
 Application Note

R11AN0226EU0104 Rev.1.04 Page 1 of 64
Oct.11.19

Renesas Synergy™ Platform

Wi-Fi Framework
Introduction
This document enables you to effectively use the Wi-Fi framework module in your own design. On
completion of this guide, you will be able to add the Wi-Fi framework module to your design, configure it
correctly for the target application, and write code using the included application example code as a
reference and an efficient starting point. For advanced API descriptions and more complex application
projects, see the Renesas Synergy™ Knowledge Base in the References section of this document. These
valuable resources demonstrate how to create more complex designs.

The Wi-Fi framework provides generic application interface for Wi-Fi modules with or without on-chip
networking capability. Currently, only Qualcomm GT202 is supported. The Wi-Fi framework communicates
through SPI with the underlying GT202. This application project provides general guidance on how to
integrate a new Wi-Fi module.

Required Resources
To build and run the Wi-Fi framework application example, you need:

• Renesas Synergy™ SK-S7G2 or PK-S5D9 kit
• e2 studio ISDE v7.5.1 or later, or IAR Embedded Workbench® for Renesas Synergy™ v8.23.3 or later
• Renesas Synergy™ Software Package (SSP) v1.7.0 or later, or Synergy Standalone Configurator (SSC)

v7.5.1 or later
• Serial Port Terminal such as Tera Term installed on your PC
• SEGGER J-Link® USB driver
• Qualcomm GT202 PMOD module
• Micro USB cables
• A Wi-Fi router of 2.4 GHz bandwidth, with DHCP server capability to be used as an access point

• All the required Renesas software from the Renesas Synergy Gallery
(www.renesas.com/synergy/software).

Prerequisites and Intended Audience
This application project assumes you have some experience with the Renesas e2 studio ISDE and Synergy
Software Package (SSP). Before you perform the procedure in this application note, follow the procedure in
the SSP User Manual to build and run the Blinky project. Doing so enables you to become familiar with the
e2 studio and the SSP, and to ensure that the debug connection to your board functions properly. In addition,
this application project assumes you have some knowledge on Wi-Fi and its communication protocols.

The intended audience are users who want to develop applications with Wi-Fi interface using Synergy
S3/S5/S7 MCU Series.

https://www.renesas.com/synergy/software

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 2 of 64
Oct.11.19

Contents

1. Wi-Fi Framework Module Overview .. 5
1.1 Wi-Fi Framework Module Architecture .. 5
1.1.1 Synergy Wi-Fi Framework Application Interface ... 6
1.1.2 Network Stack Abstraction Layer (NSAL) ... 6
1.1.3 SSP HAL Interface .. 6
1.1.4 Socket Interface .. 6
1.1.5 On-chip Stack Interface ... 6
1.2 Wi-Fi Framework Module Features ... 6
1.2.1 Path 1: Wi-Fi Framework Features using NetX and NASL ... 6
1.2.2 Path 2: Wi-Fi Framework Features using the On-Chip Networking Stack Support 7
1.2.3 Additional Features if Supported by the Wi-Fi Module or Wi-Fi Module Driver 7

2. Wi-Fi Framework Module Operational Overview ... 7
2.1 Wi-Fi Module Operational Overview using NSAL and NetX (Path 1) ... 7
2.1.1 Initialization using NetX ... 7
2.1.2 Wi-Fi Packet Transmission using NetX ... 8
2.1.3 Wi-Fi Packet Reception using NetX .. 9
2.2 Wi-Fi Application Operation using On-Chip Networking Stack (Path 2) ... 10
2.3 Wi-Fi Framework Module Important Operational Notes and Limitations .. 11
2.3.1 Wi-Fi Framework Module Operational Notes .. 11
2.3.2 Wi-Fi Framework Module Limitations .. 11

3. Wi-Fi Framework Module APIs Overview .. 11
3.1 Wi-Fi Framework APIs calling through the NetX (Path 1) ... 12
3.1.1 Synergy Wi-Fi Framework Instance .. 12
3.1.2 Synergy Wi-Fi Framework APIs .. 12
3.1.3 Wi-Fi NSAL API ... 17
3.2 On-chip Networking Stack Support APIs (Path 2) .. 20
3.2.1 On-chip Networking Stack Instance .. 20
3.2.2 On-chip Network Stack Support APIs ... 21
3.3 BSD Socket APIs (Path 2) ... 22
3.3.1 BSD Socket Instance .. 22
3.3.2 Structures used in the BSD Socket APIs .. 23

4. Adding a Wi-Fi Framework Module in an Application .. 25
4.1 Adding a Wi-Fi Framework Module using NetX (Path 1) .. 25
4.1.1 Add the NetX IP instance .. 25
4.1.2 Adding the NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx .. 26
4.2 Adding the Wi-Fi Framework Module using On-chip Wi-Fi Stack (Path 2) ... 27

5. Configuring the Wi-Fi Framework Module ... 28

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 3 of 64
Oct.11.19

5.1 Wi-Fi Framework Configurations using NetX (Path 1) .. 28
5.1.1 Configurations for the NetX IP Instance .. 28
5.1.2 Configuration for Wi-Fi framework module on NetX ... 30
5.1.3 Configurations for NetX Packet Pool Instance .. 31
5.1.4 Configurations for the NetX Port ... 32
5.1.5 Configurations for the Wi-Fi Module Device Driver ... 33
5.2 Wi-Fi Framework Configurations using On-chip Networking Stack Support (Path 2) 34
5.2.1 Configurations for the BSD Socket ... 34
5.2.2 Configurations for the On-chip Stack .. 35
5.2.3 Configurations for the Wi-Fi Module Device Driver ... 35
5.3 Configuration for the Wi-Fi Framework Module Low Level Drivers ... 35

6. Using the Wi-Fi Framework Module in an Application ... 36
6.1 Steps when using the Wi-Fi Framework Module with NetX (Path 1) .. 36
6.2 Using the Wi-Fi Framework Module with On-chip Stack (Path 2) ... 38

7. The Wi-Fi Framework Module Application Project .. 38
7.1 Overview of the Application Project .. 38
7.1.1 NetX and NSAL Interface using Path 1 ... 38
7.1.2 Console Framework User Interface .. 38
7.1.3 DHCP Client Application ... 38
7.1.4 Using the Ping Application to Confirm the Connection ... 39
7.2 Software Architecture .. 39
7.2.1 Console Application Thread .. 40
7.2.2 Wi-Fi Application Thread ... 40
7.3 Wi-Fi Framework Module Code Overview .. 41
7.3.1 Configurator generated code (src/synergy_gen folder) .. 41
7.3.2 User application code (src/wifi_app_thread_entry.c) .. 41
7.4 Configurations ... 42
7.4.1 DHCP Client Configuration ... 43
7.4.2 NetX Related Configurations ... 45
7.4.3 Wi-Fi Device Driver Configuration ... 46
7.4.4 SPI Communication Configuration .. 47
7.4.5 SPI Hardware Pin Configuration ... 49
7.4.6 PMODB Interrupt Pin ... 51
7.4.7 SK-S7G2 PMOD Usage Caveat and Workarounds .. 52
7.5 GT202 Wi-Fi Module and Driver Limitations/Known Issues .. 53

8. Running the Wi-Fi Framework Module Application Project ... 53
8.1 SK-S7G2 Board Setup Details .. 53
8.2 Install the USB CDC Device Driver ... 54
8.3 Running the Sample Project.. 55

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 4 of 64
Oct.11.19

8.3.1 View the Available Commands ... 55
8.3.2 Provision the Wi-Fi Module ... 55
8.3.3 Ping the Wi-Fi Module from the PC ... 56

9. Customizing the Wi-Fi Framework Module for a Target Application 57
9.1 Wi-Fi Framework Device Driver Source and Header Files Overviews ... 57
9.2 Instance Header File ... 58
9.3 Framework APIs .. 58
9.4 Private Structure/Macro Definitions ... 59
9.5 Framework API Implementation .. 59
9.5.1 NSAL Transmit API Interface .. 59
9.5.2 NSAL Receive Callback Interface ... 59
9.6 Updating the Driver Source Code ... 60
9.7 Updating the Wi-Fi Driver Configuration Header File .. 61

10. Wi-Fi Framework Module Conclusion .. 61

11. Wi-Fi Framework Module Next Steps .. 61

12. Wi-Fi Module Resource Information .. 61
12.1 SSP User Manual .. 61
12.2 Knowledge Base ... 62
12.3 Longsys GT202 Module reference link ... 62

Revision History .. 64

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 5 of 64
Oct.11.19

1. Wi-Fi Framework Module Overview
Wi-Fi is a technology for wireless local area networking with devices based on the IEEE 802.11 standards.
Wi-Fi networks are created using radio frequency technology to transfer data between sender and receiver.
Wi-Fi most commonly uses the 2.4 GHz (12 cm) UHF and 5 GHz (6 cm) SHF ISM radio bands.

The Synergy Software Package (SSP) includes a Wi-Fi framework that enables the creation of Wi-Fi
application using a generic API interface, implemented on a Wi-Fi device driver provided by Wi-Fi vendors.
This section introduces the Wi-Fi framework basic blocks and key features and enables you to determine
whether the intended Wi-Fi application is supported by the Synergy Wi-Fi framework at a higher level.

Note: In this example application project, the GT202 Pmod module only supports 2.4 GHz bandwidth.

1.1 Wi-Fi Framework Module Architecture
Figure 1 provides an overview of the Synergy Wi-Fi framework layered architecture:
• The Wi-Fi framework includes the enclosed five blocks in the middle of the architecture graph: NSAL,

Wi-Fi Framework API, Wi-Fi On-chip Stack API, BSD Socket API, and the Wi-Fi Device Driver Interface.
• The vendor-provided Wi-Fi device drivers are included in the SSP package under SSP_Supplemental.

Figure 1. Wi-Fi framework organization, options, and stack implementations
The Wi-Fi framework implementation allows Wi-Fi modules, with or without on-chip networking stack
support, to be integrated with the SSP low-level support blocks.

• Path 1: Using the NetX™/NetX Duo™ NSAL, in addition to the Wi-Fi framework APIs blocks (see
Figure 1).

Note: For simplicity in this document, NetX refers to both NetX and NetX-Duo when applicable to both.

• Path 2: Using on-chip networking stack support API and the BSD Socket APIs (see Figure 1).

Sections 1.1.1 to 1.1.5 describe the building blocks essential to Wi-Fi application creation.

https://en.wikipedia.org/wiki/Wireless_LAN
https://en.wikipedia.org/wiki/IEEE_802.11
https://en.wikipedia.org/wiki/UHF
https://en.wikipedia.org/wiki/Super_high_frequency
https://en.wikipedia.org/wiki/ISM_band

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 6 of 64
Oct.11.19

1.1.1 Synergy Wi-Fi Framework Application Interface
Generic APIs provided by the Wi-Fi framework are used to configure and provision the interface as an
Access Point (AP) or as a client, and also perform data transfers. For Wi-Fi framework APIs details, see
section 3.1.

1.1.2 Network Stack Abstraction Layer (NSAL)
• The Wi-Fi framework provides a network stack abstraction layer (NSAL), which is used to manipulate

data frames of the MAC layer with Wi-Fi framework APIs.
• The NSAL implements the network device driver interface for the NetX IP stack, which allows the physical

network interface (that is, the MAC layer implementation) to be retargeted for Wi-Fi, instead of the internal
MAC interface for the wired Ethernet port.

• For details on NSAL interface function calls, see section 3.1.3.

1.1.3 SSP HAL Interface
• The HAL interface implements SSP HAL components used by the Wi-Fi module for lower level

communication with the Synergy MCU
• This implementation is specific to the Wi-Fi module that uses different HAL components such as the SPI,

ICU, IOPORT, SDMMC, and DTC
• For details on the HAL interface APIs, see the SSP User’s Manual. With the Wi-Fi framework, access to

these HAL drivers from the application is not required.
1.1.4 Socket Interface
• Socket APIs provide an interface to the application used with BSD Socket APIs
• Socket APIs require the Wi-Fi module/driver to support the on-chip networking stack and BSD Socket

APIs. When the application uses these APIs, it is using the on-chip networking stack present on the Wi-Fi
chipset, and is not using NSAL or the networking stack running on the Synergy MCU.

• NetX applications, such as DHCP and DNS, cannot be used with the Wi-Fi on-chip networking stack.
• For details on Socket APIs, see section 3.3.
1.1.5 On-chip Stack Interface
• On-chip stack APIs are an interface to the application configuring the IP address of the module and

start/stop DHCP server, when configured in AP mode.
• On-chip stack APIs use the networking stack running on the Wi-Fi chipset. Similar to Socket APIs, the

use of on-chip stack APIs and NSAL are mutually exclusive.
• The on-chip stack’s capabilities depend on the Wi-Fi module used and may not be supported across

different vendor modules.
• For on-chip stack API information, see section 3.2.

1.2 Wi-Fi Framework Module Features
The following features are provided in the Path 1 and Path 2 implementation.

1.2.1 Path 1: Wi-Fi Framework Features using NetX and NASL
Path 1 uses the NetX for networking support. This path uses the network stack abstraction layer (NSAL) to
implement the generic MAC layer, making use of Wi-Fi framework APIs. This path enables you to develop
application code without getting into details of the Wi-Fi module device driver.

Using NetX and NASL:

• Allows the same application code to be used across different Wi-Fi modules that support Path 1
• Allows easy migration of the Ethernet-based application to a Wi-Fi based application. Once the NetX

device driver and the Wi-Fi framework are swapped, existing NetX applications should work as they did
previously. Add a call from the application to set the Wi-Fi provisioning.

• Includes the flexibility to debug and fine-tune the application and TCP/IP stack as required by the
application.

The current NSAL implementation only provides NetX NSAL. Adding support for a new network stack
requires implementing the appropriate NSAL.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 7 of 64
Oct.11.19

1.2.2 Path 2: Wi-Fi Framework Features using the On-Chip Networking Stack Support
Using the on-chip networking stack provides the following:

• It is beneficial when using MCUs with a small memory footprint
• Offers BSD sockets that interface to create socket-based applications with the on-chip TCP/UDP
• Offers an option to integrate third-party application protocols on top of the TCP/IP, such as MQTT and

COAP, without using the NetX stack.

1.2.3 Additional Features if Supported by the Wi-Fi Module or Wi-Fi Module Driver
The following features are supported by the framework only if they are supported by the Wi-Fi module or
Wi-Fi module driver:

Access Control List Management — Allows application to control which devices can be connected to an
access point

Multicast Filter List Management — Allows application to join or leave multicast group

2. Wi-Fi Framework Module Operational Overview
The following operational overview describes a typical Wi-Fi application used to initialize the Wi-Fi module,
and Wi-Fi packet transmission/reception using NetX and on-chip network stack support.

2.1 Wi-Fi Module Operational Overview using NSAL and NetX (Path 1)
In Path 1 operation, the application uses NSAL and NetX to establish the Wi-Fi module network application.

2.1.1 Initialization using NetX
The Figure 2 flow chart and following steps illustrate the Wi-Fi module initialization:

1. Create a NetX IP instance in the Synergy configurator.
2. Add the NetX Port using the Wi-Fi framework in the Synergy configurator, and then provide any low-level

dependencies and configuration.
3. Generate the Project Content and build the project.
4. While running, the SSP generated code calls nx_ip_create.
5. nx_ip_create calls the NetX NSAL driver entry point.
6. The NSAL driver entry point calls the Wi-Fi framework open() function.
7. Wi-Fi framework open() function calls the Wi-Fi device driver open() function to initialize and enable

the Wi-Fi module.
8. nx_ip_interface_status_check API is called and waits for the NX_IP_LINK_ENABLED status to

be set.
9. On successful completion, the Wi-Fi module is ready for scan and provision.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 8 of 64
Oct.11.19

Figure 2. Wi-Fi module initialization with NetX path

2.1.2 Wi-Fi Packet Transmission using NetX
The following general steps and the Figure 3 flow chart illustrate the Wi-Fi module packet transmission using
NetX:

1. SSP-generated code initializes the NetX packet pool.
2. Wi-Fi module is initialized and enabled.
3. User application code provisions the Wi-Fi module.
4. User application code calls the NetXs TCP/UDP Socket Send API.
5. NetX Send API calls the NSAL driver entry point for package transmission.
6. NSAL driver entry point calls the Synergy Wi-Fi Framework Transmit API function.
7. Synergy Wi-Fi framework Transmit API function calls the Wi-Fi device driver Transmit API function.
8. Wi-Fi device driver transmits the user data.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 9 of 64
Oct.11.19

Figure 3. Wi-Fi module data transmission with NetX path

2.1.3 Wi-Fi Packet Reception using NetX
The following general steps and the Figure 4 flow chart illustrate the Wi-Fi module packet reception using
NetX:

1. Wi-Fi packet reception starts from the Wi-Fi device driver interrupt service routine.
2. Once the packet is received, the receive callback function of the Wi-Fi device driver transfers the receive

data to buffer and initiates the Wi-Fi framework receive callback function.
3. The Wi-Fi framework receive callback function calls the NSAL receive callback function.
4. The NSAL receive callback function calls the NetX deferred receive processing callback.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 10 of 64
Oct.11.19

Figure 4. Wi-Fi module packet reception with NetX path

2.2 Wi-Fi Application Operation using On-Chip Networking Stack (Path 2)
The following general steps and the Figure 5 flow chart illustrate the Wi-Fi module operation using On-chip
networking stack (Path 2):

1. User application creates the Wi-Fi provision structure.
2. User application calls the BSD Socket interface API to open the on-chip networking stack.
3. The BSD Socket interface open API internally calls the on-chip stack support open API function.
4. The On-chip stack support API calls the Wi-Fi framework open function to enable the Wi-Fi module.
5. User application scans and provisions the Wi-Fi module.
6. User application calls the on-chip network stack APIs to configure the IP address.
7. User application calls the standard BSD Socket APIs to communicate with the Wi-Fi module.
8. On completion, the user application codes call the BSD Socket interface close function to close the Wi-Fi

module.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 11 of 64
Oct.11.19

Figure 5. Wi-Fi operational flow with On-chip networking stack support

2.3 Wi-Fi Framework Module Important Operational Notes and Limitations
2.3.1 Wi-Fi Framework Module Operational Notes
• The Wi-Fi module has various parameters as specified by 802.11 standards. It is possible that individual

device drivers and Wi-Fi chipsets might not support the configuration of all the functions.
• For the Wi-Fi interface to become active, at minimum configure the channel, Service Set Identifier (SSID),

security scheme, and security credentials.
• Current NSAL implementation includes support for NetX (IPv4) and NetX-Duo (IPv6). NetX and NetX Duo

support IPv4; however, NetX Duo also supports IPv6. Adding support for a new network stack requires
implementing the appropriate NSAL.

• For the security setting, WEP keys can be entered in either ASCII or Hex format and configured to use
either 40-or 104-bit keys. WEP key has a 24-bit initialization vector, in addition to the secret key. The key
depends on the vendor; 64-bit WEP keys can be referred to as 40-bit keys, and 128-bit WEP keys can be
referred to as 104-bit keys. The Wi-Fi framework accepts 1 to 4 WEP keys of a specific format and type.
In the provisioning structure, you must fill the security type as SF_WIFI_SECURITY_TYPE_WEP, and at
least one (maximum is four) WEP key in the key buffer.

2.3.2 Wi-Fi Framework Module Limitations
• The Wi-Fi framework does not support the Synergy S1 MCU Series due to memory constraints.
• There is a bug in this version of the Wi-Fi framework. When the NetX and NSAL path is selected, the

Synergy configurator disables the on-chip networking stack setting by default. Currently, the Synergy
configurator still allows the enabling of the On-chip Networking Stack support. For more information on
this issue, see the SSP v1.4.0 Release Note.

• For Wi-Fi modules using RSPI, the DTC components are auto-filled as the dependencies for RSPI. When
DTC is used with RSPI, 32-bit transfers are required. However, your Wi-Fi module (such as the GT202)
vendor code might support 8-bit or 16-bit transfers only. In this case, the DTC component must be
removed.

3. Wi-Fi Framework Module APIs Overview
The Wi-Fi framework module APIs can be used in Path 1 and Path 2, and in the Wi-Fi On-chip stack support
APIs; in addition to the Wi-Fi Socket APIs.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 12 of 64
Oct.11.19

3.1 Wi-Fi Framework APIs calling through the NetX (Path 1)
The Wi-Fi Framework APIs that apply to the NetX implementation in Path 1 are covered in the following
subsections. The sf_wifi_api.h header file includes all the structures and APIs that are defined in the
SSP User’s Manual API References for the associated module. These data structures are normally
generated by the Synergy Configurator using the properties sheet filled in by the user.

3.1.1 Synergy Wi-Fi Framework Instance
The application must define the Synergy Wi-Fi framework instance before using it. The Synergy Wi-Fi
framework instance refers to the Wi-Fi module specific control data, configuration data, and APIs. The
application uses this instance to perform operation on Wi-Fi module.

Figure 6 shows members of the Synergy Wi-Fi framework instance (sf_wifi_instance_t). The instance
is generated when user provides the Name property in the Synergy configurator for the Wi-Fi module.

Figure 6. Wi-Fi framework instance

3.1.2 Synergy Wi-Fi Framework APIs
The Wi-Fi framework module defines APIs such as open, close, provision, transmit, and scan related to the
Wi-Fi operation.

3.1.2.1 Structures used in Wi-Fi Framework APIs
From a higher level, these are the structures used in the Wi-Fi framework APIs and these structures have
their own elements defined as structures in many cases. Some basic data structures used in the Wi-Fi
framework are given. All structures and APIs described here are defined in the header file sf_wifi_api.h.

• Wi-Fi control parameter structure sf_wifi_ctrl_t
This control parameter structure is the pointer to the user-provided storage for the Wi-Fi module control
structure and can be an input or output of the Wi-Fi framework API, depending on how the API uses it.

Figure 7. Wi-Fi framework control structure

• Wi-Fi configuration parameter structure sf_wifi_cfg_t
This configuration parameter structure is the pointer to the user-defined Wi-Fi module configuration
structure and is an input to several of the APIs as described in the section that follows.

/** This structure encompasses everything that is needed to use an instance of this
interface. */

typedef struct st_sf_wifi_instance

{

 sf_wifi_ctrl_t * p_ctrl; ///< Pointer to the control structure for
this instance

 sf_wifi_cfg_t const * p_cfg; ///< Pointer to the configuration structure
for this instance

 sf_wifi_api_t const * p_api; ///< Pointer to the API structure for this
instance

} sf_wifi_instance_t;

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 13 of 64
Oct.11.19

Figure 8. Wi-Fi framework configuration structure

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 14 of 64
Oct.11.19

• Wi-Fi Framework API structure sf_wifi_api_t
This structure includes all the Wi-Fi framework API function pointers.

Figure 9. Wi-Fi framework API structure

Refer to the Wi-Fi framework module in the SSP User’s Manual. The API References section describes
operations and definitions for function data structures, typedefs, defines, API data, API structures, and
function variables, including:
• Wi-Fi Statistic and error counters structure for this IP instance sf_wifi_stats_t
• Wi-Fi Framework scan structure sf_wifi_scan_t
• Wi-Fi Framework access control mode structure sf_wifi_access_control_t
• Wi-Fi IP address structure sf_wifi_ip_addr_t
• Wi-Fi module device level information structure sf_wifi_info_t
• Wi-Fi provisioning parameter structure sf_wifi_provisioning_t

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 15 of 64
Oct.11.19

3.1.2.2 Wi-Fi Framework APIs
Table 1 shows a complete list of the available APIs, an example API call, and a brief description of API
inputs/outputs. The examples assume the name of the Wi-Fi module is g_sf_wifi0 that is user-provided in
the Synergy configurator.

Table 1. Wi-Fi framework module API summary table

Function Name API Prototype and Description

.open ssp_err_t (*open)(sf_wifi_ctrl_t * p_ctrl, sf_wifi_cfg_t const *
const p_cfg);
The open API initializes the Wi-Fi driver configuration, enables the driver link, enables
interrupts, and makes the device ready for data transfer.
[in,out]
p_ctrl see sf_wifi_ctrl_t
[in]
p_cfg see sf_wifi_cfg_t

.close ssp_err_t (*close)(sf_wifi_ctrl_t * const p_ctrl);
The close API de-initializes the network interface and can put it in low power mode or
power it off. This API closes the Wi-Fi device driver, disables the driver link, and disables
the interrupts.
[in, out]
p_ctrl see sf_wifi_ctrl_t

.infoGet ssp_err_t (*infoGet)(sf_wifi_ctrl_t * const p_ctrl,
sf_wifi_info_t * const p_wifi_info);
The infoGet API acquires the Wi-Fi module information.
[in]
p_ctrl see sf_wifi_ctrl_t
[in, out]
p_wifi_info pointer to the user-provided storage for the Wi-Fi module configuration
structure.

.statisticsGet ssp_err_t (*statisticsGet)(sf_wifi_ctrl_t * const p_ctrl,
sf_wifi_stats_t * const p_wifi_device_stats);
The statisticsGet API gets the interface statistics.
[in]
p_ctrl see sf_wifi_ctrl_t
[in, out]
p_wifi_stats pointer to the user-provided storage for the Wi-Fi module statistics structure.

.transmit ssp_err_t (*transmit)(sf_wifi_ctrl_t * const p_ctrl, uint8_t *
const p_buf, uint32_t length);
The transmit API passes the packet buffer to the Wi-Fi driver for transmission.
[in]
p_ctrl see sf_wifi_ctrl_t
p_buf pointer to the network packet buffer
length is length of network packet

.provisioningGet ssp_err_t (*provisioningGet)(sf_wifi_ctrl_t * const p_ctrl,
sf_wifi_provisioning_t * const p_wifi_provisioning);
The provisioningGet API gets the Wi-Fi module provisioning.
[in]
p_ctrl see sf_wifi_ctrl_t
[in, out]
p_wifi_provisioning pointer to the user-provided storage of the Wi-Fi module provision
structure.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 16 of 64
Oct.11.19

Function Name API Prototype and Description

.provisioningSet ssp_err_t (*provisioningSet)(sf_wifi_ctrl_t * const p_ctrl,
 sf_wifi_provisioning_t const * const
p_wifi_provisioning);
The provisioningSet API sets the Wi-Fi module provisioning which configures the module
in AP or client mode.
[in]
p_ctrl see sf_wifi_ctrl_t
p_wifi_provisioning pointer to the Wi-Fi module provision structure.
Note: After the Wi-Fi device is provisioned in any mode, to switch to another mode,
close the application and open it again. For example, if the Wi-Fi device is first
provisioned in AP mode, to switch to the station mode, the application code must call the
close() function to de-initialize it and call the open() function again to initialize it. To
set to station mode, call the provisioningSet() function. The same applies for
switching from station to AP mode.

.scan ssp_err_t (*scan)(sf_wifi_ctrl_t * const p_ctrl, sf_wifi_scan_t *
const p_scan, uint8_t * const p_cnt);
The scan API scans the available SSIDs, that is, the access points in range.
[in]
p_ctrl see sf_wifi_ctrl_t
[in, out]
p_scan pointer to the caller-provided Wi-Fi module scan structure that holds the scan
result. The caller must ensure that adequate space is available to hold the scan results.
p_cnt pointer to the variable, specifying the maximum number of SSIDs to scan; it is
updated to the number of actual SSIDs scanned by the device.

.ACLAdd ssp_err_t (*ACLAdd)(sf_wifi_ctrl_t * const p_ctrl, uint8_t const
* const p_mac);
The ACLAdd API adds the given MAC address to the access control list.
[in]
p_ctrl see sf_wifi_ctrl_t
p_mac pointer to the Wi-Fi module MAC address structure.

.ACLDelete ssp_err_t (*ACLDelete)(sf_wifi_ctrl_t * const p_ctrl, uint8_t
const * const p_mac);
The ACLDelete API deletes the given MAC address from the access control list.
[in]
p_ctrl see sf_wifi_ctrl_t
p_mac pointer to the Wi-Fi module MAC address structure.

.multicastListAdd ssp_err_t (*multicastListAdd)(sf_wifi_ctrl_t * const p_ctrl,
uint8_t const * const p_mac_addr);
The multicastListAdd API adds the given MAC address to the multicast filter list.
[in]
p_ctrl see sf_wifi_ctrl_t
p_mac_addr pointer to the Wi-Fi module MAC address structure.

.multicastListDel
ete

ssp_err_t (*multicastListDelete)(sf_wifi_ctrl_t * const p_ctrl,
uint8_t const * const p_mac_addr);
The multicastListDelete API deletes the given MAC address from the multicast filter list.
[in]
p_ctrl see sf_wifi_ctrl_t
p_mac_addr pointer to the Wi-Fi module MAC address structure.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 17 of 64
Oct.11.19

Function Name API Prototype and Description

.macAddressGet ssp_err_t (*macAddressGet)(sf_wifi_ctrl_t * const p_ctrl, uint8_t
* const p_mac);
The macAddressGet API acquires the MAC address of the Wi-Fi module.
[in]
p_ctrl see sf_wifi_ctrl_t
[in,out]
p_mac user-provided pointer to the Wi-Fi module MAC address structure.

.macAddressSet ssp_err_t (*macAddressSet)(sf_wifi_ctrl_t * const p_ctrl, uint8_t
const * const p_mac);
The macAddressSet API sets the MAC address of the Wi-Fi module.
[in]
p_ctrl see sf_wifi_ctrl_t
p_mac pointer to the Wi-Fi module MAC address structure.

.versionGet ssp_err_t (*versionGet)(ssp_version_t * const p_version);
The versionGet API gets the version and stores it in the user-provided pointer.
[in, out]
p_version user-defined pointer to the storage location.

Note: For details on operations and definitions for the function data structures, typedefs, defines, API data,

API structures, and function variables, see the API References section for the associated module in
the SSP User’s Manual.

Status Return Values can be found in Error codes in the SSP User’s Manual API references. Table 2 shows
all the possible Wi-Fi framework API error calls.

Table 2. Status Return Values

Name Description
SSP_ERR_WIFI_CONFIG_FAILED Wi-Fi module configuration failed
SSP_ERR_WIFI_INIT_FAILED Wi-Fi module initialization failed
SSP_ERR_WIFI_TRANSMIT_FAILED Wi-Fi module transmission failed
SSP_ERR_WIFI_INVALID_MODE Wi-Fi module AP mode API called when provisioned in client

mode
SSP_ERR_WIFI_FAILED Wi-Fi module failed

3.1.3 Wi-Fi NSAL API
The Synergy Wi-Fi framework supports NetX NSAL. This implementation includes the NetX driver and the
packet transmit and receive callback functions. These functions are not directly called from the user
application if the Wi-Fi module is used when it is already integrated in the Wi-Fi framework, but these
functions are called and implemented when a new Wi-Fi module is integrated.

3.1.3.1 Structures used in NSAL APIs
• NetX IP link structure NX_IP_DRIVER

This structure defines the driver interface structure typically allocated from the local stack and passed to
the IP Link Driver.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 18 of 64
Oct.11.19

Figure 10. NetX IP driver structure
• NSAL configuration structure sf_wifi_nsal_cfg_t

 This structure defines the NSAL configuration parameters
 This structure includes flags that indicate whether zero-copy support is enabled or disabled in the

transmit path and the receive path.

Figure 11. NSAL configuration structure
The following table lists the NSAL functions.

Table 3. NSAL interface APIs

Function Name API Prototype and Description

nsal_netx_driver void nsal_netx_driver(NX_IP_DRIVER * p_driver, sf_wifi_instance_t
const * p_wifi_instance, sf_wifi_nsal_cfg_t * p_wifi_nsal_cfg);

The nsal_netx_driver API implements various IP driver commands used by NetX by
calling the corresponding Wi-Fi framework APIs.
[in]
p_driver see NX_IP_DRIVER
p_wifi_instance see sf_wifi_instance_t
p_wifi_nsal_cfg see sf_wifi_nsal_cfg_t

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 19 of 64
Oct.11.19

Function Name API Prototype and Description

nsal_netx_send_p
acket

Static uint32_t nsal_netx_send_packet(NX_IP * p_ip, NX_PACKET
*p_packet, sf_wifi_instance_t const * p_wifi_instance,
sf_wifi_nsal_cfg_t * p_nsal_cfg);
The nsal_netx_send_packet API calls the nsal_netx_transmit and the Wi-Fi
transmit API functions to transmit packets. If zero-copy support is enabled, the same
NetX packet is transferred from NetX to Wi-Fi driver. If zero-copy is disabled, the API
copies data from NetX packet to the driver buffer.
[in]

p_ip NetX IP structure, see the SSP User’s Manual for details
p_packet NetX packet structure, see the SSP User’s Manual for details
p_wifi_instance see sf_wifi_instance_t

p_nsal_cfg see sf_wifi_nsal_cfg_t
nsal_netx_receive Static uint32_t nsal_netx_receive(void * p_nsal_interface,

uint8_t p_buffer, uint32_t length, sf_wifi_nsal_cfg_t *
p_wifi_nsal_cfg);

The nsal_netx_receive API is called from the Wi-Fi device driver callback function
wifi_driver_callback. If zero-copy support is enabled, the same NetX packet is
transferred from Wi-Fi driver to NetX. If zero-copy is disabled, the API copies data from
the driver buffer to NetX packet and then passes the NetX stack for additional
processing.
[in]

p_ip NetX IP interface pointer
length of data buffer
p_wifi_nsal_cfg see sf_wifi_nsal_cfg_t
[in, out]
pdata user provided data buffer for data reception

Note: For details on operations and definitions for the function data structures, typedefs, defines, API data,

API structures, and function variables, see the API References section for the associated module in
the SSP User’s Manual.

Status Return Values Error codes are listed in the NetX User Guide available from the Synergy Software
Package page (www.renesas.com/synergy/ssp), where you can download the X-Ware™ Component
Documents for Renesas Synergy zip file. A Renesas.com login may be required.

http://www.renesas.com/synergy/ssp

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 20 of 64
Oct.11.19

3.2 On-chip Networking Stack Support APIs (Path 2)
The On-chip networking stack support APIs can be used to configure the Wi-Fi module in Path 2, where an
on-chip networking stack is called. The API helps to configure the IP address for the interface, and start/stop
DHCP server when configured in the AP mode.

3.2.1 On-chip Networking Stack Instance
The application must define the Synergy Wi-Fi framework On-chip networking instance before using it. The
Synergy Wi-Fi framework instance refers to the Wi-Fi module specific control data, configuration data, and
APIs. The application uses this instance to perform operation on the Wi-Fi module.

The following structures are members of the Synergy Wi-Fi On-chip networking stack support instance
(sf_wifi_onchip_stack_instance_t).

Figure 12. On-Chip Networking Stack Support instance
The control structure, configuration structure, and the API structure of the on-chip networking stack support
follow.

3.2.1.1 On-chip Network Stack Support Structures
From a higher level, these are the structures used in the Wi-Fi framework BSD Socket interface APIs. These
structures have their own elements defined as structures in many cases. All structures and APIs described
are defined in the sf_wifi_onchip_stack_api.h header file.

• On-chip stack API control structure sf_wifi_onchip_stack_ctrl_t
This control parameter structure is the pointer to the user-provided storage for the Wi-Fi module On-chip
stack control structure and can be an input or output depending on how the API uses it.

Figure 13. On-chip networking stack support control structure
• On-chip stack API configuration structure sf_wifi_onchip_stack_cfg_t

This configuration parameter structure is the pointer to the user-defined Wi-Fi module configuration
structure and is an input to several of the APIs described in the following section.

Figure 14. On-Chip Networking Stack support configuration structure

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 21 of 64
Oct.11.19

• On-chip stack API structure sf_wifi_onchip_stack_api_t
This structure includes all the Wi-Fi framework On-chip stack API function pointers.

Figure 15. On-chip networking stack support API structure

3.2.2 On-chip Network Stack Support APIs
Table 4 shows a complete list of the available APIs, an example API call, and a short description of the
input/output of the APIs.

Table 4. On-chip Network Stack Support APIs

Function Name API Prototype and Description

.open ssp_err_t (*open)(sf_wifi_onchip_stack_ctrl_t * p_ctrl,
sf_wifi_onchip_stack_cfg_t const * const p_cfg);

The open API initializes the driver configuration, enables the driver link, enables
interrupts, and makes the device ready for data transfer.

[in]

p_ctrl see sf_wifi_onchip_stack_ctrl_t

[in, out]

p_cfg see sf_wifi_onchip_stack_cfg_t

.close ssp_err_t (*close)(sf_wifi_onchip_stack_ctrl_t * const p_ctrl);

The close API de-initializes the network interface and can put it in low power mode or
power it off. This API closes the Wi-Fi device driver, disables the driver link, and
disables the interrupts.

[in,out]

p_ctrl see sf_wifi_onchip_stack_ctrl_t

.IpAddressCfg ssp_err_t (*ipAddressCfg)(sf_wifi_onchip_stack_ctrl_t * const
p_ctrl, sf_wifi_onchip_stack_ip_cfg_t * const p_cfg);

The IpAddressCfg API configures the IP address of the interface.

[in]

p_ctrl see sf_wifi_onchip_stack_ctrl_t

p_cfg sf_wifi_onchip_stack_cfg_t

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 22 of 64
Oct.11.19

Function Name API Prototype and Description

.dhcpServerStart ssp_err_t (*dhcpServerStart)(sf_wifi_onchip_stack_ctrl_t * const
p_ctrl, sf_wifi_ip_addr_t const * const p_start_ip,
sf_wifi_ip_addr_t const * const p_end_ip);

The dhcpServerStart API starts the DHCP server on the interface (when configured
in AP mode) using the on-chip networking stack.

[in]

p_ctrl see sf_wifi_onchip_stack_ctrl_t

p_start_ip pointer to the start IP address structure

p_end_ip pointer to the end IP address structure

.dhcpServerStop ssp_err_t (*dhcpServerStop)(sf_wifi_onchip_stack_ctrl_t * const
p_ctrl);

The dhcpServerStop API stops the DHCP server on the interface (when configured in
AP mode) using the on-chip networking stack.

[in]

p_ctrl see sf_wifi_onchip_stack_ctrl_t

.versionGet ssp_err_t (*versionGet)(ssp_version_t * const p_version);

The versionGet API gets the version and stores it in the user-provided pointer.

[in,out]

p_version User-provided buffer to hold the version information.

Note: For details on operations and definitions for the function data structures, typedefs, defines, API data,

API structures, and function variables, see the module API References in the SSP User’s Manual.

For the On-chip Networking Stack support API return status, see Table 2 in this document.

3.3 BSD Socket APIs (Path 2)
This section introduces the BSD Socket API interface provided by the Wi-Fi framework in the Path 2. This
API interface requires the Wi-Fi module/driver to provide support for on-chip networking stack and BSD
socket APIs. When the application uses these APIs, it is using the on-chip networking stack present on the
Wi-Fi chipset, and not the NSAL (the networking stack running on the Synergy MCU).

3.3.1 BSD Socket Instance
You must define the Synergy Wi-Fi framework BSD Socket instance before using it. The Synergy Wi-Fi
framework BSD socket instance refers to the Wi-Fi module specific control data, configuration data, and
APIs. The application uses this instance to perform operation on the Wi-Fi module.

Following are members of the Synergy Wi-Fi framework instance (sf_socket_instance_t).

Figure 16. BSD Socket Interface instance

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 23 of 64
Oct.11.19

3.3.2 Structures used in the BSD Socket APIs
• BSD Socket interface control structure sf_socket_ctrl_t

Figure 17. BSD Socket interface control structure
• BSD Socket interface configuration information structure sf_socket_cfg_t

Figure 18. BSD Socket interface configuration structure
• BSD Socket interface API structure sf_socket_api_t

Figure 19. BSD Socket interface API structure

3.3.2.1 Wi-Fi Framework BSD Socket Interface APIs
Table 5 shows a complete list of the available APIs, an example API call, and a short description of the
input/output of the APIs. The BSD socket APIs included in this table are created by the Wi-Fi framework.

Table 5. Wi-Fi framework BSD Socket interface APIs

Function Name Example API Call and Description

.open ssp_err_t (*open)(sf_socket_ctrl_t * p_ctrl, sf_socket_cfg_t
const * const p_cfg);

The open API initializes the driver configuration, enables the driver link, enables
interrupts, and makes the device ready for data transfer.

[in]

p_cfg see sf_socket_cfg_t

[in,out]

p_ctrl see sf_socket_ctrl_t

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 24 of 64
Oct.11.19

Function Name Example API Call and Description

.close ssp_err_t (*close)(sf_socket_ctrl_t * const p_ctrl);

The close API de-initializes the network interface and can put it in low power mode or
power it off. This API closes the Wi-Fi device driver, disables the driver link, and
disables the interrupts.

[in,out]

p_ctrl see sf_socket_ctrl_t

.versionGet ssp_err_t (*versionGet)(ssp_version_t * const p_version);

The versionGet API gets the version and stores it in the user-provided pointer.

[in,out]

p_version User-provided buffer to hold the version information.

Note: For details on operations and definitions for the function data structures, typedefs, defines, API data,
API structures, and function variables, see the module API References section in the SSP User’s
Manual.

For the On-chip Networking Stack support API return status, see Table 2 in this document.

Standard Socket APIs
Application can use the following APIs to perform data transfer using sockets. This includes socket APIs that
are compliant with BSD APIs.

• socket
• close
• bind
• listen
• accept
• connect
• send
• recv
• recvfrom
• sendto
• setsockopt
• getsockopt
• select.

These APIs are standard BSD APIs that can be referenced from many open sources including those
specified in the API References section for the associated module in the SSP User’s Manual. Not all Wi-Fi
chipsets provide extra on-chip support.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 25 of 64
Oct.11.19

4. Adding a Wi-Fi Framework Module in an Application
This section describes how to add a Wi-Fi framework module in an application using the Synergy
configurator.

Note: This section assumes you are familiar with creating a project, adding threads, adding a stack to a
thread, and configuring a block within the stack. If you are unfamiliar with any of these items, refer to
the first few chapters of the SSP User’s Manual to learn how to perform these important steps when
creating SSP-based applications.

Figure 20 shows that when creating a Wi-Fi framework-based application, start by adding a new thread to
project.

Figure 20. Adding a new Thread
Follow section 4.1 and section 4.2 to add the NetX path and on-chip networking support path.

4.1 Adding a Wi-Fi Framework Module using NetX (Path 1)
To add a Wi-Fi framework module to an application based on NetX, add a NetX IP Instance to the new
thread.

4.1.1 Add the NetX IP instance
Table 6 lists the Add the NetX IP Instance.

Table 6. Wi-Fi framework module selection sequence using NetX in an application

Resource ISDE Tab Stacks Selection Sequence
g_ip0 NetX IP Instance Threads New Stack> X-Wave> NetX> NetX IP Instance

Figure 21 shows how to click the Thread pane from the Synergy configurator and select the NetX IP Instance
stack.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 26 of 64
Oct.11.19

Figure 21. Adding NetX IP Instance

4.1.2 Adding the NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx
Figure 22 shows when the NetX IP instances are added to the thread stack, the Synergy configurator
automatically adds the NetX common and NetX Packet Pool instance. The Synergy configurator also added
a module with a Pink band “Add NetX Network Driver.” This is where the Wi-Fi framework on NetX is pulled
in. This adds the TCP/IP stack to the user application.

Table 7. Adding NetX port using Wi-Fi-framework on sf_wifi_nsal_nx

Resource ISDE Tab Stacks Selection Sequence
NetX Port using Wi-Fi framework
on sf_wifi_nsal_nx

Thread Add NetX Network Driver>NetX Port using Wi-Fi
framework on sf_wifi_nsal_nx

Figure 22. Adding NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx
Adding the Wi-Fi framework on sf_wifi_nsal_nx adds the GT202 Wi-Fi Device Driver on
sf_wifi_gt202. In addition Figure 23 shows the Synergy configurator has also added a module with a
pink band. “Add SPI Driver.” It adds this module because the GT202 uses the SPI port to communicate with
the MCU.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 27 of 64
Oct.11.19

Figure 23. Wi-Fi Framework Configurator with NetX

4.2 Adding the Wi-Fi Framework Module using On-chip Wi-Fi Stack (Path 2)
Figure 20 shows that to add the Wi-Fi framework module using the On-chip Wi-Fi Stack in an application, the
user can add a new thread, and then add the BSD Socket using GT202 On-chip Stack to the new thread as
listed in Table 8.

Table 8. Wi-Fi framework module selection using On-Chip networking stack in an application

Resource ISDE Tab Stacks Selection Sequence

g_sf_socket0 BSD Socket using
GT202 On-Chip Stack on
GT202 Wi-Fi Framework

Threads New Stack> Framework> Networking> Wi-Fi> BSD
Socket using GT202 On-Chip Stack on GT202 Wi-Fi
Framework

Figure 24. Including the On-chip Networking Stack Support

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 28 of 64
Oct.11.19

5. Configuring the Wi-Fi Framework Module
Figure 25 shows when the Wi-Fi application is added to a thread, the Wi-Fi thread properties need to be
properly configured as indicated in Table 9.

Figure 25. New thread configuration
The following table has the available configurations for the new thread.

Table 9. Configurations for the new thread

ISDE Property Value Description
Symbol new_thread0 (default) User can specify different name.
Name New Thread (default) User can specify different name.
Stack size (bytes) 1024 (default) Application dependent.
Priority 1 (default) User can adjust this priority based on

specific application.
Auto start Enabled (default) User can adjust this setting based on the

application implementation
Time slicing interval (ticks) 1 (default) User can adjust this priority based on

specific application.

5.1 Wi-Fi Framework Configurations using NetX (Path 1)
Available configurations for the Wi-Fi application using NetX are described in the following subsections.

5.1.1 Configurations for the NetX IP Instance
Refer to Figure 26 for configurations to Adding the NetX IP Instance in this document.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 29 of 64
Oct.11.19

Figure 26. Configurations for the NetX IP Instance

Table 10 lists detailed descriptions for the various configuration properties.

Table 10. Configuration settings for Wi-Fi framework module on NetX

ISDE Property Value Description
Name Default: g_ip0 NetX IP instance name
Ipv4 Address Can be static or

dynamic
Default: 192,168,0,2

IP address for the NetX stack. Lookback can be done by
either using the same address or by using 127.*.*.*

Subnet Mask Default:
255,255,255,0

IP Helper Thread Stack
Size

Default: 2048 Each IP instance has a helper thread. The first
processing in the IP helper thread is to finish the
network driver initialization associated with the IP create
service. After the network driver initialization is
complete, the helper thread starts an endless loop to
process packet and periodic requests.
If unexpected behavior occurs within the IP helper
thread, the first debugging step is to increase its stack
size during the IP create service. If the stack is too
small, the IP helper thread might overwrite memory,
which can cause unexpected errors.

IP Helper Thread
Priority

Default: 3 User can adjust this priority based on specific
application.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 30 of 64
Oct.11.19

ISDE Property Value Description
ARP Default: Enable Address Resolution Protocol. ARP should always be

enabled.
ARP Cache Size in
Bytes

Default: 512 The ARP cache can be viewed as an array of internal
ARP mapping data structures. Each internal structure is
capable of maintaining the association between an IP
address and a physical hardware address. In addition,
each data structure contains link pointers to be part of
multiple linked lists.

Reverse ARP Default: Disable Selection is based on the application requirement.
TCP Default: Enable Selection is based on the application requirement.
UDP Default: Enable Selection is based on the application requirement.
ICMP Default: Enable Before ICMP messages can be processed by NetX, the

application must call the nx_icmp_enable service to
enable ICMP processing. Thereafter, the application can
issue ping requests and field incoming ping packets.

IGMP Default: Enable Before any multicasting activity can take place in NetX,
the application must call the nx_igmp_enable service.
This service performs basic IGMP initialization in
preparation for multicast requests.

IP fragmentation Default: Disable IP fragmentation should be avoided if possible,
especially for reliable protocols such as TCP.

Name of generated
initialization function

Default: ip_init0 User can specify different name.

Auto Initialization Default: Enable Select automatically to initialize the IP instance.

5.1.2 Configuration for Wi-Fi framework module on NetX

Figure 27. Configurations for the NetX common block

Table 11 lists detailed descriptions for the various configuration properties.

Table 11. Configurations for NetX common module

ISDE Property Value Description
Name of generated
initialization function

Default: nx_common_init0 User selection for the name of the initialization
function.

Auto Initialization Default: Enable Select automatically to initialize the NetX common
block.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 31 of 64
Oct.11.19

5.1.3 Configurations for NetX Packet Pool Instance

Figure 28. Configurations for NetX packet pool instance

Table 12 lists detailed description for the various configuration properties.

Table 12. NetX pool instance properties

ISDE Property Value Description
Name Default:

g_packet_pool0
User selection for the name of the packet pool block.

Packet Size in Bytes Default: 2048 Packet size and number of packets in pool determines
the packet pool memory size.

Number of Packets in
Pool

Default: 16 Packet pools are created either during initialization or
during run time by application threads.

Name of generated
initialization function

Default:
packet_pool_init0

User selection for the name of the initialization function.

Auto Initialization Default: Enable Select automatic packet pool creation.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 32 of 64
Oct.11.19

5.1.4 Configurations for the NetX Port

Figure 29. Configurations for the NetX port using Wi-Fi framework on sf_wifi_nsal_nx

Table 13 lists detailed descriptions for the various configuration properties.

Table 13. Properties for NetX port using Wi-Fi framework on sf_wifi_nsal_nx

ISDE Property Value Description
Parameter Checking Default: Default (BSP) This feature can be disabled when testing is complete to

save code space and to speed up execution.
Name Default:

g_sf_el_nx0
User selection for the name of the NetX port.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 33 of 64
Oct.11.19

5.1.5 Configurations for the Wi-Fi Module Device Driver

Figure 30. Configurations for the Wi-Fi module device driver

Table 14 lists detailed descriptions for the various configuration properties.

Table 14. Wi-Fi Device Driver configurations

ISDE Property Value Description
Parameter Checking BSP (Default),

Enabled, Disabled
This feature can be disabled when testing is
complete to save code space and to speed up
execution.

On-Chip Stack Support Enabled, Disabled
(Default) Disabled

Enable the On-chip stack support when using On-
chip networking stack.

Driver Heap Size in bytes Default: 8192 This setting depends on the Wi-Fi driver
implementation.

Name Default:
g_sf_wifi0

User selection for the name of the Wi-Fi framework
instance.

Hardware Mode Option:
802.11a/b/g/n
Default: 802.11n

Hardware mode of the Wi-Fi module.
802.11ac is not supported.

Transmit (Tx) Power
(Valid Range 1-17)

Default: 10 Transmit power in dBm.

Ready/Clear To Send Enabled (Default),
Disabled

RTS/CTS enable

Delivery Traffic Indication
Message (DTIM)

3 Enable DTIM if network statistics is required. Valid
range is 1-255.

Broadcast SSID Enabled (Default),
Disabled

SSID broadcast flag. Valid in AP-mode only.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 34 of 64
Oct.11.19

ISDE Property Value Description
Beacon Interval in
Microseconds

Default: 1024 Beacon interval. Valid in AP-mode only.

Station Inactivity Time out
in Seconds

Default: 100 Station inactivity timeout value. Valid in AP-mode
only.

Requested High
Throughput

Enabled, Disabled
(Default)

High-throughput mode. Only valid for 802.11n.

Reset Pin Default:
IOPORT_PORT_0
6_PIN_00

This setting depends on the hardware configuration.

Slave Select Pin Default:
IOPORT_PORT_0
1_PIN_03

This setting depends on the hardware configuration.

GT202 Driver Task
Thread Priority

Default: 5 User selection is based on application status.

Callback Default: NULL When NSAL is used, this callback is locked.
Support NetX Packet
Chaining

Enabled (Default),
Disabled

NetX packet chaining allows more flexibility for
packet transmission.

5.2 Wi-Fi Framework Configurations using On-chip Networking Stack Support

(Path 2)
5.2.1 Configurations for the BSD Socket
When the BSD Socket stack is created, the Synergy configurator provides the following default
configurations.

Figure 31. Configurations for the BSD Socket

Table 15 lists detailed descriptions for the various configuration properties.

Table 15. BSD socket configurations

ISDE Property Value Description
Parameter Checking BSP (Default),

Enabled, Disabled
This feature can be disabled when testing is complete to
save code space and to speed up execution.

Name Default:
g_sf_socket0

User selection for the name of the BSD socket interface.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 35 of 64
Oct.11.19

5.2.2 Configurations for the On-chip Stack

Figure 32. Configurations for the On-chip stack on GT202

Table 16 lists detailed descriptions for the various configuration properties.

Table 16. On-chip stack support configurations

ISDE Property Value Description

Parameter Checking BSP (Default), Enabled,
Disabled

This feature can be disabled when testing is
complete to save code space and to speed up
execution.

Name Default:
g_sf_wifi_onchip_stack0

User selection for the on-chip networking stack.

5.2.3 Configurations for the Wi-Fi Module Device Driver
On-chip networking stack Support uses the same Wi-Fi module device driver as the NetX solution. For the
available configurations, refer to section 0.

5.3 Configuration for the Wi-Fi Framework Module Low Level Drivers
This implementation is specific to the Wi-Fi module for use with different HAL components such as the SPI,
ICU, IOPORT, SDMMC, and DTC. For the GT202 Wi-Fi module, the SSP supports communication with
GT202 via SPI interface on the r_rspi or r_sci_spi. See the appropriate module guides for these blocks for
relevant hardware configuration settings.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 36 of 64
Oct.11.19

6. Using the Wi-Fi Framework Module in an Application
After the Wi-Fi module and Synergy MCU are selected, refer to the flow chart in Figure 33 to start application
development. Follow the general steps in this section.

Figure 33. Flowchart for Wi-Fi application path

6.1 Steps when using the Wi-Fi Framework Module with NetX (Path 1)
If your application implements a higher-level application protocols such as the protocols described in the
configurator view that follows, start by adding those blocks in the configurator.

Figure 34. NetX based application protocols

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 37 of 64
Oct.11.19

These higher-level protocols pull in the dependency module such as the NetX IP instance, to the project.
Section 5.1.1 shows you how to configure the NetX IP instance.

Figure 35 shows the steps in a typical operational flow when using the Wi-Fi framework module with NetX in
an application.

Figure 35. Typical operational flow for Wi-Fi application using NetX

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 38 of 64
Oct.11.19

6.2 Using the Wi-Fi Framework Module with On-chip Stack (Path 2)
Figure 36 shows the steps in a typical operational flow when using the Wi-Fi framework module with On-chip
stack in an application.

Figure 36. Typical operational flow for Wi-Fi application using On-chip networking stack support

7. The Wi-Fi Framework Module Application Project
The application project associated with this guide demonstrates the typical steps for using the Wi-Fi
framework module in an example application. You may want to import and open the application project within
ISDE and view the configuration settings for the Wi-Fi framework module. You can also read the code in the
wifi_app_thread_entry.c file, used to illustrate the Wi-Fi framework module APIs in a complete design.

7.1 Overview of the Application Project
7.1.1 NetX and NSAL Interface using Path 1
This application project is implemented on the SK-S7G2 and PK-S5D9 boards with Longsys Wi-Fi module
GT202 using the NetX networking stack. Communication with the GT-202 device driver is through the NSAL
interface.

7.1.2 Console Framework User Interface
This application project allows interactions with hardware through the Console framework on USB CDC. A
COM port terminal on the PC such as Tera Term, is required to review the Wi-Fi scan result in addition to
providing the Wi-Fi module provision information.

7.1.3 DHCP Client Application
This application project initializes the NetX TCP/IP, scans, and provisions the Wi-Fi module. DHCP client is
added on top of the NetX interface. The DHCP client layer acquires the IP address from the DHCP server.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 39 of 64
Oct.11.19

7.1.4 Using the Ping Application to Confirm the Connection
To confirm the networking connectivity of the SK-S7G2 and PK-S5D9, ping the acquired IP address.

Note: In this example application project, the On-chip networking stack example is not implemented.

Figure 37 describes the Wi-Fi activity in the example application project.

Figure 37. Wi-Fi sample application setup

7.2 Software Architecture
The application project has two threads:

• The Wi-Fi application thread
• The Console framework thread based on the USB CDC device communication framework.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 40 of 64
Oct.11.19

Figure 38. Wi-Fi sample application software architecture
The following sections describe the functionality of the two application threads and their interaction.

7.2.1 Console Application Thread
The Console application thread is a user interface where you can:

• Select the Wi-Fi access point to connect
• Provide the Wi-Fi access point password
• Receive message for confirmation of successful provision
• Receive message for the resolved IP address.

See the Console Framework Module Guide for details on designing a Console framework.

Note: With the current USB CDC driver, when testing with Windows 10, you must change the USBX Device
Configuration Class Code from Communications to Miscellaneous. To do this, go to the Console
Thread in the Threads tab and change the Class Code property of the USBX Device Configuration.

7.2.2 Wi-Fi Application Thread
The Wi-Fi application thread along with the created configurator code, includes the DHCP client application,
with the TCP/IP core stack. In addition, it also includes the Wi-Fi framework, NSAL, and Wi-Fi device driver.
Essentially, this thread is responsible for DHCP client, Wi-Fi connectivity, and provisioning of the user code.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 41 of 64
Oct.11.19

User application code

Wi-Fi Framework and
Console Framework

Wi-Fi Framework

GT202 device driver

7.3 Wi-Fi Framework Module Code Overview
Figure 39 shows the directory structure for the Wi-Fi framework application source code.

Figure 39. Wi-Fi framework application source code

7.3.1 Configurator generated code (src/synergy_gen folder)
The configurator generated code is part of the common_data.c/h and wifi_app_thread.c/h in the
src/synergy_gen folder. The code in these files, are common code specific to the selected module stack
components of the thread. In this case, the common code associated with NetX is available in the
g_common_init() function. Additionally, in the common code, the NetX driver entry function, packet pool
creation for the Wi-Fi framework is available as part of the configurator created code.

7.3.2 User application code (src/wifi_app_thread_entry.c)
In the user application code (src/wifi_app_thread_entry.c), the code for checking the status of the IP
link creation, provisioning the Wi-Fi with user credentials, starting the DHCP client, and acquiring the IP
address from the DHCP server are added. The step sequence is as follows:

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 42 of 64
Oct.11.19

1. Check if the IP link is enabled with
nx_ip_interface_status_check (&g_ip0, 0, NX_IP_LINK_ENABLED, &ip_status,
NX_WAIT_FOREVER)

2. Provision the Wi-Fi module with
g_sf_wifi0.p_api->provisioningSet (g_sf_wifi0.p_ctrl, &g_provision_info);

Note: This sample application has fixed settings for the following provision configurations:
• Mode: Client
• Security: WPA2
• Encryption: Auto

Slight adjustment of the following code can allow provision for Wi-Fi modules that have different security
settings.

Figure 40. Example GT202 provisioning settings

3. Start the DHCP client with
nx_dhcp_start (&g_dhcp_client0);

4. Check the DHCP server to determine if the IP address is resolved with
nx_ip_status_check (&g_ip0, NX_IP_ADDRESS_RESOLVED, (ULONG *) &status, 10);

5. Acquire the leased IP address with
nx_ip_interface_address_get (&g_ip0, 0, &ip0_ip_address, &ip0_mask);

The application is then ready for TCP/IP communication with other clients on the Wi-Fi network using the IP
address.

7.4 Configurations
The hardware and the application configurations for the property settings in the configurator are described.

For both the SK-S7G2 and PK-S5D9 projects, the following Wi-Fi thread property works well for this
application. The user should adjust these settings within their own application.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 43 of 64
Oct.11.19

Figure 41. Wi-Fi thread configurations
Notice that the Stack size for the Wi-Fi application project increased from 1024 byte from the default to 6144,
this setting provides reliable operation with this application project but may need to be adjust for a new Wi-Fi
application.

7.4.1 DHCP Client Configuration
To set up the DHCP client, see Figure 42.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 44 of 64
Oct.11.19

Figure 42. DHCP client configuration
The DHCP Common block is provided automatically by the Synergy configurator when the DHCP client is
included. See Figure 43 for the configuration information.

Figure 43. NetX DHCP Common configurations
See the NetX™ DHCP Client Module Guide for detailed description of the configuration properties for the
DHCP Client block and DHCP Common block. This sample project uses the default settings provided by the
configurator for these two blocks.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 45 of 64
Oct.11.19

7.4.2 NetX Related Configurations
See section 5.1 for the available configurations of NetX blocks. In this section, only properties that changed
from the default configuration are described in detail. The properties that changed from the default value are
marked with the red boxes.

Figure 44. NetX IP instance configuration

Table 17 lists additional information on properties that differ from the default value.

Table 17. NetX IP instance property in sample application

ISDE Property Value Description
Ipv4 Address 0, 0, 0, 0 When DHCP client is used, this value must be 0,0,0,0 and modification

of this property is locked.
ARP Enable When DHCP client is used, this ARP must be enabled, and modification

of this property is locked.
UDP Enable When DHCP client is used, UDP must be enabled and modification of

this property is locked.

There are no changes for the following blocks from the default setting:

• NetX Common on NetX (section 5.1.2
• NetX Packet Pool Instance (section 5.1.3)
• NetX Port using Wi-Fi framework on sf_wifi_nsal_nx (section 5.1.4)

See the specified references of the corresponding sections for the related configurations.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 46 of 64
Oct.11.19

7.4.3 Wi-Fi Device Driver Configuration
See section 5.1.5 for the available configurations of the Wi-Fi device driver block. In this section, only the
properties that changed from the default configuration are described in detail.

The properties that change from the default value are marked in the red boxes.

Figure 45. Wi-Fi device driver configuration in the sample project
Table 18 lists additional information on the properties that differ from the default values.

Table 18. Wi-Fi device driver configuration in the sample project

ISDE Property Value Description
Reset Pin IOPORT_PORT_06_PIN_03 Hardware configuration on SK-S7G2 and PK-S5D9
Slave Select Pin IOPORT_PORT_04_PIN_13 Hardware configuration on SK-S7G2 and PK-S5D9

Figure 45 shows that P6_03 is used as the reset pin for the Wi-Fi module. By default, P6_03 is configured as
input, the user needs to reconfigure P6_03 as a low output.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 47 of 64
Oct.11.19

Figure 46. Configure P6_03 to output low
In addition, P4_13 is used as the slave select pin for the Wi-Fi module. By default, P4_13 is configured as
input, the user needs to reconfigure P4_13 as a high output.

Figure 47. Configure P4_13 to output high

7.4.4 SPI Communication Configuration
The GT202 uses SPI to communicate with the MCU. For details on SPI peripheral settings, see the SPI
Module Guide.

This application project uses the RSPI interface to communicate with GT202. Table 19 lists the RSPI block
added.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 48 of 64
Oct.11.19

Table 19. Add SPI driver

Resource ISDE Tab Stacks Selection Sequence
Add SPI driver Thread Add SPI driver>g_spi0 SPI driver on r_rspi

Figure 48. RSPI configuration
See the RSPI HAL Module Guide for detailed description of the R_RSPI configuration properties. When the
RSPI is pulled in to complete the GT202 device driver, the Synergy configurator automatically adjusted
several settings and have most of the settings locked to avoid misconfigurations.

Table 20 shows the updated properties, other properties assume the default value.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 49 of 64
Oct.11.19

Table 20. RSPI configuration for GT202

ISDE Property Value Description
Operation Mode Master Modification of this property is locked.
Clock Phase Data sampling on even edge,

data variation on odd edge
Modification of this property is locked.

Clock Polarity High when idle Modification of this property is locked.
Mode Fault Error Disabled Modification of this property is locked.
Bit Order MSB First Modification of this property is locked.
Bitrate 8000000 This setting is valid. See the GT202

User Manual for other permitted settings.
Callback NULL Modification of this property is locked.
SPI Mode Clock synchronous operation Modification of this property is locked.
SPI Communication Mode Full duplex Modification of this property is locked.
Slave Select Polarity
(SSL0)

Active-low Modification of this property is locked.

Slave Select Polarity
(SSL1)

Active-low Modification of this property is locked.

Slave Select Polarity
(SSL2)

Active-low the modification of this property is locked

Slave Select Polarity
(SSL3)

Active-low Modification of this property is locked.

Select Loopback1 Normal Modification of this property is locked.
Select Loopback2 Normal Modification of this property is locked.
Enable MOSI Idle Disabled Modification of this property is locked.
MOSI Idle State MOSI Low Modification of this property is locked.
Enable Parity Disable Modification of this property is locked.
Parity Mode Parity Even Modification of this property is locked.
Select SSL (Slave Select) SSL0 Modification of this property is locked.
Select SSL Level After
Transfer

SSL Level Do Not Keep Modification of this property is locked.

Clock Delay Enable Clock Delay Disable Modification of this property is locked.
Clock Delay Count Clock Delay 1 RSPCK Modification of this property is locked.
SSL Negation Delay
Enable

Negation Delay Disable Modification of this property is locked.

Negation Delay Count Negation Delay 1 RSPCK Modification of this property is locked.
Next Access Delay Enable Next Access Delay Disable Modification of this property is locked.
Next Access Delay Count Next Access Delay 1 RSPCK Modification of this property is locked.

7.4.5 SPI Hardware Pin Configuration
The RSPI is selected for the PMODB on the SK-S7G2 and PK-S5D9 kits. The SPI interface on the PMODB
uses P410, P411, and P412. On SK-S7G2, these pins are defaulted to SCI0 _B only based on the SK-S7G2
board package file. You must disable the SCI0 or reconfigure the SCI0 to other pins before assigning these
pins to PMODB on SK-S7G2. In this application example, the SCI0 is disabled as shown in Figure 49.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 50 of 64
Oct.11.19

Figure 49. Disable SCI0 on SK-S7G2
Figure 50 shows that after the SCI0 is disabled, assign SPI0 to _B only on SK-S7G2 to enable the RSPI
operation on the Wi-Fi driver.

For the PK-S5D9 MCU, pins P4_10, P4_11, and P4_12 are assigned to SPI0 in mixed mode. Assignments
are based on the default PK-S5D9 board package. Figure 50 shows how to change the SPI0 to _B only,
which must be done to allow proper communication with the Wi-Fi device driver.

Figure 50. Assigned SPI0 to _B only on SK-S7G2 and PK-S5D9
By default, the DTC transfer module is included when the RSPI interface is included. The DTC driver must
be removed because DTC uses 4-bytes (word) transfers, but the GT202 Wi-Fi driver supports 8-bit transfer
mode.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 51 of 64
Oct.11.19

7.4.6 PMODB Interrupt Pin
Figure 51 shows the configuration for the PMOD interrupt pin setup.

Figure 51. PMODB interrupt configuration
For details on the external IRQ configuration properties, see the External IRQ HAL Module Guide. When the
external IRQ is pulled in to complete the GT202 device driver, the Synergy configurator automatically adjusts
several settings and locks most of the settings to avoid configuration issues.

Table 21 shows the updated properties, other properties assume the default value.

Table 21. PMODB interrupt configuration

ISDE Property Value Description
Name g_external_irq2 Name of the IRQ
Trigger Falling Determined by GT202 requirement. Modification of this

property is locked
Digital Filtering Disabled Modification of this property is locked.
Digital Filtering
Sample Clock

PCLK/64 Modification of this property is locked.

Interrupt enabled
after initialization

True Modification of this property is locked.

Callback custom_hw_irq_isr Determined by GT202 device driver implementation.
Modification of this property is locked.

Interrupt Priority Priority 2 This priority is appropriate for the sample application
project used. Consider the particular application when
selecting the priority for this interrupt.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 52 of 64
Oct.11.19

With all the specified configuration, Figure 52 shows an overview of the finished configurator.

Figure 52. Complete configurator overview

7.4.7 SK-S7G2 PMOD Usage Caveat and Workarounds
The PMOD connector pin numbers on schematics for the SK-S7G2 Starter kit are shown incorrectly.
Table 22 lists the actual pins following the PMOD standard.

Table 22. PMOD pin assignment

PMOD Pin Signal Direction Description
1 SS Out Slave Select
2 MOSI Out Master Out Slave In
3 MISO In Master In Slave Out
4 SCK Out Serial clock
5 GND
6 VCC
7 INT In Interrupt signal from slave to master
8 RESET Out Reset signal from slave to master
9 N/S N/S
10 N/S N/S
11 GND
12 VCC

N/S: Not Specified. The meaning of these pins depends on the PMOD module, these pins can be
unconnected or can be specific inputs or outputs for additional module. These pins are not used in
SK-S7G2 and PK-S5D9 applications.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 53 of 64
Oct.11.19

7.5 GT202 Wi-Fi Module and Driver Limitations/Known Issues
• GT202 on-chip stack only accepts single TCP connection. After accepting single connection, the GT-202

vendor driver fails to notify the upper layer for new connection request.
• GT202 vendor driver code has compilation warnings in it.
• GT202 Wi-Fi module driver does not support access control list.
• GT202 Wi-Fi module driver does not provide API for multicast filtering.
• The recv socket API implemented by GT202 vendor driver is non-blocking. However, the BSD

Socket API specification for recv is blocking API.
• Workaround: Application should call select API before calling recv API, which makes the application

wait until there is data available on the socket or timeout occurs.
• If the pin configuration is not set up properly, then the driver code within the GT202 module enters an

infinite loop, causing the Wi-Fi framework open API to not return.

8. Running the Wi-Fi Framework Module Application Project
Review the following points before proceeding to the operation of this sample project:

• Make sure you have your PC connected to a Wi-Fi access point before running this application project.
You must know the password of this access point because it is required for provisioning the GT202.

• This sample project only supports Wi-Fi security type WPA2, if you need to change to a different security
type, you can edit the encryption field in the Wi-Fi provisioning structure. See Figure 40 for the related
code adjustment.

• When you have your Wi-Fi connection and the password ready, you can import the Wi-Fi framework
module application project and see it executing on SK-S7G2 or PK-S5D9.

• Refer to the Renesas Synergy™ Project Import Guide (r11an0023eu0121-synergy-ssp-import-guide.pdf),
included in this package, for instructions on how to import the project into e2 studio or IAR EW for
Synergy, then build and run the application.

• The vendor provided GT202 device driver has over 500 warnings. This is normal with the version of the
device driver.

8.1 SK-S7G2 Board Setup Details
Make sure that 3.3 V is selected for PMOD B using jumper (J15), as shown in Figure 53.

Figure 53. Hardware setup

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 54 of 64
Oct.11.19

Note: It is important to select 3.3 V for the modules. Otherwise, the modules might be damaged.

After setting the jumper as suggested:

1. Connect the micro USB cable to the J19 port to power up the board.
2. Connect the USB device from J5 to the PC.

8.2 Install the USB CDC Device Driver
The Console framework in this application project uses the Communication framework on USB CDC Device.
This requires the USB CDC device driver being installed on the PC.

For Windows10, it is not necessary to install the USB CDC device driver because the SK-S7G2 and PK-
S5D9 can be detected as a USB serial device as shown in Figure 54.

Figure 54. USB CDC port enumeration on Windows10
For Windows7, after the SK-S7G2 USB device port is connected to the PC, it is first detected as Unknown
Device. You can then right-click on this device and select Update Driver software.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 55 of 64
Oct.11.19

Figure 55. Update USB CDC driver
When prompted for the location of the drivers, browse to the location of the Windows USB serial driver
provided as part of this application project. After the driver is updated, a new COM device is displayed in the
Device Manager as in Windows10.

8.3 Running the Sample Project
When you run the software and confirm the COM port enumeration, open the Tera Term or other serial
terminal, and select the enumerated COM port, then perform the following steps to provision the GT202
Wi-Fi module.

Figure 56. Connect to the COM port

8.3.1 View the Available Commands
There are two commands to use to provide the SSID and password to start the GT202 provisioning. On
opening the Tera Term, type ? and press the Enter key to review the available commands.

Figure 57. Commands available

8.3.2 Provision the Wi-Fi Module
Press 1 and the Enter key to input your Wi-Fi access point SSID. Press 2 and the Enter key to input your
Wi-Fi access point password as shown in Figure 58. After you provided the AP password, the Wi-Fi module
provision starts.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 56 of 64
Oct.11.19

Figure 58. Input SSID and Password
When the provision successfully finishes, the console window updates as shown in the following screen.

Figure 59. GT202 successful provision
If the provision failed, a message displays on the console screen, as shown in the following screen.

Figure 60. Provision failed
If the provision failed, you can check on the following points for troubleshooting:

• Whether the Wi-Fi router is configured for 2.4 GHz bandwidth.
• Whether your PC is connected to the access point you intended to use
• Whether the SSID and password are correct
• Whether the security type of the access point is WPA2

If the GT202 provision hangs, double check that the GT202 is properly connected to the correct PMODB port
(J14). As described in section 6, the GT202 vendor provided driver code hangs if the pin configuration does
not match.

8.3.3 Ping the Wi-Fi Module from the PC
After the GT202 is provisioned and you got the IP address from the console window, open a command
window and type the following message as an example (you should use the IP address printed on the
console from your setup):

>ping 192.168.1.37

Figure 61 shows an example of a successful ping result. This proves the successful link connection.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 57 of 64
Oct.11.19

Figure 61. Ping the Wi-Fi module

9. Customizing the Wi-Fi Framework Module for a Target Application
This section describes how to add a new Wi-Fi module support to the Synergy Wi-Fi framework. It involves
creating standard set of structures and APIs around the Wi-Fi device driver that are used by user application.
Steps to integrate a new Wi-Fi driver using the Path 1 approach are provided in this section. Future
application project will include steps for sf_wifi_ctrl_t. This document does not include instructions to
integrate a new Wi-Fi module to support on-chip networking stack.

In this section, the new Wi-Fi module is referred to as “myWiFi”. While adding support for the actual module,
replace “myWiFi” with the actual module name, for example BCM43362, or GT202.

9.1 Wi-Fi Framework Device Driver Source and Header Files Overviews
The first step is to create the Wi-Fi framework device driver source and header files for the new driver. The
Wi-Fi framework source and header files are located in the following directory:
/synergy/ssp_supplemental/

To create the Wi-Fi framework device driver, start by creating the directory structure by copying and pasting
an existing driver such as the GT202, and then renaming the new module based on the module selected.

Copy, paste, and rename the files and directories highlighted in green in Figure 62. The highlights in red
indicate the new directories and file structure created by a developer.

Figure 62. Setting up the Wi-Fi module driver directory file structure

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 58 of 64
Oct.11.19

A description of each file and folder is as follows:

• sf_wifi_myWiFi.h = This header file contains structure definition of the extended configuration which
includes lower-level communication details. It also includes version information.

• wifi_driver_myWiFi = This directory contains the Wi-Fi module driver source code (3rd party vendor
source code).

• sf_wifi_myWiFi _private_api.h = This header file contains prototypes of the Wi-Fi framework template
APIs

• sf_wifi_myWiFi _private.h = This header file contains private macro and structure definitions used by the
Wi-Fi framework module template.

• sf_wifi_myWiFi.c = This source file contains implementation of the Wi-Fi framework APIs template.

9.2 Instance Header File
The instance header file sf_wifi_myWiFi.h has the structure definition for the extended configuration. The
extended configuration includes pointer to lower-level communication interface instances, for example: r_spi;
r_sdmmc; the I/O Port pins used by the Wi-Fi module, such as the reset pin; the slave select pin; and, the
driver task thread priority (the priority of the thread created internally by the device driver code of the Wi-Fi
module). This structure may also contain additional configurable fields specific to the Wi-Fi module.

To adapt the new instance header file to the new driver, perform the following steps to update this file:

1. Change all GT202 references to MYWIFI.
2. Change all GT202 references to myWiFi.
3. Review the include files.

Most Wi-Fi modules have interrupt pins and I/O that must be monitored or controlled by the Wi-Fi
framework. These include files are probably sufficient. However, different Wi-Fi modules might use
different communication peripherals, therefore proper peripheral include file should be considered. For
example, if the Wi-Fi module uses SPI communication, r_spi_api.h must be included, or if IIC is used,
r_iic_api.h is required. Make sure that the correct API communication driver is included.

4. Update the instance version number defined by:

SF_WIFI_MYWIFI_CODE_VERSION_MAJOR
SF_WIFI_MYWIFI_CODE_VERSION_MINOR

9.3 Framework APIs
The sf_wifi_myWiFi_private_api.h file contains all the API prototypes that are supported by myWiFi. To
update the APIs for myWiFi, find and replace GT202 and gt202 with MYWIFI and myWiFi, respectively.

The result is displayed in the following figure.

Figure 63. Custom Wi-Fi module API header

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 59 of 64
Oct.11.19

This file contains prototypes of the Wi-Fi framework APIs which are described in section 3.1.

9.4 Private Structure/Macro Definitions
The sf_wifi_myWi_private.h contains the private structures and macros definitions used by myWiFi
framework. This file should not contain the private structures, data types, and macros definitions of the
device driver. It contains structure definitions that are used inside the Wi-Fi framework control structure and
handles communication with the Wi-Fi device driver.

Find and replace GT202 and gt202 with MYWIFI and myWiFi, respectively.

9.5 Framework API Implementation
The sf_wifi_myWiFi.c file contains the Synergy Wi-Fi framework API implementation. The
implementation in this file is generic but it does make calls to the myWiFi driver and control structures. Find
and replace GT202 and gt202 with MYWIFI and myWiFi, respectively.

From these framework APIs, some APIs are used by NSAL such as open, close, transmit, and the receive
callback.

The NSAL NetX driver functions implement various IP driver commands used by NetX by calling the
corresponding Wi-Fi framework APIs. When implementing the Wi-Fi device driver for the new Wi-Fi module,
ensure these commands are handled properly by the Wi-Fi device driver:

• NX_LINK_INTERFACE_ATTACH
 Handle this request by executing the open API to initialize the custom Wi-Fi module

• NX_LINK_INITIALIZE
 Handle this request by executing the macAddressGet API
 Use driver mtu = 1.5k

• NX_LINK_UNINITIALIZE
 Handle this request by executing the close API.

9.5.1 NSAL Transmit API Interface
The NSAL Transmit API is called from the nsal_netx_send_packet function (see section 3.1.3).

• If the Wi-Fi driver supports zero copy, it can send the fragmental packets and release the packet buffer
after the final packet is sent

• If the Wi-Fi driver does not support zero copy, it needs to chain the fragmental packets to a single
transmit buffer and pass the pointer to the transmit buffer and data length to the
nsal_netx_send_packet function call.

9.5.2 NSAL Receive Callback Interface
The nsal_netx_receive function is called from the wifi_driver_callback function (see
section 3.1.3). The wifi_driver_callback is called by the Wi-Fi module device driver. This callback fills in the
Synergy Wi-Fi callback arguments and passes it as an argument to the callback function. When the driver
receives a data frame, it fills in the Synergy Wi-Fi callback arguments.

Figure 64. Construct the Wi-Fi driver callback argument
After the argument is established, the Wi-Fi driver can call the Wi-Fi driver_callback function. See the
sample code that follows for the implementation. To interface the nsal_netx_receive function, if the
Wi-Fi driver supports zero copy, the driver passes the NetX packet directly to the nsal_netx_receive
function. If the Wi-Fi driver does not support zero copy, it passes the received data to the NetX stack without
allocating the NetX packet.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 60 of 64
Oct.11.19

Figure 65. Implement the custom receive callback

9.6 Updating the Driver Source Code
This folder contains the Wi-Fi module device driver source code provided by vendor.

The /wifi_drivers/wifi_driver_my/ folder contains the Wi-Fi module device driver. This is where
most of the changes must be made to get the new module to work. Each module is different, but there is a
simple process that can be followed to update the drivers. An example process is shown in Figure 66 but
might not apply to your module.

1. Download the Wi-Fi module vendor driver code. This code must be integrated into the device driver.
2. In the folder /wifi_drivers/wifi_driver_myWiFi/, rename the gt202_ctrl folder to myWiFi_ctrl

and then rename each file so that it is myWiFi_filename. The wifi_driver_myWiFi directory is displayed
as shown in Figure 66.

Figure 66. Custom Wi-Fi driver directory structure
3. Review each file in the myWiFi_control folder, find and replace GT202 and gt202 with MYWIFI and

myWiFi, respectively.
4. Review the myWiFi_wifi_ctrl.c source file. Verify that each implemented function has the correct

code required to operate the Wi-Fi module. Where necessary, make any adjustments needed to make it
compatible with the new module.

5. Make sure that in the project properties, the header file paths are added so that the compiler can locate
the files.

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 61 of 64
Oct.11.19

9.7 Updating the Wi-Fi Driver Configuration Header File
The new myWiFi requires a configuration file similar to other modules. The sf_wifi_gt202_cfg.h file
serves as the template for sf_wifi_myWiFi_cfg.h.
Perform the following steps to create the configuration header file.
1. Copy sf_wifi_gt202_cfg.h from the synergy_cfg/ssp_cfg/framework/ directory. Paste it and

rename it as sf_wifi_myWiFi_cfg.h as shown in Figure 67. The red highlighted file is the newly
created file.

2. Open the new file, sf_wifi_myWiFiModule_cfg.h, find and replace GT202 and gt202 with MYWIFI
and myWiFi respectively.

3. Build the driver. If there are any outstanding issues in the build, resolve them.

Figure 67. Wi-Fi module configuration

10. Wi-Fi Framework Module Conclusion
This document provided all the necessary information required to select, add, configure, and use the module
in an example project. Many of these steps are time-consuming and error-prone activities from previous
generations of embedded systems. The Renesas Synergy Platform makes these steps less time-consuming
and removes the common errors like conflicting configuration settings or incorrect selection of low-level
modules. The use of the high-level APIs demonstrated in this application project illustrates the additional
development-time savings achieved by allowing work to begin at a high level and avoiding the time required
in older development environments when using or creating low-level drivers.

11. Wi-Fi Framework Module Next Steps
After you have mastered a simple Wi-Fi framework project, you might want to review a more complex
example. Other application projects and application notes that demonstrate Wi-Fi framework can be found in
the References section at the end of this document.

12. Wi-Fi Module Resource Information
Renesas modules have Knowledge Base articles that provide helpful resources and related links. The
following metadata section includes suggested modules and links.

12.1 SSP User Manual
The SSP distribution is available in html and PDF format from www.renesas.com/synergy/ssp.

http://www.renesas.com/synergy/ssp

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 62 of 64
Oct.11.19

12.2 Knowledge Base
To find up-to-date Wi-Fi resources and related links, visit the Renesas Knowledgebase
(knowledgebase.renesas.com), enter “sf_wifi” for the Wi-Fi module name, and include “module guide” in the
search.

In the Knowledgebase, use these searches to view the RSPI, Console Framework, and External Interrupt
articles:

• Search on “r_rspi module guide” to view RSPI module guide resources.
• Search on “sf_console module guide” to view Console Framework module guide resources
• Search on “r_icu module guide” to view the external IRQ module guide resources

12.3 Longsys GT202 Module reference link
https://www.arrow.com/en/products/gt202kits-b/~/media/4e4847f9d2ba448d89e1a68526328364.ashx

https://www.arrow.com/en/products/gt202kits-b/%7E/media/4e4847f9d2ba448d89e1a68526328364.ashx

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 63 of 64
Oct.11.19

Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components
and related documentation, and get support.

Synergy Software www.renesas.com/synergy/software
 Synergy Software Package www.renesas.com/synergy/ssp
 Software add-ons www.renesas.com/synergy/addons
 Software glossary www.renesas.com/synergy/softwareglossary

Development tools www.renesas.com/synergy/tools

Synergy Hardware www.renesas.com/synergy/hardware
 Microcontrollers www.renesas.com/synergy/mcus
 MCU glossary www.renesas.com/synergy/mcuglossary
 Parametric search www.renesas.com/synergy/parametric

Kits www.renesas.com/synergy/kits

Synergy Solutions Gallery www.renesas.com/synergy/solutionsgallery
 Partner projects www.renesas.com/synergy/partnerprojects

Application projects www.renesas.com/synergy/applicationprojects

Self-service support resources:

Documentation www.renesas.com/synergy/docs
Knowledgebase www.renesas.com/synergy/knowledgebase
Forums www.renesas.com/synergy/forum
Training www.renesas.com/synergy/training
Videos www.renesas.com/synergy/videos
Chat and web ticket www.renesas.com/synergy/resourcelibrary

https://www.renesas.com/synergy/software
https://www.renesas.com/synergy/ssp
https://www.renesas.com/synergy/addons
https://www.renesas.com/synergy/softwareglossary
https://www.renesas.com/synergy/tools
https://www.renesas.com/synergy/hardware
https://www.renesas.com/synergy/mcus
https://www.renesas.com/synergy/mcuglossary
https://www.renesas.com/synergy/parametric
https://www.renesas.com/synergy/kits
https://www.renesas.com/synergy/solutionsgallery
https://www.renesas.com/synergy/partnerprojects
https://www.renesas.com/synergy/applicationprojects
https://www.renesas.com/synergy/docs
https://www.renesas.com/synergy/knowledgebase
https://www.renesas.com/synergy/forum
https://www.renesas.com/synergy/training
https://www.renesas.com/synergy/videos
https://www.renesas.com/synergy/resourcelibrary

Renesas Synergy™ Platform Wi-Fi Framework

R11AN0226EU0104 Rev.1.04 Page 64 of 64
Oct.11.19

Revision History

Rev. Date
Description
Page Summary

1.00 Aug.29.17 — Initial Release
1.01 Mar.26.18 — Updated to 1.4.0
1.02 Sep.21.18 — Document title changed
1.03 Mar.06.19 — Updated with SSP 1.6.0
1.0.4 Oct.11.19 — Updated with SSP 1.7.0

.

© 2019 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Wi-Fi Framework Module Overview
	1.1 Wi-Fi Framework Module Architecture
	1.1.1 Synergy Wi-Fi Framework Application Interface
	1.1.2 Network Stack Abstraction Layer (NSAL)
	1.1.3 SSP HAL Interface
	1.1.4 Socket Interface
	1.1.5 On-chip Stack Interface

	1.2 Wi-Fi Framework Module Features
	1.2.1 Path 1: Wi-Fi Framework Features using NetX and NASL
	1.2.2 Path 2: Wi-Fi Framework Features using the On-Chip Networking Stack Support
	1.2.3 Additional Features if Supported by the Wi-Fi Module or Wi-Fi Module Driver

	2. Wi-Fi Framework Module Operational Overview
	2.1 Wi-Fi Module Operational Overview using NSAL and NetX (Path 1)
	2.1.1 Initialization using NetX
	2.1.2 Wi-Fi Packet Transmission using NetX
	2.1.3 Wi-Fi Packet Reception using NetX

	2.2 Wi-Fi Application Operation using On-Chip Networking Stack (Path 2)
	2.3 Wi-Fi Framework Module Important Operational Notes and Limitations
	2.3.1 Wi-Fi Framework Module Operational Notes
	2.3.2 Wi-Fi Framework Module Limitations

	3. Wi-Fi Framework Module APIs Overview
	3.1 Wi-Fi Framework APIs calling through the NetX (Path 1)
	3.1.1 Synergy Wi-Fi Framework Instance
	3.1.2 Synergy Wi-Fi Framework APIs
	3.1.2.1 Structures used in Wi-Fi Framework APIs
	3.1.2.2 Wi-Fi Framework APIs

	3.1.3 Wi-Fi NSAL API
	3.1.3.1 Structures used in NSAL APIs

	3.2 On-chip Networking Stack Support APIs (Path 2)
	3.2.1 On-chip Networking Stack Instance
	3.2.1.1 On-chip Network Stack Support Structures

	3.2.2 On-chip Network Stack Support APIs

	3.3 BSD Socket APIs (Path 2)
	3.3.1 BSD Socket Instance
	3.3.2 Structures used in the BSD Socket APIs
	3.3.2.1 Wi-Fi Framework BSD Socket Interface APIs

	4. Adding a Wi-Fi Framework Module in an Application
	4.1 Adding a Wi-Fi Framework Module using NetX (Path 1)
	4.1.1 Add the NetX IP instance
	4.1.2 Adding the NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

	4.2 Adding the Wi-Fi Framework Module using On-chip Wi-Fi Stack (Path 2)

	5. Configuring the Wi-Fi Framework Module
	5.1 Wi-Fi Framework Configurations using NetX (Path 1)
	5.1.1 Configurations for the NetX IP Instance
	5.1.2 Configuration for Wi-Fi framework module on NetX
	5.1.3 Configurations for NetX Packet Pool Instance
	5.1.4 Configurations for the NetX Port
	5.1.5 Configurations for the Wi-Fi Module Device Driver

	5.2 Wi-Fi Framework Configurations using On-chip Networking Stack Support (Path 2)
	5.2.1 Configurations for the BSD Socket
	5.2.2 Configurations for the On-chip Stack
	5.2.3 Configurations for the Wi-Fi Module Device Driver

	5.3 Configuration for the Wi-Fi Framework Module Low Level Drivers

	6. Using the Wi-Fi Framework Module in an Application
	6.1 Steps when using the Wi-Fi Framework Module with NetX (Path 1)
	6.2 Using the Wi-Fi Framework Module with On-chip Stack (Path 2)

	7. The Wi-Fi Framework Module Application Project
	7.1 Overview of the Application Project
	7.1.1 NetX and NSAL Interface using Path 1
	7.1.2 Console Framework User Interface
	7.1.3 DHCP Client Application
	7.1.4 Using the Ping Application to Confirm the Connection

	7.2 Software Architecture
	7.2.1 Console Application Thread
	7.2.2 Wi-Fi Application Thread

	7.3 Wi-Fi Framework Module Code Overview
	7.3.1 Configurator generated code (src/synergy_gen folder)
	7.3.2 User application code (src/wifi_app_thread_entry.c)

	7.4 Configurations
	7.4.1 DHCP Client Configuration
	7.4.2 NetX Related Configurations
	7.4.3 Wi-Fi Device Driver Configuration
	7.4.4 SPI Communication Configuration
	7.4.5 SPI Hardware Pin Configuration
	7.4.6 PMODB Interrupt Pin
	7.4.7 SK-S7G2 PMOD Usage Caveat and Workarounds

	7.5 GT202 Wi-Fi Module and Driver Limitations/Known Issues

	8. Running the Wi-Fi Framework Module Application Project
	8.1 SK-S7G2 Board Setup Details
	8.2 Install the USB CDC Device Driver
	8.3 Running the Sample Project
	8.3.1 View the Available Commands
	8.3.2 Provision the Wi-Fi Module
	8.3.3 Ping the Wi-Fi Module from the PC

	9. Customizing the Wi-Fi Framework Module for a Target Application
	9.1 Wi-Fi Framework Device Driver Source and Header Files Overviews
	9.2 Instance Header File
	9.3 Framework APIs
	9.4 Private Structure/Macro Definitions
	9.5 Framework API Implementation
	9.5.1 NSAL Transmit API Interface
	9.5.2 NSAL Receive Callback Interface

	9.6 Updating the Driver Source Code
	9.7 Updating the Wi-Fi Driver Configuration Header File

	10. Wi-Fi Framework Module Conclusion
	11. Wi-Fi Framework Module Next Steps
	12. Wi-Fi Module Resource Information
	12.1 SSP User Manual
	12.2 Knowledge Base
	12.3 Longsys GT202 Module reference link

	Website and Support
	Revision History

