
 APPLICATION NOTE

R01AN2085EJ0110 Rev. 1.10 Page 1 of 37
Dec. 21, 2020

RX64M, RX71M Group
Using the SCIg Bit Rate Modulation Function

Abstract
This document describes using the bit rate modulation function in the RX64M, RX71M Group to perform serial
transmission and reception in asynchronous mode.

The bit rate modulation function reduces the bit rate error by correcting evenly the bit rate generated by the on-chip
baud rate generator.

Products
RX64M Group
• RX64M Group 177- and 176-pin versions, ROM capacity: 2 MB to 4 MB
• RX64M Group 145- and 144-pin versions, ROM capacity: 2 MB to 4 MB
• RX64M Group 100-pin version, ROM capacity: 2 MB to 4 MB

RX71M Group
• RX71M Group 177- and 176-pin versions, ROM capacity: 2 MB to 4 MB
• RX71M Group 145- and 144-pin versions, ROM capacity: 2 MB to 4 MB
• RX71M Group 100-pin version, ROM capacity: 2 MB to 4 MB

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

R01AN2085EJ0110
Rev. 1.10

Dec. 21, 2020

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 2 of 37
Dec. 21, 2020

Contents

1. Specifications ... 3
1.1 USB Serial Conversion .. 3

2. Confirmed Operating Conditions .. 4

3. Reference Application Note .. 4

4. Hardware .. 4
4.1 Pins Used ... 4

5. Software ... 6
5.1 Operation Overview ... 7

5.1.1 Serial Transmission .. 7
5.1.2 Serial Reception ... 8

5.2 Bit Rate Modulation Function ... 9
5.2.1 About the Bit Rate Modulation Function ... 9
5.2.2 Using the Bit Rate Modulation Function ... 9
5.2.3 Comparison of Using and Not Using the Bit Rate Modulation Function 10

5.3 File Composition .. 13
5.4 Option-Setting Memory .. 13
5.5 Constants ... 14
5.6 Structure/Union List ... 16
5.7 Variables .. 16
5.8 Functions .. 17
5.9 Function Specifications .. 18
5.10 Flowcharts .. 25

5.10.1 Main Processing .. 25
5.10.2 Port Initialization .. 26
5.10.3 Peripheral Function Initialization ... 26
5.10.4 Callback Function (SCI Transmission Complete) ... 26
5.10.5 Callback Function (SCI Reception Complete) ... 27
5.10.6 Callback Function (SCI Reception Error) .. 27
5.10.7 User Interface Function (SCI Initialization) .. 28
5.10.8 User Interface Function (Start SCI Reception) .. 30
5.10.9 User Interface Function (Start SCI Transmission) .. 31
5.10.10 User Interface Function (Obtain SCI Status) ... 31
5.10.11 Transmit Data Empty Interrupt .. 32
5.10.12 Transmit End Interrupt ... 32
5.10.13 Receive Data Full Interrupt .. 33
5.10.14 Receive Error Interrupt .. 34
5.10.15 SCI.ERI Interrupt Handling .. 35
5.10.16 SCI.RXI Interrupt Handling .. 35
5.10.17 SCI.TXI Interrupt Handling .. 35
5.10.18 SCI.TEI Interrupt Handling .. 36
5.10.19 Group BL0 Interrupt Handling ... 36

6. Sample Code .. 37

7. Reference Documents .. 37

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 3 of 37
Dec. 21, 2020

1. Specifications
This document describes using the serial communications interface (SCI) to perform serial transmission and reception
in asynchronous mode. The bit rate modulation function is used for serial transmission and reception.

After a reset, transmission and reception are performed only once. The 12-byte character code "Hello world!" (without
quotation marks) set in the transmit buffer is transmitted. LED0 turns on after the 12 bytes have been transmitted.

12 bytes of data are received. The received data is stored in the receive buffer, and LED1 turns on after all 12 bytes are
received. If an error occurs during reception, reception is canceled, and LED2 turns on.

Bit rate: 57,600 bps
Data length: 8 bits
Stop bits: 2 bits
Parity: None
Hardware flow control: None

The peripheral functions are listed in Table 1.1 and Figure 1.1 shows a Usage Example.

Table 1.1 Peripheral Functions and Their Applications

Peripheral Function Application
SCI (channel 7) Perform serial transmission and reception in asynchronous mode
I/O ports Turn on the LEDs

Figure 1.1 Usage Example

1.1 USB Serial Conversion
When the Renesas Starter Kit+ for RX64M is shipped, serial port SCI7 on the RX64M MCU is connected to the serial
port on the RL78/G1C MCU and can be used as a virtual COM port. This document describes using this virtual COM
port to communicate with the PC.

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 4 of 37
Dec. 21, 2020

2. Confirmed Operating Conditions
The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Confirmed Operating Conditions

Item Contents
MCU used R5F564MLCDFC (RX64M Group)

Operating frequencies

• Main clock: 24 MHz
• PLL clock: 240 MHz (main clock divided by 1 and multiplied by 10)
• System clock (ICLK): 120 MHzNote1 (PLL clock divided by 2)
• Peripheral module clock B (PCLKB): 60 MHz (PLL clock divided by 4)

Operating voltage 3.3 V
Integrated development
environment

Renesas Electronics Corporation
e2 studio Version: 2020-10

C compiler

Renesas Electronics Corporation
C/C++ Compiler Package for RX Family V3.02.00Note2
Compile options
The integrated development environment default settings are used.

iodefine.h version 0.9
Endian Little endian
Operating mode Single-chip mode
Processor mode Supervisor mode
Sample code version Version 1.10
Board used Renesas Start Kit+ for RX64M (product part no.: R0K50564MSxxxBE)

Note1: When setting the frequency of ICLK to faster than 120 MHz in RX71M, the value of the MEMWAIT register needs to be

changed.
Note2: If the same version of the toolchain (C compiler) specified in the original project is not in the import destination,the toolchain

will not be selected and an error will occur.
Check the selected status of the toolchain on the project configuration dialog.

For the setting method, refer to FAQ 3000404.

FAQ 3000404 :Program ""make"" not found in PATH’ error when attempting to build an imported project (e² studio)"

3. Reference Application Note
For additional information associated with this document, refer to the following application note.

• RX64M Group Initial Setting Rev. 1.00 (R01AN1918EJ)

The initial setting functions in the reference application note are used in the sample code in this application note. The
revision number of the reference application note is current at the time this document was created. However, the latest
version is always recommended. The latest version can be downloaded from the Renesas Electronics Corporation
website.

4. Hardware

4.1 Pins Used
Table 4.1 lists the Pins Used and Their Functions.

Table 4.1 Pins Used and Their Functions

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 5 of 37
Dec. 21, 2020

Pin Name I/O Function
P03 Output LED0 output (SCI transmission complete)
P05 Output LED1 output (SCI reception complete)
P26 Output LED2 output (SCI reception error)
P92/RXD7 Input Receive data input pin for SCI7
P90/TXD7 Output Transmit data output pin for SCI7

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 6 of 37
Dec. 21, 2020

5. Software
After a reset, the user interface function (SCI initialization) is called, the SCI is initialized, and the transmit and receive
operations are enabled.

When the user interface function (start SCI transmission) is called, the transmit data empty interrupt request is enabled.
When the specified number of bytes has been transmitted, the callback function (SCI transmission complete) is called.
The callback function (SCI transmission complete) turns on LED0.

When the user interface function (start SCI reception) is called, the receive data full interrupt request and receive error
interrupt request are enabled. When the specified number of bytes has been received, the callback function (SCI
reception complete) is called. The callback function (SCI reception complete) turns on LED1.

If a reception error occurs, the SCI transmit and receive operations are disabled, and the callback function (SCI
reception error) is called. The callback function (SCI reception error) turns on LED2.

The following are the settings for the peripheral functions.

SCI

 Serial communication method: Asynchronous
 Bit rate: 57,600 bps
 Clock source: PCLKB (60 MHz)
 Data length: 8 bits
 Stop bits: 2 bits
 Parity: None
 Interrupts: Receive error interrupt (ERI) enabled, receive data full interrupt (RXI) enabled, transmit data empty

interrupt (TXI) enabled, transmit end interrupt (TEI) enabled

Figure 5.1 shows the Software Configuration.

Main processing (main.c) Asynchronous communication (sci.c)

Function
called

External function (global) Internal function (static)

Main function

Callback function
(SCI transmission complete)

Callback function
(SCI reception complete)

Callback function
(SCI reception error)

User interface function (SCI initialization)

User interface function (start SCI reception)

User interface function (start SCI transmission)

User interface function (obtain SCI status)

Transmit data empty interrupt function

Transmit end interrupt function

Receive data full interrupt function

Receive error interrupt function

Figure 5.1 Software Configuration

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 7 of 37
Dec. 21, 2020

5.1 Operation Overview
5.1.1 Serial Transmission
Figure 5.2 shows the Serial Transmission Timing Diagram. The following numbers correspond to operations and
processing shown in the figure.

(1) Initialization
SCI initialization is performed by the user interface function (SCI initialization), the SCR.TIE bit is set to 1 (a TXI
interrupt request is enabled), and the SCR.TE bit is set to 1 (serial transmission is enabled). (In the sample code, the
SCR.TE and RE bits are set to 1 simultaneously.)

(2) Start transmission
The user interface function (start SCI transmission) is used to check the transmission busy flag (variable). If the
transmission busy flag is 1 (transmitting data), SCI_BUSY (SCI transmitting data) is returned. If the transmission
busy flag is 0 (ready to transmit data), after the transmission busy flag is set to 1, the IERm.IENj bit for the TXI
interrupt is set to 1 (interrupt request is enabled). At that time, a TXI interrupt occurs as the IRi.IR flag for the TXI
interrupt has already become 1 (interrupt request is generated) in (1) above.

(3) Transmit data
The value in the transmit buffer is written to the TDR register in the TXI interrupt handling. When the transmit
buffer value is transferred from the TDR register to the TSR register, the IRi.IR flag for the TXI interrupt becomes
1 (interrupt request is generated), and an interrupt is generated. This processing is repeated until the last data is
written. When the last data is written, the SCR.TEIE bit is set to 1 (TEI interrupt request is enabled).

(4) Transmission complete
When the last data has been transmitted, the TEI interrupt request is generated. The TEIE bit is set to 0 (TEI
interrupt request is disabled) in the TEI interrupt handling. Then, the transmission busy flag is set to 0, and the
callback function (SCI transmission complete) is called.

 TXD output

‘l’

(4)(2) (3)

SCR.TIE bit

IERm.IENj bit for
the TXI interrupt

IERm.IENj bit for
the TEI interrupt

IRi.IR flag for the
TEI interrupt

Transmission busy flag

SCR.TE bit

SCR.TEIE bit

IRi.IR flag for the
TXI interrupt

TXDn pin ‘d’ ‘!’‘e’

Transmit data (Hello world!)

Becomes 1
by a program

(1)

Hi-Z ‘H’

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

High

Low

Becomes 0
by a program

Becomes 0
by a program

Becomes 1
by a program

Become 0 when an interrupt is accepted

Figure 5.2 Serial Transmission Timing Diagram

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 8 of 37
Dec. 21, 2020

5.1.2 Serial Reception
Figure 5.3 shows the Serial Reception Timing Diagram. The following numbers correspond to operations and
processing shown in the figure.

(1) Initialization
SCI initialization is performed by the user interface function (SCI initialization), the SCR.RIE bit is set to 1 (RXI
and ERI interrupt requests are enabled), and the SCR.RE bit is set to 1 (serial reception is enabled). (In the sample
code, the SCR.RE and TE bits are set to 1 simultaneously.)

(2) Start reception *1
The user interface function (start SCI reception) is used to check the reception busy flag (variable). If the reception
busy flag is 1 (receiving data), SCI_BUSY (SCI receiving data) is returned. If the reception busy flag is 0 (ready to
receive data), the reception busy flag is set to 1, and the error flag is cleared. The IERm.IENj bit for the RXI
interrupt or ERI interrupt are set to 1 (interrupt request is enabled).

(3) Receive data
When data is received, the RXI interrupt request is generated. The value in the RDR register is written to the
receive buffer in the RXI interrupt handling.
If a reception error *2 occurs, the ERI interrupt request is generated. In the ERI interrupt handling, the error flag
(variable) is set, and the RDR register is dummy read. The RE bit and TE bit are set to 0, and the error flags in the
SSR register are cleared. Bits RIE, TIE, TEIE and the reception busy flag are all set to 0, and the callback function
(SCI reception error) is called.

(4) Reception complete
When the last data has been received, the reception busy flag is set to 0, and the callback function (SCI reception
complete) is called.

Note 1. After calling the user interface function (SCI initialization), and before calling the user interface function (start
SCI reception), if 2 or more bytes of data are received, an overrun error occurs.

Note 2. After a reception error occurs, if serial transmission and reception are restarted, after calling the user interface
function (SCI initialization), call the user interface functions (start SCI reception and start SCI transmission).

Set to 1 by
a program

RXD input

Data 10Data 0 Data 1 Data 11Data 9

Received data

(2) (3)

SCR.RIE bit

IERm.IENj bit for
the RXI interrupt

Reception busy flag

SCR.RE bit

IRi.IR flag for the
RXI interrupt

Hi-ZRXDn pin

(4)

Become 0 when an interrupt is accepted

(1)

Set to 0 by
a program

1

0

High

Low

1

0

1

0

1

0

1

0

Figure 5.3 Serial Reception Timing Diagram

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 9 of 37
Dec. 21, 2020

5.2 Bit Rate Modulation Function
5.2.1 About the Bit Rate Modulation Function
The bit rate modulation function evenly corrects the bit rate by enabling the internal clock, which is selected by the
SMR.CKS[1:0] bits, with the value specified by the MDDR register. For example, when the MDDR register is set to
160, 160 clocks out of 256 clocks are validated (96 clocks are not validated).

For more details on the bit rate modulation function, refer to section 40.9 Bit Rate Modulation Function in Rev.1.00 of
the RX64M Group User’s Manual: Hardware.

5.2.2 Using the Bit Rate Modulation Function
When the SEMR.BRME bit is set to 1, the bit rate modulation function is enabled. Then the BRR and MDDR registers
are set.

Set the BRR and MDDR registers with values to make the bit rate error be within the available range of the serial
communications. The bit rate error can be calculated using the formulas in Table 5.1. For details on the formulas used to
calculate the bit rate error when using the bit rate modulation function, refer to section 40.2.12 Modulation Duty
Register (MDDR) in Rev.1.00 of the RX64M Group User’s Manual: Hardware.

Table 5.1 Formulas for Calculating the Bit Rate Error When Using the Bit Rate Modulation Function

Mode
SEMR Register Setting

Error
BGDM bit ABCS bit

As
yn

ch
ro

no
us

 m
od

e

0 0 Error [%] =
()

1001
1256264

10
12

6

×



















−
+×






×××

×
− N

M
B

PCLKB
n

0 1
Error [%] =

()
1001

1256232

10
12

6

×



















−
+×






×××

×
− N

M
B

PCLKB
n

1 0

1 1 Error [%] =
()

1001
1256216

10
12

6

×



















−
+×






×××

×
− N

M
B

PCLKB
n

B: Bit rate [bps]
M: MDDR register setting value (128 ≤ M ≤ 255)
N: BRR register setting value for the baud rate generator (0 ≤ N ≤ 255)
PCLKB: Operating frequency [MHz]
n: SMR.CKS[1:0] bit setting value (0 ≤ n ≤ 3)

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 10 of 37
Dec. 21, 2020

5.2.3 Comparison of Using and Not Using the Bit Rate Modulation Function

Table 5.2 shows the settings to obtain the minimum error when the bit rate is 57,600 bps.

Table 5.2 Serial Transmission and Reception Settings, and N and M Settings to Obtain the Minimum
Error

Bit Rate Modulation Function

Values When Used Values When Not Used
Transfer speed [bps] (B) 57,600
Operating frequency [MHz] (PCLKB) 60
SEMR.BGDM bit setting 0 0
SEMR.ABCS bit setting 0 0
SMR.CKS[1:0] bit setting (n) 0 0
BRR register setting (N) 21 32
MDDR register setting (M) 173

(a) Calculating the bit rate error when using the bit rate modulation function

This formula assumes the SEMR.BGDM and ABCS bits are 0.

Error [%] =
()

1001
1256264

10
12

6

×



















−
+×






×××

×
− N

M
B

PCLKB
n

When you replace PCLKB, M, N, and n in the above formula, you get

Error [%] =
()

1001
121

173
256264600,57

1060
102

6

×



















−
+×






×××

×
−×

So, the error is

1001
22

173
256264600,57

1060
1

6

×



















−
×






×××

×

−

= −0.008692886 [%]

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 11 of 37
Dec. 21, 2020

(b) Calculating the bit rate error when not using the bit rate modulation function
This formula *1 assumes the SEMR.BGDM and ABCS bits are 0.

Error [%] = () 1001
1264

10
12

6

×








−
+×××

×
− NB

PCLKB
n

When you replace PCLKB, N, and n in the above formula, you get

Error [%] = () 100
132264600,57

1060
102

6

×








+×××
×

−×

So, the error is

1001
33264600,57

1060
1

6

×








−
×××

×
− = −1.357323232 [%]

The results from (a) and (b) show that the bit rate error can be reduced by using the bit rate modulation function.

Note 1. For details on calculating the bit rate error when not using the bit rate modulation function, refer to section
40.2.11 Bit Rate Register (BRR) in Rev.1.00 of the RX64M Group User’s Manual: Hardware.

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 12 of 37
Dec. 21, 2020

Table 5.3 and Table 5.4 list the results when the bit rate error is calculated using values not included in this application
note.

Table 5.3 Bit Rate Error When Using the Bit Rate Modulation Function

Bit
Rate
[bps]

PCLKB Operating Frequencies [MHz]
10 30 60

n N M Error [%] n N M Error [%] n N M Error [%]
1,200 0 176 174 0.0011 1 176 232 0.0011 1 205 135 −0.0031
2,400 0 117 232 0.0011 0 205 135 −0.0031 1 176 232 0.0011
4,800 0 58 232 0.0011 0 176 232 0.0011 0 205 135 −0.0031
9,600 0 21 173 −0.0087 0 73 194 0.0069 0 176 232 0.0011
14,400 0 14 177 0.0298 0 58 232 0.0011 0 117 232 0.0011
19,200 0 10 173 −0.0087 0 36 194 0.0069 0 73 194 0.0069
38,400 0 6 220 −0.0913 0 22 241 −0.0715 0 36 194 0.0069
57,600 0 4 236 0.0298 0 10 173 −0.0087 0 21 173 −0.0087

Table 5.4 Bit Rate Error When Not Using the Bit Rate Modulation Function

Bit
Rate
[bps]

PCLKB Operating Frequencies [MHz]
10 30 60

n N Error [%] n N Error [%] n N Error [%]
1,200 1 64 0.1603 1 194 0.1603 2 97 −0.3508
2,400 0 129 0.1603 1 97 −0.3508 1 194 0.1603
4,800 0 64 0.1603 0 194 0.1603 1 97 −0.3508
9,600 0 32 −1.3573 0 97 −0.3508 0 194 0.1603
14,400 0 21 −1.3573 0 64 0.1603 0 129 0.1603
19,200 0 15 1.7252 0 48 −0.3508 0 97 −0.3508
38,400 0 7 1.7252 0 23 1.7252 0 48 −0.3508
57,600 0 4 8.5069 0 15 1.7252 0 32 −1.357

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 13 of 37
Dec. 21, 2020

5.3 File Composition
Table 5.5 lists the Files Used in the Sample Code. Files generated by the integrated development environment are not
included in this table.

Table 5.5 Files Used in the Sample Code

File Name Outline Remarks
main.c Main processing
sci.c Asynchronous communication
sci.h Header file for sci.c
sci_cfg.h Configuration header file for sci.c

5.4 Option-Setting Memory
Table 5.6 lists the Option-Setting Memory Configured in the Sample Code. When necessary, set a value suited to the
user system.

Table 5.6 Option-Setting Memory Configured in the Sample Code
Symbol Addresses Setting Value Contents

OFS0 0012 0068h to 0012 006Bh FFFF FFFFh The IWDT is stopped after a reset.
The WDT is stopped after a reset.

OFS1 0012 006Ch to 0012 006Fh FFFF FFFFh The voltage monitor 0 reset is disabled after a
reset. HOCO oscillation is disabled after a reset.

MDE 0012 0064h to 0012 0067h FFFF FFFFh Little endian

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 14 of 37
Dec. 21, 2020

5.5 Constants
Table 5.7 to Table 5.10 list the constants used in the sample code.

Table 5.7 Constants Used in the Sample Code (main.c)

Constant Name Setting Value Contents
LED0_REG_PODR PORT0.PODR.BIT.B3 LED0 output data storage bit
LED0_REG_PDR PORT0.PDR.BIT.B3 LED0 direction control bit
LED0_REG_PMR PORT0.PMR.BIT.B3 LED0 pin mode control bit
LED1_REG_PODR PORT0.PODR.BIT.B5 LED1 output data storage bit
LED1_REG_PDR PORT0.PDR.BIT.B5 LED1 direction control bit
LED1_REG_PMR PORT0.PMR.BIT.B5 LED1 pin mode control bit
LED2_REG_PODR PORT2.PODR.BIT.B6 LED2 output data storage bit
LED2_REG_PDR PORT2.PDR.BIT.B6 LED2 direction control bit
LED2_REG_PMR PORT2.PMR.BIT.B6 LED2 pin mode control bit
LED_ON 0 LED output data: On
LED_OFF 1 LED output data: Off
BUF_SIZE 12 Buffer size
NULL_SIZE 1 NULL code size

SCI_B_TX_BUSY sci_state.bit.b_tx_busy
Transmission busy flag
0: Ready for transmission
1: Transmitting data

SCI_B_RX_BUSY sci_state.bit.b_rx_busy
Reception busy flag
0: Ready to receive data
1: Receiving data

SCI_B_RX_ORER sci_state.bit.b_rx_orer
Overrun error flag
0: Overrun error did not occur
1: Overrun error occurred

SCI_B_RX_FER sci_state.bit.b_rx_fer
Framing error flag
0: Framing error did not occur
1: Framing error occurred

Table 5.8 Constants Used in the Sample Code (sci.c)

Constant Name Setting Value Contents
SSR_ERROR_FLAGS 38h Bit pattern for the SCI.SSR register error flags

B_TX_BUSY state.bit_b_tx_busy
Transmission busy flag
0: Ready to transmit data
1: Transmitting data

B_RX_BUSY state_bit_b_rx_busy
Reception busy flag
0: Ready to receive data
1: Receiving data

B_RX_ORER state.bit_b_rx_orer
Overrun error flag
0: Overrun error did not occur
1: Overrun error occurred

B_RX_FER state.bit_b_rx_fer
Framing error flag
0: Framing error did not occur
1: Framing error occurred

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 15 of 37
Dec. 21, 2020

Table 5.9 Constants Used in the Sample Code (sci.h)
Constant Name Setting Value Contents

SCI_OK 00h Return value for the SCI_StartTransmit function and
SCI_StartReceive function: SCI transmit/receive start

SCI_BUSY 01h Return value for the SCI_StartTransmit function and
SCI_StartReceive function: SCI transmitting/receiving

SCI_NG 02h
Return value for the SCI_StartTransmit function and
SCI_StartReceive function: Argument error (number of
bytes transmitted/received is 0)

SCIn SCI7 SCI channel: SCI7
GROUPBLn GROUPBL0 Group BL0 interrupt
MSTP_SCIn MSTP(SCI7) SCI7 module stop setting bit
IPR_SCIn_RXIn IPR(SCI7,RXI7) SCI7.RXI7 interrupt priority level setting bit
IPR_SCIn_TXIn IPR(SCI7,TXI7) SCI7.TXI7 interrupt priority level setting bit
IPR_SCIn_GROUPBLn IPR(ICU,GROUPBL0) SCI7.GROUPBL0 interrupt priority level setting bit
IR_SCIn_RXIn IR(SCI7,RXI7) SCI7.RXI7 interrupt status flag
IR_SCIn_TXIn IR(SCI7,TXI7) SCI7.TXI7 interrupt status flag
IR_SCIn_GROUPBLn IR(ICU,GROUPBL0) SCI7.GROUPBL0 interrupt status flag
IS_SCIn_ERIn ICU.GRPBL0.BIT.IS15 SCI7.ERI7 interrupt status flag
IS_SCIn_TEIn ICU.GRPBL0.BIT.IS14 SCI7.TEI7 interrupt status flag
IEN_SCIn_RXIn IEN(SCI7,RXI7) SCI7.RXI7 interrupt request enable bit
IEN_SCIn_TXIn IEN(SCI7,TXI7) SCI7.TXI7 interrupt request enable bit
IEN_SCIn_GROUPBLn IEN(ICU,GROUPBL0) SCI7.GROUPBL0 interrupt request enable bit
EN_SCIn_ERIn ICU.GENBL0.BIT.EN15 SCI7.ERI7 interrupt request enable bit
EN_SCIn_TEIn ICU.GENBL0.BIT.EN14 SCI7.TEI7 interrupt request enable bit
RXDn_PDR PORT9.PDR.BIT.B2 P92 direction control bit
RXDn_PMR PORT9.PMR.BIT.B2 P92 pin mode control bit
RXDnPFS P92PFS P92 pin function control bit
TXDn_PODR PORT9.PODR.BIT.B0 P90 output data storage bit
TXDn_PDR PORT9.PDR.BIT.B0 P90 direction control bit
TXDn_PMR PORT9.PMR.BIT.B0 P90 pin mode control bit
TXDnPFS P90PFS P90 pin function control bit
PSEL_SETTING 0x0Ah Setting value for the pin function select bit: RXD7, TXD7

Table 5.10 Constants Used in the Sample Code (sci_cfg.h)

Constant Name Setting Value Contents
ENABLE_BIT_RATE_MODULATION — Bit rate modulation function enabled

DISABLE_BIT_RATE_MODULATION — Bit rate modulation function disabled

SELECT_SCI7 — Channel SCI7 selected

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 16 of 37
Dec. 21, 2020

5.6 Structure/Union List
Figure 5.4 shows the Structure/Union Used in the Sample Code.

#pragma bit_order left /* Bit field order: The bit field members are allocated from upper bits */
#pragma unpack /* Boundary alignment value for structure members: Alignment by member type */
typedef union
{

uint8_t byte;
struct
{

uint8_t b_tx_busy :1; /* Transmission busy flag 0: Ready to transmit data 1: Transmitting data */
uint8_t b_rx_busy :1; /* Reception busy flag 0: Ready to receive data 1: Receiving data */
uint8_t b_rx_orer :1; /* Overrun error flag 0: Overrun error did not occur 1: Overrun error occurred */
uint8_t b_rx_fer :1; /* Framing error flag 0: Framing error did not occur 1: Framing error occurred */
uint8_t :4; /* Not used */

} bit;
} sci_state_t;
#pragma packoption /* End of specification for the boundary alignment value for structure members */
#pragma bit_order /* End of specification for the bit field order */

Figure 5.4 Structure/Union Used in the Sample Code

5.7 Variables
Table 5.11 lists the static Variables.

Table 5.11 static Variables

Type Variable Name Contents Function

static uint8_t rx_buf[BUF_SIZE] Receive buffer main

static uint8_t tx_buf[] Transmit buffer main

static sci_state_t sci_state SCI status cb_sci_rx_error

static const uint8_t * pbuf_tx Pointer to the transmit buffer SCI_StartTransmit
sci_txi_isr static uint8_t tx_cnt Transmit counter

static uint8_t * pbuf_rx Pointer to the receive buffer SCI_StartReceive
sci_rxi_isr static uint8_t rx_cnt Receive counter

static sci_state_t state SCI status

SCI_StartReceive
SCI_StartTransmit
SCI_GetState
sci_tei_isr
sci_rxi_isr
sci_eri_isr

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 17 of 37
Dec. 21, 2020

5.8 Functions
Table 5.12 lists the Functions.

Table 5.12 Functions

Function Name Outline

main Main processing

port_init Port initialization

R_INIT_StopModule Stop processing for active peripheral functions after a reset

R_INIT_NonExistentPort Nonexistent port initialization

R_INIT_Clock Clock initialization

peripheral_init Peripheral function initialization

cb_sci_tx_end Callback function (SCI transmission complete)

cb_sci_rx_end Callback function (SCI reception complete)

cb_sci_rx_error Callback function (SCI reception error)

SCI_Init User interface function (SCI initialization)

SCI_StartReceive User interface function (start SCI reception)

SCI_StartTransmit User interface function (start SCI transmission)

SCI_GetState User interface function (obtain SCI status)

sci_txi_isr Transmit data empty interrupt

sci_tei_isr Transmit end interrupt

sci_rxi_isr Receive data full interrupt

sci_eri_isr Receive error interrupt

Excep_SCIn_ERIn SCI.ERI interrupt handling

Excep_SCIn_RXIn SCI.RXI interrupt handling

Excep_SCIn_TXIn SCI.TXI interrupt handling

Excep_SCIn_TEIn SCI.TEI interrupt handling

Excep_ICU_GROUPBLn Group BL0 interrupt handling

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 18 of 37
Dec. 21, 2020

5.9 Function Specifications
The following tables list the sample code function specifications.

main

Outline Main processing

Header None

Declaration void main(void)

Description After initialization, this function starts SCI reception and transmission.

Arguments None

Return values None

port_init

Outline Port initialization

Header None

Declaration static void port_init(void)

Description This function initializes the ports.

Arguments None

Return values None

R_INIT_StopModule

Outline Stop processing for active peripheral functions after a reset

Header r_init_stop_module.h

Declaration void R_INIT_StopModule(void)

Description This function configures settings to enter the module-stop state.
Arguments None

Return values None

Remarks
Transition to the module-stop state is not performed in the sample code. For more
information on this function, refer to the RX64M Group Initial Setting Rev. 1.00 application
note.

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 19 of 37
Dec. 21, 2020

R_INIT_NonExistentPort

Outline Nonexistent port initialization

Header r_init_non_existent_port.h
Declaration void R_INIT_NonExistentPort(void)
Description This function initializes port direction registers for ports that do not exist.
Arguments None

Return values None

Remarks

The number of pins in the sample code is set for the 176-pin package (PIN_SIZE=176). After
this function is called, when writing in byte units to the PDR and PODR registers which have
nonexistent ports, set the corresponding bits for nonexistent ports as follows: set the I/O
select bits in the PDR registers to 1 and set the output data store bits in the PODR registers
to 0. For more information on this function, refer to the RX64M Group Initial Setting Rev.
1.00 application note.

R_INIT_Clock

Outline Clock initialization

Header r_init_clock.h

Declaration void R_INIT_Clock(void)

Description This function initializes the clocks.

Arguments None

Return values None

Remarks
In the sample code, the PLL clock is selected as the system clock, and the sub-clock is not
used. For more information on this function, refer to the RX64M Group Initial Setting Rev.
1.00 application note.

peripheral_init

Outline Peripheral function initialization

Header None

Declaration static void peripheral_init(void)

Description This function initializes the peripheral functions used.

Arguments None

Return values None

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 20 of 37
Dec. 21, 2020

cb_sci_tx_end

Outline Callback function (SCI transmission complete)

Header None

Declaration static void cb_sci_tx_end(void)

Description This function is called when SCI transmission is complete.

Arguments None

Return values None

cb_sci_rx_end

Outline Callback function (SCI reception complete)

Header None

Declaration static void cb_sci_rx_end(void)

Description This function is called when SCI reception is complete.

Arguments None

Return values None

cb_sci_rx_error

Outline Callback function (SCI reception error)

Header None

Declaration static void cb_sci_rx_error(void)

Description This function is called when an SCI reception error occurs.

Arguments None

Return values None

Remarks Error processing is not performed in the sample code. Add error processing when
necessary.

SCI_Init

Outline User interface function (SCI initialization)

Header sci.h

Declaration void SCI_Init(void)

Description This function initializes the SCI.

Arguments None

Return values None

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 21 of 37
Dec. 21, 2020

SCI_StartReceive

Outline User interface function (start SCI reception)

Header sci.h

Declaration uint8_t SCI_StartReceive(uint8_t * pbuf, uint8_t num, CallBackFunc pcb_rx_end,
CallBackFunc pcb_rx_error)

Description This function starts SCI reception.

Arguments

• uint8_t * pbuf: Pointer for the receive data storage
• uint8_t num: Number of bytes to be received
• CallBackFunc pcb_rx_end: Pointer for the callback function (reception complete)
• CallBackFunc pcb_rx_error: Pointer for the callback function (reception error)

Return values
• SCI_NG: Argument error (number of bytes to be received is 0)
• SCI_BUSY: SCI receiving data
• SCI_OK: Start SCI reception

SCI_StartTransmit

Outline User interface function (start SCI transmission)

Header sci.h

Declaration uint8_t SCI_StartTransmit(const uint8_t * pbuf, uint8_t num, CallBackFunc pcb_tx_end)

Description This function starts SCI transmission.

Arguments
• const uint8_t * pbuf: Pointer for the transmit data storage
• uint8_t num: Number of bytes to be transmitted
• CallBackFunc pcb_tx_end: Pointer for the callback function (transmission complete)

Return values
• SCI_NG: Argument error (number of bytes to be transmitted is 0)
• SCI_BUSY: SCI transmitting data
• SCI_OK: Start SCI transmission

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 22 of 37
Dec. 21, 2020

SCI_GetState

Outline User interface function (obtain SCI status)

Header sci.h

Declaration sci_state_t SCI_GetState(void)

Description This function returns the SCI status.

Arguments None

Return values

• sci_state_t.bit.b_tx_busy: Transmission busy flag
0: Ready to transmit data
1: Transmitting data

• sci_state_t.bit.b_rx_busy: Reception busy flag
0: Ready to receive data
1: Receiving data

• sci_state_t.bit.b_rx_orer: Overrun error flag
0: Overrun error did not occur
1: Overrun error occurred

• sci_state_t.bit.b_rx_fer: Framing error flag
0: Framing error did not occur
1: Framing error occurred

sci_txi_isr

Outline Transmit data empty interrupt

Header None

Declaration static void sci_txi_isr(void)

Description
This function is called in the SCI.TXI interrupt handling function. Transmit data is written.
When the last data is transmitted, the TXI interrupt request is disabled, and the TEI interrupt
request is enabled.

Arguments None

Return values None

sci_tei_isr

Outline Transmit end interrupt

Header None

Declaration static void sci_tei_isr(void)

Description This function is called in the SCI.TEI interrupt handling function. The TEI interrupt request is
disabled, and the callback function (SCI transmission complete) is called.

Arguments None

Return values None

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 23 of 37
Dec. 21, 2020

sci_rxi_isr

Outline Receive data full interrupt

Header None

Declaration static void sci_rxi_isr(void)

Description This function is called in the SCI.RXI interrupt handling function. Received data is stored.
When the last data is received, the callback function (SCI reception complete) is called.

Arguments None

Return values None

sci_eri_isr

Outline Receive error interrupt

Header None

Declaration static void sci_eri_isr(void)

Description This function is called in the SCI.ERI interrupt handling function. Serial reception and serial
transmission are disabled, and the callback function (SCI reception error) is called.

Arguments None

Return values None

Excep_SCIn_ERIn

Outline SCI.ERI interrupt handling

Header None

Declaration static void Excep_SCIn_ERIn(void)

Description This function performs receive error interrupt handling.

Arguments None

Return values None

Excep_SCIn_RXIn

Outline SCI.RXI interrupt handling

Header None

Declaration static void Excep_SCIn_RXIn(void)

Description This function performs receive data full interrupt handling.

Arguments None

Return values None

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 24 of 37
Dec. 21, 2020

Excep_SCIn_TXIn

Outline SCI.TXI interrupt handling

Header None

Declaration static void Excep_SCIn_TXIn(void)

Description This function performs transmit data empty interrupt handling.

Arguments None

Return values None

Excep_SCIn_TEIn

Outline SCI.TEI interrupt handling

Header None

Declaration static void Excep_SCIn_TEIn(void)

Description This function performs transmit end interrupt handling.

Arguments None

Return values None

Excep_ICU_GROUPBLn

Outline Group BL0 interrupt handling

Header None

Declaration static void Excep_ICU_GROUPBL0(void)

Description This function performs group BL0 interrupt handling.

Arguments None

Return values None

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 25 of 37
Dec. 21, 2020

5.10 Flowcharts
5.10.1 Main Processing
Figure 5.5 shows the Main Processing.

main

Disable maskable interrupts I flag ← 0

Port initialization
port_init()

Stop processing for active
peripheral functions after a reset

R_INIT_StopModule()

Nonexistent port initialization
R_INIT_NonExistentPort()

Clock initialization
R_INIT_Clock()

Peripheral function initialization
peripheral_init()

Enable maskable interrupts I flag ← 1

Initialize the RAM Write 00h to the receive buffer

User interface function
(start SCI transmission)

SCI_StartTransmit

Has SCI transmission
completed?

SCI is transmitting data

SCI transmission started or
an argument error occurred

User interface function
(start SCI reception)
SCI_StartReceive

Has SCI reception
completed?

SCI is receiving data

SCI reception started or an
argument error occurred

Figure 5.5 Main Processing

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 26 of 37
Dec. 21, 2020

5.10.2 Port Initialization
Figure 5.6 shows Port Initialization.

port_init

Set the port output data PORT0.PODR register
B3 bit ← 1: LED0 is off
B5 bit ← 1: LED1 is off

PORT2.PODR register
B6 bit ← 1: LED2 is off

Set the port direction PORT0.PDR register
B3 bit ← 1: LED0 is used as an output port
B5 bit ← 1: LED1 is used as an output port

PORT2.PDR register
B6 bit ← 1: LED2 is used as an output port

Set the port mode PORT0.PMR register
B3 bit ← 1: LED0 is used as a general I/O pin
B5 bit ← 1: LED1 is used as a general I/O pin

PORT2.PMR register
B6 bit ← 1: LED2 is used as a general I/O pin

return

Figure 5.6 Port Initialization

5.10.3 Peripheral Function Initialization
Figure 5.7 shows Peripheral Function Initialization.

peripheral_init

User interface function
(SCI initialization)

SCI_Init()

return

Figure 5.7 Peripheral Function Initialization

5.10.4 Callback Function (SCI Transmission Complete)
Figure 5.8 shows the Callback Function (SCI Transmission Complete).

cb_sci_tx_end

Turn on LED0

return

PORT0.PODR register
B3 bit ← 0

Figure 5.8 Callback Function (SCI Transmission Complete)

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 27 of 37
Dec. 21, 2020

5.10.5 Callback Function (SCI Reception Complete)
Figure 5.9 shows the Callback Function (SCI Reception Complete).

cb_sci_rx_end

Turn on LED1

return

PORT0.PODR register
B5 bit ← 0

Figure 5.9 Callback Function (SCI Reception Complete)

5.10.6 Callback Function (SCI Reception Error)
Figure 5.10 shows the Callback Function (SCI Reception Error).

cb_sci_rx_error

Turn on LED2 PORT2.PODR register
B6 bit ← 0

User interface function
(obtain SCI status)

SCI_GetState()

Did an overrun
error occur?

Yes

No
Processing when an

overrun error occurs *1

Did a framing
error occur?

Yes

No
Processing when a

framing error occurs *1

return

Note 1. This processing is not performed in the sample code.
Add processing to the program when necessary.

Figure 5.10 Callback Function (SCI Reception Error)

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 28 of 37
Dec. 21, 2020

5.10.7 User Interface Function (SCI Initialization)
Figure 5.11 and Figure 5.12 show the user interface function (SCI initialization).

SCI_Init

Disable SCIn interrupt request IER0C register
IEN2 bit ← 0: SCI7.RXI7 interrupt request is disabled.
IEN3 bit ← 0: SCI7.TXI7 interrupt request is disabled.

IER0D register
IEN6 bit ← 0: ICU.GROUPBL0 interrupt request is disabled.

GENBL0 register
EN14 bit ← 0: SCI7.TEI7 interrupt request is disabled.
EN15 bit ← 0: SCI7.ERI7 interrupt request is disabled.

Exit the module-stop state PRCR register ← A502h
PRC1 bit = 1: Related registers are write enabled

MSTPCRB register
MSTPB24 bit ← 0: Release SCI7 from the module-stop state

PRCR register ← A500h
PRC1 bit = 0: Related registers are write disabled

Disable transmission, reception, and
interrupt requests *1

SCIn.SCR register ← 00h
TEIE bit = 0: A TEI interrupt request is disabled
RE bit = 0: Serial reception is disabled
TE bit = 0: Serial transmission is disabled
RIE bit = 0: RXI and ERI interrupt requests are disabled
TIE bit = 0: A TXI interrupt request is disabled

Set the port output data PORT9.PODR register
B0 bit ← 1: TXD7 output is high

Set the port direction PORT9.PDR register
B0 bit ← 1: TXD7 functions as an output pin
B2 bit ← 0: RXD7 functions as an input pin

Set the port mode PORT9.PMR register
B0 bit ← 0: TXD7 is used as a general I/O pin.
B2 bit ← 0: RXD7 is used as a general I/O pin.

Enable writing to the PFSWE bit MPC.PWPR register
B0WI bit ← 0

Enable writing to the PFS register MPC.PWPR register
PFSWE bit ← 1

Select the pin function MPC.P90PFS register ← 0Ah
PSEL[5:0] bits = 001010b: TXD7

MPC.P92PFS register ← 0Ah
PSEL[5:0] bits = 001010b: RXD7

Disable writing to the PFS register MPC.PWPR register
PFSWE bit ← 0

Disable writing to the PFSWE bit MPC.PWPR register
B0WI bit ← 1

Set the port mode PORT9.PMR register
B2 bit ← 1: Uses the pin as an I/O port for peripheral modules.

A

Note 1. After writing to the RE, TE, RIE, and TIE bits, confirm that the value written can be read.

Figure 5.11 User Interface Function (SCI Initialization) (1/2)

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 29 of 37
Dec. 21, 2020

Select the clock SCIn.SCR register
CKE[1:0] bits ← 00b: On-chip baud rate generator

Set the format for
transmission and reception

SCIn.SMR register ← 08h
CKS[1:0] bits = 00b: PCLK clock
MP bit = 0: Multi-processor communications function is disabled
STOP bit = 1: 2 stop bits
PE bit = 0: No parity
CHR bit = 0: Transmit/receive in 8-bit data length

(selects in combination with the SCMR.CHR1 bit)
CM bit = 0: Asynchronous mode

SCIn.SCMR register ← F2h

SMIF bit = 0: Non-smart card interface mode
SINV bit = 0: TDR contents are transmitted as they are.

Receive data is stored as it is in RDR.
SDIR bit = 0: Transfer with LSB first
CHR1 bit = 1: Transmit/receive in 8-bit data length

(selects in combination with the SMR.CHR bit)

SCIn.SEMR register ← 04h *1
BRME bit = 1: Bit rate modulation function is enabled.
ABCS bit = 0: Selects 16 base clock cycles for 1-bit period.
NFEN bit = 0: Noise cancellation function for the RXDn input signal is disabled.
BGDM bit = 0: Baud rate generator outputs the clock with normal frequency.
RXDESEL bit = 0: The low level on the RXDn pin is detected as the start bit.

Set the bit rate SCIn.BRR register ← 21 *1:

Set the bit rate correction value

Set the SCIn interrupt priority level IPR098 register
IPR[3:0] bits ← 0001b: SCI7.RXI7 interrupt is set to priority level 1

IPR099 register
IPR[3:0] bits ← 0001b: SCI7.TXI7 interrupt is set to priority level 1

IPR110 register
IPR[3:0] bits ← 0002b: ICU.GROUPBL0 interrupt is set to priority level 2

Clear the SCIn interrupt request IR098 register
IR flag ← 0: SCI7.RXI7 interrupt request is not generated

IR099 register
IR flag ← 0: SCI7.TXI7 interrupt request is not generated

Enable the RXI interrupt request
and ERI interrupt request

SCIn.SCR register
RIE bit ← 1

Enable the TXI interrupt request SCIn.SCR register
TIE bit ← 1

Enable the GROUPBLn
interrupt request

IER0D register
IEN6 bit ← 1

Enable serial transmission
and serial reception

SCIn.SCR register
RE bit ← 1
TE bit ← 1

A

211
600,57

173
256264

60
1

=−



























×






×× − bps

MHz

SCIn.MDDR register ← 173 *1: Correct the bit rate evenly to
256
173

return

Note 1. Setting value when using the bit rate modulation function.

Figure 5.12 User Interface Function (SCI Initialization) (2/2)

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 30 of 37
Dec. 21, 2020

5.10.8 User Interface Function (Start SCI Reception)
Figure 5.13 shows the User Interface Function (Start SCI Reception).

SCI_StartReceive Arguments
uint8_t * pbuf: Storage pointer for data received
uint8_t num: Number of bytes to be received
CallBackFunc pcb_rx_end: Callback function pointer (SCI reception complete)
CallBackFunc pcb_rx_error: Callback function pointer (SCI reception error)

Set the return value (argument error) return_value ← SCI_NG

Is the number of
bytes to be received 0?

Yes

No return (return_value)

Is data being received?
Yes

No

Read the B_RX_BUSY flag: 0: Ready to receive data
1: Receiving data

Set the return value
(SCI receiving data)

return_value ← SCI_BUSY

Set the reception busy flag B_RX_BUSY ← 1

Clear the reception error flag B_RX_ORER ← 0
B_RX_FER ← 0

Set argument in the RAM pbuf_rx ← pbuf
rx_cnt ← num
pcb_sci_rx_end ← pcb_rx_end
pcb_sci_rx_error ← pcb_rx_error

Enable the SCIn.RXIn interrupt
request and SCIn.ERIn interrupt

request

GENBL0 register
EN15 bit ← 1

IER0C register
IEN2 bit ← 1

Set the return value
(start SCI reception) return_value ← SCI_OK

return (return_value)

Figure 5.13 User Interface Function (Start SCI Reception)

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 31 of 37
Dec. 21, 2020

5.10.9 User Interface Function (Start SCI Transmission)
Figure 5.14 shows the User Interface Function (Start SCI Transmission).

SCI_StartTransmit Arguments
uint8_t * pbuf: Storage pointer for data to be transmitted
uint8_t num: Number of bytes to be transmitted
CallBackFunc pcb_tx_end: Callback function pointer (SCI transmission complete)

Set the return value (argument error) return_value ← SCI_NG

Was the
number of bytes to be

transmitted 0?

Yes

No return (return_value)

Is data being transmitted?
Yes

No

Read the B_TX_BUSY flag: 0: Ready to transmit data
1: Transmitting data

Set the return value
(SCI transmitting data)

return_value ← SCI_BUSY

Set the transmission busy flag B_TX_BUSY ← 1

Set argument in the RAM pbuf_tx ← pbuf
tx_cnt ← num
pcb_sci_tx_end ← pcb_tx_end

Enable the SCIn.TXIn
interrupt request

IER0C register
IEN3 bit ← 1

Set the return value
(start SCI transmission) return_value ← SCI_OK

return (return_value)

Set the port mode *1 PORT9.PMR register
B0 bit ← 1: Uses the pin as a peripheral function.

Note 1. After writing to the pin mode control bit, confirm that the value written can be read.

Figure 5.14 User Interface Function (Start SCI Transmission)

5.10.10 User Interface Function (Obtain SCI Status)
Figure 5.15 shows the User Interface Function (Obtain SCI Status).

SCI_GetState

Set the SCI status as the return value

return (state)

Figure 5.15 User Interface Function (Obtain SCI Status)

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 32 of 37
Dec. 21, 2020

5.10.11 Transmit Data Empty Interrupt
Figure 5.16 shows the Transmit Data Empty Interrupt.

sci_txi_isr

Set the data to be transmitted SCIn.TDR register ← *pbuf_tx

Increment the pointer to the transmit buffer by 1 pbuf_tx ← pbuf_tx + 1

Decrement the transmit counter by 1 tx_cnt ← tx_cnt – 1

Was the last
data transmitted?

No

Yes

Read tx_cnt

Disable the SCIn.TXIn interrupt request IER0C register
IEN3 bit ← 0

Enable the TEI interrupt request SCIn.SCR register
TEIE bit ← 1

Enable the SCIn.TEIn interrupt request

return

Dummy read the SSR register Read and calculate the SCIn.SSR register value

GENBL0 register
EN14 bit ← 1

Figure 5.16 Transmit Data Empty Interrupt

5.10.12 Transmit End Interrupt
Figure 5.17 shows the Transmit End Interrupt.

sci_tei_isr

Set the port mode *1 PORT9.PMR register
B0 bit ← 0: Uses the TXD7 pin as a general I/O pin.

Disable the SCIn.TEIn interrupt request GENBL0 register
EN14 bit ← 0

Disable the TEI interrupt request *1 SCIn.SCR register
TEIE bit ← 0

Clear the transmission busy flag B_TX_BUSY ← 0

Callback function
(SCI transmission complete)

pcb_sci_tx_end()

return

Note 1. After writing to the pin mode control bit and the TEIE bit, confirm that the values written can be read.

Figure 5.17 Transmit End Interrupt

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 33 of 37
Dec. 21, 2020

5.10.13 Receive Data Full Interrupt
Figure 5.18 shows the Receive Data Full Interrupt.

sci_rxi_isr

Store the received data *pbuf_rx ← SCIn.RDR register

Increment the pointer to the receive buffer by 1 pbuf_rx ← pbuf_rx + 1

Decrement the receive counter by 1 rx_cnt ← rx_cnt – 1

Was the last data received?
No

Yes

Read rx_cnt

Disable the SCIn.RXIn interrupt request
and SCIn.ERIn interrupt request

IER0C register
IEN2 bit ← 0

GENBL0 register
EN15 bit ← 0

Clear the SCIn.RXIn interrupt request IR098 register
IR flag ← 0

Clear the reception busy flag B_RX_BUSY ← 0

Callback function
(SCI reception complete)

pcb_sci_rx_end()

return

Figure 5.18 Receive Data Full Interrupt

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 34 of 37
Dec. 21, 2020

5.10.14 Receive Error Interrupt
Figure 5.19 shows the Receive Error Interrupt.

sci_eri_isr

Did an overrun error occur?No

Yes

Set the overrun error flag

Did a framing error occur?

B_RX_ORER ← 1

Read the SCIn.SSR register
ORER flag: 0: No overrun error occurred

1: An overrun error has occurred

Read the SCIn.SSR register
FER flag: 0: No framing error occurred

1: A framing error has occurredYes

No

Set the framing error flag B_RX_FER ← 1

Read the SCIn.RDR register

Disable serial transmission and serial
reception *1

SCIn.SCR register
RE bit ← 0
TE bit ← 0

Clear the error flag *1 SCIn.SCR register ← (SCIn.SSR register & C7h) | C0h
PER flag = 0: No parity error occurred
FER flag = 0: No framing error occurred
ORER flag = 0: No overrun error occurred

Disable the SCIn.RXIn and
SCIn.ERIn interrupt requests

IER0C register
IEN2 bit ← 0

GENBL0 register
EN15 bit ← 0

Disable the RXI and ERI interrupt requests *1 SCIn.SCR register
RIE bit ← 0

Note 1. After writing to the RE bit, RIE bit, PER flag, FER flag, and ORER flag, confirm that the values written can be read.
After writing to bits TIE and TEIE, confirm that the values written can be read.

Dummy read the RDR register

Disable the SCIn.TXIn interrupt request IER0C register
IEN3 bit ← 0

Disable the TXI interrupt request *1 SCIn.SCR register
TIE bit ← 0

Disable the SCIn.TEIn interrupt request GENBL0 register
EN14 bit ← 0

Disable the TEI interrupt request *1 SCIn.SCR register
TEIE bit ← 0

Disable the GROUPBLn interrupt request IER0D register
IEN6 bit ← 0

Clear the SCIn.RXIn and
SCIn.TXIn interrupt requests

IR098 register
IR099 register

IR flag ← 0

Clear the transmission busy flag
and reception busy flag

B_RX_BUSY ← 0
B_TX_BUSY ← 0

Callback function (SCI reception error)
pcb_sci_rx_error

return

Figure 5.19 Receive Error Interrupt

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 35 of 37
Dec. 21, 2020

5.10.15 SCI.ERI Interrupt Handling
Figure 5.20 shows SCI.ERI Interrupt Handling.

Excep_SCIn_ERIn

Verify the source of
the interrupt request

No interrupt requested

An interrupt was requested

Read the SCIn.SCR register
RIE bit = 0: RXI and ERI interrupts are disabled

= 1: RXI and ERI interrupts are enabled
Read the SCIn.SSR register

PER flag = 0: No parity error occurred
= 1: A parity error has occurred

FER flag = 0: No framing error occurred
= 1: A framing error occurred

ORER flag = 0: No overrun error occurred
= 1: An overrun error occurred

Receive error interrupt
sci_eri_isr()

return

Figure 5.20 SCI.ERI Interrupt Handling

5.10.16 SCI.RXI Interrupt Handling
Figure 5.21 shows SCI.RXI Interrupt Handling.

Excep_SCIn_RXIn

Receive data full interrupt
sci_rxi_isr()

return

Figure 5.21 SCI.RXI Interrupt Handling

5.10.17 SCI.TXI Interrupt Handling
Figure 5.22 shows SCI.TXI Interrupt Handling.

Excep_SCIn_TXIn

Transmit data empty interrupt
sci_txi_isr()

return

Figure 5.22 SCI.TXI Interrupt Handling

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 36 of 37
Dec. 21, 2020

5.10.18 SCI.TEI Interrupt Handling
Figure 5.23 shows SCI.TEI Interrupt Handling.

Excep_SCIn_TEIn

Verify the source of
the interrupt request

No interrupt requested

An interrupt was requested

Read the SCIn.SCR register
TEIE bit = 0: A TEI interrupt request is disabled

= 1: A TEI interrupt request is enabled
Read the SCIn.SSR register

TEND flag = 0: A character is being transmitted.
= 1: Character transfer has been completed.

Transmit end interrupt
sci_tei_isr()

return

Figure 5.23 SCI.TEI Interrupt Handling

5.10.19 Group BL0 Interrupt Handling
Figure 5.24 shows Group BL0 Interrupt Handling.

Excep_ICU_GROUPBLn

Read the IR flagIR flag is 0

IR flag is 1

Read the IR110 register
IR flag: 0: No interrupt request is generated.

1: An interrupt request is generated.

Was a receive
error interrupt request

generated?

No interrupt request generated

Interrupt request is generated

Read the ICU.GENBL0 register
EN15 bit: 0: SCI7.ERI7 interrupt request is disabled.

1: SCI7.ERI7 interrupt request is enabled.
Read the ICU.GRPBL0 register

IS15 bit: 0: SCI7.ERI7 interrupt is not requested.
1: SCI7.ERI7 interrupt is requested.

SCI.ERI interrupt handling
Excep_SCIn_ERIn()

Was a
transmit end interrupt request

generated?

Interrupt request is generated

No interrupt request generated

SCI_TEI interrupt handling
Excep_SCIn_TEIn()

return

Read the ICU.GENBL0 register
EN14 bit: 0: SCI7.TEI7 interrupt request is disabled.

1: SCI7.TEI7 interrupt request is enabled.
Read the ICU.GRPBL0 register

IS14 bit: 0: SCI7.TEI7 interrupt is not requested.
1: SCI7.TEI7 interrupt is requested.

Figure 5.24 Group BL0 Interrupt Handling

RX64M, RX71M Group Using the SCIg Bit Rate Modulation Function

R01AN2085EJ0110 Rev. 1.10 Page 37 of 37
Dec. 21, 2020

6. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents
User’s Manual: Hardware

RX64M Group User’s Manual: Hardware (R01UH0377EJ)
RX71M Group User’s Manual: Hardware (R01UH0493EJ)
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

[e2 studio] RX Family Compiler CC-RX V.2.01.00 User’s Manual: RX Coding Rev.1.00 (R20UT2748EJ)
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

REVISION HISTORY RX64M, RX71M Group Application Note
Using the SCIg Bit Rate Modulation Function

Rev. Date
Description

Page Summary
1.00 Oct. 1, 2014 — First edition issued
1.01 Nov. 2, 2015 — RX71M Group is added to the target device

25 “Has SCI transmission started?” is changed to ” Has SCI
transmission completed?” in table 5.5
“Has SCI reception started?” is changed to ” Has SCI reception
completed?” in table 5.5

1.10 Dec. 21, 2020 — Update the toolchain version.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

A-1

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Specifications
	1.1 USB Serial Conversion

	2. Confirmed Operating Conditions
	3. Reference Application Note
	4. Hardware
	4.1 Pins Used

	5. Software
	5.1 Operation Overview
	5.1.1 Serial Transmission
	5.1.2 Serial Reception

	5.2 Bit Rate Modulation Function
	5.2.1 About the Bit Rate Modulation Function
	5.2.2 Using the Bit Rate Modulation Function
	5.2.3 Comparison of Using and Not Using the Bit Rate Modulation Function

	5.3 File Composition
	5.4 Option-Setting Memory
	5.5 Constants
	5.6 Structure/Union List
	5.7 Variables
	5.8 Functions
	5.9 Function Specifications
	5.10 Flowcharts
	5.10.1 Main Processing
	5.10.2 Port Initialization
	5.10.3 Peripheral Function Initialization
	5.10.4 Callback Function (SCI Transmission Complete)
	5.10.5 Callback Function (SCI Reception Complete)
	5.10.6 Callback Function (SCI Reception Error)
	5.10.7 User Interface Function (SCI Initialization)
	5.10.8 User Interface Function (Start SCI Reception)
	5.10.9 User Interface Function (Start SCI Transmission)
	5.10.10 User Interface Function (Obtain SCI Status)
	5.10.11 Transmit Data Empty Interrupt
	5.10.12 Transmit End Interrupt
	5.10.13 Receive Data Full Interrupt
	5.10.14 Receive Error Interrupt
	5.10.15 SCI.ERI Interrupt Handling
	5.10.16 SCI.RXI Interrupt Handling
	5.10.17 SCI.TXI Interrupt Handling
	5.10.18 SCI.TEI Interrupt Handling
	5.10.19 Group BL0 Interrupt Handling

	6. Sample Code
	7. Reference Documents
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

