
 APPLICATION NOTE

R20AN0246EJ0100 Rev.1.00 Page 1 of 36

Apr 3, 2013

Smart Analog
System development procedure by using SA-Designer (RX family)

Introduction

This application note is intended to explain the steps involved in developing a simple system in an environment that
uses the Smart Analog, assuming the RX63N.

- Design of the Analog Front-end Circuit

- Creating Program

- Register and Build the Circuit Data

- Testing

Contents

1. Introduction .. 2
1.1 Development Environment .. 3
1.1.1 Hardware .. 3
1.1.2 Software ... 3

2. Development Procedure ... 4
2.1 Overview ... 4
2.1.1 Design of the Analog Front-end Circuit .. 5

(1) Starting the SA-Designer .. 5
(2) The Design of the New Circuit .. 5
(3) Creating a Circuit Diagram .. 7
(4) Generation Source File ... 8
2.1.2 Creating Program ... 9

(1) Starting CubeSuite+ .. 9
(2) New Project ... 10
(3) Creating Program .. 13
2.1.3 Register and Build the Circuit Data .. 16

(1) Register the Source Files to CubeSuite+ .. 16
(2) Build .. 18
2.1.4 Testing ... 19

(1) Download the Load Module .. 19
(2) Registration Variable to the Watch Window .. 24
(3) Run Program ... 26

3. Sample Programs .. 28
(1) Function main (In addition to the main function of RX63N.c) ... 28
(2) Initialization function (Add to RX63N.c)... 29
(3) Interrupt function (Add to intprg.c) ... 30
(4) Function SPI (Add to RX63N.c) .. 30

R20AN0246EJ0100
Rev.1.00

Apr 3, 2013

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 2 of 36

Apr 3, 2013

1. Introduction

This application note is intended to explain the steps involved in developing a simple system in an environment that
uses the Smart Analog, assuming the RX63N. The system uses a temperature sensor built into the "smart analog IC".
Depending on the temperature, change the blink rate of the LED. The system uses “Smart Analog IC” and “GR-
SAKURA” as CPU board. The application note explains the procedures of the load module that uses the High-
performance Embedded Workshop and the SA-Designer, and the procedures of testing program.

Figure 1 System summary

Smart Analog IC

LED GR-SAKURA

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 3 of 36

Apr 3, 2013

1.1 Development Environment
The application note uses the following development environments.

1.1.1 Hardware

・Host PC

・evaluation board: GR-SAKURA (RX63N), Smart Analog IC500

・E1 emulator

Figure 2 Hardware construction

 Figure 3 Constructing RX63N and Analog chip

1.1.2 Software

・SA-Designer (V1.00.00)

・IDE CubeSuite+ (Version 1.02.01)

CSI21

_SCK21

SI21
SO21

PC4

P33

RX63N Smart analog IC

_SCLK
SDO
SDI

_CS

SPI

_RESET

(AN4)P44 TEMPOUT

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 4 of 36

Apr 3, 2013

2. Development Procedure

2.1 Overview

The following instructions describe the construction procedures of the system.

It will be used the CubeSuite+ and the SA-Designer for the construction procedures. Followings are the steps of the
system development.

(1) Design the analog front-end circuit

Design the analog front-end circuit using with the SA-Designer.

(2) Programming the source codes

Program the source codes that set the clock, the ports, the A/D conversion functions of the
microcomputer, also for the operation of the system.

(3) Registering the setting program of the circuit data.

Register the C source codes made by the SA-Designer to the CubeSuite+, then build the
codes.

(4) Operation check

Connect the E1 emulator and write the program to the microcomputer, then check the
operations of the program.

Note: It will be needed to install the CubeSuite+ (At least Version V1.02.00) and the SA-Designer for the

program operations.

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 5 of 36

Apr 3, 2013

2.1.1 Design of the Analog Front-end Circuit

(1) Starting the SA-Designer

Start the SA-Designer by selecting the [SA-Designer] from the Start menu.

(2) The Design of the New Circuit

For the design of the analog front-end circuit, choose the destination device and the folder.

Click the GO in "Design New Circuit Diagram".

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 6 of 36

Apr 3, 2013

Choose the device and the folder for creating the codes in the “New dialog”.

[Device] Choose the device “RAA730500Z (Smart Analog IC500)”

[Folder name] Choose the folder arbitrarily. Choose "Smart_Analog" as above

image. Choose the folder as above image. The folder must be

existed in the computer.

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 7 of 36

Apr 3, 2013

(3) Creating a Circuit Diagram

Design the analog front-end circuit to use a temperature sensor. Change the settings from the initial state of the circuit
diagram as follows.

[Variable Output Voltage Regulator] Set the switch to "ON".

[Temperature Sensor] Set the switch to "ON".

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 8 of 36

Apr 3, 2013

(4) Generation Source File

Program the source codes to set the data of the designed circuits. Completion dialog will be displayed when you click
the "[Generate] - [Generate Source File]".

Three “C source files” will be made in the folder that you choose.

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 9 of 36

Apr 3, 2013

2.1.2 Creating Program

(1) Starting CubeSuite+

Launch the CubeSuite+, from menu of SA-Designer. It also can be launched from “Windows Start menu”.

And you need to install ”CubeSuite+” beforehand. Click [Startup IDE] of SA-Designer from “Tool”, then
“CubeSuite+” will be launched.

Open “Menu Window” with pressing [Start] after starting CubeSuite+.

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 10 of 36

Apr 3, 2013

(2) New Project

Create a project workspace in the CubeSuite+.

Press “GO” button in “Create New Project”.

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 11 of 36

Apr 3, 2013

Set the project information in [Create Project] dialog.

[Microcontroller] Choose "RX".

[Using microcontroller] Choose "R5F563NEDxFP(100pin)" in "RX63N".

[Kind of project] Choose "Applications(CC-RX)".

[Project name] Type "RX63N" as above image.

[Place] Choose “Smart_Analog” as above image. Check “Make the project

folder”.

Press “Create” button.

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 12 of 36

Apr 3, 2013

The Project will be made and be displayed in the tree of the Project Tree panel.

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 13 of 36

Apr 3, 2013

(3) Creating Program

Program the codes for using the clock settings and the function of A/D. As follows, the codes will be programmed in
the RX63N.c and ntprg.c samples which are made by the CubeSuite+ as sample. Refer to “3. Sample Programs” for the
programs that you need.

Open the source file “RX63N.c.”

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 14 of 36

Apr 3, 2013

Add procedures to the main function of the source file RX63N.c.

Also add the function hwinit and SPI initialization function to the RX63N.c.

Refer to “3. Sample Programs” for the programs that you need.

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 15 of 36

Apr 3, 2013

Add processing of Excep_S12AD_S12ADI0 interrupt function of the source file intprg.c.

Refer to “3. Sample Programs” for the programs that you need.

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 16 of 36

Apr 3, 2013

2.1.3 Register and Build the Circuit Data

(1) Register the Source Files to CubeSuite+

Register the source file, which is made by the SA-Designer to the project that you created in the CubeSuite+.

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 17 of 36

Apr 3, 2013

The Circuit data source file will be registered in the project tree.

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 18 of 36

Apr 3, 2013

(2) Build

Choose “Rebuild Project”, then make the load module file.

【Caution】

The following warning message will be shown after the link is started.

** L1100 (W) Cannot find "L" specified in option "start"

This message can be removed by deleting the section "L" which is specified by default during project creation.

To delete this section, go to [CC-RX(Build Tools)] - [Properties] - [Link Options] - [Section] in the project tree.

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 19 of 36

Apr 3, 2013

2.1.4 Testing

(1) Download the Load Module

Set the debug tool to use from the “Using Debug Tool” in the project tree of the CubeSuite+.

[RX Simulator(Debug Tool)] - [Using Debug Tool] Choose the " RX E1(JTAG)".

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 20 of 36

Apr 3, 2013

Set the clock and choose “Power target from the emulator” in Property window of Debug Tool.

[Clock] - [Main clock frequency] Specify "12.0000".

[Connection with Target Board] - [Power target from the emulator] Choose "YES".

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 21 of 36

Apr 3, 2013

Set the Timer and Memory access in Property window of Debug Tool.

 [Access Memory While Running] - [Access by stopping execution] Choose "YES".

[Timer] - [Operating frequency] Specify "50.0000".

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 22 of 36

Apr 3, 2013

Set the “debug information” in Property window of Debug Tool.

[Debug Information] - [Execute to the specified symbol after CPU Reset] Choose "No".

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 23 of 36

Apr 3, 2013

Choose [Download] from the [Debug]. Connect to the Debug Tool for downloading the load module.

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 24 of 36

Apr 3, 2013

(2) Registration Variable to the Watch Window

Register the variables to the watch window for checking the operation of the program.

Choose “g_temp” in the “RX63N.c” and click the right button and then choose “Register to Watch1”.

And register “g_temp_ref” in the same operation.

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 25 of 36

Apr 3, 2013

The variables will be displayed in the “Watch1 window”.

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 26 of 36

Apr 3, 2013

(3) Run Program

Check the system operations. “CPU Reset” must be chosen before execute the program.

Choose “CPU Reset” from “Debug” and then choose “Go” to execute the program.

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 27 of 36

Apr 3, 2013

Touch your finger to the microcomputer of ”Smart Analog IC500”. When you touch the “Smart Analog IC”, then the
temperature of the microcomputer will increase and get lower value of the variable “g_temp” of A/D conversion. Also,
the blink rate of LED will be increased.

Smart Analog IC

LED GR-SAKURA

In the sample program,
increase the blink rate
of LED with rising in
temperature about 3
degrees C.

The value of variable
"g_temp" which is A/D
conversion value
becomes smaller
according to the
characteristics of the
temperature sensor "-
5mV/degree C".

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 28 of 36

Apr 3, 2013

3. Sample Programs

The followings are the sample programs which are used in the application note.

(1) Function main (In addition to the main function of RX63N.c)

#include <machine.h>
#include "iodefine.h" /* RX63N I/O define table */
#include "r_sadesigner_reg.h" /* Smart Analog include */
#include "r_sadesigner.h" /* Smart Analog include */

void R_SAIC_Create(void);
void R_SAIC_Write(smartanalog_t * const p_saic_data);
void R_SAIC_Read(smartanalog_t * const p_saic_data, smartanalog_t * const p_saic_read_buf);
void hwinit(void);
extern smartanalog_t gp_smartanalog_data[];
 /* set Port data for LED */
#define led_0 PORTA.PODR.BIT.B0 /* LED0 */
#define led_1 PORTA.PODR.BIT.B1 /* LED1 */
#define led_2 PORTA.PODR.BIT.B2 /* LED2 */
#define led_3 PORTA.PODR.BIT.B6 /* LED3 */

/* Change the value according to the system * * * * * * * * * * * * * * * * */
#define DEF_TMP 20
/* */

volatile unsigned short g_temp = 0;
volatile unsigned short g_temp_ref;
volatile unsigned int g_count = 0;
volatile unsigned int g_timeofswitch = 10000;

void main(void)
{

 volatile short def;

 hwinit();

 R_SAIC_Create(); /* for Smart Analog */

 while(!g_temp){
 nop();
 }
 g_temp_ref = g_temp; /* read start condition */

 while(1){
 def = g_temp_ref - g_temp;
 if (g_count > g_timeofswitch) {
 led_0 = ~led_0;
 led_1 = ~led_1;
 led_2 = ~led_2;
 led_3 = ~led_3;

 g_count = 0;

 if (def > DEF_TMP) {
 g_timeofswitch = 5000;
 } else {
 g_timeofswitch = 25000;
 }
 }
 }
}

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 29 of 36

Apr 3, 2013

(2) Initialization function (Add to RX63N.c)

#define PSW_I_FLG 0x00010000
#define PSW_I_CLR 0x00000000
void hwinit(void)
{
 set_psw(PSW_I_CLR);

 SYSTEM.PRCR.WORD = 0xA503; /* disable Register protection */

 SYSTEM.MSTPCRA.LONG = 0xFFFDFFFF; /* enable MSTP S12AD */
 SYSTEM.MSTPCRB.LONG = 0xFFFDFFFF; /* enable MSTP RSPI0 */
 SYSTEM.MSTPCRC.LONG = 0xFFFF0000; /* */

 SYSTEM.SCKCR3.WORD = 0x0200; /* select Main Clock */
 SYSTEM.MOSCCR.BIT.MOSTP = 0; /* enable Main Clock */

 MPC.PWPR.BIT.B0WI = 0; /* disable MPC protection */
 MPC.PWPR.BIT.PFSWE = 1;

 MPC.PC5PFS.BYTE = 0x0D; /* set SPI RSPCKA/MOSIA/MISOA */
 MPC.PC6PFS.BYTE = 0x0D;
 MPC.PC7PFS.BYTE = 0x0D;
 MPC.P44PFS.BIT.ASEL = 1; /* set Smart Analog TEMP_OUT */

 MPC.PWPR.BIT.B0WI = 1; /* enable MPC protection */
 MPC.PWPR.BIT.PFSWE = 0;

 PORT1.PDR.BIT.B2 = 1; /* init Port for SAIC RESET */
 PORT1.PMR.BIT.B2 = 0;
 PORT1.PODR.BIT.B2 = 1;

 SYSTEM.PRCR.WORD = 0xA500; /* enable Register protection */

 PORTA.PODR.BYTE = 0; /* set Port for LED */
 PORTA.PDR.BYTE = 0x47;

 PORT4.PDR.BIT.B4 = 0; /* set Port for TEMP_OUT */
 PORT4.PMR.BIT.B4 = 0;

 PORTC.PDR.BYTE = 0x70; /* set Port Output PC4,PC5,PC6 */
 PORTC.PMR.BYTE = 0xE0; /* set Port General PC5,PC6,PC7 */

 PORTC.PODR.BIT.B4 = 1; /* set Port PC4 for CS */
 /* set S12AD */
 S12AD.ADCSR.BYTE = 0; /* clear ADST,CKS */
 S12AD.ADANS0.WORD = 0x0010; /* set AN004 */
 S12AD.ADCSR.BYTE = 0xD0; /* set ADST,ADCS,ADIE */

 led_0 = 1;
 led_2 = 1;

 set_psw(PSW_I_FLG);
}

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 30 of 36

Apr 3, 2013

(3) Interrupt function (Add to intprg.c)

(4) Function SPI (Add to RX63N.c)

(a) R_SAIC_Create()

/***/
/* R_SAIC_Create(); */
/***/
void R_SAIC_Create(void)
{
 volatile uint16_t w_count;

 PORT1.PODR.BIT.B2 = 0; /* Analog IC Reset */

 /* Change the waiting time according to the system */
 for (w_count = 0U; w_count < 0x82; w_count++)
 {
 nop();
 }

 PORT1.PODR.BIT.B2 = 1; /* Analog IC Reset release */

 R_SAIC_Write(gp_smartanalog_data);
}

// S12AD S12ADI0
#include "iodefine.h"
extern volatile unsigned short g_temp;
extern volatile unsigned int g_count;
void Excep_S12AD_S12ADI0(void){
 g_temp = S12AD.ADDR4;
 g_count++;
}

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 31 of 36

Apr 3, 2013

(b) R_SAIC_Write()

/***/
/* R_SAIC_Write(gp_smartanalog_data); */
/***/
void R_SAIC_Write(smartanalog_t * const p_saic_data)
{
 volatile uint8_t adrs;
 volatile uint8_t dat;
 volatile uint8_t wait;

 smartanalog_t *p_saic_write;
 p_saic_write = p_saic_data;

 RSPI0.SPCR.BYTE = 0; /* clear SPE,SPTIE */
 /* set ICU */
 ICU.IPR[102].BYTE = 1; /* set interrupt priority S12AD */
 ICU.IR[102].BIT.IR = 0; /* clear interrupt S12AD */
 ICU.IR[40].BIT.IR = 0; /* clear interrupt RSPI SPTI */
 ICU.IER[5].BIT.IEN0 = 1; /* enable interrupt RSPI SPTI */

 ICU.IER[12].BIT.IEN6 = 1; /* enable interrupt S12AD */

 RSPI0.SPCR.BYTE = 0x0B; /* set SPMS,MSTR,TXMD */
 RSPI0.SPCMD0.WORD = 0x0703; /* set SPB,LSBF,CPOL,CPHA */
 RSPI0.SPBR = 0x05;

 RSPI0.SPCR.BIT.SPE = 1; /* set SPE */
 RSPI0.SPCR.BIT.SPTIE = 1; /* set SPTIE */

 while (p_saic_write->address != 0xff)
 {
 PORTC.PODR.BIT.B4= 0;
 for (wait = 0U; wait < 10U; wait++) /* SA Stable waiting time (tSKA) */
 {
 nop();
 }

 adrs = (p_saic_write->address & 0x7f) | 0x80; /* 0x80 data write mode*/
 RSPI0.SPDR.WORD.H = adrs; /* send SAIC Address data */

 while (ICU.IR[40].BIT.IR == 0U); /* wait for CSI send */
 ICU.IR[40].BIT.IR = 0U;

 dat = p_saic_write->data;
 RSPI0.SPDR.WORD.H = dat;

 while (ICU.IR[40].BIT.IR == 0U); /* wait for CSI send */
 ICU.IR[40].BIT.IR = 0U;

 for (wait = 0U; wait < 10U; wait++) /* SA Stable waiting time (tKSA) */
 {
 nop();
 }
 PORTC.PODR.BIT.B4= 1; /* SAIC CS=H */
 for (wait = 0U; wait < 10U; wait++) /* SA Stable waiting time (tSHA) */
 {
 nop();
 }
 p_saic_write++;
 }
 RSPI0.SPCR.BIT.SPTIE = 0;
 RSPI0.SPCR.BIT.SPE = 0;
}

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 32 of 36

Apr 3, 2013

(c) R_SAIC_Read()

/***/
/* R_SAIC_Read(gp_smartanalog_data, saic_read_buf); */
/***/
void R_SAIC_Read(smartanalog_t * const p_saic_data, smartanalog_t * const p_saic_read_buf)
{
 volatile uint8_t adrs;
 volatile uint8_t wait;
 smartanalog_t *p_saic_write;
 smartanalog_t *p_saic_read;

 p_saic_write = p_saic_data;
 p_saic_read = p_saic_read_buf;

 RSPI0.SPCR.BYTE = 0; /* clear SPE,SPTIE */
 /* set ICU */
 ICU.IPR[102].BYTE = 1; /* set interrupt priority S12AD */
 ICU.IR[102].BIT.IR = 0; /* clear interrupt S12AD */
 ICU.IR[40].BIT.IR = 0; /* clear interrupt RSPI SPTI */
 ICU.IER[5].BIT.IEN0 = 1; /* enable interrupt RSPI SPTI */

 RSPI0.SPCR.BYTE = 0x09; /* set SPMS,MSTR */
 RSPI0.SPCMD0.WORD = 0x0703; /* set SPB,LSBF,CPOL,CPHA */
 RSPI0.SPBR = 0x05;

 RSPI0.SPCR.BIT.SPE = 1; /* set SPE */
 RSPI0.SPCR.BIT.SPTIE = 1; /* set SPTIE */

 while (p_saic_write->address != 0xff)
 {
 PORTC.PODR.BIT.B4= 0;
 for (wait = 0U; wait < 10U; wait++) /* SA Stable waiting time (tSKA) */
 {
 nop();
 }

 adrs = (p_saic_write->address) & 0x7f;
 p_saic_read->address = adrs; /* send SAIC Address data */
 RSPI0.SPDR.WORD.H = adrs; /* send SAIC Address data */

 while (ICU.IR[40].BIT.IR == 0U); /* wait for CSI send */
 ICU.IR[40].BIT.IR = 0U;

 RSPI0.SPDR.WORD.H = 0xff; /* send CSI dummy data */

 while (ICU.IR[40].BIT.IR == 0U); /* wait for CSI send */
 ICU.IR[40].BIT.IR = 0U;

 p_saic_read->data = (unsigned char)RSPI0.SPDR.WORD.H;

 for (wait = 0U; wait < 10U; wait++) /* SA Stable waiting time (tKSA) */
 {
 nop();
 }
 PORTC.PODR.BIT.B4= 1; /* SAIC CS=H */
 for (wait = 0U; wait < 10U; wait++) /* SA Stable waiting time (tSHA) */
 {
 nop();
 }
 p_saic_write++;
 p_saic_read++;
 }
 RSPI0.SPCR.BIT.SPTIE = 0;
 RSPI0.SPCR.BIT.SPE = 0;
}

Smart Analog System development procedure by using SA-Designer (RX family)

R20AN0246EJ0100 Rev.1.00 Page 33 of 36

Apr 3, 2013

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

A-1

Revision Record

Rev. Date
Description
Page Summary

1.00 Apr 3, 2013 — First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and

 equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial

 implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no

 use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement

 possibility of physical injury, and injury or damage caused by fire in

 redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to

 products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas

 regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

liability for malfunctions or damages arising out of the

safety measures to guard them against the

life support devices or systems, surgical

http://www.renesas.com

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Arcadiastrasse 10, 40472 D
Tel: +49-211-65030, Fax: +49-211-6503-1327

üsseldorf, Germany

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Canada Limited

Renesas Electronics Europe Limited

Renesas Electronics America Inc.

Renesas Electronics (China) Co., Ltd.

Renesas Electronics (Shanghai) Co., Ltd.

Renesas Electronics Europe GmbH

Renesas Electronics Taiwan Co., Ltd.

Renesas Electronics Singapore Pte. Ltd.

Renesas Electronics Hong Kong Limited

Renesas Electronics Korea Co., Ltd.

Renesas Electronics Malaysia Sdn.Bhd.

SALES OFFICES

© 2013 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

Electronics products or technology described in this document, you should comply with the applicable export control laws and

© 2013 Renesas Electronics Corporation and Renesas Solutions Corp.

Colophon 2.2

	1. Introduction
	1.1 Development Environment
	1.1.1 Hardware
	1.1.2 Software

	2. Development Procedure
	2.1 Overview
	2.1.1 Design of the Analog Front-end Circuit
	(1) Starting the SA-Designer
	(2) The Design of the New Circuit
	(3) Creating a Circuit Diagram
	(4) Generation Source File

	2.1.2 Creating Program
	(1) Starting CubeSuite+
	(2) New Project
	(3) Creating Program

	2.1.3 Register and Build the Circuit Data
	(1) Register the Source Files to CubeSuite+
	(2) Build

	2.1.4 Testing
	(1) Download the Load Module
	(2) Registration Variable to the Watch Window
	(3) Run Program

	3. Sample Programs
	(1) Function main (In addition to the main function of RX63N.c)
	(2) Initialization function (Add to RX63N.c)
	(3) Interrupt function (Add to intprg.c)
	(4) Function SPI (Add to RX63N.c)
	(a) R_SAIC_Create()
	(b) R_SAIC_Write()
	(c) R_SAIC_Read()

