
R01AN2596EJ0140 Rev.1.40 Page 1 of 47
Jun. 07, 2018

RZ/T1 Group
RIIC Sample Program

APPLICATION NOTE

Introduction
This application note explains a sample program that uses the RZ/T1 I2C bus interface function (RIIC) to execute
read/write operations on the EEPROM (R1EX24016ASAS0A) mounted on the evaluation board.

The RIIC sample program has the following features:
• Supports master transmission and reception
• Supports Fast Mode as the communication mode (maximum transfer rate: 400 kbps)

Limitations

This sample program has the following limitations:
(1) This program cannot be combined with DMA.
(2) This program does not support the RIIC timeout function.
(3) This program does not support the RIIC NACK arbitration-lost detection function.
(4) This program does not support 10-bit address transmission.
(5) This program does not support the acceptance of a restart condition as a slave device.

Do not specify the address of this module for the address immediately after a restart condition.

Target Devices
RZ/T1

When applying the sample program covered in this application note to another microcomputer, modify the program
according to the specifications for the target microcomputer and conduct an extensive evaluation of the modified
program.

R01AN2596EJ0140
Rev.1.40

Jun. 07, 2018

Introduction

1. Specifications.. 3

2. Operating Environment ... 4

3. Related Application Note .. 5

4. Peripheral Functions ... 6

5. Hardware .. 7
5.1 Hardware Configuration.. 7
5.2 Pins... 7

6. Software.. 8
6.1 Operation Outline.. 8

6.1.1 Project Setup .. 9

6.1.2 Preparation ... 9
6.1.3 Operation Outline of the RIIC Sample Driver ... 10

6.2 Memory Mapping.. 12
6.2.1 Section Allocation for the Sample program .. 12
6.2.2 MPU Setup ... 12

6.2.3 Exception Processing Vector Table.. 12
6.3 Interrupts... 12
6.4 Fixed-Width Integer Types.. 13
6.5 Constants/Error Codes ... 14
6.6 Structures, Unions, and Enumerated Types... 17
6.7 Global Variables ... 18
6.8 Functions .. 19
6.9 Specifications of Functions ... 20

6.9.1 R_RIIC_Open... 20
6.9.2 R_RIIC_MasterSend .. 21
6.9.3 R_RIIC_MasterReceive.. 28

6.9.4 R_RIIC_SlaveTransfer ... 33
6.9.5 R_RIIC_GetStatus.. 38
6.9.6 R_RIIC_Control .. 39

6.9.7 R_RIIC_Close... 41
6.9.8 R_RIIC_GetVersion.. 42

6.9.9 main.. 42
6.10 Flowcharts .. 43

6.10.1 Main Processing ... 43
6.10.2 Callback Processing ... 44
6.10.3 Compare Match Timer Interrupt Processing... 44

7. Sample Code .. 45

8. Related Documents .. 46

Table of Contents

R01AN2596EJ0140 Rev.1.40 Page 3 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

1. Specifications
Table 1.1 Peripheral Functions and Applications lists the peripheral functions to be used and their applications, and
Figure 1.1 shows the Operating Environment where the sample code is executed.

Table 1.1 Peripheral Functions and Applications

Peripheral Function Application

RIIC Ch(0) I2C communication

Power saving function RIIC module start/stop control (MSTPCRB3)

Interrupt controller (ICUA) RIIC interrupt control (Unit0/Unit1)
Transmit end interrupt (vector 121/124)
Receive end interrupt (vector 122/125)
Transmission-data-empty interrupt (vector 123/126)
Error detection interrupt (vector 260/261)
Compare match interrupt (Unit0 ch0)
Compare match interrupt (vector 21)

I/O ports (PF7, P56, P77, PA0) LED control

Timer (CMT Unit0 ch0) 1-millisecond-interval measurement timer

Note 1. Indicates the device that the user needs to prepare.

Figure 1.1 Operating Environment

CAN

USB
(Host/Func)

LAN EtherCAT

R7S910017

PMOD1

DSMIF

PMOD2

JTAG

RZ/T1 Evaluation Board
RTK7910022C00000BR

Host computer *1

ICE *1

Microphone
Headphone

Serial

DC5V output
AC adapter
(Included
accessory)

R01AN2596EJ0140 Rev.1.40 Page 4 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

2. Operating Environment
The sample code covered in this application note is for the environment below.

Table 2.1 Operating Environment

Item Description

Microcomputer RZ/T1 Group

Operating frequency CPUCLK = 450 MHz

Operating voltage 3.3 V

Integrated Development Environment Manufactured by IAR Systems
Embedded Workbench® for Arm Version 8.20.2
Manufactured by Arm
DS-5TM 5.26.2
Manufactured by RENESAS
e2studio 6.1.0

Operating mode SPI boot mode
16-bit bus boot mode

Board RZ/T1 Evaluation Board
(RTK7910022C00000BR)

Device
(functions to be used on the board)

• NOR flash memory (connected to CS0 and CS1 spaces)
Manufacturer: Macronix International Co., Ltd.
Model: MX29GL512FLT2I-10Q

• SDRAM (connected to CS2 and CS3 spaces)
Manufacturer: Integrated Silicon Solution Inc.
Model: IS42S16320D-7TL

• Serial flash memory
Manufacturer: Macronix International Co., Ltd.
Model: MX25L51245G

• EEPROM
Manufacturer: Renesas Electronics Co., Ltd.
Model: R1EX24016ASAS0A

• LED
LED0 to LED3 (PF7, P56, P77, PA0)

R01AN2596EJ0140 Rev.1.40 Page 5 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

3. Related Application Note
The application note related to this application note is listed below for reference.

• Application Note: RZ/T1 Group Initial Settings (R01AN2554EJ)

Note: For any registers not covered by this application note, use the values specified in the Application Note: RZ/T1 Group Initial
Settings.

R01AN2596EJ0140 Rev.1.40 Page 6 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

4. Peripheral Functions
The basics of the operating modes, I2C bus interface (RIICa), power saving function, interrupt controller (ICUA),
general I/O ports, and compare match timer (CMT) are described in the RZ/T1 Group User's Manual: Hardware.

R01AN2596EJ0140 Rev.1.40 Page 7 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

5. Hardware

5.1 Hardware Configuration
Figure 5.1 shows the Hardware Configuration.

5.2 Pins
Table 5.1 shows the Pins and Functions.

Figure 5.1 Hardware Configuration

Table 5.1 Pins and Functions

Pin Name Input/Output Description

SCL0 (PC4) Input/Output I2C clock line

SDA0 (PC5) Input/Output I2C data line

PF7 Output LED0 control

P56 Output LED1 control

P77 Output LED2 control

PA0 Output LED3 control

LED3LED0 LED1 LED2
EEPROM (16 Kbits)

(R1EX24016ASAS0A)

SCL0
(PC4)

SDA0
(PC5) PF7 P56 P77 PA0

RIIC Ch0 I/O Port

ICUA
(Interrupt Control Unit A) Cortex-R4

RZ/T1

Register write protection
function

Power saving function

R01AN2596EJ0140 Rev.1.40 Page 8 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6. Software

6.1 Operation Outline
Table 6.1 Operation Outline presents a functional overview of the RIIC sample program. Figure 6.1 shows the System
Block Diagram for this program.

Table 6.1 Operation Outline

Function Outline

Double-duty pin setup • Sets PC4 and PC5 to SCL0 and SDA0, respectively

RIIC communication channel • Sets to channel 0 to which EEPROM is connected

Interrupt source (interrupt priority level) • RIIC module
Transmit end interrupt (1)/receive end interrupt (1)/transmit buffer empty (1)/ error
detection interrupt (1)

• CMT module (for one-millisecond-interval detection)
Compare match interrupt (15)

Transfer rate setup • 400[kbps]

Operating mode • Master transmission and reception

Operation outline 1. Back up the entire content of the EEPROM (RAM).
2. Write 0xFF to the entire EEPROM.
3. Write 0xA5 to the entire EEPROM.
4. Check the data written to the EEPROM.
5. Restore the original contents of the EEPROM.
 (The EEPROM is accessed (read/written) at one millisecond intervals.)

Operation result display • LED0 lights
An RIIC communication error was detected.

• LED1 lights
Test pattern has matched.

• LED2 lights
Data is being written to the EEPROM.

• LED3 lights
Data is being read from the EEPROM.

Figure 6.1 System Block Diagram

Sample program

RIIC sample driver (FIT specifications)

Status
management Master transfer Slave transfer

LED control RIIC driver control
(EEPROM control)

Power saving
function

Interrupt control
(Callback)

R01AN2596EJ0140 Rev.1.40 Page 9 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.1.1 Project Setup
How to set up projects used in the EWARM development environment is described in the Application Note: RZ/T1
Group Initial Settings.

6.1.2 Preparation
There is no need to prepare for executing this sample program.

R01AN2596EJ0140 Rev.1.40 Page 10 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.1.3 Operation Outline of the RIIC Sample Driver

(1) State transition diagram for the RIIC sample driver

Figure 6.2 shows the State Transition Diagram for the RIIC Sample Driver.

Figure 6.2 State Transition Diagram for the RIIC Sample Driver

Event[condition]/Action
• Event is shown on the left side
• Action corresponding to event

is shown on the right side

Notation conventions

StateUninitialized state
RIIC_NO_INIT

Reset released

R_RIIC_Close() called/
• I2C driver reset processing

R_RIIC_Close() called/
• I2C driver reset processing

R_RIIC_Open() called/
• Initialization

R_RIIC_Close() called/
• I2C driver reset processing Error state

RIIC_AL
RIIC_ERROR

Master transmission
and reception

RIIC_COMMUNICATION

Idle state (Ready
for master/slave communication)

RIIC_IDLE
RIIC_FINISH
RIIC_NACK

Slave address match interrupt/

Slave transmission and reception completed
[Arbitration-lost not occurred]/

R_RIIC_MasterSend() called/
• Starts master transmission
R_RIIC_MasterReceive() called/
• Starts master reception

R_RIIC_MasterSend() called/
• Starts master transmission
R_RIIC_MasterReceive() called/
• Starts master reception

Slave address match interrupt
[Arbitration-lost occurred]/

R_RIIC_MasterSend() called/
• Starts master transmission
R_RIIC_MasterReceive() called/
• Starts master reception

R_RIIC_SlaveTransfer() called/
• Starts slave transmission and reception

Master transmission
and reception completed/

Master transmission
and reception completed/

Error occurred

Transmission
and reception/

Error occurred or
slave transmission and reception
completed
[Arbitration-lost occurred]/

Idle state (Ready
for master communication)

RIIC_IDLE
RIIC_FINISH
RIIC_NACK

Transmission
and reception/

Slave transmission
and reception

RIIC_COMMUNICATION

R01AN2596EJ0140 Rev.1.40 Page 11 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

(2) Each flag indicating the state transition of the RIIC sample driver

The I2C communication information structure members include the device state flags (dev_sts). The device state flags
store the communication states of the device. These flags can also control multiple slave devices on the same channel.
Table 6.2 lists the device state flags that indicate the state transitions of the device.

(3) Arbitration-lost detection function for the RIIC sample driver

This module detects arbitration-lost states for the reasons below. This module does not support arbitration-lost detection
during slave transmission, while the RIIC does.

(i) When a start condition is issued during the bus busy state
If this module issues a start condition when another master device has already issued a start condition and occupied the
bus (bus busy state), this module detects an arbitration-lost state.

(ii) When this module issues a start condition after another master issued a start condition while the bus is not busy
When this module issues a start condition, it attempts to drive the SDA line low. However, if another master device
issued a start condition earlier, the signal level on the SDA line does not match the signal level output by the module.
Then, this module detects an arbitration-lost state.

(iii) When multiple start conditions are issued at the same time:
If multiple master devices issue start conditions at the same time, the module may determine that the start condition has
been issued successfully on each device. Then, each master device starts communication, but if any of the conditions
shown below is met, this module detects an arbitration-lost state.

(a) If each master device sends different data
This module compares the signal level on the SDA line with the signal level output by itself during data
communications. If these signal levels do not match while data (including the slave address) is being transmitted,
this module immediately detects an arbitration-lost state.

(b) If the number of data transmissions differs between each master device even though the data sent by each master
device is the same
In cases other than "a" above (i.e., if each master device sends the same data and slave address), the module does
not detect an arbitration-lost state. However, if the number of data transmissions differs between each master
device, this module detects an arbitration-lost state.

Table 6.2 Device State Flags Indicating the State Transitions of the Device

State Device State Flag (dev_sts)

Uninitialized state RIIC_NO_INIT

Idle states RIIC_IDLE
RIIC_FINISH
RIIC_NACK

Communicating state
(master transmission, master reception, slave
transmission, and slave reception)

RIIC_COMMUNICATION

Arbitration-lost detection state RIIC_AL

Error state RIIC_ERROR

R01AN2596EJ0140 Rev.1.40 Page 12 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.2 Memory Mapping
Memory mapping for the address spaces in the RZ/T1 Group MCU and the memory in the RZ/T1 Evaluation Board is
described in the Application Note: RZ/T1 Group Initial Settings.

6.2.1 Section Allocation for the Sample program
The sections used by the sample program, the section allocation for the sample program in the initial state (load view),
and the section allocation for the sample program after the scatter loading function is used (execution view) are described
in the Application Note: RZ/T1 Group Initial Settings.

6.2.2 MPU Setup
MPU setup is described in the Application Note: RZ/T1 Group Initial Settings.

6.2.3 Exception Processing Vector Table
Exception processing vector tables are described in the Application Note: RZ/T1 Group Initial Settings.

6.3 Interrupts
Table 6.3 shows the interrupts for the Sample Code.

Table 6.3 Interrupts for the Sample Code

Interrupt (Source ID) Priority Process Outline

unit0 communication error interrupt (EEI) RIIC_CFG_CH0_INT_PRIORITY Communication error/event occurrence processing
(vector number: 260)

• Arbitration-lost detection
• NACK detection
• Timeout detection
• Start condition detection

(including a restart condition)
• Stop condition detection

unit0 receive data full interrupt (RXI) RIIC_CFG_CH0_INT_PRIORITY Receive-data-full processing (vector number: 122)

unit0 transmit data empty interrupt (TXI) RIIC_CFG_CH0_INT_PRIORITY Transmission-data-empty processing
(vector number: 123)

unit0 transmit end interrupt (TEI) RIIC_CFG_CH0_INT_PRIORITY Transmit-end processing (vector number: 121)

Compare match interrupt (CMI0) ICU_PRIORITY_15 1-millisecond-interval measurement processing
(vector number: 21)

R01AN2596EJ0140 Rev.1.40 Page 13 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.4 Fixed-Width Integer Types
Table 6.4 shows the Fixed-Width Integer Types for the Sample Code.

Table 6.4 Fixed-Width Integer Types for the Sample Code

Symbol Description

int8_t 8-bit signed integer (defined in the standard library)

int16_t 16-bit signed integer (defined in the standard library)

int32_t 32-bit signed integer (defined in the standard library)

int64_t 64-bit signed integer (defined in the standard library)

uint8_t 8-bit unsigned integer (defined in the standard library)

uint16_t 16-bit unsigned integer (defined in the standard library)

uint32_t 32-bit unsigned integer (defined in the standard library)

uint64_t 64-bit unsigned integer (defined in the standard library)

R01AN2596EJ0140 Rev.1.40 Page 14 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.5 Constants/Error Codes
Table 6.5 shows the Constants for the Sample Code, and Table 6.6 shows the Error Codes for the Sample Code.

Table 6.7 shows the constants that can be configured during compilation.

Note 1. Used as the values of riic_ch_dev_status_t type flags
Note 2. Used as the output patterns for R_RIIC_Control()

Table 6.5 Constants for the Sample Code

Constant Name Setting Value Description

RIIC_NO_INIT*1 0 Uninitialized state

RIIC_IDLE*1 1 Idle state

RIIC_FINISH*1 2 Idle state

RIIC_NACK*1 3 Idle state

RIIC_COMMUNICATION*1 4 Master or slave is sending or receiving data

RIIC_AL*1 5 Arbitration-lost detection state

RIIC_ERROR*1 6 Error state

RIIC_GEN_START_CON*2 (uint8_t)(0x01) Start condition generated

RIIC_GEN_STOP_CON*2 (uint8_t)(0x02) Stop condition generated

RIIC_GEN_RESTART_CON*2 (uint8_t)(0x04) Restart condition generated

RIIC_GEN_SDA_HI_Z*2 (uint8_t)(0x08) SDA pin set to high impedance

RIIC_GEN_SCL_ONESHOT*2 (uint8_t)(0x10) One-shot output of the SCL clock

RIIC_GEN_RESET*2 (uint8_t)(0x20) RIIC module reset

FIT_NO_PTR (void *)0 FIT-defined NULL pointer

Table 6.6 Error Codes for the Sample Code

Constant Name Setting Value Description

RIIC_SUCCESS 0U The function called successfully

RIIC_ERR_LOCK_FUNC 1U RIIC being used by another module

RIIC_ERR_INVALID_CHAN 2U Nonexistent channel specified

RIIC_ERR_INVALID_ARG 3U Invalid argument specified

RIIC_ERR_NO_INIT 4U Uninitialized state

RIIC_ERR_BUS_BUSY 5U Bus busy

RIIC_ERR_AL 6U Function called in an arbitration-lost detection state

RIIC_ERR_OTHER 7U Other errors

R01AN2596EJ0140 Rev.1.40 Page 15 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

The configuration options in this module are specified in r_riic_rx_config.h.

The following table shows the option names and describes the setting values.

Table 6.7 Options Configurable during Compilation (1 / 2)

Option Name Description

RIIC_CFG_PARAM_CHECKING_ENABLE
Note: Default value = 1

Selects whether to include parameter checking in the code.
If this option is set to 0, parameter checking is omitted from the code, so that the
code size can be reduced.
When this is set to 0, parameter checking is omitted from the code.
When this is set to 1, parameter checking is included in the code.

RIIC_CFG_PCLK_Hz
Note: Default value = 75000000

Sets the frequency of the PCLK clock signals supplied to the RIIC0 module.
The respective values to be set in the bit rate register and the internal reference
clock selection bits are calculated according to the settings in
RIIC_CFG_CH0_kBPS and RIIC_CFG_PCLK_Hz.

RIIC_CFG_CH0_INCLUDED
Note: Default value = 1

Selects whether to use the channel.
When not using the channel, set this option to 0.
When this is set to 0, processing related to the channel is omitted from the code.
When this is set to 1, processing related to the channel is included in the code.

RIIC_CFG_CH0_kBPS
Note: Default value = 400

Specifies the RIIC0 communication rate.
The respective values to be set in the bit rate register and the internal reference
clock selection bits are calculated according to the settings in
RIIC_CFG_CH0_kBPS and RIIC_CFG_PCLK_Hz.
Specify a value less than or equal to 400.

RIIC_SCL_100K_UP_TIME
Note: Default value = 1000E-9

Specifies the SCL rise time [s] when the RIIC0 communication rate is 1-100 kbps.
(Specify a value in double-precision floating-point format.)

RIIC_SCL_100K_DOWN_TIME
Note: Default value = 300E-9

Specifies the SCL fall time [s] when the RIIC0 communication rate is 1-100 kbps.
(Specify a value in double-precision floating-point format.)

RIIC_SCL_400K_UP_TIME
Note: Default value = 175E-9

Specifies the SCL rise time [s] when the RIIC0 communication rate is 101-400
kbps. (Specify a value in double-precision floating-point format.)

RIIC_SCL_400K_DOWN_TIME
Note: Default value = 175E-9

Specifies the SCL fall time [s] when the RIIC0 communication rate is 101-400 kbps.
(Specify a value in double-precision floating-point format.)

RIIC_CFG_CH0_DIGITAL_FILTER
Note: Default value = 2

Selects the number of noise filter stages.
When this is set to 0, the noise filter is disabled.
When this is set to a value from 1 to 4, the values to enable the selected number of
filter stages are selected for the noise filter stage selection bits and digital noise fil-
ter circuit enable bits.

RIIC_CFG_CH0_SCL0
Note: Default value = 1

Selects the output pin to be used for RIIC0 SCL.
Processing for setting the selected pin as the SCL pin is included in the code.
When this is set to 0, processing for setting the SCL pin is omitted from the code.
When this is set to 1, PC4 is set as the SCL0 pin.

RIIC_CFG_CH0_SDA0
Note: Default value = 1

Selects the output pin to be used for RIIC0 SDA.
Processing for setting the selected pin as the SDA pin is included in the code.
When this is set to 0, processing for setting the SDA0 pin is omitted from the code.
When this is set to 1, PC5 is set as the SDA0 pin.

RIIC_CFG_CH0_MASTER_MODE
Note: Default value = 1

Selects whether to enable or disable the master arbitration-lost detection function
for RIIC0.
Set this to 1 (enabled) when using multiple masters.
When this is set to 0, the master arbitration-lost detection function is disabled.
When this is set to 1, the master arbitration-lost detection function is enabled.

RIIC_CFG_CH0_SLV_ADDR0_FORMAT*1

RIIC_CFG_CH0_SLV_ADDR1_FORMAT*2

RIIC_CFG_CH0_SLV_ADDR2_FORMAT*2

Note 1. Default value = 1
Note 2. Default value = 0

Selects the slave address format from 7 bits and 10 bits.
When this is set to 0, the slave address is not set.
When this is set to 1, the 7-bit slave address format is set.
When this is set to 2, the 10-bit slave address format is set.

R01AN2596EJ0140 Rev.1.40 Page 16 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

RIIC_CFG_CH0_SLV_ADDR0*1

RIIC_CFG_CH0_SLV_ADDR1*2

RIIC_CFG_CH0_SLV_ADDR2*2

Note 1. Default value = 0x0025
Note 2. Default value = 0x0000

Specifies the slave address.
Effective bits of the setting value vary according to the value set in
RIIC_CFG_CH0_SLV_ADDRi_FORMAT. The following numbers are the values of
RIIC_CFG_CH0_SLV_ADDRi_FORMAT:
0: The setting value is ignored.
1: The lower 7 bits of the setting value take effect.
2: The lower 10 bits of the setting value take effect.

RIIC_CFG_CH0_SLV_GCA_ENABLE
Note: Default value = 0

Selects whether to enable or disable the general call address.
When this is set to 0: General call address is disabled.
When this is set to 1: General call address is enabled.

RIIC_CFG_CH0_INT_PRIORITY
Note: Default value = 1

Selects the priority levels of the communication error/event occurrence interrupt
(EEI), receive data full interrupt (RXI), transmit data empty interrupt (TXI), and
transmit end interrupt (TEI).
Specify a value from 1 to 15.

RIIC_CFG_BUS_CHECK_COUNTER
Note: Default value = 1000

Specifies the timeout counter (number of times of bus checking) when the RIIC API
function performs bus checking.
Specify a value less than or equal to 0xFFFFFFFF.
Bus checking is performed in the following timings:

• Before generating a start condition
• After detecting a stop condition
• After generating each condition and SCL one-shot pulses by using the RIIC

control function (R_RIIC_Control function)
With the bus checking, when the bus is busy, the timeout counter is decremented
until the bus becomes free. When the counter reaches 0, the API determines that a
timeout has occurred and returns an error ("Busy") as the return value.

Note: Because the timeout counter is to prevent the bus from being locked due
to a bus lock or some other means, specify a value greater than the time
during which the other device holds the SCL pin low.
Timeout period (ns) ≈ (1 / ICLK(Hz)) × counter value × 10

Table 6.7 Options Configurable during Compilation (2 / 2)

Option Name Description

R01AN2596EJ0140 Rev.1.40 Page 17 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.6 Structures, Unions, and Enumerated Types
Figure 6.3 shows the Structures, Unions, and Enumerated Types for the Sample Code.

/* ---- Return Value of IIC Driver API. ---- */
typedef enum
{
 RIIC_SUCCESS = 0U, /* Successful operation */
 RIIC_ERR_LOCK_FUNC, /* Lock has already been acquired by another task. */
 RIIC_ERR_INVALID_CHAN, /* None existent channel number */
 RIIC_ERR_INVALID_ARG, /* Parameter error */
 RIIC_ERR_NO_INIT, /* Uninitialized state */
 RIIC_ERR_BUS_BUSY, /* Channel is on communication. */
 RIIC_ERR_AL, /* Arbitration lost error */
 RIIC_ERR_OTHER /* Other error */
} riic_return_t;

/* ---- IIC Channel status type. ---- */
typedef uint8_t riic_ch_dev_status_t;

/* ---- Callback function type. ---- */
typedef void (*riic_callback)(void); /* Callback function type */

/* ---- IIC Information structure type. ---- */
typedef volatile struct
{
 uint8_t rsv2; /* reserved */
 uint8_t rsv1; /* reserved */
 riic_ch_dev_status_t dev_sts; /* Device status flag */
 uint8_t ch_no; /* Channel No. */
 riic_callback callbackfunc; /* Callback function */
 uint32_t cnt2nd; /* 2nd Data Counter */
 uint32_t cnt1st; /* 1st Data Counter */
 uint8_t * p_data2nd; /* Pointer for 2nd Data buffer */
 uint8_t * p_data1st; /* Pointer for 1st Data buffer */
 uint8_t * p_slv_adr; /* Pointer for Slave address buffer */
} riic_info_t;

/* ---- IIC Status type. ---- */
typedef union
{
 uint32_t LONG;
 struct
 {
 uint32_t rsv1:20; /* reserve */
 uint32_t AL:1; /* Arbitration lost detection flag */
 uint32_t rsv2:4; /* */
 uint32_t SCLO:1; /* SCL pin output control status */
 uint32_t SDAO:1; /* SDA pin output control status */
 uint32_t SCLI:1; /* SCL pin level */
 uint32_t SDAI:1; /* SDA pin level */
 uint32_t NACK:1; /* NACK detection flag */
 uint32_t rsv3:1; /* reserve */
 uint32_t BSY:1; /* Bus status flag */
 }BIT;
}riic_mcu_status_t;

Figure 6.3 Structures, Unions, and Enumerated Types for the Sample Code

R01AN2596EJ0140 Rev.1.40 Page 18 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.7 Global Variables
Table 6.8 lists the global variables for the sample code.

Note 1. Declared using as many arrays as there are channels

Table 6.8 Global Variables

Type Variable Name Description Function

riic_info_t * gp_riic_info_m[] I2C communication information struc-
ture (master)*1

R_RIIC_MasterSend()
R_RIIC_MasterReceive()

riic_info_t * gp_riic_info_s[] I2C communication information struc-
ture (slave)*1

R_RIIC_SlaveTransfer()

riic_ch_dev_status_t g_riic_ChStatus[] Driver state*1 Global variable

riic_api_event_t g_riic_api_Event[] Event*1 R_RIIC_Open()
R_RIIC_MasterSend()
R_RIIC_MasterReceive()
R_RIIC_SlaveTransfer()

riic_api_info_t g_riic_api_Info[] For internal management*1 –

volatile riic_callback riic_callbackfunc_m For internal management –

volatile riic_callback riic_callbackfunc_s For internal management –

static const riic_mtx_t gc_riic_mtx_tbl[][] State transition table r_riic_rzt1.c
R_RIIC_Open()
R_RIIC_MasterSend()
R_RIIC_MasterReceive()
R_RIIC_SlaveTransfer()

static uint8_t s_riic_backup[2048] EEPROM backup area main.c
main()

static volatile uint32_t wait_flag RIIC sample driver interrupt wait flag main.c
main()

static volatile uint32_t wait_cmt_flag Compare match interrupt wait flag main.c
main()

static riic_info_t riic_info I2C communication information struc-
ture entity

main.c
main()

static uint8_t init_ram[16] EEPROM initialization data main.c
main()

R01AN2596EJ0140 Rev.1.40 Page 19 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.8 Functions

Table 6.9 shows the Functions for the sample code.

Table 6.9 Functions

Function Name Page Number

R_RIIC_Open 20

R_RIIC_MasterSend 21

R_RIIC_MasterReceive 28

R_RIIC_SlaveTransfer 33

R_RIIC_GetStatus 38

R_RIIC_Control 39

R_RIIC_Close 41

R_RIIC_GetVersion 42

main 42

R01AN2596EJ0140 Rev.1.40 Page 20 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.9 Specifications of Functions
This section presents the specifications of the functions for the sample code.

6.9.1 R_RIIC_Open

Example

 volatile riic_return_t ret;
 riic_info_t iic_info_m;

 iic_info_m.dev_sts = 0;
 iic_info_m.ch_no = 0;

 ret = R_RIIC_Open(&iic_info_m);

R_RIIC_Open

Synopsis This function is required first when using this module.

Header r_riic_rx_if.h

Declaration riic_return_t R_RIIC_Open(riic_info_t * p_riic_info)

Description This function makes initial settings of the RIIC to start communications. It sets the RIIC channel
specified by the argument. If the state of the channel is "uninitialized (RIIC_NO_INIT)", the
following processes are performed:
 • Setting the state flag
 • Setting I/O ports
 • Allocating I2C output ports
 • Releasing the stopped state of the RIIC module
 • Initializing the variables used by the API
 • Initializing the RIIC registers used for RIIC communications
 • Disabling the RIIC interrupts

*p_riic_info
This is the pointer to the I2C communication information structure.
Only the members of this structure that are used by this function are shown below. For details on
this structure, see Figure 6.3.
For the arguments where "(to be updated)" appears in the comment below, the values of these
arguments are updated during the API execution.
 riic_ch_dev_status_t dev_sts; /* Pointer to the device state flag (to be updated) */
 uint8_t ch_no; /* Channel number */

Arguments riic_info_t * p_riic_info : Pointer to the RIIC communication information structure

Return values RIIC_SUCCESS
RIIC_ERR_LOCK_FUNC
RIIC_ERR_INVALID_CHAN
RIIC_ERR_INVALID_ARG
RIIC_ERR_OTHER

: Processing completed successfully
: The API is locked by another task
: Nonexistent channel
: Invalid argument
: An invalid event occurred in the current state

Remarks None

R01AN2596EJ0140 Rev.1.40 Page 21 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.9.2 R_RIIC_MasterSend
R_RIIC_MasterSend

Synopsis This function is used when this module starts transmission as a master device.

Header r_riic_rx_if.h

Declaration riic_return_t R_RIIC_MasterSend(riic_info_t * p_riic_info)

Description This function starts the RIIC master transmission. The transmission is performed with the RIIC
channel and transmission pattern specified by the arguments. If the state of the channel is "idle"
(RIIC_IDLE, RIIC_FINISH, or RIIC_NACK), the following processes are performed:
 • Setting the state flag
 • Initializing the variables used by the API
 • Enabling the RIIC interrupts
 • Generating a start condition

*p_riic_info
This is the pointer to the I2C communication information structure. The transmission pattern can
be selected from four patterns by the argument settings.
See Table 6.10 for the specification method and allowable argument settings for each
transmission pattern. See Figure 6.4 to Figure 6.7 for the signal waveforms of each transmission
pattern.
Only the members of this structure that are used by this function are shown below. For details on
this structure, see Figure 6.3.
When setting the slave address, store it without shifting 1 bit to left.
For the arguments where "(to be updated)" appears in the comment below, the values of these
arguments are updated during the API execution.
 riic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */
 uint8_t ch_no; /* Channel number */
 riic_callback callbackfunc; /* Callback function */
 uint32_t cnt2nd; /* Second data counter (number of bytes)(to be updated for only patterns 1
 and 2) */
 uint32_t cnt1st; /* First data counter (number of bytes)(to be updated for only pattern 1) */
 uint8_t * p_data2nd; /* Pointer to the second data storage buffer */
 uint8_t * p_data1st; /* Pointer to the first data storage buffer */
 uint8_t * p_slv_adr; /* Pointer to the slave address storage buffer */

Arguments riic_info_t * p_riic_info : Pointer to the RIIC communication information structure

Return values RIIC_SUCCESS
RIIC_ERR_INVALID_CHAN
RIIC_ERR_INVALID_ARG
RIIC_ERR_NO_INIT
RIIC_ERR_BUS_BUSY
RIIC_ERR_AL
RIIC_ERR_OTHER

: Processing completed successfully
: Nonexistent channel
: Invalid argument
: Uninitialized state
: Bus busy
: Arbitration-lost error occurred
: An invalid event occurred in the current state

Remarks None

R01AN2596EJ0140 Rev.1.40 Page 22 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

Example

 /* for MasterSend(Pattern 1) */
 #include "r_riic_rx_if.h"

 void CallbackMaster(void);
 void main(void);

 void main(void)
 {
 volatile riic_return_t ret;
 riic_info_t iic_info_m;
 uint8_t addr_eeprom[1]={0x50};
 uint8_t access_addr1[1]={0x00};
 uint8_t mst_send_data[5]={0x81,0x82,0x83,0x84,0x85};

 /* Sets IIC Information for sending pattern 1. */
 iic_info_m.dev_sts = 0;
 iic_info_m.ch_no = 0;
 iic_info_m.callbackfunc = &CallbackMaster;
 iic_info_m.cnt2nd = 3;
 iic_info_m.cnt1st = 1;
 iic_info_m.p_data2nd = mst_send_data;
 iic_info_m.p_data1st = access_addr1;
 iic_info_m.p_slv_adr = addr_eeprom;

 /* RIIC open */
 ret = R_RIIC_Open(&iic_info_m);

 /* RIIC send start */
 ret = R_RIIC_MasterSend(&iic_info_m);
 while(1);
 }

 void CallbackMaster(void)
 {
 /* callback process */
 }

R01AN2596EJ0140 Rev.1.40 Page 23 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

Special Notes:

The following table lists the allowable argument settings for each transmission pattern.

Note 1. When using pattern 2, 3, or 4, set "FIT_NO_PTR" for the applicable structure members as shown in the table above.
Note 2. 0 cannot be set.

Table 6.10 Allowable Argument Settings for Each Transmission Pattern

Structure Member

User Settable Range

Master Transmission
Pattern 1

Master Transmission
Pattern 2

Master Transmission
Pattern 3

Master Transmission
Pattern 4

*p_slv_adr Pointer to the slave
address storage buffer

Pointer to the slave
address storage buffer

Pointer to the slave
address storage buffer

FIT_NO_PTR*1

*p_data1st Pointer to the first data
storage buffer for
transmission

FIT_NO_PTR*1 FIT_NO_PTR*1 FIT_NO_PTR*1

*p_data2nd Pointer to the second
data storage buffer for
transmission

Pointer to the second
data storage buffer for
transmission

FIT_NO_PTR*1 FIT_NO_PTR*1

cnt1st 0000 0001h to
FFFF FFFFh*2

0 0 0

cnt2nd 0000 0001h to
FFFF FFFFh*2

0000 0001h to
FFFF FFFFh*2

0 0

callbackfunc Specify the function
name to be used.

Specify the function
name to be used.

Specify the function
name to be used.

Specify the function
name to be used.

ch_no 00h to FFh 00h to FFh 00h to FFh 00h to FFh

dev_sts Device state flag Device state flag Device state flag Device state flag

rsv1,rsv2 Reserved
(value set here has no
effect)

Reserved
(value set here has no
effect)

Reserved
(value set here has no
effect)

Reserved
(value set here has no
effect)

R01AN2596EJ0140 Rev.1.40 Page 24 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

(1) Pattern 1

As a master device, this function transmits data in two buffers (for the first data and second data) to the slave device.

A start condition (ST) is generated first and then the slave device address is transmitted. The eighth bit specifies the
transfer direction, and so this bit is set to 0 (write) when transmitting data. Then, the first data is transmitted. The first
data is used when there is data to be transmitted before performing the data transmission. For example, if the slave device
is an EEPROM, an internal address in the EEPROM can be transmitted. Next, the second data is transmitted. The second
data is the data to be written to the slave device. When a data transmission has started and all data transmissions have
completed, a stop condition (SP) is generated, and the bus is released.

Legend:
n: Channel number
ST: Start condition generation
SP: Stop condition generation
ACK:Acknowledge“0”

Note: A signal with an underline indicates data transmission from the slave to the master.

Figure 6.4 Signals for Master Transmission Pattern 1

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 7 8 9 1 2 3 4 5 6 7 8 9 1 2 7 8 9 SP

SCLn

SDAn

Start Slave address
(8th bit: 0)

ACK ACK ACK ACK ACK1st data 1st data (i) 2nd data 2nd data (i) Stop

R01AN2596EJ0140 Rev.1.40 Page 25 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

(2) Pattern 2

As a master device, this function transmits data in a buffer (for the second data) to the slave device.

Operations from start condition (ST) generation through to slave device address transmission are the same as for pattern
1. Then the second data is transmitted without transmitting the first data. When all data transmissions have completed, a
stop condition (SP) is generated and the bus is released.

Legend:
n: Channel number
ST: Start condition generation
SP: Stop condition generation
ACK:Acknowledge“0”
Note 1. A signal with an underline indicates data transmission from the slave to the master.

Figure 6.5 Signals for Master Transmission Pattern 2

SDAn

Start Slave address
(8th bit: 0)

ACK ACK ACK2nd data 2nd data (i) Stop

SCLn

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 7 8 9 SP

R01AN2596EJ0140 Rev.1.40 Page 26 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

(3) Pattern 3

As a master device, this function transmits only the slave address to the slave device.

Operations from start condition (ST) generation through to slave address transmission are the same as for pattern 1.

After transmitting the slave address, if neither the first data nor the second data is set, data transmission is not performed,
then a stop condition (SP) is generated, and the bus is released.

This pattern is useful for detecting connected devices or when performing acknowledge polling to verify the EEPROM
rewriting state.

Legend:
n: Channel number
ST: Start condition generation
SP: Stop condition generation
ACK:Acknowledge“0”
Note 1. A signal with an underline indicates data transmission from the slave to the master.

Figure 6.6 Signals for Master Transmission Pattern 3

Start Slave address
(8th bit: 0)

ACK Stop

SDAn

SCLn

ST 1 2 3 4 5 6 7 8 9 SP

R01AN2596EJ0140 Rev.1.40 Page 27 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

(4) Pattern 4

As a master device, this function transmits only a start condition and stop condition to the slave device.

After a start condition (ST) is generated, if the slave address, first data, and second data are not set, slave address
transmission and data transmission are not performed, then a stop condition (SP) is generated and the bus is released.
This pattern is useful for just releasing the bus.

Legend:
n: Channel number
ST: Start condition generation
SP: Stop condition generation

Figure 6.7 Signals for Master Transmission Pattern 4

ST SP

SCLn

SDAn

Start Stop

R01AN2596EJ0140 Rev.1.40 Page 28 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.9.3 R_RIIC_MasterReceive
R_RIIC_MasterReceive

Synopsis This function is used when the module starts reception as a master device.

Header r_riic_rx_if.h

Declaration riic_return_t R_RIIC_MasterRecive(riic_info_t * p_riic_info)

Description This function starts the RIIC master reception. The reception is performed with the RIIC channel
and reception pattern specified by the arguments. If the state of the channel is "idle" (RIIC_IDLE,
RIIC_FINISH, or RIIC_NACK), the following processes are performed:
 • Setting the state flag
 • Initializing the variables used by the API
 • Enabling the RIIC interrupts
 • Generating a start condition

*p_riic_info
This is the pointer to the RIIC communication information structure. The reception pattern can be
selected from master reception and master composite by the argument settings. See Table 6.11
for the specification method and allowable argument settings for each reception pattern. See
Figure 6.8 and Figure 6.9 for the signal waveforms of each reception pattern.
Only the members of this structure that are used by this function are shown below. For details on
this structure, see Figure 6.3.
When setting the slave address, store it without shifting 1 bit to left.
For the arguments where "(to be updated)" appears in the comment below, the values of these
arguments are updated during the API execution.
 riic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */
 uint8_t ch_no; /* Channel number */
 riic_callback callbackfunc; /* Callback function */
 uint32_t cnt2nd; /* Second data counter (number of bytes)(to be updated) */
 uint32_t cnt1st; /* First data counter (number of bytes)(to be updated only for master composite)
 */
 uint8_t * p_data2nd; /* Pointer to the second data storage buffer */
 uint8_t * p_data1st; /* Pointer to the first data storage buffer */
 uint8_t * p_slv_adr; /* Pointer to the slave address storage buffer */

Arguments riic_info_t * p_riic_info : Pointer to the RIIC communication information structure

Return values RIIC_SUCCESS
RIIC_ERR_INVALID_CHAN
RIIC_ERR_INVALID_ARG
RIIC_ERR_NO_INIT
RIIC_ERR_BUS_BUSY
RIIC_ERR_AL
RIIC_ERR_OTHER

: Processing completed successfully
: Nonexistent channel
: Invalid argument
: Uninitialized state
: Bus busy
: Arbitration-lost error occurred
: An invalid event occurred in the current state

Remarks None

R01AN2596EJ0140 Rev.1.40 Page 29 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

Example

 /* for MasterReceive(combination mode) */
 #include "r_riic_rx_if.h"

 void CallbackMaster(void);
 void main(void);

 void main(void)
 {
 volatile riic_return_t ret;
 riic_info_t iic_info_m;
 uint8_t addr_eeprom[1]={0x50};
 uint8_t access_addr1[1]={0x00};
 uint8_t mst_store_area[5]={0xFF,0xFF,0xFF,0xFF,0xFF};

 /* Sets IIC Information. */
 iic_info_m.dev_sts = 0;
 iic_info_m.ch_no = 0;
 iic_info_m.callbackfunc = &CallbackMaster;
 iic_info_m.cnt2nd = 3;
 iic_info_m.cnt1st = 1;
 iic_info_m.p_data2nd = mst_store_area;
 iic_info_m.p_data1st = access_addr1;
 iic_info_m.p_slv_adr = addr_eeprom;

 /* RIIC open */
 ret = R_RIIC_Open(&iic_info_m);

 /* RIIC receive start */
 ret = R_RIIC_MasterReceive(&iic_info_m);

 while(1);
 }

 void CallbackMaster(void)
 {
 /* callback process */
 }

R01AN2596EJ0140 Rev.1.40 Page 30 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

Special Notes:

The following table lists the allowable argument settings for each reception pattern.

Note 1. The reception pattern is determined by whether the first data is 0 or not.
Note 2. 0 cannot be set.

Table 6.11 Allowable Argument Settings for Each Reception Pattern

Structure Member

User Settable Range

Master Reception Master Composite

*p_slv_adr Pointer to the slave address storage buffer Pointer to the slave address storage buffer

*p_data1st Not used (value set here has no effect) Pointer to the first data storage buffer for transmis-
sion

*p_data2nd Pointer to the second data storage buffer for recep-
tion

Pointer to the second data storage buffer for recep-
tion

dev_sts Device state flag Device state flag

cnt1st*1 0 0000 0001h to FFFF FFFFh*2

cnt2nd 0000 0001h to FFFF FFFFh*2 0000 0001h to FFFF FFFFh*2

callbackfunc Specify the function name to be used. Specify the function name to be used.

ch_no 00h to FFh 00h to FFh

rsv1,rsv2 Reserved (value set here has no effect) Reserved (value set here has no effect)

R01AN2596EJ0140 Rev.1.40 Page 31 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

(1) Master Reception

As a master device, this function receives data from the slave device.

A start condition (ST) is generated first and then the slave device address is transmitted. The eighth bit specifies the
transfer direction, and so this bit is set to 1 (read) when receiving data. Then, data reception starts. An ACK is sent each
time one byte of data is received, but when the last data is received, a NACK is sent to notify the slave device that all data
receptions have completed. When all data receptions have completed, a stop condition (SP) is generated and the bus is
released.

Legend:
n: Channel number
ST: Start condition generation
SP: Stop condition generation
NACK:Acknowledge“1”
ACK:Acknowledge“0”
Note 1. A signal with an underline indicates data transmission from the slave to the master.

Figure 6.8 Signals for Master Reception

SDAn

Start Slave address
(8th bit: 1)

ACK ACK2nd data 2nd data (i) Stop

SCLn

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 7 8 9 SP

NACK

R01AN2596EJ0140 Rev.1.40 Page 32 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

(2) Master Composite

As a master device, this function transmits data to the slave device. After the transmission completes, this function
generates a restart condition and receives data from the slave.

A start condition (ST) is generated first and then the slave device address is transmitted. The eighth bit specifies the
transfer direction, and so this bit is set to 0 (write) when transmitting data. Next, the first data is transmitted. When the
data transmission completes, a restart condition (RST) is generated and the slave address is transmitted. Then, the eighth
bit is set to 1 (read) and a data reception starts. An ACK is sent each time one byte of data is received, but when the last
data is received, a NACK is sent to notify the slave device that all data receptions have completed. When all data
receptions have completed, a stop condition (SP) is generated and the bus is released.

Legend:
n: Channel number
ST: Start condition generation
SP: Stop condition generation
RST: Restart condition generation
NACK:Acknowledge“1”
ACK:Acknowledge“0”
Note 1. A signal with an underline indicates data transmission from the slave to the master.

Figure 6.9 Signals for Master Composite

Start Slave address
(8th bit: 0)

ACK ACK ACK ACK
1st data (i) 2nd data 2nd data (i)

StopSlave address
(8th bit1)

NACKRe
start

SCLn

SDAn

ST 1 2 3 4 5 6 7 8 9 1 2 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 27 8 9 7 8 9 SPRST

R01AN2596EJ0140 Rev.1.40 Page 33 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.9.4 R_RIIC_SlaveTransfer
R_RIIC_SlaveTransfer

Synopsis This function is used when the module functions as a slave device to prepare for transmission and
reception.

Header r_riic_rx_if.h

Declaration riic_return_t R_RIIC_SlaveTransfer (riic_info_t *p_riic_info)

Description This function prepares for the RIIC slave transmission or slave reception. If this function is called
while the master is communicating, an error occurs. This function sets the RIIC channel specified
by the argument. If the state of the channel is "idle" (RIIC_IDLE, RIIC_FINISH, or RIIC_NACK),
the following processes are performed:
 • Setting the state flag
 • Initializing the variables used by the API
 • Initializing the RIIC registers used for RIIC communications
 • Enabling the RIIC interrupts
 • Setting the slave address and enabling the slave address match interrupt

*p_riic_info
This is the pointer to the RIIC communication information structure. The operation can be selected
from preparation for slave reception, slave transmission, or both of them by the argument settings.
See Table 6.12 for the allowable argument settings for each slave operation pattern. See Figure
6.10 for the signal waveforms of the reception pattern and Figure 6.11 for the signal waveforms of
the transmission pattern.
Only the members of this structure that are used by this function are shown below. For details on
this structure, see Figure 6.3.
For the arguments where "(to be updated)" appears in the comment below, the values of these
arguments are updated during the API execution.
 riic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */
 uint8_t ch_no; /* Channel number */
 riic_callback callbackfunc; /* Callback function */
 uint32_t cnt2nd; /* Second data counter (number of bytes)(to be updated for only slave
 reception) */
 uint32_t cnt1st; /* First data counter (number of bytes) (to be updated for only slave
 transmission) */
 uint8_t * p_data2nd; /* Pointer to the second data storage buffer */
 uint8_t * p_data1st; /* Pointer to the first data storage buffer */

Arguments riic_info_t * p_riic_info : Pointer to the RIIC communication information structure

Return values RIIC_SUCCESS
RIIC_ERR_INVALID_CHAN
RIIC_ERR_INVALID_ARG
RIIC_ERR_NO_INIT
RIIC_ERR_BUS_BUSY
RIIC_ERR_AL
RIIC_ERR_OTHER

: Processing completed successfully
: Nonexistent channel
: Invalid argument
: Uninitialized state
: Bus busy
: Arbitration-lost error occurred
: An invalid event occurred in the current state

Remarks None

R01AN2596EJ0140 Rev.1.40 Page 34 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

Example

 /* for MasterReceive(combination mode) */
 #include "r_riic_rx_if.h"

 void CallbackMaster(void);
 void CallbackSlave(void);
 void main(void);

 void main(void)
 {
 volatile riic_return_t ret;
 riic_info_t iic_info_m;
 riic_info_t iic_info_s;
 uint8_t addr_eeprom[1]={0x50};
 uint8_t access_addr1[1]={0x00};
 uint8_t mst_send_data[5]={0x81,0x82,0x83,0x84,0x85};
 uint8_t slv_send_data[5]={0x71,0x72,0x73,0x74,0x75};
 uint8_t mst_store_area[5]={0xFF,0xFF,0xFF,0xFF,0xFF};
 uint8_t slv_store_area[5]={0xFF,0xFF,0xFF,0xFF,0xFF};

 /* Sets IIC Information for Master Send. */
 iic_info_m.dev_sts = 0;
 iic_info_m.ch_no = 0;
 iic_info_m.callbackfunc = &CallbackMaster;
 iic_info_m.cnt2nd = 3;
 iic_info_m.cnt1st = 1;
 iic_info_m.p_data2nd = mst_store_area;
 iic_info_m.p_data1st = access_addr1;
 iic_info_m.p_slv_adr = addr_eeprom;

 /* Sets IIC Information for Slave Transfer. */
 iic_info_s.dev_sts = 0;
 iic_info_s.ch_no = 0;
 iic_info_s.callbackfunc = &CallbackSlave;
 iic_info_s.cnt2nd = 3;
 iic_info_s.cnt1st = 3;
 iic_info_s.p_data2nd = slv_store_area;
 iic_info_s.p_data1st = slv_send_data;
 iic_info_s.p_slv_adr = (uint8_t*)FIT_NO_PTR;

 /* RIIC open */
 ret = R_RIIC_Open(&iic_info_m);

 /* RIIC slave transfer enable */
 ret = R_RIIC_SlaveTransfer(&iic_info_s);

 /* RIIC master send start */
 ret = R_RIIC_MasterSend(&iic_info_m);
 while(1);
 }

 void CallbackMaster(void)
 {
 /* callback process (master)*/
 }

 void CallbackSlave(void)
 {
 /* callback process (slave)
 }

R01AN2596EJ0140 Rev.1.40 Page 35 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

Special Notes:

The following table lists the allowable argument settings for each slave operation pattern.

Note 1. Set this when performing slave transmission.
When slave transmission is not used, set FIT_NO_PTR.

Note 2. Set this when performing slave reception.
When slave reception is not used, set FIT_NO_PTR.

Table 6.12 Allowable Argument Settings for Each Slave Operation Pattern

Structure Member

User Settable Range

Slave Reception Slave Transmission

*p_slv_adr Not used (value set here has no effect) Not used (value set here has no effect)

*p_data1st (For slave transmission) Pointer to the first data storage buffer for transmis-
sion*1

*p_data2nd Pointer to the second data storage buffer for recep-
tion*2

(For slave reception)

dev_sts Device state flag Device state flag

cnt1st (For slave transmission) 0000 0001h to FFFF FFFFh

cnt2nd 0000 0001h to FFFF FFFFh (For slave reception)

callbackfunc Specify the function name to be used. Specify the function name to be used.

ch_no 00h to FFh 00h to FFh

rsv1,rsv2 Reserved (value set here has no effect) Reserved (value set here has no effect)

R01AN2596EJ0140 Rev.1.40 Page 36 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

(1) Slave Reception

As a slave device, this function receives data from the master device.

When the slave address specified by the master device matches the slave address specified in r_riic_config_if.h, slave
transmission and reception starts. This module performs processing by automatically determining whether the operation
is slave reception or slave transmission according to the eighth bit (transfer direction specification bit) of the slave
address.

After a start condition (ST) generated by the master device is detected, if the received slave address matches its own
address and the eighth bit of the slave address is 0 (write), then the module starts reception operation as a slave device .
When the last data (the number of received data items specified in the RIIC communication information structure) is
received, a NACK is returned to the master device to notify that all the necessary data has been received.

Legend:
n: Channel number
ST: Start condition generation
SP: Stop condition generation
NACK:Acknowledge“1”
ACK:Acknowledge“0”
Note 1. A signal with an underline indicates data transmission from the slave to the master.

Figure 6.10 Signals for Slave Reception

Start Slave address
(8th bit: 0)

ACK ACK2nd data 2nd data (i) StopNACK

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 7 8 9 SP

SDAn

SCLn

R01AN2596EJ0140 Rev.1.40 Page 37 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

(2) Slave Transmission

As a slave device, this function transmits data to the master device.

When the slave address specified by the master device matches the slave address specified in r_riic_config_if.h, slave
transmission and reception starts. This module performs processing by automatically determining whether the operation
is slave reception or slave transmission according to the eighth bit (transfer direction specification bit) of the slave
address.

After a start condition (ST) from the master device is detected, if the received slave address matches its own address and
the eighth bit of the slave address is 1 (read), then the module starts transmission operation as a slave device. If the
transmission request exceeds the number of sent data items specified in the I2C communication information structure,
0xFF is sent as data. The slave continues transmitting data until a stop condition (SP) is detected.

Legend:
n: Channel number
ST: Start condition generation
SP: Stop condition generation
NACK:Acknowledge“1”
ACK:Acknowledge“0”
Note 1. A signal with an underline indicates data transmission from the slave to the master.

Figure 6.11 Signals for Slave Transmission

Start Slave address
(8th bit: 1)

ACK ACK1st data 1st data (i) StopNACK

ST1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 7 8 9 SP

SDAn

SCLn

R01AN2596EJ0140 Rev.1.40 Page 38 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.9.5 R_RIIC_GetStatus

Example

 volatile riic_return_t ret;
 riic_info_t iic_info_m;
 riic_mcu_status_t riic_status;

 iic_info_m.ch_no = 0;

 ret = R_RIIC_GetStatus(&iic_info_m, &riic_status);

R_RIIC_GetStatus

Synopsis This function is used when verifying the state of this module.

Header r_riic_rx_if.h

Declaration riic_sts_flg_t R_RIIC_GetStatus(riic_info_t * p_riic_info, riic_mcu_status_t * p_riic_status)

Description This function returns the state of this module.
This function obtains the state of the RIIC channel specified in the argument by reading the
registers, pin levels, variables, and others, and then returns the state as a return value (32-bit
structure).
When this function is called, the RIIC arbitration-lost detection flag and NACK flag are cleared to
0. If the device state is "RIIC_ AL", the value is updated to "RIIC_FINISH".

*p_riic_info
This is the pointer to the RIIC communication information structure.
Only the members of this structure that are used by this function are shown below. For details on
this structure, see Figure 6.3.
For the arguments where "(to be updated)" appears in the comment below, the values of these
arguments are updated during the API execution.
riic_ch_dev_status_t dev_sts; /* Device state flag
 (to be updated when the state is “RIIC_AL”)
uint8_t ch_no; /* Channel number */

*p_riic_status
Pointer to the variable to store the RIIC state

Arguments riic_info_t * p_riic_info : Pointer to the RIIC communication information structure

riic_mcu_status_t * p_riic_status : Pointer to the variable to store the RIIC state

Return values RIIC_SUCCESS
RIIC_ERR_INVALID_CHAN
RIIC_ERR_INVALID_ARG

: Processing completed successfully
: Nonexistent channel
: Invalid argument

Remarks None

R01AN2596EJ0140 Rev.1.40 Page 39 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.9.6 R_RIIC_Control
R_RIIC_Control

Synopsis This function is mainly used when a communication error occurs.
It outputs conditions, high impedance signals to the SDA pin, and one-shot of the SCL clock. It
also resets the RIIC module.

Header r_riic_rx_if.h

Declaration riic_return_t R_RIIC_Control(r_riic_info_t *p_riic_info, uint8_t ctrl_ptn)

Description This function outputs control signals for the RIIC module. It outputs conditions specified by the
arguments, high impedance signals to the SDA pin, and one-shot of the SCL clock. It also resets
the RIIC module.

*p_riic_info
This is the pointer to the I2C communication information structure.
Only the members of this structure that are used by this function are shown below. For details on
this structure, see Figure 6.3.
For the arguments where "(to be updated)" appears in the comment below, the values of these
arguments are updated during the API execution.
riic_ch_dev_status_t dev_sts; /* Device state flag (to be updated when "RIIC_GEN_RESET" is
 specified as the output pattern) */
uint8_t ch_no; /* Channel number */

ctrl_ptn
Specifies the output pattern.
See Table 6.5 for the values that can be specified as output patterns.
The following output patterns can be specified simultaneously. When specifying multiple patterns
simultaneously, separate them with a vertical bar ("|").
 • The following output patterns can be specified simultaneously by combining two or three of
 them: RIIC_GEN_START_CON, RIIC_GEN_STOP_CON, and RIIC_GEN_RESTART_CON
 • The following two can specified simultaneously: RIIC_GEN_SDA_HI_Z and
 RIIC_GEN_SCL_ONESHOT

RIIC_GEN_START_CON 0x01 /* Start condition generation */
RIIC_GEN_STOP_CON 0x02 /* Stop condition generation */
RIIC_GEN_RESTART_CON 0x04 /* Restart condition generation */
RIIC_GEN_SDA_HI_Z 0x08 /* SDA pin set to high impedance */
RIIC_GEN_SCL_ONESHOT 0x10 /* SCL clock one-shot output */
RIIC_GEN_RESET 0x20 /* RIIC module reset */

Arguments riic_info_t * p_riic_info : Pointer to the RIIC communication information structure

riic_mcu_status_t * p_riic_status : Pointer to the variable to store the RIIC state

Return values RIIC_SUCCESS
RIIC_ERR_INVALID_CHAN
RIIC_ERR_INVALID_ARG
RIIC_ERR_NO_INIT
RIIC_ERR_BUS_BUSY
RIIC_ERR_AL
RIIC_ERR_OTHER

: Processing completed successfully
: Nonexistent channel
: Invalid argument
: Uninitialized state
: Bus busy
: Arbitration-lost error occurred
: An invalid event occurred in the current state

Remarks None

R01AN2596EJ0140 Rev.1.40 Page 40 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

Example

 /* Outputs an extra SCL clock cycle after changes the SDA pin in a high-impedance state*/
 volatile riic_return_t ret;
 riic_info_t iic_info_m;

 iic_info_m.ch_no = 0;

 ret = R_RIIC_Control(&iic_info_m, RIIC_GEN_SDA_HI_Z | RIIC_GEN_SCL_ONESHOT);

R01AN2596EJ0140 Rev.1.40 Page 41 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.9.7 R_RIIC_Close

Example

 volatile riic_return_t ret;
 riic_info_t iic_info_m;

 iic_info_m.ch_no = 0;

 ret = R_RIIC_Close(&iic_info_m);

R_RIIC_Close

Synopsis This function is used when completing the RIIC communication and releasing the RIIC module
used.

Header r_riic_rx_if.h

Declaration riic_return_t R_RIIC_Close(riic_info_t *p_riic_info)

Description This function configures the settings to complete the RIIC communication. It disables the RIIC
channel specified by the argument. This function performs the following processes:
 • Changing the RIIC module to a stopped state
 • Releasing the RIIC output ports (switching SCL0 and SDA0 to port mode (input))
 • Disabling the RIIC interrupts
To restart the communication, call the R_RIIC_Open() function (initialization function). If the
communication is forcibly terminated, that communication is not guaranteed.

*p_riic_info
This is the pointer to the RIIC communication information structure.
Only the members of this structure that are used by this function are shown below. For details on
this structure, see Figure 6.3.
For the arguments where "(to be updated)" appears in the comment below, the values of these
arguments are updated during the API execution.
riic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */
uint8_t ch_no; /* Channel number */

Arguments riic_info_t * p_riic_info : Pointer to the RIIC communication information structure

Return values RIIC_SUCCESS
RIIC_ERR_INVALID_CHAN
RIIC_ERR_INVALID_ARG

: Processing completed successfully
: Nonexistent channel
: Invalid argument

Remarks None

R01AN2596EJ0140 Rev.1.40 Page 42 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.9.8 R_RIIC_GetVersion

Example

 uint32_t version;

 version = R_RIIC_GetVersion();

6.9.9 main

R_RIIC_GetVersion

Synopsis This function returns the API version.

Header r_riic_rx_if.h

Declaration uint32_t R_RIIC_GetVersion(void)

Description This function returns the version number of this API.

Arguments None : –

Return values Version number

Remarks None

main

Synopsis This function is the main function of the sample program.

Header –

Declaration int main(void)

Description This function performs the main processing for the sample program.
For details on the processing, see Section 6.10.1, Main Processing.

Arguments None

Return values 0

Remarks None

R01AN2596EJ0140 Rev.1.40 Page 43 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.10 Flowcharts

6.10.1 Main Processing
Figure 6.12 shows the flowchart for the Main Processing of the sample code.

Figure 6.12 Main Processing

Start

Initialize
Initialize (turn off) LEDs (PF7, P56, P77, PA0)

R_RIIC_Open()

R_RIIC_MasterReceive()
(Back up all EEPROMs)

R_RIIC_MasterSend ()
(Write 0xA5)

Access all EEPROMs
(Access unit: 1 byte)

R_RIIC_MasterReceive ()
(Read written data)

Do the read data and
the written data match?

Yes

No

LED1 turns off

Access all EEPROMs
(Access unit: 1 byte)

R_RIIC_MasterSend ()
(Restore the backups)

End

R_RIIC_Close()

LED3 is lit while R_RIIC_MasterRecieve() is being executed.
LED2 is lit while R_RIIC_MasterSend() is being executed.

LED1 lights

Channel 0 is specified.

Wait for 1 millisecond

The size of the EEPROM mounted on
the evaluation board is 2 Kbytes.

R_RIIC_MasterSend()
(Write 0xFF to all EEPROMs)

CMT0 is used to cause an interrupt after 1
millisecond and then enter a wait state.

R01AN2596EJ0140 Rev.1.40 Page 44 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

6.10.2 Callback Processing
Figure 6.13 shows the flowchart for the Callback Processing of the sample code.

6.10.3 Compare Match Timer Interrupt Processing
Figure 6.14 shows the flowchart for the Compare Match Timer Interrupt Processing of the sample code.

Figure 6.13 Callback Processing

Figure 6.14 Compare Match Timer Interrupt Processing

Start

What is the result of
callback processing?

Normal termination
notification

LED0 lights

End

Abnormal termination
notification

Start

Set the 1-ms elapsed flag

End

R01AN2596EJ0140 Rev.1.40 Page 45 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

7. Sample Code
Download the sample code from the Renesas Electronics website.

R01AN2596EJ0140 Rev.1.40 Page 46 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

8. Related Documents
• User's Manuals: Hardware

RZ/T1 Group User's Manual: Hardware
(Download the latest edition from the Renesas Electronics website.)

RZ/T1 Evaluation Board RTK7910022C00000BR User's Manual
(Download the latest edition from the Renesas Electronics website.)

• Technical Update and Technical News
(Download the latest information from the Renesas Electronics website.)

• User's Manuals: Development Environment
For the IAR Embedded Workbench® for Arm, download the user's manual from the IAR website.
(Download the latest edition from the IAR website.)

R01AN2596EJ0140 Rev.1.40 Page 47 of 47
Jun. 07, 2018

RZ/T1 Group RIIC Sample Program

Website and Support
Renesas Electronics website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

Application Note: RIIC Sample Program

C - 1

Rev. Date
Description

Page Summary
0.10 Apr. 02, 2015 — First Edition issued
1.00 Apr. 10, 2015 — Only the revision number was changed to be posted on a website.
1.10 Jul. 16, 2015 2. Operating Environment

4 Table 2.1 Operating Environment: Description added to Integrated Development
Environment

6. Software
12 6.2.4 Required Memory Size: Description and reference added
12 Table 6.3: Table title and size description were partially amended
12 Table 6.3 Memory Requirements: Description on the Note and Size, changed
13 Table 6.4 added
13 Table 6.5 added

1.20 Dec. 04, 2015 2. Operating Environment
4 Table 2.1 Operating Environment: Integrated Development Environment, information

partially amended
1.30 Jul. 18, 2017 1. Specifications

3 Table 1.1 Peripheral Functions and Applications: I/O ports, modified
2. Operating Environment

4 Table 2.1 Operating Environment: Integrated Development Environment, modified
5. Hardware

7 Figure 5.1 Hardware Configuration: I/O ports and LEDs, modified
7 Table 5.1 Pins and Functions: Pin names and description of I/O ports, modified

6. Software
8 Table 6.1 Operation Outline: LEDs for the operation result display, modified
— 6.2.4 Required Memory Size, deleted
43 Figure 6.12 Main Processing: I/O ports and LEDs, modified
44 Figure 6.13 Callback Processing: LED modified

1.40 Jun. 07, 2018 2. Operating Environment
4 Table 2.1 Operating Environment: The description on the integrated development environ-

ment, modified
8. Related Documents

46 The name of IAR Embedded Workbench, modified

All trademarks and registered trademarks are the property of their respective owners.

Revision History

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.

For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well

as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
⎯ The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

General Precautions in the Handling of

Microprocessing Unit and Microcontroller Unit Products

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.0

(Rev.4.0-1 November 2017)

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

ご注意書き

	Introduction
	Target Devices
	Table of Contents
	1. Specifications
	2. Operating Environment
	3. Related Application Note
	4. Peripheral Functions
	5. Hardware
	5.1 Hardware Configuration
	5.2 Pins

	6. Software
	6.1 Operation Outline
	6.1.1 Project Setup
	6.1.2 Preparation
	6.1.3 Operation Outline of the RIIC Sample Driver

	6.2 Memory Mapping
	6.2.1 Section Allocation for the Sample program
	6.2.2 MPU Setup
	6.2.3 Exception Processing Vector Table

	6.3 Interrupts
	6.4 Fixed-Width Integer Types
	6.5 Constants/Error Codes
	6.6 Structures, Unions, and Enumerated Types
	6.7 Global Variables
	6.8 Functions
	6.9 Specifications of Functions
	6.9.1 R_RIIC_Open
	6.9.2 R_RIIC_MasterSend
	6.9.3 R_RIIC_MasterReceive
	6.9.4 R_RIIC_SlaveTransfer
	6.9.5 R_RIIC_GetStatus
	6.9.6 R_RIIC_Control
	6.9.7 R_RIIC_Close
	6.9.8 R_RIIC_GetVersion
	6.9.9 main

	6.10 Flowcharts
	6.10.1 Main Processing
	6.10.2 Callback Processing
	6.10.3 Compare Match Timer Interrupt Processing

	7. Sample Code
	8. Related Documents
	Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

