

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Document No. U19684EJ1V0AN00 (1st edition)
Date Published March 2009 N

Application Note

V850ES/JG3-H, V850ES/JH3-H,
V850ES/JG3-U, V850ES/JH3-U

32-bit Single-Chip Microcontrollers

Updating USB Function Firmware

 2009

V850ES/JG3-H V850ES/JH3-H
μPD70F3760 μPD70F3765
μPD70F3761 μPD70F3766
μPD70F3762 μPD70F3767
μPD70F3770 μPD70F3771

V850ES/JG3-U V850ES/JH3-U
μPD70F3763 μPD70F3768
μPD70F3764 μPD70F3769

Application Note U19684EJ1V0AN 2

[MEMO]

Application Note U19684EJ1V0AN 3

1

2

3

4

VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the

CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may

malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,

and also in the transition period when the input level passes through the area between VIL (MAX) and

VIH (MIN).

HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is

possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS

devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed

high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND

via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must

be judged separately for each device and according to related specifications governing the device.

PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as

much as possible, and quickly dissipate it when it has occurred. Environmental control must be

adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that

easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static

container, static shielding bag or conductive material. All test and measurement tools including work

benches and floors should be grounded. The operator should be grounded using a wrist strap.

Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for

PW boards with mounted semiconductor devices.

STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power

source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does

not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the

reset signal is received. A reset operation must be executed immediately after power-on for devices

with reset functions.

POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external

interface, as a rule, switch on the external power supply after switching on the internal power supply.

When switching the power supply off, as a rule, switch off the external power supply and then the

internal power supply. Use of the reverse power on/off sequences may result in the application of an

overvoltage to the internal elements of the device, causing malfunction and degradation of internal

elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related

specifications governing the device.

INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current

injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and

the abnormal current that passes in the device at this time may cause degradation of internal elements.

Input of signals during the power off state must be judged separately for each device and according to

related specifications governing the device.

NOTES FOR CMOS DEVICES

5

6

Application Note U19684EJ1V0AN 4

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

MINICUBE is a registered trademark of NEC Electronics Corporation in Japan and Germany or a trademark in the

United States of America.

Windows XP and Windows Vista are registered trademarks or trademarks of Microsoft Corporation in the United

States and/or other countries.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries, including the United

States and Japan.

The information in this document is current as of February, 2009. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

Application Note U19684EJ1V0AN 5

PREFACE

Caution The sample programs used in this application note are simply for reference.

NEC Electronics does not guarantee the operation of these programs.

 Be sure to sufficiently evaluate the sample programs in your set before using

them.

Readers This application note is intended for users who understand the features of the

V850ES/JG3-H, V850ES/JH3-H, V850ES/JG3-U or V850ES/JH3-U, and are going to

develop application systems using this product.

Purpose This application note is intended to give users an understanding of the specifications

of the sample driver provided for using the USB function controller incorporated in the

V850ES/JG3-H, V850ES/JH3-H, V850ES/JG3-U, or V850ES/JH3-U.

Organization This application note is broadly divided into the following four sections:

• Overview of USB function firmware update

• Program organization

• How to use the application

• How to apply the sample program

How to Read This Document It is assumed that the readers of this manual have general knowledge in the fields of

electrical engineering, logic circuits, and microcontrollers.

 To learn about the hardware features (particularly the roles of registers and how they

should be set up) and electrical specifications of the V850ES/JG3-H, V850ES/JH3-H,

V850ES/JG3-U, and V850ES/JH3-U microcontrollers:

→ See the V850ES/JG3-H, V850ES/JH3-H Hardware User’s Manual and the

V850ES/JG3-U, V850ES/JH3-U Hardware User’s Manual.

To learn about the instruction set in detail:

→ See the V850ES Architecture User’s Manual.

Application Note U19684EJ1V0AN 6

Conventions Data significance: Higher digits on the left and lower digits on the right

Active low representation: xxx (overscore over pin or signal name)

Memory map address: Higher addresses on the top and lower addresses on

the bottom

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Binary/Decimal... XXXX

 Hexadecimal ... XXXXH or 0xXXXX

Prefix indicating power of 2

(address space, memory

capacity): K (kilo): 210 = 1,024

 M (mega): 220 = 1,0242

 G (giga): 230 = 1,0243

Data type: Word ... 32 bits

 Halfword ... 16 bits

 Byte ... 8 bits

Application Note U19684EJ1V0AN 7

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

 Documents related to V850ES/JG3-H, V850ES/JH3-H, V850ES/JG3-U, and

V850ES/JH3-U

Document Name Document No.

V850ES Architecture User’s Manual U15943E

V850ES/JG3-H, V850ES/JH3-H Hardware User’s Manual U19181E

V850ES/JG3-U, V850ES/JH3-U Hardware User’s Manual U19287E

V850 Microcontrollers Flash Memory Self Programming Library Type 04

Ver. 1.20 User’s Manual

U17819E

 Documents related to development tools (user’s manuals)

Document Name Document No.

QB-V850ESJX3H In-Circuit Emulator U19170E

QB-V850MINI On-Chip Debug Emulator U17638E

QB-MINI2 On-Chip Debug Emulator with Programming Function U18371E

Operation U18512E

C Language U18513E

Assembly Language U18514E

CA850 Ver. 3.20 C Compiler Package

Link Directives U18515E

PM+ Ver. 6.30 Project Manager U18416E

ID850QB Ver. 3.40 Integrated Debugger Operation U18604E

SM850 Ver. 2.50 System Simulator Operation U16218E

SM850 Ver. 2.00 or Later System Simulator External Part User

Open Interface

Specifications

U14873E

Operation U18601E SM+ System Simulator

User Open Interface U18212E

Basics U13430E

Installation U17419E

Technical U13431E

RX850 Ver. 3.20 Real-Time OS

Task Debugger U17420E

Basics U18165E

In-Structure U18164E

RX850 Pro Ver. 3.21 Real-Time OS

Task Debugger U17422E

AZ850 Ver. 3.30 System Performance Analyzer U17423E

PG-FP4 Flash Memory Programmer U15260E

PG-FP5 Flash Memory Programmer U18865E

Remarks 1. The starter kit (TK-850/JH3U-SP) is a product of Tessera Technology Inc. Contact Tessera

Technology Inc. for details.

 2. The USB standard was formulated and is managed by the USB Implementers Forum (USB-IF).

 To see the Universal Serial Bus Class Definitions for Communication Devices, visit the USB-IF

website (www.usb.org).

http://www.usb.org/

Application Note U19684EJ1V0AN 8

CONTENTS

CHAPTER 1 OVERVIEW... 10
1.1 Purpose ..10
1.2 Overview of Updating the USB Function Firmware...10

1.2.1 Features ..12
1.2.2 Folder organization..13

CHAPTER 2 EXECUTING THE SAMPLE PROGRAM FOR UPDATING THE USB FUNCTION
FIRMWARE... 14

2.1 Operating Environment ..14
2.2 Executing the Sample Program...14

2.2.1 Running the firmware update program ..15
2.2.2 Updating the firmware information...16
2.2.3 Installing the CDC driver..21

CHAPTER 3 FIRMWARE UPDATE PROGRAM .. 23
3.1 Organization of Files and Folders ...23

3.1.1 firm_update folder ...23
3.1.2 firm_update\include folder..24
3.1.3 firm_update\lib folder ..24
3.1.4 firm_update\src folder ..24
3.1.5 firm_update\usb_serial folder ...25
3.1.6 firm_update\obj folder ..25
3.1.7 firm_update\out folder ..25

3.2 Memory Map ..26
3.2.1 Memory map..26
3.2.2 Linker directive file (flash_update.dir) ...27

3.3 Boot Processing..32
3.3.1 Startup file (crtE.s) ...33
3.3.2 Checking where to branch to when the power is turned on ...37

3.4 Main Routine..38
3.4.1 Initializing the settings for USB communication (usbf_fwup_drvif.c)38

3.5 Interrupt Processing ...43
3.5.1 Interrupts in the flash environment (usbf_fwup_intentry.s) ..43

3.6 Writing to the On-Chip Flash Memory ..44
3.6.1 Writing to the flash memory ...44
3.6.2 Boot swapping ...46
3.6.3 Processing to update the firmware ..46
3.6.4 Updating the user-created program...49
3.6.5 Receiving data...53

3.7 CDC (Communications Device Class) ..55
3.7.1 Monitoring endpoints by polling ...56
3.7.2 Monitoring EP0 ..57
3.7.3 Monitoring EP1 ..60
3.7.4 Transmitting and receiving USB data ..62

Application Note U19684EJ1V0AN 9

CHAPTER 4 FILE TRANSFER APPLICATION...66
4.1 Development Environment ..66
4.2 Operation Overview..66
4.3 Organization of Files ..67

4.3.1 Application class (FlashSelfRewriteGUI) ...67
4.3.2 Application dialog box class (FlashSelfRewriteGUIDlg) ..68
4.3.3 Dialog box class used when a file is dragged and dropped (FlashSelfRewriteGUIDrop)70
4.3.4 Thread class that performs communication processing to update the firmware

(CommandThread) ...71
4.3.5 Common Processing Class (CommonProc) ..72
4.3.6 Class for serial communication with the COM port (SerialPort) ...74
4.3.7 Configuration file for using the application (UsbfUpdate.ini) ...76

4.4 Operating Mode...77
4.5 Display of Messages...78

CHAPTER 5 CREATING A PROGRAM...79
5.1 Setting Up PM+ (Specifying the HEX File Format) ..79
5.2 Boot Processing (Reset Vector Section)..80
5.3 Linker Directives (Restriction on Allocating User-Created Programs)...............................80

CHAPTER 6 CUSTOMIZATION...81
6.1 Modifying Files..81

6.1.1 Modifying the self-update program ..81
6.1.2 Modifying the ini file for the file transfer application ..84

CHAPTER 7 DATA COMMUNICATION SPECIFICATIONS...85
7.1 Specifications of the Communication Interface for Updating the Firmware85

7.1.1 Communication data sequence ...85
7.1.2 Data transmitted by the host ...86
7.1.3 Data transmitted by the evaluation board..89

Application Note U19684EJ1V0AN 10

CHAPTER 1 OVERVIEW

1.1 Purpose

The purpose of this application note is give readers an understanding of how to overwrite data in the on-chip flash

memory with user-specified values by using a flash-memory self-programming library (referred to hereafter as the self-

programming library), as well as how to execute processing using the USB function controller communications device

class (CDC hereafter).

This processing is illustrated using a sample program for updating the USB function firmware.

Note that the TK-850/JH3U-SP evaluation board that comes with an LCD panel is used as the evaluation

environment. The TK-850/JH3U-SP is a product of Tessera Technology, Inc. The self-programming library used is

Type 04 V1.20 from NEC Electronics.

1.2 Overview of Updating the USB Function Firmware

The sample program used to update the USB function firmware uses the file transfer application on the host

(computer) to transfer the specified files to the evaluation board by means of USB serial communication. These files

are then written to the boot area for the user-created program or to a memory location using the self-programming

library.

The sample program used to update the USB function firmware includes the following:

• Firmware update program

This program is written to the memory on the evaluation board and overwrites the USB function firmware via USB

serial communication.

• File transfer application

The file transfer application runs on the host and transfers the specified files to the evaluation board using serial

communication.

• Sample user-created program

This is a group of HEX files used to confirm that the programs are running correctly.

Touch panel program: Items can be manipulated by touching the LCD screen.

Photo frame program: Two images are switched repeatedly at set intervals.

The flow of data when updating the USB function firmware is shown below.

CHAPTER 1 OVERVIEW

Application Note U19684EJ1V0AN 11

Figure 1-1. Flow of Data When Updating USB Function Firmware

(Memory image)

CDC USB
connection

Firmware update
program

Host (Computer)

Data transferred from the
host is written to memory

Evaluation board

File transfer
application

User-created
program

Usually, the user-created program runs when the evaluation board is started up. However, the firmware update

program will run when the evaluation board is started up under certain conditions or when the evaluation board is

reset.

CHAPTER 1 OVERVIEW

Application Note U19684EJ1V0AN 12

1.2.1 Features

The sample program for updating the USB function firmware has the following features:

• The firmware update program uses four blocks (16 KB) of internal flash memory.

• The user-created program (HEX files) can be overwritten in Motorola S-record format or Intel extended HEX

format.

• Data can be written to any area in the memory by specifying memory addresses.

• All types of interrupts can be used in the user-created program.

The internal resources used by the firmware update program are shown in Table 1-1.

Table 1-1. Internal Resources Used by the Firmware Update Program

Resource Name Section Name Size (Bytes)

ROM (CONST) .const 24

ROM (TEXT) SelfLib_Rom.text

.text

5,444

ROM apstart 52

RAM (FLASHTEXT) SelfLib_ToRamUsrInt.text (8)

SelfLib_ToRamUsr.text (8)

SelfLib_RomOrRam.text (974)

SelfLib_ToRam.text (480)

flash.text (466)

1,936

RAM (DATA) .data (12)

.sdata (200)

.sbss (5,280)

.bss (2,048)

SelfLib_RAM.bss (32)

7,572

CHAPTER 1 OVERVIEW

Application Note U19684EJ1V0AN 13

1.2.2 Folder organization

The folders in the sample program for updating the USB function firmware are organized as shown in Figure 1-2

below.

Figure 1-2. Organization of Folders in the Sample Program for Updating the USB Function Firmware

USBF_Firmupdate driver XP

Vista

FirmupdateGUI source

firm_update

sample_program

The contents of these folders are described below.

(1) driver\XP

This folder stores the CDC driver for Windows XPTM.

JG3H_CDC_XP.inf: CDC driver for Windows XP

(2) driver\VISTA

This folder stores the CDC driver for Windows VistaTM.

JG3H_CDC_VISTA.inf: CDC driver for Windows Vista

(3) FimupdateGUI

This folder stores the file transfer application.

UsbfUpdate.exe: Executable file for the file transfer application

UsbfUpdate.ini: Configuration file for the file transfer application

(4) FirmupdateGUI\source

This folder stores the source program for the file transfer application. For details about this application, see

CHAPTER 4 FILE TRANSFER APPLICATION.

(5) firm_update

This folder stores the firmware update program. For details about this program, see CHAPTER 3 FIRMWARE

UPDATE PROGRAM.

(6) sample_program

This folder stores the sample user-created program.

photo_sample.hex: Photo frame program

touch_sample.hex: Touch panel program

Application Note U19684EJ1V0AN 14

 CHAPTER 2 EXECUTING THE SAMPLE PROGRAM FOR UPDATING THE USB FUNCTION
 FIRMWARE

This chapter describes how to execute the sample program for updating the USB function firmware.

The sample program for updating the USB function firmware is used to confirm that the user-created program has

updated the firmware information in the memory on the evaluation board, and is executed using a touch panel

program and then a photo frame program.

2.1 Operating Environment

The hardware environment is as follows:

• Evaluation board TK-850/JH3U-SP (product of Tessera Technology Inc.)

• Evaluation board CPU μPD70F3769 (V850ES/JH3-U)

• In-circuit emulator QB-V850MINI (MINICUBE®)

• USB cable For executing serial communication between the evaluation board and host

• Host Computer running Windows XP

The software environment is as follows:

• Integrated development environment PM+ V6.31

• Compiler CA850 W3.30

• Debugger ID850QB V3.50

• Sample program for updating USB function firmware, which includes the following:

 Firmware update program

 File transfer application

 Sample user-created program: Touch panel program

 Photo frame program

2.2 Executing the Sample Program

The operating environment in which the sample program for updating the USB function firmware is executed and

the execution procedure are shown below.

CHAPTER 2 EXECUTING THE SAMPLE PROGRAM FOR UPDATING THE USB FUNCTION FIRMWARE

Application Note U19684EJ1V0AN 15

2.2.1 Running the firmware update program

(1) Connect MINICUBE to the evaluation board as shown in Figure 2-1 below.

Figure 2-1. Connecting MINICUBE to the Evaluation Board

TK-850/JH3U-SP

CPU

AC adapter

MINICUBE

NWIRE1

ACIN

USB3

Host

7seg SW3 SW4 RESET

USB cable

(2) Start PM+. On the File menu, click Open Workspace, and then select the workspace file firm_update.prw.

Figure 2-2. Specifying the Workspace File

CHAPTER 2 EXECUTING THE SAMPLE PROGRAM FOR UPDATING THE USB FUNCTION FIRMWARE

Application Note U19684EJ1V0AN 16

(3) On the Build menu, click Debug. The firmware update program is written to the evaluation board.

Figure 2-3. Writing the Firmware Update Program to the Evaluation Board

2.2.2 Updating the firmware information

(1) To update the firmware information, disconnect MINICUBE, and then connect the host to the evaluation board

using the USB cable, as shown in Figure 2-4 below.

Figure 2-4. Connecting the Host to the Evaluation Board

TK-850/JH3U-SP

CPU

AC adapter

NWIRE1

ACIN

USB3

Host

7seg SW3 SW4 RESET

USB cable

CHAPTER 2 EXECUTING THE SAMPLE PROGRAM FOR UPDATING THE USB FUNCTION FIRMWARE

Application Note U19684EJ1V0AN 17

(2) Press the RESET button while holding down the SW3 and SW4 switches. When the mode changes to update

mode, the host is ready to transfer data.

Caution The CDC driver must be installed the first time the mode changes to update mode after

connecting the host to the TK-850/JH3U-SP evaluation board. For details, see 2.2.3 Installing

the CDC driver.

(3) Load the HEX files of the sample user-created program to be transferred to the evaluation board into the host

by specifying touch_sample.hex from the touch panel program. Start the file transfer application on the

host (see Figure 2-5).

 Click the Load File button, and then select the HEX file to be transferred. The file can be specified by typing

the file path directly into the Path textbox, or by dragging the file path and dropping it into the Path textbox.

 Under Mode, select Chip. In the COM drop-down list, select the USB port to which the host is connected. The

USB port can be identified in the Device Manager window.

Caution The COM number differs depending on the environment.

Figure 2-5. Selecting the File to Be Transferred by the File Transfer Application

CHAPTER 2 EXECUTING THE SAMPLE PROGRAM FOR UPDATING THE USB FUNCTION FIRMWARE

Application Note U19684EJ1V0AN 18

Figure 2-6. Identifying the USB Port Using the Device Manager

(4) Click the Update button in the USB Function Firmware Update window. A message indicating the start of

transfer is displayed, the files are transferred, and the firmware information is updated.

(5) When the file transfer and firmware information update are complete, the file transfer application displays a

message indicating the end of file transfer. This also means that the firmware information has been updated.

CHAPTER 2 EXECUTING THE SAMPLE PROGRAM FOR UPDATING THE USB FUNCTION FIRMWARE

Application Note U19684EJ1V0AN 19

Figure 2-7. End of Firmware Update 1

(6) Reset the evaluation board and start the user-created program that was written to the evaluation board in the

previous steps.

 Items on the LCD screen can now be manipulated by touching the screen directly.

(7) Update the user-created program. Load the photo frame program photo_sample.hex and execute the

above procedure again from step (4).

CHAPTER 2 EXECUTING THE SAMPLE PROGRAM FOR UPDATING THE USB FUNCTION FIRMWARE

Application Note U19684EJ1V0AN 20

Figure 2-8. End of Firmware Update 2

(8) Reset the evaluation board and start the user-created program that was written to the evaluation board in the

previous steps.

 The images on the LCD screen will switch at set intervals.

CHAPTER 2 EXECUTING THE SAMPLE PROGRAM FOR UPDATING THE USB FUNCTION FIRMWARE

Application Note U19684EJ1V0AN 21

2.2.3 Installing the CDC driver

The CDC driver must be installed on the host the first time the mode changes to update mode after connecting the

host to the TK-850/JH3U-SP evaluation board. The procedure for installing the CDC driver is shown below, using the

Windows XP environment as an example.

(1) When the host detects new hardware, it opens the Found New Hardware wizard window. Select Install from

a list or specific location (Advanced), and then click Next.

Figure 2-9. Found New Hardware Wizard

(2) Under Search for the best driver in these locations, select Include this location in the search.

 Click Browse, select the folder that includes the file JG3H_CDC_XP.inf, and then click Next.

Figure 2-10. Selecting the Driver Location

CHAPTER 2 EXECUTING THE SAMPLE PROGRAM FOR UPDATING THE USB FUNCTION FIRMWARE

Application Note U19684EJ1V0AN 22

(3) A warning message appears. Click Continue Anyway.

Figure 2-11. Warning Message

(4) The installation wizard ends with the following window. Click Finish.

Figure 2-12. End of Installation

Application Note U19684EJ1V0AN 23

CHAPTER 3 FIRMWARE UPDATE PROGRAM

This chapter describes the files used by the firmware update program.

3.1 Organization of Files and Folders

The files and folders that store the source code of the firmware update program are organized as follows.

Figure 3-1. Organization of Firmware Update Program Folders

lib850

inc850

firm_update include

src

usb_serial

obj

Lib

out

r32

src

include

3.1.1 firm_update folder

This folder stores the project files used by the firmware update program. The main project files in the

firm_update folder are shown in Table 3-1 below.

Table 3-1. Project Files Used by the Firmware Update Program

File Name Description

firm_update.prw PM+ workspace file

firm_update.prj PM+ project file

firm_update.pri PM+ project PRI file

firm_update.cld PM+ project CLD file

firm_update.mak Make file

firm_update.dir Linker directive file

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 24

3.1.2 firm_update\include folder

This folder stores the header files used by the firmware update program.

Table 3-2. Header Files Used by the Firmware Update Program

File Name Description

usbf_fwup.h Header file used when executing self updating

usbf_fwup_drvif.h Header file for the USB function control driver interface

usbf_fwup_mem_def_usr.h Header file in which the firmware update memory allocation has been customized

by the user

3.1.3 firm_update\lib folder

This folder stores the self-programming library.

Table 3-3. Self-Programming Library and Library Header Files

File Name Description

inc850\nec_types.h Header file defining types in a unified format

inc850\SelfLib.h Header file for the self-programming library

lib850\r32\libf.a Self-programming library

3.1.4 firm_update\src folder

This folder stores the source files for the firmware update program.

Table 3-4. Source Files for Firmware Update Program

File Name Description

crtE.s Startup file

main.c Main routine source file

usbf_fwup_intentry.s Interrupt entry source file in the flash environment

(For details about the flash environment, see 3.5 Interrupt Processing.)

usbf_fwup.c Source file used when executing self updating

usbf_fwup_execram.c Source file used to write data to the flash memory

usbf_fwup_pwonchk_usr.c Source file customized by the user

(Specify code for determining whether to execute the self-update program or the

user-created program in this file.)

usbf_fwup_drvif.c Source file for interfacing with the CDC driver

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 25

3.1.5 firm_update\usb_serial folder

This folder stores the source files and header files used by the CDC program.

Table 3-5. Source Files and Header Files Used by the CDC Program

File Name Description

include\usbf850_types.h Header file defining types in a unified format

include\usbf850_error.h Header file defining end codes and error codes

include\usbf850_jx3h.h Header file defining the macro for specifying USB register settings

include\usbf850_sfr_jx3h.h Header file defining the macro for controlling USB function registers

include\usbf850_desc_com.h Header file containing descriptor definitions

include\usbf850_com.h Header file for executing processing specific to the CDC

include\usbf850_devif.h Header file defining the interface with the CDC driver

src\usbf850_jx3h.c Source file for initializing the USB registers, controlling the endpoints, and

executing bulk and control transfers

src\usbf850_com.c Source file for executing processing specific to the CDC

3.1.6 firm_update\obj folder

This folder stores the object files used by the firmware update program.

3.1.7 firm_update\out folder

This folder stores the executable object file and HEX file used by the firmware update program.

File Name Description

romp.out Executable object file

firm_update.hex Executable object file in HEX format

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 26

3.2 Memory Map

This section describes the memory allocation and the linker directive file.

3.2.1 Memory map

The memory map of the self-update program is shown below.

In the memory map below, block refers to the unit in which the internal flash memory is updated by the self-

programming library.

Figure 3-2. Memory Map

CS0
Internal ROM area 00000000H

CS1

CS2

CS3

Use prohibited

Use prohibited

Internal RAM area (48 KB)

On-chip peripheral I/O area

00200000H

00400000H

00800000H

01000000H

03FEC000H

03FF3000H

03FFF000H

03FFFFFFH

External memory
area

Block 127 (4 KB)

:

Block 32 (4 KB)

Block 31 (4 KB)

:

Block 17 (4 KB)

Block 16 (4 KB)

Block 15 (4 KB)

:

Block 1 (4 KB)

Block 0 (4 KB)

Boot area (64 KB)

00010000H

00000000H

Access prohibited

00080000H

000FFFFFH

Application area

Unused

Self-programming
library data

Stack area

03FF3000H

Self-programming
library program

μPD70F3769 (V850ES/JH3-U)

00020000H

Area switched by boot
swapping (64 KB)

Interrupt entry table
in flash environment

Program for writing
flash memory

Block 123 (4 KB)

:

Block 124 (4 KB) 0007C000H

Firmware update
program

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 27

3.2.2 Linker directive file (flash_update.dir)

The linker directive file (flash_update.dir) is used to assign areas. The memory is mapped by defining

segments.

Areas such as executable sections (.text: program data), nonexecutable sections (.const: constant data), and

RAM areas are allocated to the memory of the μPD70F3769 (V850ES/JH3-U) based on the information in this file.

(1) Assignment of ROM area

Data used by the firmware update program is allocated to the 16 KB ROM area of addresses 0007C000H to

0007FFFFH. The user-created program must therefore be allocated within the 496 KB ROM area of addresses

00000000H to 0007BFFFH.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 28

Figure 3-3. Linker Directives for the Assigning ROM Area

CONST : !LOAD ?R V0x7c000 {

.const = $PROGBITS ?A .const;

};

TEXT : !LOAD ?RX {

SelfLib_Rom.text = $PROGBITS ?AX SelfLib_Rom.text;

.text = $PROGBITS ?AX .text;

};

APSTART : !LOAD ?RX V0x7f000 {

apstart.text = $PROGBITS ?AX apstart.text;

};

Self-programming

library program

Firmware update

program

CONST

APSTART

ROMization

information rompsec

16 KB

00FFFFFH Access-prohibited

area

TEXT

007C000H

007F000H

User-created

program start code

0080000H

User-created

program 0000000H

Data for firmware

update program

The sections added by these directives are described below.

Section Description

SelfLib_Rom.text Section used to initialize the self-programming library program

.text Section to which the firmware update program is allocated

apstart.text Area to which the code for jumping to the user-created program is

written. This code is executed by the firmware update program.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 29

(2) Assignment of the RAM area

The RAM area is allocated to addresses 3FF3000H to 3FFEFFFH.

The 8 bytes from address 3FF3000H constitute the interrupt entry table in the flash environment. Note that the

interrupt entry table is allocated to the RAM area even though the firmware update program does not use

interrupts in the flash environment. For details about interrupts, see 3.5 Interrupt Processing.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 30

Figure 3-4. Linker Directives for Assigning the RAM Area

FLASHTEXT: !LOAD ?RX V0x3ff3000 {

 SelfLib_ToRamUsrInt.text = $PROGBITS ?AX SelfLib_ToRamUsrInt.text;

 SelfLib_ToRamUsr.text = $PROGBITS ?AX SelfLib_ToRamUsr.text;

 SelfLib_RomOrRam.text = $PROGBITS ?AX SelfLib_RomOrRam.text;

 SelfLib_ToRam.text = $PROGBITS ?AX SelfLib_ToRam.text;

 flash.text = $PROGBITS ?AX flash.text;

};

DATA : !LOAD ?RW {

.data = $PROGBITS ?AW .data;

.sdata = $PROGBITS ?AWG .sdata;

.sbss = $NOBITS ?AWG .sbss;

.bss = $NOBITS ?AW .bss;

SelfLib_RAM.bss = $NOBITS ?AW SelfLib_RAM.bss;

};

Interrupt entry table

in flash environment 03FF3000H

DATA

FLASHTEXT

03FFEFFFH
Unused area

No restrictions
on allocation

Program for writing

flash memory

Data for firmware

update program

Self-programming

library data

Self-programming

library program

Stack area

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 31

The sections added by these directives are described below.

Section Description

SelfLib_ToRamUsrInt.text Section used to execute interrupt processing in the self-

programming library

SelfLib_ToRamUsr.text Section where the user-created program is allocated

SelfLib_RomOrRam.text Section used to interface with the self-programming library

SelfLib_ToRam.text Section used to call the flash macro service in the self-

programming library

flash.text Work area on the RAM for the firmware update program

SelfLib_RAM.text Work area for the self-programming library

For details about the linker directives, see the CA850 User’s Manual.

For details about the self-programming library, see V850 Microcontrollers Flash Memory Self-Programming

Library Type 04 Ver. 1.20 User’s Manual.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 32

3.3 Boot Processing

Boot processing is executed by the boot program before the main function (main () in C) is executed after the

V850 microcontroller is reset.

After the V850 microcontroller is reset, the following initialization processing is executed:

• The reset handler that operates when a reset occurs is set up.

• The startup routine registers are set up.

• The stack area is allocated and the stack pointer is set up.

• The area for storing the arguments of the main function is allocated.

• The tp, gp, and ep registers are set up, as well as the mask values for the mask registers.

• Peripheral I/O registers are initialized that is required before the main function is executed.

• The sbss, bss, sebss, tibss.byte, tibss.word, and sibss areas are initialized.

• The program branches to the main function.

The boot processing to be executed is defined in the startup file (crtE.s).

For details about this processing, see the CA850 User’s Manual.

With the firmware update program, there is also an option to branch to the user-created program and initialize the

V850 microcontroller during boot processing.

An overview of the boot processing is shown in Figure 3-5 below.

Figure 3-5. Overview of the Boot Processing in the Firmware Update Program

_start

Are SW3 and SW4 being
held down?

Yes

No

Initialization User-created program

starts

main function

Firmware update program User-created program

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 33

3.3.1 Startup file (crtE.s)

The startup file of the firmware update program is described below.

Figure 3-6. Startup File (1/4)

#---
special symbols
#---
 .extern __tp_TEXT, 4
 .extern __gp_DATA, 4
 .extern __ep_DATA, 4
 .extern __ssbss, 4
 .extern __esbss, 4
 .extern __sbss, 4
 .extern __ebss, 4

#---
C program main function
#---
 .extern _main
 .extern _usbf_fwup_pwonchk_usr

#---
for argv
#---
 .data
 .size __argc, 4
 .align 4
__argc:
 .word 0
 .size __argv, 4
__argv:
 .word #.L16
.L16:
 .byte 0
 .byte 0
 .byte 0
 .byte 0

#---
dummy data declaration for creating sbss section
#---
 .sbss
 .lcomm __sbss_dummy, 0, 0

#---
system stack
#---
 .set STACKSIZE, 0x800
 .bss
 .lcomm __stack, STACKSIZE, 4

#---
RESET handler
#---
 .section "RESET", text
 jr __start

The program branches to the
_start reset vector (0000H)
after a reset.

Allocates 2,048 bytes for the
stack area.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 34

Figure 3-6. Startup File (2/4)

 #---
application start routine
#---
 .section "apstart.text", text
 .align 4
 .globl __apstart
__apstart:
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 halt

#---
start up
pointers: tp - text pointer
gp - global pointer
sp - stack pointer
ep - element pointer
mask reg: r20 - 0xff
r21 - 0xffff
exit status is set to r10
#---
 .text
 .align 4
 .globl __start
 .globl __exit
 .globl __startend

__start:
 mov #__tp_TEXT, tp -- set tp register
 mov #__gp_DATA, gp -- set gp register offset
 add tp, gp -- set gp register
 mov #__stack+STACKSIZE, sp -- set sp register
 mov #__ep_DATA, ep -- set ep register

This is the area where the code for branching to the

start of the user-created program is written.

The self-update program updates this area when the

user-created program is written.

Sets up the tp, gp, ep, and
sp registers.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 35

Figure 3-6. Startup File (3/4)

 .option nowarning
 mov 0xff, r20 -- set mask register
 mov 0xffff, r21 -- set mask register
 .option warning

 mov #__ssbss, r13 -- clear sbss section
 mov #__esbss, r12
 cmp r12, r13
 jnl .L11
.L12:
 st.w r0, [r13]
 add 4, r13
 cmp r12, r13
 jl .L12
.L11:

 mov #__sbss, r13 -- clear bss section
 mov #__ebss, r12
 cmp r12, r13
 jnl .L14
.L15:
 st.w r0, [r13]
 add 4, r13
 cmp r12, r13
 jl .L15
.L14:

 #---
 # Which program is executed is examined.
 # Firm update program or User program.
 jarl _usbf_fwup_pwonchk_usr, lp
 cmp 0, r10
 jnz __apstart
 #---

 jarl ___Init_jh3u, lp

 .extern __S_romp, 4
 mov #__S_romp, r6
 mov -1, r7
 jarl __rcopy, lp

 ld.w $__argc, r6 -- set argc
 movea $__argv, gp, r7 -- set argv
 jarl _main, lp -- call main function
__exit:
 halt -- end of program
__startend:

The status of the switches is
referenced by the
usr_startchk function,
which judges whether to
branch to the user-created
program or the firmware
update program.

Shifts to V850
microcontroller initialization.

Transfers data to the RAM.

Sets up the mask registers.

Initializes the RAM.

The program branches to
the main function.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 36

Figure 3-6. Startup File (4/4)

 #--
initialize JH3-U SP Board
#--
___Init_jh3u:
 mov 0x12, r11
 st.b r11, VSWC

 mov 0x00, r11
 st.b r11, WDTM2

#- clock generation --------------------------------------
 mov 0x00, r11
 st.b r11, PRCMD
 st.b r11, PCC
 nop
 nop
 nop
 nop
 nop

 mov 0x01, r11
 st.b r11, RCM

 mov 0x0b, r11
 st.b r11, PRCMD
 st.b r11, CKC
 nop
 nop
 nop
 nop
 nop

__wait_clock:
 tst1 0, LOCKR
 jnz __wait_clock

 mov 0x03, r11
 st.b r11, PLLCTL

#-------------------- end of start up module --------------#

Specifies that the system
waits one cycle when the
bus accesses an on-chip
I/O register.

Stops the on-chip
oscillator.

Specifies the clock
multiplication rate.

Checks the frequency
stabilization time.

Starts operation in PLL mode.

Stops the watchdog timer.

Specifies the clock operation.

The CPU clock and the peripheral functions to be used are specified during initialization.

For details about using the evaluation board, see the TK-850/JH3U-SP User’s Manual.

For details about using the CPU, see the V850ES/JG3-U, V850ES/JH3-U Hardware User’s Manual.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 37

3.3.2 Checking where to branch to when the power is turned on

When the power is turned on, the usr_startchk function is called from the startup file and judges whether to

branch to the firmware update program or to the user-created program, according to the status of the SW3 and SW4

switches of the TK-850/JG3H. If both switches are being held down, the user-created program is executed. In other

cases, the firmware update program is executed.

Figure 3-7. Checking Where to Branch to When the Power Is Turned On

 #pragma ioreg

#define SW_PUSHED 0x00 /* pushed switch SW3 and SW4 */
#define SW_STATUS 0x03 /* switch status SW3 and SW4 */

s32 usbf_fwup_pwonchk_usr(void);

s32 usbf_fwup_pwonchk_usr(void){
 int ret = -1;
 unsigned char sts;

 sts = P9H;
 if ((sts & SW_STATUS) == SW_PUSHED) {
 ret = 0;
 }

 return ret;
}

Judges the status of the
SW3 and SW4 switches.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 38

3.4 Main Routine

At the end of boot processing, the program branches to the main function and executes the main routine.

In the main routine, the settings for CDC serial communication are initialized, and then the firmware update

program is executed.

Figure 3-8. Main Routine

 #define SERIAL_BUF_SIZE 512

static unsigned char serial_buf[SERIAL_BUF_SIZE];

int
main(int argc, char **argv)
{
 __EI();

 /* Initialize */
 usbf_fwup_drvif_init(serial_buf, SERIAL_BUF_SIZE);

 /* Update flash memory */
 usbf_fwup();

 return 0;
}

Initializes the CDC serial
communication settings.

Executes the firmware update
program.

3.4.1 Initializing the settings for USB communication (usbf_fwup_drvif.c)

The usbf_fwup_drvif.c file contains the function used to initialize the settings for USB serial communication.

The structure in which the functions used to receive data are defined is passed to the usbf850_devif_init

function. A pointer to the structure in which the functions used in the CDC processing are defined is received as the

return value and the initialization function in that structure is called.

Figure 3-9. Initialization of USB Communication Settings

void usbf_fwup_drvif_init(u08 *buf, s32 buf_len)
{
 recv_buf = buf;
 recv_buf_size = buf_len;

 cdc_funcs = usbf850_devif_init(&serial_funcs);
 cdc_funcs->init();

 usbf_fwup_drvif_clear_buffer ();
}

Sets the receive buffer
pointer and buffer size.

Initializes the
CDC settings.

Clears the receive buffer.

cdc_funcs and serial_funcs are defined in the same source file.

For details about the usbf_fwup_drvif_read function, see 3.7.3 Monitoring EP1.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 39

Figure 3-10. Definition of cdc_funcs and serial_funcs

static const struct usb_cdc_funcs_st *cdc_funcs = (const struct usb_cdc_funcs_st *)0;

static const struct usb_serial_funcs_st serial_funcs = {
 usbf_fwup_drvif_read
}; Specifies the usbf_fwup_drvif_read function for

reception processing.

The usb_serial_func_st and usb_cdc_func_st structures are defined in the usbf850_drvif.h file.

Figure 3-11. usb_serial_funcs_st and usb_cdc_funcs_st Structures

#ifndef __USBF850_DRVIF_H__
#define __USBF850_DRVIF_H__

struct usb_serial_funcs_st {
 void (*read)(UINT8 len);
};

struct usb_cdc_funcs_st {
 void (*init)(void);
 void (*int0b)(void);
 void (*int1b)(void);
 INT32 (*datasend)(UINT8* data, INT32 len, INT8 ep);
 INT32 (*datareceive)(UINT8* data, INT32 len, INT8 ep);
};

const struct usb_cdc_funcs_st *usbf850_devif_init(const struct usb_serial_funcs_st *funcs);

#endif/* __USBF850_DRVIF_H__ */

Structure for executing
CDC communication

Structure for executing
reception processing

The usbf850_devif_init function is defined in the usbf850_jx3h.c file.

Figure 3-12. usbf850_devif_init Function

 const struct usb_cdc_funcs_st *usbf850_devif_init(const struct usb_serial_funcs_st *funcs)
{
 serial_funcs = funcs;

 return &cdc_funcs;
}

Returns the cdc_funcs
pointer.

serial_funcs and cdc_funcs are defined in the same source file.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 40

Figure 3-13. Definition of serial_funcs and cdc_funcs

 static const struct usb_serial_funcs_st *serial_funcs = (const struct usb_serial_funcs_st *)0;

static const struct usb_cdc_funcs_st cdc_funcs = {
 usbf850_init,
 usbf850_intusb0b,
 usbf850_intusb1b,
 usbf850_data_send,
 usbf850_data_receive
};

Structure in which the functions
used for CDC communication are
defined

According to the above definition, the usbf850_init function is called by the cdc_funcs->init();

statement in the usbf_fwup_drvif_init function.

The usbf850_init function is shown below. For details about the usbf850_intusb0b, usbf850_intusb1b,

usbf850_data_send, and usbf850_data_receive functions, see 3.7 CDC (Communications Device Class).

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 41

Figure 3-14. usbf850_init Function

 void usbf850_init(void)
{
 INT32 i;

 UF0E0NA = C_EP0NKA;
 while (UF0E0NA != C_EP0NKA) {
 UF0E0NA = C_EP0NKA;
 }

 /* The initialization of the request data register area */
 UF0DSTL = 0x00; /* Bus Powered */
 UF0E0SL = 0x00;
 UF0E1SL = 0x00;
 UF0E2SL = 0x00;

 /* The total byte of the UF0CIEa register is long. */
 UF0DSCL = (C_CONF_DSC_wTotalLength_L - 1);
 for (i = 0; i < T_DEV_DSC[0]; i++) {
 USBF850REG_SET((UF0DD0_ADDRESS + (i*sizeof(INT16))), T_DEV_DSC[i]);
 }
 for (i = 0; i < T_CONF_DSC[2]; i++) {
 USBF850REG_SET((UF0CIE0_ADDRESS + (i*sizeof(INT16))), T_CONF_DSC[i]);
 }

 /* The initialization of the request data register area (The ending) */
 UF0MODC = 0x00; /* SET GET_DESCRIPTOR REQ. AUTO */

 /* The setting of Interface and Endpoint */
 UF0AIFN = 0x80; /* Interface0,1 Support */
 UF0AAS = 0x00; /* It is not in the Alternate setting. */

 /* SFR_UF0EnIM = xx// (It sets EP not to use to 0x00.) */
 UF0E1IM = 0x40;
 UF0E2IM = 0x40;
 UF0E7IM = 0x20;

 /* The setting of Interface and Endpoint (The ending) */
 UF0E0NA = 0x00; /* RESET EP0 NAK SEND */ /* RESET EP0 NAK SEND */

 /* The interrupt and FIFO relation register initialization */
 UF0IC0 = C_IC0_ALL; /* interrupt clear */
 UF0IC1 = C_IC1_ALL; /* interrupt clear */
 UF0IC2 = C_IC2_ALL; /* interrupt clear */
 UF0IC3 = C_IC3_ALL; /* interrupt clear */
 UF0IC4 = C_IC4_ALL; /* interrupt clear */

 UF0FIC0 = C_FIC0_ALL; /* The FIFO clearness, the counter reset */
 UF0FIC1 = C_FIC1_ALL; /* The FIFO clearness */

 /* The setting of a interrupt mask */
 UF0IM0 = C_IM0_ALL; /* ALL MASK */
 UF0IM1 = (C_IM1_ALL & (~C_CPUDEC)); /* CPUDEC mask clear */
 UF0IM2 = C_IM2_ALL; /* ALL Mask */
 UF0IM3 = (C_IM3_ALL & (~C_BKO1DT)); /* BKO1DT mask clear */
 UF0IM4 = C_IM4_ALL; /* ALL Mask */

 usbf850_setfunction_communication();

 /* D+ Pullup */
 PM4 = 0xFC;
 P4 = 0x02;
}

Returns NAK for all requests, including auto
requests.

Initializes the registers
storing request data.

Adds descriptor data and other data required to
respond to the GetDescriptor request to registers.

Shows the number of supported interfaces, shows the status of alternative
settings, sets the endpoint data to registers, and sets the endpoints.

Disables the
NAK setting.

Specifies the interrupt
mask settings.

Specifies pulling up the D+ signal.

Adds the CDC requests.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 42

Figure 3-15. Adding CDC Requests

 Void usbf850_setfunction_communication(void)
{
 int i;

 for (i = 0; i < 0x30; i++) {
 Req_Func_C[i] = usbf850_sstall_ctrl; /*reserved*/
 }
 /*CDC*/
 Req_Func_C[0x00] = usbf850_send_encapsulated_command;
 Req_Func_C[0x01] = usbf850_get_encapsulated_response;
 Req_Func_C[0x20] = usbf850_set_line_coding;
 Req_Func_C[0x21] = usbf850_get_line_coding;
 Req_Func_C[0x22] = usbf850_set_control_line_state;
}

Assigns functions with matching
request numbers to Req_Func_C.

For details about CDC requests, see 3.7 CDC (Communications Device Class).

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 43

3.5 Interrupt Processing

3.5.1 Interrupts in the flash environment (usbf_fwup_intentry.s)

Flash environment refers to a state in which the on-chip flash memory can be manipulated (written and erased).

The flash environment can be entered and exited by calling the FlashEnv function from the self-programming library

while the main routine is executing.

The on-chip flash memory cannot be referenced in the flash environment, so the occurrence of non-maskable

interrupts will cause the program to jump to the top of the internal RAM, and the occurrence of maskable interrupts,

software exceptions, and exception traps will cause the program to jump to the 4-byte area at the top of the RAM. The

interrupt entry table in the flash environment is described in the usbf_fwup_intentry.s file.

With the firmware update program, however, interrupts are not used in the flash environment, so the interrupt

processing described in this file does not occur. Note that, even if the self-programming library does not execute

interrupt processing, the processing must still be specified in the library as a dummy section. The code in this dummy

section is shown in Figure 3-16 below.

Figure 3-16. Interrupts in the Flash Environment

-- flash_int.s --

 .section "SelfLib_ToRamUsrInt.text", text

 .globl __SELFLIB_NMI_VECTOR
 .globl __SELFLIB_INT_VECTOR

 .align 4
__SELFLIB_NMI_VECTOR:
 jr __nmi_check_entry

 .align 4
__SELFLIB_INT_VECTOR:
 jr __int_check_entry

 .section "SelfLib_ToRamUsr.text", text
 .align 4
__nmi_check_entry:
 reti

 .align 4
__int_check_entry:
 reti

Interrupt entry table

Interrupt pre-processing

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 44

3.6 Writing to the On-Chip Flash Memory

The firmware update program updates the firmware and specified memory areas by overwriting the contents of the

on-chip flash memory.

The firmware update program uses the self-programming library to write data to the on-chip flash memory.

There are four types of self-programming libraries, Type 01 to Type 04, which correspond with the type of flash

memory used. This evaluation board requires the Type 04 self-programming library.

For details about the self-programming library, see the V850 Microcontrollers Flash Memory Self-Programming

Library Type 04 Ver. 1.20 User’s Manual.

3.6.1 Writing to the flash memory

The on-chip flash memory of the μPD70F3769 (V850ES/JH3-U) used by this evaluation board is made up of 128

blocks (blocks 0 to 127). The flash memory can be erased and written in block units.

The usbf_fwup_from_write function defined in the usbf_fwup.c file executes the processing to write to the

specified block in the flash memory. The block to be written to and the data to be written are specified using the

flash_data_st structure, which is declared in the usbf_fwup.h file.

Figure 3-17. flash_data_st Structure

 #ifndef __USBF_FWUP_H__
#define __USBF_FWUP_H__

#define FLASH_BLOCK_SIZE (4096)

#define BOOT_FLAG_SETINFO (0x01)
#define BOOT_FLAG_BOOTSWAP (0x02)

struct flash_data_st {
 u32 block;
 u32 data_length;
 u08 data[FLASH_BLOCK_SIZE];
};

void usbf_fwup(void);
u32 usbf_fwup_from_write(struct flash_data_st *data, u08 flag);

#endif/* __USBF_FWUP_H__ */

Number of bytes in one
block

Boot swap processing
flag

Structure used to pass data to

the usbf_fwup_from_write

function

The block member in the flash_data_st structure specifies the number of the block to be written to and the

data member specifies the data to be written. The data_length member specifies the number of bytes of data to

be written.

The usbf_fwup_from_write function writes the data to the on-chip flash memory using the flash functions

provided by the self-programming library.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 45

Figure 3-18. Writing to the On-Chip Flash Memory

u32 usbf_fwup_from_write(struct flash_data_st *data, u08 flag)
{
 s32 *out;
 u32 ret;
 u32 info;
 u16 mask[6];

 mask[0] = IMR0;
 mask[1] = IMR1;
 mask[2] = IMR2;
 mask[3] = IMR3;
 mask[4] = IMR4;
 mask[5] = IMR5;
 IMR0 = 0xffff;
 IMR1 = 0xffff;
 IMR2 = 0xffff;
 IMR3 = 0xffff;
 IMR4 = 0xffff;
 IMR5 = 0xffff;

 /* FLMD0 to High */
 PM3.7 = 0;
 P3.7 = 1;

 /* Flash environment initialization */
 FlashEnv((u32)1);

 /* Status check of terminal FLMD */
 ret = FlashFLMDCheck();
 if (ret != SELFLIB_OK) {
 ret |= 0x00010000;
 goto end;
 }

 /* Get output address */
 out = (s32 *)(data->block * FLASH_BLOCK_SIZE);

 /* Delete block */
 ret = FlashBlockErase(data->block, data->block);
 if (ret != SELFLIB_OK) {
 ret |= 0x00020000;
 goto end;
 }
 do {
 ret = FlashStatusCheck();
 } while (ret == SELFLIB_BUSY);
 if (ret != SELFLIB_OK) {
 ret |= 0x00030000;
 goto end;
 }

 /* Flash writing */
 info = (data->data_length + 7) / 8;
 info *= 2;
 ret = FlashWordWrite(out, data->data, info);
 if (ret != SELFLIB_OK) {
 ret |= 0x00040000;
 goto end;
 }

 /* Internal verify */
 ret = FlashBlockIVerify(data->block, data->block);
 if (ret != SELFLIB_OK) {
 ret |= 0x00050000;
 goto end;
 }
 do {
 ret = FlashStatusCheck();
 } while (ret == SELFLIB_BUSY);
 if (ret != SELFLIB_OK) {
 ret |= 0x00060000;
 goto end;
 }

 /* Specification boot swap */
 if (flag & BOOT_FLAG_SETINFO) {
 info = 0x1f00003e;
 ret = FlashGetInfo((u32)4);
 ret &= 0x00000001;
 info |= ret;
 ret = FlashSetInfo(info, (u32)0);
 if (ret != SELFLIB_OK) {
 ret |= 0x00070000;
 goto end;
 }
 do {
 ret = FlashStatusCheck();
 } while (ret == SELFLIB_BUSY);
 if (ret != SELFLIB_OK) {
 ret |= 0x00080000;
 goto end;
 }
 }

 /* Execution boot swap */
 if (flag & BOOT_FLAG_BOOTSWAP) {
 ret = FlashBootSwap();
 if (ret != SELFLIB_OK) {
 ret |= 0x00090000;
 goto end;
 }
 }

 ret = 0;

end:
 /* Flash environment end */
 FlashEnv((u32)0);

 /* FLMD0 to Low */
 PM3.7 = 1;

 IMR0 = mask[0];
 IMR1 = mask[1];
 IMR2 = mask[2];
 IMR3 = mask[3];
 IMR4 = mask[4];
 IMR5 = mask[5];

 return ret;
}

Saves the interrupt
mask settings and
masks all interrupts.

The program enters
the flash environment.

Calculates the
address of the block
where data is to be
written.

Erases the block
where data is to be
written.

Writes the specified
data.

Specifies the boot
swap settings if the
boot swap setting flag
is set.

Executes boot
swapping if the boot
swap execution flag is
set.

The program exits the
flash environment.

Restores the saved
interrupt mask
settings.

Internally verifies the
block where data was
written.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 46

3.6.2 Boot swapping

The μPD70F3769 (V850ES/JH3-U) provides a boot swapping feature to protect the boot area and enable boot

processing to be executed normally if the power supply is cut while the boot area is being overwritten during

programming of the user-created program.

By using this feature, blocks 0 to 15 can be swapped with blocks 16 to 31 in the μPD70F3769 (V850ES/JH3-U).

Figure 3-19. Boot Swapping During Programming of the User-Created Program

Block

0 to 15

Block

16 to 31

Memory

Block

0 to 15

Block

16 to 31

<1> Data is written to the
 swap area (blocks 16
 to 31).

Memory

Block

0 to 15

<2> Data has been written.

Memory

Block

16 to 31

<3> The blocks are
swapped.

3.6.3 Processing to update the firmware

The on-chip flash memory is overwritten in block units. The firmware update program copies one of the blocks in

the area to be overwritten to a buffer, overwrites the data in the block, and writes the block back to the on-chip flash

memory. This means that the memory can be overwritten in 1-byte units.

Figure 3-20. Diagram of Overwriting Blocks

Block in area to be

overwritten

<1> The block is copied (using usbf_fwup_copy_block()).

Memory

•

•

•

•

•

<2> Data is written to the
 copied block.

<3> The block is written back (using
 usbf_fwup_from_write()).

flash_buf

Data is received from the host, responses are transmitted to the host, and data is overwritten using the usbf_fwup

function in the usbf_fwup.c file.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 47

Figure 3-21. Processing to Update the Firmware (1/2)

 void usbf_fwup(void)
{
 u32 first_addr;
 s32 ret;
 u08 code;

 /* start */
 ret = usbf_fwup_recv_record();
 while (ret != RECORD_TYPE_START) {
 usbf_fwup_send_startres(RESPONSE_NAK);

 ret = usbf_fwup_recv_record();
 }

 FlashInit();
 usbf_fwup_send_startres(RESPONSE_ACK);

 /* first block */
 ret = usbf_fwup_recv_record();
 while (ret != RECORD_TYPE_DATA) {
 if (ret == RECORD_TYPE_START) {
 usbf_fwup_send_startres(RESPONSE_ACK);
 }
 else if (ret == RECORD_TYPE_END) {
 goto end;
 }
 else {
 usbf_fwup_send_datares(RESPONSE_NAK);
 }

 ret = usbf_fwup_recv_record();
 }
 flash_addr = usbf_fwup_get_addr();
 flash_block = (u32)(flash_addr / FLASH_BLOCK_SIZE);

 if (flash_block < 16) {
 first_addr = flash_addr;
 flash_buf.block = flash_block + 16;
 flash_block = usbf_fwup_recv_block();
 if (first_addr == 0) {
 usbf_fwup_replace_apstart();
 }
 while (flash_block < 16) {
 __DI();
 ret = (s32)usbf_fwup_from_write(&flash_buf, 0);
 __EI();
 if (ret != 0) {
 code = ERROR_FLASH_WRITE;
 goto error;
 }
 flash_buf.block = flash_block + 16;
 flash_block = usbf_fwup_recv_block();
 }
 __DI();
 ret = (s32)usbf_fwup_from_write(&flash_buf, BOOT_FLAG_SETINFO);
 __EI();
 if (ret != 0) {
 code = ERROR_FLASH_WRITE;
 goto error;
 }

Data is received from the
host and if this is not a start
record, NAK is returned.

Initializes the self-programming
library.

ACK is returned.

Processing executed if this is not a
data record
If this is a start record, ACK is returned
and data is received again. If this is an
end record, the processing ends.
In all other cases, NAK is returned.

Obtains the load address in the
data record and the block
number.

If it is the boot area

Blocks are received one at a
time and overwritten. If there
are more than 16 blocks to
be overwritten, the
processing leaves the loop
and overwriting ends. The
boot area and overwritten
area are swapped back.

One block of data is received, with
the block to be overwritten specified
as a block to be swapped.
If the block starts from address 0,
the processing jumps to the
user-created program.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 48

Figure 3-21. Processing to Update the Firmware (2/2)

 while (flash_block < 32) {
 flash_buf.block = flash_block - 16;
 flash_block = usbf_fwup_recv_block();
 __DI();
 ret = (s32)usbf_fwup_from_write(&flash_buf, 0);
 __EI();
 if (ret != 0) {
 code = ERROR_FLASH_WRITE;
 goto error;
 }
 }
 if (first_addr == 0) {
 ret = usbf_fwup_write_apstart();
 if (ret != 0) {
 code = ERROR_FLASH_WRITE;
 goto error;
 }
 }
 }

 while (flash_block <= WRITE_MAX_BLOCK) {
 flash_buf.block = flash_block;
 flash_block = usbf_fwup_recv_block();
 __DI();
 ret = (s32)usbf_fwup_from_write(&flash_buf, 0);
 __EI();
 if (ret != 0) {
 code = ERROR_FLASH_WRITE;
 goto error;
 }
 }
 if (flash_block != RECEIVE_END_RECORD) {
 code = ERROR_INVALID_DATA;
 goto error;
 }

end:
 ret = inrec.type;
 while (1) {
 if (ret == RECORD_TYPE_END) {
 usbf_fwup_send_endres(RESPONSE_ACK);
 }
 else if (ret == RECORD_TYPE_DATA) {
 usbf_fwup_send_datares(RESPONSE_ACK);
 }
 else if (ret == RECORD_TYPE_START) {
 usbf_fwup_send_startres(RESPONSE_ACK);
 }
 else {
 usbf_fwup_send_datares(RESPONSE_NAK);
 }

 ret = usbf_fwup_recv_record();
 }

error:
 while (1) {
 usbf_fwup_send_errors(code);
 ret = usbf_fwup_recv_record();
 }
}

Checks the end record.

Writing of any remaining
data continues up to block
32.

If writing starts from
address 0, the processing
jumps to the user-created
program.

Writes data in block units

up to the last block.

If processing ends
normally, ACK is returned.

If an error occurs, an
error code is returned.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 49

3.6.4 Updating the user-created program

When writing the user-created program, change the apstart section as follows so that the user-created program

runs when the system starts up.

Remove the boot processing in the user-created program (the reset section) and write this as the branch

destination of the firmware update program’s boot processing. (The code to jump to the user-created program is in

the apstart section.) By doing this, the boot processing of the user-created program is changed to the boot

processing of the firmware update program. This means that the boot processing area can be preserved and the

firmware update program can be manipulated again later.

Figure 3-22. Overwriting the Boot Processing When Updating the User-Created Program

00000H

Memory

flash_buf

<1> Data is received.
usbf_fwup_recv_block() <2> Remove the boot

processing of the
user-created program.
usbf_fwup_start_copy() 7F000H

<3> Write this area as the boot processing
of the user-created program.

Firmware update
program

7C000H

<4> Write the apstart section.
usbf_fwup_from_write()

apstar

When the system starts up, the program moves to the boot processing of the firmware update program, checks the

startup conditions in that processing (that is, the status of the SW3 and SW4 switches), moves to apstart as

appropriate, and then moves to the start of the user-created program.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 50

Figure 3-23. Branching to the User-Created Program

00000H

Memory

7F000H

Firmware update
program 7C000H

apstar

<1> After startup, the program
moves to the self-update
processing

<2> The conditions for branching to
the user-created program are
checked, and, if the conditions
are met, the program moves to
apstart.

<3> The user-created
program runs.

User program

Figure 3-24. Switching the Boot Processing

 static void usbf_fwup_replace_apstart(void)
{
 u16 *in = (u16 *)0;
 u16 *out;
 s32 i;

 out = (u16 *)flash_buf.data;
 usbf_fwup_start_copy(out);
 for (i = 7; i >= 0; i--) {
 out[i] = in[i];
 }
}

Removes the boot
processing of the
received data

Switches the boot
processing to that of the
firmware update program

Indicates the start of
the memory

Next, editing the processing for writing to apstart is described.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 51

Figure 3-25. Overwriting the Boot Processing (1/2)

 static void usbf_fwup_start_copy(u16 *inst)
{
 s32 num;
 s32 i;

 for (i = 23; i >= 0; i--) {
 start_inst[i] = 0xffff;
 }

 i = 0;
 while (i < 8) {
 if (*inst == 0xffff) {
 break;
 }
 if ((*inst & 0x0700) < 0x0600) {
 if ((*inst & 0x0780) == 0x0580) {
 /* Bcond */
 num = *inst & 0xf800;
 num >>= 4;
 num |= (*inst & 0x0070);
 num >>= 3;
 num -= APSTART_ADDR;
 if (num > 255 || num < -256) {
 usbf_fwup_add_jr(i, num);
 num = i * 2 + 16;
 }
 start_inst[i] = *inst & 0x078f;
 num <<= 3;
 start_inst[i] |= num & 0x00000070;
 num <<= 4;
 start_inst[i] |= num & 0x0000f800;
 }
 else {
 start_inst[i] = *inst;
 }
 inst++;
 i++;
 }
 else if ((*inst & 0x07c0) == 0x0780) {

Inserts the code to be written to
apstart into start_inst.
Initializes the elements of
start_inst to 0xffff.

jcond/bcound

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 52

Figure 3-25. Overwriting the Boot Processing (2/2)

 if ((*(inst + 1) & 0x0001) == 0x0001) {
 if ((*inst & 0xffc0) == 0x0780) {
 /* PREPARE */
 start_inst[i] = *inst;
 inst++;
 i++;
 num = *inst & 0x0018;
 start_inst[i] = *inst;
 inst++;
 i++;
 if (num != 0) {
 start_inst[i] = *inst;
 inst++;
 i++;
 if (num == 0x0018) {
 start_inst[i] = *inst;
 inst++;
 i++;
 }
 }
 }
 else {
 /* LD.BU */
 start_inst[i] = *inst;
 inst++;
 i++;
 start_inst[i] = *inst;
 inst++;
 i++;
 }
 }
 else {
 /* JARL or JR */
 start_inst[i] = *inst & 0xffc0;
 num = *inst & 0x003f;
 num <<= 16;
 inst++;
 num |= *inst;
 inst++;
 num -= APSTART_ADDR;
 start_inst[i + 1] = (u16)(num & 0x0000ffff);
 num &= 0x003f0000;
 num >>= 16;
 start_inst[i] |= num;
 i += 2;
 }
 }
 else {
 start_inst[i] = *inst;
 inst++;
 i++;
 start_inst[i] = *inst;
 inst++;
 i++;
 if ((*inst & 0xffe0) == 0x0620) {
 /* MOV */
 start_inst[i] = *inst;
 inst++;
 i++;
 }
 }
 }
}

ld.bu

jarl/jr

Other than the
above

prepare

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 53

3.6.5 Receiving data

The firmware update program is used to initiate serial communication with the host and receive the new firmware

data. For details about the communication interface specifications, see 7.1 Specifications of the Communication

Interface for Updating the Firmware.

Figure 3-26. Receiving One Block of Data (1/2)

static s32 usbf_fwup_recv_block(void)
{
 s32 ret;
 u32 in_addr;
 u32 out_addr;
 s32 in_len;
 s32 in_idx;
 s32 out_idx;

 usbf_fwup_copy_block(flash_block);
 flash_buf.data_length = FLASH_BLOCK_SIZE;

 out_addr = flash_block * FLASH_BLOCK_SIZE;
 do {

 if (out_addr == flash_addr) {
 out_idx = 0;
 in_idx = 4;
 }
 else if (out_addr > flash_addr) {
 in_idx = out_addr - flash_addr + 4;
 out_idx = 0;
 }
 else {
 out_idx = flash_addr - out_addr;
 in_idx = 4;
 }
 in_len = inrec.len - 1;
 while (in_idx < in_len) {
 if (out_idx >= FLASH_BLOCK_SIZE) {
 ret = flash_block + 1;
 goto end;
 }
 flash_buf.data[out_idx] = inrec.data[in_idx];
 out_idx++;
 in_idx++;
 }
 usbf_fwup_send_datares(RESPONSE_ACK);
 ret = usbf_fwup_recv_record();

 while (1) {
 if (ret == RECORD_TYPE_DATA) {
 in_addr = usbf_fwup_get_addr();
 if (in_addr > flash_addr) {
 break;
 }
 usbf_fwup_send_datares(RESPONSE_ACK);
 }
 else if (ret == RECORD_TYPE_END) {
 ret = RECEIVE_END_RECORD;
 goto end;
 }
 else if (ret == RECORD_TYPE_START) {
 usbf_fwup_send_startres(RESPONSE_ACK);
 }
 else {
 usbf_fwup_send_datares(RESPONSE_NAK);
 }

 ret = usbf_fwup_recv_record();
 }

Copies the specified block.

One record of data is received.
Either all the data is received,
or, if the block is full, the
processing leaves the loop.

Identifies the record received.

ACK is returned and a new
record is received.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 54

Figure 3-26. Receiving One Block of Data (2/2)

 flash_addr = in_addr;
 ret = flash_addr / FLASH_BLOCK_SIZE;

 } while (ret == flash_block);

end:
 return ret;
}

When the block changes,
the processing leaves the
loop.

The processing for receiving one record is shown below.

Figure 3-27. Receiving One Record

 static s32 usbf_fwup_recv_record(void)
{
 s32 ret;
 s32 i;
 u16 chk;

 /* Read record */
 usbf_fwup_drvif_clear_buffer();
 ret = usbf_fwup_drvif_recv(&inrec.type, 1);
 ret = usbf_fwup_drvif_recv(&inrec.len, 1);
 if (inrec.len == 0) {
 ret = -1;
 goto end;
 }
 chk = inrec.len;
 if (inrec.len > 1) {
 ret = usbf_fwup_drvif_recv(inrec.data, inrec.len - 1);
 for (i = inrec.len - 2; i >= 0; i--) {
 chk += inrec.data[i];
 }
 }
 ret = usbf_fwup_drvif_recv(&inrec.sum, 1);

 /* Check sum */
 chk ^= 0xffff;
 chk &= 0x00ff;
 if (chk != inrec.sum) {
 ret = -1;
 goto end;
 }
 ret = inrec.type;

end:
 return ret;
}

Information on the
record type and length is
received.

Checksum

The processing loops
until the record reaches
the specified length.
The received data is
accrued for checksum
calculation.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 55

3.7 CDC (Communications Device Class)

This section describes the processing of the CDC (communications device class) used by the firmware update

program.

For details about the USB communications device class (USB CDC), see the Universal Serial Bus Class

Definitions for Communication Devices.

The CDC used by the firmware update program is an abstract control model and supports the following class

requests.

Remark USB standards are formulated and managed by the USB Implementers Forum (USB-IF).

 For details about the USB communications device class, see the Universal Serial Bus Class

Definitions for Communication Devices on the official USB-IF website (www.usb.org).

Table 3-6. Supported Class Requests

Class Request Description

SendEncapsulatedCommand Request to issue a command in the format of the communications class interface

control protocol

GetEncapsulatedResponse Request to receive a response in the format of the communications class

interface control protocol

SetLineCoding Request to specify the serial communication format

GetLineCoding Request to obtain the current communication format being used on the device

side

SetControlLineState Control signal transmitted in the RS-232/V.24 format

http://www.usb.org/

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 56

3.7.1 Monitoring endpoints by polling

Endpoints are monitored by polling rather than by using interrupt vectors. The presence of data in the EP0

(endpoint for control transfers) and EP1 (endpoint for bulk-in transfers) FIFOs can be checked by monitoring the

endpoint (EP) interrupt flags.

The processing for monitoring the endpoints when receiving data is shown below.

Figure 3-28. Monitoring Endpoints When Receiving Data

 s32 usbf_fwup_drvif_recv(u08 *data, s32 len)
{
 s32 num = 0;

 while (num < len) {
 while (recv_len == 0) {
 cdc_funcs->int0b();
 cdc_funcs->int1b();
 }
 data[num] = recv_buf[recv_idx];
 recv_idx++;
 if (recv_idx >= recv_buf_size) {
 recv_idx -= recv_buf_size;
 }
 recv_len--;
 num++;
 }

 return num;
}

EP0 and EP1 are monitored until
data is received.

The received data is copied from a
buffer.

Executing cdc_funcs->int0b(); in the function calls the usbf850_intusb0b function, according to the initial

settings. Similarly, executing cdc_funcs->int1b(); calls the usbf850_intusb1b function.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 57

3.7.2 Monitoring EP0

EP0 is the endpoint for control transfers. EP0 is monitored to detect standard requests, class requests, and vendor

requests that cannot be detected by the hardware.

The processing for monitoring EP0 is shown below.

Figure 3-29. Monitoring EP0

void usbf850_intusb0b(void)
{
 UINT8 request;
 volatile UINT8 tmpl = 0;
 volatile UINT8 tmph = 0;

 if(UF0IS0 & C_RSUSPD){
 UF0IC0 = C_RSUSPDC;
 if(UF0EPS1 & C_RSUM){
 UF0IC0 = 0x00; /* interrupt clear */
 UF0IC1 = 0x00; /* interrupt clear */
 UF0IC2 = 0x00; /* interrupt clear */
 UF0IC3 = 0x00; /* interrupt clear */
 UF0IC4 = 0x00; /* interrupt clear */
 return;
 }
 }

 if (UF0IS1 & C_CPUDEC) {
 UF0IC1 = (UINT8)~C_PROT; /*PROT interrupt clear*/

 UsbSetup_Data.RequstType = UF0E0ST;
 UsbSetup_Data.Request = UF0E0ST;
 tmpl = UF0E0ST;
 tmph = UF0E0ST;
 UsbSetup_Data.Value = (tmpl | ((tmph << 8) & 0xff00));
 tmpl = UF0E0ST;
 tmph = UF0E0ST;
 UsbSetup_Data.Index = (tmpl | ((tmph << 8) & 0xff00));
 tmpl = UF0E0ST;
 tmph = UF0E0ST;
 UsbSetup_Data.Length = (tmpl | ((tmph << 8) & 0xff00));

 if (UsbSetup_Data.RequstType & C_CLASS_REQUEST) {
 if (UsbSetup_Data.Index != C_IF0_DSC_bInterfaceNumber) {
 usbf850_sendstallEP0(); /*error*/
 }
 request = (UsbSetup_Data.Request & 0xff);

 /*Request Decode*/
 (*Req_Func_C[request])();
 }
 else if(UsbSetup_Data.RequstType & C_VENDER_REQUEST){
 usbf850_sendstallEP0(); /*error*/
 }
 else {
 usbf850_standardreq();
 }
 }
}

Judges whether the status is the
resume status or suspend
status.

Disables the interrupt if there is
data in UF0E0ST.

Configures the
request data.

Executes the function
added when the class
request was initialized.

Judges the request
as a vendor request
and returns a STALL
handshake.

Processing of
standard request

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 58

(1) Standard requests

Standard requests are used to obtain descriptors.

Figure 3-30. Processing a Standard Request

 void usbf850_standardreq(void)
{
 if (UsbSetup_Data.Request == GETDESC) { /*GetDescriptor[String/Class]*/
 usbf850_getdesc();
 }
 else { /*error*/
 usbf850_sendstallEP0();
 }
}

If the request is for a descriptor, the
descriptor is returned. In all other
cases, a STALL handshake is
returned.

Figure 3-31. Transmitting a Descriptor

 void usbf850_getdesc(void)
{
 UINT8 len;
 UINT8 value;
 UINT8* tmp;

 if ((UsbSetup_Data.Value & 0xff00) == STRDESC) { /*String Descriptor*/
 value = (UINT8)(UsbSetup_Data.Value & 0xff);
 if (value >= (sizeof(USB_strings)/sizeof(USB_strings[0]))) {
 /*EP0 STALL*/
 usbf850_sendstallEP0();
 return ;
 }
 len = USB_strings[value][0];
 tmp = &(USB_strings[value][0]);
 }
 else {
 /*error*/
 usbf850_sendstallEP0();
 return ;
 }
 if (UsbSetup_Data.Length < len) {
 len = UsbSetup_Data.Length;
 }

 usbf850_data_send(tmp,len,C_EP0);
}

Sets a string descriptor.

Obtains the string
length.

Transmits the
descriptor from EP0.

The descriptor data (USB_string) is defined below. DSTR and USTR are macros for specifying the locale and

Unicode settings.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 59

Figure 3-35. Definition of Descriptor Data

 /* 0 : Language Code*/
DSTR(LangString, 2, (0x09,0x04));
/* 1 : Manufacturer*/
USTR(ManString, 19, ('N','E','C',' ','E','l','e','c','t','r','o','n','i','c','s',' ','C','o','.'));
/* 2 : Product*/
USTR(ProductString, 10, ('U','S','B',' ','C','o','m','D','r','v'));
/* 3 : Serial Number*/
USTR(SerialString, 10, ('0','_','9','8','7','6','5','4','3','2'));

unsigned char *USB_strings[]={LangString,ManString,ProductString,SerialString};

(2) Class requests

The class requests in the Req_Func_C file are listed in the table below. The issuance of each request causes

the corresponding function to be executed.

Table 3-7. Class Requests

Function Name Corresponding Request and Processing

usbf850_send_encapsulated_command SendEncapsulatedCommand

Data is received from EP0.

usbf850_get_encapsulated_response GetEncapsulatedResponse

No processing occurs.

usbf850_set_line_coding SetLineCoding

Data for specifying the UART communication settings is received

in EP0.

Processing to transmit the EP0NULL packet is executed.

usbf850_get_line_coding GetLineCoding

Data for specifying the UART communication settings is

transmitted from EP0.

usbf850_set_control_line_state SetControlLineState

Processing to transmit the EP0NULL packet is executed.

usbf850_sstall_ctrl STALL processing is executed.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 60

3.7.3 Monitoring EP1

The processing for monitoring EP1 is shown below.

Figure 3-32. Monitoring EP1

 void usbf850_intusb1b(void)
{
 if (UF0IS3 & C_BKO1DT) {
 UF0IC3 = (UINT8)~C_BKO1DT; /*interrupt clear*/
 /* read to buffer */
 if (serial_funcs != (const struct usb_serial_funcs_st *)0) {
 serial_funcs->read(UF0BO1L);
 }
 }
}

Disables the interrupt if data is
received in BKO0DT.

Obtains data.

Executing serial_funcs->read(UF0BO1L); in the function calls the usb_fwup_drvif_read function,

according to the initial settings.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 61

Figure 3-33. Receiving Data in EP1

 static void usbf_fwup_drvif_read(u08 len)
{
 s32 iidx;
 s32 oidx;
 s32 num;

 cdc_funcs->datareceive(bko1_buf, (s32)len, C_BKO1);
 num = recv_buf_size - recv_len;
 if (num > (s32)len) {
 num = (s32)len;
 }
 oidx = recv_idx + recv_len;
 iidx = 0;
 recv_len += num;
 while (num > 0) {
 if (oidx >= recv_buf_size) {
 oidx -= recv_buf_size;
 }
 recv_buf[oidx] = bko1_buf[iidx];
 num--;
 iidx++;
 oidx++;
 }
}

Transfers EP1 data to
the serial reception
buffer.

Transfers data received in
EP1 to a buffer.

Executing cdc_funcs->datareceive(bko0_buf, IINT32)len, C_BKO1); in the function calls the

usbf850_data_receive function, according to the initial settings.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 62

3.7.4 Transmitting and receiving USB data

The processing for transmitting and receiving USB data, transmitting NULL packets, and returning a STALL

handshake is shown below.

(1) Transmitting USB data

Figure 3-34. Transmitting Data (1/2)

 INT32 usbf850_data_send(UINT8* data, INT32 len, INT8 ep)
{
 INT32 i;
 UINT32 addr;
 INT32 dlen = len;

 INT8 dend;
 INT8 ep_status;
 INT8 max_packet_size;

 switch (ep) {
 case C_EP0: /*For the data stage*/
 addr = UF0E0W_ADDRESS;
 dend = C_E0DED;
 ep_status = C_EP0W;
 max_packet_size = C_MAXP0;
 break;
 case C_BKI1:
 addr = UF0BI1_ADDRESS;
 dend = C_BKI1DED;
 ep_status = C_BKIN1;
 max_packet_size = C_MAXP1;
 break;
 case C_BKI2:
 addr = UF0BI2_ADDRESS;
 dend = C_BKI2DED;
 ep_status = C_BKIN2;
 max_packet_size = C_MAXP3;
 break;
 case C_INT1:
 addr = UF0INT1_ADDRESS;
 dend = C_IT1DED;
 ep_status = C_IT1;
 max_packet_size = C_MAXP7;
 break;
 default: /*error*/
 return DEV_ERROR;
 }

Specifies the register address for
writing EP0, the end bit, the status bit,
and the maximum packet size bit.

Specifies the register address for
writing EP1, the end bit, the status bit,
and the maximum packet size bit.

Specifies the register address for
writing EP3, the end bit, the status bit,
and the maximum packet size bit.

Specifies the register address for
writing EP7, the end bit, the status bit,
and the maximum packet size bit.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 63

Figure 3-34. Transmitting Data (2/2)

 while (dlen > 0) {
 while (UF0EPS0 & ep_status) {
 ; /*waits FIFO empty*/
 }
 if (dlen < max_packet_size) {
 for (i = 0; i < dlen; i++) {
 USBF850REG_SET(addr, *data);
 data++;
 }
 dlen = 0;
 /*Tx enable(short packet)*/
 UF0DEND |= dend;
 }
 else {
 for (i = 0; i < max_packet_size; i++) {
 USBF850REG_SET(addr, *data);
 data++;
 }
 dlen -= max_packet_size;
 if (max_packet_size < C_FIFOSIZE) {
 UF0DEND |= dend; /* Tx enable(short packet) */
 }
 if ((dlen == 0) && (ep == C_BKI1)) { /* send NULL Packet */
 while (UF0EPS0 & ep_status) { /* waits FIFO empty */
 ;
 }
 UF0FIC0 = C_BKI1CC; /* FIFO clear(CPU side) */
 UF0DEND |= dend; /* Tx enable(NULL packet) */
 }
 }
 }
 if ((!(len % max_packet_size))&
 (ep == C_EP0)) {
 /* Null Packet Send */
 UF0FIC0 |= C_EP0WC;
 UF0DEND |= dend;
 }

 return DEV_OK;
}

The program waits if
there is data still to
be transmitted.

Data of the specified size
(not exceeding the
maximum size) is written
to the write register and
the end bit is set.

Data up to the maximum size is
written to the write register and
the end bit is set.

In the case of EP0, a NULL
packet is transmitted.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 64

(2) Receiving USB data

Figure 3-35. Receiving Data

 INT32 usbf850_data_receive(UINT8* data, INT32 len, INT8 ep)
{
 INT32 i = 0;
 INT32 j = 0;
 UINT32 addr;
 UINT32 len_addr;
 UINT8 size;
 INT8 ep_status;
 UINT8 tmp;

 switch (ep) {
 case C_EP0: /*For the data stage*/
 while ((UF0IS1 & C_E0ODT) == 0) {
 /*Control OUT interrupt wait*/
 }

 UF0IC1 = (UINT8)~C_E0ODT;
 size = UF0E0L;
 if (size != len) { /*error*/
 UF0FIC0 = C_EP0RC; /*FIFO Clear*/
 usbf850_sendstallEP0();
 return DEV_ERROR;
 }

 for (i = 0; i < len; i++) {
 *data = UF0E0R;
 data++;
 }
 if (UF0EPS0 & C_EP0R) { /*Rx data reading completion*/
 /*error:begins to see in the rereading*/
 data -= len;
 len = UF0E0L;
 for (i = 0; i < len; i++) {
 *data = UF0E0R;
 data++;
 }
 }
 return DEV_OK;
 case C_BKO1:
 addr = UF0BO1_ADDRESS;
 len_addr = UF0BO1L_ADDRESS;
 ep_status = C_BKO1DT;
 break;
 case C_BKO2:
 addr = UF0BO2_ADDRESS;
 len_addr = UF0BO2L_ADDRESS;
 ep_status = C_BKO2DT;
 break;
 default: /*error*/
 return DEV_ERROR;
 }

 while (i < len) {
 size = USBF850REG_READ(len_addr);
 j += size;
 for (; i < j; i++) {
 if(i < len){
 *data = USBF850REG_READ(addr);
 data++;
 }
 else{ /* read and thrown away. */
 tmp = USBF850REG_READ(addr);
 }
 }
 if ((len - j)>0) {
 while ((UF0EPS0 & C_BKOUT1) == 0) {
 /*data wait*/
 }
 UF0IC3 = ~ep_status;
 }
 }
 return DEV_OK;
}

The program waits
if there is no data to
be received.

An error occurs if the
length of the data in the
register is not the specified
length.

The received data is
transferred to a buffer.

If there is still data to be
received, the length of the data
is obtained again, and the data
is transferred to a buffer.

If there is data remaining
in EP0, or if there is data
in EP1, the data is
obtained.

CHAPTER 3 FIRMWARE UPDATE PROGRAM

Application Note U19684EJ1V0AN 65

(3) Transmitting an EP0NULL packet

Figure 3-36. Transmitting an EP0NULL Packet

 void usbf850_sendnullEP0(void)
{
 UF0FIC0 = C_EP0WC; /*FIFO Clear*/
 UF0DEND |= C_E0DED; /*data send(Null Packet)*/
}

Clears the FIFO and
transmits the NULL
packet

(4) Returning a STALL handshake

Figure 3-37. Returning a STALL Response

 void usbf850_sendstallEP0(void)
{
 UF0SDS = C_SNDSTL; /*send STALL*/
}

STALL handshake
response

Application Note U19684EJ1V0AN 66

CHAPTER 4 FILE TRANSFER APPLICATION

This chapter describes the file transfer application that runs on the host.

4.1 Development Environment

The file transfer application must be set up in the following environment.

OS: Windows XP

Development software: Microsoft Visual C++ 6.0 (MFC)

4.2 Operation Overview

When the file transfer application is run with the target file to use to update the firmware specified as a parameter

(option), the application immediately begins updating the firmware. If no file is specified, the configuration dialog box

is displayed.

Figure 4-1. File Transfer Application Operation Overview

 File

Start

GUI display
Various settings

Start

Communication

(Application dialog box
class)

(Dialog box class used
when dragging and
dropping a file)

(Thread class for
communication
processing for
updating the
firmware)

CHAPTER 4 FILE TRANSFER APPLICATION

Application Note U19684EJ1V0AN 67

4.3 Organization of Files

The main files included in the file transfer application are as follows.

Table 4-1. Main Files Included in the File Transfer Application

File Name Description

FlashSelfRewriteGUI.dsw Workspace file

FlashSelfRewriteGUI.dsp Project file

FlashSelfRewriteGUI.clw File for the class wizard

FlashSelfRewriteGUI.rc Resource file

FlashSelfRewriteGUI.cpp Source file containing the application class

FlashSelfRewriteGUI.h Header file defining the application class

FlashSelfRewriteGUIDlg.cpp Source file containing the dialog box class for the application

FlashSelfRewriteGUIDlg.h Header file defining the dialog box class for the application

FlashSelfRewriteGUIDrop.cpp Source file containing the dialog box class used when dragging

and dropping a file

FlashSelfRewriteGUIDrop.h Header file defining the dialog box class used when dragging

and dropping a file

CommandThread.cpp Source file containing the thread class that performs

communication processing to update the firmware

CommandThread.h Header file defining the thread class that performs

communication processing to update the firmware

CommonProc.cpp Source file containing the class for common processing

CommonProc.h Header file defining the class for common processing

SerialPort.cpp Source file containing the class for serial communication with

the COM port

SerialPort.h Header file defining the class for serial communication with the

COM port

Resource.h Header file defining resources

UsbfUpdate.ini Configuration file for using the application

4.3.1 Application class (FlashSelfRewriteGUI)

Upon being executed for the first time, this class checks the parameters (options) and then calls the dialog box

class used when dragging and dropping a file if a file has been specified or calls the normal dialog box class if no file

has been specified.

The execution options that can be specified for this class are as follows.

Table 4-2. Application Class Execution Options

Option Description

/M [chip|address] Specify either the chip or address operating mode.

/S nnnnnn Specify the hexadecimal address at which to begin updating the

firmware.

/C nn Specify the number of the connected COM port.

filename Specify the path of the file used to update the firmware.

CHAPTER 4 FILE TRANSFER APPLICATION

Application Note U19684EJ1V0AN 68

4.3.2 Application dialog box class (FlashSelfRewriteGUIDlg)

This class is used to display the dialog box in which settings for updating the firmware are specified. (For details,

see CHAPTER 2 EXECUTING THE SAMPLE PROGRAM FOR UPDATING THE USB FUNCTION FIRMWARE.) This

dialog box is used to specify the operating mode, address, file, and COM port to use for updating the firmware. Note

that, when this dialog box is displayed, the configuration file for using the application is read, and, if the file contains

any settings, these are used as the default display settings.

If you click the Update button, the thread class that performs communication processing to update the firmware is

called.

The application dialog box class includes the following member variables.

Table 4-3. Member Variables in the Application Dialog Box Class

Member Variables

Data Type Member Name

Description

int m_nCOM Number of the COM port to which to connect

TCHAR m_tcAppDir[_MAX_PATH] Directory from which the application is run

int m_nCurTargetID Current target ID

CString m_strCurTarget Current target name

CString m_strCurDevice Current device

CStringArray m_arDeviceVal List of devices

CStringArray m_arDeviceText List of device names

int m_nDevSize Current device ROM size

CWinThrread* m_pCommandThread Pointer to the thread class

BOOL m_bExistThread Indicates whether the thread exists

BOOL m_bStartUp Indicates initial startup

CArray<int,int> m_arBlockStart Array containing starting block numbers

CArray<int,int> m_arBlockEnd Array containing ending block numbers

CArray<int,int> m_arBlockUnit Array containing the number of bytes for each

block

COleDateTime m_dtStart Date and time when updating the firmware

started

COleDateTime m_dtEnd Date and time when updating the firmware

finished

The member functions are as follows.

Table 4-4. Read_DeviceInfo Function

Function Name Read_DeviceInfo

Specification Format BOOL Read_DeviceInfo (VOID)

Description Acquires information from the configuration file for using the application.

Input None Input/Output

Output TRUE (success) or FALSE (failure)

CHAPTER 4 FILE TRANSFER APPLICATION

Application Note U19684EJ1V0AN 69

Table 4-5. Write_DeviceInfo Function

Function Name Write_DeviceInfo

Specification Format BOOL Write_DeviceInfo (VOID)

Description Updates the configuration file for using the application.

Input None Input/Output

Output TRUE (success) or FALSE (failure)

Table 4-6. Update_Message Function

Function Name Update_Message

Specification Format VOID Update_Message (LPCTSTR)

Description Displays a message in the message display field.

Input A pointer to the message string Input/Output

Output None

Table 4-7. Get_BlockAddress Function

Function Name Get_BlockAddress

Specification Format DWORD Get_BlockAddress(int nBlk, EnBlockAddress opt)

Description Returns the memory address of the specified block number.

Input nBlk: A block number

opt: START or END (for the starting or ending block, respectively)

Input/Output

Output A memory address

Table 4-8. Get_AddressBlock Function

Function Name Get_AddressBlock

Specification Format int Get_AddressBlock(DWORD dwAddress)

Description Returns the block number that has the specified address.

Input dwAddress: A memory address Input/Output

Output A block number

Table 4-9. Initialize_Device Function

Function Name Initialize_Device

Specification Format VOID Initialize_Device(VOID)

Description Performs initialization processing.

Input None Input/Output

Output None

CHAPTER 4 FILE TRANSFER APPLICATION

Application Note U19684EJ1V0AN 70

Table 4-10. AppStatus Function

Function Name AppStatus

Specification Format VOID AppStatus(BOOL stu)

Description Specifies the status when the firmware is updated.

Input stu: TRUE (The dialog box can be used.)

FALSE (The dialog box cannot be used.)

Input/Output

Output None

4.3.3 Dialog box class used when a file is dragged and dropped (FlashSelfRewriteGUIDrop)

Immediately after the dialog box for this class is displayed, the thread class that performs communication

processing to update the firmware is called, and the update begins. Only a progress bar is displayed in this dialog

box.

The member variables are shown below. (Member variables included in the dialog box class for the application

have been omitted.)

Table 4-11. Member Variables in the Dialog Box Class Used When a File Is Dragged and Dropped

Member Variables

Data Type Member Name

Description

CString m_strFileName Target file path

EnMode m_enMode Updating mode

DWORD m_dwStartAddress Address at which to start the update

The member functions are as follows.

Table 4-12. Execute Function

Function Name Execute

Specification Format VOID Execute(VOID)

Description Performs update processing.

Input None Input/Output

Output None

CHAPTER 4 FILE TRANSFER APPLICATION

Application Note U19684EJ1V0AN 71

4.3.4 Thread class that performs communication processing to update the firmware (CommandThread)

This class uses the class for serial communication with the COM port to connect to the target evaluation board and

transmit or receive the specified file in accordance with the interface specifications. If a HEX file is specified, this class

analyzes the file.

The member variables are shown below. (Member variables included in the dialog box class for the application

have been omitted.)

Table 4-13. Member Variables in the Thread Class That Performs Processing to Update the Firmware

Member Variables

Data Type Member Name

Description

CDialog* m_pAppDlg Pointer to the dialog box class, which calls the

thread class

CString m_strAppDir Directory in which the application resides

BOOL* m_pbExistThread Pointer to a flag indicating whether the thread

exists

CSerialPort m_Serial Instance of the class for serial communication

with the COM port

int m_nCOM Number of the COM port to which to connect

CString m_strFileName Target file path

EnMode m_enMode Updating mode

DWORD m_dwStartAddress Address at which to start updating the firmware

DWORD m_dwROMStartAddress First ROM address

DWORD m_dwROMEndAddress Last ROM address

The member functions are as follows.

Table 4-14. Cal_CheckSum Function

Function Name Cal_CheckSum

Specification Format BYTE Cal_CheckSum(LPBYTE bytes, LONG size)

Description Calculates the checksum.

Input bytes: A pointer to a data string

size: The length of the data string

Input/Output

Output The calculated checksum

Table 4-15. Change_strHex2Binary Function

Function Name Change_strHex2Binary

Specification Format VOID Change_strHex2Binary(LPCSTR strHex, LPBYTE pbytes,

LONG size)

Description Converts a hexadecimal character string into a binary data string.

Input strHex: A pointer to a hexadecimal character string

pbytes: A pointer to the beginning of a data string

size: The size of the data to convert

Input/Output

Output None

CHAPTER 4 FILE TRANSFER APPLICATION

Application Note U19684EJ1V0AN 72

Table 4-16. Upsets_DWORD Function

Function Name Upsets_DWORD

Specification Format DWORD Upsets_DWORD(DWORD dwVal)

Description Reverses a DWORD value in byte units as follows:

0xaabbccdd is converted to 0xddccbbaa.

Input dwVal: The DWORD value to reverse Input/Output

Output The reversed value

Table 4-17. SET_StartRecord Function

Function Name SET_StartRecord

Specification Format VOID SET_StartRecord (LPVOID lpRecord)

Description Creates the start record for updating the firmware.

Input lpRecord: A pointer to a stored record Input/Output

Output None

Table 4-18. SET_EndRecord Function

Function Name SET_EndRecord

Specification Format VOID SET_EndRecord (LPVOID lpRecord)

Description Creates the end record for updating the firmware.

Input lpRecord: A pointer to a stored record Input/Output

Output None

4.3.5 Common Processing Class (CommonProc)

This class defines commonly used processing.

The member functions are as follows.

Table 4-19. GetAppDir Function

Function Name GetAppDir

Specification Format static VOID GetAppDir(LPTSTR path, int sw = 0)

Description Acquires the execution address for the application.

Input path: A pointer to the character string to acquire

sw: 0 Acquires the path without conversion.

 1 Converts the path to a short path during acquisition.

Input/Output

Output None

Table 4-20. Change_Hex2Val Function

Function Name Change_Hex2Val

Specification Format static DWORD Change_Hex2Val(LPCSTR pHex)

Description Converts a 1-byte (2-digit hexadecimal) character string to a number.

Input pHex: A pointer to a 2-digit hexadecimal character string Input/Output

Output The converted value

CHAPTER 4 FILE TRANSFER APPLICATION

Application Note U19684EJ1V0AN 73

Table 4-21. IsNumeric Function

Function Name IsNumeric

Specification Format static BOOL IsNumeric(LPCTSTR lpNum, LONG size, int type

= 10)

Description Checks whether the parameter is a number.

Input lpNum: A pointer to a character string representing a number

size: The number of digits in the parameter to check

type: 10 Checks whether the parameter is a decimal number.

 16 Checks whether the parameter is a hexadecimal number.

Input/Output

Output TRUE (which indicates that the parameter is a number) or FALSE (which

indicates that the parameter is not a number)

Table 4-22. IsExistFile Function

Function Name IsExistFile

Specification Format static BOOL IsExistFile(LPCTSTR lpszFileName, BOOL

bDirectory = FALSE)

Description Checks whether a file exists.

Input lpszFileName: The file path to check

bDirectory: FALSE (checking for a file)

TRUE (checking for a directory)

Input/Output

Output TRUE (which indicates that the file exists) or FALSE (which indicates that the

file does not exist)

CHAPTER 4 FILE TRANSFER APPLICATION

Application Note U19684EJ1V0AN 74

4.3.6 Class for serial communication with the COM port (SerialPort)

This class is used to perform serial communication with the COM port. The communication settings, which are

fixed, are as follows.

Table 4-23. Serial Communication Settings

Setting Value

Baud rate 115,200 bps

Data size 8 bits

Parity None

Stop bit 1 bit

Start bit LSB

Flow control None

The member variables are as follows.

Table 4-24. Member Variables in the Class for Serial Communication with the COM Port

Member Variables

Data Type Member Name

Description

HANDLE m_hCom Handle acquired when a connection is

established

DCB m_Dcb Device control block structure

COMMTIMEOUTS m_TimeoutSts Structure for specifying timeout settings

INT m_nCOM Port number for connecting

The member functions are as follows.

Table 4-25. Port_Open Function

Function Name Port_Open

Specification Format LONG Port_Open(INT com)

Description Connects to the specified COM port.

Input com: The COM port number Input/Output

Output 0 Connection success

 −1 Connection failure

Table 4-26. Port_Close Function

Function Name Port_Close

Specification Format VOID Port_Close(VOID)

Description Closes a connected port.

Input None Input/Output

Output None

CHAPTER 4 FILE TRANSFER APPLICATION

Application Note U19684EJ1V0AN 75

Table 4-27. Port_Write Function

Function Name Port_Write

Specification Format LONG Port_Write(LPCVOID buf, LONG cnt)

Description Transmits data by performing serial communication.

Input buf: A pointer to the string of data to transmit

cnt: The length of the data to transmit (in bytes)

Input/Output

Output The number of transmitted bytes. −1 is returned if data could not be

transmitted.

Table 4-28. Port_Read Function

Function Name Port_Read

Specification Format LONG Port_Read(LPVOID buf, LONG cnt)

Description Receives data by performing serial communication.

Input buf: A pointer to the string of data in which to store the received data

cnt: The length of the received data (in bytes)

Input/Output

Output The number of received bytes. -1 is returned if data could not be received.

Table 4-29. Get_PortNumber Function

Function Name Get_PortNumber

Specification Format INT Get_PortNumber(VOID)

Description Acquires the number of the currently connected port.

Input None Input/Output

Output The number of the currently connected port

Table 4-30. AutoScanCom Function

Function Name AutoScanCom

Specification Format INT AutoScanCom (LPCTSTR pszService, LPCTSTR pszInterface,

INT nNo = 0)

Description Detects the number of a COM port that can be connected.

Input pszService: The name of the service for which the COM port is running

pszInterface: The interface name

nNo: Specify whether to search for numbers later than this number.

Input/Output

Output The detected COM port number. 0 is returned if no number is found.

CHAPTER 4 FILE TRANSFER APPLICATION

Application Note U19684EJ1V0AN 76

4.3.7 Configuration file for using the application (UsbfUpdate.ini)

This ini file is used to retain settings or device information. This file is located in the same folder as the exe file.

The definitions in this ini file are as follows.

Table 4-31. Sections in the Configuration File for Using the Application

Section Description

Application Indicates the currently specified values for the application.

Tartget1 Indicates the target ID.

Device.70F3769 Indicates the device information.

Multiple settings can be specified.

Table 4-32. Items in the Configuration File for Using the Application

Section Key Value Description

Target 1 or greater The currently specified ID number

COM 1 to 20 The number of the connected COM port or COM

port to connect

Mode chip or address Indicates the currently specified operating mode.

chip: Updates the firmware with a user-

created program using boot

swapping

address: Updates the firmware using a

specified address.

Application

Address FFFFFFFF The first address to write to (in hexadecimal)

Name XXX Indicates the name of this target. Target1

Device XXX The device specified for this target

Target 1 or greater The ID of the target to which this device belongs

Name XXX The name of this device

Size 999 The ROM size of this target

Device.70F3769

Block0 XXX|XXX|XXX|XXX Block information delimited using vertical bars (|)

First block number|last block number|size of each

block (in KB)|whether this is a booting area

Mutiple blocks can be specified by using Block1,

Block2, …, Blockn.

CHAPTER 4 FILE TRANSFER APPLICATION

Application Note U19684EJ1V0AN 77

Figure 4-2. ini Configuration File for Using the Application

[Application]
Target=1
COM=0
Mode=
Address=00000000
[Target1]
Name=V850ES Jx3-U/H
Device=70F3769
[Device.70F3769]
Target=1
Name=uPD70F3769
Size=512
Block0=0|15|4|true
Block1=16|123|4|false

Target ID: 1
COM port: 0 (unspecified)
Operating mode: Unspecified
First write address: 0

Target name: V850ES Jx3-U/H
Current device: 70F3769

Inclusion target: 1
Device name: μPD70F3769
Size: 512 KB
Block information 0: Blocks 0 to 15 are 4 KB blocks used

as a boot area.
Block information 1: Blocks 16 to 123

Note
are 4 KB blocks

that are not used as a boot area.

Note Blocks 124 to 127 are allocated by the firmware updating program and cannot be
specified.

4.4 Operating Mode

This section describes the operating modes.

(1) Chip

The specified HEX file must be in the Motorola S-record format or Intel extended format. If a file that has any

other format is specified, an error occurs during analysis. Because the file is written to the first memory

address, any specified address is ignored.

(2) Address

A file image is transferred, and then writing is performed starting at the specified address.

CHAPTER 4 FILE TRANSFER APPLICATION

Application Note U19684EJ1V0AN 78

4.5 Display of Messages

The following table describes the messages displayed in the message display field and when they are displayed.

Table 4-33. Displayed Messages

 Message When Displayed

1 Updating the firmware will

now start.

This message is displayed when the processing to update the

firmware starts

2 Updating has finished

successfully.

This message is displayed when the processing to update the

firmware finishes successfully

3 Specify the file. This message is displayed if no file is specified for updating the

firmware or the specified file does not exist.

4 Specify the mode. This message is displayed if no mode is specified for updating the

firmware.

5 Specify the correct address. This message is displayed if the correct address is not specified

while updating the firmware in the address mode.

6 Specify the COM port. This message is displayed if the COM port is not correctly

specified.

7 ERR: An error occurred while

opening the file.

This message is displayed if an error occurred while opening the

file.

8 ERR: A file format error

occurred.

This message is displayed if a file other than a Motorola S-record

format file or Intel extended format file is specified when

mode=chip is specified.

9 ERR: COM port n could not be

connected.

This message is displayed if COM port n could not be connected.

10 ERR: A data transmission

error occurred.

This message is displayed if data transmission failed.

11 ERR: A data reception error

occurred.

This message is displayed if data reception failed (for all three

retry attempts).

12 ERR: Processing to update the

firmware stopped.

This message is displayed if an NAK error was received from the

evaluation board.

13 ERR: A file size error

occurred.

This message is displayed if the data is found to exceed the ROM

area during the file size check.

Application Note U19684EJ1V0AN 79

CHAPTER 5 CREATING A PROGRAM

This chapter provides notes to keep in mind when creating a program.

5.1 Setting Up PM+ (Specifying the HEX File Format)

Only HEX files in the Motorola S-record format (32 bit) or Intel extended format can be used for the USB function

firmware updating program (the file transfer application) when updating a user-created program. Specify the format in

the Hexa Converter Options dialog box on the Option tab.

In the following example, Motorola TypeS(32bit)[-fs] is selected from the Format drop-down list.

Figure 5-1. Example of Specifying the HEX File Format

CHAPTER 5 CREATING A PROGRAM

Application Note U19684EJ1V0AN 80

5.2 Boot Processing (Reset Vector Section)

Because the self-update program assumes that vector processing is performed at the start of memory (starting at

the address 00000000) following a reset, use the start of memory for the reset section in user-created programs.

5.3 Linker Directives (Restriction on Allocating User-Created Programs)

User-created programs cannot be allocated where the firmware updating program resides (starting at the address

0007C000H). Therefore, when specifying the segments in the linker directive file, specify an address such that user-

created programs are not allocated where the self-update program resides. (For details, see 3.2 Memory Map.)

Application Note U19684EJ1V0AN 81

CHAPTER 6 CUSTOMIZATION

This chapter describes how to port the USB function firmware update program to another environment. The TK-

850/JG3H board is used as an example.

The memory capacities for the CPU (μPD70F3760) used for the TK-850/JG3H board are as follows.

• Internal flash memory: 256 KB (blocks 0 to 63)

• Internal RAM: 32 KB

6.1 Modifying Files

The following files must be modified:

• firm_update.dir

• usbf_fwup_mem_def_usr.h

• usbf_fwup_pwonchk_usr.c

• UsbfUpdate.ini

6.1.1 Modifying the self-update program

Modify the firmware update program by customizing the following files (which are in the firm_update directory) in

accordance with the environment to which the program is to be ported.

Table 6-1. Files to Customize for the Firmware Update Program

File Name Description

firm_update.dir Linker directive file

include\usbf_fwup_mem_def_usr.h Flash memory environment definitions

src\usbf_fwup_pwonchk_usr.c Source file for selecting the program to execute

CHAPTER 6 CUSTOMIZATION

Application Note U19684EJ1V0AN 82

(1) firm_update.dir

Modify the addresses at which segments are allocated in accordance with the CPU (μPD70F3760) used for

the TK-850/JG3H board.

The firmware update program must be allocated at the end of the flash memory and uses four blocks (16 KB).

The CONST and TEXT segments use a total of three blocks, and the APSTART segment uses one block. The

FLASHTEXT and DATA segments are allocated at the beginning of the internal RAM.

Figure 6-1. flash_update.dir

CONST : !LOAD ?R V0x3c000 {
 .const = $PROGBITS ?A .const;
};

TEXT : !LOAD ?RX {
 SelfLib_Rom.text = $PROGBITS ?AX SelfLib_Rom.text;
 .text = $PROGBITS ?AX .text;
};

APSTART : !LOAD ?RX V0x3f000 {
 apstart.text = $PROGBITS ?AX apstart.text;
};

FLASHTEXT: !LOAD ?RX V0x3ff7000 {
 SelfLib_ToRamUsrInt.text = $PROGBITS ?AX SelfLib_ToRamUsrInt.text;
 SelfLib_ToRamUsr.text = $PROGBITS ?AX SelfLib_ToRamUsr.text;
 SelfLib_RomOrRam.text = $PROGBITS ?AX SelfLib_RomOrRam.text;
 SelfLib_ToRam.text = $PROGBITS ?AX SelfLib_ToRam.text;
 flash.text = $PROGBITS ?AX flash.text;
};

DATA : !LOAD ?RW {
 .data = $PROGBITS ?AW .data;
 .sdata = $PROGBITS AWG .sdata;
 .sbss = $NOBITS ?AWG .sbss;
 .bss = $NOBITS ?AW .bss;
 SelfLib_RAM.bss = $NOBITS ?AW SelfLib_RAM.bss;
};

__tp_TEXT @ %TP_SYMBOL;
__gp_DATA @ %GP_SYMBOL &__tp_TEXT{DATA};
__ep_DATA @ %EP_SYMBOL;

Specifies the starting address of block 60.

Specifies the starting address of block 63.

Specifies the starting address of internal RAM.

CHAPTER 6 CUSTOMIZATION

Application Note U19684EJ1V0AN 83

(2) usbf_fwup_mem_def_usr.h

This header file defines the flash memory environment used for the firmware update program.

For APSTART_ADDR, specify the address at which the APSTART segment is allocated, which is specified in the

linker directive file. For WRITE_MAX_BLOCK, specify the number of the last block that can be used for a user-

created program. Because the firmware update program uses blocks 60 to 63, user-created programs can

only use blocks 0 to 59.

Figure 6-2. usbf_fwup_mem_def_usr.h

 #ifndef __USBF_FWUP_MEM_DEF_USR_H__
#define __USBF_FWUP_MEM_DEF_USR_H__

#define APSTART_ADDR (0x3f000)

#define WRITE_MAX_BLOCK (59)

#endif/* __USBF_FWUP_MEM_DEF_USR_H__ */

Specifies the starting address

of the APSTART segment.

Specifies the number of the last block

that user-created programs can use.

(3) usbf_fwup_pwonchk_usr.c

When power is supplied or a reset occurs, this source file is used to determine whether to execute the firmware

update program or a user-created program.

Because the SW3 and SW4 on the TK-850/JG3H board have the same configuration as those on the TK-

850/JH3U-SP board, this source file must not be modified.

Figure 6-3. usbf_fwup_pwonchk_usr.c

 #pragma ioreg

#include "nec_types.h"

#define SW_PUSHED (0x00) /* pushed switch SW3 and SW4 */
#define SW_STATUS (0x03) /* switch status SW3 and SW4 */

s32 usbf_fwup_pwonchk_usr(void);

s32 usbf_fwup_pwonchk_usr(void)
{
 s32 ret = -1;
 u08 sts;

 sts = P9H;
 if ((sts & SW_STATUS) == SW_PUSHED) {
 ret = 0;
 }

 return ret;
}

CHAPTER 6 CUSTOMIZATION

Application Note U19684EJ1V0AN 84

6.1.2 Modifying the ini file for the file transfer application

Customize the UsbfUpdate.ini file in the FirmupdateGUI directory in accordance with the environment to which

the program is to be ported.

Table 6-2. File to Customize for the File Transfer Application

File Name Description

UsbfUpdate.ini Settings for the file transfer application

(1) UsbfUpdate.ini

The following figure shows how to add the μPD70F3760 settings.

Figure 6-4. UsbUpdate.ini

 [Application]
Target=1
COM=8
Mode=chip
Address=00000000
[Target1]
Name=V850ES Jx3-U/H
Device=70F3760
[Device.70F3769]
Target=1
Name=uPD70F3769
Size=512
Block0=0|15|4|true
Block1=16|123|4|false
[Device.70F3760]
Target=1
Name=uPD70F3760
Size=256
Block0=0|15|4|true
Block1=16|59|4|false

Inclusion target: 1
Device name: μPD70F3760
Size: 256 KB
Block information 0: Blocks 0 to 15 are 4 KB blocks used

as a boot area.
Block information 1: Blocks 16 to 59 are 4 KB blocks that

are not used as a boot area.

Application Note U19684EJ1V0AN 85

CHAPTER 7 DATA COMMUNICATION SPECIFICATIONS

7.1 Specifications of the Communication Interface for Updating the Firmware

This section describes the communication between the host on which the firmware update program runs and the

evaluation board.

7.1.1 Communication data sequence

The host transmits a start record at the beginning of communication and an end record at the end. Data loaded

into the flash memory is transmitted as a series of data records.

Figure 7-1. Communication Data Sequence

Start record →

Data record →

End record →

← Response record

← Response record

← Response record

. .
 .

Host Evaluation

board

CHAPTER 7 DATA COMMUNICATION SPECIFICATIONS

Application Note U19684EJ1V0AN 86

7.1.2 Data transmitted by the host

The host transmits a start record, data records, and an end record.

Records are transmitted one by one, and the next record is not transmitted until a response record is received.

(1) Start record

This record is transmitted first when updating the firmware.

Figure 7-2. Start Record Format

R
ec

or
d

ty
pe

 (
<

1>
)

R
ec

or
d

le
ng

th
 (

<
2>

)

D
ev

ic
e

ty
pe

 (
<

3>
)

D
at

e
(<

4>
)

T
im

e
(<

5>
)

C
he

ck
su

m
 (

<
6>

)

<1> Record type

The type of record

1 byte

The record type of the start record is 0x00.

<2> Record length

The number of bytes for the device type and later

1 byte

<3> Device type

The type of device

1 byte

<4> Date

The current date

The year, month, and day require 1 byte each.

The last two digits of the year are specified (based on the Western calendar).

<5> Time

The current time

The hour, minute, and second require 1 byte each.

<6> Checksum

The record checksum

1 byte

This is the checksum for the record length, device type, date, and time.

The checksum is the lower 8 bits of the one’s complement of the sum of each byte value.

CHAPTER 7 DATA COMMUNICATION SPECIFICATIONS

Application Note U19684EJ1V0AN 87

(2) Data records

These records contain the data to be loaded into the flash memory.

Figure 7-3. Data Record Format

R

ec
or

d
ty

pe
 (

<
1>

)

R
ec

or
d

le
ng

th
 (

<
2>

)

Lo
ad

 a
dd

re
ss

 (
<

3>
)

Data . . . (<4>)

C
he

ck
su

m
 (

<
5>

)

<1> Record type

The type of record

1 byte

The record type of a data record is 0x0f.

<2> Record length

The number of bytes for the load address and later

1 byte

<3> Load address

A flash memory address

4 bytes

Data is loaded into the flash memory starting at this address.

The load address is a 32-bit number in little endian format.

<4> Data

The data to load into the flash memory

Each record can contain up to 256 bytes.

<5> Checksum

The record checksum

1 byte

This is the checksum for the record length, load address, and data.

The checksum is the lower 8 bits of the one’s complement of the sum of each byte value.

CHAPTER 7 DATA COMMUNICATION SPECIFICATIONS

Application Note U19684EJ1V0AN 88

(3) End record

This record is transmitted after all other records.

Figure 7-4. End Record Format

R
ec

or
d

ty
pe

 (
<

1>
)

R
ec

or
d

le
ng

th
 (

<
2>

)

D
ev

ic
e

ty
pe

 (
<

3>
)

C
he

ck
su

m
 (

<
4>

)

<1> Record type

The type of record

1 byte

The record type of the end record is 0xf0.

<2> Record length

The number of bytes for the device type and later

1 byte

<3> Device type

The type of device

1 byte

<4> Checksum

The record checksum

1 byte

This is the checksum for the record length and device type.

The checksum is the lower 8 bits of the one’s complement of the sum of each byte value.

CHAPTER 7 DATA COMMUNICATION SPECIFICATIONS

Application Note U19684EJ1V0AN 89

7.1.3 Data transmitted by the evaluation board

The evaluation board transmits records in response to records from the host.

(1) Response records

Figure 7-5. Response Record Format

R
ec

or
d

ty
pe

 (
<

1>
)

R
ec

or
d

le
ng

th
 (

<
2>

)

R
es

po
ns

e
ty

pe
 (

<
3>

)

Field . . . (<4>)

C
he

ck
su

m
 (

<
5>

)

<1> Record type

The type of record

1 byte

This is the type of record for which this response record is returned.

<2> Record length

The number of bytes for the response type and later

1 byte

<3> Response type

The response type

1 byte

The following three types are available:

0x00: ACK

0x0f: NAK (a request to transmit the record again)

0xf0: NAK (an error termination)

<4> Field

If an error occurs, the field is a 1-byte error code.

If no error occurs, the contents vary depending on the record type as follows.

Start record: Device type

Data record: Load address

End record: Device type

<5> Checksum

The record checksum

1 byte

This is the checksum for the record length, response type, and field.

The checksum is the lower 8 bits of the one’s complement of the sum of each byte value.

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
 800-366-9782
http://www.am.necel.com/

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

Shanghai Branch
Room 2509-2510, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai, P.R.China P.C:200120
Tel:021-5888-5400
http://www.cn.necel.com/

Shenzhen Branch
Unit 01, 39/F, Excellence Times Square Building,
No. 4068 Yi Tian Road, Futian District, Shenzhen,
P.R.China P.C:518048
Tel:0755-8282-9800
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/

For further information,
please contact:

G0706

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

	COVER
	PREFACE
	CHAPTER 1 OVERVIEW
	1.1 Purpose
	1.2 Overview of Updating the USB Function Firmware
	1.2.1 Features
	1.2.2 Folder organization

	CHAPTER 2 EXECUTING THE SAMPLE PROGRAM FOR UPDATING THE USB FUNCTION FIRMWARE
	2.1 Operating Environment
	2.2 Executing the Sample Program
	2.2.1 Running the firmware update program
	2.2.2 Updating the firmware information
	2.2.3 Installing the CDC driver

	CHAPTER 3 FIRMWARE UPDATE PROGRAM
	3.1 Organization of Files and Folders
	3.1.1 firm_update folder
	3.1.2 firm_update\include folder
	3.1.3 firm_update\lib folder
	3.1.4 firm_update\src folder
	3.1.5 firm_update\usb_serial folder
	3.1.6 firm_update\obj folder
	3.1.7 firm_update\out folder

	3.2 Memory Map
	3.2.1 Memory map
	3.2.2 Linker directive file (flash_update.dir)

	3.3 Boot Processing
	3.3.1 Startup file (crtE.s)
	3.3.2 Checking where to branch to when the power is turned on

	3.4 Main Routine
	3.4.1 Initializing the settings for USB communication (usbf_fwup_drvif.c)

	3.5 Interrupt Processing
	3.5.1 Interrupts in the flash environment (usbf_fwup_intentry.s)

	3.6 Writing to the On-Chip Flash Memory
	3.6.1 Writing to the flash memory
	3.6.2 Boot swapping
	3.6.3 Processing to update the firmware
	3.6.4 Updating the user-created program
	3.6.5 Receiving data

	3.7 CDC (Communications Device Class)
	3.7.1 Monitoring endpoints by polling
	3.7.2 Monitoring EP0
	3.7.3 Monitoring EP1
	3.7.4 Transmitting and receiving USB data

	CHAPTER 4 FILE TRANSFER APPLICATION
	4.1 Development Environment
	4.2 Operation Overview
	4.3 Organization of Files
	4.3.1 Application class (FlashSelfRewriteGUI)
	4.3.2 Application dialog box class (FlashSelfRewriteGUIDlg)
	4.3.3 Dialog box class used when a file is dragged and dropped (FlashSelfRewriteGUIDrop)
	4.3.4 Thread class that performs communication processing to update the firmware (CommandThread)
	4.3.5 Common Processing Class (CommonProc)
	4.3.6 Class for serial communication with the COM port (SerialPort)
	4.3.7 Configuration file for using the application (UsbfUpdate.ini)

	4.4 Operating Mode
	4.5 Display of Messages

	CHAPTER 5 CREATING A PROGRAM
	5.1 Setting Up PM+ (Specifying the HEX File Format)
	5.2 Boot Processing (Reset Vector Section)
	5.3 Linker Directives (Restriction on Allocating User-Created Programs)

	CHAPTER 6 CUSTOMIZATION
	6.1 Modifying Files
	6.1.1 Modifying the self-update program
	6.1.2 Modifying the ini file for the file transfer application

	CHAPTER 7 DATA COMMUNICATION SPECIFICATIONS
	7.1 Specifications of the Communication Interface for Updating the Firmware
	7.1.1 Communication data sequence
	7.1.2 Data transmitted by the host
	7.1.3 Data transmitted by the evaluation board

