
 APPLICATION NOTE

R01AN2635EJ0130 Rev.1.30 Page 1 of 38
Dec 07, 2017

RZ/T1 Group
USB Host Communications Device Class Driver (HCDC)
Introduction
This application note describes USB Host Communication Device Class Driver (HCDC). This module performs
hardware control of USB communication. It is referred to below as the USB-BASIC-F/W.

The sample program of this application note is created based on "RZ/T1 group Initial Settings Rev.1.30". Please refer to
"RZ/T1 group Initial Settings application note (R01AN2554EJ0130)" about operating environment.

Target Device
RZ/T1 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

 Related Documents
1. Universal Serial Bus Revision 2.0 specification
2. USB Class Definitions for Communications Devices Revision 1.2
3. USB Communications Class Subclass Specification for PSTN Devices Revision 1.2

http://www.usb.org/developers/docs/
4. RZ/T1 Group User’s Manual: Hardware (Document No.R01UH0483EJ0130)
5. RZ/T1 Group Initial Settings (Document No.R01AN2554EJ0130)
6. USB Host Basic Firmware (Document No.R01AN2633EJ0130)

・ Renesas Electronics Website
http://www.renesas.com/

・ USB Devices Page
http://www.renesas.com/prod/usb/

Contents

1. Overview .. 2

2. Software Configuration ... 3

3. USB Host Communication Device Class Driver (HCDC) .. 4

4. Sample Application ... 18

Appendix A. Changes of initial setting .. 29

R01AN2635EJ0130
Rev.1.30

 Dec 07, 2017

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 2 of 38
Dec 07, 2017

1. Overview
The USB HCDC, when used in combination with the USB-BASIC-F/W, operates as a USB host communications
device class driver. The HCDC conforms to the PSTN device subclass abstract control model of the USB
communication device class specification.

This module supports the following functions.

・ Checking of connected devices

・ Implementation of communication line settings

・ Acquisition of the communication line state

・ Data transfer to and from a CDC device

・ Connect multiple CDC devices

Limitations
HCDC is subject to the following limitations.

The structures contain members of different types. (Depending on the compiler, this may cause address
misalignment of structure members.)

Terms and Abbreviations
Terms and abbreviations used in this document are listed below.

APL : Application program
CDC : Communications devices class
CDCC : Communications Devices Class － Communications Class Interface
CDCD : Communications Devices Class － Data Class Interface
HCD : Host control driver of USB-BASIC-FW
HCDC : Host communication devices class
HDCD : Host device class driver (device driver and USB class driver)
HUBCD : Hub class sample driver
MGR : Peripheral device state manager of HCD
Scheduler : Used to schedule functions, like a simplified OS.
Task : Processing unit
USB : Universal Serial Bus
USB-BASIC-FW : USB basic firmware for Renesas USB MCU

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 3 of 38
Dec 07, 2017

2. Software Configuration
Figure 2.1 shows a block diagram of HCDC, and Table 2-1 lists the modules.

User Application (APL)

USB Host Communication Devices Class driver (HCDC)

USB Host Control Driver (HCD)

USB Host Controller (Hardware)

MGR/HUB
(USB manager)

(HUB driver)

Figure 2.1 Software Block Diagram

Table 2-1 Modules

Module Name Description
APL User application program. (Please prepare for your system)
HCDC USB Host Communications Device Class Driver.

 CDC device access.
 Requests CDC requests command and the data transfer from APL to HCD.

MGR / HUB USB Manager / HUB class driver. (USB-BASIC-F/W)
Enumerates the connected devices and starts HCDC.
Performs device state management.

HCD USB host Hardware Control Driver. (USB-BASIC-F/W)

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 4 of 38
Dec 07, 2017

3. USB Host Communication Device Class Driver (HCDC)
This software conforms to the Abstract Control Model (ACM) subclass of the Communication Device Class
specification, as specified in detail in the PSTN Subclass document listed in “Related Documents”.

The Abstract Control Model subclass is a technology that bridges the gap between USB devices and earlier modems
(employing RS-232C connections), enabling use of application programs designed for older modems.

3.1 Basic Functions
This software conforms to the Abstract Control Model subclass of the communication device class specification.

The main functions of HCDC are to:

1. Send class requests to the CDC peripheral

2. Transfer data to and from the CDC peripheral

3. Receive communication error information from the CDC peripheral

3.2 Abstract Control Model Class Requests - Host to Device
The HCDC supports the following ACM class requests.

Table 3-1 CDC Class Requests

Request Code Description
SetLineCoding 0x20 Makes communication line settings.

(Communication speed, data length, parity bit, and stop bit length).
GetLineCoding 0x21 Acquires the communication line setting state.
SetControlLineState 0x22 Makes communication line control signal (RTS, DTR) settings.

For details concerning the Abstract Control Model requests, refer to Table 11, “Requests - Abstract Control Model” in
“USB Communications Class Subclass Specification for PSTN Devices”, Revision 1.2.

3.2.1 SetLineCoding
The SetLineCoding data format is shown Table 3-2.

Table 3-2 SetLineCoding Data Format

bmRequestType bRequest wValue wIndex wLength Data

0x21
SET_LINE_CODING

(0x20)
0x0000 0x0000 0x0000

Line Coding Structure
See Table 3-3, Line
Coding Structure Format

Line Coding Structure Format is shown Table 3-3.

Table 3-3 Line Coding Structure Format

Offset Field Size Value Description
0 dwDTERate 4 Number Data terminal speed (bps)
4 bCharFormat 1 Number Stop bits

0 - 1 stop bit, 1 - 1.5 stop bits, 2 - 2 stop bits
5 bParityType 1 Number Parity

0 - None, 1 - Odd, 2 - Even, 3 - Mask, 4 - Space
6 bDataBits 1 Number Data bits (5, 6, 7, 8)

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 5 of 38
Dec 07, 2017

3.2.2 GetLineCoding
The GetLineCoding data format is shown Table 3-4.

Table 3-4 GetLineCoding Data Format

bmRequestType bRequest wValue wIndex wLength Data

0xA1 GET_LINE_CODING (0x21) 0x0000 0x0000 0x0007
Line Coding Structure
See Table 3-3, Line
Coding Structure Format

3.2.3 SetControlLineState
The SetControlLineState data format is shown below.

Table 3-5 SetControlLineState Data Format

bmRequestType bRequest wValue wIndex wLength Data

0x21 SET_CONTROL_LINE_S
TATE (0x22)

Control Signal
Bitmap

See table 3-6,
Control Signal
Bitmap Format

0x0000 0x0000 None

Table 3-6 Control Signal Bitmap

Bit Position Description
D15 to D2 Reserved
D1 DCE transmit function control

0 - Deactivate carrier, 1 - Activate carrier
D0 Notification of DTE ready state

0 - Not Present, 1 - Present

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 6 of 38
Dec 07, 2017

3.3 ACM Notifications from Device to Host
The class notifications supported and not supported by the software are shown Table 3-7.

Table 3-7 CDC Class Notifications

Notification Code Description
SERIAL_STATE 0x20 Notification of serial line state

3.3.1 SerialState
The SerialState data format is shown below.

Table 3-8 SerialState Data Format

bmRequestType bRequest wValue wIndex wLength Data

0xA1
SERIAL_STATE

(0x20)
0x0000 0x0000 0x0000

UART State bitmap
See table 3-9, UART
State bitmap Format

Table 3-9 UART State bitmap Format

Bits Field Description
D15 to D7 Reserved
D6 bOverRun Overrun error detected
D5 bParity Parity error detected
D4 bFraming Framing error detected
D3 bRingSignal INCOMING signal (ring signal) detected
D2 bBreak Break signal detected
D1 bTxCarrier Data Set Ready: Line connected and ready for communication
D0 bRxCarrier Data Carrier Detect: Carrier detected on line

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 7 of 38
Dec 07, 2017

3.4 Structures
3.4.1 HCDC Request Structure
Table 3-10 describes the “UART settings” parameter structure used for the CDC requests SetLineCoding and
GetLineCoding.

Table 3-10 USB_HCDC_LineCoding_t Structure

Type Member Description
uint32_t dwDTERate Line speed (Unit : bps)
uint8_t bCharFormat Stop bits setting
uint8_t bParityType Parity setting
uint8_t bDataBits Data bit length

Table 3-11 describes the “UART settings” parameter structure used for the CDC requests SetControlLineState.

Table 3-11 USB_HCDC_ControlLineState_t Structure

Type Member Description
uint16_t (D1) bRTS:1 Carrier control for half duplex modems

0 - Deactivate carrier, 1 - Activate carrier
uint16_t (D0) bDTR:1 Indicates to DCE if DTE is present or not

0 - Not Present, 1 - Present

3.4.2 CDC Notification Format
The host is notified of the “SerialState” when a change in the UART port state is detected. Table 3-12 describes the
structure of the UART State bitmap.

Table 3-12 USB_HCDC_SerialState_t Structure

Type Member Description
uint16_t (D15-D8) rsv1:8 Reserved1
uint16_t (D7) rsv2:1 Reserved2
uint16_t (D6) bOverRun:1 Overrun error detected
uint16_t (D5) bParity:1 Parity error detected
uint16_t (D4) bFraming:1 Framing error detected
uint16_t (D3) bRingSignal:1 Incoming signal (Ring signal) detected
uint16_t (D2) bBreak:1 Break signal detected
uint16_t (D1) bTxCarrier:1 Line connected and ready for communication
uint16_t (D0) bRxCarrier:1 Carrier detected on line

3.5 Scheduler settings
Scheduler settings of HCDC is shown in Table 3-13.

Table 3-13 Scheduler settings

Function ID Priority Mailbox ID Memory Pool ID Desctiption
R_usb_hcdc_task USB_HCDC_TSK USB_PRI_3 USB_HCDC_MBX USB_HCDC_MPL HCDC Task
R_usb_hub_task USB_HUB_TSK USB_PRI_3 USB_HUB_MBX USB_HUB_MPL HUB Task

R_usb_hstd_MgrTask USB_MGR_TSK USB_PRI_2 USB_MGR_MBX USB_MGR_MPL MGR Task
r_usb_hstd_HciTask USB_HCI_TSK USB_PRI_1 USB_HCI_MBX USB_HCI_MPL HCD Task

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 8 of 38
Dec 07, 2017

3.6 API
All API calls and their supporting interface definitions are located in r_usb_hcdc_if.h.

Please modify r_usb_hcdc_config.h when User sets the module configuration option.

Table 3-14 shows the option name and the setting value.

Table 3-14 Configuration options

Name Default Description
MAX_DEVICE_NUM 4 Max connect device number
INIT_COM_SPEED USB_HCDC_SPEED_9600

SetLineCoding Setting INIT_COM_DATA_BIT USB_HCDC_DATA_BIT_8
INIT_COM_STOP_BIT USB_HCDC_STOP_BIT_1
INIT_COM_PARITY USB_HCDC_PARITY_BIT_NONE

The HCDC API is shown in Table 3-15.

Table 3-15 List of HCDC API Functions

Function Description
R_usb_hcdc_Task HCDC task
R_usb_hcdc_driver_start Driver task start setting for HCDC
R_usb_hcdc_class_request Sends CDC class request
R_usb_hcdc_send_data USB send processing
R_usb_hcdc_receive_data USB receive processing
R_usb_hcdc_serial_state_trans Class notification Serial State processing
R_usb_hcdc_set_line_coding SetLineCoding request
R_usb_hcdc_get_line_coding GetLineCoding request
R_usb_hcdc_set_control_line_state SetControlLineState request

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 9 of 38
Dec 07, 2017

3.6.1 R_usb_hcdc_task

HCDC task

Format
void R_usb_hcdc_task (void)

Argument

－ －

Return Value

－ －

Description

The HCDC task processes requests from the application, and notifies the application of the results.

Note
Call in the scheduler process of the loop.

Example
void usb_apl_task_switch(void)
{
 while(1)
 {
 /* Scheduler */
 R_usb_cstd_Scheduler();

 if(USB_FLGSET == R_usb_cstd_CheckSchedule())
 {
 R_usb_hstd_MgrTask(); /* MGR Task */
 R_usb_hhub_Task(); /* HUB Task */
 R_usb_hcdc_task(); /* HCDC Task */
 }
 }
}

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 10 of 38
Dec 07, 2017

3.6.2 R_usb_hcdc_driver_start

HCDC driver task init

Format
void usb_hcdc_driver_start (void)

Argument

－ －

Return Value

－ －

Description

This function set priority the HCDC driver task.

Note
Call this API from the user application at user system initialization.

Example
void usb_hcdc_task_start(void)

{

hcdc_registration(); /* Host Application Registration */

R_usb_hcdc_driver_start(); /* Host Class Driver Task Start Setting */

}

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 11 of 38
Dec 07, 2017

3.6.3 R_usb_hcdc_class_check

Check descriptor

Format
void R_usb_hcdc_class_check (uint16_t **table)

Argument
**table Device information table

[0] : Device Descriptor

 [1] : Configuration Descriptor

 [2] : Interface Descriptor

 [3] : Descriptor Check Result

 [4] : HUB Classification

 [5] : Port Number

 [6] : Transmission Speed

 [7] : Device Address

Return Value

－ －

Description

This is a class driver registration function. It is registered to the driver registration structure member classcheck, as
a callback function during HCDC registration at startup and called when a configuration descriptor is received
during enumeration.

This function references the endpoint descriptor in the peripheral device configuration descriptor, then edits the
pipe information table and checks the pipe information of the pipes to be used.

Note

－

Example
void usb_hcdc_registration(void)
{
 USB_HCDREG_t driver;

 driver.classcheck = &R_usb_hcdc_class_check;

 R_usb_hstd_DriverRegistration(&driver);
}

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 12 of 38
Dec 07, 2017

3.6.4 R_usb_hcdc_send_data

Host send data

Format
USB_ER_t R_usb_hcdc_send_data (uint16_t pipe_id

 uint8_t *table,

 uint32_t size,

 USB_UTR_CB_t complete)

Argument
pipe_id Pipe ID

*table Pointer to Transmit data buffer address

size Transfer size

complete Process completion notice callback function

Return Value

－ Error code (USB_OK / USB_ERROR)

Description

This function transfers the USB data in the specified transmit size from the specified address.

When the transmit processing is complete, the callback function is called.

Note
The USB transmit processing results are obtained by argument in the callback function.

Example
void cdc_data_transfer(uint16_t devadr)
{
uint16_t pipe_id;

 uint8_t send_data[] = {0x01,0x02,0x03,0x04,0x05}; /* Data buff */
 uint32_t size = 5; /* Data size */

 pipe_id = R_usb_hstd_GetPipeID(devadr, USB_EP_BULK, USB_EP_OUT, 1);

R_usb_hcdc_send_data(pipe_id, send_data, size, &usb_complete);

}

/* Callback function */
void usb_complete(USB_UTR_t *utr);
{
 /* Describe the processing performed when the USB transmit is completed. */
}

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 13 of 38
Dec 07, 2017

3.6.5 R_usb_hcdc_receive_data

Host receive data

Format
USB_ER_t R_usb_hcdc_receive_data (uint16_t pipe_id

 uint8_t *table,

 uint32_t size,

 USB_CB_t complete)

Argument
pipe_id Pipe ID

*table Pointer to transmit data buffer address

size Transfer size

complete Process completion notice callback function

Return Value

－ Error code (USB_OK / USB_ERROR).

Description

This function requests USB data reception from the USB driver (HCD).

When data reception ends (specified data size reached, short packet received, error occurred), the
callback function is called. Information on remaining receive data (length, status, error count
and transfer end) is determined by the parameters of the callback.

USB receive data is stored in the area given by the specified address.

Note
The USB transmit process results are obtained from the argument in the callback function.

Example
void cdc_data_transfer(uint16_t devadr)
{
uint16_t pipe_id;

 uint8_t receive_data[64]; /* Data buff */
 uint32_t size = 64; /* Data size */

pipe_id = R_usb_hstd_GetPipeID(devadr, USB_EP_BULK, USB_EP_IN, 1);

R_usb_hcdc_receive_data(pipe_id, receive_data, size, &usb_complete);

}

/* Callback function */
void usb_complete(USB_UTR_t *utr)
{
 /* Describe the processing performed when the USB receive is completed. */
}

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 14 of 38
Dec 07, 2017

3.6.6 R_usb_hcdc_serial_state_trans

Handle CDC class and serial state info from peripheral

Format
USB_ER_t R_usb_hcdc_serial_state_trans (uint16_t pipe_id, uint8_t *table, USB_UTR_CB_t complete)

Argument
pipe_id Pipe ID

*table Pointer to transmit data buffer address

complete Process completion notice callback function

Return Value

－ Error code (USB_OK / USB_ERROR).

Description

This function receives the CDC class notification (SerialState) from the peripheral device.

Callback function is called after the completion of reception.

The serial status is received when the callback function is triggered.

Note
1. Transfer data area has to allocate more than 10 bytes.

2. For information concerning the serial status bit pattern, refer to “Table 3-9”.

3. The USB transmit results are obtained from the argument in the call-back function.

Example
void cdc_data_transfer(uint16_t devadr)
{
 uint16_t pipe_id;
 uint8_t serial_data[10]; /* Data buff */

 pipe_id = R_usb_hstd_GetPipeID(devadr, USB_EP_INT, USB_EP_IN, 0);

 R_usb_hcdc_serial_state_trans(pipe_id, serial_data, &usb_complete);
}

/* Callback function */
void usb_complete(USB_UTR_t *utr)
{
 uint16_t *status;

 status = (uint16_t *)utr->tranadr; /* Status set */
 /* [0] bmRequestType/bRequest */
 /* [1] wValue */
 /* [2] wIndex */
 /* [3] wLength */
 /* [4] data : Serial State(UART State bitmap) */
 check_status(status[4]);
}

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 15 of 38
Dec 07, 2017

3.6.7 R_usb_hcdc_set_line_coding

SetLineCoding request

Format
USB_ER_t R_usb_hcdc_set_line_coding (uint16_t devadr,

USB_HCDC_LineCoding_t *p_linecoding,

 USB_UTR_CB_t complete)

Argument
devadr Device address

*p_linecoding Parameter of UART setting

complete Process completion notice callback function

Return Value

－ Error code (USB_OK / USB_ERROR).

Description

This API function the SetLineCoding request processing.

Note
The USB transmit process results are obtained from the argument in the callback function.

Example
void cdc_class_request(uint16_t devadr)
{

USB_HCDC_LineCoding_t cdc_line_coding;

 cdc_line_coding.dwDTERate = USB_HCDC_SPEED_9600;
 cdc_line_coding.bDataBits = USB_HCDC_DATA_BIT_8;
 cdc_line_coding.bCharFormat = USB_HCDC_STOP_BIT_1;
 cdc_line_coding.bParityType = USB_HCDC_PARITY_BIT_NONE;

 R_usb_hcdc_set_line_coding(devadr, &cdc_line_coding, &cdc_setlinecoding_cb);
}

/* Callback function */
void cdc_setlinecoding_cb(USB_UTR_t *utr)
{
 /* Describe the processing performed when the USB receive is completed. */
}

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 16 of 38
Dec 07, 2017

3.6.8 R_usb_hcdc_get_line_coding

GetLineCoding request

Format
USB_ER_t R_usb_hcdc_get_line_coding (uint16_t devadr,

USB_HCDC_LineCoding_t *p_linecoding,

 USB_UTR_CB_t complete)

Argument
devadr Device address

*p_linecoding Parameter of UART setting

complete Process completion notice callback function

Return Value

－ Error code (USB_OK / USB_ERROR).

Description

This API function the GetLineCoding request processing.

Note
The USB transmit process results are obtained from the argument in the callback function.

Example
void cdc_class_request(uint16_t devadr)
{

USB_HCDC_LineCoding_t cdc_line_coding;

 R_usb_hcdc_get_line_coding(devadr, &cdc_line_coding, &cdc_getlinecoding_cb);
}

/* Callback function */
void cdc_getlinecoding_cb(USB_UTR_t *utr)
{
 /* Describe the processing performed when the USB receive is completed. */
}

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 17 of 38
Dec 07, 2017

3.6.9 R_usb_hcdc_set_control_line_state

SetControlLineState request

Format
USB_ER_t R_usb_hcdc_set_control_line_state (uint16_t devadr,

uint16_t dtr,

uint16_t rts,

 USB_UTR_CB_t complete)

Argument
devadr Device address

dtr RS232 signal DTR

rts RS232 signal RTS

complete Process completion notice callback function

Return Value

－ Error code (USB_OK / USB_ERROR).

Description

This API function the SetControlLineState request processing.

Note
The USB transmit process results are obtained from the argument in the callback function.

Example
void cdc_class_request(uint16_t devadr)
{

R_usb_hcdc_set_control_line_state(devadr, USB_TRUE, USB_TRUE, &cdc_complete);
}

/* Callback function */
void cdc_complete(USB_UTR_t *utr)
{
 /* Describe the processing performed when the USB receive is completed. */
}

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 18 of 38
Dec 07, 2017

4. Sample Application
This section describes the initial settings necessary for using the USB HCDC and USB-BASIC-F/W in combination as a
USB driver and presents an example of data transfer by means of processing by the main routine and the use of API
functions.

4.1 Setup
Figure 4-1 shows an example operating environment for the HCDC.

Emulator

Host PC for
emulator

Evaluation
Board

CDC Host CDC device

RS232C
cable

Host Communications Device
Class Driver (HCDC)

+
USB Basic Host Driver

Serial
Port

Enumeration and
Class request

(Control Transfer)

Data transfer
(Bulk transfer)

Class notification
(Interrupｔ transfer)

USB
Port

USB
Port

USB cable

RS232C-USB
converter etc

Serial port
communication
target device

Serial port communication
target device

(PC with built-in serial port)

Figure 4-1 Example Operating Environment

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 19 of 38
Dec 07, 2017

4.2 Application Specifications
The main functions of HCDC sample application are as follows:

1. Sends receive (Bulk In transfer) requests to the CDC device and receives data.

2. Transfers received data to the CDC device by means of Bulk Out transfers (loopback).

3. Set RTS and DTR by the class request SET_CONTROL_LINE_STATE.

4. Set the communication speed, number of data bits, number of stop bits, the parity bit, by the class request
SET_LINE_CODING.

5. Acquires the communication setting values of the CDC device by the class request GET_LINE_CODING.

6. Reports changes in the line status to the application program.

4.3 Data Transfer Image
Figure 4-2 shows the data transfer image.

Serial
PORT

Evaluation
Board

CDC Host

Serial
PORT

USB
PORT

USB
PORT

Host Communications
Device Class Driver (HCDC)

+
USB Basic Host Driver

Terminal software
Text input/output monitor

Text data
"ABCDefgh"

Text data
"ABCDefgh"

Text data
"ABCDefgh"

USB communication

Text data
"ABCDefgh"

Text data
"ABCDefgh"

Serial communication

PC with built-in
serial port

CDC device

RS232C-USB
convertor,

etc.

Figure 4-2 Data Transfer (Loopback) Image

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 20 of 38
Dec 07, 2017

4.4 Initial Settings of USB Driver
Sample settings are shown below.

void usb_hcdc_apl(void)
{

/* MCU Pin Setting (Refer to “4.4.1”) */
usb_mcu_setting();

/* USB Driver Setting (Refer to “4.4.2”) */
R_usb_hstd_MgrOpen();
R_usb_cstd_SetTaskPri(USB_HUB_TSK, USB_PRI_3); // Note
R_usb_hhub_Registration(USB_NULL); // Note
cdc_registration();
R_usb_hcdc_driver_start();

/* Main routine (Refer to “4.5”) */
usb_hapl_mainloop();

}

[Note]

It is only necessary to call this function when the HUB will be used.

4.4.1 MCU Settings
Set the USB module according to the initial setting sequence of the hardware manual, the USB interrupt handler
registration and USB interrupt enable setting.

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 21 of 38
Dec 07, 2017

4.4.2 USB Driver Settings
The USB driver settings consist of registering a task with the scheduler and registering class driver information for the
USB-BASIC-F/W. The procedure is described below.

1. Call the USB-BASIC-F/W’s API function (R_usb_hstd_MgrOpen() to register the MGR task and the HCD task
with the scheduler.

2. Call the class driver API function (R_usb_hhub_Registration()) to register the HUB task with the scheduler.
3. After specifying the necessary information in the members of the class driver registration structure

(USB_HCDREG_t), call the USB-BASIC-F/W’s API function (R_usb_hstd_DriverRegistration() to register the
class driver information.

4. Call the class driver HCDC’s API function (R_usb_hcdc_driver_start()) to register the HCDC task with the
scheduler.

A sample of information specified in the structure declared by USB_HCDREG_t is shown below.
void usb_hapl_registration(void)
{

/* Structure for the class driver registration */
USB_HCDREG_t driver;

/* Class Code which is defined in the USB specification setting*/
driver.ifclass = (uint16_t)USB_IFCLS_CDCC;
/* TPL setting */
driver.tpl = (uint16_t*)&usb_gapl_devicetpl; // Note 1
/* Set the class check function which is called in the enumeration. */
driver.classcheck = &R_usb_hcdc_class_check;
/* Set the function which is called when completing the enumeration */
driver.devconfig = &cdc_configured;
/* Set the function which is called when disconnecting USB device */
driver.devdetach = &cdc_detach;
/* Set the function which is called when changing the suspend state */
driver.devsuspend = &cdc_suspend;
/* Set the function which is called when resuming from the suspend state */
driver.devresume = &cdc_resume;

/* Register the class driver information to HCD */
R_usb_hstd_DriverRegistration(&driver);

}

[Note]

1. TPL(Target Peripheral List) need to be defined in the application program. Refer to USB Basic Firmware
application note (Document No.R01AN2633EJ) about TPL.

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 22 of 38
Dec 07, 2017

4.5 Processing by Main Routine
After the USB driver initial settings, call the scheduler (R_usb_cstd_Scheduler()) from the main routine of the
application. Calling R_usb_cstd_Scheduler() from the main routine causes a check for events. If there is an event, a flag
is set to inform the scheduler that an event has occurred. After calling R_usb_cstd_Scheduler(), call
R_usb_cstd_CheckSchedule() to check for events. Also, it is necessary to run processing at regular intervals to get
events and perform the appropriate processing.*1
void usb_hapl_mainloop(void)

{

while(1) // Main routine

{

// Confirming the event and getting (Note1)

R_usb_cstd_Scheduler();

// Judgment whether the event is or not

if(USB_FLGSET == R_usb_cstd_CheckSchedule())

{

R_usb_hstd_MgrTask(); // MGR task

R_usb_hhub_Task(); // HUB task (Note 3)

R_usb_hcdc_task(); // CDC task

}

hcdc_application(); // User application program(APL)

}

}

[Note]

1. If, after getting an event with R_usb_cstd_Scheduler() and before running the corresponding processing,
R_usb_cstd_Scheduler() is called again and gets another event, the first event is discarded. After getting an event,
always call the corresponding task to perform the appropriate processing.

2. Be sure to describe these processes in the main loop for the application program.

3. It is only necessary to call this function when the HUB will be used.

(Note 2)

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 23 of 38
Dec 07, 2017

4.5.1 APL
The application comprises two parts: initial settings and main loop. An overview of the processing in these two parts
is provided below.

1. The APL manages the states and the events associated with them. The APL first checks the state of the
connected device (see Table 4-1). This state is stored in a member of a structure managed by the APL.(see
4.5.2)

2. Next, the APL checks the events related to the state (see Table 4-2) and performs the associated processing.
After processing an event, the APL changes the state if necessary. These events are stored in members of a
structure managed by the APL. (see 4.5.2)

An overview of the processing performed by the APL is shown below:

HCDC APL
(usb_main)

Initial setting

STATE_ATTACH ?

STATE_CLASS_
REQUEST ?

Attach processing

STATE_DATA
_TRANSFER ?

STATE_DETACH ?

Class request
processing

Data transfer
processing

Detach processing

Y

Y

Y

Y

N

N

N

N

Figure 4-3 Main Loop processing

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 24 of 38
Dec 07, 2017

4.5.2 State and Event Management
Members of the following structure are used to manage states and events. This structure is prepared by the APL.
typedef struct DEV_INFO /* Structure for CDC device control */
{
 uint16_t state; /* State for application */
 uint16_t event_cnt; /* Event count */
 uint16_t event[EVENT_MAX]; /* Event no. */
 uint16_t in_pipe; /* Use pipe no. */
 uint16_t out_pipe; /* Use pipe no. */
 uint16_t status_pipe; /* Use pipe no. */
 uint16_t cr_seq; /* Class Request Sequence */
 uint16_t trans_len; /* TX Length */
 uint8_t trans_data[CDC_DATA_LEN + 4]; /* RX Data */
 uint8_t serial_state_data[USB_HCDC_SERIAL_STATE_MSG_LEN];

USB_HCDC_SerialState_t serial_state_bitmap;
 USB_HCDC_LineCoding_t com_parm; /* Set Line Coding parameter */
} DEV_INFO_t;

Table 4-1 List of States

State State Processing
Overview Related Event

STATE_ATTACH Attach processing EVENT_CONFIGURD
STATE_CLASS_REQUEST Class request processing EVENT_CLASS_REQUEST_START
 EVENT_CLASS_REQUEST_COMPLETE
STATE_DATA_TRANSFER Data transfer processing EVENT_USB_READ_START
 EVENT_USB_READ_COMPLETE
 EVENT_USB_WRITE_START
 EVENT_USB_WRITE_COMPLETE
 EVENT_NOTIFY_READ_START
 EVENT_NOTIFY_READ_COMPLETE

 Table 4-2 List of Events

Event Outline
EVENT_CONFIGURD USB device connecting completion
EVENT_CLASS_REQUEST_START Request of sending the class request
EVENT_CLASS_REQUEST_COMPLETE Class request complete
EVENT_USB_READ_START Data read request
EVENT_USB_READ_COMPLETE Data read complete
EVENT_USB_WRITE_START Data write request
EVENT_USB_WRITE_COMPLETE Data write complete
EVENT_COM_NOTIFY_RD_START Notification receive request
EVENT_COM_NOTIFY_RD_COMPLETE Notification receive complete
EVENT_DETACH Detach
EVENT_NONE No event

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 25 of 38
Dec 07, 2017

An overview of the processing associated with each state is provided below.

1. Attach Processing (STATE_ATTACH)
== Outline ==

In this state, processing is performed to notify that a CDC device has attached and that enumeration has finished, and
the state changes to STATE_CLASS_REQUEST.

== Description ==

① In the APL, first the initialization function sets the state to STATE_ATTACH and the event to EVENT_NONE.

② The state continues to be STATE_ATTACH until an CDC device is connected, and cdc_connect_wait() is called.

③ When a CDC device is connected and enumeration completes, the callback function cdc_configured() is called by
the USB driver, this callback function issues the event EVENT_CONFIGURD. The callback function
cdc_configured() is specified in the member devconfig of structure USB_HCDREG_t.

④ In event EVENT_CONFIGURD, the state changes to STATE_CLASS_REQUEST and the event
EVENT_CLASS_REQUEST_START is issued.

Attach processing

Change state to
STATE_CLASS_REQUEST

EVENT_CONFIGURED ?

CDC device connected?

Y

Y

End

Enumeration in
progress

Issue
EVENT_CLASS_REQUEST_

START

Enumeration
comleted

Callback function
(cdc_configured)

End

Set event to
EVENT_CONFIGURED

N

N

Figure 4-4 Flowchart of Attach Processing

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 26 of 38
Dec 07, 2017

2. Class Request Processing (STATE_CLASS_REQUEST)
== Outline ==

In this state, processing is performed to transmit class requests to the CDC device. When transmission of a separately
specified class requests finishes, the state changes to STATE_DATA_TRANSFER.

== Description ==

① In this state, first EVENT_CLASS_REQUEST_START is processed, and a class request transmit request is sent
to the USB driver.

② When class request transmit processing completes, the callback function cdc_class_request_complete() is called.
This callback function issues EVENT_CLASS_REQUEST_COMPLETE.

③ The processing described in ① and ② is repeated, and the class requests SetControlLineState, SetLineCoding
and GetLineCoding are transmitted to the CDC device in sequence.

④ When transmission of the class request GetLineCoding finishes, the state changes to
STATE_DATA_TRANSFER, and the event is set to EVENT_USB_READ_START.

Class request
processing

(cdc_class_request)

Send class request
transmit requests to
send the following class
requests in sequence:
1. SetControlLineState
2. SetLineCoding
3. GetLineCoding

Y

Y

End

EVENT_CLASS_
REQUEST_START?

EVENT_CLASS_
REQUEST_COMPLETE?

Is the finished class
request GetLineCoding?

Set event to
EVENT_CLASS_REQUEST_

START
(Transmit other class request)

Y

EVENT acquisition
processing

(cdc_event_get)

Callback function
(cdc_class_request_complete)

End

Set event to
EVENT_CLASS_REQUEST_

COMPLETE

N

N

N Change state to
STATE_DATA_TRANSFER

Set event to
EVENT_USB_READ_START

Figure 4-5 Flowchart of Class Request Processing

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 27 of 38
Dec 07, 2017

3. Data Transfer Processing (STATE_DATA_TRANSFER)
== Outline ==

This loopback processing routine receives data from the CDC device and then transmits the same data, unmodified,
back to the CDC device.

== Description ==

① When transmission of the class request to the CDC device completes, the state transitions to
STATE_DATA_TRANSFER. In this state, EVENT_USB_READ_START is processed and a data transfer
processing request is sent to the USB driver.

② When data read processing completes, the callback function cdc_read_complete() is called. This callback function
issues EVENT_USB_READ_COMPLETE.

③ In EVENT_USB_READ_COMPLETE, EVENT_USB_WRITE_START is set to the event.

④ In EVENT_USB_WRITE_START, a data write request is sent to the USB driver in order to transmit the data
received in ① above to the CDC device.

⑤ When the data write finishes, the callback function cdc_write_complete() is called. This callback function issues
the event EVENT_USB_WRITE_COMPLETE.

⑥ In EVENT_USB_WRITE_COMPLETE the event EVENT_USB_READ_START is issued, and in the next loop
① is processed again and steps ① to ⑥ are repeated.

Data transfer
processing

(cdc_data_transfer)

Data read
request

(R_usb_hcdc_
receive_data)

End

Issue
EVENT_USB_WRITE

_START

Callback function
(cdc_read_complete)

End

Issue
EVENT_USB_READ_COMPLETE

EVENT acquisition
processing

(cdc_event_get)

Get read data size

Callback function
(cdc_write_complete)

End

Issue
EVENT_USB_WRITE_COMPLETE

EVENT
 = EVENT_USB_READ
　_COMPLETE

Data write request
(R_usb_hcdc_

send_data)

 = EVENT_USB_WRITE
　_START

 = EVENT_USB_WRITE
　_COMPLETE

Issue
EVENT_USB_READ

_START

 = EVENT_SWITCH
　_INPUT

Communication
speed switching

processing

 = EVENT_USB_READ
　_START

 = EVENT
　_NONE

Figure 4-6 Flowchart of Data Transfer Processing

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 28 of 38
Dec 07, 2017

4. Detach Processing (STATE_DETACH)
When the connected CDC device is disconnected, the USB driver calls the callback function cdc_detach(). This
callback function changes the state to STATE_DETACH. In STATE_DETACH, processing is performed to clear
variables and change the state to STATE_ATTACH, among other things. The callback function cdc_detach() is the
function set in the member devdetach of the structure USB_HCDREG_t.

Detach processing
(cdc_detach_device)

End

Change to
STATE_ATTACH

Processing to clear specified
external variable, etc.

Figure 4-7 Flowchart of Detach Processing

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 29 of 38
Dec 07, 2017

Appendix A. Changes of initial setting
USB-BASIC-F/W has been changed to "RZ/T1 group initial setting Rev.1.30".
Sample program supports IAR embedded workbench for ARM (EWARM) , DS-5 and e2 studio.
This chapter describes the changes.

Folders and files
In the "RZ/T1 group initial setting Rev.1.30", different folder structure by the development environment and the boot

method. Changes to each folder of all of the development environment and the boot method it is shown below.

・Add the following files in the “inc” folder.
r_usb_basic_config.h
r_usb_basic_if.h
r_usb_hcdc_config.h
r_usb_hcdc_if.h

・Add the following files in the “sample” folder.

r_usb_main.c
r_usb_hcdc_apl.c
r_usb_hcdc_apl.h

・Add the “usbh” folder and the following files “usbh” folder in the “drv” folder.

The following is the folder structure of EWARM.

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 30 of 38
Dec 07, 2017

The following is the folder structure of e2 studio.

inc

drv

src

sample

common

workspace

kpitgcc

RZ_T_nor_sample

inc

drv

src

sample

common

RZ_T_ram_sample

RZ_T_sflash_sample

inc

drv

src

sample

common

usbh

usbh

usbh

Add driver folder

Add header files

Add application files

Add driver folder

Add header files

Add application files

Add driver folder

Add header files

Add application files

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 31 of 38
Dec 07, 2017

The following is the folder structure of DS-5.

inc

drv

src

sample

common

workspace

armcc

RZ_T_nor_sample

inc

drv

src

sample

common

RZ_T_ram_sample

RZ_T_sflash_sample

inc

drv

src

sample

common

usbh

usbh

usbh

Add driver folder

Add header files

Add application files

Add driver folder

Add header files

Add application files

Add driver folder

Add header files

Add application files

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 32 of 38
Dec 07, 2017

Section
Modify the section size of the code area and a data area, and add the following section.

Section name Address variable file

EHCI_PFL 0x00020000 ehci_PeriodicFrameList

r_usb_hEhciMemory.c

EHCI_QTD 0x00020400 ehci_Qtd

EHCI_ITD 0x00030400 ehci_Itd

EHCI_QH 0x00038580 ehci_Qh

EHCI_SITD 0x00039080 ehci_Sitd

OHCI_HCCA 0x0003A000 ohci_hcca

r_usb_hOhciMemory.c OHCI_TD 0x0003A100 ohci_TdMemory

OHCI_ED 0x0003c100 ohci_EdMemory

e2 studio
 e2 studio sets the section in the configuration screen.

Changes are as follows:
・Fixed address of “.data” section from 0x0007F000 to 0x00040000
・Add section setting of EHCI and OHCI.

 Refer to [Project] → [Properties] → [C/C++ Build] → [Settings] → [Sections].

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 33 of 38
Dec 07, 2017

Variable definitions in the code are as follows.

r_usb_hEhciMemory.c

r_usb_hOhciMemory.c

#ifdef __GNUC__

static uint32_t ehci_PeriodicFrameList[USB_EHCI_PFL_SIZE]

 __attribute__ ((section ("EHCI_PFL")));

static USB_EHCI_QH ehci_Qh[USB_EHCI_NUM_QH]

 __attribute__ ((section ("EHCI_QH")));

static USB_EHCI_QTD ehci_Qtd[USB_EHCI_NUM_QTD]

 __attribute__ ((section ("EHCI_QTD")));

static USB_EHCI_ITD ehci_Itd[USB_EHCI_NUM_ITD]

 __attribute__ ((section ("EHCI_ITD")));

static USB_EHCI_SITD ehci_Sitd[USB_EHCI_NUM_SITD]

 __attribute__ ((section ("EHCI_SITD")));

#endif /* __GNUC__ */

#ifdef __GNUC__

static USB_OHCI_HCCA_BLOCK ohci_hcca

 __attribute__ ((section ("OHCI_HCCA")));

static USB_OHCI_HCD_TRANSFER_DESCRIPTOR ohci_TdMemory[USB_OHCI_NUM_TD]

 __attribute__ ((section ("OHCI_TD")));

static USB_OHCI_HCD_ENDPOINT_DESCRIPTOR ohci_EdMemory[USB_OHCI_NUM_ED]

 __attribute__ ((section ("OHCI_ED")));

#endif /* __GNUC__ */

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 34 of 38
Dec 07, 2017

EWARM
EWARM sets the section in the linker setting file (.icf file).

Changes are as follows:
・Start address of RAM region from 0x00070000 to 0x00040000.
・End address of USER_PRG region from 0x0006FFFF to 0x0001FFFF.

・To the EHCI and OHCI to fixed address, adds memory region definition.

Variable definitions in the code are as follows.

r_usb_hEhciMemory.c

r_usb_hOhciMemory.c

define symbol __ICFEDIT_region_RAM_start__ = 0x00040000;

define symbol __region_USER_PRG_end__ = 0x0001FFFF;

define region EHCI_MEM1_region = mem:[from 0x00020000 to 0x000203FF];

define region EHCI_MEM2_region = mem:[from 0x00020400 to 0x00039FFF];

define region OHCI_MEM1_region = mem:[from 0x0003A000 to 0x0003A0FF];

define region OHCI_MEM2_region = mem:[from 0x0003A100 to 0x0003FFFF];

do not initialize { section EHCI_PFL, section EHCI_QH, section EHCI_QTD, section EHCI_ITD, section

EHCI_SITD, section OHCI_HCCA, section OHCI_TD, section OHCI_ED };

place in EHCI_MEM1_region { section EHCI_PFL };

place in EHCI_MEM2_region { section EHCI_QH, section EHCI_QTD, section EHCI_ITD, section EHCI_SITD };

place in OHCI_MEM1_region { section OHCI_HCCA };

place in OHCI_MEM2_region { section OHCI_TD, section OHCI_ED };

#ifdef __ICCARM__

#pragma location="EHCI_PFL"

static uint32_t ehci_PeriodicFrameList[USB_EHCI_PFL_SIZE];

#pragma location="EHCI_QH"

static USB_EHCI_QH ehci_Qh[USB_EHCI_NUM_QH];

#pragma location="EHCI_QTD"

static USB_EHCI_QTD ehci_Qtd[USB_EHCI_NUM_QTD];

#pragma location="EHCI_ITD"

static USB_EHCI_ITD ehci_Itd[USB_EHCI_NUM_ITD];

#pragma location="EHCI_SITD"

static USB_EHCI_SITD ehci_Sitd[USB_EHCI_NUM_SITD];

#endif /* __ICCARM__ */

#ifdef __ICCARM__

#pragma location="OHCI_HCCA"

static USB_OHCI_HCCA_BLOCK ohci_hcca;

#pragma location="OHCI_TD"

static USB_OHCI_HCD_TRANSFER_DESCRIPTOR ohci_TdMemory[USB_OHCI_NUM_TD];

#pragma location="OHCI_ED"

static USB_OHCI_HCD_ENDPOINT_DESCRIPTOR ohci_EdMemory[USB_OHCI_NUM_ED];

#endif /* __ICCARM__ */

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 35 of 38
Dec 07, 2017

DS-5
DS-5 sets the section in the linker setting file (scatter file).

Changes are as follows:

・Start address of RAM region from 0x00040000and BSS region(0clear init memory region) follow RAM region.

・To the EHCI and OHCI to fixed address, adds memory region definition.

 DATA 0x00040000 UNINIT
 {
 * (+RW)
 }
 BSS +0
 {
 * (+ZI)
 }

 EHCI_PERIODIC_FRAMELIST 0x00020000 0x400
 {
 r_usb_hEhciMemory.o(EHCI_PFL)
 }
 EHCI_QTD +0
 {
 r_usb_hEhciMemory.o(ehci_Qtd)
 }
 EHCI_ITD +0
 {
 r_usb_hEhciMemory.o(ehci_Itd)
 }
 EHCI_QH +0
 {
 r_usb_hEhciMemory.o(ehci_Qh)
 }
 EHCI_SITd +0
 {
 r_usb_hEhciMemory.o(ehci_Sitd)
 }
 OHCI_HCCA 0x0003A000 0x100
 {
 r_usb_hOhciMemory.o(OHCI_HCCA)
 }
 OHCI_TDMEMORY +0
 {
 r_usb_hOhciMemory.o(OHCI_TD)
 }
 OHCI_EDMEMORY +0
 {
 r_usb_hOhciMemory.o(OHCI_ED)
 }

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 36 of 38
Dec 07, 2017

Variable definitions in the code are as follows.

r_usb_hEhciMemory.c

r_usb_hOhciMemory.c

#ifdef __CC_ARM

#pragma arm section zidata = "EHCI_PFL"

static uint32_t ehci_PeriodicFrameList[USB_EHCI_PFL_SIZE];

#pragma arm section zidata

#pragma arm section zidata = "EHCI_QH"

static USB_EHCI_QH ehci_Qh[USB_EHCI_NUM_QH];

#pragma arm section zidata

#pragma arm section zidata = "EHCI_QTD"

static USB_EHCI_QTD ehci_Qtd[USB_EHCI_NUM_QTD];

#pragma arm section zidata

#pragma arm section zidata = "EHCI_ITD"

static USB_EHCI_ITD ehci_Itd[USB_EHCI_NUM_ITD];

#pragma arm section zidata

#pragma arm section zidata = "EHCI_SITD"

static USB_EHCI_SITD ehci_Sitd[USB_EHCI_NUM_SITD];

#pragma arm section zidata

#endif

#ifdef __CC_ARM

#pragma arm section zidata = "OHCI_HCCA"

static USB_OHCI_HCCA_BLOCK ohci_hcca;

#pragma arm section zidata

#pragma arm section zidata = "OHCI_TD"

static USB_OHCI_HCD_TRANSFER_DESCRIPTOR ohci_TdMemory[USB_OHCI_NUM_TD];

#pragma arm section zidata

#pragma arm section zidata = "OHCI_ED"

static USB_OHCI_HCD_ENDPOINT_DESCRIPTOR ohci_EdMemory[USB_OHCI_NUM_ED];

#pragma arm section zidata

#endif

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 37 of 38
Dec 07, 2017

Call the USB-BASIC-FW function
 Adds the usbh_main() of USB-BASIC-F/W in the main() of “\src\sample\int_main.c”.

extern void usbh_main(void);

int main (void)
{
 /* Initialize the port function */
 port_init();

 /* Initialize the ECM function */
 ecm_init();

 /* Initialize the ICU settings */
 icu_init();

 /* USBh main */
 usbh_main();

 while (1)
 {
 /* Toggle the PF7 output level(LED0) */
 PORTF.PODR.BIT.B7 ^= 1;

 soft_wait(); // Soft wait for blinking LED0

 }

}

RZ/T1 Group USB Host Communications Device Class Driver (HCDC)

R01AN2635EJ0130 Rev.1.30 Page 38 of 38
Dec 07, 2017

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision History

Rev. Date
Description
Page Summary

1.00 Aug 21, 2015 — First edition issued
1.10 Dec 25, 2015 29 Added Appendix A
1.20 Feb 29, 2016 31,35,36 Added DS-5 setting
1.30 Dec 07, 2017 — Corresponds to RZ / T1 initial setting Ver 1.30

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with

an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
LSI, an associated shoot-through current flows internally, and malfunctions occur due to the
false recognition of the pin state as an input signal become possible. Unused pins should be
handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of
pins are not guaranteed from the moment when power is supplied until the reset process is
completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power reaches
the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not

access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock signal
has stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock
signal. Moreover, when switching to a clock signal produced with an external resonator (or by
an external oscillator) while program execution is in progress, wait until the target clock signal is
stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of Microprocessing unit or Microcontroller unit products in the same group

but having a different part number may differ in terms of the internal memory capacity, layout
pattern, and other factors, which can affect the ranges of electrical characteristics, such as
characteristic values, operating margins, immunity to noise, and amount of radiated noise.
When changing to a product with a different part number, implement a system-evaluation test
for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

	1. Overview
	2. Software Configuration
	3. USB Host Communication Device Class Driver (HCDC)
	3.1 Basic Functions
	3.2 Abstract Control Model Class Requests - Host to Device
	3.2.1 SetLineCoding
	3.2.2 GetLineCoding
	3.2.3 SetControlLineState

	3.3 ACM Notifications from Device to Host
	3.3.1 SerialState

	3.4 Structures
	3.4.1 HCDC Request Structure
	3.4.2 CDC Notification Format

	3.5 Scheduler settings
	3.6 API

	4. Sample Application
	4.1 Setup
	4.2 Application Specifications
	4.3 Data Transfer Image
	4.4 Initial Settings of USB Driver
	4.4.1 MCU Settings
	4.4.2 USB Driver Settings

	4.5 Processing by Main Routine
	4.5.1 APL
	4.5.2 State and Event Management
	DS-5

