement result from the edge and sets a measurement result update flag. In this process, communication with the measurement unit is performed to acquire the measurement result.
- PC tool communication processing Analyzes a receive packet from the PC tool program, starts/stops measurement, and transmits a response packet. Measurement values are transmitted when a measurement result update flag is set. For details, refer to "7.3.4 PC tool Communication Processing".

For details about process of communication with measurement unit, refer to "7.3.3 Measurement Unit Communication Processing".

7.3.2 Peripheral Functions and Pins Used

The peripheral functions used in this sample program are listed in Table 7-43, and the pins used are listed in Table 7-43. The conditions for setting each peripheral function are described together.

The settings for peripheral functions are generated by using the code generation function of SC.

Table 7-43 Peripheral Functions Used

Peripheral function	Use
SCI6	Communication with the PC tool program
SCI8	Simple SPI communication with the measurement unit
DMAC0	Data transfer with a receive complete interrupt of SCI6 as a trigger
DMAC3	Data transfer with a transmission data empty interrupt of SCI6 as a trigger
СМТО	Detection of a communication timeout of SCI6
CMT1	Timing of the measurement result acquisition
P71	LED:LD1 ON/OFF control

Table 7-44 Pins Used

Pin No.	Pin name	I/O	Use
M5	PJ0/SCK8	0	SCI8 clock output pin
L6	PJ2/SMOSI8	0	SCI7 transmit pin
R9	PC6/SMISO8	I	SCI8 receive pin
J9	PK3	0	Isolated power supply control signal
J13	P71	0	LED:LD1 ON/OFF control
E3	P00/TXD6	0	SCI6 transmit pin
D5	P01/RXD6	I	SCI6 receive pin
H7	PJ3/CTS6#	I	CTS6 signal input pin

7.3.2.1 SCI8

For communication with the measurement unit, SCI8 is used in SPI clock synchronous mode/master transmission. The conditions for setting SCI8 are described in Table 7-45.

Item		Setting
Transfer direction setting		MSB-first
Data inversion setting		Normal
Transfer speed	Transfer clock	Internal clock
setting	Bit rate	1000 kbps
	Enable modulation duty correction	Disable
Clock setting	Enable clock delay	Disable
	Enable clock polarity inversion	Disable
Data handling	Transmit data handling	Data handling in interrupt service routine
setting	Receive data handling	Data handling in interrupt service routine
Interrupt setting	TXI8 priority	Level 15 (highest)
	RXI8 priority	Level 15 (highest)
	Enable reception error interrupt	Enable
	TEI8, ERI8 priority	Level 15 (highest)
Callback	Transmission end	Enable
function setting	Reception end	Enable
	Reception error	Enable

7.3.2.2 SCI6 · DMAC0 · DMAC3 · CMT0

For communication with the PC tool program, SCI6 is used in asynchronous mode. DMAC0 is used to obtain receive data and DMAC3 is used to set transmit data. To detect a communication timeout, CMT0 is used.

The conditions for setting each peripheral function are listed below.

Table 7-46SCI6 Settings

Item		Setting
Start bit edge detection setting		Low level on RXD6 pin
Data length setting		8 bits
Parity setting		None
Stop bit setting		1 bit
Transfer direction setti	ng	LSB-first
Transfer rate setting	Transfer clock	Internal clock
	Bit rate	3,000,000 bps
	Enable modulation duty correction	Enable
	SCK6 pin function	SCK6 is not used
Noise filter setting	Enable noise filter	Not used
Hardware flow control	setting	CTS6#
Data match detection s	setting	Not used
Data handling setting	Transmit data handling	Data handled by DMAC
	Receive data handling	Data handled by DMAC
Interrupt setting	TXI6 priority	Level 15 (highest)
	RXI6 priority	Level 15 (highest)
	Enable reception error interrupt (ERI6)	Disable
	TEI6, ERI6 priority (Group BL0)	Level 15 (highest)
Callback function setting		Not used

Table 7-47DMAC Settings

Item		Setting		
		DMAC0	DMAC3	
Activation S	ource	SCI6 (RXI6)	SCI6 (TXI6)	
Activation so	ource flag control	Clear interrupt flag on the ac	Clear interrupt flag on the activation source	
Transfer mo	de	free running mode	Normal mode	
Transfer dat	a size	8 bits		
Block / Repe	eat area setting	-	(Set on execution)	
Source	Source address	0008 A0C5h (SCI6.RDR)	(Set on execution)	
address		Fixed	Incremented	
setting	Specify the transfer source as	-	Enable	
	Extended repeat area	-	Lower 12 bits of the address (4 Kbytes)	
Destination address	Destination address	(Set on execution) Incremented	0008 A0C3h (SCI6.TDR) Fixed	
setting	Specify the transfer destination as extended repeat area	Enable	-	
	Extended repeat area	Lower 9 bits of the address (512 bytes)		
Interrupt setting		Not used		

Table 7-48 CMT0 Settings

ltem		Setting
Count clock settin	g	PCLKB/512
Compare match Interval time		1000 ms
setting	Enable compare match interrupt (CMI0)	Not used

7.3.2.3 CMT1

CMT1 is used for timing of obtaining measurement results. The conditions for setting CMT1 are described in Table 7-49.

Table 7-49 CMT1 Settings

Item		Setting
Count clock settin	g	PCLKB/8
Compare match	Interval time	10 ms
setting	Compare match interrupt (CMI1)	Enable
	Priority	Level 0 (disabled)

7.3.2.4 P71

By using P71, LED:LD1 is turned ON and OFF. While the measurement unit is measuring, LD1 is ON. The condition for setting P71 is listed in Table 7-50.

Table 7-50 P71 Settings

Item		Setting
PORT7	P71	Out
		CMOS Out
		Output 1

7.3.3 Measurement Unit Communication Processing

To acquire information of measurement units, set measurement functions, and acquire measurement results, the communication with measurement units is processed based on '7.1.1 Communication between Host and Measurement Unit". The flow of measurement units communication processing is shown in Figure 7-7. For functions to be used, refer to "Table 7-57 rx72m_host.c functions".

Figure 7-7 Measurement Unit Communication Processing Flow

The following provides an overview of each process.

• Packet transmission processing

Transmits a request packet created in the upper processing which performs information acquisition, measurement function setting, and measurement result acquisition of measurement units.

• Packet reception processing Obtains a response packet from the measurement unit when a packet is transmitted to the specified individual address.

Communication with measurement unit is performed in 1 byte unit for both transmission and reception.

Table 7-51 lists the commands supported by this program and the processes and the occurrences corresponding to the commands.

Command	Process	Occurrence
Negotiation (Get)	Select a measurement function from the measurement functions acquired from the	Measurement unit information acquisition
	measurement units	
Negotiation (Set)	Set a measurement function to the	Measurement unit information
	measurement units	setting
Run	Start the measurement of the measurement	On receiving Run command from the PC tool
Ston	Stop the measurement of the measurement	On receiving Stop command
	units	from the PC tool
GetData	Store the acquired measurement result in measurement result data of the measurement units information	Measurement result acquisition

Table 7-51Packets and Actions

7.3.4 PC tool Communication Processing

Based on the RSSKRX23R-A communication specification Rev.2.0, processes with PC tool program are performed. The flow of PC tool communication process is shown in Figure 7-8.

Figure 7-8 PC Tool Communication Process Flow

RX23E-A Group

The following provides an overview of each process.

Receive packet processing

Obtains a receive packet from the receive ring buffer, analyzes a command, and performs processing corresponding to the command in the packet, then stores a response packet in the transmit ring buffer. Table 7-52 lists the commands supported by this program and the processes corresponding to the commands. For an unsupported command, a NACK is returned.

If the response packet cannot be stored in the transmit ring buffer, communication error processing is performed.

Table 7-52 Packets and Actions

Command	Process		
Negotiation	Return the system condition status with a response packet		
Run	Start measuring of the measurement units, set the measurement result transmission enable flag, and turn LD1 ON.		
Stop	Stop measuring of the measurement units, clear the measurement result transmission enable flag, and turn LD1 OFF		
ExtraInformation	Return output data rate with a response packet		

Measurement data packet creation

If the measurement result transmission enable flag is set and the measurement results are updated, a transmission packet of the measurement results is created and is stored in the transmit ring buffer.

If the response packet cannot be stored in the transmit ring buffer, communication error processing is performed.

• Packet transmission processing

If data is not being transmitted and the transmit ring buffer contains un-transmitted data, transmission starts with DMAC3 and 1-second counting starts with CMT0 for timeout detection.

• Communication timeout processing

If transmission is completed, CMT0 for timeout detection is stopped.

If transmission is in progress, the timer is checked for a compare match, and if a compare match has occurred, this is judged as a timeout. If it is judged as a timeout, communication error processing is performed.

Communication error processing

If the transmit packet cannot be stored in the transmit ring buffer or a communication timeout occurs, communication is stopped and the following processes are performed to make a reconnection possible.

- Stop SCI6 and DMAC3, which are used for transmission
- Clear the transmit buffer and the measurement result transmission enable flag
- Turn LD1 OFF

Each ring buffer used for transmission and reception is for DMAC transmission, therefore, their address is arranged in the alignment adjusted for each buffer size. In this program, section name is declared "B_DMAC_REPEAT_AREA" and arrangement is set based on the largest buffer size.

7.3.5 Program Configuration

7.3.5.1 File Configuration

Table 7-53File Configuration

Folder name, file name	Description
src	
⊢ smc_gen	Smart Configurator generation
│	
∣	
│	
│	
│	
│	
│	
│	
│	
│ └ r_config	
│ └ r_pincfg	
⊢rx72m_host.c	Main processing
⊢r_ring_buffer_control_api.c	Ring buffer control program
├r_ring_buffer_control_api.h	Ring buffer control API definition
├r_communication_control_api.c	PC tool communication control program
└r_communication_control_api.h	PC tool communication control API definition

7.3.5.2 Macro Definitions

Table 7-54rx72m_host.c Definitions

Definition name	Туре	Value	Description
D_EDGE_NUMS	uint32_t	4	Number of measurement units

7.3.5.3 Structures and Unions

Table 7-55 rx72m_host.c: Main Processing File Structures and Unions

Structure type name	st_edge_in	fo_t							
Member	Type Name Description								
variable	uint32_t	addr	Unit address						
	uint32_t	func	Measurement function						
	uint32_t	type	Type of measurement result data						
	float	data	Measurement result data						
Structure	u_edge_da	ta_t							
type name									
Member	float	dataf	float type measurement result data						
variable	uint8_t	buf[4]	8-bit type measurement result data storage array						

Table 7-56 r_ring_buffer_control_api.h: Ring Buffer Control Header File Structure

Structure	st_ring_buf_t							
type name								
Member	Туре	Name	Description					
variable	uint8_t *	buf	Pointer to the ring buffer					
	size_t	length	Ring buffer length					
	uint32_t	r_index	Read index					
	uint32_t	w_index	Write index					

7.3.5.4 Functions

Table 7-57rx72m_host.c functions

	Return	value	Arg	ument		
Function name / Overview	Туре	Value	I/O	Туре	Name	Description
main main function	void	-	-	void	-	-
stop_operation Stops DMAC/SCI6, initializes the ring buffer, and turns LD1 OFF	void	-	1	st_ring_buf_t *	ary	Pointer to the ring buffer
analysis_pakect	size_t	Response data	Ι	uint8_t const	recv_pkt[]	Receive packet storage array
packet, executes the		lengin	0	uint8_t	send_pkt[]	Response packet storage array
command and stores a response packet. For the Run/Stop commands,			0	bool *	p_tx_flag	Pointer to the measurement result transmission enable flag
updates the measurement result transmission enable flag.			I	st_edge_info_t	info_buf[]	Pointer to the measurement unit information buffer
edge_cmd_negotiation Executes Negotiation command to the	void	-	I	const uint32_t	addr	Unit address
measurement unit, obtains functions, and performs setting			I/O	uint32_t *	p_func	Pointer to the edge measurement unit function setting buffer
			Ι	const uint32_t	mode	Negotiation command operation setting
edge_cmd_run Executes Run command to the measurement unit	void	-	Ι	const uint32_t	addr	Unit address
edge_cmd_stop Executes Stop command to the measurement unit	void	-	I	const uint32_t	addr	Unit address
edge_get_info Acquires measurement unitinformation and sets	bool	false: Failure to acquire	I/O	st_edge_info_t	info_buf[]	Pointer to the measurement unit information buffer
function		Completion of acquisition	I	const uint32_t	func_buf[]	Pointer to the measurement unit function setting buffer
			Т	const uint32_t	num	Number of units
edge_send_packet Transmits data to the measurement unit	void	-	I	uint32_t *	p_data	Pointer to the transmit data buffer
			I	const uint32_t	len	Number of transmit data
edge_receive_packet Receives data from the measurement unit	bool	false: NACK response true: ACK response	0	uint32_t *	p_data	Pointer to the receive data buffer
edge_get_measuredata Acquires the measurement result from the measurement	bool	false: Failure to acquire true:	I	st_edge_info_t	info_buf[]	Pointer to the measurement unit information buffer
unit		Completion of acquisition	Ι	const uint32_t	num	Number of units
delay_usec Executes software delay in microseconds.	void	-	Ι	uint32_t	delay	Delay time

Table 7-58 r_communication_control_api Functions

	Return	value	Arg	Argument						
Function name/Overview	Туре	ype Value		Туре	Name	Description				
R_COMM_GetPacket	size_t	Packet length	Ι	st_ring_buf_t *	r_buf	Pointer to the receive ring buffer				
Reads a single packet from		[Byte]								
the receive ring buffer.				uint8_t	r_packet[]	Receive packet storage array				

Table 7-59 r_ring_buffer_control_api.c Functions

	Return	value	Arg	ument		
Function name/Overview	Туре	Value	I/O	Туре	Name	Description
R_RINGBUF_GetData	size_t	Number of	Ι	st_ring_buf_t *	ary	Pointer to the ring buffer
Reads a specified number of		bytes to read	0	uint8_t	data[]	Data storage array
bytes from the ring buffer			Ι	size_t	len	Number of bytes to read
			Ι	bool	index_update	Index update flag
						true: Update
						false: Not update
R_RINGBUF_SetData	size_t	Number of	0	st_ring_buf_t *	ary	Pointer to the ring buffer
Writes a specified number of		bytes to write	Ι	uint8_t	data[]	Data storage array
bytes to the ring buffer			Ι	size_t	len	Number of bytes to write
R_RINGBUF_GetDataLength	size_t	Number of	Ι	st_ring_buf_t *	ary	Pointer to the ring buffer
Reads the number of bytes		bytes stored				
stored in the ring buffer						
R_RINGBUF_SetDataIndex	uint32	Index value	0	st_ring_buf_t *	ary	Pointer to the ring buffer
Updates the index of the ring	_t		Ι	uint16_t	value	Index value
buffer			Ι	uint8_t	select	Target index
						0:Read、1:Write

Table 7-60 Config_CMT0 User Defined Functions

	Return value		Arg	Argument			
Function name/Overview	Туре	Value	I/O	Туре	Name	Description	
R_CMT0_IsTimeout	bool	false: Counting	Ι	bool	flag	Stop of counting	
Returns information as to		true: Timeout				false: Continuation	
whether a timeout has						true: Stop	
occurred							
R_CMT0_CntClear	void	-	-	void	-	-	
Clears the compare match							
timer/counter of CMT0							

Table 7-61 Config_CMT1 User Defined Functions

	Return value		Arg	Argument			
Function name/Overview	Type Value		I/O	Туре	Name	Description	
R_CMT1_CheckTimer	bool	false: Counting	-	void	-	-	
Returns information as to		true: 10 msec passed					
whether 10 msec passed							
R_CMT1_IrClear	void	-	-	void	-	-	
Clears the IR flag of CMT1							

Table 7-62 Config_DMAC0 User Defined Functions

	Return value		Argument			
Function name/Overview	Туре	Value	I/O	Туре	Name	Description
R_DMAC0_SetDestAddr	void	-	T	void *	p_addr	destination address
Sets DMDAR of DMAC0						
R_DMAC0_GetDestAddr	void	-	-	void	-	-
Returns DMDAR of DMAC0						
(macro function)						

Table 7-63 Config_DMAC3 User Defined Functions

	Return value		Argument				
Function name/Overview	Туре	Value	I/O	Туре	Name	Description	
R_DMAC3_SetSrcAddr	void	-	T	void *	p_addr	source address	
Sets DMSAR of DMA3							
R_DMAC3_SetTxCount	void	-	T	uint32_t	cnt	transfer count	
Sets DMCRA of DMAC3							

Table 7-64 Config_PORT User Defined Functions

	Return value		Arg			
Function name/Overview	Туре	Value	I/O	Туре	Name	Description
R_LED1_On	void	-	-	void	-	-
Turns LD1 ON (macro						
function)						
R_LED1_Off	void	-	-	void	-	-
Turns LD1 OFF (macro						
function)						

Table 7-65 Config_SCI6 User Defined Functions

	Return value			Argument					
Function name/Overview	Туре	Value	I/O	Туре	Name	Description			
R_SCI6_SendStart	MD_STATUS	MD_OK	-	void	-	-			
Starts transmission of SCI6									
R_SCI6_SendStop	MD_STATUS	MD_OK	-	void	-	-			
Stops transmission of SCI6									
R_SCI6_ReceiveStart	MD_STATUS	MD_OK	-	void	-	-			
Starts receiving of SCI6									
R_SCI6_IsTransferEnd	bool	false:	-	void	-	-			
Returns the transfer status of		Transferring							
SCI6		true:							
		Transfer end							

Table 7-66 Config_SCI8 User Additional Functions

	Return value		Argument			
Function name/Overview	Туре	Value	I/O	Туре	Name	Description
R_SCI8_ClearStatus	void	-	-	void	-	-
Clears the transfer status of SCI8						
R_SCI68_CheckStatus Returns the transfer status of SCI8	bool	false: Transferring true: Transfer end	-	void	-	-

8. Importing a Project

After importing the sample project, make sure to confirm build and debugger setting.

8.1 Importing a Project into e2 studio

Follow the steps below to import your project into e^2 studio. Pictures may be different depending on the version of e^2 studio to be used.

Figure 8-1 Importing a Project into e2 studio

8.2 Importing a Project into CS+

Follow the steps below to import your project into CS+. Pictures may be different depending on the version of CS+ to be used.

Figure 8-2 Importing a Project into CS+

9. Operation Results with the Sample Program

9.1 Memory Usage and Number of Execution Cycles

9.1.1 Measurement Processing (RX23E-A)

9.1.1.1 Build Conditions

In "Table 3-1 Environment for Operation Confirmation of Measurement Unit", the build conditions for sample program are shown in Table 9-1. This setting is default setting when project is generated except for memory allocation to support the PC tool.

Table 9-1 Build Conditions

ltem	Setting	
Compiler	-isa=rxv2 -utf8 -nomessage -output=obj -debug -outcode=utf8 -nologo	
Linker	-noprelink -output="rx23ea_edge" -form=absolute	
	-nomessage -vect=_undefined_interrupt_source_isr -list=rx23ea_edge.map -nooptimize	
	-rom=D=R,D_1=R_1,D_2=R_2 -nologo	

9.1.1.2 Memory Usage

Data

Stack

The amount of memory usage of sample program is shown in Table 9-2.

9394 (4326)

5120 (52)

4274

ltem		Size [byte]	Remarks		
ROM		11362			
	Code	7068			
	Data	4294			

Note

Note

Table 9-2Amount of Memory Usage

Note: RAM usage for stack is shown in "()".

9.1.1.3 Number of Execution Cycles

The number of execution cycles and processing load for each block in "Figure 7-3 RX23E-A Program Flow" is shown in Table 9-3.

Table 9-3 Number of Execution Cycles

ICI	K=3	2MI	47
IUL		<u>~ v i</u>	12

RAM

Block	Number of Execution Cycles (Execution time)	Process load [%]	Condition
Acquisition of A/D conversion value	20cycle (0.625usec)	0.063	
Temperature calculation	689cycle (21.53usec)	2.153	Filter processing of A/D conversion value to temperature calculation
Voltage calculation	50cycle (1.56usec)	0.156	Filter processing of A/D conversion value to voltage calculation
Communication processing	634cycle (19.81usec)	1.981	Maximum number of processing cycles under normal operation

9.1.2 Host Processing (RX72M)

9.1.2.1 Build Conditions

In "Table 3-2 Environment for Operation Confirmation of Host Processing", the build conditions for sample program are shown in Table 9-4. This setting is default setting when project is generated except for memory allocation to support the PC tool.

Table 9-4 Build Conditions

Item	Setting
Compiler	-isa=rxv3 -fpu -dpfpu -asmopt=-bank -utf8 -nomessage -output=obj -debug -outcode=utf8 -tfu=intrinsic -nologo
Linker	form=absolute -nomessage -vect=_undefined_interrupt_source_isr -list=rx72m_host.map -nooptimize -rom=D=R,D_1=R_1,D_2=R_2 -nologo

9.1.2.2 Memory Usage

The amount of memory usage of sample program is shown in Table 9-5.

Table 9-5	Amount of Memory Usage
Table 9-5	Amount of Memory Usage

Item		Size [byte]	Remarks
ROM		13647	
	Code	11726	
	Data	1921	
RAM		13164 (8192)	Note
	Data	8044	
	Stack	5120 (148)	Note

Note: RAM usage for stack is shown in "()".

9.1.2.3 Number of Execution Cycles

The number of execution cycles and processing load for each block in "Figure 7-6 RX72M Program Flow" is shown in Table 9-6.

Table 9-6 Number of Execution Cycles

ICLK=240MHz

Block	Number of Execution Cycles (Execution time)	Process load [%]	Conditions
Measurement processing	149221cycle (621.8usec)	6.218	Occurrence of compare match of CMT1 to completion of acquisition of the measurement results
PC tool communication processing	16458cycle (68.6usec)	0.686	Maximum number of processing cycles under normal operation

9.2 Example of Operation

9.2.1 Multi-channel Measurement

Two temperature calibrators and two voltage sources are connected to this system for measuring temperature and voltage. Figure 9-1 shows the configuration of measurement, and Table 9-7 shows equipment used in measurement, and Figure 9-2 shows the measurement result. As shown in Figure 9-2, it is confirmed that multiple signal sources can be simultaneously measured.

Figure 9-1 Configuration of Multi-Channel Measurement

Table 9-7 Equipment Used in Measurement

No.	Name	Model	Manufacturer
1, 2	Thermocouple calibrator	CA320	Yokogawa Test & Measurement Corporation
3, 4	Voltage source	PA14A1	ShibaSoku Co., LTD

Figure 9-2 Result of Multi-Channel Measurement

9.2.2 Response Characteristics

Step input of temperature from 30°C to 40°C is applied to channel A by using thermocouple calibrator, and step input of voltage from 0.5V to 1.5V to channel C to confirm the response characteristics. Figure 9-3 shows the configuration of measurement equipment, and Figure 9-4 shows the measurement result.

The time constant of step response, i.e., the time to reach 63.2% of the final value is 70ms and 95% settling time is 100ms. The delay of 98 sample moving average processing is 100.352ms for the output rate of DSAD of 976.5625sps, and this is mostly in line with the measurement result.

Figure 9-3 Configuration of Measurement of Response Characteristics

Figure 9-4 Step Response

Appendix 1 Parts List of the Multi-channel Board

No.	Quantity (Mounted)	Reference Designator (Mounted)	Reference Designator (Not Mounted)	Description	Part Name	Manufacturer Part Name	Manufacturer
1	3	U1,U2,U3		DCDC converter 1A	IC	ISL85410FRZ	Renesas
3	4	U4 U101,U201,U301,U401		LDO,Output 2.5 to 12V, 150mA	IC	ISL80410IBEZ	Renesas
4	4	U102,U202,U302,U402		RX23E-A	IC	R5F523E6SDNF#20	Renesas
5	0	PC301,PC302,PC201,PC202, PC301,PC302,PC401,PC402		CMOS output	Photocoupier	RV159200ACC5P-101V	Reflesas
6	4	PC103,PC203,PC303,PC403		Open collector output	Photocoupler	PS9124-V-AX DE1BZ-3P-2 5DS4	Renesas
8	1	CN2		Connector 2	Connector	DF1BZ-2P-2.5DSA	HRS
9	1	CN3	1101 1201 1301 1401	HEADER 6	Pin header Socket	M20-8770642 M20-7820446	HARWIN
11	11	R1,R2,R3,R14,R15,R27,R28,	R5,R16,R18,R29,R31	0	Resistor	RK73Z1ETTP	KOA
12	0	R119,R219,R319,R419	R4,R23,R36,R47, R110,R111,R210,R211,	NM(R1608)	Resistor		
13	0		R310,R311,R410,R411 R7,R20,R33,R64,R65,R66, R67,R68,R69,R70,R71, B129, B229, B229, B429	NM(R1005)	Resistor		
14	3	R6,R19,R32	R120,R220,R320,R420	100k	Resistor	RK73B1JTTD104J	KOA
15	3	R8,R21,R34		91k 1%	Resistor	RK73H1JTTD9102F	KOA
17	1	R10		13k 1%	Resistor	RK73H1JTTD1302F	KOA
18	1	R11	P105 P205 P305 P405	5.1k	Resistor	RK73B1JTTD512J	KOA
20	0	K12	R13,R26,R39	NM(R6432)	Resistor	KK73B1J11D202J	KOA
21	2	R17,R30		160k 1%	Resistor	RK73H1JTTD1603F	KOA
22	6	R24,R37,R101,R201,R301,R401		7.5k	Resistor	RK73B1JTTD752J	KOA
24	2	R25,R38		3.6k	Resistor	RK73B1JTTD362J	KOA
20	23	R108,R109,R112,R113, R208,R209,R212,R213, R308,R309,R312,R313, R408,R409,R412,R413		02	Resistor		KOA
26	1 19	R42 R43,R45,R46,R115,R116,		3.3k 10k	Resistor	RK73B1J11D332J RK73B1ETTP103J	KOA KOA
		R117,R118,R215,R216,R217, R218,R315,R316,R317,R318, R415,R416,R417,R418					
28	8	R48,R49,R52,R53,R56,R57, R60 R61		470	Resistor	RK73B1JTTD471J	KOA
29	4	R50,R54,R58,R62		1.3k	Resistor	RK73B1JTTD132J	KOA
30	4	R102,R202,R302,R402 R103 R203 R303 R403		68k 1%	Resistor	RK73H1ETTP6802F	KOA
32	4	R104,R204,R304,R404		200k	Resistor	RK73B1JTTD204J	KOA
33	8	R106,R107,R206,R207,R306, R307 R406 R407		4.7k	Resistor	RK73B1ETTP472J	KOA
34	4	R114,R214,R314,R414		750	Resistor	RK73B1JTTD751J	KOA
35	24	R120,R121,R122,R123,R126, R127,R220,R221,R222,R223, R226,R227,R320,R321,R322, R323,R326,R327,R420,R421, R422,R423,R426,R427		1k 1%	Resistor	RK73H1ETTP1001F	KOA
36	4	R124,R224,R324,R424 R125 R225 R325 R425		5.1k 0.1%	Resistor	ERA3-APB512V BK73H1 ITTD3900E	Panasonic KOA
38	4	CN101,CN201,CN301,CN401		Terminal Block 2	Connector	FFKDSA1/H-2.54-2-1792511	PHOENIX CONTACT
39	1	C1 C2 C14 C25 C106 C206		150uF 50V	Electrolytic capacitor	EEEFK1H151P GCM32EC71H106KA03I	Panasonic
40	'	C306,C406		1001 300	Ceramic capacitor	Gemozeer InnonAuse	Wulata
41	52	C3,C4,C10,C13,C15,C16,C22, C26,C27,C33,C37,C40,C41, C42,C43,C44,C104,C105,C107, C108,C109,C111,C113,C116, C117,C204,C205,C207,C208, C209,C211,C213,C216,C217, C304,C305,C307,C308,C309, C311,C313,C316,C317,C404, C405,C407,C408,C409,C411, C413,C416,C417		0.1uF 50V	Ceramic capacitor	CGA2B3X7R1H104K050BB	ТОК
42	0	00.040.000	C5,C7,C17,C19, C28,C30,C39, C101,C201,C301,C401	NM(C1608)	Ceramic capacitor	0004400500044744040	Marta
43	3	С6,С18,С29 С8,С20,С31		4/UpF 100V 1uF 25V	Ceramic capacitor Ceramic capacitor	GCM1885C2A471JA16 GCM188R71E105KA64	Murata Murata
45	3	C9,C21,C32		27pF 100V	Ceramic capacitor	GCM1885C2A270JA16	Murata
46	8	C11,C23,C34,C38, C102,C202,C302,C402		22uF 25V	Ceramic capacitor	GUM32EC/1E226KE36	Murata
47	3	C12,C24,C35		47uF 16V	Ceramic capacitor	GRM32EC81C476KE15	Murata
40	24	C118,C203,C210,C212,C214, C215,C218,C303,C310,C312, C314,C315,C318,C403,C410, C412,C414,C415,C418		4.70 007	Ceranic capacitor	GRWZIBC/III4/JREIT	With ata
49 50	4 12	C119,C219,C319,C419 C120,C121,C122.C220.C221		0.4/uF 25V 1uF 25V	Ceramic capacitor Ceramic capacitor	IMK10/B7474KA C1005X5R1E105K050BC	Taiyo Yuden TDK
51	24	C222,C320,C321,C322,C420, C421,C422 C123,C124,C125,C126,C127		0.010E 50V	Ceramic capacitor	GCM155R71H103K455	Murata
51	24	C128, C223, C224, C225, C226, C227, C228, C323, C324, C325, C326, C327, C328, C423, C424, C425, C426, C427, C428		0.0101-007	Coramic capacitor		IVIUI ala
52 53	0	L1	C129,C229,C329,C429	NM(C1005) 22uH/1.8A	Ceramic capacitor Coil	VLS5045EX-220M	TDK
54	2	T1,T2		66uH, in1/out2, turn ratio 1:1	Transformer	750342156	Wurth Elektronik
55 56	4	D101,D201,D301,D401 D102,D202,D302,D402		Schottky barrier Schottky barrier	Diode Diode	RB168MM150 RB551VM-30	Rohm Rohm
57	3	LED1,LED2,LED3	LED101,LED201,LED301,	LED Green	LED	SML-E12M8W	Rohm
58	1	Q1	LED401	12V.500mA	Digital transistor	DTD5437F	Rohm
59 60	4	RTD101,RTD201,RTD301, RTD401 TP2.TP102,TP104,TP202	TP1.TP3.TP4.TP5.TP6 TP7	Pt100	RTD Test pin	PTS060301B100RP100	Vishay
		TP204, TP302, TP304, TP402, TP404	TP8,TP9,TP10,TP101,TP103, TP105,TP201,TP203,TP205, TP301,TP303,TP305,TP401, TP403,TP405		r osc pill		WINCO
M1	4			Polyacetal, both-sides female spacer	Spacer	AS-310	Hirosugi
M2	4		1	Polycarbonate, M3 6mm	Screw	PC-0306	Hirosugi

Note: This parts list is for reference purposes only. It is subject to change without notice.

Appendix 2 Circuit Diagrams of the Multi-channel Board

Appendix 3 Board Diagram of Multi-channel Board

Silk of Component Side

Silk of Solder Side (Solder Surface View)

Layer 1: Parts Side Pattern

RX23E-A Group

Layer 2: GND Layer

Layer 3: Power Supply Layer

Layer 4: Solder Side Pattern (Parts Surface View)

Revision History

Rev.	Date	Description	
		Page	Summary
1.00	May.25.21	-	-
1.10	July.16.21	p.4	Table 1-1: Correction of specification of this system
		p.7	Table 3-1 Table 3-2: Updated IDE and Tool Chain, added Endian
		p.9	Figure 4-2: Added the appearance
		p.15	6.1.2 Filter Processing: Changed the description due to change of filter processing in temperature measurement
		p.19	Figure 7-1: Changed response time of measurement unit due to change of the filter processing
		p.32	Figure 7-4: Correction due to change of the filter processing
		p.34	Table 7-22: Changed the file structure
		p.35	7.2.4.2 Macro Definitions: Correction due to change of the file structure
		p.36	7.2.4.3 Structures and Unions: Correction due to change of the file structure
		p.38	Table 7-34: Changed the name of moving average functionand moved to this table
		p.59	Table 9-2, Table 9-3: Correction due to change of the program
		p.61-p.63	9.2 Example of Operation: Added example of operation
		p.64	Appendix 1 Parts List of the Multi-channel Board: Changed some constants
		p.65-p.67	Appendix 2 Circuit Diagrams of the Multi-channel Board: Changed some constants
		p.68-p.73	Appendix 3 Board Diagram of Multi-channel Board: Added

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products. (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
- subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.