General Description The 8R45252I is a 3.3V,2.5V CML clock generator designed for Ethernet applications. The device synthesizes either a 50MHz, 62.5MHz, 100MHz, 125MHz, 156.25MHz, 250MHz or 312.5MHz clock signal with excellent phase jitter performance. The clock signal is distributed to two low-skew differential CML outputs. The device is suitable for driving the reference clocks of Ethernet PHYs. The device supports 3.3V and 2.5V voltage supply and is packaged in a small, lead-free (RoHS 6) 32-lead VFQFN package. The extended temperature range supports telecommunication, wireless infrastructure and networking end equipment requirements. The device is a member of the family of High Performance Clock Solutions from IDT. #### **Features** - Clock generation of: 50MHz, 62.5MHz, 100MHz, 125MHz, 156.25MHz, 250MHz and 312.5MHz - Two differential CML clock output pairs - Crystal interface designed for 25MHz, 18pF parallel resonant crystal - RMS phase jitter @ 125MHz, using a 25MHz crystal (1.875MHz – 20MHz): 400fs (typical), 3.3V | Offset | Noise Power | |--------|--------------| | 100Hz | 102.4 dBc/Hz | | 1kHz | 119.4 dBc/Hz | | 10kHz | 124.8 dBc/Hz | | 100kHz | 125.7 dBc/Hz | - LVCMOS interface levels for the control inputs - Full 3.3V and 2.5V supply voltage - Available in lead-free (RoHS 6) 32 VFQFN package - -40°C to 85°C ambient operating temperature ## **Block Diagram** # Pin Assignment 8R45252I 32 lead VFQFN 5.0mm x 5.0mm x 0.925mm package body K Package Top View **Table 1. Pin Descriptions** | Number | Name | Туре | | Description | |---|----------------------|--------|----------|--| | 1, 2 | nQ0, Q0 | Output | | Differential clock output pair. CML interface levels. | | 3, 18 | V_{DD} | Power | | Core supply pins. | | 4 | nOE | Input | Pulldown | Output enable pin. See Table 3E for function. LVCMOS/LVTTL interface levels. | | 5, 6, 7, 8, 9, 16,
17, 19, 23, 24,
25, 30, 31, 32 | nc | Unused | | Do not connect. | | 10 | V_{DDA} | Power | | Analog supply pin. | | 11 | nBYPASS | Input | Pullup | PLL bypass pin. See Table 3D for function. LVCMOS/LVTTL interface levels. | | 12 | REF_CLK | Input | Pulldown | Single-ended reference clock input. LVCMOS/LVTTL interface levels. | | 13, 29 | GND | Power | | Power supply ground. | | 14,
15 | XTAL_OUT,
XTAL_IN | Input | | Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output. | | 20, 21 | FSEL0, FSEL1 | Input | Pulldown | Output frequency divider select enable pins. See Table 3C for function. LVCMOS/LVTTL interface levels. | | 22 | REF_SEL | Input | Pulldown | PLL reference clock select pin. See Table 3A for function. LVCMOS/LVTTL interface levels. | | 26 | FBSEL | Input | Pulldown | PLL feedback divider select pin. See Table 3B for function. LVCMOS/LVTTL interface levels. | | 27, 28 | nQ1, Q1 | Output | | Differential clock output pair. CML interface levels. | NOTE: Pulldown and Pullup refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. # **Table 2. Pin Characteristics** | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|-------------------------|-----------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | 4 | | pF | | R _{PULLDOWN} | Input Pulldown Resistor | | | 51 | | kΩ | | R _{PULLUP} | Input Pullup Resistor | | | 51 | | kΩ | ### **Function Tables** #### Table 3A. PLL Reference Clock Select Function Table | Input | | |-------------|--| | REF_SEL | Operation | | 0 (default) | The crystal interface is the selected. | | 1 | The REF_CLK input is the selected. | NOTE: REF_SEL is an asynchronous control. #### Table 3B. PLL Feedback Select Function Table | Input | | |-------------|--------------------------| | FBSEL | Operation | | 0 (default) | $f_{VCO} = f_{REF} * 25$ | | 1 | $f_{VCO} = f_{REF} * 20$ | NOTE: FBSEL is an asynchronous control. **Table 3C. Output Divider Select Function Table** | Input | | | Output Frequency f _{OUT} with f _{REF} = 25MHz | | | |-------------|-------------|-----------------------------|---|-----------|--| | FSEL1 | FSEL0 | Operation | FBSEL = 0 | FBSEL = 1 | | | 0 (default) | 0 (default) | $f_{OUT} = f_{VCO} \div 2$ | 312.5MHz | 250MHz | | | 0 | 1 | $f_{OUT} = f_{VCO} \div 4$ | 156.25MHz | 125MHz | | | 1 | 0 | $f_{OUT} = f_{VCO} \div 5$ | 125MHz | 100MHz | | | 1 | 1 | $f_{OUT} = f_{VCO} \div 10$ | 62.5MHz | 50MHz | | NOTE: FSEL[1:0] are asynchronous controls. #### Table 3D. PLL nBYPASS Function Table | Input | | |-------------|--| | nBYPASS | Operation | | 0 | PLL is bypassed. The reference frequency f_{REF} is divided by the selected output divider. AC specifications do not apply in PLL bypass mode. | | 1 (default) | PLL is enabled. The reference frequency $f_{\mbox{\scriptsize REF}}$ is multiplied by the selected feedback divider and then divided by the selected output divider. | NOTE: nBYPASS is an asynchronous control. ### **Table 3E. Output Enable Function Table** | Input | | |-------------|------------------------------------| | nOE | Operation | | 0 (default) | Outputs enabled. | | 1 | Outputs disabled (high-impedance). | NOTE: nOE is an asynchronous control. # **Absolute Maximum Ratings** NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. | Item | Rating | | |--|---------------------------------|--| | Supply Voltage, V _{DD} | 4.6V | | | Inputs, V _I | -0.5V to V _{DD} + 0.5V | | | Outputs, I _O Continuous Current Surge Current | 10mA
15mA | | | Package Thermal Impedance, θ_{JA} | 43.4°C/W (0 mps) | | | Storage Temperature, T _{STG} | -65°C to 150°C | | ### **DC Electrical Characteristics** Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|------------------------|---------|----------|-------| | V_{DD} | Core Supply Voltage | | 3.135 | 3.3 | 3.465 | ٧ | | V_{DDA} | Analog Supply Voltage | | V _{DD} – 0.12 | 3.3 | V_{DD} | ٧ | | I _{DD} | Power Supply Current | | | | 88 | mA | | I _{DDA} | Analog Supply Current | | | | 12 | mA | ### Table 4B. Power Supply DC Characteristics, V_{DD} = 2.5V±5%, T_A = -40°C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|------------------------|---------|-----------------|-------| | V_{DD} | Core Supply Voltage | | 2.375 | 2.5 | 2.625 | V | | V_{DDA} | Analog Supply Voltage | | V _{DD} – 0.11 | 2.5 | V _{DD} | V | | I _{DD} | Power Supply Current | | | | 84 | mA | | I _{DDA} | Analog Supply Current | | | | 11 | mA | $\textbf{Table 4C. LVCMOS/LVTTL Input DC Characteristics, } V_{DD} = 3.3V \pm 5\% \ or \ 2.5V \pm 5\%, \ T_A = -40^{\circ}C \ to \ 85^{\circ}C$ | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|-----------------------|--|--|---------|---------|-----------------------|-------| | V | Input High Voltage | | $V_{DD} = 3.3V$ | 2 | | V _{DD} + 0.3 | V | | V _{IH} | input riigir voite | aye | $V_{DD} = 2.5V$ | 1.7 | | V _{DD} + 0.3 | V | | V | Innest Law Valtages | | $V_{DD} = 3.3V$ | -0.3 | | 0.8 | V | | V _{IL} | Input Low Volta | ige | $V_{DD} = 2.5V$ | -0.3 | | 0.7 | V | | I _{IH} | Input
High Current | FBSEL, nOE, FSEL[1:0],
REF_SEL, REF_CLK | $V_{DD} = V_{IN} = 3.465V$ | | | 150 | μΑ | | | | nBYPASS | $V_{DD} = V_{IN} = 3.465V$ | | | 5 | μΑ | | | Input | FBSEL, nOE, FSEL[1:0],
REF_SEL, REF_CLK | $V_{DD} = 3.465V \text{ or } 2.625V,$
$V_{IN} = 0V$ | -5 | | | μΑ | | I _{IL} | Low Current | nBYPASS | $V_{DD} = 3.465V \text{ or } 2.625V,$
$V_{IN} = 0V$ | -150 | | | μΑ | # Table 4D. CML DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|-----------------------------------|-----------------|------------------------|------------------------|----------|-------| | V _{OH} | Output High Voltage | | V _{DD} - 0.02 | V _{DD} - 0.01 | V_{DD} | V | | V _{OUT} | Output Voltage Swing | | 325 | 400 | 600 | mV | | V _{DIFF_OUT} | Differential Output Voltage Swing | | 650 | 800 | 1200 | mV | ### **Table 5. Crystal Characteristics** | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------------------------|-----------------|-------------|---------|---------|-------| | Mode of Oscillation | | Fundamental | | | | | Frequency | | | 25 | | MHz | | Equivalent Series Resistance (ESR) | | | | 50 | Ω | | Shunt Capacitance | | | | 7 | pF | ### **AC Characteristics** Table 6A. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|----------------------------|---|---------|-------------|---------|-------| | | | FBSEL = 0, FSEL[1:0] = 00 | | 312.5 | | MHz | | | | FBSEL = 0, FSEL[1:0] = 01 | | 156.25 | | MHz | | | | FBSEL = 0, FSEL[1:0] = 10 | | 125 | | MHz | | f. | Output Frequency; NOTE 1 | FBSEL = 0, FSEL[1:0] = 11 | | 62.5
250 | | MHz | | f _{OUT} | Output Frequency, NOTE 1 | FBSEL = 1, FSEL[1:0] = 00 | | | | MHz | | | | FBSEL = 1, FSEL[1:0] = 01 | | 125 | | MHz | | | | FBSEL = 1, FSEL[1:0] = 10 | | 100 | | MHz | | | | FBSEL = 1, FSEL[1:0] = 11 | | 50 | | MHz | | tsk(o) | Output Skew; NOTE 1, 2, 3 | | | | 60 | ps | | fjit(Ø) | RMS Phase Jitter (Random); | FSEL = 0, 125MHz,
Integration Range: 1.875MHz – 20MHz | | 400 | | fs | | ijit(©) | NOTE 4 | FSEL = 0, 156.25MHz,
Integration Range: 1.875MHz – 20MHz | | 408 | | fs | | t _R / t _F | Output Rise/Fall Time | 20% to 80% | 300 | | 850 | ps | | odc | Output Duty Cycle | FBSEL[1:0] ≠ 10 | 48 | 52 | 52 | % | | ouc | Output Duty Oyole | FBSEL[1:0] = 10 | 46 | | 54 | % | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. NOTE 1: $f_{REF} = 25 \text{ MHz}$. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points. NOTE 3: This parameter is defined in accordance with JEDEC Standard 65. NOTE 4: Please refer to the phase noise plots. Table 6B. AC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40$ °C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-------------------|--|---|---------|-------------|---------|-------| | | | FBSEL = 0, FSEL[1:0] = 00 | | 312.5 | | MHz | | | | FBSEL = 0, FSEL[1:0] = 01 | | 156.25 | | MHz | | | | FBSEL = 0, FSEL[1:0] = 10 | | 125 | | MHz | | 4 | Output Fraguanay: NOTE 1 | FBSEL = 0, FSEL[1:0] = 11 | | 62.5
250 | | MHz | | f _{OUT} | Output Frequency; NOTE 1 | FBSEL = 1, FSEL[1:0] = 00 | | | | MHz | | | | FBSEL = 1, FSEL[1:0] = 01 | | 125 | | MHz | | | | FBSEL = 1, FSEL[1:0] = 10 | | 100 | | MHz | | | | FBSEL = 1, FSEL[1:0] = 11 | | 50 | | MHz | | tsk(o) | Output Skew; NOTE 1, 2, 3 | | | | 60 | ps | | fii+(<i>Q</i>)\ | RMS Phase Jitter (Random); | FSEL = 0, 125MHz,
Integration Range: 1.875MHz – 20MHz | | 406 | | fs | | tjit(Ø) | NOTE 4 | FSEL = 0, 156.25MHz,
Integration Range: 1.875MHz – 20MHz | | 441 | | fs | | t_R / t_F | Output Rise/Fall Time | 20% to 80% | 300 | | 850 | ps | | odc | Output Duty Cycle FBSEL[1:0] ≠ 10 48 | 52 | % | | | | | ouc | Output Duty Cycle | FBSEL[1:0] = 10 | 46 | | 54 | % | For NOTES see Table 6A above. # Typical Phase Noise at 125MHz (3.3V) Offset Frequency (Hz) oise Power dBc Hz # Typical Phase Noise at 125MHz (2.5V) Offset Frequency (Hz) ### **Parameter Measurement Information** 3.3V CML Output Load AC Test Circuit **RMS Phase Jitter** **Differential Output Voltage Swing** 2.5V CML Output Load AC Test Circuit **Output Skew** **Output Duty Cycle/Pulse Width/Period** # **Application Information** ### Recommendations for Unused Input and Output Pins #### Inputs: #### **LVCMOS Control Pins** All control pins have internal pullups and pulldowns; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used. #### **Crystal Inputs** For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from XTAL_IN to ground. #### **REF_CLK Input** For applications not requiring the use of the reference clock, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the REF_CLK to ground. #### **Outputs:** #### **CML Outputs** All unused CML outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated. ### Schematic Example Figure 1 shows an example 8R45252I application schematic. Refer to the pin description and functional tables in the data sheet to ensure the logic control inputs are properly set. Input and output terminations shown are intended as examples only and may not represent the exact user configuration. Resistor R11 is the specific resistor value used to match the 17 ohm output impedance LVCMOS driver to the 50 ohm transmission line driving REF_CLK. Load caps C1 and C2 are required for frequency accuracy, but these may be adjusted for different board layouts. As with any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 8R45252I provides separate V_{DD} and V_{DDA} power supplies to isolate any high switching noise from coupling into the internal PLL. In order to achieve the best possible filtering, it is highly recommended that the 0.1uF capacitors be placed on the device side of the PCB as close to the power pins as possible. This is represented by the placement of these capacitors in the schematic. If space is limited, the ferrite bead, 10uf and 0.1uF capacitors connected to 3.3V can be placed on the opposite side of the PCB. If space permits, place all filter components on the device side of the board. Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for a wide range of noise frequencies. This low-pass filter starts to attenuate noise at approximately 10kHz. If a specific frequency noise component is known, such as switching power supplies frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage stability suggests adding bulk capacitance in the local area of all devices. Figure 1. 8R45252I Application Schematic #### Overdriving the XTAL Interface The XTAL_IN input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The XTAL_OUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.8V and the slew rate should not be less than 0.2V/nS. For 3.3V LVCMOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. *Figure 2A* shows an example of the interface diagram for a high speed 3.3V LVCMOS driver. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and changing R2 to 50Ω . The values of the resistors can be increased to reduce the loading for a slower and weaker LVCMOS driver. Figure 2B shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XTAL_IN input. It is recommended that all components in the schematics be placed in the layout. Though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input. Figure 2A. General Diagram for LVCMOS Driver to XTAL Input Interface Figure 2B. General Diagram for LVPECL Driver to XTAL Input Interface #### **VFQFN EPAD Thermal Release Path** In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 3*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts. While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Leadframe Base Package, Amkor Technology. Figure 3. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale) #### **Power Considerations** This section provides information on power dissipation and junction temperature for the 8R45252I. Equations and example calculations are also provided. #### 1. Power Dissipation. The total power dissipation for the 8R45252I is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results. NOTE: Please refer to Section 3 for details on calculating power dissipated in the load. - Power (core)_{MAX} = $V_{DD\ MAX} * (I_{DD} + I_{DDA}) = 3.465 V * (88mA + 12mA) = 346.5mW$ - Power (outputs)_{MAX} = 35.76mW/Loaded Output pair If all outputs are loaded, the total power is 2 * 35.76mW = 71.52mW Total Power_MAX (3.465V, with all outputs switching) = 346.5mW + 71.52mW = 418.02mW #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C. The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A Tj = Junction Temperature θ_{JA} = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) T_A = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 43.4°C/W per Table 7 below. Therefore, Tj for an ambient temperature of 85°C with all outputs switching is: $85^{\circ}\text{C} + 0.418\text{W} * 43.4^{\circ}\text{C/W} = 103^{\circ}\text{C}$. This is well below the limit of 125°C . This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer). Table 7. Thermal Resistance θ_{JA} for 32 Lead VFQFN, Forced Convection | θ _{JA} by Velocity | | | | | |---|----------|----------|----------|--| | Meters per Second | 0 | 1 | 2.5 | | | Multi-Layer PCB, JEDEC Standard Test Boards | 43.4°C/W | 37.9°C/W | 34.0°C/W | | #### 3. Calculations and Equations. The purpose of this section is to calculate the power dissipation for the CML driver output pair. The CML output circuit and termination are shown in Figure 4. Figure 4. CML Driver (without built-in 50Ω pullup) Circuit and Termination To calculate worst case power dissipation into the load, use the following equations: Power dissipation when the output driver is logic LOW: ``` Pd_L = I Load * V Output = (V_{OUT_MAX}/R_L) * (V_{DD_MAX} - V_{OUT_MAX}) = (600mV/50\Omega) * (3.465V - 600mV) = 34.38mW ``` Power dissipation when the output driver is logic HIGH: ``` Pd_H = I Load * V Output = (0.02V/50\Omega) * (3.465V - 0.02V) = 1.38mW ``` Total Power Dissipation per output pair = Pd_H + Pd_L = 35.76mW # **Reliability Information** ## Table 8. θ_{JA} vs. Air Flow Table for a 32 VFQFN | θ_{JA} vs. Air Flow | | | | | |---|----------|----------|----------|--| | Meters per Second | 0 | 1 | 2.5 | | | Multi-Layer PCB, JEDEC Standard Test Boards | 43.4°C/W | 37.9°C/W | 34.0°C/W | | ## **Transistor Count** The transistor count for the 8R45252I is: 3064 # **Package Outline and Package Dimensions** #### Package Outline - K Suffix for VFQFN Packages **Table 9. Package Dimensions** | JEDEC Variation: VHHD-2/-4 All Dimensions in Millimeters | | | | | | | |--|----------------|-------------------------|------|--|--|--| | Symbol | Minimum | Minimum Nominal Maximum | | | | | | N | | 32 | | | | | | Α | 0.80 | | 1.00 | | | | | A 1 | 0 0.05 | | | | | | | A3 | | 0.25 Ref. | | | | | | b | 0.18 | 0.25 | 0.30 | | | | | N _D & N _E | 8 | | | | | | | D & E | 5.00 Basic | | | | | | | D2 & E2 | 3.0 | | 3.3 | | | | | е | 0.50 Basic | | | | | | | L | 0.30 0.40 0.50 | | | | | | Reference Document: JEDEC Publication 95, MO-220 **NOTE:** The following package mechanical drawing is a generic drawing that applies to any pin count VFQFN package. This drawing is not intended to convey the actual pin count or pin layout of this device. The pin count and pinout are shown on the front page. The package dimensions are in Table 9. # **Table 10. Ordering Information** | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|-------------|--------------------------|--------------------|---------------| | 8R45252AKILF | ICSR5252AIL | Lead-Free, 32 Lead VFQFN | Tray | -40°C to 85°C | | 8R45252AKILFT | ICSR5252AIL | Lead-Free, 32 Lead VFQFN | 2500 Tape & Reel | -40°C to 85°C | # **Revision History** | Revision Date | Description of Change | |------------------|--| | January 29, 2016 | Removed ICS from part numbers where needed. Ordering Information - removed ICS from Part/Order number. Deleted LF note below table. Updated header and footer. | #### **IMPORTANT NOTICE AND DISCLAIMER** RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Disclaimer Rev.1.01 Jan 2024) #### **Corporate Headquarters** TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com #### **Trademarks** Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. #### **Contact Information** For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.