
 APPLICATION NOTE

R01AN1265EJ0100 Rev. 1.00 Page 1 of 29
Aug. 1, 2013

RX63N Group, RX631 Group
Determining Pitch Notations Using the FFT Algorithm

Abstract
This document describes the system to determine pitch notations using the DSP library in the RX63N and RX631
Groups.

The features of the system are described below.

 - Determination range is between do (C4) and ti (B4).
 - Determine a pitch notation for a sound or pitch notations for a chord that consists of less than or equal to three sounds

including a semitone.
 - Use the FFT algorithm in the DSP library to convert sound data to frequency data.
 - Display a pitch notation for an input sound on an LCD.

Products
- RX63N Group 177-pin and 176-pin packages with a ROM size between 768 KB and 2 MB

- RX63N Group 145-pin and 144-pin packages with a ROM size between 768 KB and 2 MB

- RX63N Group 100-pin package with a ROM size between 768 KB and 2 MB

- RX631 Group 177-pin and 176-pin packages with a ROM size between 256 KB and 2 MB

- RX631 Group 145-pin and 144-pin packages with a ROM size between 256 KB and 2 MB

- RX631 Group 100-pin package with a ROM size between 256 KB and 2 MB

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

R01AN1265EJ0100
Rev. 1.00

Aug. 1, 2013

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 2 of 29
Aug. 1, 2013

Contents

1. Specifications ... 3

2. Operation Confirmation Conditions .. 4

3. Reference Application Notes .. 4

4. Hardware .. 5
4.1 Hardware Configuration ... 5
4.2 Pins Used ... 5

5. Software ... 6
5.1 Operation Overview ... 6
5.2 Sound Input .. 7

5.2.1 Calculating Values Used for a Sound Input .. 7
5.2.2 Peripheral Function Settings .. 9

5.3 FFT Algorithm .. 10
5.4 Pitch Notation Determination ... 11
5.5 Displaying the Result ... 13
5.6 File Composition .. 14
5.7 Option-Setting Memory .. 14
5.8 Constants ... 15
5.9 Structure/Union List ... 15
5.10 Variables .. 15
5.11 Functions .. 16
5.12 Function Specifications .. 17

5.12.1 Functions Used in the Sample Code ... 17
5.12.2 API Functions for the DSP Library .. 20

5.13 Flowcharts .. 22
5.13.1 Main Processing .. 22
5.13.2 Port Initialization .. 23
5.13.3 Peripheral Function Initialization ... 24

5.13.3.1 MTU0 Initialization .. 24
5.13.3.2 S12AD Initialization .. 25
5.13.3.3 DMAC Initialization ... 26

5.13.4 DMA Transfer End Interrupt Handling ... 27
5.13.5 Pitch Notation Determination ... 28

6. Sample Code .. 29

7. Reference Documents .. 29

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 3 of 29
Aug. 1, 2013

1. Specifications
With this system, a sound or chord in the range from do (C4) to ti (B4) is input, and a pitch notation or pitch notations
for the input sound or chord is displayed on an LCD.

Processing consists of the following four operations:
- Sound input: Convert a sound input through a microphone to digital data (hereinafter referred to as sound data) by

A/D conversion.
- FFT algorithm: Convert sound data to frequency data.
- Pitch notation determination: Convert the frequency data to power spectrums and determine their corresponding pitch

notations.
- Displaying the result: Display the determined pitch notations on an LCD.

Table 1.1 lists the Peripheral Functions and Their Applications and Figure 1.1 shows the Block Diagram of Pitch
Notation Determination System.

Table 1.1 Peripheral Functions and Their Applications

Peripheral Function Application
MTU2a channel 0 (MTU0) Generate a sampling period for a sound input
12-bit A/D converter (S12AD) Convert a sound to sound data.
DMACA Transfer the A/D conversion result to the buffer for the FFT algorithm.

LCD module RX63N

AN001
+

-

RSK for RX63N

LPFr e s u l t :
C # F # A #

Sound expansion board:
External circuit to input a sound or sounds.

Microphone

Figure 1.1 Block Diagram of Pitch Notation Determination System

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 4 of 29
Aug. 1, 2013

2. Operation Confirmation Conditions
The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

Item Contents
MCU used R5F563NBDDFC (RX63N Group)
Operating frequencies - Main clock: 12 MHz

- PLL: 192 MHz (main clock divided by 1 and multiplied by 16)
- System clock (ICLK): 96 MHz (PLL divided by 2)
- Peripheral module clock A (PCLKA): 96 MHz (PLL divided by 2)
- Peripheral module clock B (PCLKB): 48 MHz (PLL divided by 4)
- External bus clock (BCLK): 48 MHz (PLL divided by 4)
- FlashIF clock (FCLK): 48 MHz (PLL divided by 4)
- IEBUS clock (IECLK): 48 MHz (PLL divided by 4)

Operating voltage 3.3 V
Integrated development
environment

Renesas Electronics Corporation
 High-performance Embedded Workshop Version 4.09.01

C compiler Renesas Electronics Corporation
C/C++ Compiler Package for RX Family V.1.02 Release 01
Compile options
-cpu=rx600 -output=obj="$(CONFIGDIR)\$(FILELEAF).obj" -debug -nologo
(The default setting is used in the integrated development environment.)

iodefine.h version Version 1.50
Endian Little endian (1)
Operating mode Single-chip mode
Processor mode Supervisor mode
Sample code version Version 1.00
Board used Renesas Starter Kit+ for RX63N (product part no.: R0K50563NC000BE)
Note:

1. The sample code in this application note does not support big endian.

3. Reference Application Notes
For additional information associated with this document, refer to the following application notes.

- RX600 Family RX DSP Library API (R01AN1244ES0100)
- RX63N Group, RX631 Group Initial Setting Rev. 1.00 (R01AN1245EJ0100)

The functions in the reference application notes are used in the sample code in this application note. The revision
numbers of the reference application notes are the ones when this application note was made. However the latest
version is always recommended. Visit the Renesas Electronics Corporation website to check and download the latest
version.

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 5 of 29
Aug. 1, 2013

4. Hardware

4.1 Hardware Configuration
Figure 4.1 shows an Hardware Configuration Example including a circuit of sound expansion board.

Figure 4.1 Hardware Configuration Example

4.2 Pins Used
Table 4.1 lists the Pins Used and Their Functions.

Table 4.1 Pins Used and Their Functions

Pin Name I/O Function
AN001 Input Pin to input an analog voltage through a microphone.
PF_5 Output Display enable pin
PJ_5 Output Debug control pin
PB_0 to PB_7 Output Data output pin

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 6 of 29
Aug. 1, 2013

5. Software

5.1 Operation Overview
The sample code consists of the following four operations.

(1) Sound input: Convert a sound input through a microphone to sound data by A/D conversion.

(2) FFT algorithm: Convert sound data to frequency data.

(3) Pitch notation determination: Convert the frequency data to power spectrums and determine their pitch notations.

(4) Displaying the result: Display the determined pitch notations on an LCD.

In the following sections, operations are described in the order shown in Figure 5.1.

Pitch notation
determination

Displaying
the result

Sound input

Frequency
data

(1) (2) (3) (4)

FFT algorithm
(DSP library)

Determination
result dataSound data

Figure 5.1 Operation Overview

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 7 of 29
Aug. 1, 2013

5.2 Sound Input
The sound input is performed as follows:

(1) An input sound is converted to sound data by A/D conversion at certain intervals (sampling period).

(2) The A/D conversion result is stored in the buffer using DMA transfer.

5.2.1 describes Calculating Values Used for a Sound Input and 5.2.2 describes Peripheral Function Settings.

5.2.1 Calculating Values Used for a Sound Input
To input a sound, the sampling frequency, number of data, FFT reference frequency, and time required for a sound
input need to be calculated. Procedures to calculate these values for the system in this application note are described
below.

(1) Calculate the sampling frequency to be used as the condition based on the sampling theorem (condition A).
Refer to 1 in Column 1.
Calculation: The upper frequency limit ‘f’ of consecutive signals is ti that is B4 and 493 Hz.
Thus sampling frequency fs ≥ 2f = 493 × 2. The sampling frequency fs becomes approximately 1.0 kHz.

(2) Calculate the FFT reference frequency to be used as the condition based on intervals between notes (condition B).
Refer to 2 in Column 1
Calculation: The narrowest interval between notes is from do (C) to do# (C#) which is approximately 16 Hz. The
FFT reference frequency is calculated by dividing 16 Hz by 3. Thus the condition becomes approximately 5 Hz.

(3) Calculate the number of data based on conditions A and B, and given calculation method. Refer to 3 in Column 1.
Calculation: Sampling frequency (1 kHz) ÷ reference frequency (5 Hz) ≤ number of data (200). Thus the number of
data is 256 which is an approximate value of the Nth power of 2 (2N).

(4) Calculate the sampling frequency to be used for calculation based on the number of data in (3) and condition B.
When the calculated result satisfies condition A, the value is determined as the sampling frequency.
Calculation: Number of data (256) × reference frequency (5 Hz) = sampling frequency (1.28 kHz)
The calculated value is valid as it satisfies condition A.

(5) Calculate the sampling period based on the sampling frequency in (4).
Calculation: 1 ÷ sampling frequency (1.28 kHz) = sampling period (0.78125 ms)

(6) Calculate time required for a sound input based on the sampling period in (5) and the number of data in (3).
Calculation: Sampling period (0.78125 ms) × number of data (256) = 0.2 seconds

The setting values used in the sample code are listed in Table 5.1.

Table 5.1 Setting Values Used in the Sample Code

Item Setting Value
Sampling frequency 1.28 kHz
Sampling period 0.78125 ms
Number of data 256
FFT reference frequency 5 Hz
Time required for a sound input 0.2 seconds

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 8 of 29
Aug. 1, 2013

Column 1: Basic Knowledge Required for the Sound Input
1. Condition of sampling frequency

The sampling frequency must satisfy the sampling theorem (1) to avoid noise (aliasing) that was not in the
original signals.

Note:

1. Definition of the sampling theorem: To supply frequency components included in consecutive signals as
correct sampling values, the sampling frequency must be more than or equal to twice the upper
frequency limit of consecutive signals. That is, when the upper limit of frequency components in
consecutive signals is f, the sampling frequency fs must be ‘fs ≥ 2f’.

2. Condition of FFT reference frequency (spectrum interval)

The frequency of the narrowest interval between two successive notes must be considered for accurate
determination.
Higher spectrums appear before and after the expected degrees than spectrums with no sound input. Therefore
three spectrum intervals are required to determine adjacent notes correctly.

For example, adjacent notes which have the narrowest interval are do (C) and do# (C#), and the frequency between
them is approximately 16 Hz. The number of the higher spectrum intervals appeared between do (C) and do# (C#)
are three as shown in Figure 5.2. Thus 16 Hz ÷ 3 ≈ 5 Hz. The FFT reference frequency is approximately 5 Hz.

16 Hz

Power

Frequency [Hz]

Expected
value of do

Expected
value of do#

spectrum of do spectrum of do#

Figure 5.2 Spectrum Intervals Between Notes (Example: Between do and do#)
3. Calculation method for the number of data

The number of data indicates the number of samples for input signals and is to be the Nth power of 2 (2N).
Calculation: Sampling frequency * ÷ FFT reference frequency * ≤ number of data (the Nth power of 2)

* Frequencies shall satisfy conditions in 1 and 2 above.

4. Sampling frequency
The sampling frequency is determined based on the number of data in 3 and the FFT reference frequency in 2
above.
Calculation: number of data × FFT reference frequency = sampling frequency

5. Others

To expand a range for determination, increase the number of data. Note that when the number of data is
increased, execution time of the FFT algorithm becomes longer.

When the number of data is 256:

Determination range is up to 0.64 kHz which is half of ‘256 × 5 Hz = 1.28 kHz’.
When the number of data is 512:

Determination range is up to 1.28 kHz which is half of ‘512 × 5 Hz = 2.56 kHz’.

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 9 of 29
Aug. 1, 2013

5.2.2 Peripheral Function Settings
A sound input is performed using values calculated in 5.2.1. An input sound is A/D converted at intervals of the
sampling period, and the conversion result is transferred using the DMAC. The multi-function timer pulse unit 2
(MTU2a) is used as the A/D conversion start trigger. Table 5.2 to Table 5.4 list settings of MTU2a, 12-bit A/D
converter, and DMA controller used for a sound input.

Table 5.2 Settings of MTU2a Channel 0 (MTU0)

Item Setting
Operating mode Normal mode
Counter clear source TGRA compare match
Count source Internal clock (PCLK/4)
Timer operation period 0.78125 ms

Table 5.3 Settings of 12-Bit A/D Converter (S12AD) Channel 1 (AN001)

Item Setting

A/D conversion start trigger A/D conversion starts by a compare match between MTU0.TGRA
and TCNT (TRG0AN_0).

Operating mode Single-cycle scan mode

Table 5.4 Settings of DMA Controller Channel 0 (DMAC0)

Item Setting
DMAC activation source 12-bit A/D conversion scan end interrupt (S12ADI0) request
Transfer data A/D conversion result
Transfer data length 16 bits
Transfer source address ADDR1 register for storing the A/D conversion result
Transfer destination address Buffer in the on-chip RAM: g_adc_buf1[], g_adc_buf2[] (1)
Transfer mode Normal transfer mode
Number of transfers 256 times
Note:

1. Buffers g_adc_buf1[] and g_adc_buf2[] are described in 5.3.

This section describes operations of peripheral functions used for the sound input. Figure 5.3 shows correlation among
major signals. Numbers (1) to (4) in the figure correspond to numbers in the following description.

(1) When the MTU0 counter value matches the TGRA register value, a compare match signal is output and the ADST

bit becomes 1 (starts A/D conversion process).
When the ADST bit becomes 1, A/D conversion is started, and when the A/D conversion is completed, the ADST
bit becomes 0 (stops A/D conversion process).

(2) When A/D conversion is completed, a scan end interrupt request is generated and the DMAC is activated.

(3) When DMA transfers have been performed 256 times, the DMA transfer end flag becomes 1 and the FFT
algorithm is started.

(4) The transfer destination for the A/D conversion result is changed to another buffer and A/D conversion is
performed continuously. DMA transfer and the FFT algorithm are performed in parallel using two buffers
alternately.

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 10 of 29
Aug. 1, 2013

A/D conversion

1 * 2 255 256 1 2 255 256 1 2

ADST bit

S12ADI0 interrupt
request flag

DMA transfer
end flag

(4)

* Numbers in this figure indicate the number of executions (the number of data)

DMA transfer: Stored in g_adc_buf1[]

FFT algorithm: Use g_adc_buf1[]

DMA transfer: Stored in g_adc_buf2[]

(1)

(3)

(2)

(4)

1 2 255 256 1 2 255 256 1 2

MTU0 compare
match signal

A/D conversion

DMA transfer: Stored in g_adc_buf1[]

FFT algorithm: Use g_adc_buf2[]

Figure 5.3 Operations of Peripheral Functions when the Sound Input is Performed

5.3 FFT Algorithm
The sample code uses the FFT algorithm in the RX600 Series DSP library (R_DSP_FFT_i16ci16).
Two buffers (array) are used alternately to store A/D conversion results and perform the FFT algorithm. Figure 5.4
shows the Data Flow of the FFT Algorithm and Figure 5.5 shows Timing/Period of Buffer Usage by the FFT Algorithm.

A/D conversion

g_adc_buf2 [0]
[1]

[254]
[255]

g_adc_buf1 [0]
[1]

[510]
[511]

g_fft_output [0]
[1]

[254]
[255]

FFT algorithm
R_DSP_FFT_i16ci16
(&h, &vtime, &vfreq)

Buffer to store the A/D conversion result
= Buffer for FFT algorithm input value

- h: FFT option
- vtime: { FFT_POINTS, (void *) g_adc_buf1}
- vfreq: { FFT_POINTS/2, (void *) g_fft_output}

Buffer for the FFT algorithm result
→ Frequency data is stored.

DMA transfer

g_adc_buf1 and g_adc_buf2 are alternately set as the address for vtime.

Figure 5.4 Data Flow of the FFT Algorithm

Timing to store the A/D
conversion result

g_adc_buf1 g_adc_buf2 g_adc_buf1 g_adc_buf2

Timing to perform the
FFT algorithm g_adc_buf1 g_adc_buf2

: Indicate used buffers

g_adc_buf1

Figure 5.5 Timing/Period of Buffer Usage by the FFT Algorithm

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 11 of 29
Aug. 1, 2013

5.4 Pitch Notation Determination
The sample code determines a pitch notation for a sound or pitch notations for a chord that consists of less than or equal
to three sounds in the range from do (C4) to ti (B4). The procedures are as follows:

(1) Convert frequency data computed by the FFT algorithm to power spectrums (refer to Column 2).

(2) Extract power spectrums that meet the conditions of input sound (see below) from the converted power spectrums
(output power spectrums). The extracted power spectrums are considered as valid input sounds.

(3) Sort the valid input sounds in descending order and pick up the highest three spectrums. And pitch notations will be
determined for them.

(4) A pitch notation is determined based on the degree of the sound. Table 5.5 lists Relation Between Sounds and
Degrees.

(5) When multiple sounds are input, a pitch notation which has lower frequency is displayed first on the LCD.

Conditions of Input Sound

A power spectrum that meets the following three conditions is considered as a valid input sound. Figure 5.6 shows
Determining Pitch Notations (When Do, Re, and Fa# Are Valid Input Sounds).

- The spectrum is equal to or more than an average value of all output power spectrums.

- The spectrum is the peak point (higher than power spectrums before and after itself).

- The spectrum is not white noise (1).

Note:
1. White noise varies depending on the environment when inputting a sound. Change the value of the

WHITENOISE constant accordingly.

Frequency [Hz]

Power

Average value

do do# re mi fa sofa#

White noise

Pitch notation
determination not
performed

re#

Figure 5.6 Determining Pitch Notations (When Do, Re, and Fa# Are Valid Input Sounds)

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 12 of 29
Aug. 1, 2013

Relation Between Sounds and Degrees

Pitch notation determination is performed by relating the degree of each valid input sound to pitch notations.
Table 5.5 shows Relation Between Sounds and Degrees. The value in the table is calculated with the formula
‘frequency ÷ FFT reference frequency’.

Table 5.5 Relation Between Sounds and Degrees

Pitch
Notation

Note
Frequency

(Hz)
Value

Degree of
Sound

Pitch
Notation

Note
Frequency

(Hz)
Value

Degree of
Sound

C4 Do 261.63 52.36 50 to 54 F4# Fa# 369.99 74.00 73 to 76

C4# Do# 277.18 55.44 55 to 57 G4 So 392.0 78.40 77 to 80

D4 Re 293.66 58.73 58 to 60 G4# So# 415.3 83.06 81 to 86

D4# Re# 311.13 62.22 61 to 64 A4 La 440.0 88.00 87 to 91

E4 Mi 329.63 65.93 65 to 68 A4# La# 466.16 93.23 92 to 96

F4 Fa 349.02 69.80 69 to 72 B4 Ti 493.83 98.77 97 to 102

Column 2: Power Spectrum (Xn)

Definitions of power spectrum in the application note are as follows:
- It is ratio of energy value within each frequency component and indicates loudness.
- It is equivalent to an amplitude spectrum squared.
- It is calculated by sum of sine wave (real part: an) squared and cosine wave (imaginary part: bn) squared of the

frequency data computed by the FFT algorithm.
Xn^2 = an^2 + bn^2 (n = degree)

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 13 of 29
Aug. 1, 2013

5.5 Displaying the Result
The following three are display patterns on an LCD.

Initial view

i n p u t :

Result view: When valid sounds are present, their pitch notations are displayed.

The following is an example when the valid sounds are do# (C4#), fa# (F4#), and la (A4).

r e s u l t :

C # F # A #

Result view: When no valid sound is present, ‘silent’ is displayed.

r e s u l t :

s i l e n t

The result is displayed according to the following specifications of the LCD display:
- When the input sound is valid, the corresponding pitch notation is displayed.

(C to B displayed by the sample code indicate C4 to B4.)

- While the input sound is valid, i.e. the power spectrum is higher than white noise and more than or equal to an average
of output power spectrums, the result keeps being displayed.

- The initial view is being displayed from the system start up to the first pitch notation determination.

- When the result for a chord is output, a pitch notation which has lower frequency is displayed first.

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 14 of 29
Aug. 1, 2013

5.6 File Composition
Table 5.6 lists the Files Used in the Sample Code. Files generated by the integrated development environment are not
included in this table.

Table 5.6 Files Used in the Sample Code

File Name Outline Remarks
RX_DSP_Little.lib FFT processing DSP library
main.c Main processing

r_init_stop_module.c Stop processing for active peripheral functions
after a reset

r_init_stop_module.h Header file for r_init_stop_module.c
r_init_non_existent_port.c Nonexisting port initialization
r_init_non_existent_port.h Header file for r_init_non_existent_port.c
r_init_clock.c Clock initialization
r_init_clock.h Header file for r_init_clock.c

peripheral_init.c Initialization for the MTU2a, A/D conversion and
DMAC

peripheral_init.h Header file for peripheral_init.c

port_init.c Initialization for ports that are not used for
peripheral functions

port_init.h Header file for port_init.c
global.c Definitions of global variables

global.h External reference file for macro definitions and
global variables

lcd.c Processing for LCD display
lcd.h Header for lcd.c
sound_analyze.c Pitch notation determination
sound_analyze.h Header for sound_analyze.c
windowtbl_256.h 256 data of the window function
r_dsp_transform.h Header file incorporated in the DSP library
r_dsp_types.h Common header file for the DSP library

5.7 Option-Setting Memory
Table 5.7 lists the Option-Setting Memory Configured in the Sample Code. When necessary, set a value suited to the
user system.

Table 5.7 Option-Setting Memory Configured in the Sample Code

Symbol Address Setting Value Contents

OFS0 FFFF FF8Fh to FFFF FF8Ch FFFF FFFFh The IWDT is stopped after a reset.
The WDT is stopped after a reset.

OFS1 FFFF FF8Bh to FFFF FF88h FFFF FFFFh
The voltage monitor 0 reset is disabled
after a reset.
HOCO oscillation is disabled after a reset.

MDES FFFF FF83h to FFFF FF80h FFFF FFFFh Little endian

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 15 of 29
Aug. 1, 2013

5.8 Constants
Table 5.8 lists the Constants Used in the Sample Code.

Table 5.8 Constants Used in the Sample Code

Constant Name Setting Value Contents
FFT_POINTS 256 Number of data for sampling
WHITENOISE 1.0E + 3 Upper limit of white noise (1)
FALG_COMP 1 Flag set status
BUFF1 1 When the A/D conversion result is stored in g_adc_buf1[]
BUFF2 0 When the A/D conversion result is stored in g_adc_buf2[]
Note:

1. White noise varies depending on the environment when inputting a sound. Change the value of the
WHITENOISE constant accordingly.

5.9 Structure/Union List
Figure 5.7 shows the Structure/Union Used in the Sample Code.

typedef struct

{

 uint16_t n; /* Number of data */

 void * data; /* Store input or output value of the FFT algorithm */

} vector_t;

vector_t vtime = {FFT_POINTS, (void *)g_adc_buf1}; /* Information of the FFT algorithm input value */

vector_t vfreq = {FFT_POINTS/2, (void *)g_fft_output}; /* Information of the FFT algorithm output value*/
Figure 5.7 Structure/Union Used in the Sample Code

5.10 Variables
Table 5.9 lists the Global Variables and Table 5.10 lists the static Variables.

Table 5.9 Global Variables

Type Variable Name Contents Function Used

int16_t g_adc_buf1 [256] Buffer 1 to store the A/D conversion
result that is used as the FFT input value

main, init_dmac,
Excep_DMACA_DMAC0

int16_t g_adc_buf2 [256] Buffer 2 to store the A/D conversion
result that is used as the FFT input value

main, init_dmac,
Excep_DMACA_DMAC0

int16_t g_fft_output [256] Store the FFT output result main, sound_analyze

int8_t g_dmac_flag
DMA transfer end flag
 0: Processing
 1: Completed

main,
Excep_DMACA_DMAC0

int8_t g_buf_flag
A/D conversion result storage buffer flag
 0: Store in g_adc_buf2
 1: Store in g_adc_buf1

main,
Excep_DMACA_DMAC0

char g_result [8] Buffer to store the determination result sound_analyze, Display_LCD

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 16 of 29
Aug. 1, 2013

Table 5.10 static Variables

Type Variable Name Contents Function Used
vector_t vtime Input data for the FFT algorithm R_DSP_FFT_i16ci16
vector_t vfreq Output data for the FFT algorithm R_DSP_FFT_i16ci16
int32_t status Error check for the DSP library main
int32_t fft_bitrev[56] Buffer for bit-reversed main

int16_t fft_twiddle[FFT_POINT
+FFT_POINTS/2] Buffer for twiddle factor main

int16_t r_fft_tbl_window Window coefficient main
uint32_t input_cnt Number of DMA transfer completions Excep_DMACA_DMAC0
uint32_t real Real part of the frequency data squared sound_analyze

uint32_t image Imaginary part of the frequency data
squared sound_analyze

uint32_t power[128] Buffer to store power spectrum sound_analyze
uint32_t sum Sum of power spectrums sound_analyze
float avg Average of power spectrums sound_analyze
uint8_t peak[10] Buffer to store valid input sounds sound_analyze
const char clear[8] Buffer used for clearing the result sound_analyze
const char silent[8] Buffer used when no sound is displayed sound_analyze

5.11 Functions
Table 5.11 lists the Functions Used in the Sample Code and Table 5.12 lists the API Functions for the DSP Library.

Table 5.11 Functions Used in the Sample Code

Function Name Outline
main Main processing
R_INIT_StopModule Stop processing for active peripheral functions after a reset
R_INIT_NonExistentPort Nonexistent port initialization
R_INIT_Clock Clock initialization
port_init Port initialization
peripheral_init Peripheral function initialization
mtu_init MTU0 initialization
s12ad_init S12AD initialization
dmac_init DMAC initialization
lcd_init LCD initialization
Display_LCD LCD display
sound_analyze Pitch notation determination
Excep_DMACA_DMAC0 DMA transfer end interrupt handling
error Error processing

Table 5.12 API Functions for the DSP Library

Function Name Outline
R_DSP_FFT_i16ci16 Real FFT algorithm
R_DSP_FFT_BufSize_i16ci16 Obtain an area size required for the FFT algorithm
R_DSP_FFT_Init_i16ci16 Initialization for the FFT algorithm

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 17 of 29
Aug. 1, 2013

5.12 Function Specifications
The following tables list the sample code function specifications.

5.12.1 Functions Used in the Sample Code
main
Outline Main processing
Header sound_analyze.h, lcd.h, r_dsp_transform.h, windowtbl_256.h, r_init_clock.h,

r_init_non_existent_port.h, port_init.h, peripheral_init.h
Declaration void main (void)
Description Call following functions; port initialization, clock initialization, peripheral function

initialization (initialization for MTU0, S12AD, and DMAC), and LCD initialization. Start
the MTU0 count and enable DMA transfer.

Arguments None
Return Value None

R_INIT_StopModule
Outline Stop processing for active peripheral functions after a reset
Header r_init_stop_module.h
Declaration void R_INIT_StopModule(void)
Description Configure the setting to enter the module-stop state.
Arguments None
Return Value None
Remarks Transition to the module-stop state is not performed in the sample code. Refer to the

RX63N Group, RX631 Group Initial Setting Rev. 1.00 application note for details on
this function.

R_INIT_NonExistentPort
Outline Nonexistent port initialization
Header r_init_non_existent_port.h
Declaration void R_INIT_NonExistentPort(void)
Description Initialize port direction registers for ports that do not exist in products with less than

176 pins.
Arguments None
Return Value None
Remarks The number of pins in the sample code is set for the 176-pin package

(PIN_SIZE=176). After this function is called, when writing in byte units to the PDR
registers or PODR registers which have nonexistent ports, set the corresponding bits
for nonexistent ports as follows: set the I/O select bits in the PDR registers to 1 and
set the output data store bits in the PODR registers to 0.
Refer to the RX63N Group, RX631 Group Initial Setting Rev. 1.00 application note
for details on this function.

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 18 of 29
Aug. 1, 2013

R_INIT_Clock
Outline Clock initialization
Header r_init_clock.h
Declaration void R_INIT_Clock(void)
Description Initialize the clock.
Arguments None
Return Value None
Remarks The sample code selects processing which uses PLL as the system clock without

using the sub-clock.
Refer to the RX63N Group, RX631 Group Initial Setting Rev. 1.00 application note
for details on this function.

port_init
Outline Port initialization
Header None
Declaration void port_init (void)
Description Initialize ports used for an LCD.
Arguments None
Return Value None

peripheral_init
Outline Peripheral function initialization
Header lcd.h
Declaration void peripheral_init (void)
Description Initialize the following peripheral functions; MTU0, S12AD and DMAC.
Arguments None
Return Value None

mtu_init
Outline MTU0 initialization
Header global.h
Declaration void mtu_init (void)
Description Initialize MTU0 and the interrupt used.
Arguments None
Return Value None

s12ad_init
Outline S12AD initialization
Header global.h
Declaration void s12ad_init (void)
Description Initialize the 12-bit A/D converter, pins used, and the interrupt used.
Arguments None
Return Value None

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 19 of 29
Aug. 1, 2013

dmac_init
Outline DMAC initialization
Header global.h
Declaration void dmac_init (void)
Description Transfer 16-bit data 256 times using the ADDR1 register as the DMA transfer source

and the on-chip RAM (g_adc_buf1[] or g_adc_buf2[]) as the DMA transfer
destination.

Arguments None
Return Value None

lcd_init
Outline LCD initialization
Header lcd.h, global.h
Declaration void lcd_init (void)
Description Initialize the LCD display to display results on the LCD.
Arguments None
Return Value None

Display_LCD
Outline LCD display (for displaying the initial view and the determination result)
Header lcd.h, global.h
Declaration void Display_LCD (unsigned char position, char * string)
Description Display the second argument contents on the line specified by the first argument.
Arguments - position: Position of the string
 - string: Pointer to the string to be displayed
Return Value None

sound_analyze
Outline Pitch notation determination (for outputting power spectrum, extracting valid input

sounds, and determining pitch notations)
Header global.h, r_dsp_types.h
Declaration void sound_analyze (void)
Description With the FFT algorithm result ‘g_fft_output[]’ (frequency data), convert frequency

components in the range from 250 Hz to 520 Hz to power spectrums by degrees and
store the results in the power[]. Determine the pitch notations for the three highest
power spectrums that meet the conditions of the input sound in the power[], and
store the result in the result variable.

Arguments None
Return Value None

Excep_DMACA_DMAC0
Outline DMA transfer end interrupt
Header global.h
Declaration void Excep_DMACA_DMAC0 (void)
Description Select the g_adc_buf1 and g_adc_buf2 alternately as the DMAC transfer destination,

and enable DMA transfer.
Arguments None
Return Value None

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 20 of 29
Aug. 1, 2013

error
Outline Error processing
Header global.h
Declaration void error (void)
Description When the return value from the API in the DSP library is other than

“R_DSP_STATUS_OK”, enter an infinite loop
Arguments None
Return Value None

5.12.2 API Functions for the DSP Library

R_DSP_FFT_Bufsize_i16ci16
Outline Obtain an area required for the FFT algorithm
Header r_dsp_transform_internal.h, r_dsp_types.h
Declaration int32_t R_DSP_FFT_Bufsize_i16ci16(r_dsp_fft_t *h, size_t * numTwiddleBytes,

size_t * numBitRevBytes)
Description Obtain sizes of both the twiddle factor array and bit-reverse table, given the length,

form, and input/output data types of a Fast Fourier Transform function.
Arguments - h: Pointer to the FFT handle
 - numTwiddleBytes: Pointer to the twiddle factor
 - numBitRevBytes: Pointer to the bit-reverse table
Return Value Error determination

 R_DSP_STATUS_OK: No issues encountered
 R_DSP_ERR_HANDLE_NULL: Pointer to the handle is NULL.
 R_DSP_INVALID_INPUT_SIZE: The order of the transform is too small or too large.
 R_DSP_ERR_INVALID_OPTIONS: Options value specified is invalid.

R_DSP_FFT_Init_i16ci16
Outline Initialization for the FFT algorithm
Header r_dsp_transform_internal.h, r_dsp_types.h
Declaration int32_t R_DSP_FFT_Init_i16ci16(r_dsp_fft_t * handle)
Description Initialize the data structure for the FFT algorithm.
Arguments - handle: Instance used for FFT processing
Return Value Error determination

 R_DSP_STATUS_OK: Initialization completed.
 R_DSP_ERR_HANDLE_NULL: Handle is NULL.
 R_DSP_ERR_INPUT_NULL: Twiddle table or bit-reverse table is NULL.

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 21 of 29
Aug. 1, 2013

R_DSP_FFT_i16ci16
Outline Real FFT algorithm
Header r_dsp_transform_internal.h, r_dsp_types.h
Declaration int32_t R_DSP_FFT_i16ci16 (r_dsp_fft_t *handle, cpmst vector_h *src, vector_t *dst)
Description Compute the FFT algorithm, given the first argument that is necessary for FFT

processing and the second argument, and input the result to the third argument.
Arguments - handle: Instance used for FFT processing
 - src: Pointer to the address that stores an input value
 - dst: Pointer to the address that stores an output value
Return Value Error determination

 R_DSP_STATUS_OK: FFT algorithm successfully completed
 R_DSP_ERR_HANDLE_NULL: Pointer to the handle is NULL.
 R_DSP_ERR_INPUT_NULL: Pointer to input data is NULL.
 R_DSP_ERR_OUTPUT_NULL: Pointer to output data is NULL.
 R_DSP_INVALID_INPUT_SIZE: Input data size is invalid.
 R_DSP_INVALID_OUTPUT_SIZE: Output data size is invalid.
 R_DSP_STATUS_OVERFLOW: Data overflow.

Remarks h.window that is included in the handle structure indicates the window function. Refer
to Column 3 for details on the window function.

Column 3: Window Function
- The function is to preprocess for decreasing a margin of error in the FFT algorithm. Windowing of an input data

for the FFT algorithm makes the first and last amplitude of sampling waveforms become small and brings the
data close to the ideal data (exactly one cycle or integral multiple of the reference frequency).

- The calculation formula for the Hanning window used in the sample code is as follows:
0.5 − 0.5 × cos (2 × π × n ÷ (number of data − 1)

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 22 of 29
Aug. 1, 2013

5.13 Flowcharts
5.13.1 Main Processing
Figure 5.8 shows the Main Processing.

main

LCD display
Display_LCD()

Obtain an area size required for the
FFT algorithm

R_DSP_FFT_Bufsize_i16ci16()

Pitch notation determination
sound_analyze()

DMA transfer completed?

Yes

Clear the DMA transfer end flag

Disable maskable interrupts

Port initialization
port_init()

Nonexistent port initialization
R_INIT_NonExistentPort()

Clock initialization
R_INIT_Clock()

Peripheral function initialization
peripheral_init()

Enable maskable interrupts

FFT initialization
R_DSP_FFT_Init_i16ci16()

Real FFT algorithm
R_DSP_FFT_i16ci16()

No

Start the MTU0 count

Enable the DMAC activation

Initial view on the LCD module: “input: ”

g_dmac_flag = 0: Processing
g_dmac_flag = 1: Completed

FFT initialization
1. Specify the input buffer for the FFT algorithm
 When g_buf_flag = 1, vtime.data ← (void *)g_adc_buf1: Set ‘g_adc_buf1’ as an input value
 When g_buf_flag = 0, vtime.data ← (void *)g_adc_buf2: Set ‘g_adc_buf2’ as an input value

2. Store the object data for FFT processing
 h.n ← FFT_POINTS: Number of data
 h.work ← NULL: Buffer required for processing
 h.options ← R_DSP_FFT_OPT_SCALE: Decimal point position of the FFT result
 (shifted every stage)
 h.bitrev ← (void *) fft_bitrev: Bit reverse table
 h.twiddle ← (void *) fft_twiddle: Twiddle factor array
 h.windows ← (void *) rfft_tbl_window: Window function

MTU.TSTR register ← 01h
CST0 bit = 1: MTU0.TCNT performs count operation

DMAC.DMAST register ← 01h
DMST bit = 1: DMAC activation is enabled

Initialize FFT processing

g_dmac_flag ← 0

LCD initialization
lcd_init()

LCD display
Display_LCD()

I flag ← 0: Maskable interrupts disabled

I flag ← 1: Maskable interrupts enabled

Stop processing for active
peripheral functions after a reset

R_INIT_StopModule()

Figure 5.8 Main Processing

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 23 of 29
Aug. 1, 2013

5.13.2 Port Initialization
Figure 5.9 shows the Port Initialization.

port_init

return

Set ports for LCDs PORTB.PDR register ← F0h
 Bits B4 to B7 = 1: Set the LCD data pins as output pins
PORTB.PODR register ← 00h
 Bits B4 to B7 = 0: Set the LCD data pins to output low

PORTJ.PDR register
 B5 bit ← 1: Set the debug control pin as an output pin
PORTF.PDR register
 B5 bit ← 1: Set the enable pin as an output pin

PORTJ.PODR register
 B5 bit ← 0: Set the debug control pin to output low
PORTF.PODR register
 B5 bit ← 0: Set the enable pin to output low

Figure 5.9 Port Initialization

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 24 of 29
Aug. 1, 2013

5.13.3 Peripheral Function Initialization
Figure 5.10 shows the Peripheral Function Initialization.

S12AD initialization
s12ad_init()

DMAC initialization
dmac_init()

peripheral_init

return

MTU0 initialization
mtu_init()

Figure 5.10 Peripheral Function Initialization

5.13.3.1 MTU0 Initialization
Figure 5.11 shows the MTU0 Initialization.

mtu_init

return

Cancel the MTU0 module-stop state

MTU0 initialization TCR register ← 21h
 CCLR bit = 1: TCNT cleared by TGRA compare match
 CKEG bit = 0: Count at rising edge
 TPSC bit = 1: Internal clock: counts on PCLK/4

TMDR register ← 00h: Normal mode

TIORH register ← 30h
 IOA[3:0] bits = 0011b: Toggle output at TGRA compare match
 IOB[3:0] bits = 0000b: TGRA output disabled

TIER register ← 01h
 TGIEA bit = 1: Interrupt requests (TGIA) enabled

TGRA register ← 249Eh: Number of compare match counts

MSTPCRA register
 MSTPA9 bit ← 0: The module-stop state is canceled for MTU0.

Initialize the MTU0 interrupt IR register ← 0: The interrupt flag cleared
IER register ← 1: Interrupt request enabled
IPR register ← 0: Interrupt disabled

Figure 5.11 MTU0 Initialization

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 25 of 29
Aug. 1, 2013

5.13.3.2 S12AD Initialization
Figure 5.12 shows the S12AD Initialization.

s12ad_init

return

S12AD channel 1 initialization

Initialize the S12AD channel 1 interrupt

Cancel the S12AD channel 1
module-stop state

ADCSR register ← 0200h
 ADST bit = 0: Stops A/D conversion process
 ADCS bit = 0: Single scan mode
 ADIE bit = 0: Disables S12ADI0 interrupt generation upon scan completion
 CKS[1:0] bits = 00b: PCLK/8
 TRGE bit = 1: Enables A/D conversion to be started by the synchronous trigger
 EXTRG bit = 0: A/D conversion is started by the synchronous trigger

ADANS0 register ← 0002h: A/D conversion channel, AN001 channel

ADSTRGR register
 ADSTRS[3:0] bits = 0001b: Compare match between MTU0.TGRA and
 TCNT (TGR0AN_0)

ADCSR register
 ADIE bit = 1: Enables S12ADI0 interrupt generation upon scan completion

IR register ← 00h: Interrupt flag cleared
IER register ← 01h: Interrupt request enabled
IPR register ← 00h: Interrupt disabled

Set the ports for AN001 output Ports for AN001 output: P41
PORT4.PDR register ← 00h
 B1 bit = 0: Input
PORT4.PMR register ← 00h
 B1 bit = 0: Use the pin as a general I/O pin
MPC.PWPR register ← 40h
 BOWI bit = 0: Writing to the PFSWE bit is enabled
 PFSWE bit = 1: Writing to the PFS register is enabled
MPC.P41PFS register ← 80h
 ASEL bit = 1: Used as analog pin
MPC.PWPR register ← 80h
 BOWI bit = 1: Writing to the PFSWE bit is disabled
 PFSWE bit = 0: Writing to the PFS register is disabled

Figure 5.12 S12AD Initialization

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 26 of 29
Aug. 1, 2013

5.13.3.3 DMAC Initialization
Figure 5.13 shows the DMAC Initialization.

dmac_init

return

Cancel the DMAC module-stop state

Initialize the DMAC0 channel

Enable DMA transfer

Initialize the DMAC interrupt
IR register ← 00h: Interrupt flag cleared
IER register ← 01h: Interrupt request enabled
IPR register ← 00h: Interrupt disabled

DMCNT register ← 00h
 DTE bit = 0: Disables DMA transfer

DMAMD register ← 0080h
 SM[1:0] bits = 00b: Source address is fixed
 DM[1:0] bits = 10b: Destination address is incremented.

DMTMD register ← 5101h
 MD[1:0] bits = 00b: Normal transfer
 DTS[1:0] bits = 01b: The source is specified as the repeat area
 SZ[1:0] bits = 01b: 16 bits
 DCTG[1:0] bits = 01b: Interrupts from peripheral modules

DMSAR register ← (unsigned long) &S12AD.ADDR1: Transfer source start address
DMDAR register ← (unsigned long) &g_adc_buf1[]: Transfer destination start
 address

DMCRA register ← 00000100h: Specifies the number of transfer operations to 256

DMCSL register ← 00h
 DISEL bit = 0: At the beginning of transfer, clear the interrupt flag of the
 activation source to 0.
DMINT register ← 10h
 DTIE bit = 1: Enables the transfer end interrupt request

MSTPCRA register
 MSTPA28 bit ← 0: The module-stop state is canceled for DMAC.

DMCNT register
 DTE bit ← 1: Enables DMA transfer

Figure 5.13 DMAC Initialization

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 27 of 29
Aug. 1, 2013

5.13.4 DMA Transfer End Interrupt Handling
Figure 5.14 shows the DMA Transfer End Interrupt Handling.

Case 1

No

Yes

Excep_DMACA_DMAC0

return

DMA transfer end flag is 1

Enable DMA transfer
DMAC0.DMCNT register ← 01h:
 DTE bit = 1: Enables DMA transfer

Is the DMAC transfer
destination g_adc_buf1[]?

Change the DMAC transfer
destination to g_adc_buf2[]

Change the A/D conversion storage
array flag to 1

Change the DMAC transfer
destination to g_adc_buf1[]

Change the A/D conversion storage
array flag to 0

Case 2
Case 1
- DMAC0.DMDAR register ← (unsigned long)&g_adc_buf2[0]
- g_buf_flag ← 1: Stored in g_adc_buf1

Case 2
- DMAC0.DMDAR register ← (unsigned long)&g_adc_buf1[0]
- g_buf_flag ← 0: Stored in g_adc_buf2

Figure 5.14 DMA Transfer End Interrupt Handling

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 28 of 29
Aug. 1, 2013

5.13.5 Pitch Notation Determination
Figure 5.15 shows the Pitch Notation Determination.

sound_analyze

Has calculation of power
spectrums for the determination range

(50 to 104 degrees) completed?

Yes

Calculate a power spectrum

Calculate the sum of the power spectrums

Calculate the average of the power
spectrums

Have all power spectrums in
the determination range (50 to 104

degrees) been filtered?

Does the power spectrum satisfy
the conditions of input sound?

Store the spectrum as a valid input sound

Is a valid input sound present?

Display “silent” as the result

Convert frequency data to power spectrums
 real ← fft_output[i*2]^2: Real part squared
 image ← fft_output[i*2+1]^2: Imaginary part squared
 power [] ← real+image: Calculate a power spectrum

sum ← sum + power []

avg ← sum / 55

Store valid input sounds
 Conditions of input sounds:
 1. Is the spectrum equal to or more than an average value of the
 output power spectrums?
 power [j] > avg
 2. Is the spectrum the peak point?
 power [j] > power [j+1] && power [j] > power[j-1]
 3. Is the spectrum equal to or more than the range of white noise?
 power [j] > WHITENOISE
 ↓ When all conditions above are satisfied:
peak [] ← j: Store the degree j of a valid input sound

Yes

No

No

Yes

No

Sort the valid input sounds in descending
order → Pick up the highest three spectrums

When multiple sounds are picked up,
sort them in ascending order of degrees

Has pitch notation determination
completed for all sounds?

Determine a pitch notation for
a remained sound

Determine a pitch notation by its degree.

Determine a pitch notation
corresponding to the degree in peak [].

result [] ← Pitch notation in the ASCII code.

return

Yes

No

Yes

No

Figure 5.15 Pitch Notation Determination

RX63N Group, RX631 Group Determining Pitch Notations Using the FFT Algorithm

R01AN1265EJ0100 Rev. 1.00 Page 29 of 29
Aug. 1, 2013

6. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents
User’s Manual: Hardware

RX63N Group, RX631 Group User’s Manual: Hardware Rev.1.50 (R01UH0041EJ)
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

RX Family C/C++ Compiler Package V.1.01 User’s Manual Rev.1.00 (R20UT0570EJ)
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

REVISION HISTORY RX63N Group, RX631 Group Application Note
Determining Pitch Notations Using the FFT Algorithm

Rev. Date
Description

Page Summary
1.00 Aug. 1, 2013 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

⎯ When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.

⎯ The characteristics of an MPU or MCU in the same group but having a different part number may
differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and

 equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial

 implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no

 use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement

 possibility of physical injury, and injury or damage caused by fire in

 redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to

 products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas

 regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

liability for malfunctions or damages arising out of the

safety measures to guard them against the

life support devices or systems, surgical

http://www.renesas.com

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Arcadiastrasse 10, 40472 D
Tel: +49-211-65030, Fax: +49-211-6503-1327

üsseldorf, Germany

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Canada Limited

Renesas Electronics Europe Limited

Renesas Electronics America Inc.

Renesas Electronics (China) Co., Ltd.

Renesas Electronics (Shanghai) Co., Ltd.

Renesas Electronics Europe GmbH

Renesas Electronics Taiwan Co., Ltd.

Renesas Electronics Singapore Pte. Ltd.

Renesas Electronics Hong Kong Limited

Renesas Electronics Korea Co., Ltd.

Renesas Electronics Malaysia Sdn.Bhd.

SALES OFFICES

© 2013 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

Electronics products or technology described in this document, you should comply with the applicable export control laws and

	1. Specifications
	2. Operation Confirmation Conditions
	3. Reference Application Notes
	4. Hardware
	4.1 Hardware Configuration
	4.2 Pins Used

	5. Software
	5.1 Operation Overview
	5.2 Sound Input
	5.2.1 Calculating Values Used for a Sound Input
	5.2.2 Peripheral Function Settings

	5.3 FFT Algorithm
	5.4 Pitch Notation Determination
	5.5 Displaying the Result
	5.6 File Composition
	5.7 Option-Setting Memory
	5.8 Constants
	5.9 Structure/Union List
	5.10 Variables
	5.11 Functions
	5.12 Function Specifications
	5.12.1 Functions Used in the Sample Code
	5.12.2 API Functions for the DSP Library

	5.13 Flowcharts
	5.13.1 Main Processing
	5.13.2 Port Initialization
	5.13.3 Peripheral Function Initialization
	5.13.3.1 MTU0 Initialization
	5.13.3.2 S12AD Initialization
	5.13.3.3 DMAC Initialization

	5.13.4 DMA Transfer End Interrupt Handling
	5.13.5 Pitch Notation Determination

	6. Sample Code
	7. Reference Documents

