LENESANS APPLICATION NOTE

RO1AN2784EU0102
RZ/A1H Group 4EUL02
RSCAN Driver Module Apr 4, 2016

Introduction

This document describes the API for the RSCAN driver for the RZ/AL. The driver supports all channels on the
peripheral. Message transfers can be done using 1-message deep mailboxes, 16-message deep FIFOs, or any
combination thereof.

NOTE: This driver has only had basic testing performed on it. This includes simple mailbox, FIFO (non-
Gateway), interrupt, and Error Passive State detection and recovery operations.

Target Device
The following is a list of devices that are currently supported by this API:
e RZ/A1H Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Related Documents
e RZ/Al Hardware User’s Manual (ROIUH0403EJ)

RO1AN2784EU0102 Rev. 1.02 Page 1 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

Contents

L. OVEBIVIBW .oeiiiiiiiiieiieeeeeeeee ettt ettt et ettt et e e et eee e eae e e aeaeaeaeeae e aesa s e eaaesaaaaeseaesasasaseaesssssesssnnssesasesennsesnrnnnres 4
P2 AN o 1o {0] 1 ¢ = U1 o o P PP 5
2.1 Hardware REQUITEMENTScc.icciiiiiiie e e i e ittt e e e e e s e st e e e e e e s s st ba e e e e e e e e s assntaeeeaaeessasnserreeeeaesesannrnneees 5
2.2 Hardware ReSOUICE REGQUINEMENESc.iiieiiieeiie e e i e sitieeeeeee e e s s stnteeereaeessasntntreeraaeesssnnsareeeeeaesssannenneees 5
2.3 SOftWAIrE REGUITEIMENTS. ...coiiutiiie ittt ettt e et e e e st et e e e st et e e e s b et e e e aabe e e e e anbr e e e e anbreeeennnes 5
P S o 1 7= 11 o] £ SRTPPR 5
2R SIS TU T o] o o] ¢ (=To I o] o1 -] o 1= SRR 5
P G I o T To (=] gl 1 = PP TR 5
P A 1 11T (=T G 1Y 01T PO PTPR P PPRPPPI 6
P S T O 01T 8T =1 a (o 0 IO AV L=Y oY/ - SRR 6
P2 B O To [T . PP EPTR 8
A KO Y o B = = B 1Y = PP PPTT P PRPPPI 8
2.10.1 Box IDs (MailboXes and FIFOS)cccoiiiiiiieie e s 8
2.10.2 R_CAN_OPEN() DALA TYPES ...ueeeeeeitiieeeitiete sttt e ettt ettt ettt e e sibb e e e s asbee e e s sabn e e e s anbneeessnneeees 9
2.10.3 Callback fUNCHON BVENLS ...ttt e e e e e e s reeaaeeeas 10
2.10.4 R_CAN_INItChAN() Data TYPEScieie i i i e e e s 10
2.10.5 R_CAN_CONfIGFIFO() DAA TYPES. .. uuiieiieieieiiiiieie ettt e sttt e st e e st e s ssb e e e s sibee e s anbaeeeennenes 10
2.10.6 R_CAN_AdARXRUIE() Data TYPES . .ccieieee e e e ceee e e 10
2.10.7 R_CAN_SendMsSg() Data TYPESceeeieieieiece e i e s s 11
2.10.8 R_CAN_GEIMSY() DALA TYPES...eeieiutriieiiititeiaitieee sttt e sttt e sttt e s st e e snb e e e s sabr e e e eanbneeeeanenes 11
2.10.9 R_CAN_GetHIsStoryENtry() Data TYPES ..ccceeeeeeeeeeieeieee e s e s s e 11
2.10.10 R_CAN_GetStatusMask() Data TYPeSccceeeeeieiiiee e, 11
2.10.11 R_CAN_GEetCOUNLEIT() DA TYPES ..eeeeiiiieeeeiiiieee ittt e e sttt e st e e st e et e e s sbneeeesnbneeeeanes 13
2.10.12 R_CAN_Control() Data TYPEScoee oo, 13
2.11 RETUIM VAIUBS. ..ottt e e oottt et e e o4 e e bbb e et e e e e e e e s aab bbb e et e e e e e s e aanbbeeeeaeeesaannnes 13
G T N ¥ [Vo o) PSPPSR 14
G TR R S 1010 1] 4= o Y PSPPI 14
I = O Y\ @ o1 o RSO 15
TR I = O O Y A (011 (¢ =T o 1 ISP POPPPTTPP 17
I R O Y\ @e oo | 1§ ISP 20
3.5 R_CAN_AUURXRUIE() «oeiuveeeieiiiiieeiiiite sttt e sttt e e sttt e e sttt e e s stee e e e ssbaeeesastaeeesasaseeesassseeesanseeeesannneeens 22
G I = O O Y A I ©o 1111 o1 I PP POPPPTTPP 24
G T A = S @ NN TS Y= g o 11 o () 26
3.8 R_CAN_GEIMSG() -uvveeeeiurrereeiirieeeitieteeateeeaeatteeeestaeeeeatseeeesaseeeeesassseeesassseeesassseeesansseeesanseeeesanneeens 28
3.9 R_CAN_GEHISIONYENTIIY() «eeeiutiieeeiiieiee ittt ettt sttt ettt ettt e e s aabb e e e s sabb e e e s annneee s 29
3.10 R_CAN_GetStatUSMASK() . ..uueeeeieeeiee e e e e e s s 30
3.11 R_CAN_GEICOUNIFIFO() tertteittiieeiiieie e ittt e sttt e e sttt e e sttt e e stee e e e sntaeeesansaeeessnsseeeeansaeeesansseeesannneeeas 32
3.12 R_CAN_GEICOUNTEIT() 1.uteeeieitiieeeitieee e sttt e e sttt e sttt ettt e e sttt e e sttt e e s sttt e e s nbe e e e snbeeeesnnneeeesannneeens 33
N T = YV [T T) TSRO 34
T o o g O N\ I 1= AV =] €7 (o] o TP PPPPUPERPP 35
N =T o Lo I = =X PR 36
LT VY o131 (== T aTo ST U] o] o To] o PP PPTPUPERPPN 37
RV] (o] I S L=Tolo] (o PP PPRTT TR 38
RO1AN2784EU0102 Rev. 1.02 Page 2 of 37

Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

General Precautions in the Handling of MPU/MCU ProductS...........ccccuveiiiieeiiiiiiiiieeeee e sesiieeese e e e s 39

ROLAN2784EU0102 Rev. 1.02 Page 3 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

1. Overview

This driver provides support for all five channels of the RSCAN peripheral. A static configuration of mailboxes and
FIFOs (boxes) is used to simplify the API design and its usage.

All mailboxes are one-message deep. There are 16 transmit mailboxes for each channel, and 16 receive mailboxes in
total. The transmit mailboxes can optionally be configured for interrupt operation, whereas the receive mailboxes
cannot. The transmit mailboxes do not accept a message for transmit until the previous message has been sent. The
receive mailboxes always contain the most recent message received, overwriting the previous contents without an error
condition being generated. There is no hardware interrupt option available.

All FIFOs are 16-messages deep. FIFOs are used for the sending and receiving of messages just like a mailbox. These
can optionally be configured to be interrupt driven. Setting a receive FIFO to interrupt on every message received
would behave similar to a receive mailbox with interrupt support.

There are two types of special FIFOs. One is a Gateway FIFO. This is used for bridging networks. It automatically
retransmits every message it receives without CPU intervention (all done within peripheral hardware). The History
FIFO logs all messages tagged in an R_CAN_SendMsg() call in the order they are sent. Note that any FIFO usage is
optional and they are not required for normal operation.

The RSCAN hardware processes all messages transmitted on the bus, but uses Receive Rules to determine which
messages to keep and which to ignore. A Receive Rule consists of two parts. The first part performs filtering on
different parts of the message to see if the message should be kept. The second part specifies which box (receive
mailbox or receive FIFO) to route the message to. After the hardware routes a message to a box, the function
R_CAN_GetMsg() is used to read a message from the box.

There are two types of interrupts available- global interrupts and channel interrupts. The global interrupts indicate when
a receive FIFO has received a message as well as when a global error occurs. These interrupts are enabled in the
r_rscan_rz_config.h file. The driver detects the interrupt and calls a user callback function specified in R_CAN_Open()
to process the particular event(s). The channel interrupts handle several transmit conditions as well as channel errors.
These interrupts are also enabled in the r_rscan_rz_config.h file. The driver detects the interrupt and calls a user
callback function specified in R_CAN_InitChan() to process the particular event(s).

By default, the following interrupts are enabled:

RX, TX, or History FIFO threshold reached

RX, TX, Gateway, or History FIFO overflow occurred
Channel entered Error Passive state

Channel entered Bus Off state

Channel recovered from Bus Off state

The following sequence of function calls is used to setup the CAN:
R CAN Open() ;
R CAN InitChan(); // do for 1-5 channels
R _CAN ConfigFIFO(); // do for 0 or more FIFOs
R_CAN_AddRxRule(); // do for 1-320 rules

Once the CAN is setup, the peripheral should enter normal communications mode or a test mode.
R CAN Control(); // Use CAN CMD SET MODE COMM or CAN CMD SET MODE TST xxx

RO1AN2784EU0102 Rev. 1.02 Page 4 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

2. APl Information

This Driver API follows the Renesas APl naming standards.

2.1 Hardware Requirements

This driver utilizes the RSCAN peripheral.

2.2 Hardware Resource Requirements

In addition to the RSCAN peripheral, the driver requires:

e Two pins allocated for each CAN channel used

2.3 Software Requirements

This driver is dependent upon

e The R_INTC software provided with the RSK+RZA1H board

2.4 Limitations

Not all features of the peripheral are utilized. These include:

Transmit queues

Transmit complete interrupt on or off for each transmit mailbox (all on or off for all channels)
Configurable depth transmit, receive, and gateway FIFOs (all fixed at 16 instead of configurable 1 to 128)
Transmit by message ID priority (will be done by mailbox number, 0 being highest priority)

Transmit FIFO interval transmission

Transmit mirroring

Filter on mirrored messages

DLC substitution

Multiple destinations for each received message (will fix at 1 destination; could be up to 8)

Different methods of Bus Off recovery (will be 1SO11898-1 compliant)

Forcible return from Bus Off

Different interrupt sources for each channel (same settings applied to all)

Selection of protocol error flag accumulation vs first occurrence (will hard-code to accumulative for all
channels)

2.5 Supported Toolchains

This driver is tested and working with the following toolchains:
e KPIT GNUARM-NONE-EABI Toolchain v14.02

2.6 Header Files

All API calls and their supporting interface definitions are located in “r_rscan_rz_if.h”.

Build-time configuration options are set in the file "r_rscan_rz_config.h” (the default values are defined in the file
“r_rscan_rz_config reference.h”).

Both of these files should be included by the user’s application.

RO1AN2784EU0102 Rev. 1.02 Page 5 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group

RSCAN Driver Module

2.7 Integer Types

This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These

types are defined in stdint.h.

2.8 Configuration Overview

Static configuration options for this driver are set by the user via the file r_rscan_rz_config.h.

Configuration options in r_rscan_rz_config.h

Equate Default | Description
Value
CAN CFG PARAM CHECKING ENABLE 1 Sett!ng to 0 removes parameter check_ing _from the code.
- = - — Setting to 1 includes parameter checking in the code.
If this equate is 0, the CAN clock source is %2 the

CAN_CFG_CLOCK_SOURCE 0 peripheral clock speed (clkc). If this equate is 1, the
source is the external CAN_CLOCK (clk_xincan).

CAN CFG_INT PRIORITY 5 Priority level for all CAN interrupts (0-31)

Setting to O disables interrupt when an RXFIFO
threshold is reached.
Setting to 1 enables interrupt.

CAN CFG_INT RXFIFO THRESHOLD 1 Requires FIFO to be initialized via
R_CAN_ConfigFIFO().
CAN_EVT_RXFIFO_THRESHOLD is passed to the
main callback function.

Setting to O disables interrupt when a DLC error is
detected.

CAN _CFG_INT DLC_ERR 0 Setting to 1 enables interrupt.
CAN_EVT_GLOBAL_ERR is passed to the main
callback function.

Setting to 0 disables interrupt when a TX, GW, or RX
FIFO overflows.
Setting to 1 enables interrupt.

CAN CFG_INT FIFO OVFL 1 Requires FIFO to be initialized via
R_CAN_ConfigFIFO().
CAN_EVT_GLOBAL_ERR is passed to the main
callback function.

Setting to 0 disables interrupt when a History FIFO
overflows.
Setting to 1 enables interrupt.

CAN_CFG_INT HIST FIFO_OVFL 1 Requires FIFO to be initialized via
R_CAN_ConfigFIFO().

CAN_EVT_ GLOBAL_ERR is passed to the main
callback function.

Setting to 0 disables interrupt when a TXFIFO threshold
is reached.

Setting to 1 enables interrupt.

CAN CFG_INT TXFIFO_ THRESHOLD 1 Requires FIFO to be initializes via
R_CAN_ConfigFIFO().

CAN_EVT_TRANSMIT is passed to the channel
callback function.

Setting to 0 disables interrupt when the GWFIFO
receive threshold is reached. Setting to 1 enables

CAN _CFG_INT GWFIFO_RX THRESHOLD 0 interrupt.

Requires FIFO to be initialized via
R_CAN_ConfigFIFO().
RO1AN2784EU0102 Rev. 1.02 Page 6 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group

RSCAN Driver Module

CAN_EVT_GATEWAY_RX is passed to the channel
callback function.

CAN_CFG_INT GWFIFO_TX_ THRESHOLD

Setting to 0 disables interrupt when the GWFIFO
transmit threshold is reached. Setting to 1 enables
interrupt.

Requires FIFO to be initialized via
R_CAN_ConfigFIFO().

CAN_EVT_ TRANSMIT is passed to the channel
callback function.

CAN_CFG_INT HIST_ FIFO_THRESHOLD

Setting to O disables interrupt when the HIST_FIFO
threshold is reached. Setting to 1 enables interrupt.
Requires FIFO to be initialized via
R_CAN_ConfigFIFO().

CAN_EVT_TRANSMIT is passed to the channel
callback function.

CAN_CFG_INT MBX TX COMPLETE

Setting to 0 disables interrupt when the mailbox
completes transmission.

Setting to 1 enables interrupt.

CAN_EVT_ TRANSMIT is passed to the channel
callback function.

CAN_CFG_INT MBX TX_ABORTED

Setting to 0 disables interrupt when the mailbox transmit
is aborted.

Setting to 1 enables interrupt.

CAN_EVT_TRANSMIT is passed to the channel
callback function.

CAN_CFG_INT BUS_ERROR

Setting to O disables interrupt when a bus error is
detected.

Setting to 1 enables interrupt.
CAN_EVT_CHANNEL_ERR is passed to the channel
callback function.

CAN_CFG_INT ERR_WARNING

Setting to 0 disables interrupt when an error warning is
detected.

Setting to 1 enables interrupt.
CAN_EVT_CHANNEL_ERR is passed to the channel
callback function.

CAN_CFG_INT ERR PASSIVE

Setting to 0 disables interrupt when an error passive is
detected.

Setting to 1 enables interrupt.
CAN_EVT_CHANNEL_ERR is passed to the channel
callback function.

CAN_CFG_INT BUS_OFF_ENTRY

Setting to 0 disables interrupt when a Bus Off error is
detected.

Setting to 1 enables interrupt.
CAN_EVT_CHANNEL_ERR is passed to the channel
callback function.

CAN_CFG_INT BUS_OFF_RECOVERY

Setting to 0 disables interrupt when a Bus Off recovery
is detected.

Setting to 1 enables interrupt.
CAN_EVT_CHANNEL_ERR is passed to the channel
callback function.

CAN_CFG_INT OVERLOAD FRAME TX

Setting to 0 disables interrupt when an overload is
detected.

Setting to 1 enables interrupt.
CAN_EVT_CHANNEL_ERR is passed to the channel
callback function.

CAN_CFG_INT BUS_LOCK

Setting to O disables interrupt when a bus lock is
detected.

Setting to 1 enables interrupt.
CAN_EVT_CHANNEL_ERR is passed to the channel
callback function.

RO1AN2784EU0102 Rev. 1.02
Apr 4, 2016

Page 7 of 37

RENESAS

RZ/A1H Group RSCAN Driver Module

Setting to 0 disables interrupt when arbitration loss is
detected.

CAN CFG_INT ARB LOST 0 Setting to 1 enables interrupt.
CAN_EVT_CHANNEL_ERR is passed to the channel
callback function.

Set to the number of receive rules for channel 0 (0-128).

CAN CFG NUM RULES CHO 0
——e_NUE — 320 max for system.

CAN CFG NUM RULES CHI 1 Set to the number of receive rules for channel 1 (0-128).
e _NUE — 320 max for system.

CAN CFG NUM RULES CH2 0 Set to the number of receive rules for channel 2 (0-128).
e _NUE — 320 max for system.

CAN CFG NUM RULES CH3 0 Set to the number of receive rules for channel 3 (0-128)
——e_NUE — 320 max for system.

CAN_CFG_NUM_RULES_CHA 0 Set to the number of receive rules for channel 4 (0-128)

320 max for system.

Table 1: Info about the configuration

2.9 Code Size

The code size is based on the default settings for the GNUARM-NONE-EABI compiler. These code sizes include all
interrupt handlers for all channels (17 ISRs).

ROM and RAM code sizes

With Parameter Checking Without Parameter Checking

ROM: 15,344 bytes code ROM: 13,612 bytes code
RZ/A1

RAM: 94 bytes RAM: 94 bytes

Table 2: ROM and RAM code size

2.10 API Data Types
This section details the data types that are used with the driver’s API functions.
2.10.1 Box IDs (mailboxes and FIFOs)

typedef enum e can box

{
CAN BOX CHO TXMBX 0 = (CAN_FLG_TXMBX | 0),
CAN BOX CHO TXMBX 1 (CAN_FLG TXMBX | 1),
CAN BOX CHO TXMBX 2 = (CAN FLG _TXMBX | 2),

CAN BOX CH4 TXMBX 13 = (CAN_FLG_TxXMBX | 77),
CAN BOX CH4 TXMBX 14 (CAN_FLG_TXMBX | 78),
CAN BOX CH4 TXMBX 15 (CAN_FLG_TXMBX | 79),

CAN BOX_ RXMBX 0 = (CAN_FLG_RXMBX | 0)

CAN BOX RXMBX 1 = (CAN_FLG RXMBX | 1),

CAN_BOX RXMBX 2 = (CAN_FLG _RXMBX | 3),

CAN BOX RXMBX 13 = (CAN_FLG _RXMBX | 13),

CAN BOX RXMBX 14 = (CAN_FLG_RXMBX | 14),

CAN BOX RXMBX 15 = (CAN_FLG_RXMBX | 15),

CAN BOX RXFIFO 0 = (CAN_FLG_FIFO | CAN MASK RXFIFO 0),
RO1AN2784EU0102 Rev. 1.02 Page 8 of 37

Apr 4, 2016 RENESAS

RZ/A1H Group

RSCAN Driver Module

CAN BOX RXFIFO 1 =

CAN BOX RXFIFO 2

CAN BOX RXFIFO 3 =

CAN BOX_RXFIFO 4
CAN_BOX RXFIFO 5
CAN_BOX RXFIFO 6

CAN BOX RXFIFO 7 =

CAN BOX_CHO_TXFIFO 0 =
CAN BOX CHO TXFIFO 1 =
CAN BOX CHO GWFIFO =

CAN BOX CH4 TXFIFO 0 =
CAN BOX_CH4 TXFIFO 1 =
CAN BOX CH4 GWFIFO =

CAN BOX CHO HIST FIFO =
CAN BOX CH1 HIST FIFO =

CAN BOX_CH2 HIST FIFO
CAN BOX CH3 HIST FIFO

CAN BOX CH4 HIST FIFO =

(CAN_FLG_FIFO
(CAN_FLG_FIFO
(CAN_FLG_FIFO
(CAN_FLG_FIFO
(CAN_FLG_FIFO
(CAN_FLG_FIFO
(CAN_FLG_FIFO

(CAN_FLG_FIFO
(CAN_FLG_FIFO
(CAN_FLG_FIFO

(CAN FLG FIFO
(CAN_FLG_FIFO
(CAN_FLG_FIFO

(CAN_FLG_FIFO
(CAN_FLG_FIFO
(CAN_FLG_FIFO
(CAN_FLG_FIFO
(CAN_FLG_FIFO

CAN MASK RXFIFO 1),
CAN MASK RXFIFO 2),
CAN MASK RXFIFO 3),
CAN MASK _RXFIFO 4),
CAN MASK_RXFIFO 5),
CAN MASK_RXFIFO 6),
CAN MASK RXFIFO 7),

CAN _MASK CHO_TXFIFO 0),
CAN MASK CHO TXFIFO 1),

CAN MASK_CHO_GWFIFO),

CAN MASK CH4 TXFIFO 0),
CAN MASK _CH4 TXFIFO 1),

CAN MASK_CH4 GWFIFO),

CAN MASK CHO HIST FIFO),
CAN MASK CH1 HIST FIFO),
CAN MASK CH2 HIST FIFO),
CAN MASK_CH3 HIST FIFO),
CAN MASK_CH4 HIST FIFO)

} can box t;

2.10.2 R_CAN_Open() Data Types

typedef enum e can timestamp src

{
CAN TIMESTAMP SRC CHO BIT CLK =
CAN TIMESTAMP SRC CH1 BIT CLK =
CAN TIMESTAMP SRC CH2 BIT CLK =
CAN TIMESTAMP SRC CH3 BIT CLK =
CAN TIMESTAMP SRC CH4 BIT CLK =
CAN TIMESTAMP SRC HALF PCLK =
CAN TIMESTAMP SRC END ENUM

} can timestamp src t;

~ 0~

~ ~

ad w N o
~

~

typedef enum e can timestamp div

{
CAN TIMESTAMP DIV 1 =
CAN TIMESTAMP DIV 2
CAN TIMESTAMP DIV 4
CAN TIMESTAMP DIV 8
CAN_TIMESTAMP DIV 16 -
CAN TIMESTAMP DIV 32 =
CAN TIMESTAMP DIV 64 =
CAN TIMESTAMP DIV 128 =
CAN TIMESTAMP DIV 256 =
CAN_ TIMESTAMP DIV 512
CAN TIMESTAMP DIV 1024 =
CAN TIMESTAMP DIV 2048 =
CAN TIMESTAMP DIV 4096 =
CAN TIMESTAMP DIV 8192
CAN TIMESTAMP DIV 16384
CAN TIMESTAMP DIV 32768 =
CAN TIMESTAMP DIV END ENUM

} can timestamp div_ t;

[l
~ 0~

~

QO J oUW O
~

~

~

~ 0~

~

([l Il
O N = RO TR
O WN oS
~ 0~ S S~ ~ ~

typedef struct st can cfg
{

can_timestamp src t timestamp_ src;

RO1AN2784EU0102 Rev. 1.02
Apr 4, 2016

Page 9 of 37
RENESAS

RZ/A1H Group

RSCAN Driver Module

can_timestamp div_ t timestamp div;
} can cfg t;

2.10.3 Callback function events

typedef enum e can cb evt // callback function events

{
// Main Callback Events

CAN EVT RXFIFO THRESHOLD, // RX FIFO threshold
CAN EVT GLOBAL ERR, // RX, GW, or Hist FIFO overflow, or DLC error

// Channel Callback Events

CAN EVT TRANSMIT, // mbx tx complete or aborted,
// tx or history FIFO threshold
CAN EVT GWFIFO RX THRESHOLD, // GW FIFO rx threshold

CAN EVT CHANNEL ERR,
} can _cb evt t;

2.10.4 R_CAN_InitChan() Data Types

typedef struct st can bitrate

{
uintlé6 t prescaler; // 1-1024

uint8 t tsegl; // 4-16
uint8 t tseg2; // 2-8
uint8 t sjw; // 1-4

} can bitrate t;

/* Sample settings for 500kbps with 12MHz XTAL

#define CAN RSK_12MHZXTAL 500KBPS_PRESCALER
#define CAN RSK 12MHZXTAL S00KBPS TSEG1
#define CAN RSK 12MHZXTAL S00KBPS TSEG2
#define CAN RSK_12MHZXTAL 500KBPS_SJW

2.10.5 R_CAN_ConfigFIFO() Data Types

typedef enum e can fifo threshold // NOTE:

{ //
CAN FIFO THRESHOLD 2 =0, // 1/8
CAN FIFO THRESHOLD 4 =1, // 2/8
CAN FIFO THRESHOLD 6 2 // 3/8
CAN FIFO THRESHOLD 8 = 3, // 4/8
CAN FIFO THRESHOLD 10 = 4, // 5/8
CAN FIFO THRESHOLD 12 = 5, // 6/8
CAN FIFO THRESHOLD 14 = 6, // /8
CAN FIFO THRESHOLD FULL = 7, // 8/8
CAN FIFO THRESHOLD 1 = 8, //

CAN FIFO THRESHOLD END ENUM
} can fifo threshold t;

2.10.6 R_CAN_AddRxRule() Data Types

typedef struct st can filter
{

bool t check ide;
uint8 t ide;
bool t check rtr;

(1/2 pclk =30MHz; 0% baud err) */

4
11
3
1

// TSEGl + TSEG2 + SJW = 15

History FIFO can only have a

threshold of 1 or 12

of
of
of
of
of
of
of
of

16
16
16
16
16
16
16
16

every message

RO1AN2784EU0102 Rev. 1.02
Apr 4, 2016 RENESAS

Page 10 of 37

RZ/A1H Group RSCAN Driver Module

uint8 t rtr;

uint32 t elg

uint32 t id mask;

uint8 t min dlc;

uintlé6 t label; // 12-bit label

} can filter t;

2.10.7

R_CAN_SendMsg() Data Types

typedef struct st can txmsg

{

uint8 t ide;

uint8 t rtr;

uint32 t id;

uint8 t dlc;

uint8 t datal[8];

bool t one shot; // no retries on error; txmbx only
bool t log history; // true if want to log

uint8 t label; // 8-bit label for History FIFO

} can_ txmsg t;

2.10.8

R_CAN_GetMsg() Data Types

typedef struct st can rxmsg

{

uint8 t ide;

uint8 t rtr;

uint32 t id;

uint8 t dlc;

uint8 t data[8];

uintl6 t label; // 12-bit label from receive rule
uintlé t timestamp;

} can rxmsg t;

2.10.9

R_CAN_GetHistoryEntry() Data Types

typedef struct st can history

{

can box t box id; // box which sent message
uint8 t label; // associated 8-bit label
} can history t;

2.10.10 R_CAN_GetStatusMask() Data Types

typedef enum e can stat

{

CAN STAT FIFO EMPTY,
CAN STAT FIFO THRESHOLD,

CAN STAT FIFO OVFL, // bits reset after reading

CAN STAT RXMBX FULL,

CAN STAT GLOBAL ERR, // DLC error bit is reset after reading
CAN STAT CH TXMBX SENT, // bits reset after reading

CAN STAT CH TXMBX ABORTED, // bits reset after reading

CAN_ STAT CH ERROR, // bits reset after reading

CAN_STAT END ENUM
} can_stat t;

RO1AN2784EU0102 Rev. 1.02 Page 11 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group

RSCAN Driver Module

/* Returned mask values (multiple bits may be set at the same time)

/* CAN STAT CH TXMBX SENT, CAN STAT CH TXMBX ABORTED */

#define CAN MASK TXMBX 0
#define CAN MASK TXMBX 1
#define CAN MASK TXMBX 2

#define CAN MASK TXMBX 13
#define CAN MASK TXMBX 14
#define CAN MASK TXMBX 15

/* CAN STAT RXMBX FULL */
#define CAN MASK RXMBX 0
#define CAN MASK RXMBX 1
#define CAN MASK RXMBX 2

#define CAN MASK RXMBX 13
#define CAN MASK RXMBX 14
#define CAN MASK RXMBX 15

(0x0001)
(0x0002)
(0x0004)

(0x2000)
(0x4000)
(0x8000)

(0x0001)
(0x0002)
(0x0004)

(0x2000)
(0x4000)
(0x8000)

/* CAN STAT FIFO EMPTY, CAN STAT FIFO THRESHOLD, CAN STAT FIFO OVFL */

#define CAN MASK RXFIFO O (0x00000001
#define CAN MASK RXFIFO 1 (0x00000002
#define CAN MASK RXFIFO 2 (0x00000004
#define CAN MASK RXFIFO 3 (0x00000008
#define CAN MASK RXFIFO 4 (0x00000010
#define CAN MASK RXFIFO 5 (0x00000020
#define CAN MASK RXFIFO 6 (0x00000040
#define CAN MASK RXFIFO 7 (0x00000080
#define CAN MASK CHO TXFIFO O (0x00000100
#define CAN MASK CHO TXFIFO 1 (000000200
#define CAN MASK CHO GWFIFO (0x00000400
#define CAN MASK CH4 TXFIFO O (0x00100000)
#define CAN MASK CH4 TXFIFO 1 (0x00200000)
#define CAN MASK CH4 GWFIFO (0x00400000)
#define CAN MASK CHO HIST FIFO (0x00800000)
#define CAN MASK CH1 HIST FIFO (0x01000000)
#define CAN MASK CH2 HIST FIFO (0x02000000)
#define CAN MASK CH3 HIST FIFO (0x04000000)
#define CAN MASK CH4 HIST FIFO (0x08000000)
/* CAN STAT GLOBAL ERR */

#define CAN MASK ERR DLC (0x0001)
#define CAN MASK ERR GW RX OVFL (0x0002)
#define CAN MASK ERR HIST OVFL (0x0004)
#define CAN MASK ERR FIFO OVFL (0x0006)

/* CAN STAT CH ERROR */

#define CAN MASK ERR PROTOCOL (0x0001)
#define CAN MASK ERR WARNING (0x0002)
#define CAN MASK ERR PASSIVE (0x0004)
#define CAN MASK ERR BUS OFF ENTRY (0x0008)
#define CAN MASK ERR BUS OFF EXIT (0x0010)
#define CAN MASK ERR OVERLOAD (0x0020)
#define CAN MASK ERR DOMINANT LOCK (0x0040)
#define CAN MASK ERR ARB LOST (0x0080)
#define CAN MASK ERR STUFF (0x0100)
#define CAN MASK ERR FORM (0x0200)
#define CAN MASK ERR ACK (0x0400)
RO1AN2784EU0102 Rev. 1.02 Page 12 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group

RSCAN Driver Module

#define
#define
#define
#define

2.10.11

typedef

{
CAN

CAN_
CAN

CAN MASK_ERR CRC

CAN MASK ERR RECESSIVE BIT

CAN MASK ERR DOMINANT BIT

CAN MASK ERR ACK DELIMITER

(0x0800)
(0x1000)
(0x2000)
(0x4000)

R_CAN_GetCountErr() Data Types

enum € can_count

COUNT RX_ERR,
COUNT_TX_ERR,
COUNT_END_ENUM

} can _count t;

2.10.12

typedef
{

CAN
CAN
CAN
CAN
CAN

R_CAN_Control() Data Types

enum e can cmd

CMD ABORT TX,

CMD RESET TIMESTAMP,
CMD_SET MODE_COMM,

CMD_SET MODE_TST_ STANDARD,
CMD SET MODE TST LISTEN,

// argument: transmit mailbox id

// start normal bus communications

CAN CMD SET MODE TST EXT LOOPBACK,
CAN CMD SET MODE_TST INT LOOPBACK,
CAN CMD_SET MODE TST INTERCHANNEL,

CAN

CMD_END_ENUM

} can _cmd t;

2.11 Return Values

API function return values. This enum is found in r_rscan_rz_if.h along with the API function declarations.

typedef enum e can err

{

CAN_SUCCESS=0,
CAN ERR OPENED, //
CAN_ERR NOT OPENED, /7

CAN ERR_INIT DONE,

CAN ERR CH NO INIT,

CAN ERR _INVALID ARG,

CAN ERR MISSING CALLBACK,
CAN _ERR MAX ONE_GWFIFO,

CAN ERR MAX RULES, /7

/7
CAN ERR BOX FULL, //
CAN_ERR BOX EMPTY, //

CAN ERR ILLEGAL MODE

} can _err t;

// CAN API error codes

Call to Open already made

Call to Open not yet made

Call to InitChan already made for channel
Channel not initialized

Invalid argument passed to function
Callback func not provided and ints requested
Can only configure one GWFIFO

Max configured rules already present

(as specified in r rscan rz config.h)
Transmit mailbox or FIFO is full

Receive mailbox or FIFO is full

Not in proper mode for request

RO1AN2784EU0102 Rev. 1.02
Apr 4, 2016

Page 13 of 37
RENESAS

RZ/A1H Group

RSCAN Driver Module

3. APl Functions

3.1 Summary

The following functions are included in this design:

Function

Description

R_CAN_Open()

Initializes the driver’s internal structures and all of the receive mailboxes.

R_CAN_InitChan()

Sets the bit rate clock for the channel and initializes all of the transmit mailboxes.

R_CAN_ConfigFIFO()

Initializes a FIFO for usage. This function should not be called if FIFOs are not used.

R_CAN_AddRxRule()

Adds a receive rule to a channel. Specifies receive message filter and destination
routing.

R_CAN_SendMsg()

Loads a message into a transmit mailbox or FIFO for transmission.

R_CAN_GetMsg()

Fetches a message from a receive mailbox or FIFO.

R_CAN_GetHistoryEntry()

Fetches a log entry from a transmit history FIFO.

R_CAN_GetStatusMask()

Returns a 32-bit mask based upon the status requested. Bit #defines have the form
CAN_MASK_xxx.

R_CAN_GetCountFIFO()

Returns the number of messages in a FIFO.

R_CAN_GetCountErr()

Returns the number of transmit or receive errors.

R_CAN_Control()

Handles special operations and mode changes.

R_CAN_Close()

Removes power to the CAN peripheral and disables the associated interrupts.

R_CAN_GetVersion()

Returns the driver version number.

RO1AN2784EU0102 Rev. 1.02

Apr 4, 2016

RENESAS

Page 14 of 37

RZ/A1H Group RSCAN Driver Module

3.2 R_CAN_Open()

This function initializes the driver’s internal structures and all of the receive mailboxes.

Format
can _err t R CAN Open(can cfg t *p cfg,
void (* const p callback) (can cb evt t event,
void *p_args));
Parameters
p_cfg

Pointer to configuration structure. The element type definitions are provided in Section 2.10.1.

typedef struct st can cfg
{
can_timestamp src t ts_source;
can_timestamp div t ts divisor;
} can_cfg t;

p_callback
Optional pointer to main callback function. Must be present if interrupts are enabled in r_rscan_rz_config.h for
RX FIFOs or global errors
event
First parameter for callback function. Specifies the interrupt source (see Section 2.10.3)
p_args
Second parameter for callback function (unused).

Return Values

CAN SUCCESS: Successful

CAN _ERR OPENED: Call to Open already made

CAN _ERR INVALID ARG: An element of the p_cfg structure contains an invalid value.
CAN ERR MISSING CALLBACK: A callback function was not provided and

a main callback interrupt is enabled in config.h
Properties
Prototyped in file “r_rscan_rz_if.h”

Description
This function initializes the driver’s internal structures, applies clock to the peripheral, and sets the Global and Channel
Modes to Reset. The timestamp is configured as per the p_cfg argument, and all receive mailboxes are initialized.

If interrupts are enabled in r_rscan_rz_config.h for receive FIFO thresholds, or DLC or FIFO overflow errors, a
callback function must be provided here. Otherwise, NULL is entered.

Reentrant
No.

Example: Polling Configuration

/* All main callback interrupt sources are set to 0 in r rscan rz config.h

*/
can_cfg t config;
can_err t err;
/* Configure timestamp and Open driver */
config.timestamp src = CAN TIMESTAMP SRC CHl1 BIT CLK;
config.timestamp div = CAN TIMESTAMP DIV 1024;
RO1AN2784EU0102 Rev. 1.02 Page 15 of 37

Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

err

= R _CAN Open (&config, NULL) ;

Example: Interrupt Configuration

/* 1+ main callback interrupt sources are set to 1 in r rscan rz config.h */

can _cfg t config;
can err t i

/* Configure timestamp and Open driver */
config.timestamp src = CAN TIMESTAMP SRC CH1 BIT CLK;
config.timestamp div = CAN TIMESTAMP DIV 1024;

err

= R CAN Open (&config, MyCallback);

/* Sample callback function */
void MyCallback(can cb evt t event, void *p args)

{

uint32 t

mask;

can err t err;

if

{

}

(event == CAN EVT RXFIFO THRESHOLD)

mask = R _CAN GetStatusMask (CAN STAT FIFO THRESHOLD, NULL, &err);

/* check RXFIFOs in use */
if (mask & CAN MASK RXFIFO 1)
{

/* read messages */

}

else if (event == CAN EVT GLOBAL ERR)

{

mask = R CAN GetStatusMask (CAN STAT GLOBAL ERR, NULL, &err);

if (mask & CAN MASK _ERR DLC)
{

/* handle DLC error */
}

if (mask & CAN MASK ERR FIFO OVFL)

{
mask = R CAN GetStatusMask (CAN STAT FIFO OVFL, NULL, é&err);

/* check the RXFIFOs, GWFIFO, and HIST FIFOs in use */
if (mask & CAN MASK CH1 HIST FIFO)
{

/* handle error */

}

Special Notes:

None.

ROLAN2784EU0102 Rev. 1.02 Page 16 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

3.3 R_CAN_InitChan()

This function sets the bit rate clock for the channel and initializes all of the transmit mailboxes.

Format
can _err t R CAN InitChan (uint8 t chan,
can bitrate t *p baud,
void (* const p chcallback) (uint8 t chan,
can_cb _evt t event,
void *p_args));
Parameters
chan

Channel to initialize (0-4).

p_baud
Pointer to bit rate structure. See Table 21.6 in the Hardware User’s Manual for limitations on bit rate based upon
the clock frequency and number of channels used. See Section 21.10.1.2 for bit time settings.

typedef struct st can bitrate
{

uintlé t prescaler;
uint8 t tsegl;
uint8 t tseg?2;
uint8 t Sjw;

} can bitrate t;

p_chcallback
Optional pointer to channel callback function. Must be present if interrupts are enabled in r_rscan_rz_config.h
for TX mailboxes, TX FIFOs, History FIFOs, or bus errors.
channel
First parameter for channel callback function. Specifies the channel interrupt occurred on.
event
Second parameter for channel callback function. Specifies the interrupt source (see Section 2.10.3)
p_args
Third parameter for callback function (unused).

Return Values

CAN SUCCESS: Successful

CAN _ERR ILLEGAL MODE: Not in global reset mode (results from call to Open())

CAN ERR INVALID ARG: An invalid argument was provided

CAN _ERR MISSING CALLBACK: A callback function was not provided and a channel interrupt is enabled in
config.h

Properties

Prototyped in file “r_rscan_rz_if.h”

Description

This function initializes all of the channel’s transmit mailboxes, sets the bit rate, and enables interrupt sources for the
channel as specified in the r_rscan_rz_config.h file. Default values for p_baud are provided inr_rscan_rz_if.h. See
sections 21.10.2.1 - 21.10.2.2 in the RZ/A1 Hardware User’s Manual for calculating Tq bit rate values.

If interrupts are enabled in r_rscan_rz_config.h for TX mailboxes, TX FIFOs, History FIFOs, or bus errors, a callback
function must be provided here. Otherwise, NULL is entered.

Reentrant
Yes, for different channels.

Example: Polling Configuration

RO1AN2784EU0102 Rev. 1.02 Page 17 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

/* All channel interrupt sources are set to 0 in r rscan rz config.h */

can bitrate t baud;
can_err t err;

/* Initialize channel 1 */

baud.prescaler = CAN RSK 13MHZXTAL 125KBPS PRESCALER;
baud.tsegl = CAN RSK 13MHZXTAL 125KBPS TSEG1;
baud.tseg2 = CAN RSK 13MHZXTAL 125KBPS TSEG2;
baud.sjw = CAN RSK 13MHZXTAL 125KBPS_ SJW;

err = R CAN InitChan(CAN CHI1, é&baud, NULL);

Example: Interrupt Configuration
/* 14+ channel interrupt sources are set to 1 in r rscan rz config.h */

can bitrate t baud;
can_err t err;

/* Initialize channel 1 */

baud.prescaler = CAN RSK 13MHZXTAL 125KBPS PRESCALER;
baud.tsegl = CAN RSK 13MHZXTAL 125KPS TSEGI;
baud.tseg2 = CAN RSK 13MHZXTAL 125KPS TSEG2;

baud.sjw = CAN RSK 13MHZXTAL 125KPS_SJW;

err = R CAN InitChan(CAN CHI1, &baud, MyChanCallback) ;

/* Sample callback function template */

void MyChanCallback (uint8 t chan,
can _cb evt t event,
void *p_args)

{
uint32 t mask;
can err t err;

if (event == CAN EVT TRANSMIT)

{
mask = R CAN GetStatusMask (CAN STAT CH TXMBX SENT, chan, é&err);

/* check transmit mailboxes in use */
if (mask & CAN MASK TXMBX 3)
{
/* do stuff */
}

mask = R CAN GetStatusMask (CAN STAT CH TXMBX ABORTED, chan, é&err);

/* check transmit mailboxes in use */
if (mask & CAN MASK TXMBX 0)
{
/* do stuff */
}

mask = R CAN GetStatusMask (CAN STAT FIFO THRESHOLD, NULL, &err);

/* check transmit, gateway, and history FIFOs in use */
if (mask & CAN MASK CH2 TXFIFO 1)

ROLAN2784EU0102 Rev. 1.02 Page 18 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module
{

/* load next batch of messages for transmit */
}
}

else if (event == CAN EVT GWFIFO RX THRESHOLD)
{

/* read gateway FIFO message if desired */

}

else if (event == CAN EVT CHANNEL ERR)

{
mask = R CAN GetStatusMask (CAN STAT CH ERROR, chan, &err);

/* check individual errors if desired */
if (mask & CAN MASK ERR BUS_OFF ENTRY)
{

/* handle error */
}
if (mask & CAN MASK ERR BUS OFF EXIT)

/* handle recovery */

Special Notes:
None.

ROLAN2784EU0102 Rev. 1.02 Page 19 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

3.4 R_CAN_ConfigFIFO()

This function initializes a FIFO for usage. This function should not be called if FIFOs are not used.

Format
can _err t R CAN ConfigFIFO (can box t fifo,
can fifo threshold t threshold,
can box t txmbx) ;
Parameters
fifo_id

Box id for FIFO (see Section 2.10.1)

threshold
Number of messages needed in FIFO to set interrupt flag (see Section 2.10.5). Note that the only valid thresholds
for the History FIFOs is 1 or 12 messages. All others may use 1, 2, 4, 6, 8, 10, 12, 14, or full (16).

txmbx
Box id for associated transmit mailbox (for transmit and gateway FIFOs only). This argument is ignored for
receive and history FIFOs.

Return Values

CAN SUCCESS: Successful

CAN ERR ILLEGAL MODE: Not in global reset mode (results from call to Open())
CAN _ERR CH NO _INIT: Channel not initialized yet

CAN ERR INVALID ARG: An invalid argument was provided
CAN_ERR_MAX_ONE_GWFIFO: Can only configure one gateway FIFO

Properties

Prototyped in file “r_rscan_rz_if.h”

Description
FIFO usage is optional.

This function is used to activate a FIFO. All FIFOs are 16 entries deep. The transmit and gateway FIFOs must have
associated with it a standard transmit mailbox. The number of the mailbox determines the priority of the FIFO when
transmitting (mailbox 0 = highest priority; mailbox 15 = lowest).

Reentrant
Yes, for different FIFOs.

Example: RX FIFO
can err t err;

/*
* Set interrupt flag on every message received on RX FIFO 0.
* Interrupt occurs if CAN CFG INT RXFIFO THRESHOLD is set to 1 in config.h.
* Interrupt calls main callback function with CAN EVT RXFIFO THRESHOLD.
*/
err = R_CAN ConfigFIFO(CAN BOX RXFIFO 0,
CAN_FIFO THRESHOLD 1,
0); // unused field here

Example: TX FIFO
can_err t err;

/*
* Associate mailbox 3 with TX FIFO 0 on channel 1.

ROLAN2784EU0102 Rev. 1.02 Page 20 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

* Set interrupt flag when 4 messages remain in FIFO.
* Interrupt occurs if CAN CFG INT TXFIFO THRESHOLD is set to 1 in config.h.
* Interrupt calls channel callback function with CAN EVT TRANSMIT.
*/
err = R _CAN ConfigFIFO(CAN BOX CHl1 TXFIFO 0,
CAN FIFO THRESHOLD 4,
CAN BOX CH1 TXMBX 3);

Example: History FIFO
can_err t err;

/%

* Set threshold to 12 for History FIFO on channel 2.

* Interrupt occurs if CAN CFG INT HIST FIFO THRESHOLD is set to 1 in config.h.

* Interrupt calls channel callback function with CAN EVT TRANSMIT.

*/

err = R_CAN ConfigFIFO(CAN BOX CH2 HIST FIFO,
CAN FIFO THRESHOLD 12,
0); // unused field here

Special Notes:
None.

RO1AN2784EU0102 Rev. 1.02 Page 21 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

3.5 R_CAN_AddRxRule()

This function adds a receive rule to a channel. Specifies receive message filter and destination routing.

Format

can_err t R CAN AddRxRule (uint8 t chan,
can filter t *p filter,
can box t dst box) ;

Parameters

chan

Channel to apply rule to
p_filter

Pointer to rule information.
typedef struct st can filter
{

bool t check ide;

uint8 t ide;

bool t check rtr;

uint8 t rtr;

uint32 t id;

uint32 t id mask;

uint8 t min dlc;

uintlé t label; // 12-bit label

} can filter t;

dst_box
Destination box (receive mailbox or receive FIFO) to route message to (see Section 2.10.1).

Return Values

CAN SUCCESS: Successful

CAN ERR ILLEGAL MODE: Not in global reset mode (results from call to Open())

CAN ERR CH NO INIT: Channel not initialized yet

CAN _ERR INVALID ARG: An invalid argument was provided

CAN _ERR MAX RULES: Max rules already present (as defined in r_rscan_rz_config.h,

128/channel, or 320 total)

Properties
Prototyped in file “r_rscan_rz if.h”

Description

This function is used to add a receive rule to a channel. There are two parts to this. The first part is specifying a filter as
to which fields to inspect on received messages. The second part is to specify a destination to route the message to if it
passes the filter test.

A “1” in the id_mask field indicates that the corresponding bit in a received message ID will be checked against the bit
in the id field in this filter (see Examples).

The label field in the rule is optional. It is associated with each message that passes the filter. This may serve as a quick
identification of a message when it is fetched from a receive box (mailbox or FIFO) using R_CAN_GetMsg()..

Reentrant
No.

Example 1: Match a range of messages
can_filter t filter;
can_err t err;

/* Setup filter */
filter.check ide = TRUE; // check the IDE field in message

RO1AN2784EU0102 Rev. 1.02 Page 22 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group

RSCAN Driver Module

filter.ide = 0;
filter.check rtr = FALSE;
filter.rtr = 0;

filter.id = 0x040;
filter.id mask = 0x7F0;
filter.min dlc = 4;
filter.label = 0x800;

/* Add rule to channel 1.

err =

can filter t

can_err t err;

/* Setup filter */

filter.
filter.
filter.
filter.
filter.
filter.
filter.
filter.

/* Add
@i =

check ide =
ide = 0;
check rtr =
rtr = 0;

id = 0x040;
id mask = Ox7FF;
min dlc = 6;
label = 0x700;

TRUE;

FALSE;

rule to channel 2.

Special Notes:
Rules cannot be entered after entering communications mode.

//
//
//
//
//
//
//

Route filtered messages to receive mailbox 5.
R_CAN AddRxRule (CAN CHI,

Example 2: Exact match for message
filter;

//
//
//
//
//
//
//
//

Route filtered messages to receive mailbox 4.
R_CAN_AddRxRule (CAN CH2,

11-bit ID

do not check the RTR field in message

(value does not matter here; not checking)
message ID

messages with IDs of 0x040-0x04F are accepted
message data must be at least four bytes long
arbitrary label applied to msgs of this type

*/

gfilter, CAN BOX RXMBX 5);

check the IDE field in message

11-bit ID

do not check the RTR field in message

(value does not matter here; not checking)
message ID

ID must match 0x040 exactly

message data must be at least six bytes long
arbitrary label applied to msgs of this type

*/

gfilter, CAN BOX RXMBX 4);

RO1AN2784EU0102 Rev. 1.02

Apr 4, 2016

Page 23 of 37
RENESAS

RZ/A1H Group RSCAN Driver Module

3.6 R_CAN_Control()
This function handles special operations and mode changes.

Format
can _err t R CAN Control(can cmd t cmd,
uint32 t argl) ;

Parameters

cmd
Specifies which command to run.
typedef enum e can cmd

{

CAN CMD_ ABORT TX, // argument: transmit mailbox id
CAN CMD RESET TIMESTAMP,
CAN CMD_SET MODE_COMM, // start normal bus communications

CAN CMD SET MODE TST STANDARD,
CAN CMD SET MODE TST LISTEN,
CAN CMD SET MODE TST EXT LOOPBACK,
CAN CMD SET MODE TST INT LOOPBACK,
CAN _CMD SET MODE TST INTERCHANNEL,
CAN CMD END ENUM

} can_cmd t;

argl
Argument which is specific to command. Most commands do not require an argument.
For the command CAN_CMD_ABORT _TX, the argument is a transmit mailbox id (see Section 2.10.1).

Return Values

CAN SUCCESS: Successful

CAN _ERR INVALID ARG: An invalid argument was provided

CAN ERR ILLEGAL MODE: Changing to requested mode is illegal from current mode.
Properties

Prototyped in file “r_rscan_rz_if.h”

Description
This function is used for resetting the timestamp counter, aborting transmission of mailbox messages, and changing the
CAN mode.

The following sequence of function calls is used to setup the CAN:
R CAN Open() ;
R _CAN InitChan(); // do for 1-5 channels
R _CAN ConfigFIFO(); // do for 0 or more FIFOs
R _CAN AddRxRule(); // do for 1-320 rules

Once the CAN is setup, the peripheral should enter normal communications mode or a test mode.
R CAN Control(); // Use CAN CMD SET MODE COMM or CAN CMD SET MODE TST xxx

Note: If a Bus Off condition is detected on a channel, the channel enters Halt Mode and all communications cease. They
cannot resume until after a Bus Off Recovery condition is detected and the application calls
R_CAN_Control(CAN_CMD_SET_MODE_COMM).

Reentrant
Yes.

Example: Enter Normal Communications Mode
can_err t err;

RO1AN2784EU0102 Rev. 1.02 Page 24 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

err = R CAN Control (CAN CMD SET MODE COMM, O0);

Example: Enter Inter-channel Communications Test Mode
can_err t err;

err = R_CAN Control (CAN CMD SET MODE TST INTERCHANNEL, O0);

Example: Abort Transmit
can err t err;

/* Abort transmit on mailbox 6 on channel 1*/

err = R_CAN Control (CAN CMD ABORT TX, CAN BOX CH1 TXMBX_ 6);

Special Notes:

Summary of different test modes:
e Standard Test Mode: Allows for CRC testing

e Listen-only Mode: Used for detecting communication speed. Cannot call R_CAN_SendMsg() in this mode.
e Internal Loopback Mode: Messages sent on a channel are handled as received messages and processed on that

same channel. Here, the CAN transceiver is bypassed.

e Inter-channel Communications Mode: Same as Internal Loopback mode, only messages can be received from

other local channels.

e External Loopback Mode: Same as Internal Loopback mode, only the transceiver is used.

RO1AN2784EU0102 Rev. 1.02
Apr 4, 2016 RENESAS

Page 25 of 37

RZ/A1H Group RSCAN Driver Module

3.7 R_CAN_SendMsg()
This function loads a message into a transmit mailbox or FIFO for transmission.

Format

can_err t R CAN SendMsg(can box t box id,
can_txmsg t *p_ txmsqg);

Parameters

box_id

Transmit box id (mailbox or FIFO; see Section 2.10.1)

p_msg
Pointer to message to send
typedef struct st can_ txmsg

{

uint8 t ide;

uint8 t rtr;

uint32 t id;

uint8 t dlc;

uint8 t datal[8];

bool t one_ shot; // no retries on error; txmbx only
bool t log history; // true if want to log

uint8 t label; // 8-bit label for History FIFO

} can_txmsg t;

Return Values

CAN SUCCESS: Successful

CAN _ERR INVALID ARG: An invalid argument was provided
CAN _ERR BOX FULL: Transmit mailbox or FIFO is full

CAN ERR ILLEGAL MODE: Cannot send message in current mode.
Properties

Prototyped in file “r_rscan_rz_if.h”

Description

This function places a message into a 1-message deep transmit mailbox or 16-message deep transmit FIFO. If there is
already a message waiting to send in the mailbox, or 16 messages already exist in the FIFO, CAN_ERR_BOX_FULL is
returned immediately. If the box_id is for a transmit mailbox and interrupts are not enabled
(CAN_CFG_INT_MBX_TX_COMPLETE is 0), this function blocks until the message is sent. If interrupts are enabled
or the message is for a transmit FIFO, the function will return immediately after loading the message into the transmit
registers.

Reentrant
Yes, for different boxes.

Example:
can_txmsg t txmsg;
can_err t err;

/* Setup message */

txmsg.ide = 0; // ID field is 1l-bits
txmsg.rtr = 0; // local message
txmsg.id = 0x022; // destination ID
txmsg.dlc = 5; // data length
txmsg.data[0] = ‘h’; // data..
txmsg.data[l] = ‘e’;
txmsg.data[2] = ‘1’;
txmsg.data[3] = ‘1’;
RO1AN2784EU0102 Rev. 1.02 Page 26 of 37

Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

txmsg.datal[4] = ‘o’;

txmsg.one shot = false; // do normal retries on error

txmsg.log history = false; // do not log in History FIFO

txmsg.label = 0; // (label ignored because not logging message)
/*

* Place message in transmit mailbox 2 on channel 1.
* If transmit complete interrupt is not enabled, the function returns
* after the message has been sent (assuming no error occurred).
*/
err = R CAN SendMsg (CAN BOX CH1 TXMBX 2, &txmsqg);

Special Notes:
None.

RO1AN2784EU0102 Rev. 1.02 Page 27 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

3.8 R_CAN_GetMsg()

This function fetches a message from a receive mailbox or FIFO.

Format

can _err t R CAN GetMsg(can box t box id,
can_rxmsg t *p rxmsg);

Parameters

box_id

Receive box id (mailbox or FIFO; see Section 2.10.1)

p_rxmsg
Pointer to message buffer to load
typedef struct st can_ rxmsg

{

uint8 t ide;

uint8 t rtr;

uint32 t id;

uint8 t dlc;

uint8 t datal[8];

uintle t label; // 12-bit label from receive rule
uintlé t timestamp;

} can_rxmsg t;

Return Values

CAN SUCCESS: Successful

CAN _ERR CH NO _INIT: Channel not initialized yet

CAN _ERR INVALID ARG: An invalid argument was provided
CAN ERR BOX EMPTY: No message available to fetch
Properties

Prototyped in file “r_rscan rz if.h”

Description

This function loads the message from a receive mailbox or FIFO into the message buffer provided. If there are no

messages in the box, this function does not block and returns a CAN_ERR_BOX_EMPTY.

Reentrant
Yes, for different boxes.

Example:
can rxmsg t rxmsg;
can err t err;

/* Wait for message to appear in receive mailbox 3 */

while (R _CAN GetMsg (CAN BOX RXMBX 3, &rxmsg) == CAN ERR BOX EMPTY)

;
/* rxmsg contains message */

Special Notes:
None.

RO1AN2784EU0102 Rev. 1.02
Apr 4, 2016 RENESAS

Page 28 of 37

RZ/A1H Group RSCAN Driver Module

3.9 R_CAN_GetHistoryEntry()

This function fetches a log entry from a transmit history FIFO.

Format

can _err t R CAN GetHistoryEntry(can box t box id,
can_history t *p entry);

Parameters

box_id

Transmit history FIFO (see Section 2.10.1)

p_rxmsg
Pointer to entry buffer to load

typedef struct st can history
{

can box t box id; // box which sent message
uint8 t label; // associated 8-bit label
} can _history t;

Return Values

CAN SUCCESS: Successful

CAN _ERR INVALID ARG: An invalid argument was provided
CAN ERR BOX EMPTY: No entry available to fetch
Properties

Prototyped in file “r_rscan_rz_if.h”

Description

An entry is added to the history FIFO each time an R_CAN_SendMsg() is called with the “log_history” in the argument
structure is set to TRUE. This function loads a log entry from a transmit history FIFO into the entry buffer provided. If
there are no entries in the FIFO, this function does not block and returns a CAN_ERR_BOX_EMPTY. The use of this
feature is not required for normal operations.

Reentrant
Yes, for different boxes.

Example:
can _history t entry;
can err t err;

/* Process all entries in transmit history FIFO for channel 1 */
while (R _CAN GetMsg (CAN BOX CH1 TXHIST FIFO, &entry) == CAN SUCCESS)
{

/* process entries here */

}

Special Notes:
None.

ROLAN2784EU0102 Rev. 1.02 Page 29 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

3.10 R_CAN_GetStatusMask()

This function returns a 32-bit mask based upon the status requested. Bit #defines have the form CAN_MASK_xxx.

Format

uint32 t R CAN GetStatusMask(can stat t type,
uint8 t chan,
can _err t *p_err);

Parameters

type

Specifies which status to return.
typedef enum e can stat
{
CAN_ STAT FIFO_EMPTY,
CAN STAT FIFO THRESHOLD,

CAN STAT FIFO OVFL, // bits reset after reading

CAN STAT RXMBX FULL,

CAN_ STAT GLOBAL ERR, // DLC error bit is reset after reading
CAN_STAT CH TXMBX SENT, // bits reset after reading

CAN_ STAT CH TXMBX ABORTED, // bits reset after reading

CAN_STAT CH ERROR, // bits reset after reading

CAN STAT END ENUM
} can_stat t;

chan

Specifies which channel to return status for. Applies only to CAN STAT CH xxx requests.
p_err

Pointer to returned error code.

CAN SUCCESS: Successful

CAN _ERR INVALID ARG: An invalid argument was provided

Return Values
32-bit box or error mask whose bit definitions have the form CAN_MASK xxx and are defined in Section 2.10.10.

Properties
Prototyped in file “r_rscan_rz_if.h”

Description
This function returns a mask based upon the status type requested. All bit masks have the form CAN_MASK_xxx (see
Section 2.10.10).

Reentrant
Yes.

Example
can err t err;
can_ rxmsg t rxmsg;

/* Wait for a message to come in on any receive mailbox */
while (R _CAN GetStatusMask (CAN STAT RXMBX FULL, 0, &err) == 0)

’

/* Check if receive mailbox 15 is full */
if (R _CAN GetStatusMask (CAN STAT RXMBX FULL, 0, &err) & CAN MASK RXMBX 15)
{

/* get message */

R CAN GetMsg (CAN BOX RXMBX 15, &rxmsg);

ROLAN2784EU0102 Rev. 1.02 Page 30 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

Special Notes:
None.

ROLAN2784EU0102 Rev. 1.02 Page 31 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

3.11 R_CAN_GetCountFIFO()
This function returns the number of items in a FIFO.

Format
uint32 t R CAN GetCountFIFO(can box t box id,
can _err t *p err);

Parameters
box_id
Specifies which FIFO to check (see Section 2.10.1).
p_err
Pointer to returned error code.
CAN SUCCESS: Successful
CAN _ERR INVALID ARG: An invalid argument was provided

Return Values
Number of items in the FIFO (0-16).

Properties
Prototyped in file “r_rscan rz if.h”

Description
This function returns the number of items in the FIFO specified by box_id. This function is not required for normal
operations.

Reentrant
Yes.

Example
uint32 t cnt;
can err t err;

/* Determine the number of messages in the History FIFO for channel 1 */
cnt = R CAN GetCountFIFO(CAN BOX CH1 HIST FIFO, &err);

Special Notes:
All FIFO usage is optional.

ROLAN2784EU0102 Rev. 1.02 Page 32 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

3.12 R_CAN_GetCountErr()

Returns the number of transmit or receive errors.

Format

uint32 t R CAN GetCountErr(can count t type,
uint8 t chan,
can _err t *p_err);

Parameters

type

Specifies which status to return.
typedef enum e can count
{
CAN_ COUNT RX ERR,
CAN COUNT_ TX ERR,
CAN STAT END ENUM
} can_count t;

chan
Specifies which channel to return error count for.
p_err
Pointer to returned error code.
CAN SUCCESS: Successful
CAN _ERR INVALID ARG: An invalid argument was provided

Return Values
The number of errors detected.

Properties
Prototyped in file “r_rscan_rz_if.h”

Description
This function returns the number of receive or transmit errors on a channel based upon the count type requested.

Reentrant
Yes.

Example
uint32 t rxcnt, txent;
can _err t err;

/* Get the number of errors detected on channel 2 */
rxcnt = R _CAN GetCountErr (CAN COUNT RX ERR, CAN CH2, s&err);
txcnt = R _CAN GetCountErr (CAN COUNT TX ERR, CAN CH2, s&err);

Special Notes:
This use of this function is optional. It can be used to detect the health of the network and how close the network is to
entering the Error Passive state (128 errors) or Bus Off state (255 errors).

ROLAN2784EU0102 Rev. 1.02 Page 33 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group RSCAN Driver Module

3.13 R_CAN Close()

This function removes clock from the CAN peripheral and disables the associated interrupts.

Format
void R _CAN Close(void);

Parameters
None

Return Values
None

Properties
Prototyped in file “r_rscan rz if.h”

Description
This function halts all existing communications, disables all interrupts (if any), and shuts down the peripheral.

Reentrant
Yes, but no need to ever call more than once.

Example
R CAN Close();

Special Notes:
None.

ROLAN2784EU0102 Rev. 1.02 Page 34 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group

RSCAN Driver Module

3.14 R_CAN_GetVersion()

This function returns the driver version number at runtime.

Format
uint32 t R CAN GetVersion (void) ;

Parameters
None

Return Values
Version number.

Properties
Prototyped in file “r_rscan rz_if.h”

Description

Returns the version of this module. The version number is encoded such that the top two bytes are the major version

number and the bottom two bytes are the minor version number.

RO1AN2784EU0102 Rev. 1.02

Apr 4, 2016 RENESAS

Page 35 of 37

RZ/A1H Group RSCAN Driver Module

4. Demo Project
The CAN Driver demo program is written for channel 1 on the RSK+RZA1H board.

This program requires the connection of a CAN device (such as a sniffer) on channel 1 capable of receiving and sending
messages. The program spins in a loop sending a hard-coded message then receiving one message at a time. The
messages received must have an ID of 0x60-0x6F and contain at least 4 bytes of data.

The baud rate is set to 125Kbps.

This program can run using either mailboxes without interrupts or FIFOs with interrupts. The desired operation is
configured by changing the value of USE_FIFOS in main.c to 0 for mailboxes or 1 for FIFOs.

The RSK board requires 0-ohm resistors in the following locations for proper CAN operation on channel 1; R104 (not
R105) and R206 (not R207).

ROLAN2784EU0102 Rev. 1.02 Page 36 of 37
Apr 4, 2016 RENESAS

RZ/A1H Group

RSCAN Driver Module

5. Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

RO1AN2784EU0102 Rev. 1.02
Apr 4, 2016

RENESAS

Page 37 of 37

http://www.renesas.com/
http://www.renesas.com/inquiry

Revision Record

Description
Rev. Date Page Summary
1.00 Apr 23, 2015 — Initial release
1.02 Apr 4, 2016 — Fixed bug in channel-to-index conversion.

A-1

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with
an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
LSI, an associated shoot-through current flows internally, and malfunctions occur due to the
false recognition of the pin state as an input signal become possible. Unused pins should be
handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.

— The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of
pins are not guaranteed from the moment when power is supplied until the reset process is
completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power reaches
the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

— The reserved addresses are provided for the possible future expansion of functions. Do not
access these addresses; the correct operation of LSl is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become

stable. When switching the clock signal during program execution, wait until the target clock signal

has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock
signal. Moreover, when switching to a clock signal produced with an external resonator (or by
an external oscillator) while program execution is in progress, wait until the target clock signal is
stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number
may differ in terms of the internal memory capacity, layout pattern, and other factors, which can
affect the ranges of electrical characteristics, such as characteristic values, operating margins,
immunity to noise, and amount of radiated noise. When changing to a product with a different
part number, implement a system-evaluation test for the given product.

Notice

for

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality”. The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical
implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and
malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or
regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.
10.

o

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

RENESAS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2015 Renesas Electronics Corporation. All rights reserved.

Colophon 5.0

	1. Overview
	2. API Information
	2.1 Hardware Requirements
	2.2 Hardware Resource Requirements
	2.3 Software Requirements
	2.4 Limitations
	2.5 Supported Toolchains
	2.6 Header Files
	2.7 Integer Types
	2.8 Configuration Overview
	2.9 Code Size
	2.10 API Data Types
	2.10.1 Box IDs (mailboxes and FIFOs)
	2.10.2 R_CAN_Open() Data Types
	2.10.3 Callback function events
	2.10.4 R_CAN_InitChan() Data Types
	2.10.5 R_CAN_ConfigFIFO() Data Types
	2.10.6 R_CAN_AddRxRule() Data Types
	2.10.7 R_CAN_SendMsg() Data Types
	2.10.8 R_CAN_GetMsg() Data Types
	2.10.9 R_CAN_GetHistoryEntry() Data Types
	2.10.10 R_CAN_GetStatusMask() Data Types
	2.10.11 R_CAN_GetCountErr() Data Types
	2.10.12 R_CAN_Control() Data Types

	2.11 Return Values

	3. API Functions
	3.1 Summary
	3.2 R_CAN_Open()
	3.3 R_CAN_InitChan()
	3.4 R_CAN_ConfigFIFO()
	3.5 R_CAN_AddRxRule()
	3.6 R_CAN_Control()
	3.7 R_CAN_SendMsg()
	3.8 R_CAN_GetMsg()
	3.9 R_CAN_GetHistoryEntry()
	3.10 R_CAN_GetStatusMask()
	3.11 R_CAN_GetCountFIFO()
	3.12 R_CAN_GetCountErr()
	3.13 R_CAN_Close()
	3.14 R_CAN_GetVersion()

	4. Demo Project
	5. Website and Support
	Revision Record
	General Precautions in the Handling of MPU/MCU Products

