Renesas General-Purpose ICs

Power Management Linear ICs / General-Purpose Linear ICs / General-Purpose Logic ICs
General Catalog

Linear\&Logic

Innovation for a beautiful planet..

Both here and there.

The beauty of solutions from Renesas. Achieving reduced power consumption in advanced applications.

The new Renesas offers a broad range of product lineups that contribute to an eco-friendly society.

Product category map

General-Purpose Linear ICs

Data Converters

D/A Converters...21)

Power Management ICs	
Power Management ICs for Insulated Switching Power Supplies.	Converts AC to DC.
Power Management ICs for PFC \cdots (1)	Improves the power factor when converting from $A C$ to $D C$.
LED Drivers for Lighting Fixtures \cdots (0)	Convert Ac to DC for LED Lamp
SiPs with Integrated MOSFETs ICs for DC/DC Power Supplies ICs for strobe capacitor charger	Converts one DC voltage to another DC voltage.
Shunt Regulators...(4)	Generates a reference voltage.
Series Regulators (3-Pin Regulators) \cdots (1)	Convenient local low-voltage power source.
Battery ICs	
Charge Control ICs \cdots (18)	Controls battery charging functions.
Battery Protection ICs …(0)	Controls battery protection functions.

Detector ICs/System Organizers
Special Reset ICs \cdots (2) Controls the power supply sequence.
Single-Function Reset ICs..(20) Monitors the power supply.
Multifunction Reset ICs…0

Store various settings.

General-Purpose Logic ICs
Low-Voltage Logic ICs
HD/RD74LVC Series …31
HD74LV-A Series …38
HD74SSTV Series …3

Logic ICs with a low operating voltage for reduced power consumption.
5V Standard Logic ICs
HD74LS Series
HD74BC Series
HD74AC Series
HD74HC Series

Unilogic ICs	
74LV-A LVT-A 1G/1GW/2G...(0)	
74LVC 1G/2G/3G...0	For adding logic circuits not
74ALVC 1G/2G…0	included in an SoC.
$74 \mathrm{HC} \mathrm{1G/2G}. \mathrm{\cdots}$	

Power Management Linear ICs

Insulated Switching Regulator Controllers

Power Management Linear ICs (Insulated Switching Regulator Controllers)
Typical Power Supply Circuit

Insulated Switching Regulator Controllers									
Part No.	Application	$\begin{gathered} \text { PFC } \\ \text { Function } \end{gathered}$	$\begin{gathered} \text { DTC } \\ \text { Function } \end{gathered}$	1 Overcurrent Protection Function	$\begin{gathered} 2 \\ \text { Overvoltage } \\ \text { Protection Function } \end{gathered}$	3 Remote On/Off	$\begin{gathered} 4 \\ \text { Soft } \\ \text { Start } \end{gathered}$	5 Adjustable Delay Timer fmax [MHz]	Fmax
R2A20121	Full bridge control, for high-efficiency applications	-	-	pulse by pulse			yes	yes	2.0
R2A20124A	Full bridge/for high-efficiency applications, support for light-load mode	-	-	pulse by pulse		yes	yes	yes	1.0
M51995/6/8	V-mode, forward, for low-power applications	-	-	pulse by pulse/ Timer Latch/v	yes	-	-		0.5
M62213/281	Local power supply for DC/DC converters, etc	-	-	pulse by pulse/ Timer Latch/v	yes		yes		0.7
M62235	Fyback regulator			yes	yes				

Description of Functions

1 Overcurrent Protection Function	
Pulse by pulse:	The PWM pulse width is limited one pulse at a time to provide protection.
Timer Latch	A function that stops pulse outpu when an overcurrent state has continued for a long period under the assumption that the boost diode ha failed
One shot:	When an overcurrent state is ongoing, protection operation continues tor a fixed period of time, followed by automatic recovery

4 Soft Start

A system that gradually increases the PWM output pulse width after power-on to prevent versooting due to a sudden rise in the $D C / D C$ converter output. This function can be enabled
by adding a CST to the DB pin

2 Overvoltage Protection Function When the voltage is excessively large due to a problem such as a multifunction in the load, the overvoltage protection function operates to protect the power supply circuit.

5 Adjustable Delay Timer
Enables zero voltage switching (ZVS) by adjusting output time delay TD1 and TD2 by means of external resistors.

3 Remote ON/OFF
Enables the power supply to be turned on and off remotely. Output is started and stopped according to a control signal from the system
controler.

Power Management Linear ICs

Low-Noise, High-Efficiency Interleaved PFC ICs

Low-Noise, High-Efficiency Interleaved PFC ICs

Features of Renesas PFC IC's

Part No.	$\begin{gathered} 1 \\ \text { Mode } \end{gathered}$	Interleave	$\underset{\substack{\text { winding } \\ \text { less }}}{\mathrm{zcD}}$	$\begin{array}{\|c} 4 \\ \text { zop } \\ \text { zopen } \\ \text { detector } \end{array}$	$\begin{gathered} c^{5} \text { current } \\ \text { limititer } \\ \text { timer atath } \end{gathered}$	$\begin{aligned} & \text { Constant } \\ & \text { Poner } \\ & \text { Pomiter } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|l\|} \substack{\text { intit } \\ \text { lesp }} \end{array}$	$\begin{gathered} 3 \\ \begin{array}{c} \text { Dynamic } \\ \text { ovp } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ \text { Brown } \\ \text { Out } \end{gathered}$	$\begin{gathered} 7 \\ \text { ovP2, } \end{gathered}$	$\begin{gathered} \text { Veref } \\ \text { acuracy } \end{gathered}$		$\begin{gathered} \text { Light } \\ \text { Efficiency } \end{gathered}$	Soft Start	$\begin{aligned} & \text { ovp, } \begin{array}{l} \text { oc, } \\ \text { ocp, } \end{array} \end{aligned}$	Package
R2a200114A	ccm	Yes			Yes			Yes	Yes	Yes	1.6\%	Yes	Phase drop	Yes	Yes	${ }_{\text {SOP20 }}^{\text {LoFP40 }}$
R2A20004	ccm	Yes			Yes			Yes	Yes	Yes	1.6\%	Yes	Phase drop	Yes	Yes	
R2A20115	ссм					Yes		Yes	Yes		1.6\%	Yes		Yes	Yes	sop-16
R2A20131	ссм							Yes	Yes		1.5\%	Yes	цтв	Yes	Yes	SOP-16
R2a200112A	CRM	Yes		Yes			Yes	Yes			4.0\%	Yes		Yes	yes	SOP-16
R2a200118A	CRM	Yes			Yes		Yes	Yes	Yes	Yes	1.5\%	Yes		Yes	yes	SOP-20
R2A20132	CRM	Yes		yes	Yes		Yes		Yes	Yes	1.5\%	Yes	$\begin{aligned} & \text { Slave drop } \\ & \hline \tau \pi B \end{aligned}$		Yes	sop-20
R22200113A	CRM		Yes				Yes	Yes			3.0\%	Yes			Yes	sop-8
	CRM		Yes				Yes	Yes		yes	1.5\%	Yes			Yes	Sop-8

Block diagrams \& System merits
1 System merits of CRM Interleave PFC IC

Evaluation results
1 Ripple current comparison (CRM single vs. Interleave) 1 Efficiency comparison (CCM single vs. CRM Interleave)

1 Switching noise comparison (CCM single vs. CRM Interleave)

Functions for protecting systems \& IC's

2 Feedback loop open detection
4 Slave ZCD Signal Open/Short Protection Function

6 Brownout Function

3 Dynamic over voltage protection

5 OCP Timer Latch

Power Management Linear ICs

Features of R2A20134

Provides compatibility with a variety of circuit configurations and control
methods to support a wide range of market requirements.

- Non-isolated topology and step-down high-side drive for high efficiency
(92%) and high power factor (0.94) (Renesas evaluation board).
- Enables reduced BOM cost through use of simple circuit configuration and

MOSFETs with low voltage tolerance rating
Covering various circuit configurations

Covering various control methods

MOSFET-off timing control	\quad _ Averaged-current control
MOSFET-on timing control	Peak-current control
	\square Zero current detection (ZCD) control
	Fixed frequency control

Driver IC

MOSFET

2010

Technology roadmap

Power Management Linear ICs (POL Converters)

There is a trend in high-performance equipment toward placement of a local power supply close to the load to improve power supply quality and reduce noise emission. Renesas Electronics offers a lineup of devices for such applications, including switching regulator controller ICs for use in
combination with switching elements as POL converters and the R2J20702,
a SiP with integrated MOS.

R2J20702NP PWM Controller SiP with Integrated MOSSFET (POL-SiP) PWM

- Integrates mutually optimized synchronous rectification PWM controller and power MOSFETs for high efficiency and reduced size
- Recommended input voltage range: 8 V to 14 V (supports control circuit operation at 5 V)
- Support for large-current output: Max. 40A
- Integrated 0.6 V reference voltage generator with 1% accuracy
- Wide operating frequency setting range: 200 kHz to 1 MHz
- Peak current control for high responsiveness
- Current sharing function (parallel operation of up to 5 devices)
- Support for single operation, 2-phase operation, and multichannel operation (tracking startup function
- Integrated bootstrap SBD
- Integrated on/off control and overvoltage momentary cutoff function (hiccup circuit)
- Design support tools and evaluation boards available
- Compact package: OFN 56 -pin $(8 \mathrm{~mm} \times 8 \mathrm{~mm})$

POL Converters/Controllers

Part No.	Configuration	ConversionType	Voperating	RectificationType	$\underset{\substack{\text { Output } \\ \text { Votage }}}{\text { a }}$	$\underset{\substack{\text { Oscillation } \\ \text { Freauency }}}{ }$	$\underset{\substack{\text { Output } \\ \text { MosfeT }}}{\text { cel }}$	Other functions	Package		
									Tssop	afn	csp
R2J207202P	PoLsip	$\underset{\substack{\text { Voltage } \\ \text { step-coun }}}{\text { and }}$	-16V	Synchronous	${ }^{\text {40A }}$	to 1 MHz	res	1 On/off control, 2 OCP hiccup function	-	(150)	-

1 On/Off Control
On/off control allows stopping IC function and turning off the MOSFETs when in the low-level or open state.

2 OCP Hiccup Function

When the CS pin voltage exceeds $1.5 V$, the OCP hiccup function shuts
offt the IC and the MOSFETs. Also, the TRK-SS pin is pulled down to off the IC and the MOSFETS. Also, the TRK-SS pin is pulled down to while the ICis off, then switching operation starts from the soff start state.

Power Management Linear ICs

List of DC/DC Functions

Description of Power Management Linear IC (DC/DC) Functions

Fixed-Output-Voltage DC/DC Converters

Multi DC/DC Converters

Part No.	$\begin{aligned} & \text { ch. } \\ & \text { No. } \end{aligned}$	Conversion Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Output } \\ \text { Vottage } \\ \text { (Tvo.) } \end{gathered}$	Output Current(max.) (max.)		RectificationType	Integrated Parts			$\begin{gathered} \text { Oscillation } \\ \text { Frequency } \\ \text { (max.) } \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \text { Max. on } \\ \text { Duty } \end{array}$	Application	$\begin{gathered} \text { Other } \\ \text { Functions } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Package } \\ \hline \text { afN } \\ \hline \end{array}$
					1L--ion	2AA		$\underset{\substack{\text { MOS } \\ \text { FET }}}{\text { R }}$	$\begin{gathered} \text { Load } \\ \text { sw } \end{gathered}$	Phase Compensato					
R222006	сН1	Voltageste-up	${ }^{1.505 .5 .5}$	5.0V	600 mA	400 mA		ves	ves	ves	2 NHz	${ }^{90 \%}$	Motor	3 onfof control	(40)
	CH2			1.85	600mA	400 mA	Sincherous	ves	-	yes		100\%	SoR	$\frac{5}{5}$ outsatat	
	сн3			1.0 V	${ }^{\text {cooma }}$	400 ma	Sinchorus	Yes	-	Yes			soc		
	СН4	Votates		${ }^{3.3 v}$	500 mA	350 mA	Sinchronus	yes	-	yes	1 MHz	95\%	NOAFE	11 vorecuruen	
	СНБ	Volageste-up		${ }^{13}$	50 mA	30 mA	Diratificaion	Yes	yes	ves	${ }^{500 \times 4} \mathrm{~L}$		$\mathrm{CCO}_{(\text {(H) }}$	bedight	
	снб	Poanity evesal		-7.5v	100 mA	100 mA	Diractifation	yes	-	ves		00\%	$\operatorname{COD}($ ()		
	CH7	Volage step-up		4 tLED (20ma)	33 mA	30 mA	Direstiration	yes	ves	ves		95\%	LCobl		

1 Peak Current Limiter Circuit Peak current detection is accomplished by
connecting a resistor (RSC) between design Connecting a resistor (RSC) between designated
pins. When an overcurrent condition causes the pins. When an overcurrent condition couses the
RSC voltage to drop more than $0.3 V$ (standard),
the charge current to the the charge current to the oscilitation capacitior
increases suddenly, minimizing the output swith's increases sudadenly, miniminizg the
on period and turning off output.

4 DTC (Dead Time Control) At startup, a delay circuit prevents the output frim
rising until the input power supply stabilizes.

7 Timer-Controlled Intermittent Operation Function When a continuing overcuurent condition exists,
the TM and ONOFF pins are used to maki the IC the TM and ON/OFF pins are used to make the IC
operate intermittenty. This makes it possible to configure a power supply with sharp drop-off conifigure a powe
characterisitics.

10 Overvoltage Protection Function When the voltage is excessively large due to a
problem such as a multitinction in the load, the problem such as a multifunction in the load, the
overvoltage protection function operates to ovenvoltage protection function o op
protect the power supply circuit.

2 Output Short Protection The output pin voltage is monitored, and the
power supply is shut down when it drops below a power supply is
specified value.

3 On/Off Control
Enables the power supply to be turned on and off to a control signal trom the system controller.

5 Soft Star

A system that gradually increases the PWM output pulse width after power-on to prevent overshooting tue to a sudden isise in the DC/DC
converter output. This function can be enabled by adding a CST to the DB pin.

8 Quick Shut Function
The quick shut function resets the pin voltages
when the IC is turned off. causing PWM pulse output to hatt inmediately.

11 Overcurrent Protection This function limits the output current to prevent it from becoming excessive. There are two types:
one with a with vertical drop-off characteristics one win a with vertical drop-off cha
and one wwit "hook-back" drop-off
characteristics.

6 Pulse by pulse CLM The PWM pulse width is limited one puse at a time to provide protection.

9 Vref Overvoltage Protection Function The Veref input also has an on-chip overvoltage protection circuit that prevents excessive voltage
romentering vit athe Vref pin and damaging the
device internaly

Power Good Function This is a pin that indicates when the converter is
supplying the normal output voltage. It is driven supplying the normal output voltage. It it driven
low in cases where it is necessary to indicate the possibility that the power supply output is outside
the eguation range.

Power Management Linear ICs
Photoflash capacitor charger IC with IGBT driver R2J20071BNS

Shunt Type

Photoflash capacitor charger IC with IGBT driver R2J20071BNS

Features

- Self-oscillation method with fly-back transformer.
- The charge completion is detected by indirect detection method with tertiary-winding or direct detection method with secondary-winding
- High precision charge completion detection voltage $1.0 \mathrm{~V}+/-1.0 \%$
- Small package :DFN-10 ($2.5 \times 2.0 \times 0.6 \mathrm{mmt})$
- Built-in high voltage (60 V) and Low Ron (0.2 ohm) Nch MOSFET for Power Switch
- Various protect functions
- Low voltage protection
- Thermal shutdown
- Maximum off time limitation for Nch MOSFET
- Overcharge protection for open winding
- Primary side current is adjustable by inputting the DC voltage to CHGADJ terminal
- IGBT driver is adjusted to Renesas's strobe IGBT.

Application Circuit Example

Package

Top view 2.Omm

Bottom view

Efficiency

New Shunt Regulator IC Lineup

For applications such as output voltage detection in all sorts of electronic devices and as reference voltage sources for A/D input, Renesas
Electronics supplies a variety of shunt regulator ICs, including the HA17431 Series and the μ PC1093, μ PC1943, μ PC1944, and μ PC1945 Series. The
HA17431G Series delivers high-voltage and high-precision characteristics in a compact package, while the $\mu \mathrm{PC} 1093, \mu \mathrm{PC} 1943, \mu \mathrm{PC} 1944$, and $\mu \mathrm{PC} 1945$ Series include compact-package and low-voltage models.

Renesas HA17431G Series Features

- Achieve both high voltage and high accuracy compared to
conventional product.
Max. cathode voltage (Vkmax): 40V
Reference voltage (Vref at $25^{\circ} \mathrm{C}$
- $2.500 \mathrm{~V} \pm 0.5 \%$ (A type)
$2.500 \mathrm{~V} \pm 1.0 \%$ (Standard type)
- Abundant variations in packages including small surface mounting package for equipment downsizing
Surface mounting type: MPAKV, MPAK-5V, UPAK
Through hole type: TO-92
K-REF pin reversed type: HA17432G (UPAK)

Example Power Supply Circui

- Reference voltage generation circuits
- Switching power management error amplification circuits, etc.

Product Lineup

Item		Low voltage type (1.25V)		Standard voltage type (2.5V)				
		HA17L431A	HA17L431	HA17431V	HA17431H	HA17431A	HA17431GA	HA17431G
Reference voltage	Vefef ${ }^{\text {(}}$	1.240	1.240	2.500	2.500	2.495	2.500	2.500
Maximum cathode voltage	vkA ($)$	16	16	16	36	40	40	40
Continuous cathode current	$1 \mathrm{I}(\mathrm{mA})$	$-30 \sim+50$	$-30 \sim+50$	$-50 \sim+50$	$-50 \sim+50$	-100~+150	-50~+100	-50~+100
Reference voltage accuracy	(\%)	± 1	± 1.5	± 1	± 1	± 2.2	± 0.5	± 1.0
Operating temperature range	Topr (${ }^{\text {c }}$)	$-20 \sim+85$	-20~+85	$-20 \sim+85$	$-20 \sim+85$	-20~ +85	$-40 \sim+85$	-40~ +85
Package	MPAK	$\underset{\text { HA177L431ALTP }}{\text { HALALTP }}$	-	HA17431VLTP HA17432VLTP	HA17431HLTP HA17432HLTP	-	HA17431GLTPA	HA17431GLTP
	MPAK-5	HA17L431ALP	-	HA17431VLP	HA17431HLP	-	HA17431GLPA	HA17431GLP
	т0-92	HA17L431AP	-	HA17431VP	HA17431HP	HA17431PNA	HA17431GPA	HA17431GP
	то-92моD	-	-	-	-	HA17431PA	-	-
	UPAK	-	HA17L431UP HA17L432UP HA17L432UP	HA17431VUP HA17432VUP	HA17431HUP HA17432HUP	HA17431UA HA17432U	-	HA17431GUP HA17432GUP

Power Management Linear ICs

Shunt Type

External Package Dimensions and Pin Arrangement

Package	MPakv		MPAK-5v			UPAK	
	$\stackrel{\stackrel{A}{\square}}{\square}$	$\stackrel{A}{\square}$	$\stackrel{N}{\square} \square_{\square}^{\text {M }}$				
Par No.				HatıL431LIP	hatlabialip		

$\star 1 \mathrm{R}:$ Reference
A
K Anode
NCathode
NC: No Connec
NC: No Connection
PS: Built-in Photocoupler Bypass Resistor (2k2)

Other shunt regulator ICs
Shunt regulator ICs are widely used as feedback circuits in switching power supplies and as reference voltage sources.

Shunt Regulator IC Lineup

- The product lineup includes the $\mu \mathrm{PC} 1093$ with a standard 2.5 V reference voltage (equivalent to 43 from other vendors) and models with a low reference voltage of 1.26 V .

Shunt regulator ICs

Shunt Regulator ICs

Product Name	$\begin{array}{\|l\|} \text { Output Current } \\ \text { (A) } \end{array}$	$\begin{aligned} & \text { Reference } \\ & \text { Voltage } \\ & \text { (V) } \end{aligned}$	$\begin{gathered} \text { Accuracy } \\ \text { (\%) } \end{gathered}$	Output Voltage Variable Range Variable Rang (V)	Absolute MaximumCharaterisisics		Package	Remarks
					$\begin{aligned} & \text { Input Voltage } \\ & \text { (V) } \end{aligned}$			
${ }_{\text {LPCCIO93 }}$	0.15	2.495	± 2	${ }^{2.5-36}$	${ }^{37}$	0.48	8 -pin Sop	-
						$\frac{2^{241}}{0.51^{2}}$	SOT-89 SC-74A	
[PC1943	0.05	1.26	${ }^{2} .6$	1.26-24	25	1.641	sc.62	For 3y powers supplies
${ }_{\text {HPC }}^{1949}$	0.05	${ }^{1.26}$	+2.6	${ }^{1.26-24}$	25	$\begin{aligned} & 0.385 \\ & \hline 16^{4+1} \end{aligned}$	$\begin{gathered} \text { 8.pin Sop } \\ \text { Sor-rgo } \end{gathered}$	For 3 V power supplies pin-compatible with $\mu \mathrm{PC}$ 1093)
HPC1945	0.015	1.26	± 2	1.26-5	6	0.09	sc.74A	For 1.8 v power supplies

1: When mounted on $16 \mathrm{~cm}^{2} \times 0.7 \mathrm{~mm}$ ceraraic substrate $* 2:$ When mounted on $75 \mathrm{~mm}^{2} \times 0.7 \mathrm{~mm}$ ceraraic substrate

Series Regulator ICs

Series regulator ICs require few external elements and are widely used as simple power supplies. Due to their excellent noise characteristics, series regulator ICs are suitable for supplying power to analog circuits that are sensitive to noise.

Series Regulator Lineup

Standard Type Three-Pin Regulators

-3: When mounted on $16 \mathrm{~cm}^{2}(0.7 \mathrm{Fm}$ m tick) ceramic substrate
CMOS Regulators

Product Name	$\begin{gathered} \text { Output } \\ \text { Current } \\ \text { (A) } \end{gathered}$	Output Voltage (M)							$\begin{array}{\|c\|} \hline \text { Absolute Maximum } \\ \text { Characteristics } \end{array}$		Package	Features
		1.0	1.5	1.8	2.5	3.3	5.0	ADJ	$\begin{array}{\|l\|l\|} \hline \text { Inputivotaue } \\ \text { (N) } \end{array}$	$\begin{gathered} \begin{array}{c} \text { Total Loss } \\ (W)^{* 1} \end{array} \\ \hline \end{gathered}$		
4PDI2ONX	${ }^{0.3}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc			6	$\frac{2^{2}}{0.1^{9}}$	$\begin{aligned} & \text { SoT-89 } \\ & \hline \text { SC-74A } \end{aligned}$	-
upD12AA10	2.0	\bigcirc							6	10	T0-252 5pin	On/off function
HPD121W××A	1.5			-	-	-		-	6	10	T0-252 5 Spin	On/off function
HPD12115	1.0		\bigcirc						6	10	T0-252 5pin	On/offinction

Power Management Linear ICs

Low-Saturation Regulators

HA17 Series Three-Pin Regulator ICs
These 3-Pin Regulators IC Lineup always supply a stable output voltage, unaffected by fluctuations in the input voltage. They are suitable for use in audio equipment power supplies, for stabilization of unstable voltages of multi-output switching regulators, and for power supplies of various kinds of control devices.

Features

- Variety of output voltage grades

Various built-in protection circuits: current limiting circuit, chip junction temperature limiting circuit, internal power dissipation limiting circuit

- Wide operating temperature range: $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$
-Suitable for precision, high-stability, low-capacity power supplies
- Facilitate ol low noise generation
- Facilitate circuit design

Circuit

Lineup

$$	$\begin{array}{\|c} \hline \text { Current } \\ (\mathrm{mA}) \end{array}$	Package	
		UPAK(SOT89)	TO-92MOD
${ }^{5} 8$	100 100	$\underset{\text { HA178LLOSUA }}{\text { HA17 }}$	${ }_{\text {HA178LO5/AP/PA }}$
12	100	HA178L12UA	HA178L12/APPA
15	100	HA178L15UA	HA178L15/AP
-5	100	${ }_{\text {HA179LOSU }}$	HA179LO5/P
$\begin{array}{r}-8 \\ -12 \\ \hline\end{array}$	100	${ }^{\text {HA1790.08U }}$	HA179008P
-	100 100	${ }_{\text {HAA19912U }}$	${ }_{\text {HAA179LITLI }}$

Example of Fixed-Output Regulator Circuit

Circuit

Power Management Linear ICs (for Battery Chargers)

Description of Functions

1 Battery Connection Detection Function Outputs the TH pin voltage. The TH pin is used for both battery connection
detection and patter, temperature detecection, and the MCU determines from the output whether or ont a battery, is connected and, if so, its temperature.

3 Temperature Detection Function
The voltage divided by an externally connected pull-up resistor (to Vcref) and
an extermal themmistor resistance is input to the Totet pin This yoltage is used an externat thermistoreatione.

2 AC Adaptor Connection Detection Function The Adpt SW pin is used for AC adaptor detection. An adaptor is determined
to be connected when this pin is driven high. Note that adaptor mode has priorty, soit the Adpt SW pin goess high when charging is in progress,
charging stops and operation switches to adaptor mode.

4 Forced Charge Stop
This function enables charging to be forcibly stopped by driving the STP pin
ow. At this time an LED goes dark end the timers are intililized low. At this time an LED goes dark and the timers are initialized.

Power Management Linear ICs

Battery

Smart Battery System for Notebook PC "R2J24020F/50F**"

High-precision battery charge remaining management and battery
protection functions in a single package

Features

- 16Bit R8C CPU core \rightarrow Low power consumption
- High Precision A/D converter for more exact battery remaining detection and reduction of power consumption
- Smaller and Thinner package \rightarrow TSSOP48 (R2J24050F**)

Battery Solution Roadmap

Example PC Battery Implementation Using SiP (R2J24010F)

Peripheral ICs for MCUs

Reset IGs

Power Supply Monitoring

Renesas Electronics produces a variety of peripheral ICs in response to a range of customer requirements, including single-function CMOS type devices with a voltage detection accuracy of $\pm 1 \%$ and low current
consumption, single-function bipolar type devices supporting high powe supply voltages, and multifunction type devices such as sequencers for controlling the power-on sequence of multiple power supplies.

Reset IC Usage Example

Peripheral ICs for MCUs
Data Converters

Mixed digital/analog capability: the dicisive factor in automatic adjustment and high-speed, high-precision control

These are D/A converters for trimming applications with 2 to 36 channels incorporated in one package, operating at low/medium speeds of 100 kHz to 1 MHz . The use of CMOS analog circuitry and pattern design employing patented technologies enables high precision to be achieved without using special processes, trimming, etc.

Features

- World's top runner in trimming D/A converter market
- Wide selection of variations (DAC)
-Number of channels: 2 to 36
-Resolution: 8 to 12 bits
-Bus type: Three-wire, $1^{2} \mathrm{C}$
-Power supply voltage: $3 \mathrm{~V}, 5 \mathrm{~V}$ systems available
- Fewer channel D/A converter lineup available

Applicable Market Areas

- Mobile phone, DVCs, DSCs, monitors, TVs, printers, CD-R, etc.

Data Converter Series

Peripheral ICs for MCUs (D/A Converters)

Peripheral ICs for MCUs
Operational Amplif iers

General-Purpose CMOS, Op-Amp. and Comparator ICs Series

Products Concept
 We offer a lineup of products combining low-voltage operation,
 low power consumption, and compact size.

Features

- Ultra-small package saves you space
- (CMPAK-5, MPAK-5, MMPAK-8, TSSOP-14)
- Low-voltage operation and low current dissipation most
suitable for battery-use device (VDD=1.8 to 5.5 VV , IDD: 15 to 800 mA , The high output type supports 2.7 to 5.5 V .)
- Output full swing (operational amplifier VOH=2.9Vmin | - Output full sw |
| :--- |
| (at VDD |

Low input offset voltage (operational amplifier) VIO=4mVmax

- 15 mA typ./30mA typ. (HA1630S/D07.08) high-current-ourput versions available.

Applications

- Portable device (DSC, etc)
- Amplification and detection of sensor signal
(health machine, etc.)
- Signal controlling switch

Detection of overvoltage of low-powe
electric source (monitor)
Series Evolution

Lineup

General-Purpose Bipolar Op-Amp and Comparator ICs

	Product Type	8pin		14pin	Package Type	OperatingTemperature $\min /{ }^{\circ} \mathrm{Cax}$ (${ }^{\circ} \mathrm{C}$)		$\begin{array}{\|c\|} \hline \text { Input oifset } \\ \text { votaget } \\ \text { viog ax. } \\ \text { (mv. } \\ \text { notel. } \end{array}$	$\begin{aligned} & \text { Input Bias } \\ & \text { Current } \\ & \text { It max. } \\ & \text { (nA) } \\ & \text { notel. } \end{aligned}$	$\begin{gathered} \text { SR typ.(V//us or or } \\ \text { Response } \\ \text { TTime typ. } \\ \text { (us) } \\ \text { notel, } 2 . \end{gathered}$
		Single (1ch)	Dual (2ch)	Quad (4ch)						
Op-Amp	$\begin{gathered} \text { Single } \\ \text { power supply } \end{gathered}$		UPC1251MP-KAA		TSSOP(2.8x2.9)	$-40 /+125^{\circ} \mathrm{C}$	3/30	7	250	0.25
			-PCC1251GR-9LG	-PC451GR-وLG	TSSOP	$-40 /+125^{\circ} \mathrm{C}$	3/30	7	250	0.25
			-PC125162	$\mu \mathrm{PC45162}$	Sop	$-401+85^{\circ} \mathrm{C}$	3/30	7	250	0.25
			-PC3586R-9LG	-PC324GR-9LG	TSSOP	$-401+85^{\circ} \mathrm{C}$	3/30	7	250	0.25
			HPC35862	нPC32462	sop	$-20 /+80^{\circ} \mathrm{C}$	3/30	7	250	0.25
	High-speedsinglepower supply		UPC842GR-9LG	[PC844GR-9LG	TSSOP	$-40+125^{\circ} \mathrm{C}$	3/32	5	500	7
			нPC84262	нPC84462	sop	$-401+85^{\circ} \mathrm{C}$	3/32	5	500	7
			UPC4742CR-9LG	-PC47446R-9LG	TSSOP	$-401+85^{\circ} \mathrm{C}$	3/32	5	500	7
			UPC474262	uPC474462	Sop	$-20 /+80^{\circ} \mathrm{C}$	3/32	5	500	7
				нPC45262	sop	$-40 /+85^{\circ} \mathrm{C}$	3/32	7	250	0.8
				بPC340362	Sop	$-20 /+80^{\circ} \mathrm{C}$	3/32	7	250	0.8
	Low-noise		UPC4570GR-9LG	䶹PC4574GR-9LG	TSSOP	$-40 \mid+85^{\circ} \mathrm{C}$	$\pm 4 \pm 16$	5	400/1000	7/6
			-PC457062	нPC457462	Sop	$-20 /+80^{\circ} \mathrm{C}$	$\pm 4 \pm 16$	5	400/1000	7/6
			нPC25862	нPC458G2	sop	$-40 /+85^{\circ} \mathrm{C}$	$\pm 4 \pm 16$	$6 / 5$	500/300	1/1.6
			HPC4556G2	-PC474162	Sop	$-20 /+80^{\circ} \mathrm{C}$	± 4416	6/5	500/300	1/1.6
			нPC25962		Sop	$-40 /+85^{\circ} \mathrm{C}$	$\pm 4 \pm 16$	6	500	2.8
			-PC456062		Sop	$-20 /+80^{\circ} \mathrm{C}$	$\pm 4 \pm 116$	6	500	2.8
			HPC457262		Sop	$-20 /+80^{\circ} \mathrm{C}$	$\pm 2 / \pm 7$	5	400	6
	J-FET input		нPC803G2	нPC80462	sop	$-401+85^{\circ} \mathrm{C}$	$\pm 5 \pm 116$	15	0.4	13
		UPC408192	HPC4082G2	HPC408462	Sop	$-20 /+80^{\circ} \mathrm{C}$	$\pm 5 \pm 116$	15	0.4	13
		แPC82162	нPC822G2	нPC82462	sop	$-401+85^{\circ} \mathrm{C}$	$\pm 5 \pm 116$	10	0.2	13
		UPC4071 162	\#PC407262	HPC407462	sop	$-20 /+80^{\circ} \mathrm{C}$	$\pm 5 / 116$	10	0.2	13
		цPC83162	^PC832G2	нPC83462	sop	$-401+85^{\circ} \mathrm{C}$	$\pm 2 \pm 16$	10	0.1	3
		-PC406192	-PC4062G2	-PC406462	Sop	$-20 /+80^{\circ} \mathrm{C}$	$\pm 2 / 116$	10	0.1	3
		แPC81162	^PC812G2		sop	$-401+85^{\circ} \mathrm{C}$	$\pm 5 \pm 116$	2.5/3	0.2	15
		-PC4099162	нPC409262		Sop	$-20 /+80^{\circ} \mathrm{C}$	± 5416	2.5/3	0.2	15
		${ }_{\mu \text { PC813G2 }}$	-PC814G2		Sop	$-401+85^{\circ} \mathrm{C}$	$\pm 5 \pm 116$	2.5/3	0.2	25
		-PC409362	-PC409462		sop	$-20 / 880^{\circ} \mathrm{C}$	$\pm 5 \pm 116$	2.5/3	0.2	25
			${ }_{\text {UPC855MN-KAA }}$		TSSOPP(3x)	$-40 /+85^{\circ} \mathrm{C}$	$\pm 5 / 116$	3	0.2	5.5
	General-purpose	$\mu \mathrm{PC} 15162$	нPC251G2		sop	$-401+85^{\circ} \mathrm{C}$	$\pm 7.5 / \pm 16$	6	200	0.5
	General-purpos	$\mu \mathrm{PC} 74162$	HPC145862		sop	$-20 /+80^{\circ} \mathrm{C}$	${ }^{ \pm 7.5 / \pm 16}$	6	200	0.5
Comparator	$\underset{\substack{\text { Single } \\ \text { power supply }}}{ }$		\#PC27TMP-KAA		TSSOP(2.8x2.9)	$-40 /+125^{\circ} \mathrm{C}$	2/32	5	250	1.8
			нPC277GR-9LG	-PCC179R-9LG	TSSOP	$-40 /+125^{\circ} \mathrm{C}$	2/32	5	250	1.181 .6
			HPC27762	нPC17762	sop	$-401+85^{\circ} \mathrm{C}$	2/32	5	250	1.3
			нPC393GR-9LG	-PC339GR-وLG	TSSOP	$-40 /+125^{\circ} \mathrm{C}$	2/32	5	250	1.8/1.6
			нPC39362	4PC33962	sop	$-40 /+85^{\circ} \mathrm{C}$	2/32	5	250	1.3
	High-speed	${ }_{\mu}$ PC271 22			sop	$-40 /+85^{\circ} \mathrm{C}$	± 4416	7.5	250	0.2
		«PC31162			sop	$-20 /+80^{\circ} \mathrm{C}$	$\pm 4 \pm 16$	7.5	250	0.2

[^0]
HA17 Series General-Purpose Bipolar Op-Amp and Comparator ICs

Features

- Lineup of world standard compatible products
- Variety of packages (DP-8/14, SOP-8/14, TSSOP-8/14)

Specifications

Product Lineup

Peripheral ICs for MCUs
 (LED Drivers)

In addition to scan-type displays such as LCD panels, LEDs and other light emitting elements are an important means for indicating output from control systems such as MCUs. Two types of devices are used to drive LEDs: constant-voltage drivers (simple switches) and constant-current drivers. Output varies with the power supply voltage when constant-voltage drive is used, but this method is widely used in low-cost applications due to its simplicity. In contrast, constant-current drive has the advantage of unvarying brightness regardless of fluctuations in the power supply voltage, making it suitable for applications (such as game machines) where subtle color changes would cause problems.
Either series or parallel connection can be used to drive multiple LEDs. Since white LEDs have a voltage drop of 3 V to nearly 3.6 V , high voltage is necessary when they are connected in series, and the driver used must have a high voltage tolerance. When the LEDs are connected in parallel, a drive capacity of 10 mA to 20 mA per LED is necessary
Renesas Electronics offers a wide-ranging lineup of LED driver ICs, including high-output devices that can also accommodate parallel connection of many LEDs, devices with latch input, devices with a serial-parallel function using a shift register, and newly developed SpAS* devices.
Note: With an SpAS type LED driver, an SCI interface is used to illuminate multiple LEDS. Each LED is assigned an
addresss alowwing for fine-grained control focusing on specific points. (SpAS stands for "SCI protocol with
Development Roadmap

RD40LD003FP Specifications 8 -bit, releases constant current

- SpAS (SCI + general ports)
- Operating speed: 5Mbps
- Power supply voltage: 3.0 V to 5.5 V
- Output voltage tolerance: 40 V
- Constant current output: 35 mA (max.)
- Constant current accuracy: $\pm 4 \%$ between pins, $\pm 10 \%$ between ICs
- TTL level input
- Hysteresis: $\Delta 0.9 \mathrm{~V}$ Noc=-4.5V
- PWM: 256 gradations
- Specification temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Package: SOP-20 ($7.8 \times 12.6[\mathrm{~mm}], 835 \mathrm{~mW})$

Figure 1 Driver with Vcc=3.3V,
Voltage output standing
$=3.3 \mathrm{~V}$ $=3.3 \mathrm{~V}$

Figure 2 Driver with Vcc=3.3V, Voltage output standing

Vf: The Vf of red, green, and yellow LEDs is genellary about $1.8 V$, and that blue and Infrared LEDs is about 1.3 VV .
RL: The rated current of a typical display LED is around 20 mA , and the resistance value is about 5 mA to $20 \mathrm{~mA}(\mathrm{RL}=(\mathrm{VDD}-\mathrm{Vf} \times \mathrm{n})$) 0.02 (at 20 mA). For game machine or outdoor display applications requiring high
blightness, RL is determined so as produce blightness, RL is determined so as produce sufficient blightness with LEDs having
high voltage rating or in a parallel connection.

LEDs connected in series

h game machines a large number of LEDs are typically mounted on a board with a large area. Using conventional serial-parallel conversion employing shift registers equires a large number of control lines and is very susceptible to noise. An SpAS type LED driver, which provides stable drive by means of SCI-based address selection, is ideal in such cases.

Peripheral ICs for MCUs

LED Drivers

Level Converters

Main High-Functionality ICs

Part No.	bit	Function	$\begin{aligned} & \text { Burst } \\ & \text { Transfer } \end{aligned}$	$\begin{gathered} 4 \\ \substack{\text { Power } \\ \text { Propown } \\ \text { Protection }} \end{gathered}$	$\underset{\substack{\text { Gradation } \\ \text { Control }}}{5}$	Drive Type	Transfer Speed	Pull-Up/Down Resistors	Supported Input Input Signal Levels	$\begin{gathered} \text { Output } \\ \text { Toltarae } \\ \text { Tolerace } \\ \text { (Maxa) } \end{gathered}$	Output Current	PKG
R015LDTAA	8	Datapotedion	No	-	No	${ }_{\substack{\text { Constant } \\ \text { volige }}}^{\text {a }}$	-	-	3,35.0	${ }^{15 V}$	200 mA	
Robalooba	8		No	-	No	$\underset{\substack{\text { conent } \\ \text { counsant }}}{ }$	-	-	${ }^{3.35 .0}$	${ }^{30 v}$	30 ma	sop-20
R030010T95	8		No	\bigcirc	No	$\underbrace{\text { ate }}_{\substack{\text { Constant } \\ \text { volage }}}$	12.5Wbos	Yes	${ }^{3.35 .0}$	30 V	100 mA	
R0300.ț595	24		No	\bigcirc	No	$\underbrace{\text { a }}_{\substack{\text { Constant } \\ \text { volage }}}$	${ }^{12.5 W b o s}$	Yes	${ }^{3.35 .0}$	${ }^{30 V}$	100 ma	s50P-36
R8000.loosp	8		3 dmac	Power On Resest	$\begin{gathered} \text { On-chip PWM } \\ (256) \end{gathered}$	$\underbrace{}_{\substack{\text { Constant } \\ \text { curent }}}$	subps $^{\text {a }}$	-	${ }^{3.35 .0}$	40 V	35 ma	sop-20

1 Shift Register Serial-Parallel Function

Serial-paralle conversion using shift resisters is widely used because it allows easy extension using cascade connections and its operating priniciple is
simple Nevertheless in cases where simple. Nevertheless, in cases where a many LEDS are arranged over a large
area, mounting can become complex and care must be taken to avoid maltunction. (Since the serial data must pass through a single line of sequential connections, delays and skewsess inh the clock and latche of pulses must
be taken into account in thay layut in order to avoid malunction.) The be taken into account in the layout in order to avoid malunction.) The
RD30LDT595 and RD30LDT3595 pass the input datat through a Schmitt circuit to reduce the effects of noise.

2 SpAS:SCI protocol with Address Selected system,

A wide range of products are available, including high-speed level
shifters, clock generators that reduce emission noise, and world standard interface ICs.

Level Shifting Use in Personal Computer,etc.

Support for high-speed two-way conversion between different voltages, plus provision of a tolerant function for all input/output

High-Speed Level Shifter Lineup

Part No.	Bits		VccA*	vccB	Tpd(max)	Drive Capability	Package
HD74ALVC166245A	16	\bigcirc	2.5 V	${ }^{3.3 \mathrm{~V}}$	4.4ns	24 mA	TSSOP-48
			1.8V	${ }^{3.3 V}$	6.2 ns	24 mA	
			1.5 V	2.5 V	$6.0 n s$	18 mA	
			1.2 V	1.5 V	5.0ns (Typ)	4 mA	
HD74ALVC165245A	16	\bigcirc	3.3 V	2.5 V	4.4ns	24 mA	
			3.3 V	1.8 V	$6.2 n s$	24 mA	
			2.5 V	1.5 V	$6.0 n$	18 mA	
			1.5 V	1.2 V	5.5ns (Typ)	4 mA	
HD74LVC4245A	8	\bigcirc	5+-0.5V	2.7 to 3.6 V	7 ns	24 mA	TSSOP-24
HD74LVCC4245A	8	\bigcirc	5+-0.5V	2.7 to 5.5 V	7 ns	24 mA	
HD74LVCC3245A	8	\bigcirc	$2.5+1+0.2 \mathrm{~V}$	${ }^{3.3+1-0.3 V}$	11 ns	8 mA	
			2.74 to $3.6 \mathrm{~V}^{\prime \prime}$	3.3+-0.3V*******)	8 ns	12 mA	
			2.7 to 3.6V	5+-0.5V	7 ns	24 mA	
HD151015	9	\times	3 V	5 5	10 s	12 mA	
			2.7 V	4.5 V	12 s	12 mA	

[^1]
Peripheral ICs for MCUs

Uni-Logic

One to Three Gates in Ultra-Small, Lightweight Packages.
As portable electronic products become ever more compact, there is a constant demand for smaller and lighter logic ICs. The solution to this demand is provided by Uni-Logic ICs, containing from one to three logic gates in a package with a mounting area approximately $1 / 20$ that of an SOP. As well as making efficient use of on-board space, these devices facilitate wiring design. And board modifications can be achieved simply by adding logic.

Configurable Multiple Function Gate
One product realizes various logic functions by changing connection of input pins.

Cover various gate functions by Cover
one IC
Coner Convenient when a speafication
changei is made sududenly.

The gate where one input turned into an inverted input among 2 inputs. $\underset{\substack{\text { Invered initut enabeses one } \\ \text { space savang trom woo } \\ \text { piecos. }}}{ }$

Standard Logic ICs

Low-Voltage Products Offering a Variety of System Benefits.
These low-voltage standard logic ICs meet the demands of portable systems for small size and low power dissipation together with high performance. These devices offer such user-friendly features as performance equivalent to or exceeding that of 5 V standard logic ICs on a drive voltage of only 3 V , good noise characteristics, and usability in mixed 5V/3V systems.

High-Speed Type LVC Series
RD74LVC-B Series / HD74LVC Series

LVC2244A Products with Built-In Output Damping Resistance for Reducing Reflection Noise

LV-A Series

The LV-A Series comprises LV Series based and upward-compatible devices offering improved switching speed and functions, available in an extended lineup.

Performance

Characteristics guaranteed voltage 3 -point guarantee: Vcc=2.5V, 3.3V, 5.0V	Low current dissipation Standby current dissipation: $\mathrm{Ic}=20 \mu \mathrm{~A}$
Switching performance tpd=7ns(typ) Vcc=3.3V, $\mathrm{Ta}=25^{\circ} \mathrm{C}$	IOFF, output skew guaranteed
Drive capability $1 \mathrm{OH} / \mathrm{OH}=-8 / 8 \mathrm{~mA}$ IOH/IOL=-16/16mA [Vcc=5V] output current	

Features

Low noise
VoLP $<0.8 \mathrm{VV}(\mathrm{Typ}) \quad \mathrm{VCc}=3.3 \mathrm{VVTa}=25^{\circ} \mathrm{C}$
VOHV $>2.0 \mathrm{~V}(\mathrm{Typ})\left(\mathrm{Vcc}=3.3 V, \mathrm{Ta}=25^{\circ} \mathrm{C}\right.$
5 V input/output tolerant
Electrostatic withstand voltage, latchup resistance
Same as HC Series

High-Voltage Logic IC RD74HV1G Series/RD74HV8T Series

General-Purpose ASSPs

EMI Noise Solutions are
Urgently Needed.

- EMI noise is becoming an increasingly severe problem due to the higher
system operating frequencies used in the latest equipment.
- EMI noise is generally thought to adversely affect other electronic
equipment, and recently, the regulations limiting EMI emissions have become increasingly strict in many countries around the world. (USA: FCC, Europe: CE, Japan: VCCI)
- Renesas is releasing the SSCG Series that adopts spread spectrum technology to reduce EMI noise.
- This spread spectrum technology modulates the output frequency slightly and thus diffuses the energy to improve the EMI characteristics.
SSCG:Spread Spectrum Clock Generator EMI:Electro Magnetic Interference

Advantages of SSCG

Conventional EMI Solutions

- Tuning the resistor and capacitor component values
- Changing the circuit board design

Advantages of Using SSCG

- No circuit board design changes, and no new components, are required.
- Stable EMI performance that does not depend on the skill and experience of system engineers. - Significant reductions in the system development period.

Spread Spectrum Technology

The height of the peak in the energy spectrum is reduced when the output is modulated.

Effects of SSCG
Actual EMI Test Results

The high-frequency peaks have been reduced and the EMI characteristics improved significantly by using Renesas SSCG Series devices.

RD151TS33XXA Series Lineup
Output frequency: Covering a wide range of frequencies from 10 MHz to 160 MHz , and providing respective center/down spread modulation. Most suitable products for application can be selected.

Central spread Product part no.	RD151 TS3312A	RD151 TS3313A	RD151	RD151 TS3315A	RD151 TS3316A	
Down spread Product part no.	RD151 TS3322A	RD151 TS3523A TS3323A	RD151 TS3324A	RD151 TS3325A	RD151 TS3326A	
Output frequency	10-20MHz	20-40MHz	$40-80 \mathrm{MHz}$	80-160MHz	40-80MHz	
Input frequency	10-20MHz	20-40MHz	$20-40 \mathrm{MHz}$	20-40MHz	$40-80 \mathrm{MHz}$	
Multiplication (input: output)	1:1	1:1	1:2	1:4	1:1	
Power supply voltage	3.3 V typ.					
ssc\% (Center)	OFF, $\pm 0.5 \%$, $\pm 1.5 \%$					
ssc\% (Down)	OFF, $-1.0 \%,-3.0 \%$					
Cycle to Cycle Jitter	\|100	pstyp.				
Slew Rate	$0.7 \mathrm{~V} / \mathrm{ns}$ @15pF		$0.8 \mathrm{~V} / \mathrm{ns}$ ®15p	$2.0 \mathrm{~V} / \mathrm{ns}$ ®15pF	0.8 V /n © P 15p	

Serial Interface

\square
Also the power-saving CMOS edition that is compatible with the high-function RS-485, and the interface IC based on the RS-422A, which is suitable for high-speed, lined up. (HD $26 / 29$ series)
HD151 Series

Function	Part No.	Package		Pin
	SOP (E)	TSSOP	Pin	
Liquid Crystal Panel AAternation Signal Counter	151011	-	0	20
Centronics Interface	151005	0	-	20

SOP (E): JETA specification

Function	Part No.	Package			Pin
		DIP		SOP (E)	
RS-422A/423A Standard	26031	-		\bigcirc	16
	26C32A	\bigcirc		\bigcirc	16
	26LS31	\bigcirc		-	16
	26LS32	\bigcirc		\bigcirc	16
	26LS32A	\bigcirc		-	16
	29050	\bigcirc		-	16
	29051	\bigcirc		-	16
Function	Part No.		Package		Pin
			SOP (E)		
cCD/Mos Driver	29026 A		\bigcirc		8
	29027		\bigcirc		8
	29029		\bigcirc		8

General-Purpose ASSPs

I/O Expanders, High-Speed Bus Switches

Applications

PWM Power Supply with PFC Function, Low-Voltage DC/DC Converter, Uninsulated On-Board DC/DC Converter

I/O Expanders

I/O expanders are a convenient way to extend the ports of an MCU. Our lineup includes products with $I^{2} \mathrm{C}$ bus and parallel bus support.

High-Speed Bus Switches

250 ps Switching Speed. Ultra-High 8-Fold Speed at a Stroke.

Bus Switch

- 250 ps delay time enabling the construction of high-speed bus systems
- Almost no power is consumed within the circuit, for low power dissipation
- Structure providing on/off linkage between input and output eliminates the need for direction switching in input/output switching
- $5 \mathrm{~V}=>3.3 \mathrm{~V}$ level transfer, partial power-down support

Input/Output Characteristics Supporting Partial Power-Down

The HD74CBT Series supports partial power-down operation (partial power supply stoppage). As there is no leakage current at the time of NMOS switch-off, the $\mathrm{V} \mathrm{CC}=\mathrm{OFF}$ and $\mathrm{Vcc}=\mathrm{ON}$ systems are totally isolated in partial power-down mode. Functions remain unchanged when HD74CBT power is turned off.

Bus Switch Series (HD74CBT1G125/126CM)
Signal on/off
(Low on-resistance: 5W (typ), ultra-high speed: 250ps)
Partial power-down support SW:
High impedance at off or power-off
Small CMPAK-5 package

Uninsulated On-Board DC/DC Converter

Isolated DC/DC
converter
(full-bridge, phase shift)

Low-Voltage DC/DC Converter

Applications

PWM Power Supply with PFC Function, Low-Voltage DC/DC Converter, Uninsulated On-Board DC/DC Converter

Power Supply Reference Voltage, Standby Control, Reset

The hardware standby function of the $\mathrm{H} 85 / \mathrm{SX}$ can be used to maintain data in on-chip memory. Using a standby controller (RD3ST24) in combination enables a simpler circuit design. When the RNA52A10 in used, data can be maintained in memory with a higher degree of safety because the transition to standby mode can be mad after write prohibitit processing.

Monitoring the power supply voltage.
Multiple Power Supply
Appication Example of
Multifunction Reset IC

Note: This circuit diagram is intended for reference only. Careful verification should be performed before actually using this design in a system.

The power supply to the RNA52A10MM enables monitoring of a separate voltage.
For example, it is possible to monitor a motor drive power supply and have a warning lamp light when a voltage drop occurs.

Applications

Power Supply Reference Voltage, Standby Control, Reset

Controlling the power-on
sequence of
power supplies.
Example of simultaneoussly
starting two power supplies
using a multifunction reset IC
starting two power supplies
using a multitiunction reset ic
For Dual Power Supplies MPU/MCU
For Triple Power Supplies MPU/MCU

[Required waveform example]

Controlling the power-on sequence of power supplies.
Example of simultaneously
starting multiple power starting multiple power
supplies using a multifunction
reset IC supplies
reset IC
[Required waveform example]

Power-On Sequence Controller, LCD Backlight Controller, Level Shifter

Converting between different logical levels.
Easy Implementation of
$5 \mathrm{~V} \Rightarrow>3.3 \mathrm{~V}$ Level Conversion $\begin{aligned} & 5 V \\ & \text { Using } \\ & \text { Uxternal }\end{aligned}$ Diode

SV $\rightarrow 3.3 \mathrm{~V}$ level transfer can be achieved easily and at low cost by dropping the Vcc power supply of an HD74CBT Series device by 0.7 V with an external diode and providing a voltage drop of approximately 1 V between the gate and source of the NMOS
structure. structure.
$5 \mathrm{~V} / 3.3 \mathrm{~V}$ Level Transfer between Devices with the Use of Bus Switch

Extending the output ports of an MCU.

Applications

LED Driver

Handling weak

signals. Driving an
actuator.

Monitoring the
charge current of a battery charger.

Driving a camera
flash unit.
Sample Strobe Circui

Illuminating LEDs
using an SpAS
system.

Illuminating LEDs using
serial-paralle conversion.

Illuminating
7-segment LEDs.

Applications

Package Dimensions

Application Circuit Example (Voltage Step-Down Mode)

Raising the voltage for LED illumination.

Application Circuit Example (Voltage Step-Up Mode)

Package Dimensions 1

Package Dimensions

Package Dimensions 2

Package Dimensions 3

Package Dimensions

Package Dimensions

Package Dimensions 6

Package Dimensions 7

Package Dimensions

Package Dimensions

Package Dimensions 10
Package Dimensions 11

Product Numbers

Product Numbers 1
Product Numbers 2

Renesas New Package Code Destination

Part No. Composition

Standard Logic Part No. Composition

HD74HC	HD74HC Series
HD74AC	HD74AC Series
HD74LV-A	HD74LV-A Series
HD74ALVC	HD74ALVC Series
HD74CBT	HD74CBT Series
HD26	HD26 Series
HD29	HD29 Series
HD151	HD151 Series
RD74LVC-B	RD74LVC-B Series
RD3CYD	RD3CYD Series
RD5CYD	RD5CYD Series
RD74HV	RD74HV Series

E	Embossed	CMPAK, VSON, SSOP
EL	Embossed, left-reel	SOP, TSSOP (24 or more pins)
ELL	E	

ELL Embossed, left-reel, large TSSOP (20 or less pins)

- Package Abbreviation

\mathbf{P}	DIP
FP	JEITA SOP
RP	JEDEC SOP (Overseas sales only)
T	TSSOP
SS	SSOP (Without 8 pins)
CM	CMPAK
VS	VSON
US	SSOP-8

- Product Name Number (Function)
- Package

1G	5-pin / 6-pin device
1GW	6-pin device
2G	6-pin / 8-pin device
No code	Other

TTL Input Level Product
Note: TTL input versions of the HD74LV1G/2G are the LV1GT/2GT.

Product Numbers

Product Numbers 3

Packing

Packing 1

Part No. Destination of Series Regulators

Part No. Destination of Switching Regulators

	$\frac{\mu \mathrm{PC}}{1} \frac{1933}{2} \frac{\mathrm{GR}}{3}$	
1 Product category C: Bipolar integrated circuits D: CMOS integrated circuits	2 Product serial number	$\begin{array}{ll} 3 \text { Package } & \\ \text { C,CX: DIP } \\ \text { G, GR, GS: } & \text { SOP } \\ \text { W: } & \text { wafer } \end{array}$

Part No. Destination of Op Amp \& Comparators

$$
\underline{\mu \mathrm{PC}} 358 \text { GR-9LG }
$$

1 Product category Bipolar integrated circuits

2 Product serial number
-Teperature spec expanding products or industrial use products apply particular products serial number.
General use products apply th
 (Example) 358, 324, 4558 etc.

3 Package
GR-9LG: TSSOP MN-KAA: TSSOP(3×3) MP-KAA: TSSOP $(2.8 \times 2.9$ C: \quad SIP(3200 mil)

Packing

Packing 2

General-Purpose Logic Taping Specifications

Package		Packing Configurations	Packing Unit	Symbol	Appearance
SOP (JEITA)	$\begin{aligned} & \hline \text { SOP-8* (FP) } \\ & \hline \text { SOP- } 14^{*} \text { (FP) } \\ & \text { SOP-16* (FP) } \\ & \text { SOP-20* (FP) } \end{aligned}$	Magazines (Multiples of 1000) Taping	2500	EL	
SOP (JEDEC)	$\begin{aligned} & \hline \text { SOP-8 (RP) } \\ & \text { SOP-14* (RP) } \\ & \text { SOP-16* (RP) } \\ & \hline \text { SOP-20* (RP) } \end{aligned}$	Magazines (Multiples of 1000) Taping Taping	2500	EL	
TSSOP (JEITA)	$\begin{aligned} & \text { TSSOP-14 (T) } \\ & \text { TSSOP-16 (T) } \\ & \text { TSSOP-20 (T) } \end{aligned}$	Taping	2000	ELL	
	$\begin{aligned} & \hline \text { TSSOP-24 (T) } \\ & \text { TSSOP-48 (T) } \end{aligned}$	Taping	1000	EL	
$\begin{aligned} & \text { CMPAK } \\ & \text { vSON } \end{aligned}$	CMPAK-5,6(CM) VSON-5(VS)	Taping	3000	E	
SSOP	SSOP-8 (US)	Taping	3000	E	
	SSOP-36 (FP)		1000	но	

ELELL is the counterclockwise-reeled emboss-tape type.
Producucs in DIP will be shipeed in magazines only, and products in TSSOP, CMPAK, VSON, SSOP will be shipped in taping only, and products in sop will be shipped in both magazines and
taping. Product
taping.
": Please order the products in multiples of 1000 for shipment in magazines (applicable only to " " and DIP).

Environmental Considerations for Renesas Electronics Products

\qquad

Home Page

Visit www.renesas.com for comprehensive

 support for your development work.

Searching by Application The selection of application examples on the Renesas Electronics website has been further enhanced. among the following categories. - Mobile/networking

- PCs and PC peripherals
- Consumer electronics
- Healthcare
- Industria//building management - Elemental technologies

Searching by Category From the standard IC top page you can search for content arranged by product series from among
categories such as power ICs, op-amps and comparators for us with MCUs, converter ICs, and logic ICs. In addition, you can use the navigation panel on the left to locate documentation related to standard ICs.

Support Information We aim to offer a total support package to meet customers' needs through the provision of simulation data, FAQ, seminars, inquiries via the Web, and so on.

Searching by Product Name By using the search function on the top page you can go directly to the content that interests you.
(1) Keyword/Part No. Search

You can search the contents of the website by entering keywords or enter a specifications. On the results page you can switch to the information you need by clicking the corresponding tab. (Click on the tabs in the back to display the product pages from which datasheets, etc., can be obtained.)
(2) Parametric Search
You can display custom listings of You can display custom listings of product specs by narrowing the range of functions or specifications to search for. The search results can then be downloaded as a CSV file. 3 Document Search
You can search for documents by Obsolete/Discontinued Product Search You can search for information on Search products that have been discontinue are no longer being actively promoted.

http://www.renesas.com

Renesas Electronics Corporation
Notes:

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment Transportation equipment (automobiles,
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the Although Renesas Electronics endeavors to improve the quality and
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and massibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No. 1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

1 harbourFront Avenue, \#06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn. Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

[^0]: note9. When mutiple values are isted, the figure on the left applies to products with fewer channels and that on the right to products with more channels
 note2 "SR" indicates

[^1]: Note : : Control pins (OIR, OE) are VcCA on the LVC Series and HD15015, and VCCB on the ALVC Series. ": VccA \leq VCCB.

