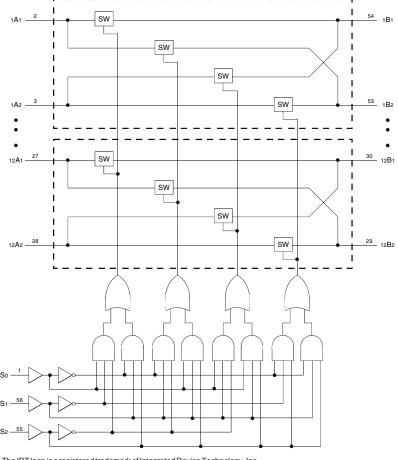
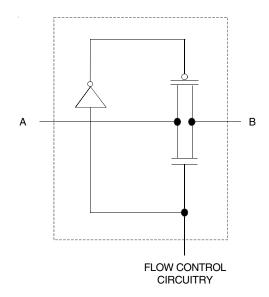
FEATURES:

- 5Ω A/B bi-directional switch
- Isolation Under Power-Off Conditions
- · Over-voltage tolerant
- · Latch-up performance exceeds 100mA
- Vcc = 2.3V 3.6V, normal range
- ESD >2000V per MIL-STD-883, Method 3015; >200V using machine model (C = 200pF, R = 0)
- · Available in TSSOP package

DESCRIPTION:

The CBTLV16212 provides a set of 24 high-speed switches for bus exchanging and switching. The device has low ON resistance, resulting in under 250ps propagation delay through the switch. The CBTLV16212 operates as a single 24-bit bus switch or as a 12-bit bus exchanger, which provides data exchanging between the four signal ports through the data select (So-S2) pins.

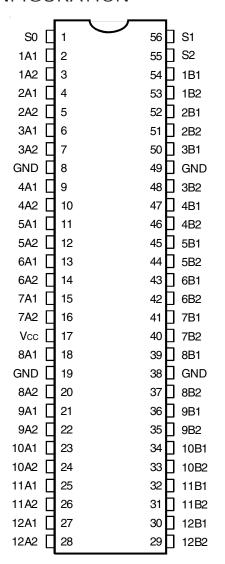

The CBTLV16212 has the break-before-make feature, which allows zero current when switching between ports B1 and B2.


APPLICATIONS:

• 3.3V High Speed Bus Switching and Bus Isolation

FUNCTIONAL BLOCK DIAGRAM

SIMPLIFIED SCHEMATIC, EACH SWITCH


The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

JUNE 2019

PIN CONFIGURATION

TOP VIEW

Package Type	Package Code	Order Code	
TSSOP	PAG56	PAG	

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max.	Unit
Vcc	Supply Voltage Range	-0.5 to 4.6	V
Vı	Vı Input Voltage Range		V
	Continuous Channel Current	128	mA
lık	Input Clamp Current, VI/O < 0	-50	mA
Tstg	Storage Temperature Range	-65 to +150	°C

NOTE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. This is a stress rating only and functional operation
of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Names	Description	
Sx	Data Select	
хАх	Port A Inputs or Outputs	
хВх	Port B Inputs or Outputs	

FUNCTION TABLE(1)

Inputs		Inputs/Outputs			
S ₂	S1	S ₀	A 1	A2	Operation
L	L	L	Z	Z	Disconnect
L	L	Н	B1	Z	A1 port = B1 port
L	Н	L	B ₂	Z	A1 port = B2 port
L	Н	Н	Z	B1	A2 port = B1 port
Н	L	L	Z	B2	A2 port = B2 port
Н	L	Н	Z	Z	Disconnect
Н	Н	L	B1	B2	A1 port = B1 port
					A2 port = B2 port
Н	Н	Н	B2	B1	A1 port = B2 port
					A2 port = B1 port

NOTE:

1. H = HIGH Voltage Level L = LOW Voltage Level

Z = High-Impedance

OPERATING CHARACTERISTICS⁽¹⁾

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vcc	Supply Voltage		2.3	3.6	V
Vih	High-Level Control Input Voltage	Vcc = 2.3V to 2.7V	1.7	_	V
		Vcc = 2.7V to 3.6V	2	_	
VIL	Low-Level Control Input Voltage	Vcc = 2.3V to 2.7V	_	0.7	V
		Vcc = 2.7V to 3.6V	_	0.8	
TA	Operating Free-Air Temperature		-40	+85	°C

NOTE:

1. All unused control inputs of the device must be held at Vcc or GND to ensure proper device operation.

74CBTLV16212 LOW-VOLTAGE 24-BIT BUS EXCHANGE SWITCH

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Conditions		Min.	Typ. ⁽¹⁾	Max.	Unit
Vik	Control Inputs, Data I/O	Vcc = 3V, II = -18mA	_	_	-1.2	V	
lı	Control Inputs	Vcc = 3.6V, Vi = Vcc or GNE)	_	_	±1	μA
loz	Data I/O	Vcc = 3.6V, Vo = 0V or 3.6V	switch disabled	_	_	5	μΑ
loff		Vcc = 0V, Vi or Vo = 0V or 3	.6V	_	_	10	μΑ
Icc		Vcc = 3.6V, lo = 0, VI = Vcc	or GND	_	_	10	μΑ
Δ Icc ⁽²⁾	Control Inputs	Vcc = 3.6V, one input at 3V, other inputs at Vcc or GND		_	_	300	μΑ
Сі	Control Inputs	VI = 3V or 0		_	5	_	pF
CIO(OFF)		Vo = 3V or 0 (switch off)		_	13.5	_	pF
	Max. at Vcc = 2.3V	VI = 0	Io = 64mA	_	5	8	
	Typ. at Vcc = 2.5V		Io = 24mA	_	5	8	
Ron ⁽³⁾		Vı = 1.7V	Io = 15mA	_	27	40	Ω
		VI = 0	Io = 64mA	_	5	7	
	Vcc = 3V		Io = 24mA	_	5	7	1
		VI = 2.4V	Io = 15mA	_	10	15	

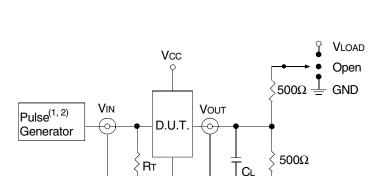
NOTES:

- 1. Typical values are at 3.3V, +25°C ambient.
- 2. The increase in supply current is attributable to each input that is at the specified voltage level rather than Vcc or GND.
- 3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch.

SWITCHING CHARACTERISTICS

		$Vcc = 2.5V \pm 0.2V$		$Vcc = 3.3V \pm 0.3V$		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t _{PD} ⁽¹⁾	Propagation Delay	_	0.15	_	0.25	ns
	A to B or B to A					
t PD	Propagation Delay	3	11.1	3	8.8	ns
	S to A or B					
ten	Output Enable Time	3	10.9	3	8.6	ns
	S to A or B					
tois	Output DisableTime	1	8.7	2	8.8	ns
	S to A or B					

NOTE:


1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impededance).

TEST CIRCUITS AND WAVEFORMS

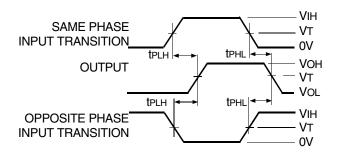
TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ = 3.3V±0.3V	Vcc ⁽²⁾ = 2.5V±0.2V	Unit
VLOAD	6	2 x Vcc	V
VIH	3	Vcc	V
VT	1.5	Vcc / 2	V
VLZ	300	150	mV
VHZ	300	150	mV
CL	50	30	pF

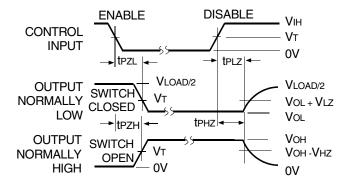
Test Circuits for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.


 RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

NOTES:

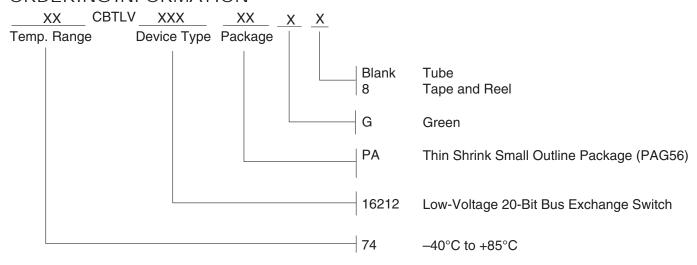

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tr \leq 2.5ns; tr \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch	
tplz/tpzl	Vload	
tphz/tpzh	GND	
t _{PD}	Open	

Propagation Delay

NOTE:


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Enable and Disable Times

74CBTLV16212 LOW-VOLTAGE 24-BIT BUS EXCHANGE SWITCH

ORDERING INFORMATION

Orderable Part Information

Speed (ns)	Speed (ns) Orderable Part ID		Pkg. Type	Temp. Grade	
	74CBTLV16212PAG	PAG56	TSSOP	I	
	74CBTLV16212PAG8	PAG56	TSSOP	I	

Datasheet Document History

12/04/2014 Pg. 5 Updated the ordering information by removing the "IDT" notation, non RoHS part and by adding Tape and Reel information. 06/03/2019

Pg. 2,5 Added table under pin configuration diagram with detailed package information and orderable part information

table. Updated the ordering information diagram in clearer detail.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.