
R01AN2951EJ0120 Rev.1.20 Page 1 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of
ARM® Development Studio 5 (DS-5TM)

APPLICATION NOTE

Summary
This application note presents a method for downloading programs to the serial flash memory allocated to the external
address space (SPI multi-I/O bus space) of an RZ/T1 group microcontroller.

Note that the method of downloading described in this application note utilizes the “semihosting” (file operation)
functionality of ARM® Development Studio 5 (DS-5TM, hereafter abbreviated as DS-5). You will need to obtain DS-5
separately. For details of the semihosting functionality of DS-5, refer to the documentation*1 provided by ARM®.

Note 1. Refer to “ARM® Compiler toolchain Developing Software for ARM® Processors, Semihosting” for details.

Applicable Devices
RZ/T1 Group

When applying the program covered in this application note to another microcontroller, modify the program according to
the specifications for the target microcontroller and conduct an extensive evaluation of the modified program.

R01AN2951EJ0120
Rev.1.20

Sep. 15, 2017

Introduction

1. Specifications.. 4

2. Conditions for Checking Operations ... 5

3. Related Application Notes... 6

4. Description of Hardware ... 7
4.1 List of Pins .. 7

4.2 Reference Circuit .. 8

5. Outline of Downloading to the Serial Flash Memory... 9
5.1 Terms Related to Downloading to the Serial Flash Memory .. 9
5.2 Schematic View of Flash Downloader Operation ... 10
5.3 Developing a Flash Downloader... 11

5.3.1 Memory Map... 12
5.4 Customizing the Examples of Downloading to the Serial Flash Memory 13

6. Example of Downloading to the RZ/T1 Evaluation Board (RTK7910022C00000BR)..................... 14
6.1 Settings for the RZ/T1 Evaluation Board (RTK7910022C00000BR) 15
6.2 Copying DS-5 Scripts ... 15

6.3 Importing and Building Projects .. 16
6.4 Generating Application Binary Files.. 17
6.5 Copying the Flash Downloader Executable File ... 18

6.6 DS-5 Debug Configuration Settings.. 18
6.7 Connecting the RZ/T1 Evaluation Board with an ARM® Emulator 19
6.8 Running the Download Script ... 20

7. Flash Memory Interface Functions.. 21
7.1 Fixed-Width Integers... 21

7.2 Structures and Unions .. 21
7.3 Constants.. 28
7.4 Variables... 31

7.5 Flash Memory Interface Functions ... 31
7.6 Details of the Flash Memory Interface Functions ... 34
7.7 Flowcharts of the Flash Memory Interface Functions ... 42

7.7.1 Flow of the Initialization Interface Function .. 42
7.7.2 Serial Flash Memory Write Mode Entry Function ... 43

7.7.3 Serial Flash Memory Read Mode Entry Function... 44
7.7.4 Flow of the Write Interface Function... 45

8. Operation of the Flash Downloader .. 46
8.1 Memory Allocation of the Application Program... 46
8.2 Flow of Flash Downloader Processing ... 47

8.2.1 Calculating the Checksum of the Loader Parameter Information................................. 50

9. Configuration of the Flash Downloader... 51
9.1 Configuration of Projects .. 51

Table of Contents

9.2 RZ/T1 Evaluation Board Initialization Script ... 52

9.3 Application Downloading Script .. 53

10. Application Examples.. 54
10.1 Changing the Binary File Names and Destination Addresses for Writing............................. 54

10.1.1 Changing the Binary File Names for Writing to the Flash Memory............................... 54

10.1.2 Changing the Destination Addresses for Writing to the Flash Memory 56
10.2 Changing the Sample Program to Suit the Given Flash Memory ... 58

10.2.1 Conditions for the Sample Program ... 58

10.2.2 Changing the Sample Program when Not Changing the Serial Flash Memory............ 58
10.2.3 Changing the Sample Program when Changing the Serial Flash Memory 59
10.2.4 Changing the Read Command Waveforms.. 59

10.2.5 Setting Registers in the Serial Flash Memory .. 61
10.2.6 Enabling Writing to the Serial Flash Memory ... 65
10.2.7 Waiting for the Serial Flash Memory to be Ready .. 66

10.2.8 Releasing the Serial Flash Memory from Protection .. 67
10.2.9 Erasing the Serial Flash Memory ... 68
10.2.10 Programming the Serial Flash Memory .. 70

10.3 Customizing the Sample Program for Initial Settings of the Microcomputers
Incorporating the R-IN Engine (Cortex-M3) .. 73

11. Sample Program... 75

12. Documents for Reference ... 76

R01AN2951EJ0120 Rev.1.20 Page 4 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

1. Specifications
The serial flash memory is a type of nonvolatile memory typically used to store program codes and data. Writing to the
serial flash memory requires an appropriate algorithm for the serial flash memory in use. This application note presents
such an algorithm as a C-language program that runs in the tightly-coupled memory (specifically, the ATCM) of an
RZ/A1H group microcontroller. It also describes how to use the semihosting functionality of DS-5 to refer to binary files
for SPIBSC initial settings and for applications*1 which are stored on the hard disk of the host computer on which DS-5
is running, and to write them to the serial flash memory.

Table 1.1 lists the peripheral modules used and their applications.

Note 1. See Table 5.1 for details of binary files for SPIBSC initial settings and for applications.

Table 1.1 Peripheral Modules and Their Applications

Peripheral Module Application

SPI multi-I/O bus controller (SPIBSC) • This is used to generate signals for use in access to the serial flash memory
connected to the external address space (SPI multi-I/O bus space).

ARM® Development Studio 5 (DS-5TM)
“semihosting” functionality

• Semihosting is used to have code running on the target (the program running on the
board) handle transfer to and from the I/O functions of the host computer on which
the debugger is running.

• This is used to refer to the terminal output from the target to the application console
of DS-5 and to the handling of application binary files stored on the hard disk of the
host computer.

R01AN2951EJ0120 Rev.1.20 Page 5 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

2. Conditions for Checking Operations
Operation of the sample program covered in this application note has been confirmed under the conditions below.

Table 2.1 Conditions for Checking Operations

Item Description

MCU used RZ/T1 Group

Operating frequency CPUCLK = 450 MHz, PCLKA = 150 MHz

Operating voltage 3.3 V

Integrated development environment DS-5 Version 5.25.0 from ARM®

Operating mode SPI boot mode (serial flash memory)

Board used RZ/T1 evaluation board (RTK7910022C00000BR)

Devices used
(functions to be used on the board)

Serial flash memory allocated to the SPI multi-I/O bus space (1- or 4-bit bus width)
• Manufacturer: Macronix International Co., Ltd.
• Product type number: MX25L51245GMI-10G

R01AN2951EJ0120 Rev.1.20 Page 6 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

3. Related Application Notes
The application notes related to the descriptions in this application note are listed below. Also consult the following
documents along with this application note.

• RZ/T1 Group Initial Settings (R01AN2554EJ)
• RZ/T1 Group Initial Settings of the Microcomputers Incorporating the R-IN Engine (R01AN2989EJ)

R01AN2951EJ0120 Rev.1.20 Page 7 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

4. Description of Hardware

4.1 List of Pins
Table 4.1 lists the pins used and their functions.

Note: Symbol # represents a negative logic (or active low).

Table 4.1 Pins Used and Their Functions

Pin Name I/O Description

SPBCLK_0 Output Clock output

SPBSSL_0 Output Slave select

SPBMO0_0/SPBIO00_0 I/O Master send data: data 0

SPBMI0_0/SPBIO10_0 I/O Master input data: data 1

SPBIO20_0 I/O Data 2

SPBIO30_0 I/O Data 3

MD2,
MD1,
MD0

Input Selection of boot mode (set to SPI boot mode)
MD2: “L”
MD1: “L”
MD0: “L”

TCK Input Clock input from the ARM® emulator

TMS Input Mode selection from the ARM® emulator

TRST# Input Reset input from the ARM® emulator

TDI Input Data input from the ARM® emulator

TDO Output Data output to the ARM® emulator

RES# Input System reset signal

R01AN2951EJ0120 Rev.1.20 Page 8 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

4.2 Reference Circuit
Figure 4.1 is a connection example.

Note: Symbol # represents a negative logic (active low).

Figure 4.1 Connection Example

DBGRQ
DBGACK

RTCK
TCK / SWCLK
TMS / SWDIO

TDO / SWO
TDI

nTRST

nSRST

TCK
TMS
TDO
TDI

TRST#

RES#

RES#

JTAG20 connector RZ/T1 group microcontroller

RESET#

MD0
MD1
MD2

Serial flash memory

SCK

SI/IO0

CS#

SO/IO1

WP#/IO2

HOLD#/IO3

SPBCLK_0

SPBSSL_0

SPBMO0_0
/SPBIO00_0

SPBMI0_0
/SPBIO10_0

SPBIO20_0

SPBIO30_0

R01AN2951EJ0120 Rev.1.20 Page 9 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

5. Outline of Downloading to the Serial Flash Memory
This section gives an outline of downloading to the serial flash memory.

5.1 Terms Related to Downloading to the Serial Flash Memory
Table 5.1 lists the terms related to downloading to the serial flash memory that are used in this application note.

Note 1. The binary file generator tool is included in DS-5. For details, see “ARM® DS-5TM DS-5 Getting Started Guide, ARM DS-5
Product Overview” provided by ARM®.

Table 5.1 Terms Related to Downloading to the Serial Flash Memory

Term Description

Application program The application program is a program which is created by the customer to suit the system.

Flash downloader The flash downloader is a program for writing the SPI multi-I/O bus controller initial settings
program and application program to the serial flash memory. Customers should use this
application note for reference and create flash downloader programs to match their systems.

Semihosting Semihosting is a mechanism where I/O request code running on an ARM® CPU uses the I/O
functions of DS-5 through transfer to and from a debugger.
Running standard C language functions such as printf, scanf, etc. on the ARM® CPU allows
I/O processing on the screen and keyboard of the host PC through the I/O functions of DS-5
rather than through the I/O functions in the ARM® CPU on the target system.
For details, see the document provided by ARM®.

Application project This project is used to generate an application program executable file (axf file) in DS-5.
The application program includes parameter information for the loader to be referred to by the
RZ/T1 group microcontroller and the loader program itself.

Flash downloader project This project is used to generate a flash downloader executable file (axf file) in DS-5.
The application program includes parameter information for the loader to be referred to by the
RZ/T1 group microcontroller and the loader program itself.

Application binary file The application binary file is a data file containing the application program to be written to the
serial flash memory. A binary file generator tool (fromelf.exe)*1 is used to generate this file
from the application program executable file (axf file) that is generated when the application
project is built in DS-5.

R01AN2951EJ0120 Rev.1.20 Page 10 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

5.2 Schematic View of Flash Downloader Operation
Figure 5.1 is a schematic view of the operation of the flash downloader. The flash downloader runs in the tightly-
coupled memory (ATCM) of the RZ/T1 group microcontroller; it uses semihosting to refer to the application binary files
stored on the hard disk of the host computer on which DS-5 is running and to write them to the serial flash memory.

Note: CM3_SECTION is a binary file for a Cortex-M3 program. For details, see the application note “RZ/T1 Group Initial Settings of
the Microcomputers Incorporating the R-IN Engine”.

Figure 5.1 Schematic View of Flash Downloader Operation

0x30000000

Flash downloader

CPU memory space

SPIBSC space
(serial flash memory)

0x00000000

JTAG

or
SWD

USB connection

DSTREAM
or

ULINK2

DS-5

[Flash downloader project]
 - RZ_T_fmtool_sflash.axf

(1) Load the flash downloader into the tightly-
coupled memory (ATCM) from DS-5. Since
loading is to the RAM, no specific algorithm
is required.

[Application project]
 - RZ_T_sflash_sample.axf
 - RZ_T_sflash_sample.bin

- CONST_LOADER_TABLE
- LOADER_RESET_HANDLER
- LOADER_IN_ROOT
- INIT
- CM3_SECTION

(2) Read the application binary files by the
flash downloader.

(3) Write the application binary files read
by the flash downloader to the serial
flash memory.

Host PC

R01AN2951EJ0120 Rev.1.20 Page 11 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

5.3 Developing a Flash Downloader
Figure 5.2 shows the flow of developing a flash downloader. The flash downloader is developed as a DS-5 project. This
project is called the flash downloader project. The flash downloader handles processing for reading the application
binary files by means of semihosting, CPU initialization, and programming to suit the given serial flash memory. The
sample program covered in this application note handles programming of the serial flash memory on the RZ/T1
evaluation board as a serial flash memory interface function. For details of the serial flash memory interface functions,
see Section 7, Flash Memory Interface Functions.

Figure 5.2 Flash Downloader Development Flow

Processing for
reading PC files

Hardware
initialization

Flash memory
interface functions

Assembler language
entry/stack settings

C compiler Assembler

Object modulesStandard libraries
(including semihosting)

Linker

Scatter file

Executable files

Processing for reading
binary files using
semihosting CPU initialization

Programming to
suit the installed
flash memory Stack initialization

Memory allocation settings
(running in the tightly-coupled
memory (ATCM))

R01AN2951EJ0120 Rev.1.20 Page 12 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

5.3.1 Memory Map
Since the flash downloader runs in the tightly-coupled memory (ATCM) of the RZ/T1 group microcontroller, a scatter
file*1 is used to allocate it to the tightly-coupled memory (ATCM). Figure 5.3 shows the memory allocation of the flash
downloader.

Note 1. A scatter file is text in which memory layout and allocation of codes and data are described. For details, see
“ARM® Compiler toolchain Using the Linker, Image structure and generation”.

1. The flash downloader is allocated to the tightly-coupled memory (ATCM) area of the RZ/T1 group microcontroller.
Address 0x00000000 is set as the entry point of the flash downloader.

2. The stack area, heap area, etc. used by the flash downloader are allocated to the tightly-coupled memory (ATCM)
area.

3. An exception handler vector table need not be implemented for the flash downloader since semihosting provides
this functionality.

Figure 5.3 Memory Allocation of the Flash Downloader

0x00000000

Downloader program area

Constants area

Initialized data area

0x00050000

Heap area

Stack area

Tightly-coupled memory (ATCM)

0x00050800

R01AN2951EJ0120 Rev.1.20 Page 13 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

5.4 Customizing the Examples of Downloading to the Serial Flash Memory
This section describes the procedure for customizing the examples of downloading to the serial flash memory presented
in this application note.

You can customize the items listed in Table 5.2. Customize them to suit the specifications of your system.

Table 5.2 Customizable Items

Item Description

Customization to suit the application
project to be downloaded

The names of the application binary files and the write start addresses can be customized to
suit the application project to be downloaded to the serial flash memory.

For details of the customization procedure, see Section 10.1, Changing the Binary File Names
and Destination Addresses for Writing.

Customization of the serial flash
memory interface functions

The flash memory interface functions can be customized to suit the serial flash memory to be
programmed.

For details of the customization procedure, see Section 10.2, Changing the Sample Program
to Suit the Given Flash Memory.

R01AN2951EJ0120 Rev.1.20 Page 14 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

6. Example of Downloading to the RZ/T1 Evaluation Board
(RTK7910022C00000BR)

This section presents the procedure for downloading the application program (RZ_T_sflash_sample) to the serial flash
memory on the RZ/T1 evaluation board (RTK7910022C00000BR) by using DS-5 and the ARM® emulator according to
the method of downloading presented in this application note.

Figure 6.1 shows an outline of the downloading procedure.

Figure 6.1 Outline of Downloading Procedure

Make DS-5 debug configuration settings

Connect the ARM emulator and RZ/T1 evaluation board

Run the download script

Import and build projects

Copy the flash downloader executable file

Make settings for the RZ/T1 evaluation board
(RTK7910022C00000BR)

Copy DS-5 scripts

Generate application binary files

R01AN2951EJ0120 Rev.1.20 Page 15 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

6.1 Settings for the RZ/T1 Evaluation Board (RTK7910022C00000BR)
Table 6.1 lists the settings for the RZ/T1 evaluation board (RTK7910022C00000BR) to run the sample program in this
application note.

Make settings for the RZ/T1 evaluation board (RTK7910022C00000BR) as indicated in Table 6.1.

6.2 Copying DS-5 Scripts
Create a directory [script_sflash] under the application project (RZ_T_sflash_sample) directory and copy the DS-5
scripts listed in Table 6.2 into it.

Note: For details of the DS-5 workspace directory, see “Using the ARM® DS-5TM Debugger” provided by ARM®.

Table 6.1 Settings for the RZ/T1 Evaluation Board (RTK7910022C00000BR)

SW Setting Description

SW4-1 ON MD0 = low level

SW4-2 ON MD1 = low level

SW4-3 ON MD2 = low level

SW4-4 ON BSCANP = low level

SW4-5 ON OSCTH = low level

SW4-6 OFF PU7 = high level

Table 6.2 List of DS-5 Script Files

Script Name Description

init_RZ-T.ds This is the RZ/T1 evaluation board initialization script.
This DS-5 script is for executing processing, such as enabling writing to the tightly-coupled memory
(ATCM) of the RZ/T1 group microcontroller, when DS-5 is connected to the RZ/T1 evaluation board.

RZ_T_sflash_sample.ds This is the application downloading script.
This DS-5 script contains commands for the sequence of operations for writing the application program to
the serial flash memory allocated to the external address space (SPI multi-I/O bus space) of the RZ/T1
group microcontroller.

init_RZ-T2.ds This is the RZ/T1 evaluation board initialization script to be executed from the application downloading
script. It is identical to init_RZ-T.ds, except that it does not make settings for the DS-5 memory area.

R01AN2951EJ0120 Rev.1.20 Page 16 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

6.3 Importing and Building Projects
Import the projects listed in Table 6.3 to the DS-5 workspace directory. Then, build the projects to generate executable
files.

[Procedure]
1. Select [All Programs] - [ARM DS-5 v5.21.1] - [Eclipse for DS-5] from the DS-5 start menu.
2. Select [File (F)] - [Import (I)], then open the [Import - Select] window.
3. Select [General] - [Existing Projects into Workspace], then click [Next].
4. Display the projects by clicking [Reference] in the [Import - Import Projects] window, then select the projects to be

imported. In the option, check [Copy Projects into Workspace (C)], then click [End].
5. Select the projects imported by the project explorer in order, then select [Project (P) - Build Projects (B)] to build

the projects.

Table 6.3 List of Projects

Project Description Executable File

RZ_T_fmtool_sflash This project is used to build the flash downloader. We refer to it as
the flash downloader project.

RZ_T_fmtool_sflash.axf

RZ_T_sflash_sample This project is used to build the application program. We refer to it
as the application project.

RZ_T_sflash_sample.axf

R01AN2951EJ0120 Rev.1.20 Page 17 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

6.4 Generating Application Binary Files
Run the command*1 in Figure 6.3 from [DS-5 Command Prompt] of DS-5 to generate application binary files
(RZ_T_sflash_sample.bin). Table 6.4 lists the binary files generated when this command is run.

In the project included in this application note, this processing is handled by a batch file
(¥RZ_T_sflash_sample¥Debug¥after_build.bat) when building the project.

[Procedure]
1. Select [All Programs] - [ARM DS-5 v5.21.1] - [DS-5 Command Prompt] from the DS-5 Command Prompt start

menu.
2. Type [select_toolchain] and press enter. Select a toolchain to use and press enter (see Figure 6.2).
3. Set a path to the [fmtool] folder created in Section 6.3, Importing and Building Projects, and then run the

command*1 listed in Figure 6.3

Note 1. For details of the command, see “ARM® DS-5TM DS-5 Getting Started Guide, ARM DS-5 Product Overview”
provided by ARM®.

Note 1. CM3_SECTION is a binary file for a Cortex-M3 program. For details, refer to the application note “RZ/T1 Group Initial Settings
of the Microcomputers Incorporating the R-IN Engine”.

You can change the compiler toolchain for this environment at any time by

running the 'select_toolchain' command. A default for all future environments

can be set with the 'select_default_toolchain' command.

C:¥Program Files¥DS-5 v5.21.1¥bin>select_toolchain

Select a toolchain to use in the current environment

 1 - ARM Compiler 5 (DS-5 built-in)

 2 - GCC 4.x [arm-linux-gnueabihf] (DS-5 built-in)

Enter a number or <return> for no toolchain: 1

Environment configured for ARM Compiler 5 (DS-5 built-in)

C:¥Program Files¥DS-5 v5.21.1¥bin>

Figure 6.2 Configuring a Toolchain

fromelf --bin --output=RZ_T_sflash_sample.bin RZ_T_sflash_sample.axf

Figure 6.3 Application Binary File Generation Command

Table 6.4 List of Application Binary Files

Directory Binary File Description

RZ_T_sflash_sample.bin CONST_LOADER_TABLE Application (1) (loader parameter information) binary file

LOADER_RESET_HANDLER Application (2) (loader program) binary file

LOADER_IN_ROOT Application (3) (loader program) binary file

INIT Application (4) (user program) binary file

CM3_SECTION*1 Application (5) (user program) binary file (Cortex-M3 program)

R01AN2951EJ0120 Rev.1.20 Page 18 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

6.5 Copying the Flash Downloader Executable File
Create a directory [fmtool] directly under the application project (RZ_T_sflash_sample) directory that was imported in
Section 6.3, Importing and Building Projects, and copy the flash downloader project executable file
(RZ_T_fmtool_sflash.axf) into it.

In the project included in this application note, this processing is handled by a batch file
(l¥RZ_T_fmtool_sflash¥Debug¥after_build.bat) when building the project.

6.6 DS-5 Debug Configuration Settings
Follow the procedure below to make settings for a DS-5 debug configuration. The DS-5 debug configuration settings
specify that the RZ/T1 evaluation board initialization script (init_RZ-T.ds) is run when DS-5 is connected to the RZ/T1
evaluation board*1. For details of processing by the RZ/T1 evaluation board initialization script (init_RZ-T.ds), see
Section 9.2, RZ/T1 Evaluation Board Initialization Script.

[Procedure]
1. In DS-5, select [Run (R)] - [Debug Configurations (B)] to display the [Debug Configurations] window.
2. In the [Connection] tab of the DS-5 [Debug Configurations] window, select the target. As the target, select

[Renesas] / [RZ/T1 R7S910x17(Generic)] / [Bare Metal Debug] / [Debug of Cortex-R4]*2.
3. In the [Connection] tab of the DS-5 [Debug Configurations] window, select target connection and connection

browser. In [Target Connection], select the debugger to connect, and then press the [Browse] button in [Bare Metal
Debug] to select the connected debugger in [Connection Browser].

4. In the [Debugger] tab of the DS-5 [Debug Configurations] window, check the box for [Connect only] under Run
control.

5. In the [Debugger] tab of the DS-5 [Debug Configurations] window, check the box for [Run target initialization
debugger script (.ds/.py)] under Run control, and set a path to the RZ/T1 evaluation board initialization script
(init_RZ-T.ds).

Note 1. The above procedure assumes that the RZ/T1 evaluation board has been registered with the DS-5 platform. If
the RZ/T1 evaluation board has not been registered with the DS-5 platform, use the DS-5 debugger hardware
configuration tools to register it.

Note 2. The name of the target to select may differ according to the version of the DS-5 you are using.

R01AN2951EJ0120 Rev.1.20 Page 19 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

6.7 Connecting the RZ/T1 Evaluation Board with an ARM® Emulator
Follow the procedure below to connect the RZ/T1 evaluation board with an ARM® emulator.

[Procedure]
1. In the [Debug Control] tab of DS-5, select the connection under the name specified in step 2 of Section 6.6, DS-5

Debug Configuration Settings. Then right click to select [Connect to Target].
2. Connection starts in step 1. After the connection is established, the RZ/T1 evaluation board initialization script

(init_RZ-T.ds) registered in step 4 of Section 6.6, DS-5 Debug Configuration Settings, is run.

Note: This screen shot is for when a debugger to connect to the target is ULINK2TM.

Figure 6.4 Selecting a Debugger in DS-5

R01AN2951EJ0120 Rev.1.20 Page 20 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

6.8 Running the Download Script
Follow the procedure below to run the download script (RZ_T_sflash_sample.ds).

[Procedure]
1. In the [Scripts] tab of DS-5, register the download script (RZ_T_sflash_sample.ds).
2. Double-click the download script (RZ_T_sflash_sample.ds) registered in step 1 to run the script.
3. When the download script runs, the flash downloader is launched and starts writing to the flash memory. Figure 6.5

shows the message displayed in [Application Console].
4. When downloading is complete, the symbol information of the flash downloader is discarded, the RZ/T1 evaluation

board initialization script (init_RZ-T2.ds) is run from the download script (RZ_T_sflash_sample.ds), and the
symbol information of the application program (RZ_T_sflash_sample) is loaded.

RZ/T1 CPU Board S-Flash Programming Sample. Ver.1.00

Copyright (C) 2015 Renesas Electronics Corporation. All rights reserved.

Initializing Flash...

Start to load Binary Data to Flash Memory.

loop=1, file=CONST_LOADER_TABLE, flash address=0x30000000.

Calculating Data Size...

Data Size is 76

Programing Flash...

Calcurating Checksum of Loader Parameter.

Verifying Flash...

loop=1, Flash Programming Success!!

loop=2, file=LOADER_RESET_HANDLER, flash address=0x30000200.

Calculating Data Size...

Data Size is 11812

Programing Flash...

Verifying Flash...

loop=2, Flash Programming Success!!

loop=3, file=LOADER_IN_ROOT, flash address=0x30006200.

Calculating Data Size...

Data Size is 236

Programing Flash...

Verifying Flash...

loop=3, Flash Programming Success!!

loop=4, file=INIT, flash address=0x30010000.

Calculating Data Size...

Data Size is 2592

Programing Flash...

Verifying Flash...

loop=4, Flash Programming Success!!

loop=5, Could not open file. Exiting.

Flash Programming Complete

Note: Processing by loop = 5 is dedicated to writing a Cortex-M3 program. When writing a Cortex-R4F program, the required
writing of the program is completed by loop = 4.

Figure 6.5 Messages Output to the Application Console

R01AN2951EJ0120 Rev.1.20 Page 21 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

7. Flash Memory Interface Functions
This section describes the flash memory interface functions.

7.1 Fixed-Width Integers
Table 7.1 lists fixed-width integers used in the sample program.

7.2 Structures and Unions
Table 7.2 to Table 7.9 list the structures used in the sample program.

Table 7.1 Fixed-Width Integers Used in the Sample Program

Symbol Description

char8_t 8-bit signed integer

int16_t 16-bit signed integer

int32_t 32-bit signed integer

uint8_t 8-bit unsigned integer

uint16_t 16-bit unsigned integer

uint32_t 32-bit unsigned integer

Table 7.2 Structure of SPIBSC External Address Read Settings (st_spibsc_cfg_t) (1)

Member Description

uint8_t udef_cmd Read command
• Sets the read command output to the serial flash memory when converting read

operations for the SPI multi-I/O bus space to SPI communications.
• The value of this member is set in the CMD[7:0] bits of the data read command setting

register (DRCMR).

uint8_t udef_cmd_width Read command bit width
• Sets the bit width for issuing read commands.
• Available settings:

SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

• The value of this member is set in the CDB[1:0] bits of the data read enable register
(DRENR).

uint8_t udef_opd3
uint8_t udef_opd2
uint8_t udef_opd1
uint8_t udef_opd0

Optional data
• Set the optional data output to the serial flash memory when converting read operations

for the SPI multi-I/O bus space to SPI communications.
• The values of these members are set in the OPD3[7:0], OPD2[7:0], OPD1[7:0], and

OPD0[7:0] bits of the data read option setting register (DROPR).

uint8_t udef_opd_enable Optional data enable
• Selects whether the optional data is to be issued.
• Available settings:

SPIBSC_OUTPUT_DISABLE: No data is output
SPIBSC_OUTPUT_OPD_3: OPD3 is output
SPIBSC_OUTPUT_OPD_32: OPD3 and OPD2 are output
SPIBSC_OUTPUT_OPD_321: OPD3, OPD2, and OPD1 are output
SPIBSC_OUTPUT_OPD_3210: OPD3, OPD2, OPD1, and OPD0 are output.

• The value of this member is set in the OPDE[3:0] bits of the data read enable register
(DRENR).

uint8_t udef_opd_width Optional data bit width
• Sets the bit width for issuing the optional data.
• Available settings:

SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

• The value of this member is set in the OPDB[1:0] bits of the data read enable register
(DRENR).

R01AN2951EJ0120 Rev.1.20 Page 22 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Table 7.3 Structure of SPIBSC External Address Read Settings (st_spibsc_cfg_t) (2)

Member Description

uint8_t udef_dmycyc_num Number of dummy cycles
• Sets the number of dummy cycles output to the serial flash memory when converting

read operations for the SPI multi-I/O bus space to SPI communications.
• Available settings:

SPIBSC_DUMMY_1CYC: 1 cycle
SPIBSC_DUMMY_2CYC: 2 cycles
SPIBSC_DUMMY_3CYC: 3 cycles
SPIBSC_DUMMY_4CYC: 4 cycles
SPIBSC_DUMMY_5CYC: 5 cycles
SPIBSC_DUMMY_6CYC: 6 cycles
SPIBSC_DUMMY_7CYC: 7 cycles
SPIBSC_DUMMY_8CYC: 8 cycles

• The value of this member is set in the DMCYC[2:0] bits of the data read dummy cycle
setting register (DRDMCR).

uint8_t udef_dmycyc_enable Dummy cycle enable
• Selects whether dummy cycles are to be inserted.
• Available settings:

SPIBSC_DUMMY_CYC_DISABLE: Dummy cycles are not inserted
SPIBSC_DUMMY_CYC_ENABLE: Dummy cycles are inserted

• The value of this member is set in the DME bit of the data read enable register (DRENR).

uint8_t udef_dmycyc_width Dummy cycle bit width
• Sets the bit width for issuing dummy cycles.
• Available settings:

SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

• The value of this member is set in the DMDB[1:0] bits of the data read dummy cycle
setting register (DRDMCR).

uint8_t udef_data_width Data read bit width
• Sets the bit width for reading data from the serial flash memory when converting read

operations for the SPI multi-I/O bus space to SPI communications.
• Available settings:

SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

• The value of this member is set in the DRDB[1:0] bits of the data read enable register
(DRENR).

R01AN2951EJ0120 Rev.1.20 Page 23 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Table 7.4 Structure of SPIBSC External Address Read Settings (st_spibsc_cfg_t) (3)

Member Description

uint8_t udef_spbr Bit rate
• Sets the bit rate of the serial clock (SPBCLK) output to the serial flash memory when

converting read operations for the SPI multi-I/O bus space to SPI communications.
• Available settings:

Make settings to match the bit-rate division setting (udef_brdv).
• The value of this member is set in the SPBR[7:0] bits of the bit rate setting register

(SPBCR).

uint8_t udef_brdv Bit-rate division setting
• Sets the bit rate of the serial clock (SPBCLK) output to the serial flash memory when

converting read operations for the SPI multi-I/O bus space to SPI communications.
• Available settings:

Make settings to match the bit-rate division setting (udef_brdv).
• The value of this member is set in the BRDV[1:0] bits of the bit-rate setting register

(SPBCR).

uint8_t udef_addr_width Address bit width
• Sets the width in bits of the address line or lines for output to the serial flash memory

when converting read operations for the SPI multi-I/O bus space to SPI communications.
• Available settings:

SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

• The value of this member is set in the ADB[1:0] bits of the data read enable register
(DRENR).

uint8_t udef_addr_mode Address enable
• Sets the address for output to the serial flash memory when converting read operations

for the SPI multi-I/O bus space to SPI communications.
• Available settings:

SPIBSC_OUTPUT_ADDR_24: 24-bit address output
SPIBSC_OUTPUT_ADDR_32: 32-bit address output

• The value of this member is set in the ADE[3:0] bits of the data read enable register
(DRENR).

R01AN2951EJ0120 Rev.1.20 Page 24 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Table 7.5 Structure of SPIBSC SPI Mode Settings (st_spibsc_spimd_reg_t) (1)

Member Description

uint32_t cdb Command bit width
• Sets the command bit width in SPI operation mode.
• Available settings:

SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

• The value of this member is set in the CDB[1:0] bits of the SPI mode enable register
(SMENR).

uint32_t ocdb Optional command bit width
• Specifies the optional command bit width in SPI operation mode.
• Available settings:

SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

• The value of this member is set in the OCDB[1:0] bits of the SPI mode enable register
(SMENR).

uint32_t adb Address bit width
• Specifies the width in bits of the address line or lines in SPI operation mode.
• Available settings:

SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

• The value of this member is set in the ADB[1:0] bits of the SPI mode enable register
(SMENR).

uint32_t opdb Optional data bit width
• Specifies the optional data bit width in SPI operation mode.
• Available settings:

SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

• The value of this member is set in the OPDB[1:0] bits of the SPI mode enable register
(SMENR).

uint32_t spidb Transfer data bit width
• Specifies the transfer data bit width in SPI operation mode.
• Available settings:

SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

• The value of this member is set in the SPIDB[1:0] bits of the SPI mode enable register
(SMENR).

uint32_t cde Sets whether commands are to be output in SPI operation mode.
• Available settings:

SPIBSC_OUTPUT_DISABLE: Output is disabled.
SPIBSC_OUTPUT_ENABLE: Output is enabled.

• The value of this member is set in the CDE bit of the SPI mode enable register (SMENR).

R01AN2951EJ0120 Rev.1.20 Page 25 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Table 7.6 Structure of SPIBSC SPI Mode Settings (st_spibsc_spimd_reg_t) (2)

Member Description

uint32_t ocde Optional command enable
• Sets whether the optional command is to be output in SPI operation mode.
• Available settings:

SPIBSC_OUTPUT_DISABLE: Output is disabled.
SPIBSC_OUTPUT_ENABLE: Output is enabled.

• The value of this member is set in the OCDE bit of the SPI mode enable register
(SMENR).

uint32_t ade Address enable
• Sets whether the address is to be output in SPI operation mode.
• Available settings:

SPIBSC_OUTPUT_DISABLE: Output is disabled.
SPIBSC_OUTPUT_ADDR_24: ADR[23:0] is output.
SPIBSC_OUTPUT_ADDR_32: ADR[31:0] is output.

• The value of this member is set in the ADE[3:0] bits of the SPI mode enable register
(SMENR).

uint32_t opde Optional data enable
• Sets whether the optional data is to be issued in SPI operation mode.
• Available settings:

SPIBSC_OUTPUT_DISABLE: Output is disabled.
SPIBSC_OUTPUT_OPD_3: OPD3 is output.
SPIBSC_OUTPUT_OPD_32: OPD3 and OPD2 are output.
SPIBSC_OUTPUT_OPD_321: OPD3, OPD2, and OPD1 are output.
SPIBSC_OUTPUT_OPD_3210: OPD3, OPD2, OPD1, and OPD0 are output.

• The value of this member is set in the OPDE[3:0] bits of the SPI mode enable setting
register (SMENR).

uint32_t spide Transfer data enable
• Sets whether data transfer is to proceed in SPI operation mode.
• Available settings:

SPIBSC_OUTPUT_DISABLE: Output is disabled.
SPIBSC_OUTPUT_SPID_8: 8- (or 16-) bit transfer
SPIBSC_OUTPUT_SPID_16: 16- (or 32-) bit transfer
SPIBSC_OUTPUT_SPID_32: 32- (or 64-) bit transfer

• The value of this member is set in the SPIDE[3:0] bits of the SPI mode enable register
(SMENR).

uint32_t sslkp SPBSSL signal level retention
• Sets the state of the SPBSSL signal after the end of transfer in SPI operation mode.
• Available settings:

SPIBSC_SPISSL_NEGATE: The signal is negated at the end of transfer.
SPIBSC_SPISSL_KEEP: The level of the SPBSSL signal is retained from the end of
transfer to the start of next access.

• The value of this member is set in the SSLKP bit of the SPI mode control register
(SMCR).

R01AN2951EJ0120 Rev.1.20 Page 26 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Table 7.7 Structure of SPIBSC SPI Mode Settings (st_spibsc_spimd_reg_t) (3)

Member Description

uint32_t spire Data read enable
• Enables or disables reading of data in SPI operation mode.
• Available settings:

SPIBSC_SPIDATA_DISABLE: Reading of data is disabled.
SPIBSC_SPIDATA_ENABLE: Reading of data is enabled.

• The value of this member is set in the SPIRE bit of the SPI mode control register
(SMCR).

uint32_t spiwe Data write enable
• Enables or disables writing of data in SPI operation mode.
• Available settings:

SPIBSC_SPIDATA_DISABLE: Writing of data is disabled.
SPIBSC_SPIDATA_ENABLE: Writing of data is enabled.

• The value of this member is set in the SPIWE bit of the SPI mode control register
(SMCR).

uint32_t dme Dummy cycle enable
• Sets whether dummy cycles are to be inserted in SPI operation mode.
• Available settings:

SPIBSC_DUMMY_CYC_DISABLE: Dummy cycles are not inserted.
SPIBSC_DUMMY_CYC_ENABLE: Dummy cycles are inserted.

• The value of this member is set in the DME bit of the SPI mode enable register (SMENR).

uint32_t adder Address DDR enable
• Selects SDR or DDR transfer of the address for output in SPI operation mode.
• Available setting:

SPIBSC_SDR_TRANS SDR transfer
• The value of this member is set in the ADDRE bit of the SPI mode DDR enable register

(SMDRENR).

uint32_t opdre Optional data DDR enable
• Selects SDR or DDR transfer of the optional data for output in SPI operation mode.
• Available settings:

SPIBSC_SDR_TRANS: SDR transfer
• The value of this member is set in the OPDRE bit of the SPI mode DDR enable register

(SMDRENR).

uint32_t spidre Transfer data DDR enable
• Selects SDR or DDR transfer of the data for transfer in SPI operation mode.
• Available setting:

SPIBSC_SDR_TRANS: SDR transfer
• The value of this member is set in the SPIDRE bit of the SPI mode DDR enable register

(SMDRENR).

R01AN2951EJ0120 Rev.1.20 Page 27 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Table 7.8 Structure of SPIBSC SPI Mode Settings (st_spibsc_spimd_reg_t) (4)

Member Description

uint8_t dmdb Dummy cycle bit width
• Sets the bit width of dummy cycles in SPI operation mode.
• Available settings:

SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

• The value of this member is set in the DMDB[1:0] bits of the SPI mode dummy cycle
setting register (SMDMCR).

uint8_t dmcyc Number of dummy cycles
• Sets the number of dummy cycles in SPI operation mode.
• Available settings:

SPIBSC_DUMMY_1CYC: 1 cycle
SPIBSC_DUMMY_2CYC: 2 cycles
SPIBSC_DUMMY_3CYC: 3 cycles
SPIBSC_DUMMY_4CYC: 4 cycles
SPIBSC_DUMMY_5CYC: 5 cycles
SPIBSC_DUMMY_6CYC: 6 cycles
SPIBSC_DUMMY_7CYC: 7 cycles
SPIBSC_DUMMY_8CYC: 8 cycles

• The value of this member is set in the DMCYC[2:0] bits of the SPI mode dummy cycle
setting register (SMDMCR).

uint8_t cmd Command
• Sets the command for output in SPI operation mode.
• The value of this member is set in the CMD[7:0] bits of the SPI mode command setting

register (SMCMR).

uint8_t ocmd Optional command
• Sets the optional command for output in SPI operation mode.
• The value of this member is set in the OCMD[7:0] bits of the SPI mode command setting

register (SMCMR).

uint32_t addr Address
• Sets the address for output in SPI operation mode.
• The value of this member is set in the ADR[31:0] bits of the SPI mode address setting

register (SMADR).

uint8_t opd[4] Optional data
• Sets the optional data for output in SPI operation mode.
• The value of this member is set in the OPDn[7:0] bits of the SPI mode option setting

register (SMOPR) as follows.
OPD3[7:0] ← opd[0]
OPD2[7:0] ← opd[1]
OPD1[7:0] ← opd[2]
OPD0[7:0] ← opd[3]

R01AN2951EJ0120 Rev.1.20 Page 28 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

7.3 Constants
Table 7.10 to Table 7.13 list the constants used in the sample program.

Table 7.9 Structure of SPIBSC SPI Mode Settings (st_spibsc_spimd_reg_t) (5)

Member Description

uint32_t smrdr[2] Read data storage buffer
• Holds the data read in SPI operation mode (the value of the SPI mode read data register

n (SMRDRn)) as follows.
SMRDR0 → smrdr[0]
SMRDR1 → smrdr[1]

uint32_t smwdr[2] Write data storage buffer
• Holds the data for writing in SPI operation mode (the value of the SPI mode write data

register n (SMWDRn)) as follows.
SMWDR0 ← swrdr[0]
SMWDR1 ← swrdr[1]

Table 7.10 Constants Used in the Sample Program (1)

Constant Setting Description

SF_REQ_PROTECT (0) Setting for protection of the serial flash memory

SF_REQ_UNPROTECT (1) Releasing the serial flash memory from protection

SFLASHCMD_SECTOR_ERASE (0xD8) Erase 256 KB (3-byte address) command

SFLASHCMD_BYTE_PROGRAM (0x02) Page programming (3-byte address) command

SFLASHCMD_FAST_READ (0x0B) Read fast (3-byte address) command

SFLASHCMD_QUAD_IO_READ (0xEB) Quad I/O read (3-byte address) command

SFLASHCMD_WRITE_ENABLE (0x06) Write enable command

SFLASHCMD_READ_STATUS (0x05) Read status register-1 command

SFLASHCMD_READ_CONFIG (0x15) Read configuration register-1 command

SFLASHCMD_WRITE_STATUS (0x01) Write register (status-1, configuration-1) command

SFLASHCMD_SECTOR_ERASE_4B (0xDC) Erase 256 KB (4-byte address) command

SFLASHCMD_BYTE_PROGRAM_4B (0x12) Page programming (4-byte address) command

SFLASHCMD_FAST_READ_4B (0x0C) Read fast (4-byte address) command

SFLASHCMD_QUAD_IO_READ_4B (0xEC) Quad I/O read (4-byte address) command

R01AN2951EJ0120 Rev.1.20 Page 29 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Table 7.11 Constants Used in the Sample Program (2)

Constant Setting Description

STREG_SRWD_BIT (0x80) Status register/SRWD bit mask value

STREG_QUAD_BIT (0x40) Status register/QUAD bit mask value

STREG_BPROTECT_BIT (0x3C) Status register/block protection bit mask value

STREG_WEL_BIT (0x02) Status register/write enable latch bit mask value

STREG_WIP_BIT (0x01) Status register/write in progress bit mask value

CFREG_LC_BIT (0xC0) Configuration register/latency code bit mask value

CFREG_4BYTE_BIT (0x20) Configuration register/4-byte bit mask value

Table 7.12 Constants Used in the Sample Program (3)

Constant Setting Description

SF_PAGE_SIZE (256) Flash memory page size (amount of data to be written)

SF_SECTOR_SIZE (64 * 1024) Sector size

SF_NUM_OF_SECTOR (1024) Number of sectors

R01AN2951EJ0120 Rev.1.20 Page 30 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Table 7.13 Constants Used in the Sample Program (4)

Constant Setting Description

SPIBSC_CMNCR_BSZ_SINGLE (0) One serial flash memory is connected to the SPIBSC data bus.

SPIBSC_1BIT (0) Sets the bit width for issuing read commands to 1 bit.

SPIBSC_4BIT (2) Sets the bit width for issuing read commands to 4 bits.

SPIBSC_OUTPUT_DISABLE (0) Specifies that no command is output when a read command is issued.

SPIBSC_OUTPUT_ENABLE (1) Specifies that a command is output when a read command is issued.

SPIBSC_OUTPUT_ADDR_24 (0x07) Outputs 24-bit addresses.

SPIBSC_OUTPUT_ADDR_32 (0x0f) Outputs 32-bit addresses.

SPIBSC_OUTPUT_OPD_3 (0x08) Outputs the optional data OPD3 when a read command is issued.

SPIBSC_OUTPUT_OPD_32 (0x0c) Outputs the optional data OPD3 and OPD2 when a read command is issued.

SPIBSC_OUTPUT_OPD_321 (0x0e) Outputs the optional data OPD3, OPD2, and OPD1 when a read command is
issued.

SPIBSC_OUTPUT_OPD_3210 (0x0f) Outputs the optional data OPD3, OPD2, OPD1, and OPD0 when a read com-
mand is issued.

SPIBSC_OUTPUT_SPID_8 (0x08) Enables 8- (or 16-) bit transfer in SPI operation mode.

SPIBSC_OUTPUT_SPID_16 (0x0c) Enables 16- (or 32-) bit transfer in SPI operation mode.

SPIBSC_OUTPUT_SPID_32 (0x0f) Enables 32- (or 64-) bit transfer in SPI operation mode.

SPIBSC_SPISSL_NEGATE (0) Sets the state of SPBSSL signal after the end of transfer to the negated state in
SPI operation mode.

SPIBSC_SPISSL_KEEP (1) Specifies that the level of the SPBSSL signal is retained from the end of transfer
to the start of next access in SPI operation mode.

SPIBSC_SPIDATA_DISABLE (0) Disables reading of data in SPI operation mode.

SPIBSC_SPIDATA_ENABLE (1) Enables reading of data in SPI operation mode.

SPIBSC_DUMMY_CYC_DISABLE (0) Disables insertion of dummy cycles.

SPIBSC_DUMMY_CYC_ENABLE (1) Enables insertion of dummy cycles.

SPIBSC_DUMMY_1CYC (0) Sets the number of dummy cycles for output to the serial flash memory when
converting read operations for the SPI multi-I/O bus space to SPI communica-
tions to 1.

SPIBSC_DUMMY_2CYC (1) Sets the number of dummy cycles for output to the serial flash memory when
converting read operations for the SPI multi-I/O bus space to SPI communica-
tions to 2.

R01AN2951EJ0120 Rev.1.20 Page 31 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

7.4 Variables
Table 7.14 and Table 7.15 list the static variable and global variables, respectively.

7.5 Flash Memory Interface Functions
Table 7.16 lists the serial flash memory interface functions. Implement processing to suit the serial flash memory to be
programmed in these functions.

Table 7.14 Static Variables

Type Variable Name Description

static uint8_t g_erased_flag[]; Sector erasure flag
Assigns a byte containing a flag to one sector of the serial flash memory.
The sector erasure flag is set to 0 (indicating the non-erased state) when
running the initialization entry function. The flag is set to 1 (indicating the
erased state) following sector erasure.

Table 7.15 Global Variables

Type Variable Name Description

st_spibsc_cfg_t g_spibsc_cfg SPIBSC external address read settings storage variable
• Stores the SPIBSC external address read settings.

st_spibsc_spimd_reg_t g_spibsc_spimd_reg SPIBSC SPI mode operation settings storage variable
• Stores the SPIBSC settings when the SPIBSC is used in SPI mode.

In the sample program, these settings are also used as arguments
when running serial flash control functions within the API functions
and user-defined functions.

Table 7.16 List of Flash Memory Interface Functions

Function Description

flash_init Initialization interface function
This function sets the peripheral modules for use in access to the serial flash memory connected
to the external bus (SPI multi-I/O bus space) of the RZ/T1.

It initializes the flash memory interface functions.

flash_write Write interface function
This function handles writing to the serial flash memory connected to the external bus (SPI multi-
I/O bus space) of the RZ/T1. If sector erasure is not executed for the specified address after the
execution of the initialization interface function, this function also handles processing to erase the
sector.

flash_write_entry Serial flash memory write mode entry function

flash_veify_entry Serial flash memory read mode entry function

R01AN2951EJ0120 Rev.1.20 Page 32 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Table 7.17 Flash Memory Interface Internal Functions

Function Description

R_SFLASH_Exmode_Setting SPIBSC initial settings function
Makes initial settings required for controlling the serial flash memory and for using the SPIBSC in
external address read mode. This function also makes register settings in the flash memory to suit
the initial settings. After the initial settings, it places the SPIBSC in external address read mode.

R_SFLASH_WaitTend SPIBSC data transfer end wait function
Waits for the completion of data transfer from the SPIBSC.

R_SFLASH_Exmode SPIBSC external address mode setting function
Places the SPIBSC in external address read mode.

R_SFLASH_Set_Config SPIBSC external address read settings function
Makes initial settings required for using the SPIBSC in external address read mode.

R_SFLASH_SpibscStop SPIBSC stop function
Stops the SPIBSC.

R_SFLASH_Spimode SPIBSC SPI mode setting function
Places the SPIBSC in SPI mode.

R_SFLASH_Exmode_Init SPIBSC external address mode initial settings function
Makes initial settings for using the SPIBSC in external address read mode. After the initial
settings, it places the SPIBSC in external address read mode.

R_SFLASH_Spimode_Init SPIBSC SPI mode initial settings function
Makes initial settings required for using the SPIBSC in SPI mode.
After the initial settings, it places the SPIBSC in SPI mode.

R_SFLASH_EraseSector Serial flash erasure function
Uses SPI mode of the SPIBSC to erase the serial flash memory.

R_SFLASH_ByteProgram Serial flash programming function
Uses SPI mode of the SPIBSC to write data to the serial flash memory.

R_SFLASH_Spibsc_Transfer Serial flash control function
Issues commands to the serial flash memory according to arguments.

R_SFLASH_Ctrl_Protect Serial flash memory protection releasing function
Makes settings for the registers in the serial flash memory to release protection according to the
function's arguments.

R01AN2951EJ0120 Rev.1.20 Page 33 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Table 7.18 Flash Memory Interface User-Defined Functions

Function Description

Userdef_SPIBSC_Set_Config SPIBSC external address read settings function
Determines the SPIBSC external address read mode settings to suit the serial flash memory in
use. The sample program makes initial settings required for using the SPIBSC in external address
read mode on the basis of the settings made by this function.
The sample program makes SPIBSC initial settings for use of a Macronix serial flash memory
(product type name: MX25L51245G).

Userdef_SFLASH_Set_Mode Serial flash memory internal register settings function
Makes settings for the registers in the serial flash memory required when using the SPIBSC in
external address read mode, to suit the serial flash memory in use.
The sample program makes initial settings for the registers in the Macronix serial flash memory
(product type name: MX25L51245G).

Userdef_SFLASH_Write_Enable Serial flash memory write enable function
Makes settings for the registers in the serial flash memory to enable writing, to suit the serial flash
memory in use.
The sample program makes settings for the registers in the Macronix serial flash memory (product
type name: MX25L51245G).

Userdef_SFLASH_Busy_Wait Serial flash memory ready wait function
Reads the registers in the serial flash memory and waits for the serial flash memory to enter the
ready state, over a period that suits the serial flash memory in use.
The sample program waits for the Macronix serial flash memory (product type name:
MX25L51245G) to enter the ready state.

Userdef_SFLASH_Ctrl_Protect Serial flash memory protection releasing function
Makes settings for the registers in the serial flash memory to release it from protection, to suit the
flash memory in use.
The sample program releases the Macronix serial flash memory (product type name:
MX25L51245G) from protection.

R01AN2951EJ0120 Rev.1.20 Page 34 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

7.6 Details of the Flash Memory Interface Functions
The following tables list the details of the flash memory interface functions.

flash_init

Synopsis Initialization interface function

Declaration int32_t flash_init(void);

Description This function sets the peripheral modules for use in access to the serial flash memory connected
to the external bus (SPI multi-I/O bus space) of the RZ/T1.

It initializes the flash interface functions.
It sets the sector erasure flag (fmtool_pre_erase_sctno) to 0 (indicating the non-erased state).

Arguments None

Return value 0: Initialization has succeeded (always set to 0 in the sample program).
-1: Initialization has failed.

flash_write

Synopsis Write interface function

Declaration int32_t flash_write(uint32_t *fm_adrs, uint32_t *data, int32_t size);

Description This function handles writing to the serial flash memory connected to the external bus (SPI multi-
I/O bus space) of the RZ/T1.
It writes the amount specified by the argument “size” of data specified by the argument “data” to
the address specified by the argument fm_adrs.
If the sector including the address specified by the argument fm_adrs was not erased following a
call of the initialization entry function, this function handles processing to erase the sector. Note
that erasure or non-erasure of the sector is determined by the value of the sector erasure flag
(fmtool_pre_erase_sctno). If the sector has been erased, the value of the sector erasure flag
(fmtool_pre_erase_sctno) is set to 1 (indicating the erased state).

Arguments uint32_t *fm_adrs : Write start address

uint32_t *data : Write data storage address

int32_t size : Amount of data to be written (always in 512 bytes)

Return value 0: Writing has succeeded.
-1: Writing has failed.
-2: Verification after writing has failed.

R01AN2951EJ0120 Rev.1.20 Page 35 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

flash_write_entry

Synopsis Serial flash memory write mode entry function

Declaration int32_t flash_write_entry(void);

Description This function places the SPIBSC in SPI mode.
The SPIBSC SPI mode setting function (R_SFLASH_Spimode) is executed from within this
function.

Arguments None

Return value 0: Success
-1: Failure

flash_veify_entry

Synopsis Serial flash memory read mode entry function

Declaration int32_t flash_veify_entry(void);

Description This function places the SPIBSC in external address read mode.
The SPIBSC external address mode setting function (R_SFLASH_Exmode) is executed from
within this function.

Arguments None

Return value 0: Success
-1: Failure

R_SFLASH_Exmode_Setting

Synopsis SPIBSC initialization setting function

Declaration int32_t R_SFLASH_Exmode_Setting (st_spibsc_cfg_t *spibsccfg);

Description Makes initial settings required for controlling the serial flash memory and for using the SPIBSC in
external address read mode. This function also makes register settings in the flash memory to suit
the initial settings. After the initial settings, it places the SPIBSC in external address read mode.
The SPIBSC external address mode initial settings function (R_SFLASH_Exmode_Init) is
executed from within this function.

Arguments st_spibsc_cfg_t *spibsccfg SPIBSC external address read settings
For details of the settings, see Table 7.2 to Table 7.4.

Return value 0: Normal termination
-1: Error

R01AN2951EJ0120 Rev.1.20 Page 36 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

R_SFLASH_Set_Config

Synopsis SPIBSC external address read settings function

Declaration void R_SFLASH_Set_Config(st_spibsc_cfg_t *spibsccfg);

Description Determines the settings for using the SPIBSC in external address read mode to suit the serial
flash memory in use.
The user-defined function (SPIBSC external address read settings function:
Userdef_SPIBSC_Set_Config) is executed from within this function.

Arguments st_spibsc_cfg_t *spibsccfg SPIBSC external address read settings
For details of the settings, see Table 7.2 to Table 7.4.

Return value 0: Normal termination
-1: Error

R_SFLASH_SpibscStop

Synopsis SPIBSC stop function

Declaration int32_t R_SFLASH_SpibscStop(void);

Description This function stops the SPIBSC.

Arguments None

Return value None

R_SFLASH_WaitTend

Synopsis SPIBSC data transfer end wait function

Declaration void R_SFLASH_WaitTend(void);

Description Waits for the completion of data transfer from the SPIBSC.

Arguments None

Return value None

R_SFLASH_Exmode

Synopsis SPIBSC external address mode setting function

Declaration int32_t R_SFLASH_Exmode(void);

Description This function places the SPIBSC in external address read mode.

Arguments None

Return value 0: Setting has succeeded.

R01AN2951EJ0120 Rev.1.20 Page 37 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

R_SFLASH_Spimode

Synopsis SPIBSC SPI mode setting function

Declaration int32_t R_SFLASH_Spimode(void);

Description This function places the SPIBSC in SPI mode.

Arguments None

Return value 0: Setting has succeeded.

R_SFLASH_Exmode_Init

Synopsis SPIBSC external address mode initial settings function

Declaration int32_t R_SFLASH_Exmode_Init(st_spibsc_cfg_t *spibsccfg)

Description This function makes initial settings required for using the SPIBSC in external address read mode.
After the initial settings, it places the SPIBSC in external address read mode.

Arguments st_spibsc_cfg_t *spibsccfg SPIBSC external address read settings
For details of the settings, see Table 7.2 to Table 7.4.

Return value 0: Normal termination
-1: Error

R_SFLASH_Spimode_Init

Synopsis SPIBSC SPI mode initial settings function

Declaration int32_t R_SFLASH_Spimode_Init(uint32_t data_width, uint32_t addr_mode, uint32_t spbr,
uint32_t brdv);

Description This function makes initial settings required for using the SPIBSC in SPI mode.
After the initial settings, it places the SPIBSC in SPI mode.

Arguments uint32_t data_width Data read bit width
Bit width for reading data from the serial flash memory when
converting read operations for the SPI multi-I/O bus space to SPI
communications.
SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

uint32_t addr_mode Address mode setting
Sets the address for output to the serial flash memory when
converting read operations for the SPI multi-I/O bus space to SPI
communications.
SPIBSC_OUTPUT_ADDR_24: 24-bit address output
SPIBSC_OUTPUT_ADDR_32: 32-bit address output

uint32_t spbr Bit rate
Sets the bit rate of the serial clock (SPBCLK) to match the bit-rate
division setting (brdv).

uint32_t brdv Bit-rate division setting
Sets the bit rate of the serial clock (SPBCLK) to match the bit-rate
division setting (spbr).

Return value 0: Setting has succeeded.
-1: Setting has failed.

R01AN2951EJ0120 Rev.1.20 Page 38 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

R_SFLASH_EraseSector

Synopsis Serial flash memory erase function

Declaration int32_t R_SFLASH_EraseSector(uint32_t addr, uint32_t data_width, uint32_t addr_mode);

Description This function erases the serial flash memory using SPI mode of the SPIBSC.

Arguments uint32_t addr Address to be erased in serial flash memory

uint32_t data_width Data read bit width
Bit width for reading data from the serial flash memory when
converting read operations for the SPI multi-I/O bus space to SPI
communications.
SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

uint32_t addr_mode Address mode setting
Sets the address for output to the serial flash memory when
converting read operations for the SPI multi-I/O bus space to SPI
communications.
SPIBSC_OUTPUT_ADDR_24: 24-bit address output
SPIBSC_OUTPUT_ADDR_32: 32-bit address output

Return value 0: Setting has succeeded.
-1: Setting has failed.

R_SFLASH_ByteProgram

Synopsis Serial flash memory write function

Declaration int32_t R_SFLASH_ByteProgram(uint32_t addr, uint8_t *buf, int32_t size, uint32_t data_width,
uint32_t addr_mode);

Description This function writes data to the serial flash memory using the SPI mode of the SPIBSC.

Arguments uint32_t addr Address to be written to in serial flash memory

uint8_t *buf Write data storage buffer

int32_t size Amount of data to be written (in bytes)

uint32_t data_width Data read bit width
Bit width for reading data from the serial flash memory when
converting read operations for the SPI multi-I/O bus space to SPI
communications.
SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

uint32_t addr_mode Address mode setting
Sets the address for output to the serial flash memory when
converting read operations for the SPI multi-I/O bus space to SPI
communications.
SPIBSC_OUTPUT_ADDR_24: 24-bit address output
SPIBSC_OUTPUT_ADDR_32: 32-bit address output

Return value 0: Setting has succeeded.
-1: Setting has failed.

R01AN2951EJ0120 Rev.1.20 Page 39 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

R_SFLASH_Spibsc_Transfer

Synopsis Serial flash memory control function

Declaration int32_t R_SFLASH_Spibsc_Transfer(st_spibsc_spimd_reg_t *regset);

Description This function accesses the serial flash memory using SPI mode of the SPIBSC.

Arguments st_spibsc_spimd_reg_t *
regset

SPIBSC SPI mode setting
For details of the settings, see Table 7.2 to Table 7.4.

Return value 0: Setting has succeeded.
-1: Setting has failed.

R_SFLASH_Ctrl_Protect

Synopsis Serial flash memory protection releasing function

Declaration int32_t R_SFLASH_Ctrl_Protect(uint32_t req, uint32_t data_width);

Description This function makes settings for the registers in the serial flash memory to release it from
protection.

Arguments uint32_t_t req Register settings information
SF_REQ_PROTECT: Sets protection.
SF_REQ_UNPROTECT: Releases protection.

uint32_t data_width Data read bit width
Bit width for reading data from the serial flash memory when
converting read operations for the SPI multi-I/O bus space to
SPI communications.
SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

Return value None

Userdef_SPIBSC_Set_Config

Synopsis SPIBSC external address read settings function

Declaration void Userdef_SPIBSC_Set_Config(st_spibsc_cfg_t *spibsccfg);

Description Determines the SPIBSC external address read mode settings to suit the serial flash memory in
use. This function makes initial settings required for using the SPIBSC in the area specified by the
argument spibsccfg in external address read mode.
For details of the settings as argument spibsccfg, see Table 7.2 to Table 7.4.

Arguments st_spibsc_cfg_t *spibsccfg SPIBSC external address read settings
For details of the settings, see Table 7.2 to Table 7.4.

Return value None

Note The sample program makes SPIBSC initial settings for use of a Macronix serial flash memory
(product type name: MX25L51245G).

R01AN2951EJ0120 Rev.1.20 Page 40 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Userdef_SFLASH_Set_Mode

Synopsis Serial flash memory internal register settings function

Declaration int32_t Userdef_SFLASH_Set_Mode(uint32_t data_width, uint32_t addr_mode);

Description Within this function, implement processing for required setting of the registers in the serial flash
memory for use with the SPIBSC in external address read mode, to suit the serial flash memory to
be used.

Arguments uint32_t data_width Data read bit width
Bit width for reading data from the serial flash memory when
converting read operations for the SPI multi-I/O bus space to
SPI communications.
SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

uint32_t addr_mode Address mode setting
Sets the address for output to the serial flash memory when
converting read operations for the SPI multi-I/O bus space to
SPI communications.
SPIBSC_OUTPUT_ADDR_24: 24-bit address output
SPIBSC_OUTPUT_ADDR_32: 32-bit address output

Return value 0: Setting has succeeded.
-1: Setting has failed.

Note The sample program makes SPIBSC initial settings for use of a Macronix serial flash memory
(product type name: MX25L51245G).

Userdef_SFLASH_Write_Enable

Synopsis Serial flash memory write enable function

Declaration int32_t Userdef_SFLASH_Write_Enable(void);

Description Within this function, implement processing for setting of the registers in the serial flash memory to
enable writing, to suit the serial flash memory to be used.

Arguments None

Return value 0: Setting has succeeded.
-1: Setting has failed.

Note The sample program makes SPIBSC initial settings for use of a Macronix serial flash memory
(product type name: MX25L51245G).

R01AN2951EJ0120 Rev.1.20 Page 41 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Userdef_SFLASH_Busy_Wait

Synopsis Serial flash memory ready wait function

Declaration int32_t Userdef_SFLASH_Busy_Wait(uint32_t data_width);

Description Within this function, implement processing for reading the registers in the serial flash memory for
the transition of the serial flash memory to the ready state, to suit the serial flash memory to be
used.

Arguments uint32_t data_width Data read bit width
Bit width for reading data from the serial flash memory when
converting read operations for the SPI multi-I/O bus space to
SPI communications.
SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

Return value None

Note The sample program makes SPIBSC initial settings for use of a Macronix serial flash memory
(product type name: MX25L51245G).

Userdef_SFLASH_Ctrl_Protect

Synopsis Serial flash memory protection releasing function

Declaration int32_t Userdef_SFLASH_Ctrl_Protect(uint32_t req, uint32_t data_width);

Description Within this function, implement processing for setting the registers in the serial flash memory to
release it from protection, to suit the serial flash memory to be used.

Arguments uint32_t req Register settings information
SF_REQ_PROTECT: Sets protection.
SF_REQ_UNPROTECT: Releases protection.

uint32_t data_width Data read bit width
Bit width for reading data from the serial flash memory when
converting read operations for the SPI multi-I/O bus space to
SPI communications.
SPIBSC_1BIT: 1-bit width
SPIBSC_4BIT: 4-bit width

Return value None

Note The sample program makes SPIBSC initial settings for use of a Macronix serial flash memory
(product type name: MX25L51245G).

R01AN2951EJ0120 Rev.1.20 Page 42 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

7.7 Flowcharts of the Flash Memory Interface Functions

7.7.1 Flow of the Initialization Interface Function
Figure 7.1 shows the flow of the initialization interface function.

Figure 7.1 Flow of the Initialization Interface Function

flash_init

End

Set SPIBSC control signal pins Set SPICLK_0, SPBSSL_0, SPBIO00_0, SPBIO10_0, SPBIO20_0, and SPBIO30_0.

Negate SPBSSL SPIBSC.DRCR register
SSLN bit ← 1 : Set the currently active SPBSSL signal to the inactive state.

Common settings CMNCR register
SFDE bit = 1 : Swapping in 8-bit units
CPHAT bit = 0 : Transmission on even edge
CPHAR bit = 1 : Reception on even edge
SSPL bit = 0 : The SPBSSL signal is active-low.
CPOL bit = 0 : 0 is output through SPBCLK when SPBSSL is negated.
BSZ bit = B'00 : One serial flash memory is connected.

SPBCR register ← PCLKA×1/2 = 75MHz
SPBR bit = H'01
BRDV bit = B'00

Set external address space
read mode

SPIBSC.CMNCR register
MD bit = 0 : External address space read mode

SPIBSC.DRCR register
RBURST bit = B'0001 : Two consecutive data lengths
RBE bit = 1 : Activate bursts during reading (the read cache is valid).
SSLE bit : Negate SPBSSL when the address accessed is not

 consecutive from the address of the previous transfer.
PIBSC.DRCMR register ← H’EB : Quad I/O Read Command
SPIBSC.DRENR register

CDB bit = B'00 : 1 bit
ADB bit = B'10 : 4 bits
OPDB bit = B'10 : 4 bits
DRDB bit = B'10 : 4 bits
DME bit = 1 : Insertion enabled
CDE bit = 1 : Output enabled
OCDE bit = 0 : Output disabled
ADE bit = B'0111 : 24-bit address output
OPDE bit = B'1000 : Outputs OPD3

SPIBSC.DRAER register
EAV bit = H'00 : The fixed value of the higher-order bits of the 32-bit extended address is H'00.
EAC bit = B'000 : Bits [24:0] of the external address are valid.
OPD3 bit = H'00
OPD2 bit = H'00
OPD1 bit = H'00
OPD0 bit = H'00

SPIBSC.DRDMCR register
DMDB bit = B'00 : 1 bit
DMCYC bit = B'101 : 6 cycles

SPIBSC.DRDRENR register
ADDRE bit = 0 : SDR transfer
OPDRE bit = 0 : SDR transfer
DRDRE bit = 0 : SDR transfer

Release serial flash memory from
protection

Initialize the sector erasure flag Set the erasure flags for all sectors to indicate the non-erased state.

Set registers in serial flash memory See section 10.2.5, Setting Registers in Serial Flash Memory.

See section 10.2.8, Releasing Serial Flash Memory from Protection.

Start supplying the clock signal to
SPIBSC

MSTPCRC register
BIT9 bit = 0 : Release SPIBSC from the module stopped state.

R01AN2951EJ0120 Rev.1.20 Page 43 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

7.7.2 Serial Flash Memory Write Mode Entry Function
Figure 7.2 shows the flow of the serial flash memory write mode entry function.

Figure 7.2 Flow of the Serial Flash Memory Write Mode Entry Function

flash_write_entry

Return

Set the SPBSSL signal to
the inactive state

Set SPIBSC mode to SPI mode

Yes

No
Read the SPIBSC.CMNCR register.

MD bit: : 0: External address space mode
 1: SPI mode

SPIBSC.DRCR register
SSLN bit ← 1 : Set the currently active SPBSSL signal

 to the inactive state.

Is the SPBSSL
signal inactive?

Yes

No

SPIBSC.CMNCR register
MD bit :0: External address space mode

1: SPI mode

Read the SPIBSC.CMNSR register.
SSLF bit : 0 : The SPBSSL pin is inactive.

 1 : The SPBSSL pin is active.

Is SPIBSC mode
external address space mode?

R01AN2951EJ0120 Rev.1.20 Page 44 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

7.7.3 Serial Flash Memory Read Mode Entry Function
Figure 7.3 shows the flow of the serial flash memory read mode entry function.

Figure 7.3 Flow of the Serial Flash Memory Read Mode Entry Function

flash_verify_entry

Return

Set the SPBSSL signal to the
inactive state

Set SPIBSC mode to external
address space mode

No

Yes

Is the SPBSSL
signal inactive?

Yes

No

Read the SPIBSC.CMNCR register.
MD bit :0: External address space mode

1: SPI mode

Read the SPIBSC.CMNSR register.
SSLF bit :0: The SPBSSL pin is inactive.

1: The SPBSSL pin is active.

SPIBSC.DRCR register
SSLN bit ← 1 : Set the currently active SPBSSL signal

 to the inactive state.

Is SPIBSC mode external
address space mode?

SPIBSC.CMNCR register
MD bit :0: External address space mode

1: SPI mode

R01AN2951EJ0120 Rev.1.20 Page 45 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

7.7.4 Flow of the Write Interface Function
Figure 7.4 shows the flow of the serial flash memory write function.

Figure 7.4 Flow of the Serial Flash Memory Write Function

flash_write

Destination address for writing (address)
+= Amount of data to be accessed

Amount of data to be written
-= Amount of data to be accessed

Return

Amount of data to be accessed =
Amount of data to be written

Erase the serial flash memory
(see section 10.2.9)

Program the serial flash memory
(see section 10.2.10)

Amount of data to be written > 0

Yes

No

Has sector erasure
been completed?

No

Yes

Amount of data to be
written (size) Page size

No

Yes

Amount of data to be accessed =
Page size

R01AN2951EJ0120 Rev.1.20 Page 46 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

8. Operation of the Flash Downloader
This section describes operation of the flash downloader.

8.1 Memory Allocation of the Application Program
Figure 8.1 shows the memory allocation of the application program which is written by the flash downloader presented
in this application note.

1. The application program has four areas: the areas of the loader parameter information for reference by the RZ/T1
group microcontroller and use by the loader program, the loader program (InRootSection) area, and the application
program.

2. Binary data of the four areas are generated as three application binary files*1 by the binary file generator tool from
the executable file (axf file) that was generated from the application project.

Note 1. See Table 9.3 for the applications binary files to be generated.

Figure 8.1 Example Memory Allocation of the Application Program

0x00000000 Vector table area (execution area)

Program area (execution area)

Constants area (execution area)

Data area (execution area)

Ti
gh

tly
-c

ou
pl

ed
 m

em
or

y
(A

TC
M

)
Ti

gh
tly

-c
ou

pl
ed

m

em
or

y
(B

TC
M

)

Heap area

Stack area

0x00800000

Loader program area (execution area)0x00802000

Loader program constants area (execution area)

Loader program data area (execution area)

Loader program stack area

0x00080000

0x00808000

Loader program area (load area)

Loader program constants area (load area)

Loader program data area (load area)

Loader parameter information0x30000000

SP
IB

SC
 s

pa
ce

0x30000200

Transfer to the
tightly-coupled
memory (BTCM)
using booting

Vector table area (load area)

Program area (load area)

Constants area (load area)

Data area (load area)

0x30010000

Transfer to the tightly-
coupled memory (ATCM) by
the loader program

Loader program (InRootSection)0x30006200

Program area
(load area/Cortex-M3 program)

0x30110000

R01AN2951EJ0120 Rev.1.20 Page 47 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

8.2 Flow of Flash Downloader Processing
Figure 8.2 to Figure 8.4 show the flow of processing by the flash downloader.

The flash downloader is loaded by DS-5 to the tightly-coupled memory (ATCM) area of the RZ/T1 group
microcontroller and run from the entry point at address 0x00000000. After the flash downloader initializes the stack
pointers, it runs __main(), which is the entry function to the main function. The __main() function is supplied as a
standard library function of the ARM® compiler; running this function enables the semihosting functionality*1. The flash
download main function (flash_main) is run from $Sub$$main(), which is run from the __main function. After
flash_main runs, the prg_complete function is run to determine if downloading by the application downloading script
(described below) has completed, and processing enters an infinite loop.

Note 1. For details, refer to “ARM® Compiler toolchain Developing Software for ARM® Processors, Embedded
Software Development”.

The flash_main function judges whether to perform downloading based on semihosting terminal input. When “Y” is
entered via semihosting terminal input, programming of the flash memory starts. When “N” is entered via semihosting
terminal input, downloading is judged to have been completed, and the flash_main function ends. Figure 8.3 shows the
flow of processing by the flash_main function.

Programming of the flash memory proceeds by calling the RZ_T1_FlashProgram_Sub function. This uses semihosting
to read data from an application binary file, and write the data to the serial flash memory. Figure 8.4 shows the flow of
processing by the RZ_T1_FlashProgram_Sub function.

Figure 8.2 Flash Downloader Processing Flow (1/3)

Infinite loop

Initialize the stack pointers

Entry function to the main function
__main()

Downloader entry

Flash download
main function
flash_main()

Judge the completion of downloading
prg_complete

R01AN2951EJ0120 Rev.1.20 Page 48 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Figure 8.3 Flash Downloader Processing Flow (2/3)

flash_main function starts

Processing by the target board Processing by the host PC (semihosting)

RZ/T1 CPU Board S-Flash Programming Sample. Ver.1.00
Copyright (C) 2015 Renesas Electronics Corporation. All rights reserved.

Initialising Flash...
Start to load Binary Data to Flash Memory.

Application console display

flash_main function ends

Standard I/O (scanf)
Semihosting terminal input

Initialization of flash memory programming
Run the flash_init function

Flash programming subroutine
RZ_T1_FlashProgram_Sub(FLASH_YES)

Standard I/O (fopen)
Access the semihosting file

Open the file

Flash programming subroutine
RZ_T1_FlashProgram_Sub(FLASH_NO)

Standard I/O (fopen)
Access the semihosting file

Open the file

Flash programming subroutine
RZ_T1_FlashProgram_Sub(FLASH_NO)

Standard I/O (fopen)
Access the semihosting file

Open the file

Flash programming subroutine
RZ_T1_FlashProgram_Sub(FLASH_NO)

Standard I/O (fopen)
Access the semihosting file

Open the file

Flash programming subroutine
RZ_T1_FlashProgram_Sub(FLASH_NO)

Standard I/O (fopen)
Access the semihosting file

Open the file
CM3_SECTION is a binary file for a
Cortex-M3 program.

Semihosting
terminal input

Access to the
semihosting file

Access to the
semihosting file

Access to the
semihosting file

Access to the
semihosting file

Access to the
semihosting file

CONST_LOADER_TABLE

LOADER_RESET_HANDLER

LOADER_IN_ROOT

INIT

CM3_SECTION

R01AN2951EJ0120 Rev.1.20 Page 49 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Figure 8.4 Flash Downloader Processing Flow (3/3)

Processing by the target board Processing by the host PC (semihosting)

RZ/T1 CPU Board S-Flash Programming Sample. Ver.1.00
Copyright (C) 2015 Renesas Electronics Corporation. All rights reserved.

Initialising Flash...
Start to load Binary Data to Flash Memory.
loop=1, file=CONST_LOADER_TABLE, flash address=0x30000000.
Calculating Data Size…
Data Size is 512
Programing Flash...
Calcurating Checksum of Loader Parameter.
Verifying Flash…
loop=1, Flash Programming Success!!

Application console display

RZ_T1_FlashProgram_Sub function starts

RZ_T1_FlashProgram_Sub function ends

Standard I/O (rewind)
Access the semihosting file

To the start of the file

Standard I/O (fread)
Access the semihosting file

Read the file

Calculate the file size

Standard I/O (fread) (10 Kbytes)
Access the semihosting file

Read the file

Obtain binary data

Write binary data to the flash memory
Run the Flash_Write_Area function

Standard I/O (fseek)
Access the semihosting file

To the start of the file

Standard I/O (fread) (10 Kbytes)
Access the semihosting file

Read the file

Obtain binary data

Verify binary data and flash memory data

Standard I/O (fclose)
Access the semihosting file

Close the file

Calculate the checksum of loader parameter
information and set the checksum

Has reading of the binary
file been completed?

Yes

No

Has reading of the binary
file been completed?

Yes

No

Loader parameter
information?

Yes

No

Has reading of the binary
file been completed?

Yes

No

Access to the
semihosting file

Access to the
semihosting file

Access to the
semihosting file

Access to the
semihosting file

Access to the
semihosting file

Access to the
semihosting file

R01AN2951EJ0120 Rev.1.20 Page 50 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

8.2.1 Calculating the Checksum of the Loader Parameter Information
The flash downloader is capable of calculating the checksum of the loader parameter information for reference by the
RZ/T1 group microcontroller in booting and writing the result to the flash memory.

If FLASH_YES is specified for the argument check_sum_flag of the RZ_T1_FlashProgram_Sub function for execution,
the binary file specified by the argument srcfile is taken as the binary file of loader parameter information and the
checksum for the 72 bytes (H'48 bytes) from the start of the binary file is calculated. If the value up to the 72nd byte (byte
H'48) from the start of the binary file is H'17320508, the calculated checksum is written to the flash memory as the
checksum of the loader parameters. If the value up to the 72nd byte (byte H'48) from the start of the binary file is not
H'17320508, the calculated checksum is compared with that for the given data, and if the values do not match,
subsequent processing does not proceed and processing is abnormally terminated.

Figure 8.5 Flow of Processing for Setting the Checksum of the Loader Parameter Information

Checksum calculation → checksum

Processing for setting
the checksum for loader

For how to calculate the checksum, refer to the
User’s Manual: Hardware.

Write the checksum to the flash
memory

Yes

No

Yes

EndError termination

No
Is the value of the binary file identical

with the calculated checksum?

Is the value up to the 72nd byte
from the start of the binary

file H’17320508?

R01AN2951EJ0120 Rev.1.20 Page 51 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

9. Configuration of the Flash Downloader

9.1 Configuration of Projects
The flash downloader comprises the DS-5 projects and DS-5 scripts listed respectively in Table 9.1 and Table 9.2.
Table 9.3 lists the application binary files generated from the application project. Follow the flow described in Section
8.2, Flow of Flash Downloader Processing, to write these application binary files to the flash memory.

Note 1. In the case of the memory allocation of the application program shown in Figure 8.1.
Note 2. CM3_SECTION is a binary file for a Cortex-M3 program. For details, refer to the application note “RZ/T1 Group Initial Settings

of the Microcomputers Incorporating the R-IN Engine”.

Table 9.1 List of Projects

Project Description

RZ_T_fmtool_sflash This project is used to build the flash downloader. We refer to it as the flash downloader project.

RZ_T_sflash_sample This project is used to build the application program. We refer to it as the application project. The
binary generator tool (fromelf.exe) is used to generate an application binary file from the executable
file (axf file) generated by building the project.

Table 9.2 List of Script Files

Script Description

init_RZ-T.ds This is the RZ/T1 evaluation board initialization script.
This DS-5 script is for executing processing, such as enabling writing to the tightly-coupled memory
(ATCM) of the RZ/T1 group microcontroller, when DS-5 is connected to the RZ/T1 evaluation board.

RZ_T_sflash_sample.ds This is the application downloading script
This DS-5 script contains commands for the sequence of operations for writing the application pro-
gram to the serial flash memory allocated to the external address space (SPI multi-I/O bus space) of
the RZ/T1 group microcontroller.

init_RZ-T2.ds This is the RZ/T1 evaluation board initialization script to be executed from the application download-
ing script. It is identical to init_RZ-T.ds, except that it does not make settings for the DS-5 memory
area.

Table 9.3 List of Application Binary Files

Binary File Write Start Address*1 Description

CONST_LOADER_TABLE H'30000000 Application (1) (loader parameter information) binary file

LOADER_RESET_HANDLER H'30000200 Application (2) (loader program) binary file

LOADER_IN_ROOT H'30006200 Application (3) (loader program) binary file

INIT H'30010000 Application (4) (user program) binary file

CM3_SECTION*2 H'30110000 Application (5) (user program) binary file (Cortex-M3 program)

R01AN2951EJ0120 Rev.1.20 Page 52 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

9.2 RZ/T1 Evaluation Board Initialization Script
Figure 9.1 shows the details of processing by the RZ/T1 evaluation board initialization script.

Figure 9.1 Details of Processing by the RZ/T1 Evaluation Board Initialization Script

Script starts

 stop
Stop execution

reset
Reset

Script ends

Set ACTLR
Set the ECC function of the tightly-coupled
memory (ATCM, BTCM) to ON

R01AN2951EJ0120 Rev.1.20 Page 53 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

9.3 Application Downloading Script
Figure 9.2 shows the details of processing by the application downloading script for writing the application program
RZ_T_sflash_sample to the serial flash memory allocated to the external address space (SPI multi-I/O bus space) of the
RZ/T1 group microcontroller. By running this script from DS-5, the application program RZ_T_sflash_sample is written
to the serial flash memory allocated to the external address space (SPI multi-I/O bus space) of the RZ/T1 group
microcontroller and the symbol information of the application program RZ_T1_sflash_sample is loaded into DS-5.

Figure 9.2 Details of Processing by the Application Downloading Script

Script starts

Script ends

Load the downloader into the
tightly-coupled memory (ATCM)

Delete all breakpoints

Set a hardware break for the function to
judge the completion of downloading

run
Run

 stop
Stop execution

Delete all breakpoints

Delete the downloader symbol
information

Reset the CPU and make settings
for the board

Load the application symbols

reset
Reset

Set ACTLR

 Wait
Wait for a break

Yes

No

Set the ECC function of the tightly-coupled memory (ATCM, BTCM) to ON

loadfile "PATH\RZ_T_fmtool_sflash.axf"

delete breakpoints

hbreak prg_complete

delete breakpoints

discard-symbol-file "PATH\RZ_T_fmtool_sflash.axf"

source PATH\init_RZ-T2.ds

file "PATH\RZ_T_sflash_sample.axf" -readnow

R01AN2951EJ0120 Rev.1.20 Page 54 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

10. Application Examples
This section describes how the customer can change the binary files for writing to the flash memory and how to
customize the sample program to suit the flash memory used by the customer, as an example of the practical application
of the sample program.

10.1 Changing the Binary File Names and Destination Addresses for Writing
This section describes how to change the binary file names for writing to the flash memory and destination addresses in
flash memory for writing according to the flow described in Section 8.2, Flow of Flash Downloader Processing.

10.1.1 Changing the Binary File Names for Writing to the Flash Memory
The binary file names for writing to the flash memory are in the RZ_T1_FlashProgrammer function in the
Flash_Programming.c file. The names of binary files to be written to the flash memory can be changed by changing the
names of the binary files in the RZ_T1_FlashProgrammer function.

The current directory when DS-5 semihosting is executed is set by default to the DS-5 workspace directory*1. This
allows development of the flash downloader by using relative paths in consideration of it running on another host PC.

Figure 10.1 and Figure 10.2 show examples of implementation.

Note 1. For information on the current directory, refer to “ARM® Compiler toolchain Developing Software for ARM®
Processors, Semihosting” provided by ARM®.

Figure 10.1 Structure of the Directory in the Implementation Example

DS-5 workspace
directory

Application
binary files

Workspace

R01AN2951EJ0120 Rev.1.20 Page 55 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Before change srcfile = fopen(".¥¥RZ_T_sflash_sample¥¥Debug¥¥RZ_T_sflash_sample.bin¥¥INIT", "r");
if(srcfile == 0)
{
 printf("loop=%d, Could not open file. Exiting.¥n", loop);
 return;
}
address = (uint32_t *)0x30010000;
printf("loop=%d, file=INIT, flash address=0x%08x.¥n", loop, (uint32_t)address);

ret = RZ_T1_FlashProgram_Sub(srcfile, address, FLASH_NO);
fclose(srcfile);
if(ret != 0)
{
 printf("loop=%d, Flash Programming Error!!¥n", loop);
 return;
}

After change srcfile = fopen(".¥¥RZ_T_sflash_sample¥¥Debug¥¥RZ_T_sflash_sample.bin¥¥INIT2", "r");
if(srcfile == 0)
{
 printf("loop=%d, Could not open file. Exiting.¥n", loop);
 return;
}
address = (uint32_t *)0x30040000;
printf("loop=%d, file=INIT2, flash address=0x%08x.¥n", loop, (uint32_t)address);

ret = RZ_T1_FlashProgram_Sub(srcfile, address, FLASH_NO);
fclose(srcfile);
if(ret != 0)
{
 printf("loop=%d, Flash Programming Error!!¥n", loop);
 return;
}

Figure 10.2 Implementation Example

R01AN2951EJ0120 Rev.1.20 Page 56 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

10.1.2 Changing the Destination Addresses for Writing to the Flash Memory
As with file pathname input, the destination addresses for writing to the flash memory are in the
RZ_T1_FlashProgrammer function in the Flash_Programming.c file. The destination addresses can be changed by
changing the addresses for writing in the RZ_T1_FlashProgrammer function.

If you use a “scatter file” to set up the image layout, an application binary file is generated for each load module
(LOAD_MODULE). The destination addresses for writing each generated application binary file to the flash memory
will depend on the image layout which has been set in the application project.

Figure 10.3 shows an example image layout (scatter file) for the application program RZ_T_sflash_sample with the
memory allocation shown in Figure 8.1. Table 10.1 lists the destination addresses where writing to flash memory is to
start for the various application binary files to be generated.

For the implementation examples, see Figure 10.1 to Figure 10.3.

LOAD_MODULE1 0x30000000 0x00000200

{

 CONST_LOADER_TABLE 0x30000000 FIXED

 {

 * (CONST_LOADER_TABLE)

 }{

}

LOAD_MODULE2 0x30000200 0x00006000

{

 LOADER_RESET_HANDLER 0x00802000 FIXED

 {

 * (LOADER_RESET_HANDLER, +FIRST)

 * (USER_PROG_JUMP)

 }

 Omitted below

}

LOAD_MODULE3 0x30006200 (0x30020000 - 0x30006200)

{

 LOADER_IN_ROOT 0x40006200 FIXED

 {

 * (InRoot$$Sections)

 }

}

LOAD_MODULE4 0x30010000 (0x30110000 - 0x30010000)

{

 INIT 0x00000000 FIXED

 {

 * (VECTOR_TABLE, +FIRST)

 * (RESET_HANDLER)

 * (IRQ_FIQ_HANDLER)

 }

 Omitted below

}

LOAD_MODULE5 0x40120000 (0x34000000 - 0x30110000)

{

 CM3_SECTION 0x30120000 FIXED

 {

 cm3.o(sdram)

 }

}

Figure 10.3 Example Image Layout (Scatter File)

R01AN2951EJ0120 Rev.1.20 Page 57 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Note 1. CM3_SECTION is a binary file for a Cortex-M3 program. For details, refer to the application note “RZ/T1 Group Initial Settings
of the Microcomputers Incorporating the R-IN Engine”.

Table 10.1 Destination Addresses where Writing to Flash Memory is to Start for the Various Application
Binary Files to be Generated

Binary File Write Start Address Description

CONST_LOADER_TABLE H'30000000 Application (1) (loader parameter information) binary file

LOADER_RESET_HANDLER H'30000200 Application (2) (loader program) binary file

LOADER_IN_ROOT H'30006200 Application (3) (loader program) binary file

INIT H'30010000 Application (4) (user program) binary file

CM3_SECTION*1 H'30110000 Application (5) (user program) binary file

R01AN2951EJ0120 Rev.1.20 Page 58 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

10.2 Changing the Sample Program to Suit the Given Flash Memory
This section describes how to change the sample program to suit the flash memory used by the customer, as an example
of the practical application of the sample program.

10.2.1 Conditions for the Sample Program
The sample program makes settings optimized for use of a Macronix serial flash memory (product type name:
MX25L51245G) under the conditions listed in Table 10.2.

How to change the sample program when these conditions are to be changed is described below.

10.2.2 Changing the Sample Program when Not Changing the Serial Flash Memory
Table 10.3 lists how to change the sample program when the serial flash memory in use is not to be changed.

Note 1. The macro definition (SPIBSC_BUS_WITDH) is defined in the spibsc_ioset_userdef.c file.
Note 2. The macro definition (SPIBSC_OUTPUT_ADDR) is defined in the spibsc_ioset_userdef.c file.

Table 10.2 Conditions for the Sample Program

Condition Settings Remark

Serial flash memory Serial flash memory from Macronix
(product type name: MX25L51245G)

—

Data bus width 4 bits Bit width for reading data

1 bit Bit width for writing data

Number of address bytes 4 bytes Number of bytes to be issued when specifying
addresses

Table 10.3 How to Change the Sample Program when the Serial Flash Memory is not to be Changed

Condition Changes How to Make Changes

Data bus width for reading data 1 bit Define (1) in the macro definition (SPIBSC_BUS_WITDH)*1.

4 bits Define (4) in the macro definition (SPIBSC_BUS_WITDH).

Number of address bytes 3 bytes Define (SPIBSC_OUTPUT_ADDR_24) in the macro definition
(SPIBSC_OUTPUT_ADDR)*2.

4 bytes Define (SPIBSC_OUTPUT_ADDR_32) in the macro definition
(SPIBSC_OUTPUT_ADDR).

R01AN2951EJ0120 Rev.1.20 Page 59 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

10.2.3 Changing the Sample Program when Changing the Serial Flash Memory
When changing the serial flash memory, the sample program must be changed to suit the specifications of the flash
memory in use.

Table 10.4 lists the points to be changed in the sample program.

Note 1. Enabling of writing may be required to set the registers in the serial flash memory depending on the serial flash memory in use
Note 2. Release from protection may be required to set the registers in the serial flash memory depending on the serial flash memory

in use.

10.2.4 Changing the Read Command Waveforms
In external address space read mode, change the signal output to the serial flash memory when converting read
operations for the SPI multi-I/O bus space to SPI communications to match the read command of the serial flash memory
you are using.

The signal output to the serial flash memory in external address space read mode is changed by a setting in an SPIBSC
control register.

In the sample program, the values set in the SPIBSC control register can be changed by a global variable (SPIBSC
external address read setting storage function: Userdef_SPIBSC_Set_Config). A user-defined function (SPIBSC external
address read settings function: Userdef_SPIBSC_Set_Config) makes settings for spibsc_cfg.

Figure 10.4 shows the relationship between the SPIBSC control register settings and the waveforms output to the serial
flash memory while the SPIBSC is reading from an external address, and Table 10.5 lists the settings of the SPIBSC
control register in the sample program.

Refer to these example settings to make settings for spibsc_cfg to match the read command of the serial flash memory in
use.

Table 10.4 Points to be Changed in the Sample Program

Points to be Changed Description

Read command waveform In external address space read mode, change the signal output to the serial
flash memory when converting read operations for the SPI multi-I/O bus
space to SPI communications to match the read command of the serial flash
memory you are using.

Register settings in the serial flash memory Make settings for the registers in the serial flash memory required when
using the SPIBSC in external address read mode, to suit the serial flash
memory in use.

Enabling writing to the serial flash memory Set the registers in the serial flash memory to enable writing, to suit the
serial flash memory in use.*1

Waiting for the serial flash memory to be ready Read the registers in the serial flash memory and wait for the serial flash
memory to enter the ready state, to suit the flash memory in use.

Releasing the serial flash memory from protection Make settings for the registers in the serial flash memory to release it from
protection, to suit the flash memory in use.*2

Erasure of the serial flash memory Erase the sector of the serial flash memory to suit the flash memory in use.

Programming of the serial flash memory Program the serial flash memory to suit the flash memory in use.

R01AN2951EJ0120 Rev.1.20 Page 60 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Figure 10.4 Relationship between the SPIBSC Control Register Settings and the Waveforms Output to the
Serial Flash Memory while the SPIBSC is Reading from an External Address

Table 10.5 SPIBSC Control Register Settings in the Sample Program

SPIBSC Registers Setting Remark

DRCMR CMD[7:0] H’EB Quad I/O Read Command

OCMD[7:0] H’00 —

DROPR OPD3[7:0] H’00 —

OPD2[7:0] H’00 —

OPD1[7:0] H’00 —

OPD0[7:0] H’00 —

DRENR CDB[1:0] B’00 Command bit width: 1-bit width

OCDB[3:0] B’0000 —

ADB[1:0] B’10 Address bit width: 4-bit width

OPDB[1:0] B’10 Optional data bit width: 4-bit width

DRDB[1:0] B’10 Data read bit width: 4-bit width

DME B’1 Dummy cycles: Inserted

CDE B’1 Commands: Issued

OCDE B’0 Optional command: Not issued

ADE[3:0] B’0111 Address enable: 24-bit address output

OPDE[3:0] B’1000 Optional data: OPD3 is output

DRDMCR DMDB[1:0] B’00 Bit width of dummy cycles: 1-bit width

DMCYC[2:0] B’101 Number of dummy cycles: 6 cycles

SPBCR SPBR[7:0] H’01 Bit rate: PCLKA/2

BRDV[1:0] B’00

DATA[1] DATA[0]DATA[2]DATA[3]ADR
[31:24]

ADR
[23:16]

ADR
[15:8]

ADR
[7:0] OPD2OPD3 OPD1 OPD0

OPD2OPD3 OPD1 OPD0CMD OCMD (EAV[7:0]+) address read DMCYC Data read length

Transfer dataDummy
cycleOptional dataAddress

Optional
commandCommand

CMD OCMD DMCYC

Data

When reading from
the external address
space

When SPI is operating

8 bits 8 bits 32 or 24 bits 8, 16, 24, or 32 bits 1 to 8 cycles Data length

SPBSSL_0

SPBCLK_0

SPBIO00_0

SPBIO10_0

SPBIO20_0

SPBIO30_0

Phase

7

Instruction

6 5 4 3 2 1 0 4

5

6

7

0

1

2

3

28

29

30

31

4

5

6

7

0

1

2

3

Address Mode Dummy D1 D2 D3 D4

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

R01AN2951EJ0120 Rev.1.20 Page 61 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

10.2.5 Setting Registers in the Serial Flash Memory
The registers in the serial flash memory must be set when reading from the serial flash memory in Section 10.2.4,
Changing the Read Command Waveforms.

In the sample program, the user-defined function (serial flash memory internal register settings function:
Userdef_SFLASH_Set_Mode) handles the processing to set the QUAD bit in the status register of the Macronix serial
flash memory (product type name: MX25L51245G) to 1 (= quad), the DC1 (dummy cycle 1) bit in the configuration
register to 1, and the DC0 (dummy cycle 0) bit to 0.

When setting the registers in the serial flash memory, SPI mode of the SPIBSC is used. To set the registers in the
Macronix serial flash memory (product type name: MX25L51245G), the write enable latch (WEL) bit must be set to 1 by
issuing the write enable command (WREN). This must be done before the status register and configuration register can
be set. In the sample program, the user-defined function (serial flash memory write enable function:
Userdef_SFLASH_Write_Enable) handles the processing to issue the write enable command (WREN).

Figure 10.5 shows the flow of setting the registers in the serial flash memory in the sample program.

Figure 10.5 Flow of Setting the Registers in the Serial Flash Memory

Userdef_SFLASH_Set_Mode

Set the QUAD bit to 1 based on
the acquired status information

Return

Obtain the status information

Set the status and config
information

Enable writing to serial flash
memory

Userdef_SFLASH_Write_Enable

Wait for serial flash memory
to be ready

Userdef_SFLASH_Busy_Wait

Obtain the config information

Set the DC1 and DC0 bits to 1
and 0 respectively based on the

acquired config information

Issue the read status register command (0x05).

Issue the read configuration register command (0x15).

Issue the write registers command (0x01).

R01AN2951EJ0120 Rev.1.20 Page 62 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Figure 10.6 Read Status Register Command Flow

Read status register command

End

Set SPI mode registers SPIBSC.CMNCR register
MD bit = 1 : SPI mode

SPIBSC.SMCMR register ← H’05 : Read status register command
SPIBSC.SMENR register

CDB bit = B'00 : 1 bit
DME bit = 0 : Insertion disabled
CDEv = 1 : Output enabled
OCDE bit = 0 : Output disabled
ADE bit = B'0000 : Output disabled
OPDE bit = B'0000 : Output disabled
SPIDE bit = B'1000 : 8-bit transfer
SPIDB bit = B'00 : 1-bit transfer

SPIBSC.SMWDR0 register ← H'00000000
SPIBSC.SMCR register

SSLKP bit = 0 : Set the SPBSSL signal to the inactive state at
 the end of transfer.

SPIRE bit = 1 : Reading enabled
SPIWE bit = 1 : Writing enabled

SPIBSC.SMDRENR register ← H'00000000
SPIDRE bit = 0 : SDR transfer
OPDRE bit = 0 : SDR transfer
DRDRE bit = 0 : SDR transfer

data=SMRDR0

SPI transfer starts SPIBSC.SMCR register
SPIE bit = 1b : SPI transfer starts

Read the status.

status = (uint8_t)(data >> 24) Data[31:24]

Read the SPIBSC.CMNSR register.
TEND flag : 0: Transfer is in progress

 1: Transfer is completed

Is SPI transfer in progress?

Yes

No

R01AN2951EJ0120 Rev.1.20 Page 63 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Figure 10.7 Read Configuration Register Command Flow

End

Set SPI mode registers

Read the configuration
information

SPI transfer starts SPIBSC.SMCR register
SPIE bit = 1b : SPI transfer starts

Change the configuration information
to data of 31 to 24 bits

Read configuration register

Read the SPIBSC.CMNSR register.
TEND flag : 0: Transfer is in progress

 1: Transfer is completed

Is SPI transfer in progress?

Yes

No

SPIBSC.CMNCR register
MD bit = 1 : SPI mode

SPIBSC.SMCMR register ← H’15 : Read configuration register command
SPIBSC.SMENR register

CDB bit = B'00 : 1 bit
DME bit = 0 : Insertion disabled
CDE bit = 1 : Output enabled
OCDE bit = 0 : Output disabled
ADE bit = B'0000 : Output disabled
OPDE bit = B'0000 : Output disabled
SPIDE bit = B'1000 : 8-bit transfer
SPIDB bit = B'00 : 1-bit transfer

SPIBSC.SMWDR0 register ← H'00000000
SPIBSC.SMCR register

SSLKP bit = 0 : Set the SPBSSL signal to the inactive state at
 the end of transfer.

SPIRE bit = 1 : Reading enabled
SPIWE bit = 1 : Writing enabled

SPIBSC.SMDRENR register ← H'00000000
SPIDRE bit = 0 : SDR transfer
OPDRE bit = 0 : SDR transfer
DRDRE bit = 0 : SDR transfer

Read the SPIBSC.SMRDR0 register.
RDATA0 bit: Read data (in SPI operation mode)

R01AN2951EJ0120 Rev.1.20 Page 64 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Figure 10.8 Write Status Register Command Flow

Write status register command

End

Set SPI mode registers SPIBSC.CMNCR register
MD bit = 1 : SPI mode

SPIBSC.SMCMR register ← H’01 : Write status register command
SPIBSC.SMENR register

CDB bit = B'00 : 1 bit
DME bit = 0 : Insertion disabled
CDE bit = 1 : Output enabled
OCDE bit = 0 : Output disabled
ADE bit = B'0000 : Output disabled
OPDE bit = B'1100 : Outputs OPD3 and OPD2
SPIDE bit = B'0000 : Output disabled
OPDB bit = B'00 : 1-bit transfer

SPIBSC.SMOPR register
OPD3 bit = status (written value)
OPD2 bit = config (written value)

SPIBSC.SMWDR0 register ← H'00000000
SPIBSC.SMCR register

SSLKP bit = 0 : Set the SPBSSL signal to the inactive state at
 the end of transfer.

SPIRE bit = 0 : Reading disabled
SPIWE bit = 0 : Writing disabled

SPIBSC.SMDRENR register ← H'00000000
SPIDRE bit = 0 : SDR transfer
OPDRE bit = 0 : SDR transfer
DRDRE bit = 0 : SDR transfer

SPI transfer starts SPIBSC.SMCR register
SPIE bit = 1b : SPI transfer starts

Dummy = SMRDR0 Dummy reading

Read the SPIBSC.CMNSR register.
TEND flag : 0: Transfer is in progress

 1: Transfer is completed

Is SPI transfer in progress?

Yes

No

R01AN2951EJ0120 Rev.1.20 Page 65 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

10.2.6 Enabling Writing to the Serial Flash Memory
Write the code to enabling writing, which is required for setting the registers in the serial flash memory, as described in
Section 10.2.5, Setting Registers in the Serial Flash Memory, in a user-defined function (serial flash memory write
enable function: Userdef_SFLASH_Write_Enable).

Figure 10.9 shows the flow of enabling writing to the serial flash memory in the sample program.

Figure 10.9 Flow of Enabling Writing to the Serial Flash Memory

Userdef_SFLASH_Write_Enable

Return

Set SPI mode registers

SPIBSC.CMNCR register
MD bit = 1 : SPI mode

SPIBSC.SMCMR register ← H’06 : Write enable command
SPIBSC.SMENR register

CDB bit = B'00 : 1 bit
DME bit = 0 : Insertion disabled
CDE bit = 1 : Output enabled
OCDE bit = 0 : Output disabled
ADE bit = B'0000 : Output disabled
OPDE bit = B'0000 : Output disabled
SPIDE bit = B'0000 : Output disabled

SPIBSC.SMWDR0 register ← H'00000000
SPIBSC.SMCR register

SSLKP bit = 0 : Set the SPBSSL signal to the inactive state at
 the end of transfer.

SPIRE bit = 0 : Reading disabled
SPIWE bit = 0 : Writing disabled

SPIBSC.SMDRENR register ← H'00000000
SPIDRE bit = 0 : SDR transfer
OPDRE bit = 0 : SDR transfer
DRDRE bit = 0 : SDR transfer

Dummy = SMRDR0

SPI transfer starts SPIBSC.SMCR register
SPIE bit = 1b : SPI transfer starts

Dummy reading

Read the SPIBSC.CMNSR register.
TEND flag : 0: Transfer is in progress

 1: Transfer is completed

Is SPI transfer in progress?

Yes

No

R01AN2951EJ0120 Rev.1.20 Page 66 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

10.2.7 Waiting for the Serial Flash Memory to be Ready
Issuing a programming command (page programming) or erase command (sector erase) to the serial flash memory leads
to the serial flash memory being placed in the busy state. Write the code to wait for the transition from the busy state to
the ready state in a user-defined function (serial flash memory ready wait function: Userdef_SFLASH_Busy_Wait).

With the Macronix serial flash memory (product type name: MX25L51245G), you can check for a transition to the ready
state by reading a register in the serial flash memory.

Figure 10.10 shows the flow of waiting for the serial flash memory to be ready in the sample program.

Figure 10.10 Flow of Waiting for the Serial Flash Memory to be Ready

Userdef_SFLASH_Busy_Wait

Return

Read status register command (0x05)Obtain the status
information

Check the WIP bit of the status
register in the serial flash memoryIs writing possible?

Yes

No

R01AN2951EJ0120 Rev.1.20 Page 67 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

10.2.8 Releasing the Serial Flash Memory from Protection
When changing the data in the serial flash memory in accord with the specifications of the serial flash memory, it must be
released from protection by writing to registers in the serial flash memory.

With the Macronix serial flash memory (product type name: MX25L51245G), programming or erasure of the serial flash
memory cannot proceed if it is in the protected state. To release it from protection, the block protection (BP0, BP1, BP2,
and BP3) bits in the status register must be set to 0.

Figure 10.11 shows the flow of releasing the serial flash memory from protection in the sample program.

Figure 10.11 Flow of Releasing the Serial Flash Memory from Protection

Userdef_SFLASH_Ctrl_Protect

Obtain the status information

Set the status and config
information

Wait for serial flash memory
to be ready

Userdef_SFLASH_Busy_
Wait()

Return

Set the BP3 to BP0 bits to 0 based on
the acquired status information

Obtain the config information

Write registers command (0x01)

Enable writing to serial flash
memory

Userdef_SFLASH_Write_Enable

Read configuration register command (0x15)

Read status register command (0x05)

R01AN2951EJ0120 Rev.1.20 Page 68 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

10.2.9 Erasing the Serial Flash Memory
The sample program uses the erase command (sector erase) to erase the sector of the serial flash memory.

When the erase command has to be changed in accord with the specifications of the serial flash memory, change the flash
erasure function (R_SFLASH_EraseSector).

Figure 10.12 shows the flow of erasing the serial flash memory in the sample program.

Figure 10.12 Flow of Erasing the Serial Flash Memory

R_SFLASH_EraseSector

Sector erase command = 0xDC Sector erase command = 0xD8

Return

Wait for serial flash memory
to be ready

Userdef_SFLASH_Busy_Wait

Issue the sector erase
command

Enable writing to serial flash
memory

Userdef_SFLASH_Write_Enable

Number of address bytes
== 4 bytes

Yes

No

R01AN2951EJ0120 Rev.1.20 Page 69 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Figure 10.13 Sector Erase Command Flow

Sector erase command

End

Set SPI mode registers SPIBSC.CMNCR register
MD bit = 1 : SPI mode

SPIBSC.SMCMR register ← H’D8 or DC : Sector erase command
SPIBSC.SMENR register

CDB bit = B'00 : 1 bit
DME bit = 0 : Insertion disabled
CDE bit = 1 : Output enabled
OCDE bit = 0 : Output disabled
ADE bit = B'0111 or B'1111 : ADR[23:0] or ADR[31:0]
OPDE bit = B'0000 : Output disabled
SPIDE bit = B'0000 : Output disabled
ADB bit = B'00 : 1-bit transfer

SPIBSC.SMADR register ← addr (address to be erased)
SPIBSC.SMWDR0 register ← H'00000000
SPIBSC.SMCR register

SSLKP bit = 0 : Set the SPBSSL signal to the inactive state
 at the end of transfer

SPIRE bit = 0 : Reading disabled
SPIWE bit = 0 : Writing disabled

SPIBSC.SMDRENR register ← H'00000000
SPIDRE bit = 0 : SDR transfer
OPDRE bit = 0 : SDR transfer
DRDRE bit = 0 : SDR transfer

SPI transfer starts SPIBSC.SMCR register
SPIE bit = 1b : SPI transfer starts

Dummy = SMRDR0 Dummy reading

Read the SPIBSC.CMNSR register.
TEND flag : 0: Transfer is in progress

 1: Transfer is completed

Is SPI transfer in progress?

Yes

No

R01AN2951EJ0120 Rev.1.20 Page 70 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

10.2.10 Programming the Serial Flash Memory
The sample program uses the programming command (page programming) for programming of the serial flash memory.

When the programming command has to be changed in accord with the specifications of the serial flash memory, change
the serial flash programming function (R_SFLASH_ByteProgram).

Figure 10.14 shows the flow of programming the serial flash memory in the sample program.

Figure 10.14 Flow of Programming the Serial Flash Memory

R_SFLASH_ByteProgram

Programming command = 0x12

Return Error Return

4-bit programming is not
supported

Issue the programming
command

Wait for serial flash memory to
be ready

Userdef_SFLASH_Busy_Wait

Programming command = 0x02

Data bus width == 1 bit

Yes

No

Number of address bytes
== 4 bytes

Yes

No

Enable writing to serial
flash memory

Userdef_SFLASH_Write_
Enable

R01AN2951EJ0120 Rev.1.20 Page 71 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Figure 10.15 Programming Command Flow (1)

Programming command

Set SPI mode registers SPIBSC.CMNCR register
MD bit = 1 : SPI mode

SPIBSC.SMCMR register ← H’02 or 12 : Programming command
SPIBSC.SMENR register

CDB bit = B'00 : 1 bit
DME bit = 0 : Insertion disabled
CDE bit = 1 : Output enabled
OCDE bit = 0 : Output disabled
ADE bit = B'0111 or B'1111 : ADR[23:0] or ADR[31:0]
OPDE bit = B'0000 : Output disabled
SPIDE bit = B'0000 : Output disabled
ADB bit = B'00 : 1-bit transfer

SPIBSC.SMADR register ← addr (destination address for writing)
SPIBSC.SMWDR0 register ← H'00000000
SPIBSC.SMCR register

SSLKP bit = 1 : Retains the level of the SPBSSL signal
 after the end of transfer.

SPIRE bit = 0 : Reading disabled
SPIWE bit = 0 : Writing disabled

SPIBSC.SMDRENR register ← H'00000000
SPIDRE bit = 0 : SDR transfer
OPDRE bit = 0 : SDR transfer
DRDRE bit = 0 : SDR transfer

1

SPI transfer starts SPIBSC.SMCR register
SPIE bit = 1b : SPI transfer starts

Dummy = SMRDR0 Dummy reading

Read the SPIBSC.CMNSR register.
TEND flag : 0: Transfer is in progress

 1: Transfer is completed

Is SPI transfer in progress?

Yes

No

Set SPI mode registers SPIBSC.SMENR register
DME bit = 0 : Insertion disabled
CDE bit = 0 : Output disabled
OCDE bit = 0 : Output disabled
ADE bit = B'0000 : Output disabled
OPDE bit = B'0000 : Output disabled
SPIDE bit = B'1111 : 32-bit transfer
SPIDB bit = B'00 : 1 bit

SPIBSC.SMCR register
SSLKP bit = 1 : Retains the level of the SPBSSL signal after

 the end of transfer.
SPIRE bit = 0 : Reading disabled
SPIWE bit = 1 : Writing enabled

SPIBSC.SMDRENR register ← H'00000000
SPIDRE bit = 0 : SDR transfer
OPDRE bit = 0 : SDR transfer
DRDRE bit = 0 : SDR transfer

R01AN2951EJ0120 Rev.1.20 Page 72 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Figure 10.16 Programming Command Flow (2)

SMWDR0 = data

Set SPI mode registers
SPIBSC.SMCR register

SSLKP bit = 0 : Set the SPBSSL signal to the inactive state at
 the end of transfer.

SPIRE bit = 0 : Reading disabled
SPIWE bit = 1 : Writing enabled

End

1

SPI transfer starts SPIBSC.SMCR register
SPIE bit = 1b : SPI transfer starts

Read the SPIBSC.CMNSR register.
TEND flag : 0: Transfer is in progress

 1: Transfer is completed

Is SPI transfer in progress?

Yes

No

Dummy = SMRDR0 Dummy reading

SPI transfer starts SPIBSC.SMCR register
SPIE bit = 1b : SPI transfer starts

Read the SPIBSC.CMNSR register.
TEND flag : 0: Transfer is in progress

 1: Transfer is completed

Is SPI transfer in progress?

Yes

No

Dummy = SMRDR0 Dummy reading

Writing of data

SMWDR0 = data Writing of data

Last data

No

Yes

R01AN2951EJ0120 Rev.1.20 Page 73 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

10.3 Customizing the Sample Program for Initial Settings of the Microcomputers
Incorporating the R-IN Engine (Cortex-M3)

In the sample program for initial settings of devices with a built-in R-IN Engine, CM3_SECTION is generated when an
application binary file is generated. In downloading, a binary file for the Cortex-M3 is also downloaded as processing for
devices with a built-in R-IN Engine (loop = 5).

For details of initial settings of devices with a built-in R-IN Engine, refer to the application note “RZ/T1 Group Initial
Settings of the Microcomputers Incorporating the R-IN Engine”.

Table 10.6 Application Binary Files

Directory Binary File Description

RZ_T_sflash_sample.bin CONST_LOADER_TABLE Application (1) (loader parameter information) binary file

LOADER_RESET_HANDLER Application (2) (loader program) binary file

LOADER_IN_ROOT Application (3) (loader program) binary file

INIT Application (4) (user program) binary file

CM3_SECTION Application (5) (user program) binary file (Cortex-M3 program)

R01AN2951EJ0120 Rev.1.20 Page 74 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

RZ/T1 CPU Board S-Flash Programming Sample. Ver.1.00

Copyright (C) 2015 Renesas Electronics Corporation. All rights reserved.

Initializing Flash...

Start to load Binary Data to Flash Memory.

loop=1, file=CONST_LOADER_TABLE, flash address=0x30000000.

Calculating Data Size...

Data Size is 76

Programing Flash...

Calcurating Checksum of Loader Parameter.

Verifying Flash...

loop=1, Flash Programming Success!!

loop=2, file=LOADER_RESET_HANDLER, flash address=0x30000200.

Calculating Data Size...

Data Size is 11812

Programing Flash...

Verifying Flash...

loop=2, Flash Programming Success!!

loop=3, file=LOADER_IN_ROOT, flash address=0x30006200.

Calculating Data Size...

Data Size is 236

Programing Flash...

Verifying Flash...

loop=3, Flash Programming Success!!

loop=4, file=INIT, flash address=0x30010000.

Calculating Data Size...

Data Size is 2592

Programing Flash...

Verifying Flash...

loop=4, Flash Programming Success!!

loop=5, file=CM3_SECTION, flash address=0x30110000.

Calculating Data Size...

Data Size is 1296

Programing Flash...

Verifying Flash...

loop=5, Flash Programming Success!!

 finish

Flash Programming Complete

Figure 10.17 Messages Output to the Application Console

R01AN2951EJ0120 Rev.1.20 Page 75 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

11. Sample Program
The sample program is available from the Renesas Electronics website.

R01AN2951EJ0120 Rev.1.20 Page 76 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

12. Documents for Reference
• User's Manual: Hardware

RZ/T1 Group User's Manual: Hardware
(Download the latest version from the Renesas Electronics website.)

RZ/T1 Evaluation Board RTK7910022C00000BR User's Manual
(Download the latest version from the Renesas Electronics website.)

ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition Issue C
(Download the latest version from the ARM® website.)

ARM Generic Interrupt Controller Architecture Specification Architecture version 1.0
(Download the latest version from the ARM® website.)

• Technical Update and Technical News
(Download the latest version from the Renesas Electronics website.)

• User's Manual: Development Environment
For the ARM software development tools (ARM Compiler toolchain, ARM DS-5, etc.), visit the ARM® website.
(Download the latest version from the ARM® website.)

R01AN2951EJ0120 Rev.1.20 Page 77 of 77
Sep. 15, 2017

RZ/T1 Group
Example of Downloading to Serial Flash Memory by Using “Semihosting” of

ARM® Development Studio 5 (DS-5TM)

Website and Support
Renesas Electronics website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

 Application Note:
 Example of Downloading to Serial Flash Memory by Using "Semihosting" of ARM

®

 Development Studio 5 (DS-5TM)

C - 1

Rev. Date
Description

Page Summary
1.00 Nov. 24, 2015 — First Edition issued
1.10 Sep. 16, 2016 All Application Note "RZ/T1 Group Dual Core Control" changed to Application Note "RZ/T1

Group Initial Settings of the Microcomputers Incorporating the R-IN Engine"
1.20 Sep. 15, 2017 2. Conditions for Checking Operations

5 Table 2.1 Conditions for Checking Operations
DS-5 version from ARM®, modified

All trademarks and registered trademarks are the property of their respective owners.

Revision History

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that

have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
⎯ The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

General Precautions in the
Handling of MPU/MCU

Products

�

� �

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

ご注意書き

	Summary
	Applicable Devices
	Table of Contents
	1. Specifications
	2. Conditions for Checking Operations
	3. Related Application Notes
	4. Description of Hardware
	4.1 List of Pins
	4.2 Reference Circuit

	5. Outline of Downloading to the Serial Flash Memory
	5.1 Terms Related to Downloading to the Serial Flash Memory
	5.2 Schematic View of Flash Downloader Operation
	5.3 Developing a Flash Downloader
	5.3.1 Memory Map

	5.4 Customizing the Examples of Downloading to the Serial Flash Memory

	6. Example of Downloading to the RZ/T1 Evaluation Board (RTK7910022C00000BR)
	6.1 Settings for the RZ/T1 Evaluation Board (RTK7910022C00000BR)
	6.2 Copying DS-5 Scripts
	6.3 Importing and Building Projects
	6.4 Generating Application Binary Files
	6.5 Copying the Flash Downloader Executable File
	6.6 DS-5 Debug Configuration Settings
	6.7 Connecting the RZ/T1 Evaluation Board with an ARM® Emulator
	6.8 Running the Download Script

	7. Flash Memory Interface Functions
	7.1 Fixed-Width Integers
	7.2 Structures and Unions
	7.3 Constants
	7.4 Variables
	7.5 Flash Memory Interface Functions
	7.6 Details of the Flash Memory Interface Functions
	7.7 Flowcharts of the Flash Memory Interface Functions
	7.7.1 Flow of the Initialization Interface Function
	7.7.2 Serial Flash Memory Write Mode Entry Function
	7.7.3 Serial Flash Memory Read Mode Entry Function
	7.7.4 Flow of the Write Interface Function

	8. Operation of the Flash Downloader
	8.1 Memory Allocation of the Application Program
	8.2 Flow of Flash Downloader Processing
	8.2.1 Calculating the Checksum of the Loader Parameter Information

	9. Configuration of the Flash Downloader
	9.1 Configuration of Projects
	9.2 RZ/T1 Evaluation Board Initialization Script
	9.3 Application Downloading Script

	10. Application Examples
	10.1 Changing the Binary File Names and Destination Addresses for Writing
	10.1.1 Changing the Binary File Names for Writing to the Flash Memory
	10.1.2 Changing the Destination Addresses for Writing to the Flash Memory

	10.2 Changing the Sample Program to Suit the Given Flash Memory
	10.2.1 Conditions for the Sample Program
	10.2.2 Changing the Sample Program when Not Changing the Serial Flash Memory
	10.2.3 Changing the Sample Program when Changing the Serial Flash Memory
	10.2.4 Changing the Read Command Waveforms
	10.2.5 Setting Registers in the Serial Flash Memory
	10.2.6 Enabling Writing to the Serial Flash Memory
	10.2.7 Waiting for the Serial Flash Memory to be Ready
	10.2.8 Releasing the Serial Flash Memory from Protection
	10.2.9 Erasing the Serial Flash Memory
	10.2.10 Programming the Serial Flash Memory

	10.3 Customizing the Sample Program for Initial Settings of the Microcomputers Incorporating the R-IN Engine (Cortex-M3)

	11. Sample Program
	12. Documents for Reference
	Revision History
	General Precautions in the Handling of MPU/MCU Products
	Notice

