
 APPLICATION NOTE

R01AN2338EJ0104 Rev. 1.04 Page 1 of 46
Nov.27 2017

SH7268/7269 Group
JPEG Codec Unit "JCU" Sample Driver
Introduction

This application note describes the specification of the JPEG codec unit (in the following, JCU) driver of
SH7268/SH7269.

Target Device

SH7268/SH7269 Group

When applying the sample program covered in this application note to another microcomputer, modify the program

according to the specifications for the target microcomputer and conduct an extensive evaluation of the modified
program.

R01AN2338EJ0104
Rev. 1.04

Nov.27 2017

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 2 of 46
Nov.27 2017

TABLE OF CONTENTS
1. OUTLINE ... 4

1.1 ENVIRONMENT ... 4
1.2 FUNCTIONS .. 5
1.3 FILE STRUCTURE .. 6
1.4 PROGRAM SIZE AND SECTION ... 7
1.5 CONCEPT .. 8
1.6 STATE TRANSITION .. 9
1.7 INTERRUPT HANDLER ... 11
1.8 COMPILER SWITCH ... 12

1.8.1 Parameter check ... 12
1.8.2 Interrupt handler definition... 12

1.9 LIMITATION .. 13
1.9.1 Reserved word ... 13
1.9.2 Stop during processing ... 13
1.9.3 Output subsampling processing... 13

2. API .. 14
2.1 DATA DEFINITION .. 14

2.1.1 Basic types ... 14
2.1.2 Constant .. 14
2.1.3 Structures .. 20
2.1.4 OS porting layer (OSPL) .. 24

2.2 API FUNCTION ... 25
2.2.1 R_JCU_Initialize ... 25
2.2.2 R_JCU_Terminate .. 25
2.2.3 R_JCU_TerminateAsync .. 25
2.2.4 R_JCU_SelectCodec .. 26
2.2.5 R_JCU_SetCountMode ... 26
2.2.6 R_JCU_SetPauseForImageInfo ... 27
2.2.7 R_JCU_SetErrorFilter ... 27
2.2.8 R_JCU_Start ... 28
2.2.9 R_JCU_StartAsync ... 28
2.2.10 R_JCU_Continue .. 28
2.2.11 R_JCU_ContinueAsync .. 29
2.2.12 R_JCU_GetAsyncStatus ... 29
2.2.13 R_JCU_OnInterrupting .. 29
2.2.14 R_JCU_OnInterrupted ... 30
2.2.15 R_JCU_SetDecodeParam ... 30
2.2.16 R_JCU_GetImageInfo ... 31
2.2.17 R_JCU_GetErrorInfo .. 31
2.2.18 R_JCU_SetEncodeParam ... 31
2.2.19 R_JCU_SetQuantizationTable ... 32
2.2.20 R_JCU_SetHuffmanTable .. 32
2.2.21 R_JCU_GetEncodedSize ... 33

3. OTHER FUNCTION, DEFINE MACRO ... 34
3.1 USER DEFINED FUNCTION .. 34

3.1.1 R_JCU_OnInitialize.. 34
3.1.2 R_JCU_OnFinalize ... 34
3.1.3 R_JCU_SetDefaultAsync .. 34
3.1.4 R_JCU_SetInterruptCallbackCaller ... 35
3.1.5 R_JCU_OnEnableInterrupt ... 35
3.1.6 R_JCU_OnDisableInterrupt .. 35
3.1.7 R_JCU_OnInterruptDefault .. 36

3.2 THE FUNCTION OF OS PORTING LAYER(OSPL) ... 37
3.3 PORTING FROM OLD VERSION(BEFORE VER0.09) ... 38

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 3 of 46
Nov.27 2017

4. SAMPLE ... 40
4.1 ENCODE (SYNCHRONOUS PROCESS) ... 40
4.2 ENCODE (ASYNCHRONOUS PROCESS) ... 41
4.3 DECODE (SYNCHRONOUS PROCESS) ... 42

WEBSITE AND SUPPORT ... 42
REVISION HISTORY .. 44
GENERAL PRECAUTIONS IN THE HANDLING OF MPU/MCU PRODUCTS 45
NOTICE .. 46

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 4 of 46
Nov.27 2017

1. Outline
1.1 environment

The following this driver's development environment and Evaluation board.

CPU
SH7269

Development environment
HEW (SuperH RISC engine microcomputer software integrated development environment) Version 4.09.01
Renesas SuperH RISC engine Standard Toolchain Version 9.4.1.0

• SH C/C++ Compiler Version 9.04.00
• SH Assembler Version 7.01.02
• SH C/C++ Standard Library Generator Version 3.00.03
• Optimizing Linkage Editor Version 10.00.01

Evaluation board
SH7269 CPU board (Part number: R0K572690C000BR)
SH7269 VDC4 board (Part number: R0K572690B000BR)

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 5 of 46
Nov.27 2017

1.2 Functions
The following table describes functions of the JCU driver.

Table 1 Functions of JCU driver

Common
functions

Specifications JPEG baseline standard(ISO/IEC10918-1:1994).
The JCUA driver does not support the following basic
features:
 Scanning with two elements.
 Non-interleave scanning with multiple elements.

Operational precision Conforming to JPEG Part 2, ISO-IEC10918-2.
Image input/output
system

Block interleave method.

Image data rate: Max. 133.34 Mbytes/s (at 66.67-MHz operation)
Subsampling The buffer size can be reduced by using the mode in which

data transfer is temporarily stopped each time the
specified number of lines or the specified amount of data is
transferred during image data or coded data input.

Processing unit 8-byte address boundary units can be set
Image sizes that can be
processed:

Sizes divisible by the minimum coded unit (MCU):
8 lines by 16 pixels in YCbCr422
16 lines by 16 pixels in YCbCr420

Compression and decompression processing of images in 0-
line or 0-pixel image sizes should be avoided.
Following formats are not supported in this driver.

YCbCr4:4:4, YCbCr4:1:1
Compression
functions

Input pixel format YCbCr422
Output format JPEG baseline standard (YCbCr4:2:2)
Quantization table 4 quantization tables provided
Huffman tables 4 Huffman tables provided.

2 tables for AC coefficients.
2 tables for DC coefficients.

Markers supported SOI/SOF0/SOS/DQT/DHT/DRI/RSTm/EOI
Decompression
functions

Input format JPEG baseline standard (YCbCr4:2:2 or YCbCr4:2:0)
Decompression processing of images in unsupported pixel
formats should be avoided.

Output pixel format YCbCr4:2:2, ARGB8888, RGB565

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 6 of 46
Nov.27 2017

1.3 File structure
The following table describes file structure of the JCU driver. (OSPL file isn't included.)

Table 2 file structure

File Name Description

jcu_api.c Source file for JCU driver functions. (main)
jcu_para.c Source file checking arguments.
jcu_reg.c Source file controlling registers.
jcu_pl.c Source file for JCU driver functions. (interrupt handlers, and porting layer)
jcu_misc.c Source file for JCU driver functions. (other)
r_jcu_api.h Header file including the prototype declarations for the JCU driver calls

and definitions of constants.
r_jcu_local.h Header file including local definitions.
r_jcu_pl.h Header file including interrupt handlers and porting layer)
jcu_namecnv.h Header file for old naming rule.
r_jcu_user.h Header file for compilation option.

The following table describes file structure of the external header file for JCU.

Table 3 file structure of the external header file

File Name Description

typedefine.h,
r_typedefs.h

Header file including the typedef declarations for the basic types.

iodefine.h Header file including IO definitions.
r_ospl.h Header file including OS porting layer.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 7 of 46
Nov.27 2017

1.4 Program size and section
The following table describes the program size and section of the JCU driver.

Table 4 program size and section

Type Section Size[byte] Description

ROM P_JCU 10552 Program area
C_JCU 1421 Constant area
D_JCU 0 Initialized data area

RAM B_JCU 104 Uninitialized data area
(Stack) 664 Used stack size of the sample program

Note: "Size" doesn't include RAM of output data.
"Size" changes by the value of the optimization option.
This data is set by "Speed & size optimization enabled" of "Renesas SuperH RISC engine Standard Toolchain
9.3.2.0"

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 8 of 46
Nov.27 2017

1.5 Concept
The JCU driver supports to encode/decode functions. These functions can be used exclusively.

Figure 1 Basic processing

RAM

 ROM or RAM

Graphic bus (RGP1-BUS)

input
data

output

data

JCU
module

Graphic bus (RGP2-BUS)

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 9 of 46
Nov.27 2017

1.6 State transition
The JCU driver manages operating state and judges the propriety of the processing according to the state. This state

is to use API, and it changes. The image describes state transition.

Figure 2 JCU driver state transition

R_JCU_Initialize
UNDEF

INIT

SELECTED

READY

RUN

R_JCU_SelectCodec

R_JCU_SetEncodeParam
R_JCU_SetDecodeParam

R_JCU_StartAsync
R_JCU_ContinueAsync

Callback

R_JCU_SelectCodec

R_JCU_Terminate

INTERRUPTING
INTERRUPTED

(*)R_JCU_TerminateAsync

interrupt

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 10 of 46
Nov.27 2017

The following table describes API function state transition.

Table 5 state transition table

API

The state that a calling is possible

The state after
execution

UNDEF INIT SELECTED READY RUN INTERRUPTING
INTERRUPTED

for Encode or Decode
R_JCU_Initialize OK NG NG NG NG NG INIT
R_JCU_Terminate OK OK OK OK OK OK UNDEF
R_JCU_TerminateAsync OK OK OK OK OK*1 OK UNDEF
R_JCU_SelectCodec NG OK OK OK NG NG SELECTED
R_JCU_SetCountMode NG NG OK OK NG NG (Stay)
R_JCU_Start NG NG NG OK NG NG (Stay)
R_JCU_StartAsync NG NG NG OK NG NG RUN
R_JCU_Continue NG NG NG OK NG NG (Stay)
R_JCU_ContinueAsync NG NG NG OK NG NG RUN
R_JCU_GetAsyncStatus OK OK OK OK OK OK (Stay)
R_JCU_OnInterrupting*2 NG NG NG NG NG OK INTERRUPTED
R_JCU_OnInterrupted NG NG NG NG NG OK READY or RUN
for Decode
R_JCU_SetPauseForImageInfo NG NG OK OK NG NG (Stay)
R_JCU_SetErrorFilter NG OK OK OK NG NG (Stay)
R_JCU_SetDecodeParam NG NG OK OK NG NG Ready
R_JCU_GetImageInfo NG NG NG OK*3 NG NG (Stay)
R_JCU_GetErrorInfo NG NG OK OK NG NG (Stay)
for Encode
R_JCU_SetEncodeParam NG NG OK OK NG NG Ready
R_JCU_SetQuantizationTable NG NG OK OK NG NG (Stay)
R_JCU_SetHuffmanTable NG NG OK OK NG NG (Stay)
R_JCU_GetEncodedSize NG NG NG OK NG NG (Stay)

*1: Just after execution in the RUN state, the status is stay. After it, the state transfers in UNDEF by the timing
which interrupted (and callback function executed).
*2: It's called in the default callback of OSPL. Just before calling, the state transfer in INTERRUPTING state.
*3: After JCU_INT_GET_IMAGE_INFO interrupt occurred, it's possible to check image information.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 11 of 46
Nov.27 2017

1.7 Interrupt handler
The following table describes interrupt handlers.

Table 6 Interrupt handler

Interrupt

Vector

Handler

Number Address

JEDI
Compression/Decompression Process
Interrupt Request

181 0x000002D4 ~
0x000002D7

void INT_JCU_JEDI (void);

JDTI
Data Transfer Interrupt Request

182 0x000002D8 ~
0x000002DB

void INT_JCU_JDTI (void);

The user has to register the function as the interrupt handler for the user to use interrupt function of JCU. At
the case of using OS, register the interrupt handler function by OS function. In other case, register the function
in the vector table.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 12 of 46
Nov.27 2017

1.8 Compiler switch
In this driver, the compiler switch is defined by "jcu_user.h" file.

1.8.1 Parameter check

When "JCU_PARAMETER_CHECK" is defined, an argument of API is checked. When a parameter is wrong, an
error code is returned. See 2.1.2(2) jcu_errorcode_t and 2.1.2(5) jcu_detail_error_t.

1.8.2 Interrupt handler definition
In this driver, the function for interrupt handler exists. (see 1.7Interrupt handler) When not using a RTOS, don't

define "IS_USE_RTOS". By a declaration of "#pragma interrupt", the function becomes as an interrupt function. In this
case, user has to register the handler function in an interrupt vector table statically.

When interrupt function handlers are registered by using OS function, define "IS_USE_RTOS".

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 13 of 46
Nov.27 2017

1.9 Limitation
1.9.1 Reserved word

In this driver, prefix "JCU_" is added to the symbol name, to classify as other programs. Please don't use the symbol
which starts from "JCU".

1.9.2 Stop during processing

In the H/W of JCU, there are no functions stopped during processing. After processing of the encoding or decoding
which is executed, please begin to the next process.
Please don't stop during processing by software-reset or module standby.

1.9.3 Output subsampling processing.
The output subsampling function (encode or decode) was removed from the SH7269 H/W specification.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 14 of 46
Nov.27 2017

2. API
2.1 Data definition
2.1.1 Basic types

The following table describes basic type definition. The basic type definition is defined in " r_typedefs.h". See 1.3

Table 7 Basic types

Basic type Description

int8_t typedef signed char
uint8_t typedef unsigned char
int16_t typedef signed short
uint16_t typedef unsigned short
int32_t typedef signed int
uint32_t typedef unsigned int
char_t typedef char
bool_t typedef int
int_fast32_t typedef int
uint_fast32_t typedef unsigned int

2.1.2 Constant

The following table describes variable type, constant value. Constant is #define macro or enum.

Table 8 Constant

Section Constant

(1) Version
(2) jcu_errorcode_t
(3) jcu_codec_t
(4) jcu_continue_type_t
(5) jcu_detail_error_t
(6) jcu_int_detail_error_t
(7) jcu_int_detail_errors_t
(8) jcu_interrupt_line_t
(9) jcu_interrupt_lines_t
(10) jcu_swap_t
(11) jcu_sub_sampling_t
(12) jcu_decode_format_t
(13) jcu_jpeg_format_t
(14) jcu_huff_t
(15) jcu_table_no_t
(16) jcu_color_element_t
(17) jcu_status_information_t
(18) jcu_codec_status_t
(19) jcu_sub_state_t
(20) jcu_sub_status_t

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 15 of 46
Nov.27 2017

(1) Version

Symbol Value Description

JCU_VERSION 103 JCU version number.
JCU_VERSION_STRING "1.03" Character string of the JCU version number.

(2) jcu_errorcode_t
This is the variable type of error code. The following constant value is used for a variable of jcu_errorcode_t type.

Symbol Value Description

JCU_ERROR_OK 0x0000 No error has occurred.
JCU_ERROR_PARAM 0x4501 A parameter provided to a function is incorrect.
JCU_ERROR_STATUS 0x4502 A function was called in an incorrect state.
JCU_ERROR_CODEC_TYPE 0x4503 A function was called in an incorrect mode.
JCU_ERROR_LIMITATION 0x4504 Limitations on JCU driver.

(3) jcu_codec_t

This is the constant value of "ENCODE" or "DECODE" process.

Symbol Value Description

JCU_ENCODE 0 Encode(Compression) process.
JCU_DECODE 1 Decode(De-compression) process.

(4) jcu_continue_type_t

This is the constant value of paused factor (continue mode).

Symbol Value Summary

JCU_INPUT_BUFFER 0 Resumes reading input image data.
JCU_OUTPUT_BUFFER 1 This value can't be used.
JCU_GET_IMAGE_INFO 2 Restart the process after reading the image

information.

(5) jcu_detail_error_t

This is the variable type of error classification of the JCU driver. The following constant value is used for a variable
of jcu_detail_error_t.

About details, refer to table 40.3 and 40.4 of the SH7268/7269 Group User's Manual: Hardware

Symbol Value Summary

JCU_JCDERR_OK 0x0000 Normal
JCU_JCDERR_SOI_NOT_FOUND 0x4521 SOI not detected: SOI not detected until EOI

detected
JCU_JCDERR_INVALID_SOF 0x4522 SOF1 to SOFF detected
JCU_JCDERR_UNPROVIDED_SOF 0x4523 Unprovided pixel format detected
JCU_JCDERR_SOF_ACCURACY 0x4524 SOF accuracy error: Other than 8 detected
JCU_JCDERR_DQT_ACCURACY 0x4525 DQT accuracy error: Other than 0 detected

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 16 of 46
Nov.27 2017

JCU_JCDERR_COMPONENT_1 0x4526 Component error 1: The number of SOF0
header components detected is other than 1,
3, or 4

JCU_JCDERR_COMPONENT_2 0x4527 Component error 2: The number of
components differs between SOF0 header
and SOS

JCU_JCDERR_NO_SOF0_DQT_DHT 0x4528 SOF0, DQT, and DHT not detected when
SOS detected

JCU_JCDERR_SOS_NOT_FOUND 0x4529 SOS not detected: SOS not detected until
EOI detected

JCU_JCDERR_EOI_NOT_FOUND 0x452A EOI not detected (default)
JCU_JCDERR_RESTART_INTERVAL_NUM 0x452B Restart interval data number error detected
JCU_JCDERR_IMAGE_SIZE 0x452C Image size error detected*
JCU_JCDERR_LAST_MCU_NUM 0x452D Last MCU data number error detected
JCU_JCDERR_BLOCK_NUM 0x452E Block data number error detected

* When there are except for EOI marker behind the compressed data part (it has no huffman encoding segments and
markers.), JCU_JCDERR_IMAGE_SIZE error sometimes occurs. When bits of the
JCU_INT_ERROR_SEGMENT_TOTAL_DATA and the JCU_INT_ERROR_MCU_BLOCK_DATA is passed to the
R_JCU_SetErrorFilter function (the part of JINTE0 register), JCU_JCDERR_IMAGE_SIZE error will not be detected
any more.

(6) jcu_int_detail_error_t
This is the variable type of particular error code. The following constant value is used for a variable of

jcu_int_detail_error_t type.

Symbol Value Summary

JCU_INT_ERROR_RESTART_INTERVAL_DATA 0x80u The number of data in the restart interval
of the Huffman-coding segment is not
correct in de-compression.

JCU_INT_ERROR_SEGMENT_TOTAL_DATA 0x40u The total number of data in the Huffman-
coding segment is not correct in de-
compression.

JCU_INT_ERROR_MCU_BLOCK_DATA 0x20u The final number of MCU data in the
Huffman-coding segment is not correct
in de-compression.

JCU_INT_ERROR_ALL 0xE0 All errors.

(7) jcu_int_detail_errors_t
This is the variable type of bitwise OR operated bit flag values defined by jcu_int_detail_error_t. It's possible to use

the value of jcu_int_detail_error_t type for a variable of jcu_int_detail_errors_t type.

typedef bit_flags_fast32_t jcu_int_detail_errors_t;

(8) jcu_interrupt_line_t
This is the variable type of the kind of interrupt as the bit flag value. The following constant value is

jcu_interrupt_line_t type used for a variable of jcu_interrupt_lines_t type.

Symbol Value Summary

JCU_INTERRUPT_LINE_JEDI 0x00000001u Interrupt of JEDI.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 17 of 46
Nov.27 2017

JCU_INTERRUPT_LINE_JDTI 0x00000002u Interrupt of JDTI.
JCU_INTERRUPT_LINE_ALL 0x00000003u Interrupt of both of JEDI and JDTI.

(9) jcu_interrupt_lines_t
This is the variable type of bitwise OR operated bit flag values defined by jcu_interrupt_line_t. It's possible to use the

value of jcu_interrupt_line_t type for a variable of jcu_interrupt_lines_t type.

typedef bit_flags_fast32_t jcu_interrupt_lines_t;

(10) jcu_swap_t
This is the variable type of swap setting. The following constant value is used for a variable of jcu_swap_t type.

Symbol Value Summary

JCU_SWAP_NONE 0x00 No swap.
JCU_SWAP_BYTE 0x01 Byte swap.
JCU_SWAP_WORD 0x02 Word swap.
JCU_SWAP_WORD_AND_BYTE 0x03 Word-byte swap.
JCU_SWAP_LONG_WORD 0x04 Longword swap.
JCU_SWAP_LONG_WORD_AND_BYTE 0x05 Longword-byte swap.
JCU_SWAP_LONG_WORD_AND_WORD 0x06 Longword-word swap.
JCU_SWAP_LONG_WORD_AND_WORD_AND_BYTE 0x07 Longword-word-byte swap.

(11) jcu_sub_sampling_t

This is the variable type of subsampling parameter for decoding. The following constant value is used for a variable
of jcu_sub_sampling_t type.

Symbol Value Summary

JCU_SUB_SAMPLING_1_1 0x00 No subsampling.
JCU_SUB_SAMPLING_1_2 0x01 Subsamples output data into 1/2.
JCU_SUB_SAMPLING_1_4 0x02 Subsamples output data into 1/4.
JCU_SUB_SAMPLING_1_8 0x03 Subsamples output data into 1/8.

(12) jcu_decode_format_t

This is the variable type of output pixel format of RAW image data. The following constant value is used for a
variable of jcu_decode_format_t type.

Symbol Value Summary

JCU_OUTPUT_YCbCr422 0x00 YCbCr4:2:2
JCU_OUTPUT_ARGB8888 0x01 ARGB8888
JCU_OUTPUT_RGB565 0x02 RGB565

(13) jcu_jpeg_format_t
This is the variable type of pixel format in JPEG image data. The following constant value is used for a variable of

jcu_jpeg_format_t type.

Symbol Value Summary

JCU_JPEG_YCbCr422 0x01 YCbCr4:2:2
JCU_JPEG_YCbCr420 0x02 YCbCr4:2:0

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 18 of 46
Nov.27 2017

(14) jcu_huff_t
This is the variable type of Huffman table entropy type (AC or DC). The following constant value is used for a

variable of jcu_huff_t type.

Symbol Value Summary

JCU_HUFFMAN_AC 0x00 AC
JCU_HUFFMAN_DC 0x01 DC

(15) jcu_table_no_t

This is the variable type of Quantization table number or Huffman table number. The following constant value is
used for a variable of jcu_table_no_t type.

Symbol Value Summary

JCU_TABLE_NO_0 0x00 Quantization table No. 0 (JCQTBL0), or
DC/AC Huffman table No. 0 (JCHTBD0 / JCHTBA0)

JCU_TABLE_NO_1 0x01 Quantization table No. 1 (JCQTBL1), or
DC/AC Huffman table No. 1 (JCHTBD1 / JCHTBA1)

JCU_TABLE_NO_2 0x02 Quantization table No. 2 (JCQTBL2)
It can't be used at the Huffman table.

JCU_TABLE_NO_3 0x03 Quantization table No. 3 (JCQTBL3)
It can't be used at the Huffman table.

(16) jcu_color_element_t

This is the variable type of component identifier of Quantization table or Huffman table. The following constant
value is used for a variable of jcu_color_element_t type.

Constant Value Summary

JCU_ELEMENT_Y 0x00 Y (luminance component) table.
JCU_ELEMENT_Cb 0x01 Cb (blue-difference chroma component) table.
JCU_ELEMENT_Cr 0x02 Cr (red-difference chroma component) table.

(17) jcu_status_information_t
This is the variable type of main status of the JCU driver. The following constant value is used for a variable of

jcu_status_information_t type.

Symbol Value Summary

JCU_STATUS_UNDEF 0x00 The JCU is uninitialized status.
JCU_STATUS_INIT 0x01 The JCU is initialized status.
JCU_STATUS_SELECTED 0x02 The JCU mode is selected.
JCU_STATUS_READY 0x08 The JCU decode/encode is

ready, or the JCU
decode/encode has been
completed.

JCU_STATUS_RUN 0x10 The JCU decode/encode being
executed.

JCU_STATUS_INTERRUPTING 0x40 The state that interrupt occurred.
JCU_STATUS_INTERRUPTED 0x80 The state after interrupt function

executed.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 19 of 46
Nov.27 2017

(18) jcu_codec_status_t
This is the variable type of mode selection information. The following constant value is used for a variable of

jcu_codec_status_t.

Symbol Value Summary

JCU_CODEC_NOT_SELECTED -1 The state of the JCU mode is
not selected.

JCU_STATUS_ENCODE 0 The state of the JCU mode is
JCU_ENCODE.

JCU_STATUS_DECODE 1 The state of the JCU mode is
JCU_DECODE.

(19) jcu_sub_state_t
This is the variable type of JCU sub status. The following fixed number is used for a variable of jcu_sub_state_t.

Symbol Value Summary

JCU_SUB_INFOMATION_READY 0x00000008 The JCU decode paused, when the
image size and pixel format can be read.

JCU_SUB_DECODE_OUTPUT_PAUSE 0x00000100 The JCU decode paused, when the last
output image data is written in
decompression.

JCU_SUB_DECODE_INPUT_PAUSE 0x00000200 The JCU decode paused, when the
amount of input coded data is read in
decompression.

JCU_SUB_ENCODE_OUTPUT_PAUSE 0x00001000 The JCU encode paused, when the last
output jpeg data is written in
decompression.

JCU_SUB_ENCODE_INPUT_PAUSE 0x00002000 The JCU encode paused, when the
number of input image data lines is read
in compression.

JCU_SUB_PAUSE_ALL 0x00003308 All logical sum of jcu_sub_state_t type

(20) jcu_sub_status_t
This is the variable type of bitwise OR operated bit flag values defined by jcu_sub_state_t. It's possible to use the

value of jcu_sub_state_t type for a variable of jcu_sub_status_t type.

typedef uint_fast32_t jcu_sub_status_t;

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 20 of 46
Nov.27 2017

2.1.3 Structures
The following table describes structures.

Table 9 Structures

Section Structure

(1) jcu_count_mode_param_t
(2) jcu_buffer_t
(3) jcu_buffer_param_t
(4) jcu_decode_param_t
(5) jcu_image_info_t
(6) jcu_encode_param_t
(7) jcu_async_status_t
(8) jcu_internal_information_t
(9) jcu_i_lock_t

(1) jcu_count_mode_param_t
Parameters for the count mode (division process). "inputBuffer" means an input side in JCU, "outputBuffer" means

an output side in JCU.

The output subsampling function (encode or decode) can't be used by this driver. outputBuffer.isEnable must
be set "false".

typedef struct {
 struct {
 bool_t isEnable;
 bool_t isInitAddress;
 uint32_t* restartAddress;
 uint32_t dataCount;
 } inputBuffer;
 struct {
 bool_t isEnable;
 bool_t isInitAddress;
 uint32_t* restartAddress;
 uint32_t dataCount;
 } outputBuffer;
} jcu_count_mode_param_t;

Member Summary

isEnable false: Disable the division processing on input/output buffer.
true: Enable the division processing on input buffer.
Output side must be false.

isInitAddress false: When decoding paused, the input address isn't initialized.
true: When decoding paused, the input address is initialized by
"inputBuffer.restartAddress".

restartAddress If "IsInitAddress" is "true", the input data address is initialized by this value.
dataCount The division size of the input buffer.

In the case of decoding mode, when data of "dataCount" byte count is input to
JCU, it pauses.
In the case of encoding mode, when data of "dataCount" line count is input to
JCU, it pauses.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 21 of 46
Nov.27 2017

The "dataCount" must be a multiple of 8 bytes.

(2) jcu_buffer_t
Structure for the input/output buffer setting.

typedef struct {
 jcu_swap_t swapSetting;
 uint32_t* address;
} jcu_buffer_t;

Member Summary

swapSetting Byte/Word/Longword Swap.
address Buffer address.

(3) jcu_buffer_param_t
Parameters for the input/output buffer setting in encode/decode.

typedef struct {
 jcu_buffer_t source;
 jcu_buffer_t destination;
 int16_t lineOffset;
} jcu_buffer_param_t;

Member Summary

source Input buffer.
destination Output buffer.
lineOffset Line offset.

(4) jcu_decode_param_t
Parameters for the option setting in de-compression.

typedef struct {
 jcu_sub_sampling_t verticalSubSampling;
 jcu_sub_sampling_t horizontalSubSampling;
 jcu_decode_format_t decodeFormat;
 uint8_t alpha;
} jcu_decode_param_t;

Member Summary

verticalSubSampling Vertical subsampling.
horizontalSubSampling Horizontal subsampling.
decodeFormat The output pixel format of RAW image data.
alpha Alpha value setting. If the pixel format isn't ARGB8888, the

alpha value has to be zero.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 22 of 46
Nov.27 2017

(5) jcu_image_info_t
Structure for the image information of the decoded JPEG data.

typedef struct {
 uint32_t width;
 uint32_t height;
 jcu_jpeg_format_t encodedFormat;
} jcu_image_info_t;

Member Summary

width The width of the image data.
height The height of the image data
encodedFormat The pixel format of original JPEG data.

(6) jcu_encode_param_t

Parameters for the option setting in compression.

typedef struct {
 jcu_jpeg_format_t encodeFormat;
 int_t QuantizationTable[JCU_COLOR_ELEMENT_NUM];
 int_t HuffmanTable[JCU_COLOR_ELEMENT_NUM];
 uint32_t DRI_value;
 uint32_t width;
 uint32_t height;
} jcu_encode_param_t;

Member Summary

encodeFormat The pixel format of compressed JPEG data.
This value has to be JCU_JPEG_YCbCr422.

QuantizationTable Quantization table.
HuffmanTable Huffman table.
DRI_value DRI (Define Restart Interval) value.
width The width of the input image data.
height The height of the input image data.

(7) jcu_async_status_t
The JCU driver state and interrupt status.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 23 of 46
Nov.27 2017

typedef struct st_jcu_async_status_t jcu_async_status_t;
struct st_jcu_async_status_t {
 jcu_status_information_t Status;
 jcu_sub_status_t SubStatusFlags;
 bool_t IsPaused;
 bool_t IsEnabledInterrupt;
 r_ospl_flag32_t InterruptEnables;
 r_ospl_flag32_t InterruptFlags;
 r_ospl_flag32_t CancelFlags;
};

Member Summary

Status Internal status of the JCU driver.
SubStatusFlags Internal sub status of the JCU driver.
IsPaused false: JCU driver is not paused

true: JCU driver is paused.
IsEnabledInterrupt false: JCU driver's I-lock object was already locked.

true: JCU driver's I-lock object was unlocked.
InterruptEnables Interruption of JCU is registered.
InterruptFlags The flag managed in the JCU interrupt function.
CancelFlags The flag referred in the JCU interrupt function.

(8) jcu_internal_information_t
Structure for the internal state of the JCU driver.

typedef struct {
 jcu_codec_status_t Codec;
 bool_t IsCountMode;
 jcu_int_detail_errors_t ErrorFilter;
 jcu_async_status_t AsyncStatus;
 r_ospl_caller_t InterruptCallbackCaller;
 jcu_i_lock_t* I_Lock;
 const r_ospl_i_lock_vtable_t* I_LockVTable;
 bool_t Is_I_LockMaster;
 r_ospl_async_t* AsyncForFinalize;
} jcu_internal_information_t;

Member Summary

Codec Mode selection information.
IsCountMode false: JCU driver is not count mode.

true: JCU driver is count mode.
ErrorFilter The valid decoding error code(jcu_int_detail_error_t) as

the bit flag value.
AsyncStatus The status of the interrupt and the asynchronous process.
InterruptCallbackCaller The interrupt callback function registered with OSPL.
I_Lock I-Lock status.
I_LockVTable Indexes of the function which does I-Lock control.
IS_I_LockMaster false: I_LockVTable is not set.

true: I_LockVTable is set.
AsyncForFinalize Parameter of OSPL.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 24 of 46
Nov.27 2017

(9) jcu_i_lock_t
Structure for the I-Lock state of the JCU driver.

struct st_jcu_i_lock_t {
 bool_t IsLock;
 bool_t IsRequestedFinalize;
};

Member Summary

IsLock false: JCU driver doesn't set I-Lock.
true: JCU driver set I-Lock.

IsRequestedFinalize false: JCU driver isn't requested finalize.
true: JCU driver is requested finalize.

2.1.4 OS porting layer (OSPL)
In this driver, when calling the function of the OS porting layer(OSPL), the general-purpose type of OSPL is used as

an argument and a return value.

The following table describes the general-purpose type of OSPL. Please refer to OS porting layer "OSPL"
Application Note for SH7268/7269.

Table 10 general-purpose type of OSPL

Name Description

errnum_t Error Codes

r_ospl_async_t Setting of notifications.
r_ospl_flag32_t Flag having 32-bit.
r_ospl_interrupt_t Structure related to interrupt source.
r_ospl_caller_t Manager of an interrupt callback function.
r_ospl_i_lock_vtable_t Structure related to I-Lock.
r_ospl_async_type_t Kind of the asynchronous operation.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 25 of 46
Nov.27 2017

2.2 API Function

2.2.1 R_JCU_Initialize
API jcu_errorcode_t R_JCU_Initialize(void* const NullConfig);
Header #include "r_jcu_api.h"
Parameter [in] void* const NullConfig Please set a null.
Return value

jcu_errorcode_t
JCU_ERROR_OK
JCU_ERROR_STATUS

Error Code
No error has occurred.

A function was called in an incorrect state.

Description In this function, the following processing executed.
User defined function (R_JCU_OnInitialize) executes.
Initialize of driver's management information.
Initialize of the state inside the driver.

Valid state This API function is valid in the following state.
-UNDEF Status

Description The state will be in the initialized status.
Initializes the internal status(g_jcu_condition).
The user defined function(R_JCU_OnInitialize) is called.
Perform the following processing in the user defined function.
1. Clock supply to JCU.
2. Sets the priority of interrupt.
3. Sets the environment-depend process.

Comment

2.2.2 R_JCU_Terminate
API jcu_errorcode_t R_JCU_Terminate(void);
Header #include "r_jcu_api.h"
Parameter void
Return value

jcu_errorcode_t
JCU_ERROR_OK
JCU_ERROR_PARAM

Error Code
No error has occurred.
The return value of the user defined function is

an error.
Description In this function, the following processing executed (synchronous process).

User defined function (R_JCU_OnFinalize) execute.
The internal state of the driver transfers to JCU_STATUS_UNDEF.

Valid state This API function can execute every state.
When "g_jcu_condition.status" is "JCU_STATUS_RUN", it waits until processing ends.

Description The processing which finishes a JCU driver. The function keeps executing until processing
ends.
The state will be in the uninitialized status.
The user defined function(R_JCU_OnFinalize) is called.
Perform the following processing in the user defined function.
1. Clock stopped to JCU.
2. Clear the priority of interrupt.
3. Sets the environment-depend process.

Comment

2.2.3 R_JCU_TerminateAsync
API jcu_errorcode_t R_JCU_TerminateAsync(r_ospl_async_t* const async);

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 26 of 46
Nov.27 2017

Header #include "r_jcu_api.h"
Parameter [in] r_ospl_async_t* const async General-purpose argument of OSPL. See. 2.1.4
Return value

jcu_errorcode_t
JCU_ERROR_OK
JCU_ERROR_PARAM

Error Code
No error has occurred.

The argument is NULL, other return value of the
user defined function is an error.

Description See. R_JCU_Terminate function. (asynchronous process).
Valid state This API function can execute every state. When the JCU Driver state used at

JCU_STATUS_RUN, it won't be processed to complete immediately, and it return in the
state which is just as it is. And when decoding or encoding ended, and JCU stopped, a
processing terminated.

Description See. R_JCU_Terminate function.
For argument, please refer to OS porting layer "OSPL" Application Note for SH7268/7269.

Comment

2.2.4 R_JCU_SelectCodec
API jcu_errorcode_t R_JCU_SelectCodec(const jcu_codec_t codec);
Header #include " r_jcu_api.h"
Parameter [in] const jcu_codec_t codec Codec
Return value

jcu_errorcode_t
JCU_ERROR_OK
JCU_ERROR_PARAM
JCU_ERROR_STATUS

Error Code
No error has occurred.
An argument isn't right.
A function was called in an incorrect state.

Description In this function, the following processing executed.
This function selects the JCU mode (Encode or Decode).

Valid state This API function is valid in the following state.
INIT Status
SELECTED Status
READY Status

Description This function selects the JCU mode
Comment Please set again all parameters of decode, encode and count mode. Because when this

function was called, these parameters were initialized.

2.2.5 R_JCU_SetCountMode
API jcu_errorcode_t R_JCU_SetCountMode(const jcu_count_mode_param_t* const buffer);
Header #include " r_jcu_api.h"
Parameter [in] const jcu_count_mode_param_t* const

buffer
count mode(division process).

Return value

jcu_errorcode_t
JCU_ERROR_OK
JCU_ERROR_PARAM
JCU_ERROR_STATUS

Error Code
No error has occurred.

An argument isn't right.
A function was called in an incorrect state.

Description In this function, the following processing executed.
Sets the count mode (division process).

Valid state This API function is valid in the following state.
-SELECTED Status
-READY Status

Description Sets the count mode.
At SH7269 device, the output subsampling function (encode or decode) cannot be used. If the
"JCU_PARAMETER_CHECK" symbol is defined and execute this function, it'll be an error. If
undefined this symbol, a serious problem may occur.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 27 of 46
Nov.27 2017

Before calling R_JCU_Start, Subsampling process is executed if user is registered in this API
function.
The following table describes target data of jcu_count_mode_param_t for "inputBuffer" and
"outputBuffer".

Mode Target data of inputBuffer Target data of outputBuffer

Encode Input image data -
Decode Input JPEG data -

The following table describes unit size for "inputBuffer" and "outputBuffer".

Mode Unit size of inputBuffer Unit size of outputBuffer

Encode 8Line unit -
Decode 8byte unit -

If "jcu_count_mode_param_t::inputBuffer.isEnable = false", the subsampling function is invalid.

Comment

2.2.6 R_JCU_SetPauseForImageInfo
API jcu_errorcode_t R_JCU_SetPauseForImageInfo(const bool_t is_pause);
Header #include "r_jcu_api.h"
Parameter [in] const bool_t is_pause true: It's made the setting which is paused.

false: It's made the setting which is not paused.
Return value

jcu_errorcode_t
JCU_ERROR_OK
JCU_ERROR_STATUS

Error Code
No error has occurred.

A function was called in an incorrect state.
Description When the image information can be acquired, it's made the setting which is paused.
Valid state In this function, the following processing executed.

-SELECTED Status
-READY Status

And it's can be executed in case of the Decode mode.
Description When the image information can be acquired, it's made the setting which is paused by the

R_JCU_GetImageInfo function.
Comment

2.2.7 R_JCU_SetErrorFilter
API jcu_errorcode_t R_JCU_SetErrorFilter(jcu_int_detail_error_t filter);
Header #include "r_jcu_api.h"
Parameter [in] jcu_int_detail_error_t filter The valid decoding error

code(jcu_int_detail_error_t) as the bit flag value.
Return value

jcu_errorcode_t
JCU_ERROR_OK
JCU_ERROR_PARAM
JCU_ERROR_STATUS

Error Code
No error has occurred.

An argument isn't right.
A function was called in an incorrect state.

Description The particular error code(jcu_int_detail_error_t) was set to valid.
Valid state In this function, the following processing executed.

INIT Status
SELECTED Status
READY Status

Description The particular error code was set to valid.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 28 of 46
Nov.27 2017

When the valid decoding error occurred, interrupt occurs internally and R_JCU_Start
function returns error code.

Comment

2.2.8 R_JCU_Start
API jcu_errorcode_t R_JCU_Start(void);
Header #include " r_jcu_api.h"
Parameter void
Return value

jcu_errorcode_t
JCU_ERROR_OK
JCU_ERROR_STATUS

Error Code
No error has occurred.

A function was called in an incorrect state.
Description Starts JCU process (synchronous process).
Valid state This API function is valid in the following state.

READY Status
Description Starts JCU process. The function will not return until decoding or encoding ends or

pauses.
Using the R_JCU_SetDecoderParam API function or the R_JCU_SetEncoderParamSet
API function, set the parameters before the JCU process starts
You cannot stop the JCU process, after the JCU process starts.

Comment When the parameter at R_JCU_SetEncodeParam or R_JCU_SetDecodeParam function
isn't right, this API function does not return an error.

2.2.9 R_JCU_StartAsync
API jcu_errorcode_t R_JCU_StartAsync(r_ospl_async_t* const async);
Header #include " r_jcu_api.h"
Parameter [in] r_ospl_async_t* const async General-purpose argument of OSPL. See. 2.1.4
Return value

jcu_errorcode_t
JCU_ERROR_OK
JCU_ERROR_STATUS

Error Code
No error has occurred.

A function was called in an incorrect state.
Description Starts JCU process (asynchronous process).
Valid state This API function is valid in the following state.

READY Status
Description See. R_JCU_Start function.

For argument, please refer to OS porting layer "OSPL" Application Note for SH7268/7269.
Comment When the parameter at R_JCU_SetEncodeParam or R_JCU_SetDecodeParam function

isn't right, this API function doesn't return an error.

2.2.10 R_JCU_Continue
API jcu_errorcode_t R_JCU_Continue(const jcu_continue_type_t type);
Header #include " r_jcu_api.h"
Parameter [in] const jcu_continue_type_t type Paused factor(continue mode)
Return value

jcu_errorcode_t _t
JCU_ERROR_OK
JCU_ERROR_STATUS

Error Code
No error has occurred.

A function was called in an incorrect state.
Description Resume the JCU process (synchronous process).
Valid state This API function is valid in the following state.

READY Status
Description Processing of JCU which paused is resumed. The function will not return until decoding or

encoding ends or pauses.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 29 of 46
Nov.27 2017

The parameter is a paused factor.
Comment If the paused factor isn't right, this API function doesn't return an error.

2.2.11 R_JCU_ContinueAsync
API jcu_errorcode_t R_JCU_Continue(const jcu_continue_type_t type , r_ospl_async_t* const

async);
Header #include " r_jcu_api.h"
Parameter [in] const jcu_continue_type_t type Paused factor(continue mode)
 [in] r_ospl_async_t* const async General-purpose argument of OSPL. See. 2.1.4
Return value

jcu_errorcode_t _t
JCU_ERROR_OK
JCU_ERROR_STATUS

Error Code
No error has occurred.

A function was called in an incorrect state.
Description Resume the JCU process (asynchronous process).
Valid state This API function is valid in the following state.

READY Status
Description See. R_JCU_Continue function.

For argument, please refer to OS porting layer "OSPL" Application Note for SH7268/7269.
Comment If the paused factor isn't right, this API function doesn't return an error.

2.2.12 R_JCU_GetAsyncStatus
API void R_JCU_GetAsyncStatus(const jcu_async_status_t** const out_Status);
Header #include " r_jcu_api.h"
Parameter [out] const jcu_async_status_t** const

out_Status
Pointer of a structure that indicates the state of
the interrupt and asynchronous process.

Return value

None

Description Gets the pointer of a structure that indicates the state of the interrupt and asynchronous
process.

Valid state This API function can execute every state.
Description Gets the pointer of a structure that indicates the state of the interrupt and asynchronous

process.
Comment Pointer variable "out_Status" needs the const modifiers.

2.2.13 R_JCU_OnInterrupting
API errnum_t R_JCU_OnInterrupting(const r_ospl_interrupt_t* const InterruptSource);
Header #include " r_jcu_api.h"
Parameter [in] const r_ospl_interrupt_t* const

InterruptSource
Interruption sender. See.2.1.4.

Return value

errnum_t
0
E_OTHERS
E_STATE

Error information
No error.
Other error.
Status error.

Description Interrupt is accepted.
Valid state This function is not usually called from the user directly.

This function is callbacked from the interrupt callback function of the default.
This function sets the value of the interrupt status register to variable
"gs_jcu_internal_information AsyncStatus.InterruptFlags". And, Interrupt request is cleared
after it.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 30 of 46
Nov.27 2017

Default callback function "R_JCU_OnInterruptDefault" calls this function. It changes to
INTERRUPTING status before calling. For the detail, see 3.1.7.

Description A JCU driver notifies interrupts to oneself and clears by this function. Interrupt notice is
used for a trigger of the resumption of the asynchronous process from event flag waiting.

Comment Whether the R_JCU_OnInterrupted function is called continuously sets an event flag.

2.2.14 R_JCU_OnInterrupted
API errnum_t R_JCU_OnInterrupted(void);
Header #include " r_jcu_api.h"
Parameter None -
Return value

errnum_t
0
E_OTHERS
E_STATE
Each value of jcu_detail_error_t

Error information
No error.
Other error.
Status error.
Decode error

Description Interrupt function is executed.
Valid state This function is not usually called from the user directly.

This function is callbacked from the interrupt callback function of the default.
Variable "gs_jcu_internal_information. AsyncStatus.InterruptFlags" the e function set in 1
is cleared in 0. And, interrupt function is executed.
Default callback function "R_JCU_OnInterruptDefault" calls this function. It changes to
INTERRUPTED status before calling. For the detail, see 2.2.13, 3.1.7.

Description The "interruption notice" from R_JCU_OnInterrupting function is cleared and interrupt
handling operation is executed by this function. Interrupt handling operation does a trigger
of the resumption of the asynchronous process from event flag waiting.
When decoding error occurred, the value of jcu_detail_error_t type is returned in a return
value of this function.

Comment When OSPL and callback processing was used by default, a return value of this API
function is set to a ReturnValue member of an Async structure.

2.2.15 R_JCU_SetDecodeParam
API jcu_errorcode_t R_JCU_SetDecodeParam(const jcu_decode_param_t* const decode,

const jcu_buffer_param_t* const buffer);
Header #include " r_jcu_api.h"
Parameter [in] const jcu_decode_param_t* decode Pointer to variable of decode parameter

information.
 [in] const jcu_buffer_param_t* buffer Pointer to variable of buffer.
Return value

jcu_errorcode_t
JCU_ERROR_OK
JCU_ERROR_PARAM
JCU_ERROR_STATUS

Error Code
No error has occurred.

An argument isn't right.
A function was called in an incorrect state.

Description Sets decoding parameter.
Valid state In this function, the following processing executed.

SELECTED Status
READY Status
And it's can be executed in case of the Decode mode.

Description Sets decoding parameter.
Comment If the pixel format isn't ARGB8888, "decode.alpha" value has to set zero.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 31 of 46
Nov.27 2017

2.2.16 R_JCU_GetImageInfo
API jcu_errorcode_t R_JCU_GetImageInfo(jcu_image_info_t* const buffer);
Header #include " r_jcu_api.h"
Parameter [out] jcu_image_info_t* const buffer Pointer to variable of image information.
Return value

jcu_errorcode_t
JCU_ERROR_OK
JCU_ERROR_PARAM
JCU_ERROR_STATUS

Error Code
No error has occurred.
An argument isn't right.

A function was called in an incorrect state.
Description Gets information on the JPEG data.
Valid state This API function is valid in the following state.

READY Status
And it's can be executed in case of the Decode mode.

Description Gets the image information(width, height, pixel format) of the decoded JPEG data.
If the pixel format of the decoded JPEG data is outside of the jcu_jpeg_format_t, or the image
size (wide or height) is zero, it's the error, so JCU can't decode.

Comment If data is read before the request which reads the image information, the data is not
guaranteed.

2.2.17 R_JCU_GetErrorInfo
API jcu_errorcode_t R_JCU_GetErrorInfo(jcu_detail_error_t* const errorCode);
Header #include " r_jcu_api.h"
Parameter [out] jcu_detail_error_t* const errorCode Pointer to variable of error information.
Return value

jcu_errorcode_t
JCU_ERROR_OK
JCU_ERROR_PARAM
JCU_ERROR_STATUS

Error Code
No error has occurred.

An argument isn't right.
A function was called in an incorrect state.

Description Gets information on the error data.
Valid state This API function is valid in the following state.

READY Status
And it's can be executed in case of the Decode mode.

Description When decoding error occurred, the reason of the error can be got from this function. For detail,
see. 2.1.2(4)
When a decoding error doesn't occur, the data is not guaranteed.

Comment This API function is the function equivalent to "JCU_GetErrorInfo" in the JCU driver before
Ver0.09, it doesn't correspond to OSPL.
This API function isn't necessary in the JCU driver after Ver0.10, that corresponded to OSPL.
Because error information is returned from related API functions or is stored in a ReturnValue
member of Async structure. For detail, see.2.1.4.

2.2.18 R_JCU_SetEncodeParam
API jcu_errorcode_t R_JCU_SetEncodeParam(const jcu_encode_param_t* const encode,

const jcu_buffer_param_t* const buffer);
Header #include " r_jcu_api.h"
Parameter [in] const jcu_encode_param_t* const

encode
Pointer to variable of encode parameter
information.

 [in] const jcu_buffer_param_t* const buffer Pointer to variable of buffer.
Return value

jcu_errorcode_t
JCU_ERROR_OK
JCU_ERROR_PARAM
JCU_ERROR_STATUS

Error Code
No error has occurred.

An argument isn't right.
A function was called in an incorrect state.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 32 of 46
Nov.27 2017

Description Sets encoding parameter.
Valid state This API function is valid in the following state.

SELECTED Status
READY Status
And it's can be executed in case of the Encode mode.

Description Sets Encoding parameter.
Comment

2.2.19 R_JCU_SetQuantizationTable
API jcu_errorcode_t R_JCU_SetQuantizationTable(const jcu_decode_format_t tableNo,

const uint8_t* const table);
Header #include " r_jcu_api.h"
Parameter [in] const jcu_decode_format_t tableNo Quantization table number.
 [in] const uint8_t* const table Quantization table.
Return value

jcu_errorcode_t
JCU_ERROR_OK
JCU_ERROR_PARAM
JCU_ERROR_STATUS

Error Code
No error has occurred.
An argument isn't right.

A function was called in an incorrect state.
Description Quantization table data.

For the setting value of the quantization table data, see "SH7268, SH7269 Group User's
Manual: Hardware" section 41.3.1(4), or use a quantization table generation tool of an
accessory for a sample.

Valid state This API function is valid in the following state.
SELECTED Status
READY Status
And it's can be executed in case of the Encode mode.

Description The data to which it was given at the table is set as the address of the chosen table number.
Comment Even when more than one picture data is encoded, this table data should be set once.

2.2.20 R_JCU_SetHuffmanTable
API jcu_errorcode_t R_JCU_SetHuffmanTable(const jcu_decode_format_t tableNo,

const jcu_huff_t type, const uint8_t* const table);
Header #include " r_jcu_api.h"
Parameter [in] const jcu_decode_format_t tableNo Huffman table number.
 [in] const jcu_huff_t type, Type of Huffman table (AC or DC).
 [in] const uint8_t* const table Huffman table
Return value

jcu_errorcode_t
JCU_ERROR_OK
JCU_ERROR_PARAM
JCU_ERROR_STATUS

Error Code
No error has occurred.

An argument isn't right.
A function was called in an incorrect state.

Description Sets the Huffman table.
For the setting value of the Huffman table data, see "SH7268, SH7269 Group User's Manual:
Hardware" section 41.3.1(4).

Valid state This API function is valid in the following state.
SELECTED Status
READY Status
And it's can be executed in case of the Encode mode.

Description To the address selected by the table number and by the AC/DC data, Huffman table data is
set/

Comment Even when more than one picture data is encoded, this table data should be set once.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 33 of 46
Nov.27 2017

2.2.21 R_JCU_GetEncodedSize
API jcu_errorcode_t R_JCU_GetEncodedSize (size_t* const out_Size);
Header #include " r_jcu_api.h"
Parameter [out] size_t* const out_Size Pointer to variable of the data size.
Return value

jcu_errorcode_t
JCU_ERROR_OK

Error Code
No error has occurred.

Description Gets the size of data to be compressed.
Valid state This API function can execute every state. If data is read before interrupt of encoding

complete, the data is not guaranteed
Description Gets the size of JPEG data to be compressed.

If data is read before interrupt of encoding complete, the data is not guaranteed.
Comment

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 34 of 46
Nov.27 2017

3. Other function, define macro
3.1 User defined function

This driver's "jcu_pl.c" is a porting layer. Each function is possible to be modify as "User defined" functions. The
following describes "User defined" functions.

3.1.1 R_JCU_OnInitialize
Function
name

errnum_t R_JCU_OnInitialize(void);

Header #include "r_jcu_pl.h"
Parameter void
Return value

errnum_t
0
E_OTHERS

Error information
No error.
Other error.

Description Initializes the user defined process.
By default, the following processing is executed.
- Clock control
- Set interrupt priority

Valid state This function is not usually called from the user directly.
This function is callbacked from "R_JCU_Initialize" function. For detail, See2.2.1.

Description This function is user defined function.
If necessary, add execute process properly.

Comment

3.1.2 R_JCU_OnFinalize
Function
name

errnum_t R_JCU_OnFinalize(errnum_t e);

Header #include "r_jcu_pl.h"
Parameter errnum_t e Error information.
Return value errnum_t Error information. The argument is set just as it is.
Description Finalizes the user defined process.

By default, the following processing is executed.
- Clock control(stop)

Valid state This function is not usually called from the user directly.
This function is callbacked from "R_JCU_Finalize" and "R_JCU_FinalizeAsync" functions.
For detail, see2.2.2.

Description This function is user defined function.
If necessary, add execute process properly.

Comment

3.1.3 R_JCU_SetDefaultAsync
Function
name

void R_JCU_SetDefaultAsync(r_ospl_async_t* const Async, r_ospl_async_type_t
AsyncType);

Header #include "r_jcu_pl.h"
Parameter r_ospl_async_t* const Async General-purpose argument of OSPL. See. 2.1.4.

"NULL" can't be used.
 r_ospl_async_type_t AsyncType General-purpose argument of OSPL. See. 2.1.4.
Return value void
Description Sets the default value of the variable of r_ospl_async_t type structure.
Valid state This function is not usually called from the user directly.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 35 of 46
Nov.27 2017

This function is callbacked from "R_JCU_TerminateAsync", "R_JCU_StartAsync", and
"R_JCU_ContinueAsync" functions.

Description This function is user defined function.
This function is callbacked from asynchronous process of the JCU driver.
This function executes the following processing.
- Member of variable of r_ospl_async_t type structure corresponds to the "Flags" is set to
the default-value, if the 'Flags' member of the variable is zero.

Comment "ReturnValue" member of "r_ospl_async_t" type is not necessary to set in this function,
because "ReturnValue" is initialized in caller asynchronous function,

3.1.4 R_JCU_SetInterruptCallbackCaller
Function
name

errnum_t R_JCU_SetInterruptCallbackCaller(const r_ospl_caller_t* const Caller);

Header #include "r_jcu_pl.h"
Parameter const r_ospl_caller_t* const Caller General-purpose argument of OSPL. See. 2.1.4.
Return value errnum_t

 0
Error information.
 No error.

Description The object which the interrupt callback function is called is registered with driver's user
defined functions.

Valid state This function is not usually called from the user directly.
This function is callbacked from "R_JCU_StartAsync" and "R_JCU_ContinueAsync"
functions.

Description This function is user defined function.
This function is callbacked from asynchronous process of the JCU driver.
This function executes the following processing.
- Registers the value of the "Caller" argument of the R_OSPL_CallInterruptCallback
function which is callbacked when this function was callbacked from the interrupt handler.

Comment

3.1.5 R_JCU_OnEnableInterrupt
Function
name

void R_JCU_OnEnableInterrupt(jcu_interrupt_lines_t const Enables);

Header #include "r_jcu_pl.h"
Parameter jcu_interrupt_lines_t const Enables The kind of interrupt as the bit flag value.
Return value void
Description It's made interrupt enabled.
Valid state This function is not usually called from the user directly.

This function is callbacked when OSPL does I-LOCK release.
Description This function is user defined function.

This function is callbacked from the processing which the JCU driver enables an interrupt.
This function executes the following processing.
-Interrupt-service of JCU is enabled to execute.

Comment

3.1.6 R_JCU_OnDisableInterrupt
Function
name

void R_JCU_OnDisableInterrupt(jcu_interrupt_lines_t const Disables1);

Header #include "r_jcu_pl.h"

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 36 of 46
Nov.27 2017

Parameter jcu_interrupt_lines_t const Enables The kind of interrupt as the bit flag value.
Return value void
Description It's made interrupt Disabled.
Valid state This function is not usually called from the user directly.

This function is callbacked when OSPL does I-LOCK set.
Description This function is user defined function.

This function is callbacked from the processing which the JCU driver disables an interrupt.
This function executes the following processing.
-Interrupt-service of JCU is disabled to execute.

Comment

3.1.7 R_JCU_OnInterruptDefault
Function
name

errnum_t R_JCU_OnInterruptDefault(const r_ospl_interrupt_t* const InterruptSource,
 const r_ospl_caller_t* const Caller);

Header #include "r_jcu_pl.h"
Parameter const r_ospl_interrupt_t* const

InterruptSource
Pointer to variable of interrupt source information.
see.2.1.4.

 const r_ospl_caller_t* const Caller General-purpose argument of OSPL. See. 2.1.4.
Return value void
Description The interruption callback function of the default.
Valid state This function is not usually called from the user directly.

This function is callbacked from "R_OSPL_CallInterruptCallback" functions, in case of
default.

Description This function is user defined function.
This function is callbacked from the interrupt service routine of the JCU driver.
This function executes the following processing.

- Call R_JCU_OnInterrupting function and R_JCU_OnInterrupted function
- Set the event registered with an Async structure.

Comment

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 37 of 46
Nov.27 2017

3.2 The function of OS Porting Layer(OSPL)
In JCU driver, OS Porting Layer(OSPL) is used. The following table describes OSPL functions used by this driver.

For detail, see. "OSPL" Application Note for SH7268/7269.

Table 11 OSPL functions

Function name Description

R_OSPL_CALLER_Initialize Call Initialize function.
R_OSPL_THREAD_GetCurrentId Get running thread ID.
R_OSPL_DisableAllInterrupt Disables all interrupts.
R_OSPL_EnableAllInterrupt Releases all disabled interrupts.
R_OSPL_FLAG32_InitConst Clears all flags in 32bit to 0.
R_OSPL_FLAG32_Set Set one or some bits to 1.
R_OSPL_FLAG32_Clear Set one or some bits to 0.
R_OSPL_FLAG32_Get Get 32bit flags value.
R_OSPL_FLAG32_GetAndClear Returns the value of flags and clears all

bits to 0.
R_OSPL_EVENT_Wait Waits for setting the flags in 16bit and clear

received flags.
R_OSPL_EVENT_Set Set one or some bits to 1.
R_OSPL_EVENT_Clear Set one or some bits to 0.
R_OSPL_EVENT_Allocate Allocate thread attached event
R_OSPL_EVENT_Free Return thread attached event

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 38 of 46
Nov.27 2017

3.3 Porting from old version(before Ver0.09)
This driver of the new version(after Ver0.10) changes the basic type name, constant name, variable type, struct name,

and function name. When porting from old version, please change each definition with the following table.

If application sources of old version JCU driver were included "typedefine.h" and "jcu_namecnv.h" header file, they
are able to use a definition of an old edition.

Table 12 Basic Type Name

new version old version define

int8_t _SBYTE *1 typedef signed char
uint8_t _UBYTE typedef unsigned char
int16_t _SWORD typedef signed short
uint16_t _UWORD typedef unsigned short
int32_t *1 _SINT *1 typedef signed int
uint32_t *1 _UINT *1 typedef unsigned int
int32_t *1 _SDWORD typedef signed long
uint32_t *1 _UDWORD typedef unsigned long
char_t _SBYTE *1 typedef char
bool_t JCU_Boolean typedef int
int_fast32_t _SINT *1 typedef int
uint_fast32_t _UINT *1 typedef unsigned int

*1 There are more than one types which is corresponded. For example, "_SBYTE" type of the old version
corresponds to "int8_t" and "char_t" type of the new version.

Table 13 Constant type, Variable type

new version old version

jcu_errorcode_t JCU_ErrorCode
jcu_codec_t JCU_codec
jcu_continue_type_t JCU_ContinueType
jcu_detail_error_t JCU_DetailError
jcu_int_detail_error_t JCU_IntDetailError
jcu_interrupt_line_t JCU_InterruptLine
jcu_interrupt_lines_t JCU_InterruptLines
jcu_swap_t JCU_Swap
jcu_sub_sampling_t JCU_SubSampling
jcu_decode_format_t JCU_DecodeFormat
jcu_jpeg_format_t JCU_JpegFormat
jcu_huff_t JCU_HuffType
jcu_table_no_t JCU_TableNo
jcu_color_element_t JCU_ColorElement
jcu_status_information_t JCU_statusInformation
jcu_codec_status_t JCU_codecStatus

Table 14 Structure Name

new version old version

jcu_count_mode_param_t JCU_CountModeParam
jcu_buffer_t JCU_Buffer

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 39 of 46
Nov.27 2017

jcu_buffer_param_t JCU_BufferParam
jcu_decode_param_t JCU_DecodeParam
jcu_image_info_t JCU_ImageInfo
jcu_encode_param_t JCU_EncodeParam
jcu_async_status_t JCU_AsyncStatus
jcu_internal_information_t JCU_InternalInformation

Table 15 Function Name

new version old version

R_JCU_Initialize JCU_Initialize
R_JCU_Terminate JCU_Terminate
R_JCU_SelectCodec JCU_SelectCodec
R_JCU_Start JCU_Start
R_JCU_SetCountMode JCU_SetCountMode
R_JCU_Continue JCU_Continue
R_JCU_SetCallbackFunction* JCU_SetCallbackFunction
R_JCU_SetDecodeParam JCU_SetDecodeParam
R_JCU_GetImageInfo JCU_GetImageInfo
R_JCU_GetErrorInfo JCU_GetErrorInfo
R_JCU_SetQuantizationTable JCU_SetQuantizationTable
R_JCU_SetHuffmanTable JCU_SetHuffmanTable
R_JCU_GetEncodedSize JCU_GetEncodedSize
R_JCU_SetEncodeParam JCU_SetEncodeParam
R_JCU_TerminateAsync JCU_TerminateAsync
R_JCU_GetAsyncStatus JCU_GetAsyncStatus
R_JCU_StartAsync JCU_StartAsync
R_JCU_SetPauseForImageInfo JCU_SetPauseForImageInfo

* In the new version, there are no "JCU_SetCallbackFunction" functions which much the old version. When
this function was used, please change the code using flowcharts in sample.

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 40 of 46
Nov.27 2017

4. Sample
In this section, the flowchart of encode/decode function is illustrated.

4.1 Encode (synchronous process)

Start

End

R_JCU_Initalize(...)

R_JCU_SelectCodec(JCU_Encode)

R_JCU_QuantizationTable(...)

R_JCU_HuffmanTable(...)

R_JCU_SetEncodeParam(...)

R_JCU_Start()

R_JCU_Terminate()

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 41 of 46
Nov.27 2017

4.2 Encode (asynchronous process)

Start

End

JCU_Initalize(...)

JCU_SelectCodec(JCU_Encode)

JCU_QuantizationTable(...)

JCU_HuffmanTable(...)

JCU_SetEncodeParam(...)

R_JCU_StartAsync()

*This function is able to set time-out time, and this function does polling by no waiting.

R_OSPL_EVENT_Wait() *

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 42 of 46
Nov.27 2017

4.3 Decode (synchronous process)

Start

End

R_JCU_Initalize()

R_JCU_SelectCodec(JCU_Decode)

R_JCU_SetDecodeParam(...)

R_JCU_SetPauseForImageInfo(...)

R_JCU_SetErrorInfo()

Possible to
decode

Impossible to decode*

* It is impossible to decode, when the pixel format of the decoded JPEG data was not "YCbCr4:2:2" or
"YCbCr4:2:0", or the image size (width or height) was zero.

R_JCU_Start()

R_JCU_GetImageInfo()

Image data

R_JCU_Continue()

R_JCU_Terminate()

SH7268/7269 Group JPEG Codec Unit Sample Driver

R01AN2338EJ0104 Rev. 1.04 Page 43 of 46
Nov.27 2017

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev. date Description

1.04 Nov.27, 2017 Only version number was updated due to updating the
JCU program.

The following items are revision record of the code:
 Correction to change the bit of JCU clock supply in

"R_JCU_OnInitialize" and "R_JCU_OnFinalize" function
from sampling rate converter (SRC) clock supply.

1.03 Feb.29, 2016 Updated to OSPL version 0.96.

Added calling API of allocation and free event flags.
1.00 Oct.9, 2014 1st version.

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with

an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
LSI, an associated shoot-through current flows internally, and malfunctions occur due to the
false recognition of the pin state as an input signal become possible. Unused pins should be
handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings

and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of
pins are not guaranteed from the moment when power is supplied until the reset process is
completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power reaches
the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not

access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock signal
has stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock
signal. Moreover, when switching to a clock signal produced with an external resonator (or by
an external oscillator) while program execution is in progress, wait until the target clock signal
is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number

may differ in terms of the internal memory capacity, layout pattern, and other factors, which can
affect the ranges of electrical characteristics, such as characteristic values, operating margins,
immunity to noise, and amount of radiated noise. When changing to a product with a different
part number, implement a system-evaluation test for the given product.

Notice Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

	JPEG Codec Unit "JCU" Sample Driver
	1. Outline
	1.1 environment
	1.2 Functions
	1.3 File structure
	1.4 Program size and section
	1.5 Concept
	1.6 State transition
	1.7 Interrupt handler
	1.8 Compiler switch
	1.8.1 Parameter check
	1.8.2 Interrupt handler definition

	1.9 Limitation
	1.9.1 Reserved word
	1.9.2 Stop during processing
	1.9.3 Output subsampling processing.

	2. API
	2.1 Data definition
	2.1.1 Basic types
	2.1.2 Constant
	(1) Version
	(2) jcu_errorcode_t
	(3) jcu_codec_t
	(4) jcu_continue_type_t
	(5) jcu_detail_error_t
	(6) jcu_int_detail_error_t
	(7) jcu_int_detail_errors_t
	(8) jcu_interrupt_line_t
	(9) jcu_interrupt_lines_t
	(10) jcu_swap_t
	(11) jcu_sub_sampling_t
	(12) jcu_decode_format_t
	(13) jcu_jpeg_format_t
	(14) jcu_huff_t
	(15) jcu_table_no_t
	(16) jcu_color_element_t
	(17) jcu_status_information_t
	(18) jcu_codec_status_t
	(19) jcu_sub_state_t
	(20) jcu_sub_status_t

	2.1.3 Structures
	(1) jcu_count_mode_param_t
	(2) jcu_buffer_t
	(3) jcu_buffer_param_t
	(4) jcu_decode_param_t
	(5) jcu_image_info_t
	(6) jcu_encode_param_t
	(7) jcu_async_status_t
	(8) jcu_internal_information_t
	(9) jcu_i_lock_t

	2.1.4 OS porting layer (OSPL)

	2.2 API Function
	2.2.1 R_JCU_Initialize
	2.2.2 R_JCU_Terminate
	2.2.3 R_JCU_TerminateAsync
	2.2.4 R_JCU_SelectCodec
	2.2.5 R_JCU_SetCountMode
	2.2.6 R_JCU_SetPauseForImageInfo
	2.2.7 R_JCU_SetErrorFilter
	2.2.8 R_JCU_Start
	2.2.9 R_JCU_StartAsync
	2.2.10 R_JCU_Continue
	2.2.11 R_JCU_ContinueAsync
	2.2.12 R_JCU_GetAsyncStatus
	2.2.13 R_JCU_OnInterrupting
	2.2.14 R_JCU_OnInterrupted
	2.2.15 R_JCU_SetDecodeParam
	2.2.16 R_JCU_GetImageInfo
	2.2.17 R_JCU_GetErrorInfo
	2.2.18 R_JCU_SetEncodeParam
	2.2.19 R_JCU_SetQuantizationTable
	2.2.20 R_JCU_SetHuffmanTable
	2.2.21 R_JCU_GetEncodedSize

	3. Other function, define macro
	3.1 User defined function
	3.1.1 R_JCU_OnInitialize
	3.1.2 R_JCU_OnFinalize
	3.1.3 R_JCU_SetDefaultAsync
	3.1.4 R_JCU_SetInterruptCallbackCaller
	3.1.5 R_JCU_OnEnableInterrupt
	3.1.6 R_JCU_OnDisableInterrupt
	3.1.7 R_JCU_OnInterruptDefault

	3.2 The function of OS Porting Layer(OSPL)
	3.3 Porting from old version(before Ver0.09)

	4. Sample
	4.1 Encode (synchronous process)
	4.2 Encode (asynchronous process)
	4.3 Decode (synchronous process)

	Website and Support
	Revision History
	General Precautions in the Handling of MPU/MCU Products
	Notice

