To our customers,

Old Company Name in Catalogs and Other Documents

On April $1^{\text {st }}, 2010$, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1 ${ }^{\text {st }}, 2010$
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M37150M6/M8/MA/MC/MF-XXXFP, M37150EFFP
 SNGLE-CHIP 8-BIT CMOS MICROCOMPUTER

-

Nov 01, 2002

1. DESCRIPTION

The M37150M6/M8/MA/MC/MF-XXXFP and M37150EFFP are single-chip microcomputers designed with CMOS silicon gate technology. They have an OSD, data slicer, and $\mathrm{I}^{2} \mathrm{C}$-BUS interface, making them perfect for TV channel selection systems with a closed caption decoder. The M37150EFFP has a built-in PROM that can be written electrically.

2. FEATURES

- Number of basic instructions .. 71
- Memory size

ROM	24 K bytes
	(M37150M6-XXXFP)
	32 K bytes
	(M37150M8-XXXFP)
	40 K bytes
	(M37150MA-XXXFP)
	48 K bytes
	(M37150MC-XXXFP)
	60 K bytes
	(M37150MF-XXXFP, M37150EFFP)
RAM	1024 bytes
	(M37150M6-XXXFP)
	1152 bytes
	(M37150M8-XXXFP)
	1472 bytes
	(M37150MA-XXXFP, M37150MC-XXXFP)
	2048 bytes
	(M37150MF-XXXFP, M37150EFFP)

(*ROM correction memory included)

- Minimum instruction execution time
................................ $0.447 \mu \mathrm{~s}$ (at 3.58 MHz oscillation frequency) . $0.451 \mu \mathrm{~s}$ (at 4.43 MHz oscillation frequency)
- Power source voltage $5 \mathrm{~V} \pm 10$ \%
- Subroutine nesting 128 levels (Max.)
- Interrupts 17 types, 16 vectors
- 8-bit timers 6
- Programmable I/O ports (Ports P0, P1, P2, P30, P31) 25
- Serial I/O \qquad 8 -bit $\times 1$ channel
- Multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface \qquad 1 (3 systems)
- A-D comparator (7-bit resolution) 8 channels
- PWM output circuit 8 -bit $\times 5$
- Power dissipation In high-speed mode 165 mW (at VCC $=5.5 \mathrm{~V}$, $\mathrm{FSCIN}=3.58 \mathrm{MHz}$, OSD on, and Data slicer on) In low-speed mode \qquad 0.33 mW (at $\mathrm{Vcc}=5.5 \mathrm{~V}, 32 \mathrm{kHz}$ oscillation frequency)
- Closed caption data slicer
- ROM correction function 2 vectors

- OSD function

Display characters \qquad 32 characters $\times 2$ lines (3 lines or more can be displayed by software) Kinds of characters \qquad 254 kinds (coloring (per charactor unit)
Character display area \qquad CC mode: 16×26 dots OSD mode: 16×20 dots
Kinds of character sizes \qquad CC mode: 1 kind OSD mode: 8 kinds
Kinds of character colors 8 colors (R, G, B)
Coloring unit \qquad character, character background, raster
Display position
Horizontal: 128 levels Vertical: 512 levels
Attribute
CC mode: smooth italic, underline, flash, automatic solid space
OSD mode: border
Smoth roll-up
Window function

3. APPLICATION

TV with closed caption decoder

TABLE OF CONTENTS

1. DESCRIPTION... 1
2. FEATURES .. 1
3. APPLICATION .. 1
4. PIN CONFIGURATION .. 3
5. FUNCTIONAL BLOCK DIAGRAM 4
6. PERFORMANCE OVERVIEW 5
7. PIN DESCRIPTION.. 7
8. FUNCTIONAL DESCRIPTION 12
8.1 CENTRAL PROCESSING UNIT (CPU) 12
8.2 MEMORY .. 13
8.3 INTERRUPTS ... 18
8.4 TIMERS .. 23 8.5 SERIAL I/O ... 27 8.6 MULTI-MASTER I²C-BUS INTERFACE 30
8.7 PWM OUTPUT FUNCTION 43
8.8 A-D COMPARATOR ... 47
8.9 ROM CORRECTION FUNCTION 49
8.10 DATA SLICER ... 50
8.11 OSD FUNCTIONS .. 61
8.11.1 Display Position 66
8.11.2 Dot Size ... 70
8.11.3 Clock for OSD 71
8.11.4 Field Determination Display 72
8.11.5 Memory for OSD 74
8.11.6 Character color 78
8.11.7 Character background color 78
8.11.8 OUT signals 79
8.11.9 Attribute .. 80
8.11.10 Multiline Display 85
8.11.11 Automatic Solid Space Function....... 86
8.11.12 Scan Mode 87
8.11.13 Window Function 87
8.11.14 OSD Output Pin Control 89
8.11.15 Raster Coloring Function 90
8.12 SOFTWARE RUNAWAY DETECT FUNCTION 92
8.13 RESET CIRCUIT .. 93
8.14 CLOCK GENERATING CIRCUIT 94
8.15 AUTO-CLEAR CIRCUIT 100
8.16 ADDRESSING MODE 100
8.17 MACHINE INSTRUCTIONS 100
9. TECHNICAL NOTES 100
10. ABSOLUTE MAXIMUM RATINGS 101
11. RECOMMENDED OPERATING CONDITIONS 101
12. ELECTRIC CHARACTERISTICS 102
13. A-D CONVERTER CHARACTERISTICS 104
14. MULTI-MASTER I²C-BUS BUS LINE CHARACTERISTICS 104
15. PROM PROGRAMMING METHOD 105
16. DATA REQUIRED FOR MASK ORDERS 106
17. ONE TIME PROM VERSION M37150EFFP MARKING 107
18. APPENDIX 108
19. PACKAGE OUTLINE 139

4. PIN CONFIGURATION

Fig. 4.1 Pin Configuration (Top View)

5. FUNCTIONAL BLOCK DIAGRAM

Fig. 5.1 Functional Block Diagram of M37150

6. PERFORMANCE OVERVIEW

Table 6.1 Performance Overview

Parameter				Functions
Number of basic instructions				71
Instruction execution time				0.447 ms (the minimum instruction execution time, at 3.58 MHz oscillation frequency, $\mathrm{f}(\mathrm{XIN})=8.95 \mathrm{MHz}$) 0.451 ms (the minimum instruction execution time, at 4.43 MHz oscillation frequency, $f($ (XIN $)=8.86 \mathrm{MHz}$)
Clock frequency				8.95 MHz (maximum)
Memory size	ROM	M37150M6-XXXFP		24K bytes
		M37150M8-XXXFP		32 K bytes
		M37150MA-XXXFP		40K bytes
		M37150MC-XXXFP		48K bytes
		M37150MF-XXXFP		60K bytes
	RAM	M37150M6-XXXFP		1024 bytes (ROM correction memory included)
		M37150M8-XXXFP		1152 bytes (ROM correction memory included)
		M37150MA-XXXFP, M37150MC-XXXFP		1472 bytes (ROM correction memory included)
		M37150MF-XXXFP, M37150EFFP		2048 bytes (ROM correction memory included)
Input/Output ports	P0		I/O	8-bit $\times 1$ (N -channel open-drain output structure, can be used as PWM output pins, INT input pins, A-D input pin)
	P10-P16		I/O	7-bit $\times 1$ (CMOS input/output structure, however, N-channel open-drain output structure, when P11-P14 are used as multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface, can be used as A-D input pins, timer external clock input pins, multimaster $\mathrm{I}^{2} \mathrm{C}$-BUS interface)
	P20-P27		I/O	8 -bit $\times 1$ (P 2 is CMOS input/output structure, however, N -channel opendrain output structure when P2o and 21 are used as serial output, can be used as serial input/output pins, timer external clock input pins, A-D input pins, INT input pin, sub-clock input/output pins)
	P30, P31		I/O	2-bit $\times 1$ (CMOS input/output structure, however, N-channel open-drain output structure, when used as multi-master $I^{2} \mathrm{C}$-BUS interface, can be used as multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface.)
	P50, P51		Input	2-bit $\times 1$ (can be used as OSD input pins)
	P52-P55		Output	4-bit $\times 1$ (CMOS output structures, can be used as OSD output pins)
Serial I/O				8 -bit $\times 1$
Multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface				One (Three lines)
A-D comparator				8 channels (7-bit resolution)
PWM output circuit				8 -bit $\times 5$
Timers				8 -bit $\times 6$
ROM correction function				2 vectors
Subroutine nesting				128 levels (maximum)
Interrupt				<17 types> INT external interrupt $\times 3$, Internal timer interrupt $\times 6$, Serial I/O interrupt \times 1 , OSD interrupt $\times 1$, Multi-master $I^{2} \mathrm{C}$-BUS interface interrupt $\times 1$, Data slicer interrupt $\times 1, \mathrm{f}(\mathrm{XIN}) / 4096$ interrupt $\times 1$, VsYNC interrupt $\times 1$, BRK instruction interrupt $\times 1$, reset $\times 1$
Clock generating circuit				2 built-in circuits (externally connected to XCIN/OUT is a ceramic resonator or a quartz-crystal oscillator)
Data slicer				Built-in

Table 6.2 Performance Overview (Continued)

Parameter				Functions
OSD function		Number of display characters		32 characters $\times 2$ lines
		Dot structure		CC mode: 16×26 dots (character display area : 16×20 dots) OSD mode: 16×20 dots
		Kinds of characters		254 kinds
		Kinds of character sizes 1 screen : 8		CC mode: 1 kinds OSD mode: 8 kinds
		Character font coloring		1 screen: 8 kinds (per character unit)
		Display position		Horizontal: 128 levels, Vertical: 512 levels
Power source voltage				$5 \mathrm{~V} \pm 10 \%$
Power dissipation	In high-speed mode	OSD ON	Data slicer ON	165 mW typ. (at oscillation frequency $\mathrm{f}(\mathrm{XIN})=8.95 \mathrm{MHz}$, fosc $=26.85 \mathrm{MHz}$)
		OSD OFF	Data slicer OFF	82.5 mW typ. (at oscillation frequency $f(\mathrm{XIN})=8.95 \mathrm{MHz}$)
	In low-speed mode	OSD OFF	Data slicer OFF	0.33 mW typ. (at oscillation frequency $f(\mathrm{XCIN})=32 \mathrm{kHz}$)
	In stop mode			0.055 mW (maximum)
Operating temperature range				$-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Device structure				CMOS silicon gate process
Package				42-pin plastic molded SSOP

7. PIN DESCRIPTION

Table 7.1 PIN DESCRIPTION

Pin	Name	Input/ Output	Functions
Vcc, Vss	Power source		Power source: Apply voltage of $5 \mathrm{~V}+10 \%$ (typical) to Vcc, and 0 V to Vss.
CNVss	CNVss		This is connected to Vss.
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a LOW for 2 ms or more (under normal Vcc conditions). If more time is needed for the quartz-crystal oscillator to stabilize, this LOW condition should be maintained for the required time.
FSCIN	Clock input	Input	This is the input pin for the main clock generating circuit.
P00/PWMOP02/PWM2, P03/PWM3/AD1	I/O port P0	I/O	Port P0 is an 8-bit I/O port with a direction register allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is N -channel open-drain output (See note.)
P04/PWM4/AD2 P05/AD3, P06/INT2/AD4, P07/INT1	PWM output	Output	Output Pins P00 to P04 are also used as PWM output pins PWM0 to PWM4, respectively. The output structure is N -channel open-drain output.
	External interrupt	Input	Pins P06 and P07 are also used as INT external interrupt input pins INT2 and INT1 respec tively.
	Analog input	Input	Pins $\mathrm{P} 03, \mathrm{P} 04, \mathrm{P} 05$ and P 06 are also used as analog input pins AD1, AD2, AD3 and AD4, respectively.
P1o/CLK CONT, P11/SCL1, P12/SCL2, P13/SDA1, P14/SDA2, P15, P16/AD8/TIM2	I/O port P1	1/O	I/O Port P1 is a 7-bit I/O port and has basically the same functions as port P0. The output structure is CMOS output (See note.)
	Multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface	1/O	Pins P11-P14 are used as SCL1, SCL2, SDA1 and SDA2 respectively, when multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface is used. The output structure is N -channel open-drain output.
	Clock control	Output	P10 pin is also used as Clock control output CLK CONT. The output structure is CMOS output.
	External clock input for timer	Input	P 16 pin is also used as timer external clock input pin TIM2.
	Analog input	Input	P16 pin is also used as analog input pin AD8.
P20/SCLK/AD5, P21/Sout/AD6, P22/Sin/AD7, P23/TIM3, P24/TIM2, P25/INT3, P26/XCIN, P27/Xcout	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0. The output structure is CMOS output. (See note)
	Serial I/O synchronous clock input/output port	1/0	P2o pin is also used as serial I/O synchronous clock input/output pin ScLk. The output structure is N -channel open-drain output.
	Serial I/O data output	Output	P21 pin is also used as serial I/O data output pin Sout. The output structure is open-drain output.
	Serial I/O data input	Input	P 22 pin is also used as serial I/O data input pin SIN .
	External clock input for timer	Input	Pins P23 and P24 are also used as timer external clock input pins TIM3 and TIM2 respectively.
	Analog input	Input	Pins P20-P22 are also used as analog input pins AD5, AD6 and AD7 respectively.
	Sub-clock input	Input	P26 pin is also used as sub-clock input pin XCIN.
	Sub-clock output	Output	P27 pin is also used as sub-clock output pin Xcout. The output structure is CMOS output.
	External interrupt input	Input	P25 pin is also used as INT external interrupt input pin INT3.
$\begin{array}{\|l} \hline \text { P3o/SDA3 } \\ \text { P31/SCL3 } \end{array}$	I/O port P3	1/O	Port $\mathrm{P} 30, \mathrm{P} 31$ is an 2-bit I/O port and has basically the same functions as port P 0 . The output structure is CMOS output (See note.)
	Multi-master ${ }^{2} \mathrm{C}$ - BUS Interface	1/0	Pins P30, P31 are used as SDA3,SCL3 respectively, when multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface is used. The output structure is N -channel open-drain output.

Table 7.2 PIN DESCRIPTION (continued)

Pin	Name	Input/ Output	Functions
P50/Hsync P51/VsYNC	Input P5	Input	Port P5 is a 2-bit input port.
	Horizonta synchronous signal	Input	The P50 pin is also used as a horizontal synchronous signal input HsYnc for OSD.
	Vertical synchronous signal	Input	The P51 pin is also used as a vertical synchronous signal input Vsync for OSD.
P52/B, P53/G, P54/R, P55/OUT	Output P5	output	Pins P52-P55 are a 4-bit output port. The output structure is CMOS output.
	OSD output	output	Pins P52-P55 are also used as OSD output pins R, G, B and OUT respectively. The output structure is CMOS output.
CVIN	I/O for data slicer	Input	Input the composite video signal through a capacitor.
VHOLD HLF		Input	Connect a capacitor between Vhold and Vss.
		I/O	Connect a filter, consisting of a capacitor and a resistor, between HLF and Vss.
FILT	Clock oscillation filter	Input	Connect a capacitor between FILT and Vss.

Notes : Port Pi ($\mathrm{i}=0$ to 3) has a port Pi direction register that can be used to program each bit for input ("0") or an output ("1"). The pins programmed as " 1 " in the direction register are output pins. When pins are programmed as " 0 ," they are input pins. When pins are programmed as output pins, the output data is written into the port latch and then output. When data is read from the output pins, the data of the port latch, not the output pin level, is read. This allows a previously output value to be read correctly even if the output LOW voltage has risen due to, for example, a directly-driven light emitting diode. The input pins are in the floating state, so the values of the pins can be read. When data is written to the input pin, it is written only into the port latch, while the pin remains in the floating state.

* LED drive ports 4 (P24- P27)

Rev.1.00 Nov 01, 2002 page 8 of 139

Ports PO0-P07

Ports P1, P2, P30, P31

Notes 1 : Each port is also used as follows :

P10: CLKCONT	P20: ScLK/AD5	P27: XCOUT
P11: SCL1	P21: Sout/AD6	P30: SDA3
P12: SCL2	P22: SIN/AD7	P31: SCL3
P13: SDA1	P23: TIM3	
P14: SDA2	P24: TIM2	
P16: AD8/TIM2	P25: INT3	
	P26: XCIN	

2: The output structure of ports P11-P14, P30-P31 is N-channel open-drain output when using as multi-master $\mathrm{I}^{2} \mathrm{C}-\mathrm{BUS}$ interface (it is the same with $\mathrm{P} 00-\mathrm{P} 07$).
3: The output structure of ports P 20 and P 21 is N -channel open-drain output when using as serial output (it is the same as $\mathrm{P} 00-\mathrm{P} 07$).

Fig. 7.1 I/O Pin Block Diagram (1)

Fig. 7.2 I/O Pin Block Diagram (2)

FSCIN Pin

The FSCIN pin is a reference clock input pin. The main clock and OSD clock are generated based on the reference clock from the FSCIN pin. The sub clock can also be generated directly from the 32 kHz oscillator circuit and FSCIN pin.

Fig. 7.2 clock generating circuit

8. FUNCTIONAL DESCRIPTION
 8.1 CENTRAL PROCESSING UNIT (CPU)

This microcomputer uses the standard 740 Family instruction set. Refer to the table of 740 Family addressing modes and machine instructions or the SERIES 740 <Software> User's Manual for de-
tails on the instruction set.
Availability of 740 Family instructions is as follows:
The FST and SLW instructions cannot be used.
The MUL, DIV, WIT and STP instructions can be used.

8.1.1 CPU Mode Register

The CPU Mode Register includes a stack page selection bit and internal system clock selection bit. The CPU Mode Register is allocated to address 00FB16.

Note 1: This bit is set to " 1 " after the reset release.
2: XCIN-Xcout and FSCIN are switched over using Clock Control Register 2 (address 021116) bit 2.

Fig. 8.1.1 CPU Mode Register

8.2 MEMORY

8.2.1 Special Function Register (SFR) Area

The Special Function Register (SFR) area in the zero page includes control registers such as I/O ports and timers.

8.2.2 RAM

RAM is used for data storage and for stack area of subroutine calls and interrupts.

8.2.3 ROM

ROM is used for storing user programs as well as the interrupt vector area.

8.2.4 OSD RAM

RAM used for specifying the character codes and colors for display.

8.2.6 Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

8.2.7 Zero Page

The zero page addressing mode can be used to specify memory and register addresses in the zero page area. Access to this area is possible with only 2 bytes in the zero page addressing mode.

8.2.8 Special Page

The special page addressing mode can be used to specify memory addresses in the special page area. Access to this area is possible with only 2 bytes in the special page addressing mode.

8.2.9 ROM Correction Memory (RAM)

This is used as the program area for ROM correction.

8.2.5 OSD ROM

ROM used for storing character data for display.

Fig. 8.2.1 Memory Map (M37150M6/M8/MA/MC/MF-XXXFP, M37150EFFP)

Fig. 8.2.2 Memory Map of Special Function Register 1 (SFR1) (1)

SFR1 Area (addresses E016 to FF16)

<Bit allocation>	<State immediately after reset>
: $\}$ Function bit	0 : "0" immediately after reset 1 : "1" immediately after reset
: No function bit	? : Indeterminate immediately after reset
: Fix this bit to "0" (do not write "1")	
1 : Fix this bit to " 1 " (do not write "0")	

Address
 Register

E016 Data slicer control register 1 (DSC1)
E116 Data slicer control register 2 (DSC2)
E216 Caption data register 1 (CD1)
E316 Caption data register 2 (CD2)
E416 Clock run-in detect register (CRD)
E516 Data clock position register (DPS)
E616 Caption position register (CPS)
E716 Data slicer test register 2
E816 Data slicer test register 1
E916 Synchronous signal counter register (HC)
EA16 Serial I/O register (SIO)
EB16 Serial I/O mode register (SM)
EC16 A-D control register 1 (AD1)
ED16 A-D control register 2 (AD2)
EE16 Timer 5 (T5)
EF16 Timer 6 (T6)
F016 Timer 1 (T1)
F116 Timer 2 (T2)
F216 Timer 3 (T3)
F316 Timer 4 (T4)
F416 Timer mode register 1 (TM1)
F516 Timer mode register 2 (TM2)
F616 $\mathrm{I}^{2} \mathrm{C}$ data shift register (S0)
F716 $I^{2} \mathrm{C}$ address register (SOD)
F816 $1^{2} \mathrm{C}$ status register (S1)
F916 $I^{2} \mathrm{C}$ control register (S1D)
FA $16 \quad I^{2} \mathrm{C}$ clock control register (S2)
FB16 CPU mode register (CPUM)
FC16 Interrupt request register 1 (IREQ1)
FD16 Interrupt request register 2 (IREQ2)
FE16 Interrupt control register 1 (ICON1)
FF16 Interrupt control register 2 (ICON2)

Fig. 8.2.3 Memory Map of Special Function Register 1 (SFR1) (2)

SFR2 Area (addresses 20016 to 20F16)

<State immediately after reset>
0 : 0 immediately after reset
1 : 1 immediately after reset
? : Indeterminate immediately after reset
Address Register
20016 PWM0 register (PWM0)
20116 PWM1 register (PWM1)
20216 PWM2 register (PWM2)
20316 PWM3 register (PWM3)
20416 PWM4 register (PWM4)
20516
20616
20716
20816 PWM mode register 1 (PM1)
20916 PWM mode register 2 (PM2)
20A16 ROM correction address 1 (high-order)
20B16 ROM correction address 1 (low-order) 20C16 ROM correction address 2 (high-order) 20D16 ROM correction address 2 (low-order) 20E16 ROM correction enable register (RCR) 20F16
21016 Clock frequency set register (CFS)
21116 Clock control register 2(CC2)
21216 Clock control register 3(CC3)

Fig. 8.2.4 Memory Map of Special Function Register 2 (SFR2)

Fig. 8.2.5 Internal State of Processor Status Register and Program Counter at Reset

8.3 INTERRUPTS

Interrupts can be caused by 17 different sources comprising 4 external, 11 internal, 1 software, and 1 reset interrupts. Interrupts are vectored interrupts with priorities as shown in Table 8.3.1. Reset is also included in the table as its operation is similar to an interrupt.
When an interrupt is accepted,
(1) The contents of the program counter and processor status regis ter are automatically stored into the stack.
(2) The interrupt disable flag I is set to " 1 " and the corresponding interrupt request bit is set to " 0 ."
(3) The jump destination address stored in the vector address enters the program counter. Other interrupts are disabled when the in terrupt disable flag is set to "1."
All interrupts except the BRK instruction interrupt have an inter rupt request bit and an interrupt enable bit. The interrupt request bits are in Interrupt Request Registers 1 and 2 and the interrupt enable bits are in Interrupt Control Registers 1 and 2. Figures 8.3.2 to 8.3.6 show the interrupt-related registers. Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is "1," interrupt request bit is " 1 ," and the interrupt disable flag is " 0 ." The interrupt request bit can be set to " 0 " by a program, but not set to " 1 ." The interrupt enable bit can be set to " 0 " and " 1 " by a program.
Reset is treated as a non-maskable interrupt with the highest pri ority.
Figure 8.3.1 shows interrupt controls.

8.3.1 Interrupt Causes

(1)Vsync, OSD interrupts

The VSYNC interrupt is an interrupt request synchronized with the vertical sync signal. The OSD interrupt occurs after character block display to the CRT is completed.

(2)INT1 to INT3 external interrupts

The INT1 to INT3 interrupts are external interrupt inputs; the system detects that the level of a pin changes from LOW to HIGH or from HIGH to LOW, and generates an interrupt request. The input active edge can be selected by bits 0 to 2 of the Interrupt Input Polarity Register (address 00DC16); when this bit is " 0 ," a change from LOW to HIGH is detected; when it is "1," a change from HIGH to LOW is detected. Note that both bits are cleared to " 0 " at reset.

(3)Timers 1 to 4 interrupts

An interrupt is generated by an overflow of timers 1 to 4 .

(4)Serial I/O interrupt

This is an interrupt request from the clock synchronous serial I/O function.

Table 8.3.1 Interrupt Vector Addresses and Priority

Priority	Interrupt Source	Vector Addresses	
1	Reset	FFFF16, FFFE16	Non-maskable
2	OSD interrupt	FFFD16, FFFC16	
3	INT1 external interrupt	FFFB16, FFFA16	Active edge selectable
4	Data slicer interrupt	FFF916, FFF816	
5	Serial I/O interrupt	FFF716, FFF616	
6	Timer 4 interrupt	FFF516, FFF416	
7	f(XIN)/4096 interrupt	FFF316, FFF216	
8	VsYNC interrupt	FFF116, FFF016	
9	Timer 3 interrupt	FFEF16, FFEE16	
10	Timer 2 interrupt	FFED16, FFEC16	
11	Timer 1 interrupt	FFEB16, FFEA16	
12	INT3 external interrupt	FFE916, FFE816	Active edge selectable
13	INT2 external interrupt	FFE716, FFE616	Active edge selectable
14	Multi-master I²C-BUS interface interrupt	FFE516, FFE416	
15	Timer 5 6 interrupt	FFE316, FFE216	Source switch by software (see note)
16	BRK instruction interrupt	FFDF16, FFDE16	Non-maskable

Note: Switching a source during a program causes an unnecessary interrupt. Therefore, set a source at initializing of program.

(5) $f(X I N) / 4096$ interrupt

The $f($ XIN $) / 4096$ interrupt occurs regularly with a period of $f(X I N) /$ 4096. Set bit 0 of the PWM mode register 1 to " 0 ."

(6) Data slicer interrupt

An interrupt occurs when slicing data is completed.
(7) Multi-master $I^{2} \mathrm{C}$-BUS interface interrupt

This is an interrupt request related to the multi-master $I^{2} \mathrm{C}$-BUS interface.
(8) Timer 5-6 interrupt

An interrupt is generated by an overflow of timer 5 or 6 . Their priorities are same, and can be switched by software.

(9) BRK instruction interrupt

This software interrupt has the least significant priority. It does not have a corresponding interrupt enable bit, and it is not affected by the interrupt disable flag I (non-maskable).

Fig. 8.3.1 Interrupt Control

Interrupt Request Register 1

b7 b6 b5 b4 b3 b2 b1 b0

Interrupt request register 1 (IREQ1) [Address 00FC16]

B	Name	Functions	Afrer reset	R	W
0	Timer 1 interrupt request bit (TM1R)	0 : No interrupt request issued $1:$ Interrupt request issued	0	R	$*$
1	Timer 2 interrupt request bit (TM2R)	0 : No interrupt request issued $1:$ Interrupt request issued	0	R	$*$
2	Timer 3 interrupt request bit (TM3R)	0 : No interrupt request issued $1:$ Interrupt request issued	0	R	$*$
3	Timer 4 interrupt request bit (TM4R)	0 : No interrupt request issued $1:$ Interrupt request issued	0	R	$*$
4	OSD interrupt request bit (OSDR)	0 : No interrupt request issued $1:$ Interrupt request issued	0	R	$*$
5	VSYNC interrupt request bit (VSCR)	0 : No interrupt request issued $1:$ Interrupt request issued	0	R	$*$
6	INT3 external interrupt request bit (IN3R)	0 : No interrupt request issued $1:$ Interrupt request issued	0	R	
7	Nothing is assigned. This bit is a write disable bit. When this bit is read out, the value is "0."				

*: " 0 " can be set by software, but " 1 " cannot be set.

Fig. 8.3.2 Interrupt Request Register 1

Interrupt Request Register 2

b7b6 b5b4b3 b2b1b0

0					
			Interrupt request register 2 (IREQ2) [Address 00FD16]		

B	Name	Functions	After reset	R:W
0	INT1 external interrupt request bit (IN1R)	0 : No interrupt request issued 1 : Interrupt request issued	0	R *
1	Data slicer interrupt request bit (DSR)	0 : No interrupt request issued 1 : Interrupt request issued	0	R:*
2	Serial I/O interrupt request bit (SIR)	0 : No interrupt request issued 1 : Interrupt request issued	0	R *
3	f(XIN)/4096 interrupt request bit (CKR)	0 : No interrupt request issued 1 : Interrupt request issued	0	R *
4	INT2 external interrupt request bit (IN2R)	0 : No interrupt request issued 1 : Interrupt request issued	0	R *
5	Multi-master ${ }^{2} \mathrm{C}$-BUS interrupt request bit (IICR)	0 : No interrupt request issued 1 : Interrupt request issued	0	R *
6	Timer 5-6 interrupt request bit (TM56R)	0 : No interrupt request issued 1 : Interrupt request issued	0	R *
7	Fix this bit to "0."		0	R:W

*: "0" can be set by software, but "1" cannot be set.

Fig. 8.3.3 Interrupt Request Register 2

Interrupt Control Register 1

b7b6 b5 b4 b3 b2b1 b0
Interrupt control register 1 (ICON1) [Address 00FE16]

B	Name	Functions	After reset	R:W
0	Timer 1 interrupt enable bit (TM1E)	$0:$ Interrupt disabled $1:$ Interrupt enabled	0	R
1	Timer 2 interrupt enable bit (TM2E)	$0:$ Interrupt disabled $1:$ Interrupt enabled	0	R
2	Timer 3 interrupt enable bit (TM3E)	$0:$ Interrupt disabled $1:$ Interrupt enabled	0	R
3	Timer 4 interrupt enable bit (TM4E)	$0:$ Interrupt disabled $1:$ Interrupt enabled	0	R
4	OSD interrupt enable bit (OSDE)	$0:$ Interrupt disabled $1:$ Interrupt enabled	0	R
5	VsYNC interrupt enable bit (VSCE)	$0:$ Interrupt disabled $1:$ Interrupt enabled	0	R
6	INT3 external interrupt enable bit (IN3E)	$0:$ Interrupt disabled $1:$ Interrupt enabled	0	R
7	Nothing is assigned. This bit is a write disable bit. When this bit is read out, the value is "0."	0	R	

Fig. 8.3.4 Interrupt Control Register 1

Fig. 8.3.5 Interrupt Control Register 2

Interrupt Input Polarity Register

Fig. 8.3.6 Interrupt Input Polarity Register

8.4 TIMERS

This microcomputer has 6 timers: timer 1, timer 2, timer 3, timer 4 , timer 5, and timer 6. All timers are 8-bit timers with the 8-bit timer latch. The timer block diagram is shown in Figure 8.4.3.
All of the timers count down and their divide ratio is $1 /(n+1)$, where n is the value of timer latch. By writing a count value to the corresponding timer latch (addresses 00F016 to 00F316 : timers 1 to 4, addresses 00 EE 16 and 00EF16 : timers 5 and 6), the value is also set to a timer, simultaneously.
The count value is decremented by 1 . The timer interrupt request bit is set to " 1 " by a timer overflow at the next count pulse, after the count value reaches " 0016 ".

8.4.1 Timer 1

Timer 1 can select one of the following count sources:

- $\mathrm{f}(\mathrm{XIN}) / 16$ or $\mathrm{f}(\mathrm{XCIN}) / 16$
- $f($ XIN $) / 4096$ or $f($ XCIN $) / 4096$
- External clock from the TIM2 pin

The count source of timer 1 is selected by setting bits 5 and 0 of timer mode register 1 (address 00F416). Either $f(X I N)$ or $f(X C I N)$ is selected by bit 7 of the CPU mode register.
Timer 1 interrupt request occurs at timer 1 overflow.

8.4.2 Timer 2

Timer 2 can select one of the following count sources:

- $\mathrm{f}(\mathrm{XIN}) / 16$ or $\mathrm{f}(\mathrm{XCIN}) / 16$
- Timer 1 overflow signal
- External clock from the TIM2 pin

The count source of timer 2 is selected by setting bits 4 and 1 of timer mode register 1 (address 00F416). Either $f(X I N)$ or $f(X C I N)$ is selected by bit 7 of the CPU mode register. When timer 1 overflow signal is a count source for the timer 2 , the timer 1 functions as an 8bit prescaler.
Timer 2 interrupt request occurs at timer 2 overflow.

8.4.3 Timer 3

Timer 3 can select one of the following count sources:

- $f($ XIN $) / 16$ or $f($ XCIN $) / 16$
- f(XCIN)
- External clock from the TIM3 pin

The count source of timer 3 is selected by setting bit 0 of timer mode register 2 (address 00F516) and bit 6 at address 00C716. Either f(XIN) or $f(X C I N)$ is selected by bit 7 of the CPU mode register.
Timer 3 interrupt request occurs at timer 3 overflow.

8.4.4 Timer 4

Timer 4 can select one of the following count sources:

- $\mathrm{f}(\mathrm{XIN}) / 16$ or $\mathrm{f}(\mathrm{XCIN}) / 16$
- $f(X I N) / 2$ or $f(X C I N) / 2$
- $f($ XCIN $)$

The count source of timer 3 is selected by setting bits 1 and 4 of the timer mode register 2 (address 00F516). Either $f(X I N)$ or $f(X C I N)$ is selected by bit 7 of the CPU mode register. When timer 3 overflow signal is a count source for the timer 4 , the timer 3 functions as an 8 bit prescaler.
Timer 4 interrupt request occurs at timer 4 overflow.

8.4.5 Timer 5

Timer 5 can select one of the following count sources:

- $f($ XIN $) / 16$ or $f($ XCIN $) / 16$
- Timer 2 overflow signal
- Timer 4 overflow signal

The count source of timer 3 is selected by setting bit 6 of timer mode register 1 (address 00F416) and bit 7 of the timer mode register 2 (address 00F516). When overflow of timer 2 or 4 is a count source for timer 5 , either timer 2 or 4 functions as an 8-bit prescaler. Either $f(X I N)$ or $f(X C I N)$ is selected by bit 7 of the CPU mode register. Timer 5 interrupt request occurs at timer 5 overflow.

8.4.6 Timer 6

Timer 6 can select one of the following count sources:

- $f($ XIN $) / 16$ or $f($ XCIN $) / 16$
- Timer 5 overflow signal

The count source of timer 6 is selected by setting bit 7 of the timer mode register 1 (address 00F416). Either $f\left(\mathrm{XIN}^{\prime}\right)$ or $f\left(\mathrm{XCIN}^{\prime}\right)$ is selected by bit 7 of the CPU mode register. When timer 5 overflow signal is a count source for timer 6, the timer 5 functions as an 8-bit prescaler. Timer 6 interrupt request occurs at timer 6 overflow.

At reset, timers 3 and 4 are connected by hardware and "FF16" is automatically set in timer 3 ; " 0716 " in timer 4 . The $f(X I N) * / 16$ is selected as the timer 3 count source. The internal reset is released by timer 4 overflow in this state and the internal clock is connected.
At execution of the STP instruction, timers 3 and 4 are connected by hardware and "FF16" is automatically set in timer 3; "0716" in timer 4. However, the $f(X I N) * / 16$ is not selected as the timer 3 count source. So set both bit 0 of timer mode register 2 (address 00F516) and bit 6 at address 00C716 to " 0 " before the execution of the STP instruction $(\mathrm{f}(\mathrm{XIN}) * / 16$ is selected as timer 3 count source). The internal STP state is released by timer 4 overflow in this state and the internal clock is connected.
As a result of the above procedure, the program can start under a stable clock.
*: When CPU Mode Register bit $7(C M 7)=1, f(X I N)$ becomes $f(X C I N)$.
The timer-related registers is shown in Figures 8.4.1 and 8.4.2.

The input path for the TIM2 pin can be selected between ports P16 or P24. Use Port P3 Direction Register (address 00C716) bit 7 to select either port.

Timer Mode Register 1

b7b6 b5b4b3 b2b1b0

Note: Either $f\left(X_{\text {IN }}\right)$ or $f\left(X_{C I N}\right)$ is selected by bit 7 of the CPU mode register.
Fig. 8.4.1 Timer Mode Register 1

Timer Mode Register 2

b7b6 b5b4b3 b2b1 b0
Timer mode register 2 (TM2) [Address 00F516]

B	Name	Functions	After reset	R	W
0	Timer 3 count source selection bit (TM20)	(b6 at address 00C7 16) b0 $0 \quad 0: \mathrm{f}(\mathrm{Xin}) / 16$ or $\mathrm{f}(\mathrm{XcIN}) / 16$ (See note) $10: f(X C I N)$ $\left.\begin{array}{ll}0 & 1 \\ 1 & 1: \\ 1 & 1\end{array}\right\}$ External clock from TIM3 pin	0	R	W
1, 4	Timer 4 count source selection bits (TM21, TM24)	```b4 b1 0 0:Timer 3 overflow signal 0 1: f(XIN)/16 or f(XCIN)/16 (See note) 1 0:f(XIN)/2 or f(XCIN)/2 (See note) 1 1:f(XCIN)```	0	R	W
2	Timer 3 count stop bit (TM22)	0 : Count start 1: Count stop	0	R	W
3	Timer 4 count stop bit (TM23)	0: Count start 1: Count stop	0	R	W
5	Timer 5 count stop bit (TM25)	0: Count start 1: Count stop	0	R	W
6	Timer 6 count stop bit (TM26)	0 : Count start 1: Count stop	0	R	W
7	Timer 5 count source selection bit 1 (TM27)	$0: \mathrm{f}(\mathrm{XIN}) / 16$ or $\mathrm{f}(\mathrm{XCIN}) / 16$ (See note) 1: Count source selected by bit 6 of TM1	0	R	W

Note: Either $f($ XiN $)$ or $f(X C I N)$ is selected by bit 7 of the CPU mode register.

Fig. 8.4.2 Timer Mode Register 2

Port P3 direction register

b7 b6 b5 b4 b3 b2 b1 b0

Port P3 direction register (D3) [Address 00C716]

B	Name	Functions	After reset	R 'W
0	Port P3 direction register (See note 1)	0 : Port P3o input 1 : Port P3o output	0	R:W
1		0 : Port P31 input 1 : Port P31 output	0	R:W
2	Output amplitude level selection bit (OUTS) (See note 2)	$0: 2$ value output $1: 3$ value output	0	R:W
3	Fix this bit to "0."		0	R : W
4,5	Nothing is assigned fix these bits When this bit are read out, the value are " 0. ."		0	R:-
6	Timer 3 (T3SC)	Refer to explanation of a timer	0	R W W
7	Timer 2 (T2SC)	0 : P24 input 1: P16 input	0	R : W

Notes 1: When using the port as the $\mathrm{I}^{2} \mathrm{C}$-BUS interface, set the Port P3 Direction Register to 1 .
2: Use the Clock Control Register 3 (address 021216) bit 5 to select the binary output level of OUT.

Fig. 8.4.3 Port P3 direction register

Timer return setting register

b7 b6 b5 b4 b3 b2 b1 b0

B	Name	Functions	After reset	R 'W
$\begin{aligned} & 0 \text { to } \\ & 4 \\ & \hline \end{aligned}$	Fix these bits to "0."		0	R: W
5	Fix this bit to "1."		0	R1'W
6	Fix this bit to "0."		0	RiW
7	STOP mode return selection bit (TMS)	0: Timer Count "07FF16" 1: Timer Count Variable	0	R: W

Fig. 8.4.4 Timer return setting register

Fig. 8.4.5 Timer Block Diagram

8.5 SERIAL I/O

This microcomputer has a built-in serial I/O which can either transmit or receive 8-bit data serially in the clock synchronous mode.
The serial I/O block diagram is shown in Figure 8.5.1. The synchronous clock I/O pin (SCLK), and data output pin (SOUT) also function as port P4, data input pin (SIN) also functions as port P20-P22.
Bit 3 of the serial I/O mode register (address 00EB16) selects whether the synchronous clock is supplied internally or externally (from the Sclk pin). When an internal clock is selected, bits 1 and 0 select whether $f(\mathrm{XIN})$ or $f(\mathrm{XCIN})$ is divided by $8,16,32$, or 64 . To use the SIN pin for serial I/O, set the corresponding bit of the port P2 direction register (address 00C516) to "0."

The operation of the serial I/O is described below. The operation of the serial I/O differs depending on the clock source; external clock or internal clock.

Note : When the data is set in the serial I/O register (address 00EA16), the register functions as the serial I/O shift register.

Fig. 8.5.1 Serial I/O Block Diagram

Internal clock : The serial I/O counter is set to " 7 " during the write cycle into the serial I/O register (address 00EA16), and the transfer clock goes HIGH forcibly. At each falling edge of the transfer clock after the write cycle, serial data is output from the Sout pin. Transfer direction can be selected by bit 5 of the serial I/O mode register. At each rising edge of the transfer clock, data is input from the SIN pin and data in the serial I/O register is shifted 1 bit.
After the transfer clock has counted 8 times, the serial I/O counter becomes " 0 " and the transfer clock stops at HIGH. At this time the interrupt request bit is set to "1."

External clock : The an external clock is selected as the clock source, the interrupt request is set to " 1 " after the transfer clock has been counted 8 counts. However, transfer operation does not stop, so the clock should be controlled externally. Use the external clock of 1 MHz or less with a duty cycle of 50%.
The serial I/O timing is shown in Figure 8.5.2. When using an external clock for transfer, the external clock must be held at HIGH for initializing the serial I/O counter. When switching between an internal clock and an external clock, do not switch during transfer. Also, be sure to initialize the serial I/O counter after switching.

Notes 1: On programming, note that the serial I/O counter is set by writing to the serial I/O register with the bit managing instructions, such as SEB and CLB.
2: When an external clock is used as the synchronous clock, write transmit data to the serial I/O register when the transfer clock input level is HIGH.

Note : When an internal clock is selected, the Sout pin is at high-impedance after transfer is completed.

Fig. 8.5.2 Serial I/O Timing (for LSB first)

Serial I/O Mode Register

b7b6 b5b4 b3 b2b1 b0

| 0 | | 0 | 0 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | Serial I/O mode register (SM) [Address 00EB16]

B	Name	Functions	After reset	RiW
0, 1	Internal synchronous clock selection bits (SM0, SM1)	b1 b0 $00: \mathrm{f}(\mathrm{XIN}) / 8$ or $\mathrm{f}(\mathrm{Xcin}) / 8$ 0 1: $\mathrm{f}(\mathrm{XIN}) / 16$ or $\mathrm{f}(\mathrm{XCIN}) / 16$ $10: f($ Xin $) / 32$ or $f($ Xcin $) / 32$ $11: f($ XIN $) / 64$ or $f(\mathrm{XCIN}) / 64$	0	RíW
2	Synchronous clock selection bit (SM2)	0: External clock 1: Internal clock	0	R :W
3	Port function selection bit (SM3)	0: P20, P21 1: ScLK, Sout	0	R W
4	Fix this bit to " 0 ."		0	R:W
5	Transfer direction selection bit (SM5)	0: LSB first 1: MSB first	0	R:W
6	Transfer clock input pin selection bit (SM6)	0: Input signal from SIN pin 1: Input signal from Sout pin	0	R W
7	Fix this bit to "0."		0	R:W

Fig. 8.5.3 Serial I/O Mode Register

8.6 MULTI-MASTER I²C-BUS INTERFACE

The multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface is a serial communications circuit, conforming to the Philips $\mathrm{I}^{2} \mathrm{C}$-BUS data transfer format. This interface, offering both arbitration lost detection and synchronous function, is useful for multi-master serial communications.
Figure 8.6 .1 shows a block diagram of the multi-master $I^{2} \mathrm{C}$-BUS interface and Table 8.6 .1 shows multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface functions.
This multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface consists of the address register, the data shift register, the clock control register, the control register, the status register and other control circuits.

Table 8.6.1 Multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS Interface Functions

Item	Function
Format	In conformity with Philips ${ }^{2} \mathrm{C}$-BUS standard: 10-bit addressing format 7-bit addressing format High-speed clock mode Standard clock mode
Communication mode	In conformity with Philips ${ }^{2} \mathrm{C}$-BUS standard: Master transmission Master reception Slave transmission Slave reception
SCL clock frequency	16.1 kHz to 400 kHz ($\phi=$ at 4 MHz)

$\phi:$ System clock $=f($ XIN $) / 2$
Note : We are not responsible for any third party's infringement of patent rights or other rights attributable to the use of the control function (bits 6 and 7 of the $\mathrm{I}^{2} \mathrm{C}$ control register at address 00F916) for connections between the $I^{2} \mathrm{C}$-BUS interface and ports (SCL1, SCL2, SDA1, SDA2).
$\phi=8.95 / 2 \mathrm{MHz}$ at $\mathrm{FSCIN}=3.58 \mathrm{MHz}$
$\phi=8.86 / 2 \mathrm{MHz}$ at $\mathrm{FSCIN}=4.43 \mathrm{MHz}$

Fig. 8.6.1 Block Diagram of Multi-master $I^{2} C$-BUS Interface

8.6.1 $\mathrm{I}^{2} \mathrm{C}$ Data Shift Register

The $\mathrm{I}^{2} \mathrm{C}$ data shift register (S 0 : address 00F616) is an 8 -bit shift register to store receive data and write transmit data.
When transmit data is written into this register, it is transferred to the outside from bit 7 in synchronization with the SCL clock, and each time one-bit data is output, the data of this register are shifted one bit to the left. When data is received, it is input to this register from bit 0 in synchronization with the SCL clock, and each time one-bit data is input, the data of this register are shifted one bit to the left.
The $I^{2} \mathrm{C}$ data shift register is in a write enable status only when the ESO bit of the $\mathrm{I}^{2} \mathrm{C}$ control register (address 00F916) is " 1. ." The bit counter is reset by a write instruction to the $I^{2} \mathrm{C}$ data shift register. When both the ESO bit and the MST bit of the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) are " 1 ," the SCL is output by a write instruction to the $\mathrm{I}^{2} \mathrm{C}$ data shift register. Reading data from the $\mathrm{I}^{2} \mathrm{C}$ data shift register is always enabled regardless of the ESO bit value.

Note: To write data into the $\mathrm{I}^{2} \mathrm{C}$ data shift register after setting the MST bit to " 0 " (slave mode), keep an interval of 8 machine cycles or more.

Fig. 8.6.2 $\mathrm{I}^{2} \mathrm{C}$ Data Shift Register

8.6.2 ${ }^{2}{ }^{2} \mathrm{C}$ Address Register

The $I^{2} \mathrm{C}$ address register (address 00F716) consists of a 7-bit slave address and a read/write bit. In the addressing mode, the slave address written in this register is compared with the address data to be received immediately after the START condition is detected.

(1) Bit 0: $\overline{\text { read } / w r i t e ~ b i t ~(R B W) ~}$

Not used when comparing addresses in the 7-bit addressing mode. In the 10-bit addressing mode, the first address data to be received is compared with the contents (SAD6 to SAD0 + RBW) of the $I^{2} \mathrm{C}$ address register.
The RBW bit is cleared to "0" automatically when the stop condition is detected.

(2) Bits 1 to 7: slave address (SAD0-SAD6)

These bits store slave addresses. Regardless of the 7-bit addressing mode and the 10-bit addressing mode, the address data transmitted from the master is compared with the contents of these bits.

I2C Address Register

Fig. 8.6.3 $\mathrm{I}^{2} \mathrm{C}$ Address Register

8.6.3 $\mathrm{I}^{2} \mathrm{C}$ Clock Control Register

The $I^{2} \mathrm{C}$ clock control register (address 00FA16) is used to set ACK control, SCL mode and SCL frequency.

(1) Bits 0 to 4: SCL frequency control bits (CCRO-CCR4) These bits control the SCL frequency.

(2) Bit 5: SCL mode specification bit (FAST MODE)

This bit specifies the SCL mode. When this bit is set to " 0 ," the standard clock mode is set. When the bit is set to " 1, " the high-speed clock mode is set.

(3) Bit 6: ACK bit (ACK BIT)

This bit sets the SDA status when an ACK clock* is generated. When this bit is set to " 0 ," the ACK return mode is set and SDA goes to LOW at the occurrence of an ACK clock. When the bit is set to "1," the ACK non-return mode is set. The SDA is held in the HIGH status at the occurrence of an ACK clock.
However, when the slave address matches the address data in the reception of address data at ACK BIT $=$ " 0 ," the SDA automatically goes to LOW (ACK is returned). If there is a mismatch between the slave address and the address data, the SDA automatically goes to HIGH (ACK is not returned).

(4) Bit 7: ACK clock bit (ACK)

This bit specifies a mode of acknowledgment which is an acknowledgment response of data transmission. When this bit is set to " 0 ," the no ACK clock mode is set. In this case, no ACK clock occurs after data transmission. When the bit is set to " 1 ," the ACK clock mode is set and the master generates an ACK clock upon completion of each 1-byte data transmission. The device for transmitting address data and control data releases the SDA at the occurrence of an ACK clock (make SDA HIGH) and receives the ACK bit generated by the data receiving device.

Note: Do not write data into the $\mathrm{I}^{2} \mathrm{C}$ clock control register during transmission. If data is written during transmission, the $\mathrm{I}^{2} \mathrm{C}$ clock generator is reset, so that data cannot be transmitted normally.
*ACK clock: Clock for acknowledgement

Fig. 8.6.4 $1^{2} \mathrm{C}$ Clock Control Register

8.6.4 $\mathrm{I}^{2} \mathrm{C}$ Control Register

The $\mathrm{I}^{2} \mathrm{C}$ control register (address 00F916) controls the data communication format.

(1) Bits 0 to 2: bit counter ($\mathrm{BCO}-\mathrm{BC} 2$)

These bits decide the number of bits for the next 1-byte data to be transmitted. An interrupt request signal occurs immediately after the number of bits specified with these bits are transmitted.
When a START condition is received, these bits become "0002" and the address data is always transmitted and received in 8 bits.

(2) Bit 3: $I^{2} C$ interface use enable bit (ESO)

This bit enables usage of the multimaster $I^{2} \mathrm{C}$ BUS interface. When this bit is set to " 0 ," interface is in the disabled status, so the SDA and the SCL become high-impedance. When the bit is set to "1," use of the interface is enabled.
When ESO = " 0 ," the following is performed.

- PIN = " 1, " BB = " 0 " and $\mathrm{AL}=$ " 0 " are set (bits of the $\mathrm{I}^{2} \mathrm{C}$ status register at address 00F816).
- Writing data to the $\mathrm{I}^{2} \mathrm{C}$ data shift register (address 00F616) is disabled.

(3) Bit 4: data format selection bit (ALS)

This bit decides whether or not to recognize slave addresses. When this bit is set to " 0 ," the addressing format is selected, so that address data is recognized. When a match is found between a slave address and address data as a result of comparison or when a general call (refer to "8.6.5 ${ }^{2}$ C Status Register," bit 1) is received, transmission processing can be performed. When this bit is set to " 1 ," the free data format is selected, so that slave addresses are not recognized.
(4) Bit 5: addressing format selection bit (10BIT SAD)

This bit selects a slave address specification format. When this bit is set to " 0 ," the 7 -bit addressing format is selected. In this case, only the high-order 7 bits (slave address) of the ${ }^{2} \mathrm{C}$ address register (address 00F716) are compared with address data. When this bit is set to "1," the 10 -bit addressing format is selected and all the bits of the ${ }^{2} \mathrm{C}$ address register are compared with the address data.
(5) Bits 6 and 7: connection control bits between $\mathrm{I}^{2} \mathrm{C}$-BUS interface and ports (BSELO, BSEL1)
These bits control the connection between SCL and ports or SDA and ports (refer to Figure 8.6.5).

Note: To connect with SCL3 and SDA3, set bits 2 and 3 of the port P3 register (00C616) .

Fig. 8.6.5 Connection Port Control by BSEL0 and BSEL1

12C Control Register

${ }^{12} \mathrm{C}$ control register (S1D) [Address 00F916]

B	Name	Functions	After reset	R'W
$\begin{gathered} 0 \\ \text { to } \\ 2 \end{gathered}$	Bit counter (Number of transmit/recieve bits) (BC 0 to BC 2)	$\begin{array}{\|ccc} \hline \text { b2 } & \text { b1 } & \text { b0 } \\ 0 & 0 & 0: 8 \\ 0 & 0 & 1: 7 \\ 0 & 1 & 0: 6 \\ 0 & 1 & 1: 5 \\ 1 & 0 & 0: 4 \\ 1 & 0 & 1: 3 \\ 1 & 1 & 0: 2 \\ 1 & 1 & 1: 1 \end{array}$	0	R:W
3	${ }^{1}$ ²C-BUS interface use enable bit (ESO)	0 : Disabled 1 : Enabled	0	R:W
4	Data format selection bit(ALS)	0 : Addressing mode 1 : Free data format	0	R:W
5	Addressing format selection bit (10BIT SAD)	$0: 7$-bit addressing format 1:10-bit addressing format	0	R:W
6, 7	Connection control bits between $I^{2} \mathrm{C}$-BUS interface and ports (BSELO, BSEL1)	```b7 b6 Connection port (See note) 0 1:SCL1, SDA1 1 0: SCL2, SDA2 1 1:SCL1, SDA1 SCL2, SDA2```	0	R:W

Note: • Set the corresponding direction register to "1" to use the port as multi-master I ${ }^{2} \mathrm{C}$-BUS interface. - To use SCL1, SDA1, SCL2 and SDA2, set the port P3 Register (address 00C616) bit 2 to 0.

Fig. 8.6.6 $\mathrm{I}^{2} \mathrm{C}$ Control Register

Port P3 register

b7 b6 b5 b4 b3 b2 b1 b0

Notes - For the ports used as the Multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface, set their direction registers to 1.

- To use SCL3 and SDA3, set the $\mathrm{I}^{2} \mathrm{C}$ Control Register (address 00F916) bits 6-7 to 0.

Fig. 8.6.7 Port P3 Register

8.6.5 $\mathrm{I}^{2} \mathrm{C}$ Status Register

The $I^{2} \mathrm{C}$ status register (address 00F816) controls the $\mathrm{I}^{2} \mathrm{C}$-BUS interface status. The low-order 4 bits are read-only bits and the highorder 4 bits can be read out and written to.

(1) Bit 0: last receive bit (LRB)

This bit stores the last bit value of received data and can also be used for ACK receive confirmation. If ACK is returned when an ACK clock occurs, the LRB bit is set to "0." If ACK is not returned, this bit is set to "1." Except in the ACK mode, the last bit value of received data is input. The state of this bit is changed from " 1 " to " 0 " by executing a write instruction to the $\mathrm{I}^{2} \mathrm{C}$ data shift register (address 00F616).

(2) Bit 1: general call detecting flag (ADO)

This bit is set to " 1 " when a general call* whose address data is all " 0 " is received in the slave mode. By a general call of the master device, every slave device receives control data after the general call. The AD0 bit is set to " 0 " by detecting the STOP condition or START condition.
*General call: The master transmits the general call address "0016" to all slaves.

(3) Bit 2: slave address comparison flag (AAS)

This flag indicates a comparison result of address data.

- In the slave receive mode, when the 7-bit addressing format is selected, this bit is set to " 1 " in either of the following conditions.
- The address data immediately after occurrence of a START condition matches the slave address stored in the high-order 7 bits of the $I^{2} \mathrm{C}$ address register (address 00F716).
- A general call is received.
- In the slave reception mode, when the 10-bit addressing format is selected, this bit is set to " 1 " in the following condition.
- When the address data is compared with the $\mathrm{I}^{2} \mathrm{C}$ address register (8 bits consisting of slave address and RBW), the first bytes match.
- The state of this bit is changed from " 1 " to " 0 " by executing a write instruction to the $\mathrm{I}^{2} \mathrm{C}$ data shift register (address 00F616).

(4) Bit 3: arbitration lost* detecting flag (AL)

In the master transmission mode, when a device other than the microcomputer sets the SDA to "L," arbitration is judged to have been lost, so that this bit is set to "1." At the same time, the TRX bit is set to "0," so that immediately after transmission of the byte whose arbitration was lost is completed, the MST bit is set to " 0 ." When arbitration is lost during slave address transmission, the TRX bit is set to " 0 " and the reception mode is set. Consequently, it becomes possible to receive and recognize its own slave address transmitted by another master device.
*Arbitration lost: The status in which communication as a master is disabled.

(5) Bit 4: $I^{2} \mathrm{C}$-BUS interface interrupt request bit (PIN)

This bit generates an interrupt request signal. Each time 1-byte data is transmitted, the state of the PIN bit changes from " 1 " to " 0 ." At the same time, an interrupt request signal is sent to the CPU. The PIN bit is set to " 0 " in synchronization with a falling edge of the last clock (including the ACK clock) of an internal clock and an interrupt request signal occurs in synchronization with a falling edge of the PIN bit. When the PIN bit is " 0 ," the SCL is kept in the " 0 " state and clock generation is disabled. Figure 8.6 .9 shows an interrupt request signal generating timing chart.
The PIN bit is set to " 1 " in any one of the following conditions.

- Executing a write instruction to the $\mathrm{I}^{2} \mathrm{C}$ data shift register (address 00F616).
- When the ESO bit is " 0 "
- At reset

The conditions in which the PIN bit is set to "0" are shown below:

- Immediately after completion of 1-byte data transmission (including when arbitration lost is detected)
- Immediately after completion of 1-byte data reception
- In the slave reception mode, with ALS = "0" and immediately after completion of slave address or general call address reception
- In the slave reception mode, with ALS = " 1 " and immediately after completion of address data reception

(6) Bit 5: bus busy flag (BB)

This bit indicates the status of the bus system. When this bit is set to " 0 ," this bus system is not busy and a START condition can be generated. When this bit is set to " 1 ," this bus system is busy and the occurrence of a START condition is disabled by the START condition duplication prevention function (See note).
This flag can be written by software only in the master transmission mode. In the other modes, this bit is set to " 1 " by detecting a START condition and set to " 0 " by detecting a STOP condition. When the ESO bit of the $I^{2} \mathrm{C}$ control register (address 00F916) is " 0 " at reset, the BB flag is kept in the " 0 " state.

(7) Bit 6: communication mode specification bit (transfer direction specification bit: TRX)

This bit decides the direction of transfer for data communication. When this bit is " 0 ," the reception mode is selected and the data of a transmitting device is received. When the bit is " 1 ," the transmission mode is selected and address data and control data are output into the SDA in synchronization with the clock generated on the SCL.
When the ALS bit of the $I^{2} \mathrm{C}$ control register (address 00F916) is " 0 " in the slave reception mode, the TRX bit is set to " 1 " (transmit) if the least significant bit (R/W bit) of the address data transmitted by the master is " 1 ." When the ALS bit is " 0 " and the R/W bit is " 0 ," the TRX bit is cleared to " 0 " (receive).
The TRX bit is cleared to " 0 " in one of the following conditions.

- When arbitration lost is detected.
- When a STOP condition is detected.
- When occurence of a START condition is disabled by the START condition duplication prevention function (Note).
- When MST = " 0 " and a START condition is detected.
- When MST = "0" and ACK non-return is detected.
- At reset

(8) Bit 7: Communication mode specification bit (master/slave specification bit: MST)

This bit is used for master/slave specification in data communications. When this bit is " 0 ," the slave is specified, so that a START condition and a STOP condition generated by the master are received, and data communication is performed in synchronization with the clock generated by the master. When this bit is " 1, " the master is specified and a START condition and a STOP condition are generated, and also the clocks required for data communication are generated on the SCL.
The MST bit is cleared to " 0 " in any of the following conditions.

- Immediately after completion of 1-byte data transmission when arbitration lost is detected
- When a STOP condition is detected.
- When occurence of a START condition is disabled by the START condition duplication prevention function (Note).
- At reset

Note: The START condition duplication prevention function disables the START condition generation, bit counter reset, and SCL output, when the following condition is satisfied:
a START condition is set by another master device.
$\mathrm{I}^{2} \mathrm{C}$ Status Register

Note : These bits and flags can be read out, but cannnot be written.

Fig. 8.6.8 $\mathrm{I}^{2} \mathrm{C}$ Status Register

Fig. 8.6.9 Interrupt Request Signal Generation Timing

8.6.6 START Condition Generation Method

When the ESO bit of the $I^{2} \mathrm{C}$ control register (address 00F916) is " 1 ," execute a write instruction to the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) to set the MST, TRX and BB bits to "1." A START condition will then be generated. After that, the bit counter becomes "0002" and an SCL is output for 1 byte. The START condition generation timing and BB bit set timing are different in the standard clock mode and the highspeed clock mode. Refer to Figure 8.6.10 for the START condition generation timing diagram, and Table 8.6.2 for the START condition/ STOP condition generation timing table.

8.6.7 STOP Condition Generation Method

When the ESO bit of the ${ }^{2}$ C control register (address 00F916) is " 1 ," execute a write instruction to the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) to set the MST bit and the TRX bit to " 1 " and the BB bit to " 0 ". A STOP condition will then be generated. The STOP condition generation timing and the BB flag reset timing are different in the standard clock mode and the high-speed clock mode. Refer to Figure 8.6.11 for the STOP condition generation timing diagram, and Table 8.6.2 for the START condition/STOP condition generation timing table.
${ }^{12} \mathrm{C}$ status register
write signal
SCL
SDA
BB flag

Fig. 8.6.10 START Condition Generation Timing Diagram

Fig. 8.6.11 STOP Condition Generation Timing Diagram

Table 8.6.2 START Condition/STOP Condition Generation Timing Table

Item	Standard Clock Mode	High-speed Clock Mode
Setup time (START condition)	$5.0 \mu \mathrm{~s}(20$ cycles $)$	$2.5 \mu \mathrm{~s}(10$ cycles $)$
Setup time (STOP condition)	$4.25 \mu \mathrm{~s}(17$ cycles $)$	$1.75 \mu \mathrm{~s}(7$ cycles $)$
Hold time	$5.0 \mu \mathrm{~s}$ (20 cycles)	$2.5 \mu \mathrm{~s}$ (10 cycles)
Set/reset time for BB flag	$3.0 \mu \mathrm{~s}(12$ cycles $)$	$1.5 \mu \mathrm{~s}(6$ cycles $)$

Note: Absolute time at $\phi=4 \mathrm{MHz}$. The value in parentheses denotes the number of ϕ cycles.
$\phi=8.95 / 2 \mathrm{MHz}$ at $\mathrm{FSCIN}=3.58 \mathrm{MHz}$
$\phi=8.86 / 2 \mathrm{MHz}$ at $\mathrm{FSCIN}=4.43 \mathrm{MHz}$

8.6.8 START/STOP Condition Detect Conditions

The START/STOP condition detect conditions are shown in Figure 8.6.12 and Table 8.6.3. Only when the 3 conditions of Table 8.6.3 are satisfied, a START/STOP condition can be detected.

Note: When a STOP condition is detected in the slave mode (MST $=0$), an interrupt request signal "IICIRQ" is generated to the CPU.

Fig. 8.6.12 START Condition/STOP Condition Detect Timing Diagram

Table 8.6.3 START Condition/STOP Condition Detect Conditions

Standard Clock Mode	High-speed Clock Mode		
$6.5 \mu \mathrm{~s}(26$ cycles $)<$ SCL			
release time		$] 1.0 \mu \mathrm{~s}(4$ cycles $)<$ SCL	release time
---:	$	$	

Note: Absolute time at $\phi=4 \mathrm{MHz}$. The value in parentheses denotes the number of ϕ cycles.
$\phi=8.95 / 2 \mathrm{MHz}$ at $\mathrm{FSCIN}=3.58 \mathrm{MHz}$
$\phi=8.86 / 2 \mathrm{MHz}$ at $\mathrm{FSCIN}=4.43 \mathrm{MHz}$

8.6.9 Address Data Communication

There are two address data communication formats, namely, 7-bit addressing format and 10-bit addressing format. The respective address communication formats are described below.

(1) 7-bit addressing format

To support the 7-bit addressing format, set the 10BIT SAD bit of the $I^{2} \mathrm{C}$ control register (address 00F916) to " 0 ." The first 7 -bit address data transmitted from the master is compared with the high-order 7bit slave address stored in the $\mathrm{I}^{2} \mathrm{C}$ address register (address 00F716). At the time of this comparison, address comparison of the RBW bit of the $\mathrm{I}^{2} \mathrm{C}$ address register (address 00F716) is not made. For the data transmission format when the 7-bit addressing format is selected, refer to Figure 8.6.13, (1) and (2).

(2) 10-bit addressing format

To support the 10-bit addressing format, set the 10BIT SAD bit of the $I^{2} \mathrm{C}$ control register (address 00F916) to "1." An address comparison is made between the first-byte address data transmitted from the master and the 7 -bit slave address stored in the $\mathrm{I}^{2} \mathrm{C}$ address register (address 00F716). At the time of this comparison, an address comparison is performed between the RBW bit of the $I^{2} \mathrm{C}$ address register (address 00F716) and the R/W bit, which is the last bit of the address data transmitted from the master. In the 10-bit addressing mode, the R/W bit, not only specifies the direction of communication for control data but is also processed as an address data bit.
When the first-byte address data matches the slave address, the AAS bit of the $I^{2} \mathrm{C}$ status register (address 00F816) is set to "1." After the second-byte address data is stored into the $\mathrm{I}^{2} \mathrm{C}$ data shift register (address 00F616), perform an address comparison between the sec-ond-byte data and the slave address by software. When the address data of the 2nd byte matches the slave address, set the RBW bit of the $\mathrm{I}^{2} \mathrm{C}$ address register (address 00F716) to " 1 " by software. This processing can match the 7-bit slave address and R/W data, which are received after a RESTART condition is detected, with the value of the $\mathrm{I}^{2} \mathrm{C}$ address register (address 00F716). For the data transmission format when the 10-bit addressing format is selected, refer to Figure 8.6.13, (3) and (4).

8.6.10 Example of Master Transmission

An example of master transmission in the standard clock mode, at the SCL frequency of 100 kHz with the ACK return mode enabled, is shown below.
(1) Set a slave address in the high-order 7 bits of the $\mathrm{I}^{2} \mathrm{C}$ address register (address 00F716) and " 0 " in the RBW bit.
(2) Set the ACK return mode and $\mathrm{SCL}=100 \mathrm{kHz}$ by setting " 8516 " in the $I^{2} \mathrm{C}$ clock control register (address 00FA16).
(3) Set " 1016 " in the ${ }^{2} \mathrm{C}$ status register (address 00F816) and hold the SCL at HIGH.
(4) Set a communication enable status by setting " 4816 " in the $\mathrm{I}^{2} \mathrm{C}$ control register (address 00F916).
(5) Set the address data of the destination of transmission in the highorder 7 bits of the $\mathrm{I}^{2} \mathrm{C}$ data shift register (address 00F616) and set " 0 " in the least significant bit.
(6) Set "F016" in the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) to generate a START condition. At this time, an SCL for 1 byte and an ACK clock automatically occurs.
(7) Set transmit data in the $\mathrm{I}^{2} \mathrm{C}$ data shift register (address 00F616). At this time, an SCL and an ACK clock automatically occurs.
(8) When transmitting control data of more than 1 byte, repeat step (7).
(9) Set "D016" in the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816). After this, if ACK is not returned or transmission ends, a STOP condition will be generated.

8.6.11 Example of Slave Reception

An example of slave reception in the high-speed clock mode, at the SCL frequency of 400 kHz , with the ACK non-return mode enabled while using the addressing format, is shown below.
(1) Set a slave address in the high-order 7 bits of the $\mathrm{I}^{2} \mathrm{C}$ address register (address 00F716) and " 0 " in the RBW bit.
(2) Set the ACK non-return mode and SCL $=400 \mathrm{kHz}$ by setting " 2516 " in the $\mathrm{I}^{2} \mathrm{C}$ clock control register (address 00FA16).
(3) Set " 1016 " in the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) and hold the SCL at HIGH.
(4) Set a communication enable status by setting " 4816 " in the $\mathrm{I}^{2} \mathrm{C}$ control register (address 00F916).
(5) When a START condition is received, an address comparison is executed.
(6) •When all transmitted address are" 0 " (general call):

ADO of the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) is set to " 1 " and an interrupt request signal occurs.
-When the transmitted addresses match the address set in (1):
ASS of the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) is set to " 1 " and an interrupt request signal occurs.

- In the cases other than the above:

AD0 and AAS of the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) are set to "0" and no interrupt request signal occurs.
(7) Set dummy data in the $\mathrm{I}^{2} \mathrm{C}$ data shift register (address 00F616).
(8) When receiving control data of more than 1 byte, repeat step (7).
(9) When a STOP condition is detected, the communication ends.

(1) A master-transmitter transmits data to a slave-receiver

(2) A master-receiver receives data from a slave-transmitter

(3) A master-transmitter transmits data to a slave-receiver with a 10-bit address

(4) A master-receiver receives data from a slave-transmitter with a 10-bit address

```
S : START condition
P : STOP condition
R/W : Read/Write bit
```

```From master to slave
A : ACK bit
Sr : Restart condition
R/W : Read/Write bit
```

```From slave to master
```

Fig. 8.6.13 Address Data Communication Format

8.6.12 Precautions when using multi-master $I^{2} \mathrm{C}$-BUS interface

(1) Read-modify-write instruction

Precautions for executing the read-modify-write instructions, such as SEB, and CLB, is for each register of the multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface are described below.

- ${ }^{2} \mathrm{C}$ data shift register (SO)

When executing the read-modify-write instruction for this register during transfer, data may become an arbitrary value.

- ${ }^{2} \mathrm{C}$ address register (SOD)

When the read-modify-write instruction is executed for this register at detection of the STOP condition, data may become an arbitrary value. Because hardware changes the read/write bit (RBW) at the above timing.

- ${ }^{2} \mathrm{C}$ status register (S1)

Do not execute the read-modify-write instruction for this register because all bits of this register are changed by hardware.

- ${ }^{2}$ C control register (S1D)

When the read-modify-write instruction is executed for this register at detection of the START condition or at completion of the byte transfer, data may become an arbitrary value because hardware changes the bit counter ($\mathrm{BC} 0-\mathrm{BC} 2$) at the above timing.

- ${ }^{2} \mathrm{C}$ clock control register (S2)

The read-modify-write instruction can be executed for this register.

(2) START condition generating procedure using multi-master

(1) Procedure example (The necessary conditions for the procedure are described in (2) to (5) below).

LDA		
SEI		
BBS 5, STake out slave address value)		
(Interrupt disabled)		

BUSFREE:
STA SO
(Write slave address value)
LDM \#\$F0, S1 (Trigger START condition generation)
CLI
(Interrupt enabled)

BUSBUSY:
CLI (Interrupt enabled)
(2) Use "STA," "STX" or "STY" of the zero page addressing instruction for writing the slave address value to the $\mathrm{I}^{2} \mathrm{C}$ data shift register.
(3) Use "LDM" instruction for setting trigger of START condition generation.
(4) Write the slave address value of (2) and set trigger of START condition generation as in (3) continuously, as shown in the procedure example.
(5) Disable interrupts during the following three process steps:

- BB flag confirmation
- Write slave address value
- Trigger of START condition generation

When the condition of the BB flag is bus busy, enable interrupts immediately.

(3) RESTART condition generation procedure

(1) Procedure example (The necessary conditions for the procedure are described in (2) to (6) below.)

Execute the following procedure when the PIN bit is " 0 ."

	•	
LDM	$\# \$ 00$, S1	(Select slave receive mode)
LDA	-	(Take out slave address value)
SEI		(Interrupt disabled)
STA	SO	(Write slave address value)
LDM	$\# \$ F 0, S 1$	(Trigger RESTART condition generation)
CLI		(Interrupt enabled)

(2) Select the slave receive mode when the PIN bit is " 0 ." Do not write " 1 " to the PIN bit. Neither " 0 " nor " 1 " is specified for the writing to the BB bit.
The TRX bit becomes " 0 " and the SDA pin is released.
(3) The SCL pin is released by writing the slave address value to the $I^{2} \mathrm{C}$ data shift register. Use "STA," "STX" or "STY" of the zero page addressing instruction for writing.
(4) Use "LDM" instruction for setting trigger of RESTART condition generation.
(5) Write the slave address value of (3) and set trigger of RESTART condition generation of (4) continuously, as shown in the procedure example.
(6) Disable interrupts during the following two process steps:

- Write slave address value
- Trigger RESTART condition generation

(4) STOP condition generation procedure

(1) Procedure example (The necessary conditions for the procedure are described in (2) to (4) below.)

SEI		
LDM	(Interrupt disabled)	
NOP		(Select master transmit mode) LDM (Set NOP)
CLI		(Trigger STOP condition generation)
	(Interrupt enabled)	

(2) Write " 0 " to the PIN bit when master transmit mode is selected.
(3) Execute "NOP" instruction after master transmit mode is set. Also, set trigger of STOP condition generation within 10 cycles after selecting the master trasmit mode.
(4) Disable interrupts during the following two process steps:

- Select master transmit mode
- Trigger STOP condition generation

(5) Writing to $I^{2} \mathrm{C}$ status register

Do not execute an instruction to set the PIN bit to " 1 " from " 0 " and an instruction to set the MST and TRX bits to " 0 " from " 1 " simultaneously as it may cause the SCL pin the SDA pin to be released after about one machine cycle. Also, do not execute an instruction to set the MST and TRX bits to " 0 " from " 1 " when the PIN bit is " 1 ," as it may cause the same problem.

(6) Process after STOP condition generation

Do not write data in the $I^{2} \mathrm{C}$ data shift register S 0 and the $\mathrm{I}^{2} \mathrm{C}$ status register S 1 until the bus busy flag BB becomes "0" after generating the STOP condition in the master mode. Doing so may cause the STOP condition waveform from being generated normally. Reading the registers does not cause the same problem.

8.7 PWM OUTPUT FUNCTION

This microcomputer is equipped with five 8-bit PWMs (PWM0PWM4). PWM0-PWM4 have the same circuit structure, an 8-bit resolution with minimum resolution bit width of $4 \mu \mathrm{~s}($ for $f(X I N)=8 M H z)$ and repeat period of $1024 \mu \mathrm{~s}($ for $f(X I N)=8 \mathrm{MHz})$. $\mathrm{f}(\mathrm{XIN}): 8.95 \mathrm{MHz}$ at $\mathrm{FSCIN}=3.58 \mathrm{MHz}$
Min. resolution bit width: $4 \mu \mathrm{~s} \times 8 / 8.95=3.58 \mu \mathrm{~s}$ Repeat period: $1024 \mu \mathrm{~s} \times 8 / 8.95=915 \mu \mathrm{~s}$ $\mathrm{f}(\mathrm{XIN}): 8.86 \mathrm{MHz}$ at $\mathrm{FSCIN}=4.43 \mathrm{MHz}$ Min. resolution bit width: $4 \mu \mathrm{~s} \times 8 / 8.86=3.61 \mu \mathrm{~s}$ Repeat period: $1024 \mu \mathrm{~s} \times 8 / 8.86=925 \mu \mathrm{~s}$.
Figure 8.7.1 shows the PWM block diagram. The PWM timing generating circuit applies individual control signals to PWM0-PWM4 using $f(X I N)$ divided by 2 as a reference signal.

8.7.1 Data Setting

When outputting PWM0-PWM4, set 8-bit output data to the PWMi register (i means 0 to 4; addresses 020016 to 020416).

8.7.2 Transmitting Data from Register to PWM circuit

Data transfer from the 8-bit PWM register to the 8-bit PWM circuit is executed when writing data to the register.
The signal output from the 8-bit PWM output pin corresponds to the contents of this register.

8.7.3 Operating of 8-bit PWM

The following explains the PWM operation.
First, set bit 0 of PWM mode register 1 (address 020816) to "0" (at reset, bit 0 is already set to " 0 " automatically), so that the PWM count source is supplied.
PWM0-PWM4 are also used as pins P00-P04. Set the corresponding bits of the port P0 direction register to "1" (output mode). And select each output polarity by bit 3 of PWM mode register 1 (address 020816). Then, set bits 4 to 0 of PWM mode register 2 (address 020916) to "1" (PWM output).

The PWM waveform is output from the PWM output pins by setting these registers.
Figure 8.7.2 shows the 8 -bit PWM timing. One cycle (T) is composed of $256\left(2^{8}\right)$ segments. 8 kinds of pulses, relative to the weight of each bit (bits 0 to 7), are output inside the circuit during 1 cycle. Refer to Figure 8.7.2 (a). The 8-bit PWM outputs a waveform which is the logical sum (OR) of pulses corresponding to the contents of bits 0 to 7 of the 8 -bit PWM register. Several examples are shown in Figure 8.7.2 (b). 256 kinds of output (HIGH area: 0/256 to 255/256) are selected by changing the contents of the PWM register. An entirely HIGH section cannot be output, i.e. 256/256.

8.7.4 Output after Reset

At reset, the output of ports $\mathrm{P} 00-\mathrm{P} 04$ is in the high-impedance state, and the contents of the PWM register and the PWM circuit are undefined. Note that after reset, the PWM output is undefined until setting the PWM register.

Fig. 8.7.1 PWM Block Diagram

Fig. 8.7.2 PWM Timing

PWM Mode Register 1

b7b6 b5b4b3 b2b1b0

Fig. 8.7.3 PWM Mode Register 1

PWM Mode Register 2

Fig. 8.7.4 PWM Mode Register 2

8.8 A-D COMPARATOR

The A-D comparator consists of a 7-bit D-A converter and a comparator. The A-D comparator block diagram is shown in Figure 8.8.1. The reference voltage "Vref" for D-A conversion is set by bits 0 to 6 of A-D control register 2 (address 00ED16).
The comparison result of the analog input voltage and the reference voltage "Vref" is stored in bit 4 of A-D control register 1 (address 00EC16).
For A-D comparison, set " 0 " to corresponding bits of the direction register to use ports as analog input pins. Write the data to select analog input pins for bits 0 to 2 of A-D control register 1 and write the digital value corresponding to Vref to be compared to bits 0 to 4 of A-D control register 2 . The voltage comparison is started by writing to A-D control register 2, and it is completed after 16 machine cycles (NOP instruction $\times 8$).

Fig. 8.8.1 A-D Comparator Block Diagram

A-D Control Register 1

b7 b6 b5 b4 b3 b2 b1 b0
A-D control register 1 (AD1) [Address 00EC16]

B	Name	Functions	After reset	R W
$\begin{aligned} & \hline 0 \\ & \text { to } \\ & 2 \end{aligned}$	Analog input pin selection bits (ADC10 to ADC12)	$\begin{array}{\|ccc\|} \hline \text { b2 } & \text { b1 } & \text { b0 } \\ 0 & 0 & 0 \\ 0 & 0 & \text { AD1 } \\ 0 & 1: A D 2 \\ 0 & 1 & 0: A D 3 \\ 0 & 1 & 1: A D 4 \\ 1 & 0 & :: A D 5 \\ 1 & 0 & 1: A D 6 \\ 1 & 1 & 0: A D 7 \\ 1 & 1 & 1: A D 8 \\ \hline \end{array}$	0	R R W
3	This bit is a write disable bit. When this bit is read out, the value is " 0. ."		0	
4	Storage bit of comparison result (ADC14)	0 : Input voltage < reference voltage 1: Input voltage > reference voltage	Indeterminate	
$\begin{array}{r}\text { to } \\ \\ \text { to } \\ \hline\end{array}$	Nothing is assigned. These bits are write disable bits. When these bits are read out, the values are " 0 ."		0	R:-

Fig. 8.8.2 A-D Control Register 1

A-D Control Register 2

A-D control register 2 (AD2) [Address 00ED 16]

B	Name	Functions	After reset	R;W
$\begin{gathered} 0 \\ \text { to } \\ 6 \end{gathered}$	D-A converter set bits (ADC20 to ADC25)		0	R:W
7	Nothing is assigned. When these bits are r	is a write disable bit. , the values are " 0 ."	0	R :-

Fig. 8.8.3 A-D Control Register 2

8.9 ROM CORRECTION FUNCTION

This can correct program data in the ROM. Up to 2 addresses can be corrected; a program for correction is stored in the ROM correction vector in the RAM as the top address. There are 2 vectors for ROM correction:

Vector 1 : address 030016
Vector 2 : address 032016
Set the address of the ROM data to be corrected into the ROM correction address register. When the value of the counter matches the ROM data address in the top address of the ROM correction vector, the main program branches to the correction program stored in the ROM memory. To return from the correction program to the main program, the op code and operand of the JMP instruction (total of 3 bytes) are necessary at the end of the correction program.
The ROM correction function is controlled by the ROM correction enable register.

Notes 1:Specify the first address (op code address) of each instruction as the ROM correction address.
2: Use the JMP instruction (total of 3 bytes) to return from the correction program to the main program.
3: Do not set the same ROM correction address to both vectors 1 and 2.

Fig. 8.9.1 ROM Correction Address Registers

ROM Correction Enable Register

b7 b6 b5 b4 b3 b2 b1 b0

Fig. 8.9.2 ROM Correction Enable Register

8.10 DATA SLICER

This microcomputer includes the data slicer function for the closed caption decoder (referred to as the CCD). This function takes out the caption data superimposed in the vertical blanking interval of a composite video signal. A composite video signal, which makes the sync chip's polarity negative, is input to the CVIN pin.

When the data slicer function is not used, the data slicer circuit and the timing signal generating circuit can be cut off by setting bit 0 of data slicer control register 1 (address 00E016) to "0." These settings support the low-power dissipation.

Fig. 8.10.1 Data Slicer Block Diagram

8.10.1 Notes When not Using Data Slicer

When bit 0 of data slicer control register 1 (address 00E016) is " 0 ,"
terminate the pins as shown in Figure 8.10.2.
<When data slicer circuit and timing signal generating circuit are in OFF state>

Leave HLF pin open.

Leave V hold pin open.

Pull-down CVin pin to Vss through a resistor of $5 \mathrm{k} \Omega$ or more.

Fig. 8.10.2 Termination of Data Slicer Input/Output Pins when Data Slicer Circuit and Timing Generating Circuit are in OFF State

When both bits 0 and 2 of data slicer control register 1 (address
00E016) are " 1 ," terminate the pins as shown in Figure 8.10.3.
<When using a reference clock generated in timing signal generating circuit as OSD clock>

Connect the same external circuit as when using data slicer to HLF pin.

Fig. 8.10.3 Termination of Data Slicer Input/Output Pins when Timing Signal Generating Circuit Is in ON State

Figures 8.10 .4 and 8.10.5 the data slicer control registers.

Fig. 8.10.4 Data Slicer Control Register 1

Data Slicer Control Register 2

Data slicer control register 2 (DSC2) [Address 00E116]

B	Name	Functions	After reset	R :W
1	Caption data latch completion flag 1 (DSC20)	0 : Data is not latched yet and a clock-run-in is not determined. 1: Data is latched and a clock-run-in is determined	Indeterminate	
1	Fix this bit to "1."		0	R :W
2	Test bit	Read-only	Indeterminate	R:
0	Field determination flag(DSC23)	$\begin{aligned} & \text { 0: F2 } \\ & \text { 1: F1 } \end{aligned}$	Indeterminate	R:
4	Vertical synchronous signal (Vsep) generating method selection bit (DSC24)	$\begin{aligned} & \text { 0: Method (1) } \\ & \text { 1: Method (2) } \end{aligned}$	0	R :W
5	V-pulse shape determination flag (DSC25)	0 : Match 1: Mismatch	Indeterminate	R:
6	Fix this bit to "0."		0	R :W
7	Test bit	Read-only	Indeterminate	R:-

Definition of fields 1 (F1) and 2 (F2)

Fig. 8.10.5 Data Slicer Control Register 2

8.10.2 Clamping Circuit and Low-pass Filter

The clamp circuit clamps the sync chip part of the composite video signal input from the CVIn pin. The low-pass filter attenuates the noise of the clamped composite video signal. The CVIN pin to which composite video signal is input requires an external capacitor ($0.1 \mu \mathrm{~F}$) coupling. Pull down the CVIN pin with a resistor of hundreds of kiloohms to $1 \mathrm{M} \Omega$. In addition, we recommend installing a simple lowpass filter externally, using a resistor and a capacitor at the CVIN pin (refer to Figure 8.10.1).

8.10.3 Sync Slice Circuit

This circuit takes out a composite sync signal from the output signal of the low-pass filter.

8.10.4 Synchronous Signal Separation Circuit

This circuit separates a horizontal synchronous signal and a vertical synchronous signal from the composite sync signal taken out in the sync slice circuit.
(1) Horizontal Synchronous Signal (Hsep)

A one-shot horizontal synchronizing signal Hsep is generated at the falling edge of the composite sync signal.
(2) Vertical Synchronous Signal (Vsep)

As a Vsep signal generating method, it is possible to select one of the following 2 methods by using bit 4 of data slicer control register 2 (address 00E116).
-Method 1 The LOW level width of the composite sync signal is measured. If this width exceeds a certain time, a Vsep signal is generated in synchronization with the rising of the timing signal immediately after this LOW level.
-Method 2 The LOW level width of the composite sync signal is measured. If this width exceeds a certain time, it is detected whether a falling of the composite sync signal exits or not in the LOW level period of the timing signal immediately after this LOW level. If a falling exists, a Vsep signal is generated in synchronization with the rising of the timing signal (refer to Figure 8.10.6).

Figure 8.10 .6 shows a V sep generating timing. The timing signal shown in the figure is generated from the reference clock which the timing generating circuit outputs.
Reading bit 5 of data slicer control register 2 permits determinating the shape of the V-pulse portion of the composite sync signal. As shown in Figure 8.10.7, when the A level matches the B level, this bit is " 0. " In the case of a mismatch, the bit is " 1 ."

A $V_{\text {sep signal }}$ is generated at a rising of the timing signal immediately after the LOW level width of the composite sync signal exceeds a certain time.

Fig. 8.10.6 Vsep Generating Timing (method 2)

8.10.5 Timing Signal Generating Circuit

This circuit generates a reference clock which is 832 times as large as the horizontal synchronous signal frequency. It also generates various timing signals on the basis of the reference clock, horizontal synchronous signal and vertical synchronizing signal. The circuit operates by setting bit 0 of data slicer control register 1 (address 00E016) to "1."
The reference clock can be used as a display clock for the OSD function in addition to the data slicer. The Hsync signal can be used as a count source instead of the composite sync signal. However, when the HSYNC signal is selected, the data slicer cannot be used. A count source of the reference clock can be selected by bit 2 of data slicer control register 1 (address 00E016).
For pins HLF, connect a resistor and a capacitor as shown in Figure 8.10.1. Make the length of wiring which is connected to these pins as short as possible to prevent a leakage current from being generated.

Note: It takes a few tens of milliseconds until the reference clock becomes stable after the data slicer and the timing signal generating circuit are started. In this period, various timing signals, Hsep signals and Vsep signals become unstable. For this reason, take stabilization time into consideration when programming.

Fig. 8.10.7 Determination of V-pulse Waveform

8.10.6 Data Slice Line Specification Circuit
 (1) Specification of data slice line

This circuit determines the lines on to which caption data is superimposed. Data can be sliced for line 21 and one arbitrary line in both field (2 lines total per field). The caption position register (address 00E616) is used for each setting (refer to Table 8.10.1).
The counter is reset at the falling edge of V sep and is incremented by 1 every Hsep pulse. When the counter value matches the value specified by bits 4 to 0 of the caption position register, this H sep is sliced.
The values of " 0016 " to " 1 F16" can be set in the caption position register (when setting only one arbitrary line). Figure 8.10.8 shows the signals in the vertical blanking interval. Figure 8.10 .9 shows the structure of the caption position register.

(2) Specification of line to set slice voltage

Table 8.10.1 shows which field and line generates the reference slice voltage for the clock run-in pulse of each line. The field to generate slice voltage is specified by bit 1 of data slicer control register 1 . The line to generate slice voltage for one field is specified by bits 6 and 7 of the caption position register (refer to Table 8.10.1).

(3) Field determination

The field determination flag can be read out by bit 3 of data slicer control register 2. This flag charges at the falling edge of Vsep.

Fig. 8.10.8 Signals in Vertical Blanking Interval

Caption Position Register

b7 b6 b5 b4 b3 b2 b1 b0

Fig. 8.10.9 Caption Position Register

Table 8.10.1 Specification of Data Slice Line

CPS		Field and Line to Be Sliced Data	Field and Line to Generate Slice Voltage
b7	b6		
0	0	- Both fields of F1 and F2 - Line 21 and a line specified by bits 4 to 0 of CPS (total 2 lines) (See note 2)	- Field specified by bit 1 of DSC1 - Line 21 (total 1 line)
0	1	- Both fields of F1 and F2 - A line specified by bits 4 to 0 of CPS (total 1 line) (See note 3)	- Field specified by bit 1 of DSC1 - A line specified by bits 4 to 0 of CPS (total 1 line) (See note 3)
1	0	- Both fields of F1 and F2 - Line 21 (total 1 line)	- Field specified by bit 1 of DSC1 - Line 21 (total 1 line)
1	1	- Both fields of F1 and F2 - Line 21 and a line specified by bits 4 to 0 of CPS (total 2 lines) (See note 2)	- Field specified by bit 1 of DSC1 - Line 21 and a line specified by bits 4 to 0 of CPS (total 2 lines) (See note 2)

Notes 1: DSC1 is data slicer control register 1. CPS is caption position register.
2: Set " 0016 " to " 1016 " to bits 4 to 0 of CPS.
3: Set "0016" to " 1 F16" to bits 4 to 0 of CPS.

8.10.7 Reference Voltage Generating Circuit and Comparator

The composite video signal clamped by the clamping circuit is input to the reference voltage generating circuit and the comparator.

(1) Reference voltage generating circuit

This circuit generates a reference voltage (slice voltage) by using the amplitude of the clock run-in pulse in the line specified by the data slice line specification circuit. Connect a capacitor between the Vhold pin and the Vss pin, and make the length of wiring as short as possible to prevent a leakage current from being generated.

(2) Comparator

The comparator compares the voltage of the composite video signal with the voltage (reference voltage) generated in the reference voltage generating circuit, and converts the composite video signal into a digital value.

8.10.8 Start Bit Detecting Circuit

This circuit detects a start bit at the line decided in the data slice line specification circuit.
The detection of a start bit is as follows:.
(1) A sampling clock is generated by dividing the reference clock output by the timing signal.
(2) A clock run-in pulse is detected by the sampling clock.
(3) After detection of the pulse, a start bit pattern is detected from the comparator output.

8.10.9 Clock Run-in Determination Circuit

This circuit determinates clock run-in by counting the number of pulses in a window of the composite video signal.
The reference clock count value in one pulse cycle is stored in bits 3 to 7 of the clock run-in detect register (address 00E416). Read out these bits after the occurrence of a data slicer interrupt (refer to "8.10.12 Interrupt Request Generating Circuit").
Figure 8.10.10 shows the structure of the clock run-in detect register.

Clock Run-in Detect Register

Fig. 8.10.10 Clock Run-in Detect Register

8.10.10 Data Clock Generating Circuit

This circuit generates a data clock synchronized with the start bit detected in the start bit detecting circuit. The data clock stores caption data to the 16-bit shift register. When the 16-bit data has been stored and the clock run-in determination circuit determines clock run-in, the caption data latch completion flag is set. This flag is reset at a falling edge of the vertical synchronous signal (Vsep).

Data Clock Position Register

b7 b6 b5 b4 b3 b2 b1 b0

Fig. 8.10.11 Data Clock Position Register

8.10.11 16-bit Shift Register

The caption data converted into a digital value by the comparator is stored into the 16 -bit shift register in synchronization with the data clock. The contents of the high-order 8 bits of the stored caption data can be obtained by reading out data register 2 (address 00E316) and data register 4 (address 00CF16). The contents of the low-order 8 bits can be obtained by reading out data register 1 (address 00E216) and data register 3 (address 00CE16), respectively. These registers are reset to "0" at a falling edge of V sep. Read out data registers 1 and 2 after the occurrence of a data slicer interrupt (refer to "8.10.12 Interrupt Request Generating Circuit").

8.10.12 Interrupt Request Generating Circuit

The interrupt requests as shown in Table 8.10.3 are generated by combination of the following bits; bits 6 and 7 of the caption position register (address 00E616). Read out the contents of data registers 1 to 4 and the contents of bits 3 to 7 of the clock run-in detect register after the occurrence of a data slicer interrupt request.

Table 8.10.2 Contents of Caption Data Latch Completion Flag and 16-bit Shift Register

Slice Line Specification Mode		Contents of Caption Data Latch Completion Flag		Contents of 16-bit Shift Register	
CPS		Completion Flag 1 (bit 0 of DSC2)	Completion Flag 2 (bit 5 of CPS)	Caption Data Registers 1, 2	Caption Data Registers 3, 4
bit 7	bit 6				
0	0	Line 21	A line specified by bits 4 to 0 of CPS	16-bit data of line 21	16-bit data of a line specified by bits 4 to 0 of CPS
0	1	A line specified by bits 4 to 0 of CPS	Invalid	16-bit data of a line specified by bits 4 to 0 of CPS	Invalid
1	0	Line 21	Invalid	16-bit data of line 21	Invalid
1	1	Line 21	A line specified by bits 4 to 0 of CPS	16-bit data of line 21	16-bit data of a line specified by bits 4 to 0 of CPS

CPS: Caption position register
DSC2: Data slicer control register 2

Table 8.10.3 Occurence Sources of Interrupt Request

Caption position register		Occurence Souces of Interrupt Request at End of Data Slice Line
b7	b 6	
0	0	After slicing line 21
	1	After a line specified by bits 4 to 0 of CPS
1	0	After slicing line 21
	1	After slicing line 21

8.10.13 Synchronous Signal Counter

The synchronous signal counter counts the composite sync signal taken out from a video signal in the data slicer circuit or the vertical synchronous signal Vsep as a count source.
The count value in a certain time (T time) generated by $f(X / \mathrm{IN}) / 2^{13}$ or $\mathrm{f}(\mathrm{XIN}) / 2^{13}$ is stored into the 5 -bit latch. Accordingly, the latch value changes in the cycle of T time. When the count value exceeds "1F16," " 1 F 16 " is stored into the latch.

The latch value can be obtained by reading out the sync pulse counter register (address 00E916). A count source is selected by bit 5 of the sync pulse counter register.
The synchronous signal counter is used when bit 0 of PWM mode register 1 (address 020816) is set to "0."
Figure 8.10 .12 shows the structure of the sync pulse counter and Figure 8.10 .13 shows the synchronous signal counter block diagram.

Sync Pulse Counter Register

Fig. 8.10.12 Sync Pulse Counter Register

Fig. 8.10.13 Synchronous Signal Counter Block Diagram

8.11 OSD FUNCTIONS

Table 8.11.1 outlines the OSD functions.
This microcomputer incorporates an OSD circuit of 32 characters \times 2 lines. There are also 2 display modes which are selected in block units. The display modes are selected by bits 0 and 1 of block control register i ($i=1$ and 2).
The features of each mode are described below.

Table 8.11.1 Features of Each Display Mode

Parameter	Display mode	
	CC mode (Closed caption mode)	OSD mode (Border OFF) (On-screen display mode)
Number of display characters	32 characters $\times 2$ lines	
Dot structure	16×26 dots (Character display area : 16×20 dots)	16×20 dots
Kinds of characters	254 kinds	
Kinds of character sizes	1 kinds	8 kinds
Pre-divide ratio (See note)	$\times 2$ (fixed)	$\times 2, \times 3$
Dot size	$1 \mathrm{Tc} \times 1 / 2 \mathrm{H}$	$1 \mathrm{Tc} \times 1 / 2 \mathrm{H}, 1 \mathrm{Tc} \times 1 \mathrm{H}, 2 \mathrm{Tc} \times 2 \mathrm{H}, 3 \mathrm{Tc} \times 3 \mathrm{H}$
Attribute	Smooth italic, under line, flash	Border (black)
Character font coloring	1 screen : 8 kinds (per character unit)	
Character background coloring	\square	1 screen : 8 kinds (per character unit)
OSD output	R, G, B	
Raster coloring	Possible (per character unit)	
Function	Auto solid space function Window function	\square
Display position	Horizontal: 128 levels, Vertical: 512 levels	
Display expansion (multiline display)	Possible	

Notes 1: The divide ratio of the frequency divider (the pre-divide circuit) is referred as "pre-divide ratio" hereafter. 2: The character size is specified with dot size and pre-divide ratio (refer to 8.11.2 Dot Size).

The OSD circuit has an extended display mode. This mode allows multiple lines (3 lines or more) to be displayed on the screen by interrupting the display each time one line is displayed and rewriting data in the block for which display has been terminated by software.
Figure 8.11 .1 shows the configuration of an OSD character. Figure 8.11.2 shows the block diagram of the OSD circuit. Figure 8.11.3 shows the OSD control register. Figure 8.11 .4 shows block control register i.

Fig. 8.11.1 Configuration of OSD Character Display Area

Fig. 8.11.2 Block Diagram of OSD Circuit

OSD Control Register

OSD control register (OC) [Address 00D016]

B	Name	Functions	After reset	R:W
0	OSD control bit (OC0) (See note 1)	0 : All-blocks display off $1:$ All-blocks display on	0	R
1	Automatic solid space control bit (OC1)	0 : OFF $1:$ ON	0	R:W
2	Window control bit (OC2)	0 : OFF $1:$ ON	0	R:W
3	CC mode clock selection bit (OC3)	$0:$ Data slicer clock $1:$ Internal oscillating clock f(osc)	0	R:W
4	OSD mode clock selection bit (OC4)	0 : Data slicer clock $1:$ Internal oscillating clock f(osc)	0	R
5,6	Fix these bits to "0."			
7	Pre-divide ratio selection bit (OC7) (See note 2)	0 : Divide ratio by the block control register $1:$ Pre-divide ratios $=$ for blocks 1 and 2	0	R

Notes 1: Even this bit is switched during display, the display screen remains unchanged until a rising (falling) of the next VsYNC
2:This bit's priority is higher than BCi 4 of Block Control Register i setting.

Fig. 8.11.3 OSD Control Register

Block Control register i

b7b6b5b4b3b2b1b0

Notes 1: Tc is OSD clock cycle divided in pre-divide circuit.
2: H is HsYnc.
3: Refer to the corresponding figure 8.11.18.

Fig. 8.11.4 Block Control Register i

8.11.1 Display Position

The display positions of characters are specified in units called "blocks." There are 2 blocks: blocks 1 and 2 . Up to 32 characters can be displayed in each block (refer to "8.11.5 Memory for OSD").
The display position of each block can be set in both horizontal and vertical directions by software.
The display start position in the horizontal direction can be selected for all blocks from 128-step display positions in units of 4Tosc (Tosc = OSD oscillation cycle).
The display start position in the vertical direction for each block can be selected from 512-step display positions in units of 1 TH (in biscan mode: 2 TH) (TH = Hsync cycle).

Blocks are displayed in conformance with the following rules:

- When the display position of block 1 is overlapped with that of block 2 (Figure 8.11.5 (b)), block 1 is displayed in front.
- When another block display position appears while one block is displayed (Figure 8.11.5 (c)), the block with a larger set value as the vertical display start position is displayed.

(a) Example when each block is separated

(b) Example when block 2 overlaps with block 1

(c) Example when block 2 overlaps in process of block 1

Note: VP1 or VP2 indicates the vertical display start position of display block 1 or 2.

Fig. 8.11.5 Display Position

The vertical display start position is determined by counting the horizontal sync signal (HSYNC). At this time, when VsYnc and HsYnc are positive polarity (negative polarity), the count starts at the rising edge (falling edge) of HSYNC signal after the fixed cycle of the rising edge (falling edge) of VSYNC signal. So the interval from the rising edge (falling edge) of VSYNC signal to the rising edge (falling edge) of HSYNC signal needs enough time (2 machine cycles or more) to avoid jitters. The polarity of HsYNC and Vsync signals can be select with the I/O polarity control register (address 00D816).

Fig. 8.11.6 Supplement Explanation for Display Position

The vertical display start position for each block can be set in 512 steps (where each step is 1 TH (TH: Hsync cycle)) as values " 0016 " to "FF16" in vertical position register i ($\mathrm{i}=1$ and 2) (addresses 00D416 and 00D516) and values " 0 " or " 1 " in bit 6 of block control register i (i = 1 and 2) (addresses 00D216 and 00D316). The vertical position register is shown in Figure 8.11.7.

The vertical display start position of both blocks can be switched in each step to 1 TH or 2 TH by setting values " 0 " or " 1 " in bit 1 of OSD control register 2 (address 00DB16).

Vertical Position Register i

b7 b6 b5 b4 b3 b2 b1 b0

Notes 1: Set values except " 0016 " to VPi when BCi6 is " 0 ."
2: When OS21 of OSD control register $2=" 0$ ", T н $=1 \mathrm{Hsync}$,
and OS21 of OSD control register $2=" 1 ", \mathrm{TH}=2 \mathrm{Hsync}$.

Fig. 8.11.7 Vertical Position Register $\mathbf{i}(\mathbf{i}=1$ and 2$)$

The horizontal display start position is common to all blocks, and can be set in 128 steps (where 1 step is 4Tosc, Tosc being the OSD oscillation cycle) as values " 0016 " to "FF16" in bits 0 to 6 of the horizontal position register (address 00D116). The horizontal position register is shown in Figure 8.11.8.

Horizontal Position Register

b7 b6 b5b4 b3 b2b1 b0

Note: The setting value synchronizes with the V sync.

Fig. 8.11.8 Horizontal Position Register

Notes 1 : 1Tc (Tc : OSD clock cycle divided in pre-divide circuit) gap occurs between the horizontal display start position set by the horizontal position register and the most left dot of the 1st block. Accordingly, when 2 blocks have different pre-divide ratios, their horizontal display start position will not match.
2 : The horizontal start position is based on the OSD clock source cycle selected for each block. Accordingly, when 2 blocks have different OSD clock source cycles, their horizontal display start position will not match.
3 : When setting " 0016 " to the horizontal position register, it needs an approximately 62TOSC ($=$ Tdef) interval from a rising edge (when negative polarity is selected) of HSYNC signal to the horizontal display start position.

Fig. 8.11.9 Notes on Horizontal Display Start Position

8.11.2 Dot Size

The dot size can be selected in block units. The vertical dot size is determined by dividing HsYNC in the vertical dot size control circuit. The horizontal dot size is determined by dividing the following clock in the horizontal dot size control circuit : the clock gained by dividing the OSD clock source (data slicer clock, f (OSC) in the pre-divide circuit. The clock cycle divided in the pre-divide circuit is defined as 1Tc.
The dot size of each block is specified by bits 2 to 4 of block control register i.
Refer to Figure 8.11.4 for the structure of the block control register. The block diagram of the dot size control circuit is shown in Figure
8.11.10.

The pre-divide ratio is specified by bit 7 of the OSD control register (address 00D016) and bit 4 of block control register i (addresses 00D216 and 00D316).
When bit 7 of the OSD control register (address 00D016) is set to " 0, " the double or triple pre-divide ratio can be chosen per block unit by bit 4 of block control register i . And then, when it is set to "1", the pre-divide ratio increases 1 time (both blocks 1 and 2). The pre-divided dot size can be specified per block unit by bits 2 and 3 of block control register i.

Note: To use data slicer clock, set bit 0 of data slicer control register 1 to 1 .

Fig. 8.11.10 Block Diagram of Dot Size Control Circuit

Fig. 8.11.11 Definition of Dot Sizes

8.11.3 Clock for OSD

The following 2 types of clocks can be selected for OSD display:

- Data slicer clock output from the data slicer (approximately 26 MHz)
- OSD clock f (osc) generated based on the reference clock from pin FSCIN.

The OSD clock for each block can be selected by: bits 3 and 4 of the clock source control register (addresses 00D016). A variety of character sizes can be obtained by combining dot sizes with OSD clocks.

Note:To use data slicer clock, set bit 0 of data slicer control register 1 to " 1 ."

Fig. 8.11.12 Block Diagram of OSD Selection Circuit

Clock control register 1

Fig. 8.11.13 Clock control register 1

8.11.4 Field Determination Display

When displaying a block with vertical dot size of $1 / 2 \mathrm{H}$, the differences in the synchronizing signal waveform of the interlacing system determine whether the field is odd or even. The dot lines 0 and 1 (refer to Figure 8.11.15), corresponding to each field, are displayed alternately.
In the following, the field determination standard for the case where both the horizontal sync signal and the vertical sync signal are nega-tive-polarity inputs will be explained. A field determination is determined by detecting the time from a falling edge of the horizontal sync signal until a falling edge of the VSYNC control signal (refer to Figure 8.11.6) in the microcomputer and then comparing this time with the time of the previous field. When the time is longer than the previous time, it is regarded as an even field. When the time is shorter, it is regarded as an odd field
The contents of this field can be read out by the field determination flag (bit 6 of the I/O polarity control register at address 00D816). A dot line is specified by bit 5 of the I/O polarity control register (refer to Figure 8.11.15).
However, the field determination flag read out from the CPU is fixed to " 0 " for even fields or " 1 " for odd fields, regardless of bit 5.

I/O Polarity Control Register

b7 b6 b5 b4 b3 b2 b1 b0

Note: Refer to the corresponding figure. 8.11.15

Fig. 8.11.14 I/O Polarity Control Register

Both Hsync cignal and Vsync signal are negative-polarity input

Hsync		Field	Field determination flag(Note)	Display dot line selection bit	Display dot line
Vsync and Vsync control signal in microcom- puter Upper : Vsync signal	($\mathrm{n}-1$) field (Odd-numbered)	Odd			
		Even	$0(\mathrm{~T} 2>\mathrm{T} 1)$	0 1	Dot line $1 \square$ Dot line $0 \square / \square$
Lower: Vsync control signal in microcomputer	($\mathrm{n}+1$) field	Odd	1 (T3 < T2)	0	Dot line 0 //
	(Odd-numbered)			1	Dot line $1 \square$

When using the field determination flag, be sure to set bit 0 of the PWM mode register 1 (address 0208 16) to " 0 ."

OSD ROM font configuration diagram

Note : The field determination flag changes at a rising edge of the V SYNC control signal (negative-polarity input) in the microcomputer.

Fig. 8.11.15 Relation between Field Determination Flag and Display Font

8.11.5 Memory for OSD

There are 2 types of memory for OSD: OSD ROM used to store character dot data and OSD RAM used to specify the characters and colors to be displayed.

OSD ROM : addresses 1140016 to 13BFF16
OSD RAM : addresses 080016 to 087F16

(1) OSD ROM

The dot pattern data for OSD characters is stored in the OSD ROM. To specify the kinds of character font, it is necessary to write the character code into the OSD RAM.
Data of the character font is specified as shown in Figure 8.11.16.

OSD ROM address of character font data

OSD ROM address bit	AD16	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
Line number/character code/font bit	1	0	0	Line number					Character code								Font bit

Line number $=$ "0A16" to "1D 16"
Character code $=$ " 0016 " to "FF 16 " (" $7 F_{16 "}$ and " 8016 " cannot be used)
Font bit $\quad=0$: Left area
1 : Right area

Character font

Fig. 8.11.16 Character Font Data Storing Address

Notes 1 : The 80-byte addresses corresponding to the character code " 7 F 16 " and " 8016 " in the OSD ROM are the test data storing area. Set data to the area as follows.
<Test data storing area>
addresses $1100016+(4+2 n) \times 10016+$ FE16 to
$1100016+(5+2 n) \times 10016+0116$
($\mathrm{n}=0$ to 19)
(1)Mask version (M37150M6/M8/MA/MC/MF-XXXFP)

Set "FF16" to the area (This sample has test data in this area but the actual product will have different data.
When using our font editor, the test data is written automatically.
(2)EPROM version (M37150EFFP)

Set the test data to the area. When using our font editor, the test data is written automatically.

■M37150EFFP

<"7F16"> address (test data)
114FE16 (0916), 114FF16 (5116)
116FE16 (0016), 116FF16 (5216)
118FE16 (1216), 118FF16 (5316) 11AFE16 (0016), 11AFF16 (5416) 11CFE16 (2416), 11CFF16 (5516) 11EFE16 (0016), 11EFF16 (5616) 120FE16 (8816), 120FF16 (5716) 122FE16 (0016), 122FF16 (5816) 124FE16 (9016), 124FF16 (5916) 126FE16 (4816), 126FF16 (5A16) 128FE16 (2416), 128FF16 (5B16) 12AFE16 (0016), 12AFF16 (5C16) 12CFE16 (2416), 12CFF16 (5D16) 12EFE16 (4816), 12EFF16 (5E16) 130FE16 (0016), 130FF16 (5F16) 132FE16 (4816), 132FF16 (5016) 134FE16 (9016), 134FF16 (5116) 136FE16 (0016), 136FF16 (5216) 138FE16 (0116), 138FF16 (5316) 13AFE16 (8016), 13AFF16 (5416)
<"8016"> address (test data) 1150016 (9016), 1150116 (A116) 1170016 (0016), 1170116 (A216) 1190016 (4816), 1190116 (A316) 11B0016 (0016), 11B0116 (A416) 11D0016 (2416), 11D0116 (A516) 11 F0016 (0016), 11F0116 (A616) 1210016 (1216), 1210116 (A716) 1230016 (0016), 1230116 (A816) 1250016 (0916), 1250116 (A916) 1270016 (0016), 1270116 (AA16) 1290016 (8116), 1290116 (AB16) 12 B 0016 (1816), 12 B 0116 (AC16) 12 D 0016 (0016), 12D0116 (AD16) 12F0016 (4216), 12F0116 (AE16) 1310016 (2416), 1310116 (AF16) 1330016 (0016), 1330116 (B016) 1350016 (8116), 1350116 (B116) 1370016 (0C16), 1370116 (B216) 1390016 (0616), 1390116 (B316) 13B0016 (0016), 13B0116 (B416)

2 : The character code " 0916 " is used for "transparent space" when displaying Closed Caption.
Therefore, set " 0016 " to the 40 -byte addresses corresponding to the character code "0916."
<Transparent space font data storing area> addresses $1100016+(4+2 n) \times 10016+1216$ to $1100016+(4+2 n) \times 10016+1316$ ($\mathrm{n}=0$ to 19)
addresses 1141216 and 1141316 addresses 1161216 and 1161316 addresses 1381216 and 1381316 addresses 13A1216 and 13A1316

(2) OSD RAM

The RAM for OSD is allocated at addresses 080016 to $087 \mathrm{~F}_{16}$, and is divided into a display character code specification part, color code 1 specification part, and color code 2 specification part for each block. Table 8.11.2 shows the contents of the OSD RAM.
For example, to display the first character position (the left edge) in block 1, write the character code in address 080016 and write the color code at 082016.
The structure of the OSD RAM is shown in Figure 8.11.17.

Table 8.11.2 Contents of OSD RAM

Block	Display Position (from left)	Character Code Specification	Color Code Specification
Block 1	1st character	080016	082016
	2nd character	080116	082116
	3rd character 30th character	$\begin{gathered} \hline 080216 \\ \vdots \\ 081 D_{16} \end{gathered}$	$\begin{gathered} 082216 \\ \vdots \\ 083 \mathrm{D} 16 \end{gathered}$
	31 st character	081E16	083E16
	32nd character	081F16	083F16
Block 2	1st character	084016	086016
	2nd character	084116	086116
	3rd character 30th character	$\begin{gathered} 084216 \\ : \\ 085 \mathrm{D} 16 \end{gathered}$	$\begin{gathered} 086216 \\ : \\ 087{ }^{2} 16 \end{gathered}$
	31 st character	085E16	087E16
	32nd character	085F16	087F16

Blocks 1, 2

Bit	CC mode		OSD mode	
	Bit name	Function	Bit name	Function
RF0	Character code	Character code in OSD ROM	Character code	Character code in OSD ROM
RF1				
RF2				
RF3				
RF4				
RF5				
RF6				
RF7				
RA0	Control of character color R	0: Color signal output OFF 1: Color signal output ON	Control of character color R	0: Color signal output OFF 1: Color signal output ON
RA1	Control of character color G		Control of character color G	
RA2	Control of character color B		Control of character color B	
RA3	OUT control	(See note 2)	OUT control	(See note 2)
RA4	Flash control	$\begin{aligned} & \text { 0: Flash OFF } \\ & \text { 1: Flash ON } \end{aligned}$	Control of background color R	0: Color signal output OFF 1: Color signal output ON
RA5	Underline control	0: Underline OFF 1: Underline ON	Control of background color G	
RA6	Italic control		Control of background color B	

Notes 1: Read value of bits 7 of the color code is " 0 ."
2: For OUT control, refer to "8.11.8 OUT signal."
3: "7F16" and "8016" cannot be used as character code.

Fig. 8.11.17 Bit structure of OSD RAM

8.11.6 Character color

The color for each character is displayed by the color code. The 7 kinds of color are specified by bits $0(R), 1(G)$, and $2(B)$ of the color code.

8.11.7 Character background color

The character background color can be displayed in the character display area only in the OSD mode. The character background color for each character is specified by the color code.
The 7 kinds of color are specified by bits $0(\mathrm{R}), 1(\mathrm{G})$, and $2(\mathrm{~B})$ of the color code.

Note : The character background color is displayed in the following parts: (character display area)-(character font)-(border).
Accordingly, the character background color does not mix with these color signals.

8.11.8 OUT signal

The OUT signal is used to control the luminance of the video signal. The output waveform of the OUT signal is controlled by RA3 of the OSD RAM. The setting values for controlling OUT and the corresponding output waveform are shown in Figure 8.11.18.

Notes 1: FONT/BORDER.....In the OSD mode (Border ON), OUT outputs to the area of font and border. In the OSD mode (Border OFF), OUT outputs to only the font area.
AREA. \qquad OUT outputs to entire display area of character.
FONT. \qquad .In the CC mode, OUT outputs to font area.
2. When the automatic solid space function is OFF in the CC mode, AREA outputs according to bit 3 of color code. When it is ON, the solid space is automatically output by a character code regardless of RA3.
3: The OUT signal's three-level outputs are useful only during positive polarity output.
4: For three-level OUT signal outputs, set Port P3 Direction Register (address 00C716) bit 2 to 1.
5: For three-level OUT signal outputs, set about $2 \mathrm{k} \Omega$ resistor between OUT pin and Vss.

Fig. 8.11.18 Setting Value for Controlling OUT and Corresponding Output Waveform

8.11.9 Attribute

The attributes (border, flash, underline, italic) are controlled according to the character font. The attributes to be controlled are different depending on each mode.
CC mode \qquad Flash, underline, italic (per character unit) OSD mode Border (per character unit)

(1) Underline

The underline is output at the 23th and 24th dots in the vertical direction only in the CC mode. The underline is controlled by RA5 of the OSD RAM. The color of the underline is the same color as that of the character font.

(2) Flash

The character font and the underline are flashed only in the CC mode. The flash is controlled by RA4 of OSD RAM. In the character font part, the character output part is flashed, but the character background part is not flashed. The flash cycle is based on the VSYNC count.

- VsYNC cycle $\times 48 \approx 800 \mathrm{~ms}$ (at display ON)
- VSYNC cycle $\times 16 \approx 267 \mathrm{~ms}$ (at display OFF)

(3) Italic

The italic is made by slanting the font stored in the OSD ROM to the right only in the CC mode. The italic is controlled by RA6 of OSD RAM.

Display examples of the italic and underline are shown in Figure 8.11.19, using "R."

Notes 1: When setting both the italic and the flash, the italic character flashes. 2: The boundary of character color is displayed in italic. However, the boundary of character background color is not affected by the italic (refer to Figure 8.11.20).
3: The adjacent character (one side or both sides) to an italic character is displayed in italic even when the character is not specified to be displayed in italic (refer to Figure 8.11.20).
4: Italics display cannot be used at pre-divided ratio 1 setting .

Fig. 8.11.19 Example of Attribute Display (in CC Mode)

Fig. 8.11.20 Example of Italic Display

(4) Border

The border is output around the character font (all bordered) in the OSD mode only. The border ON/OFF is controlled by bit 0 and 1 of block control register i (refer to Figure 8.11.4).
The OUT signal is used for border output.
The horizontal size (x) of the border is 1Tc (OSD clock cycle divided in pre-divide circuit) regardless of the character font dot size. The vertical size (y) differs depending on the screen scan mode and the vertical dot size of the character font.

Notes 1 : The border dot area is the shaded area as shown in Figure 8.11.21.
2 : When the border dot overlaps on the next character font, the character font has priority (refer to Figure 8.11.23 A).
When the border dot overlaps the next character back ground, the border has priority (refer to Figure 8.11.23 B).
3 : The border in vertical out of the character area is not displayed (refer to Figure 8.11.23).

Fig. 8.11.21 Example of Border Display

Fig. 8.11.22 Horizontal and Vertical Size of Border

Fig. 8.11.23 Border Priority

8.11.10 Multiline Display

This microcomputer can ordinarily display 2 lines on the CRT screen by displaying 2 blocks at different vertical positions. In addition, it can display up to 16 lines by using OSD interrupts.
An OSD interrupt request occurs at the point at which that display of each block has been completed. In other words, when a scanning line reaches the point of the display position (specified by the vertical position registers) of a certain block, the character display of that block starts, and an interrupt occurs at the point at which the scanning line exceeds the block.

Notes 1: An OSD interrupt does not occur at the end of display when the block is not displayed. In other words, if a block is set to display off by the display control bit of the block control register (addresses 00D216, 00D316), an OSD interrupt request does not occur (refer to Figure 8.11.24 (A))

2: When another block display appears while one block is displayed, an OSD interrupt request occurs only once at the end of the second block display (refer to Figure 8.11.24 (B)).
3: On the screen setting window, an OSD interrupt occurs even at the end of the CC mode block (display off) out of window (refer to Figure 8.11.24 (C)).

(A)

(B)
(C)

Fig. 8.11.24 Note on Occurence of OSD Interrupt

8.11.11 Automatic Solid Space Function

This function automatically generates the solid space (OUT blank output) of the character area in the CC mode.
The solid space is output in the following areas :

- Any character area except character code "0916"
- Character area on the left and right sides of the above character This function is turned on and off by bit 1 of the OSD control register (refer to Figure 8.11.3).

Notes : The character code "0916" is used for "transparent space" when displaying Closed Caption.
Therefore, set " 0016 " to the 40 -byte addresses corresponding to the character code "0916."
<Transparent space font data storing area>
addresses $1100016+(4+2 n) \times 10016+1216$ to

$$
1100016+(4+2 n) \times 10016+1316
$$

($\mathrm{n}=0$ to 19)
addresses 1141216 and 1141316
addresses 1161216 and 1161316
\vdots
addresses 1381216 and 1381316
addresses 13A1216 and 13A1316

When setting the character code " 0516 " as the character A, " 0616 " as the character B.

The solid space is automatically output on the left side of the 1st character and on the right side of the 32nd character by setting the 1st and 32nd of the character code.

Fig. 8.11.25 Display Screen Example of Automatic Solid Space

8.11.12 Scan mode

The bi-scan mode corresponds to HsYNc of twice as much frequency as usual. The vertical display position and the vertical dotsize double compared to the normal scan mode.
In the scan mode, the vertical dot size is set by bit 0 of OSD control register 2 and the vertical display start position by bit 1, independently.

Table 8.11.3 Setting of Scan Mode

Item	Scan mode	Normal scan
Bit 0 of OSD control register 2	0	1
Vertical dot size	$1 \mathrm{Tc} \times 1 / 2 \mathrm{H}$	$1 \mathrm{Tc} \times 1 \mathrm{H}$
	$1 \mathrm{Tc} \times 1 \mathrm{H}$	$1 \mathrm{Tc} \times 2 \mathrm{H}$
	$2 \mathrm{Tc} \times 2 \mathrm{H}$	$2 \mathrm{Tc} \times 4 \mathrm{H}$
	$3 \mathrm{Tc} \times 3 \mathrm{H}$	$3 \mathrm{Tc} \times 6 \mathrm{H}$
Bit 1 of OSD control register 2	0	1
Verical display start position	A value of verical position register $\times 1 \mathrm{H}$	A value of verical position register $\times 2 \mathrm{H}$

8.11.13 Window Function

This function sets the top and bottom boundaries for display limits on a screen. The window function is valid only in the CC mode. The top boundary is set by the window register 1 and bit 7 of block control register 1 . The bottom boundary is set by window register 1 and bit 7 of block control register 2 . This function is turned on and off by bit 2 of the OSD control register (refer to Figure 8.11.3).
Window registers 1 and 2 are shown in Figures 8.11.27 and 8.11.28.

The setting value per one step of the top and bottom window borders can be switched to either 1TH or 2TH by setting " 0 " or " 1 " to bit 1 of OSD control register 2 (address 02DB16).

Fig. 8.11.26 Example of Window Function

Window Register 1
b7 b6 b5 b4 b3 b2 b1 b0

Notes 1: Set values except "0016" to WN1 when BC17 is " 0. ."
2: Set values fit for the following condition: WN1 < WN2.
3: When OC21 of OSD control register 2 is " 0 ", T_{H} is 1 Hsync.
And when " 1 ", Tн is 2 Hsync.

Fig. 8.11.27 Window Register 1

Window Register 2

| b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 |
| :--- | :--- | :--- | :--- |

Notes 1: Set values fit for the following condition: WN1 < WN2.
2: When OC21 of OSD control register 2 is " 0 ", TH is 1 Hsync.
And when " 1 ", TH is 2 Hsync.

Fig. 8.11.28 Window Register 2

8.11.14 OSD Output Pin Control

The OSD output pins R, G, B and OUT can also function as ports P52-P55. Set the corresponding bit of the OSD port control register (address 00CB16) to " 0 " to specify these pins as OSD output pins, or to "1" to specify as the general-purpose port P5.
The input polarity of the HSYNC and VSYNC, and the output polarity of signals R, G, B, OUT can be specified with the I/O polarity control register (address 00D8). Set bits to " 0 " to specify positive polarity; " 1 " to specify negative polarity (refer to Figure 8.11.14).
The structure of the OSD port control register is shown in Figure 8.11.29.

OSD Port Control Register

B	Name	Functions	Atter reset	R:W
0,1	Fix these bits to "0."	0	R:—	
2	Port P52 output signal selection bit (PF2)	$0:$ B signal output $1:$ Port P52 output	0	R:W
3	Port P53 output signal selection bit (PF3)	$0:$ G signal output $1:$ Port P53 output	0	R:W
4	Port P54 output signal selection bit (PF4)	$0:$ R signal output $1:$ Port P54 output	0	R:W
5	Port P55 output signal selection bit (PF5)	$0:$ OUT signal output $1:$ Port P55 output	0	R:W
6	Fix this bit to "0."	Indeterminate	-W W	
7	Fix this bit to "1."	0	R:W	

Fig. 8.11.29 OSD Port Control Register

8.11.15 Raster Coloring Function

An entire screen (raster) can be colored by setting bits 4 to 0 of the raster color register. Since each of the R, G, B, OUT pins can be switched to raster coloring output, 8 raster colors can be obtained. When the character color/character background color overlaps with the raster color, the color (R, G, B, OUT), specified for the character color/character background color, takes priority over the raster color. This ensures that character color/character background color is not mixed with the raster color.
The raster color register is shown in Figure 8.11.30, an example of raster coloring is shown in Figure 8.11.31.

Raster Color Register
b7 b6 b5b4 b3 b2b1 b0

Fig. 8.11.30 Raster Color Register

Fig. 8.11.31 Example of Raster Coloring

8.12 SOFTWARE RUNAWAY DETECT FUNCTION

This microcomputer has a function to decode undefined instructions to detect a software runaway.
When an undefined op-code is input to the CPU as an instruction code during operation, the following processing is done.
(1) The CPU generates an undefined instruction decoding signal.
(2) The device is internally reset due to the undefined instruction decoding signal.
(3) As a result of internal reset, the same reset processing as in the case of ordinary reset operation is done, and the program restarts from the reset vector.
Note, however, that the software runaway detecting function cannot be disabled.

Fig.8.12.1 Sequence at Detecting Software Runaway Detection

8.13. RESET CIRCUIT

When the oscillation of a quartz-crystal oscillator or a ceramic resonator is stable and the power source voltage is $5 \mathrm{~V} \pm 10 \%$, hold the RESET pin at LOW for 2μ s or more, then return to HIGH. Then, as shown in Figure 8.13.2, reset is released and the program starts from the address formed by using the content of address FFFF16 as the high-order address and the content of the address FFFE16 as the low-order address. The internal states of the microcomputer at reset are shown in Figures 8.2.2 to 8.2.5.
An example of the reset circuit is shown in Figure 8.13.1.
The reset input voltage must be kept 0.9 V or less until the power source voltage surpasses 4.5 V .

Fig.8.13.1 Example of Reset Circuit

Fig.8.13.2 Reset Sequence

8.14 CLOCK GENERATING CIRCUIT

This microcomputer contains two internal oscillator circuits, one oscillator circuit for the main clock and XCIN-Xcout for the subclock. The main clock and OSD clock are generated based on the reference clock from the FSCIN pin. The subclock can be obtained by connecting a resonator between Xcin and Xcout to configure an oscillator circuit. Because the resistance-capacitance time constants vary with each resonator, be sure to use the value recommended by the resonator manufacturer. The subclock can also be supplied directly from the FSCIN pin. For the FILT pin used to generate the main clock, insert the filter shown in Figure 8.1.4.1. Because no resistors are included between XCIN and XCOUT, please insert feedback resistors external to the chip.
The OSD clock can be chosen to be the data slicer clock (approx. 26 MHz) that is output from the data slicer.
After reset, the internal clock f is derived from $f($ XIN $)$ by dividing it by 2 . Immediately after power-on, the XIN and XCIN clocks both start oscillating. To select low-speed mode for the internal clock f, set the CPU Mode Register bit 7 to 1.

Fig.8.14.1 Ceramic Resonator Circuit Example

$\mathrm{f}(\mathrm{XIN})=8.95 \mathrm{MHz} \mathrm{f}(\mathrm{OSC})=26.85 \mathrm{MHz}$ at 3.58 MHz oscillation frequency
$\mathrm{f}(\mathrm{XIN})=8.86 \mathrm{MHz} \mathrm{f}(\mathrm{OSC})=26.58 \mathrm{MHz}$ at 4.43 MHz oscillation frequency

Fig.8.14.2 Clock Generation Circuit

Clock frequency set register
b7 b6 b5 b4 b3 b2 b1 b0

Clock frequency set register(CFS) [Address 021016]

B	Name	Functions	After reset	Riw
$\begin{aligned} & 0 \text { to } \\ & 7 \end{aligned}$	Clock frequency bit (CFS 0 to 7)		OE	$\begin{gathered} R: W \\ 1 \\ \vdots \\ \vdots \\ 1 \end{gathered}$
	FSCIN=3.58MHz	Set to 0E16		
	FSCIN $=4.43 \mathrm{MHz}$	Set to 0B16		

Reference clock input	Setting value	Main clock frequency $\mathrm{f}(\mathrm{XIN})[\mathrm{MHz}]$	OSD clock frequency $\mathrm{f}(\mathrm{Osc})[\mathrm{MHz}]$
FSCIN $=3.58 \mathrm{MHz}$	0 E	8.95	26.85
FSCIN=4.43MHz	0B	8.86	26.58

Note: Do not set other than the values shown above to CFS.

Fig.8.14.3 Clock Frequency Setting Register

Clock control register 1

b7 b6 b5 b4 b3 b2 b1 b0

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad Clock control register 1 (CC1) [Address 00CD16]

B	Name	Functions	Atter reset	R	W
0	System clock generating circuit control bit (CC10)	0:Operation 1: Stop	0	R	W
1 to 7	Fix these bits to "0"	0	R	W	

Fig.8.14.4 Clock Control Register 1

Clock control register 2

b7 b6 b5 b4 b3 b2 b1 b0

| 0 | 0 | 0 | 0 | 1 | | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad Clock control register 2 (CC2) [Address 021116]

B	Name	Functions	After reset	R
0,1	Fix these bits to "0"	0	R	W
2	Clock sauce switch bit (Note) (CC22)	0: FSCIN input signal 1: Xcin-Xcout	0	R

Note: This bit is valid when the CPU Mode Register (address 00FB16) bit 7 (CM7) is set to 1 .

Fig.8.14.5 Clock Control Register 2

8.14.1 OSCILLATION CONTROL

(1) Stop Mode

The built-in clock generating circuit is shown in Figure 8.14.2. When the STP instruction is executed, the internal clock ϕ stops at HIGH. At the same time, timers 3 and 4 are connected by hardware and "FF16" is set in timer 3 and " 0716 " is set in timer 4 . Select $f(X I N) / 16$ or $\mathrm{f}(\mathrm{XCIN}) / 16$ as the timer 3 count source (set both bit 0 of timer mode register 2 and bit 6 at address 00C716 to "0" before the execution of the STP instruction). Moreover, set the timer 3 and timer 4 interrupt enable bits to disabled ("0") before execution of the STP instruction. The oscillator restarts when an external interrupt is accepted. However, the internal clock ϕ keeps its HIGH level until timer 4 overflows, allowing time for oscillation stabilization when a quartz-crystal oscillator is used.
By settimg bit 7 of timer return setting register (address 00CC16) to "1," an arbitrarary value can be set to timer 3 and timer 4.
Bit 7 of clock control register 3 (address 021216) can switch Port P10 pin and the CLKcont. When CLKcont pin is selected, "H" is output normally. When an extenal interrupt is recieved in the STP state, the CLKcont pin goes back to "H" output.

(2) Wait Mode

When the WIT instruction is executed, the internal clock ϕ stops in the HIGH level but the oscillator continues running. This wait state is released at reset or when an interrupt is accepted (See note). Since the oscillator does not stop, the next instruction can be executed immediately.
Note: In the wait mode, the following interrupts are invalid.

- Vsync interrupt
- OSD interrupt
- All timer interrupts using external clock input from port pin as count source
- All timer interrupts using $f(\mathrm{XIN}) / 2$ or $f(\mathrm{XCIN}) / 2$ as count source
- All timer interrupts using $f($ Xin $) / 4096$ or $f($ Xcin $) / 4096$ as count source
- $\mathrm{f}(\mathrm{XIN}) / 4096$ interrupt
- Multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface interrupt
- Data slicer interrupt
- A-D conversion interrupt

(3) Low-speed Mode

If the internal clock is generated from the sub-clock (XCIN), a low power consumption operation can be realized by stopping only the main clock XIN. To stop the main clock, set bit 6 (CM6) of the CPU mode register (00FB16) to " 1 ." When the main clock XIN is restarted, the program must allow enough time for oscillation to stabilize.
Note that in the low-power-consumption mode the XCIN-XCOUT drivability can be reduced, allowing even lower power consumption. To reduce the XCIN-Xcout drivability, clear bit 5 (CM5) of the CPU mode register (00FB16) to " 0 ." At reset, this bit is set to " 1 " and strong drivability is selected to help the oscillation to start. When executing an STP instruction, set this bit to " 1 " by software before initiating the instruction.

Clock control register 3

Note: When used as the clock control signal, set the Port 1 Direction Register (address 00C316) bit 0 to 1.

Fig.8.14.6 Clock Control Register 3

Notes 1 : The value at reset is " 0 ."
2 : Refer to timer mode register 2.
3 : Refer to the CPU mode register.
4 : Refer to the OSD control register

Fig.8.14.7 Clock Generating Circuit Block Diagram

1. When Reference Clock from FSCIN is Used

Clock Control Register 2 (address 021116) bit $2=" 0 "$

The above example assumes that the FSCIN pin has 3.58 MHz applied to it. The ϕ indicates the internal clock.

Fig.8.14.8 State Transitions of System Clock (1)

2. When using the 32 kHz oscillating

$\underline{\text { Clock Control Register } 2 \text { (address 021116) bit } 2=\text { "1" }}$

The above example assumes that the FSCIN and XCIN pins have 3.58 MHz and 32 kHz signals applied, respectively. The ϕ indicates the internal clock.

Fig.8.14.9 State Transitions of System Clock (2)

8.15 AUTO-CLEAR CIRCUIT

When a power source is supplied, the auto-clear function will operate by connecting the following circuit to the RESET pin.

Circuit example 1

Circuit example 2

Note : Make the level change from " L " to " H " at the point at which the power source voltage exceeds the specified voltage.

8.16 ADDRESSING MODE

The memory access is reinforced with 17 kinds of addressing modes. Refer to SERIES 740 <Software> User's Manual for details.

8.17 MACHINE INSTRUCTIONS

There are 71 machine instructions. Refer to SERIES 740 <Software> User's Manual for details.

9. TECHNICAL NOTES

- The divide ratio of the timer is $1 /(n+1)$.
- Even though the BBC and BBS instructions are executed immediately after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. At least one instruction cycle is needed (such as an NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- After the ADC and SBC instructions are executed (in the decimal mode), one instruction cycle (such as an NOP) is needed before the SEC, CLC, or CLD instruction is executed.
- An NOP instruction is needed immediately after the execution of a PLP instruction.
- In order to avoid noise and latch-up, connect a bypass capacitor $(\approx 0.1 \mu \mathrm{~F})$ directly between the Vcc pin-Vss pin and the Vcc pinCNVss pin, using a thick wire.
- Characteristic value, margin of operation, etc. of versions with built-in EPROM and built-in mask ROM may differ from each other within the limits of the electrical characteristics in terms of manufacturing process, built-in ROM, difference of a layout pattern, etc.
Carry out and check an examination equivalent to the system evaluation examination carried out on the EPROM version when replacing it with the mask ROM version.

10. ABSOLUTE MAXIMUM RATINGS

Symbol	Parametear	Conditions	Ratings	Unit
Vcc	Power source voltage Vcc	All voltages are based on Vss. Output transistors are cut off.	-0.3 to 6	V
VI	Input voltage CNVss		-0.3 to 6	V
VI	$\begin{aligned} \text { Input voltage } & \mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 16, \mathrm{P} 20-\mathrm{P} 27, \\ & \mathrm{P} 30, \mathrm{P} 31, \mathrm{P} 50, \mathrm{P} 51, \text { RESET, CVIN }\end{aligned}$		$-0.3-\mathrm{Vcc}+0.3$	V
Vo	$\begin{array}{cl} \hline \text { Output voltage } & \mathrm{P} 06, \mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 16, \mathrm{P} 20-\mathrm{P} 27, \\ \mathrm{P} 30, \mathrm{P} 31, \mathrm{P} 52-\mathrm{P} 55 \end{array}$		$-0.3-\mathrm{Vcc}+0.3$	V
IOH	$\begin{aligned} \hline \text { Circuit current } & \text { P10-P16, P20-P27, P30, P31, } \\ & \text { P52-P55, } \end{aligned}$		0 to 1 (See note 1)	mA
IOL1	$\begin{aligned} \hline \text { Circuit current } & \text { P00-P07, P10-P15, P16, P20-P23 } \\ & \text { P52-P55, } \end{aligned}$		0 to 2 (See note 2)	mA
IOL2	Circuit current P11-P14, P30, P31		0 to 6 (See note 2)	mA
IOL4	Circuit current P24-P27		0 to 10 (See note 3)	mA
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	550	mW
Topr	Operating temperature		-10 to 70	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

11. RECOMMENDED OPERATING CONDITIONS ($\mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%$, unless otherwise noted)

Symbol	Parametear		Limits			Unit
			Min.	Typ.	Max.	
Vcc	Power source voltage (See note 4)		4.5	5.0	5.5	V
Vss	Power source voltage		0	0	0	V
VIH1	HIGH Input voltage	P00-P07, P10-P16, P20-P27, P30, P31, P50, P51, RESET	0.8Vcc		Vcc	V
VIH2	HIGH Input voltage	SCL1, SCL2, SCL3, SDA1, SDA2 , SDA3 (When using $\mathrm{I}^{2} \mathrm{C}$-BUS)	0.7Vcc		Vcc	V
VIL1	LOW Input voltage	P00-P07, P10-P16, P20-P27, P30, P31	0		0.4Vcc	V
VIL2	LOW Input voltage	SCL1, SCL2, SCL3, SDA1, SDA2, SDA3 (When using $\mathrm{I}^{2} \mathrm{C}$-BUS)	0		0.3Vcc	V
VIL3	LOW Input voltage (See note 6)	P50, P51,RESET, TIM2, TIM3, INT1, INT2, INT3, Sin, Sclk	0		0.2Vcc	V
IOH	HIGH average output current (See note1)	P10-P16, P20-P27, P30, P31, P52-P55			1	mA
IOL1	HIGH average output current (See note2)	P00-P07, P10, P15, P16, P20-P23, P52-P55			2	mA
IOL2	LOW average output current (See note 2)	P11-P14, P30, P31			6	mA
IOL3	LOW average output current (See note 3)	P24-P27			10	mA
f (XCIN)	Oscillation frequency (for sub-clock operation)	XCIN	29	32	35	kHz
fhs1	Input frequency	TIM2, TIM3, INT1, INT2, INT3			100	kHz
fhs2	Input frequency	SCLK			1	MHz
fhs3	Input frequency	SCL1, SCL2			400	kHz
fhs4	Input frequency	Horizontal sync. signal of video signal	15.262	15.734	16.206	kHz
VI	Input amplitude video signal	CVIN	1.5	2.0	2.5	V
FSCIN	Oscillation reference frequency		-	3.58 or 4.43	-	MHz
V(FSCIN)	Input amplitude		-	1.0 V	-	V

12. ELECTRIC CHARACTERISTICS (VcC $=5 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{f}(\mathrm{XIN})=8.95 \mathrm{MHz}, \mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parametear		Test conditions		Limits			Unit	$\begin{array}{\|c\|c\|} \hline \text { Test } \\ \text { circuit } \end{array}$		
			Min.	Typ.	Max.						
ICC	Power source current	System operation			$\begin{aligned} & \mathrm{VcC}=5.5 \mathrm{~V}, \\ & \mathrm{f}(\mathrm{XIN})=8.95 \mathrm{MHz} \end{aligned}$	OSD OFF Data slicer OFF		15	30	mA	1
			$\begin{aligned} & \text { OSD ON } \\ & \text { Data slicer ON } \end{aligned}$			30	45				
			$\mathrm{VcC}=5.5 \mathrm{~V}, \mathrm{f}(\mathrm{XIN})=0,$ $\mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz},$ OSD OFF, Data slicer OFF, Low-power dissipation mode set $\text { (CM5 = "0", CM6 = " } 1 \text { ") }$			60	200	$\mu \mathrm{A}$			
		Wait mode	$\mathrm{VcC}=5.5 \mathrm{~V}, \mathrm{f}(\mathrm{XcIN})=3.58 \mathrm{MHz}$			1	2	mA			
			$\begin{aligned} & \mathrm{VcC}=5.5 \mathrm{~V}, \mathrm{f}(\mathrm{XIN})=0, \\ & \mathrm{f}(\mathrm{XcIN})=32 \mathrm{kHz}, \end{aligned}$ Low-power dissipation mode set $(\mathrm{CM} 5=" 0 ", \mathrm{CM} 6=" 1 ")$			25	100	$\mu \mathrm{A}$			
		Stop mode	$\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{f}(\mathrm{XIN})=0, \\ & \mathrm{f}(\mathrm{XCIN})=0 \end{aligned}$			1	10				
Voh	HIGH output voltage P	$\begin{aligned} & \text { 6, P20-P27, } \\ & \text { 1, P52-P55, } \end{aligned}$	$\begin{aligned} & \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{IOH}=-0.5 \mathrm{~mA} \end{aligned}$		2.4			V	2		
VoL	LOW output voltage	$\begin{aligned} & \text { P10, } \\ & \text { P20-P23, } \end{aligned}$	$\begin{aligned} & \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{loL}=0.5 \mathrm{~mA} \end{aligned}$				0.4	V			
	LOW output voltage		$\begin{aligned} & \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{loL}=10.0 \mathrm{~mA} \end{aligned}$				3.0				
	LOW output voltage P11-P14, P30, P32		$\mathrm{Vcc}=4.5 \mathrm{~V}$	$\mathrm{IOL}=3 \mathrm{~mA}$			0.4				
			$\mathrm{lOL}=6 \mathrm{~mA}$			0.6					
	Hysteresis (See note 6) RESET, P50, P51, INT1, INT2, INT3, TIM2, TIM3, SIN, ScLK, SCL1, SCL2, SCL3, SDA1, SDA2, SDA3			$\mathrm{Vcc}=5.0 \mathrm{~V}$			0.5	1.3	V	3	
IIzH	HIGH input leak current P00-P07, P10-P16, P20-P27, P30, P31, RESET, P50, P51,		$\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V} \\ & \mathrm{VI}=5.5 \mathrm{~V} \end{aligned}$				5	$\mu \mathrm{A}$	4		
IIzL	$\begin{aligned} & \text { HIGH input leak current } \\ & \text { P00-P07, P10-P16, P20-P27, P30, } \\ & \text { P31, P50, P51, RESET } \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V} \\ & \mathrm{VI}=0 \mathrm{~V} \end{aligned}$				5	$\mu \mathrm{A}$	4		
Rbs	$\mathrm{I}^{2} \mathrm{C}-\mathrm{BUS} \cdot \mathrm{BUS}$ switch connection resistor(between SCL1 and SCL2, SDA1 and SDA2)		$\mathrm{VcC}=4.5 \mathrm{~V}$				130	Ω	5		

Notes 1: The total current that flows out of the IC must be 20 mA or less.
2: The total input current to IC (IOL1 + IOL2) must be 30 mA or less.
3: The total average input current for ports $\mathrm{P} 24-\mathrm{P} 27$ and $\mathrm{AVCC}-\mathrm{Vss}$ to IC must be 20 mA or less.
4: Connect $0.1 \mu \mathrm{~F}$ or more capacitor externally between the power source pins Vcc-Vss so as to reduce power source noise.
Also connect $0.1 \mu \mathrm{~F}$ or more capacitor externally between the pins Vcc-CNVss.
5: P06, P07, P16, P23, P24, P25 have hysteresis when used as interrupt input pins or timer input pins. P11-P14, P30, P31 have hysteresis when used as multimaster $\mathrm{I}^{2} \mathrm{C}$-BUS interface ports. P20-P22 have hysteresis when used as serial I/O pins.
6: Pin names in each parameter are described as below.
(1) Dedicated pins: dedicated pin names.
(2) Double-/triple-function ports

- Same limits: I/O port name
- Functions other than ports vary from I/O port limits: function pin name.

Fig.12.1 Measurement Circuits

13. A-D CONVERTER CHARACTERISTICS

$\left(\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{VsS}=0 \mathrm{~V}, \mathrm{f}(\mathrm{XIN})=8.95 \mathrm{MHz}, \mathrm{Ta}=-10^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
-	Resolution				7	bits
-	Non-linearity error				± 1.5	LSB
-	Differencial non-linearity error				± 0.9	LSB
V0T	Zero transition error	$\mathrm{IOL}(\mathrm{SUM})=0 \mathrm{~mA}$			2	LSB
Vfst	Full-scale transition error				-2	LSB

14. MULTI-MASTER I ${ }^{2}$ C-BUS BUS LINE CHARACTERISTICS

Symbol	Parameter	Standard clock mode		High-speed clock mode		Unit
		Min.	Max.	Min.	Max.	
tBUF	Bus free time	4.7		1.3		$\mu \mathrm{S}$
tHD; STA	Hold time for START condition	4.0		0.6		$\mu \mathrm{S}$
tLow	LOW period of SCL clock	4.7		1.3		$\mu \mathrm{s}$
tR	Rising time of both SCL and SDA signals		1000	$20+0.1 \mathrm{Cb}$	300	ns
tHD; DAT	Data hold time	0		0	0.9	$\mu \mathrm{s}$
tHIGH	HIGH period of SCL clock	4.0		0.6		$\mu \mathrm{s}$
tF	Falling time of both SCL and SDA signals		300	$20+0.1 \mathrm{Cb}$	300	ns
tSU; DAT	Data set-up time	250		100		ns
tSU; STA	Set-up time for repeated START condition	4.7		0.6		$\mu \mathrm{S}$
tSU; STO	Set-up time for STOP condition	4.0		0.6		$\mu \mathrm{S}$

Note: $\mathrm{Cb}=$ total capacitance of 1 bus line

Fig.14.1 Definition Diagram of Timing on Multi-master ${ }^{2} \mathrm{C}$-BUS

15. PROM PROGRAMMING METHOD

The built-in PROM of the One Time PROM version (blank) and the built-in EPROM version can be read or programmed with a generalpurpose PROM programmer using a special programming adapter.

Product	Name of Programming Adapter
M37150EFFP	PCA7450FP

The PROM of the One Time PROM version (blank) is not tested or screened in the assembly process nor any following processes. To ensure proper operation after programming, the procedure shown in Figure 15.1 is recommended to verify programming.

Fig. 15.1 Programming and Testing of One Time PROM Version

16. DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM product:

- Mask ROM Order Confirmation Form
- Mark Specification Form
- Data to be written to ROM, in EPROM form (three identical copies)
or FDK
When using EPROM:
Three sets of 32-pin DIP Type 27C101

17. ONE TIME PROM VERSION M37150EFFP MARKING

$X X X X X X X$ is lot number

18. APPENDIX
 Pin Configuration (TOP VIEW)

Memory Map

■ M37150M6/M8/MA/MC/MF-XXXFP, M37150EFFP

Memory Map of Special Function Register (SFR)

SFR1 Area (addresses E016 to FF16)

Address
Register
E016 Data slicer control register 1 (DSC1)
E1 16 Data slicer control register 2 (DSC2)
E216 Caption data register 1 (CD1)
E316 Caption data register 2 (CD2)
E416 Clock run-in detect register (CRD)
E516 Data clock position register (DPS)
E616 Caption position register (CPS)
E716 Data slicer test register 2
E816 Data slicer test register 1
E916 Synchronous signal counter register (HC)
EA16 Serial I/O register (SIO)
EB16 Serial I/O mode register (SM)
EC16 A-D control register 1 (AD1)
ED16 A-D control register 2 (AD2)
EE16 Timer 5 (T5)
EF16 Timer 6 (T6)
F016 Timer 1 (T1)
F1 16 Timer 2 (T2)
F216 Timer 3 (T3)
F316 Timer 4 (T4)
F416 Timer mode register 1 (TM1)
F516 Timer mode register 2 (TM2)
F616 $1^{2} \mathrm{C}$ data shift register (S0)
F716 ${ }^{2} \mathrm{C}$ address register (SOD)
F816 $I^{2} \mathrm{C}$ status register (S1)
F916 $1^{2} \mathrm{C}$ control register (S1D)
FA $16{ }^{1}{ }^{2} \mathrm{C}$ clock control register (S2)
FB16 CPU mode register (CPUM)
FC16 Interrupt request register 1 (IREQ1)
FD16 Interrupt request register 2 (IREQ2)
FE16 Interrupt control register 1 (ICON1)
FF16 Interrupt control register 2 (ICON2)

-SFR2 Area (addresses 20016 to 20F16)

<Bit allocation>
$\square:\}$ Function bit
Name:
$\square:$ No function bit
0 : Fix to this bit to " 0 " (do not write to " 1 ")

1 : Fix to this bit to " 1 " (do not write to " 0 ")

Register
Processor status register (PS) Program counter (PCH)
Program counter (PCL)

Bit allocation

b7															
N	V	T	B	D	I	Z	C	?	?	?	?	?	1	?	?
$\square \left\lvert\, \begin{aligned} & \text { Contents of address FFFF16 }\end{aligned}\right.$															
								Contents of address FFFE16							

Structure of Register

The figure of each register structure describes its functions, contents at reset, and attributes as follows:
<Example>

Notes 1: Values immediately after reset release
0"0" after reset release
1"1" after reset release
Indeterminate $\cdots \cdot$ Indeterminate after reset
release
2: Bit attributes•••••The attributes of control register bits are classified into 3 types : read-only, write-only and read and write. In the figure, these attributes are represented as follows:
R•••••Read
\quad R $\cdots \cdots \cdot$ Read enabled
$\quad-\cdots \cdots \cdot R$ Read disabled

W••••••Write
WWrite enabled

- ••••••Write disabled
* •....."0" can be set by software, but "1" cannot be set.

Port Pi Direction Register

Port P1 register

Port P1 direction register

b7 b6 b5 b4 b3 b2 b1 b0

Port P1 direction register (D1) [Address 00C316]

B	Name	Functions	After reset	R : W
0	Port P1 direction register	0 : Port P1o input mode (note) 1 : Port P10 output mode	1	R \vdots W
1		0 : Port P11 input mode 1 : Port P11 output mode	0	R : W
2		0 : Port P12 input mode 1 : Port P12 output mode	0	R W W
3		0 : Port P13 input mode 1 : Port P13 output mode	0	R
4		0 : Port P14 input mode 1 : Port P14 output mode	0	R ' W
5		0 : Port P15 input mode 1 : Port P15 output mode	1	R :W
6		0 : Port P16 input mode 1 : Port P16 output mode	0	R W
7	Fix this bit to "0"		0	R : W

Note: When using P10 as a general-purpose port, set the Clock Control Register 3 (address 021216) bit 7 to 1. When using P10 as a clock control signal, refer to 8.14 .1 oscillation control
P10 becomes clock control signal output and " H " output setting immediately after reset release , and P16 becomes " L " output setting after reset release.

Port P3 register

Port P3 register (P3) [Address 00C616]

B	Name	Functions	Atter reset	R:W
0	Port P3 register	Port P3o data	Indeterminate	R:'W
1		Port P31 data	Indeterminate	R:W
2	Switch bit of $\mathrm{I}^{2} \mathrm{C}$-BUS interface and port P3 (BSEL20) (See note)	0: Port P30, Port P31 1: I^{2} CBUS (SDA3,SCL3)	0	R W
3	$\begin{array}{\|l\|} \hline \text { SCL3/P31-SCL1/P11 } \\ \text { SDA3/P30-SDA1/P13 } \\ \text { Connection control bit (BSEL21) } \end{array}$	0 : Cutting 1: Connection	0	R:W
$4 \text { to }$	Nothing is assigned. This bit is write disable bit. When this bit is read out, the value is " 0 ."		0	R:-

Notes - For the ports used as the Multi-master $I^{2} C$-BUS interface, set their direction registers to 1 .

- To use SCL3 and SDA3, set the $I^{2} \mathrm{C}$ Control Register (address 00F916) bits 6-7 to 0 .

Port P3 direction register

b7 b6 b5 b4 b3 b2 b1 b0

Port P3 direction register (D3) [Address 00C716]

B	Name	Functions	After reset	R:W
0	Port P3 direction register (See note 1)	0 : Port P3o input 1 : Port P3o output	0	R:W
1		0 : Port P31 input 1 : Port P31 output	0	R ${ }^{\text {W }}$ W
2	Output amplitude level selection bit (OUTS) (See note 2)	$0: 2$ value output $1: 3$ value output	0	R:W
3	Fix this bit to "0."		0	R:W
4,5	Nothing is assigned fix these bits When this bit are read out, the value are " 0. "		0	R:-
6	Timer 3 (T3SC)	Refer to explanation of a timer	0	R:W
7	Timer 2 (T2SC)	0 : P24 input 1: P16 input	0	R:W

Notes 1: When using the port as the $I^{2} \mathrm{C}$-BUS interface, set the Port P3 Direction Register to 1.
2: Use the Clock Control Register 3 (address 021216) bit 5 to select the binary output level of OUT.

Address 00CA16

Port P5 register

b7 b6 b5 b4 b3 b2 b1 b0

B	Name	Functions	After reset	R W W
0, 1	Fix these bits to "0."		Indeterminate	R 'W
2	Port P5 register	Port P52 data	Indeterminate	R ! W
3		Port P53 data	Indeterminate	R W
4		Port P54 data	Indeterminate	R íw
5		Port P55 data	Indeterminate	R íw
6	Fix these bits to		Indeterminate	iw
7			Indeterminate	R ', W

Address 00CB16

OSD Port Control Register

b7 b6 b5 b4 b3 b2 b1 b0

| 1 | 0 | | | | | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | OSD port control register (PF) [Address 00CB16]

B	Name	Functions	After reset	R:W
0,1	Fix these bits to "0."		0	R:-
2	Port P52 output signal selection bit (PF2)	0 : B signal output 1 : Port P52 output	0	R:W
3	Port P53 output signal selection bit (PF3)	0 : G signal output 1 : Port P53 output	0	R:W
4	Port P54 output signal selection bit (PF4)	0 : R signal output 1 : Port P54 output	0	R:W
5	Port P55 output signal selection bit (PF5)	0 : OUT signal output 1 : Port P55 output	0	R:W
6	Fix this bit to "0."		Indeterminate	- w
7	Fix this bit to "1."		0	R:W

Address 00CC16

Timer return setting register
b7 b6 b5 b4 b3 b2 b1 b0

Address 00CD16

Clock control register 1

b7 b6 b5 b4 b3 b2 b1 b0

0	0	0	0	0	0	0	\quad Clock control register 1 (CC1) [Address 00CD16]

B	Name	Functions	After reset	$\mathrm{R}: \mathrm{W}$
0	System clock generating circuit control bit (CC10)	0:Operation 1: Stop	0	R
1 W				
7	to			

OSD Control Register

b7b6b5b4b3b2b1b0

0		OSD control register (OC) [Address 00D016]				
		B	Name	Functions	Atter reset	R:W
		0	OSD control bit (OC0) (See note 1)	0 : All-blocks display off 1 : All-blocks display on	0	R:W
		1	Automatic solid space control bit (OC1)	$\begin{aligned} & 0 \text { O OFF } \\ & 1 \\ & \hline \end{aligned}$	0	R:W
		2	Window control bit (OC2)	$\begin{array}{\|l} \hline 0 \text { OFF } \\ 1: O N \\ \hline \end{array}$	0	R:'W
		3	CC mode clock selection bit (OC3)	0 : Data slicer clock 1 : Internal oscillating clock f(osc)	0	R:W
		4	OSD mode clock selection bit (OC4)	0 : Data slicer clock 1 : Internal oscillating clock f (osc)	0	R:W
		5,6	Fix these bits to "0."		0	R:W
		7	Pre-divide ratio selection bit (OC7) (See note 2)	0 : Divide ratio by the block control register $1:$ Pre-divide ratios $=\times 1$ for blocks 1 and 2	0	R:'W

Notes 1: Even this bit is switched during display, the display screen remains unchanged until a rising (falling) of the next VsyNC
2: This bit's priority is higher than BCi 4 of Block Control Register i setting.

Address 00D1 16

Horizontal Position Register

b7b6b5b4b3b2b1b0

Horizontal position register (HP) [Address 00D116]

B	Name	Functions	After reset	R:W
$\begin{array}{\|c\|} \hline 0 \\ \text { to } \\ \hline 6 \\ \hline \end{array}$	Horizontal display start position control bits (HP0 to HP6)	Horizontal display start position 4 Tosc $\times n$ (n: setting value, Tosc: OSD oscillation cycle)	0	R:W
7	Nothing is assigned. This bit is a write disable bit. When this bit is read out, the value is " 0 ."		0	R:-

Note: The setting value synchronizes with the V sYNc.

Address 00D216, 00D316

Block Control register i

b7 b6 b5 b4 b3 b2b1 b0

Notes 1: Tc is OSD clock cycle divided in pre-divide circuit.
2: H is Hsync.
3: Refer to the corresponding figure 8.11.18.

Address 00D416, 00D516

Vertical Position Register i

Notes 1: Set values except " 0016 " to VPi when BCi6 is " 0 ."
2: When OS21 of OSD control register $2=$ " 0 ", $\mathrm{TH}=1 \mathrm{Hsync}$, and OS21 of OSD control register $2=$ " 1 ", TH = 2Hsync.

Address 00D616

Window Register 1

b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0

Notes 1: Set values except " 0016 " to WN 1 when BC 17 is " 0 .
2: Set values fit for the following condition: WN1 < WN2.
3: When OC21 of OSD control register 2 is " 0 ", $T_{\text {н }}$ is 1 Hsync.
And when " 1 ", TH_{H} is 2 Hsync.

Address 00D716

Window Register 2

Address 00D816

I/O Polarity Control Register

b7 b6 b5 b4 b3 b2 b1 b0

Note: Refer to the corresponding figure. 8.11.15

Raster Color Register

b7b6b5b4b3b2b1 b0

Raster color register (RC) [Address 00D916]

B	Name	Functions	After reset	RiW
0	Raster color R control bit (RC0)	0 : No output 1 : Output	0	R'W
1	Raster color G control bit (RC1)	0 : No output 1 : Output	0	RiW
2	Raster color B control bit (RC2)	0 : No output 1 : Output	0	R:W
3	Raster color OUT control bit (RC3)	0 : No output 1 : Output	0	R'W
$\begin{array}{\|c\|} \hline 4 \\ \text { to } \\ 6 \end{array}$	Fix these bits to "0."		0	RiW
7	Port function selection bit (RC7)	$\begin{aligned} & 0: \text { XCIN } \\ & \text { XCOUT } \\ & 1: \text { P26, P27 } \end{aligned}$	0	R'W

OSD Control Register 2

Address 00DC16

Interrupt Input Polarity Register

b7 b6 b5 b4 b3 b2 b1 b0

B	Name	Functions	After reset	R:W		
0	INT1 polarity switch bit (INT1)	$0:$ Positive polarity $1:$ Negative polarity	0	$R: W$		
1	INT2 polarity switch bit (INT2)	$0:$ Positive polarity $1:$ Negative polarity	0	$R: W$		
2	INT3 polarity switch bit (INT3)	$0:$ Positive polarity $1:$ Negative polarity	0	$R: W$		
3						
to						
7						Nothing is assigned. These bits are write disable bits.
:---						
When these bits are read out, the values are "0."						

Data Slicer Control Register 1

b7 b6 b5b4 b3 b2b1 b0

Data slicer control register 1(DSC1) [Address 00E016]

B	Name	Functions	After reset	R	W
0	Data slicer and timing signal generating circuit control bit (DSC10)	0: Stopped 1: Operating	0	R	W
1	Selection bit of data slice reference voltage generating field (DSC11)	0: F2 1: F1	0	R	W
2	Reference clock source selection bit (DSC12)	0: Video signal 1: HsYNC signal	0	R	W
3,4	Fix these bits to "0."	0	R	W	
5,6	Fix these bits to "1."	0	R	W	
7	Fix this bit to " $0 . "$	0	R	W	

Definition of fields 1 (F1) and 2 (F2)

Address 00E116

Data Slicer Control Register 2

Data slicer control register 2 (DSC2) [Address 00E1 16]

B	Name	Functions	After reset	R 'V
1	Caption data latch completion flag 1 (DSC20)	0 : Data is not latched yet and a clock-run-in is not determined. 1: Data is latched and a clock-run-in is determined.	Indeterminate	
1	Fix this bit to "1."		0	R l :
2	Test bit	Read-only	Indeterminate	R:
0	Field determination flag(DSC23)	$\begin{aligned} & \text { 0: F2 } \\ & \text { 1: F1 } \end{aligned}$	Indeterminate	R:
4	Vertical synchronous signal ($\mathrm{V}_{\text {sep }}$) generating method selection bit (DSC24)	$\begin{aligned} & \text { 0: Method (1) } \\ & \text { 1: Method (2) } \end{aligned}$	0	R C
5	V-pulse shape determination flag (DSC25)	0: Match 1: Mismatch	Indeterminate	R:
6	Fix this bit to "0."		0	R 'W
7	Test bit	Read-only	Indeterminate	R:

Definition of fields 1 (F1) and 2 (F2)

Address 00E416

Clock Run-in Detect Register

b7 b6 b5 b4 b3 b2 b1 b0

				Clock run-in detect register (CRD) [Address 00E416]				
,	-			B	Name	Functions	After reset	R; W
				0 to 2	Test bits	Read-only	0	R:-
!--				3 to 7	Clock run-in detection bit(CRD3 to CRD7)	Number of reference clocks to be counted in one clock run-in pulse period.	0	R:-

Address 00E516

Data Clock Position Register

b7 b6 b5 b4 b3 b2 b1 b0

Data clock position register (DPS) [Address 00E516]

B	Name	Functions	After reset	R:W
0	Fix this bit to "0."		1	R;W
1	Fix this bit to "1."		0	R : W
2	Fix this bit to "0."		0	$\mathrm{R}: \mathrm{W}$
3	Data clock position set bits (DPS3 to DPS7)		1	R:W
4 to 7			0	!

Address 00E616

Caption Position Register

b7 b6 b5 b4 b3 b2 b1 b0

Caption Position Register (CPS) [Address 00E616]

B	Name	Functions	After reset	R;W
$\begin{array}{\|r\|} \hline 0 \\ \text { to } \\ \hline \end{array}$	Caption position bits(CPS0 to CPS4)		0	R:W
5	Caption data latch completion flag 2 (CPS5)	0 : Data is not latched yet and a clock-run-in is not determined. 1: Data is latched and a clock-run-in is determined.	Indeterminate	R
6, 7	Slice line mode specification bits (in 1 field) (CPS6, CPS7)	Refer to the corresponding Table (Table 8.10.1).	0	R:W

Address 00EB16

Serial I/O Mode Register

b7b6 b5b4b3 b2b1b0

Serial I/O mode register (SM) [Address 00EB16]

B	Name	Functions	After reset	R:W
0, 1	Internal synchronous clock selection bits (SM0, SM1)	b1 b0 00 : $\mathrm{f}(\mathrm{XIN}) / 8$ or $\mathrm{f}(\mathrm{XcIn}) / 8$ 0 1: $\mathrm{f}(\mathrm{XIN}) / 16$ or $\mathrm{f}(\mathrm{XCIN}) / 16$ $10: \mathrm{f}(\mathrm{XIN}) / 32$ or $\mathrm{f}(\mathrm{XCIN}) / 32$ 1 1: $\mathrm{f}(\mathrm{XIN}) / 64$ or $\mathrm{f}(\mathrm{XCIN}) / 64$	0	R'W
2	Synchronous clock selection bit (SM2)	0: External clock 1: Internal clock	0	R W
3	Port function selection bit (SM3)	$\begin{aligned} & \text { 0: P20, P21 } \\ & \text { 1: ScLK, Sout } \end{aligned}$	0	R W
4	Fix this bit to "0."		0	R W
5	Transfer direction selection bit (SM5)	0: LSB first 1: MSB first	0	R W
6	Transfer clock input pin selection bit (SM6)	0: Input signal from SIN pin 1: Input signal from Sout pin	0	R W
7	Fix this bit to "0."		0	R:W

Address 00EC16

A-D Control Register 1

A-D control register 1 (AD1) [Address 00EC16]

B	Name	Functions	After reset	R 'W
$\begin{gathered} 0 \\ \text { to } \\ 2 \end{gathered}$	Analog input pin selection bits (ADC10 to ADC12)	b2 b1 b0 0 0 $0: A D 1$ 0 0 $1: A D 2$ 0 1 $0: A D 3$ 0 1 $1: A D 4$ 1 0 $0: A D 5$ 1 0 $1: A D 6$ 1 1 $0: A D 7$ 1 1 $1: A D 8$	0	R C W
3	This bit is a write disable bit. When this bit is read out, the value is " 0 ."		0	R
4	Storage bit of comparison result (ADC14)	0 : Input voltage < reference voltage 1: Input voltage > reference voltage	Indeterminate	R
$\begin{aligned} & \hline 5 \\ & \text { to } \\ & 7 \\ & \hline \end{aligned}$	Nothing is assigned. These bits are write disable bits. When these bits are read out, the values are " 0 ."		0	R

A-D Control Register 2

b7 b6 b5 b4 b3 b2 b1 b0

Timer Mode Register 1
b7b6 b5b4 b3 b2b1 b0
Timer mode register 1 (TM1) [Address 00F4 16]

Note: Either $f(X I N)$ or $f(X C I N)$ is selected by bit 7 of the CPU mode register.

Timer Mode Register 2

b7b6 b5b4b3 b2b1b0

Timer mode register 2 (TM2) [Address 00F516]

B	Name	Functions	After reset	R iW
0	Timer 3 count source selection bit (TM20)		0	R:W
1, 4	Timer 4 count source selection bits (TM21, TM24)	```b4 b1 0 0:Timer 3 overflow signal 0 1:f(XIN)/16 or f(XCIN)/16 (See note) 1 0:f(XIN)/2 or f(XCIN)/2 (See note) 1 1:f(XCIN)```	0	R W
2	Timer 3 count stop bit (TM22)	0 : Count start 1: Count stop	0	R:W
3	Timer 4 count stop bit (TM23)	0: Count start 1: Count stop	0	R W
5	Timer 5 count stop bit (TM25)	0: Count start 1: Count stop	0	R W
6	Timer 6 count stop bit (TM26)	0: Count start 1: Count stop	0	R:W
7	Timer 5 count source selection bit 1 (TM27)	$0: \mathrm{f}(\mathrm{Xin}) / 16$ or $\mathrm{f}(\mathrm{XCIN}) / 16$ (See note) 1: Count source selected by bit 6 of TM1	0	R C

Note: Either $\mathrm{f}(\mathrm{XIN})$ or $\mathrm{f}(\mathrm{XCIN})$ is selected by bit 7 of the CPU mode register.

${ }^{12} \mathrm{C}$ Data Shift Register

I2C data shift register 1(S0) [Address 00F616]

B	Name	Functions	After reset	R W
0	D0 to D7	This is an 8-bit shift register to store to 7		Indeterminate receive data and write transmit data.
R W				

Note : To write data into the I2C data shift register after setting the MST bit to " 0 " (slave mode), keep an interval of 8 machine cycles or more.

I2C Address Register

${ }^{2}{ }^{2} \mathrm{C}$ address register (SOD) [Address 00F716]

B	Name	Functions	After reset	R:W
0	$\overline{\text { Read/write bit }}$ (RBW)	<Only in 10-bit addressing (in slave) mode> The last significant bit of address data is compared. 0 : Wait the first byte of slave address after START condition (read state) 1: Wait the first byte of slave address after RESTART condition (write state)	0	
$\begin{gathered} 1 \\ \text { to } \\ 7 \end{gathered}$	Slave address (SAD0 to SAD6)	<In both modes> The address data is compared.	0	R:W

Address 00F816

$I^{2} \mathrm{C}$ Status Register

$\mathrm{I}^{2} \mathrm{C}$ status register (S1) [Address 00F816]

B	Name	Functions	After reset	R:W
0	Last receive bit (LRB) (See note)	$\begin{aligned} & 0: \text { Last bit }=" 0 " \\ & 1: \text { Last bit }=" 1 " \end{aligned}$	Indeterminate	R
1	General call detecting flag (AD0) (See note)	0 : No general call detected 1: General call detected (See note)	0	R
2	Slave address comparison flag (AAS) (See note)	0 : Address mismatch 1 : Address match (See note)	0	R:
3	Arbitration lost detecting flag (AL) (See note)	0 : Not detected 1 : Detected (See note)	0	R :
4	${ }^{2} \mathrm{C}$-BUS interface interrupt request bit (PIN)	0 : Interrupt request issued 1 : No interrupt request issued	1	R:W
5	Bus busy flag (BB)	$\begin{aligned} & 0 \text { : Bus free } \\ & 1: \text { Bus busy } \\ & \hline \end{aligned}$	0	R:W
6, 7	Communication mode specification bits (TRX, MST)	b7 b6 0 0:Slave recieve mode 0 1: Slave transmit mode 10 : Master recieve mode 1 1: Master transmit mode	0	R:W

Note : These bits and flags can be read out, but cannnot be written.

12C Control Register

${ }^{2} \mathrm{C}$ control register (S1D) [Address 00F916]

Note: • Set the corresponding direction register to "1" to use the port as multi-master ${ }^{12} \mathrm{C}$-BUS interface.

- To use SCL1, SDA1, SCL2 and SDA2, set the port P3 Register (address 00C616) bit 2 to 0 .

${ }^{12} \mathrm{C}$ Clock Control Register

Notes 1. At 400 kHz in the high-speed clock mode, the duty is as below .
"0" period : "1" period = 3 : 2
In the other cases, the duty is as below.
"0" period : "1" period =1:1
2.At FSCIN $=3.58 \mathrm{MHz}, \phi=8.95 / 2 \mathrm{MHz}$

At FSCIN $=4.43 \mathrm{MHz}, \phi=8.86 / 2 \mathrm{MHz}$
Values shown in table is as below :
At FSCIN $=3.58 \mathrm{MHz}$, each value $\times 8.95 / 8$
At FSCIN $=4.43 \mathrm{MHz}$, each value $\times 8.86 / 8$

CPU Mode Register						
b7b6 b5b4b3 b2b1 b0						
1	010	CPU mode register (CM) [Address 00FB16]				
		B	Name	Functions	After reset	R:W
		0, 1	Processor mode bits (CM0, CM1)	$\left.\begin{array}{ll} \text { b1 } & \text { b0 } \\ 0 & 0: \text { Single-chip mode } \\ 0 & 1: \\ 1 & 0: \\ 1 & 1: \end{array}\right\} \text { Not available }$	0	R:W
		2	Stack page selection bit (CM2) (See note1)	$\begin{aligned} & \text { 0: } 0 \text { page } \\ & \text { 1: } 1 \text { page } \end{aligned}$	1	R'W
		3, 4	Fix these bits to "1."		1	R:W
		5	Xcout drivability selection bit (CM5)	0: LOW drive 1: HIGH drive	1	R'W
		6	Main Clock (XIN) stop bit (CM6)	0: Oscillating 1: Stopped	0	RiW
		7	Internal system clock selection bit (CM7) (See note2)	0: XIN selected (high-speed mode) 1: XCIN-Xcout selected or FSCIN input selected (low-speed mode)	0	R'W

Note 1: This bit is set to " 1 " after the reset release.
2: XCIN-Xcout and FSCIN are switched over using Clock Control Register 2 (address 021116) bit 2.

Interrupt request register 1 (IREQ1) [Address 00FC 16]

B	Name	Functions	Afrer reset	R	W
0	Timer 1 interrupt request bit (TM1R)	0 : No interrupt request issued $1:$ Interrupt request issued	0	R	$*$
1	Timer 2 interrupt request bit (TM2R)	$0:$ No interrupt request issued $1:$ Interrupt request issued	0	R	$*$
2	Timer 3 interrupt request bit (TM3R)	$0:$ No interrupt request issued $1:$ Interrupt request issued	0	R	$*$
3	Timer 4 interrupt request bit (TM4R)	$0:$ No interrupt request issued $1:$ Interrupt request issued	0	R	$*$
4	OSD interrupt request bit (OSDR)	0 : No interrupt request issued $1:$ Interrupt request issued	0	R	$*$
5	VSYNC interrupt request bit (VSCR)	0 : No interrupt request issued $1:$ Interrupt request issued	0	R	$*$
6	INT3 external interrupt request bit (IN3R)	$0:$ No interrupt request issued $1:$ Interrupt request issued	0	R	$*$
7	Nothing is assigned. This bit is a write disable bit. When this bit is read out, the value is "0."	0	R	-	

*: "0" can be set by software, but " 1 " cannot be set.

Interrupt Request Register 2

Interrupt request register 2 (IREQ2) [Address 00FD16]

B	Name	Functions	After reset	R:W
0	INT1 external interrupt request bit (IN1R)	0 : No interrupt request issued 1 : Interrupt request issued	0	R *
1	Data slicer interrupt request bit (DSR)	0 : No interrupt request issued 1 : Interrupt request issued	0	R:*
2	Serial I/O interrupt request bit (SIR)	0 : No interrupt request issued 1 : Interrupt request issued	0	R *
3	$\mathrm{f}(\mathrm{XIN}) / 4096$ interrupt request bit (CKR)	0 : No interrupt request issued 1 : Interrupt request issued	0	R:*
4	INT2 external interrupt request bit (IN2R)	0 : No interrupt request issued 1 : Interrupt request issued	0	R:*
5	Multi-master ${ }^{2} \mathrm{C}$-BUS interrupt request bit (IICR)	0 : No interrupt request issued 1 : Interrupt request issued	0	R:
6	Timer 5-6 interrupt request bit (TM56R)	0 : No interrupt request issued 1 : Interrupt request issued	0	R:*
7	Fix this bit to " 0 ."		0	R:W

*: " 0 " can be set by software, but " 1 " cannot be set.

Address 00FE 16

Interrupt Control Register 1
b7b6 b5b4b3 b2b1b0

Interrupt control register 1 (ICON1) [Address 00FE16]

B	Name	Functions	After reset	R iW
0	Timer 1 interrupt enable bit (TM1E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R W
1	Timer 2 interrupt enable bit (TM2E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R $\mathrm{W}^{\text {W }}$
2	Timer 3 interrupt enable bit (TM3E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R W
3	Timer 4 interrupt enable bit (TM4E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R W
4	OSD interrupt enable bit (OSDE)	0 : Interrupt disabled 1 : Interrupt enabled	0	R:W
5	Vsync interrupt enable bit (VSCE)	0 : Interrupt disabled 1 : Interrupt enabled	0	R W
6	INT3 external interrupt enable bit (IN3E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R W
7	Nothing is assigned. This bit. When this bit is read	bit is a write disable ut, the value is " 0 ."	0	

Address 00FF16

Interrupt Control Register 2

Interrupt control register 2 (ICON2) [Address 00FF16]

B	Name	Functions	After reset	R:W
0	INT1 external interrupt enable bit (IN1E)	0 : Interrupt disabled $1:$ Interrupt enabled	0	R:W
1	Data slicer interrupt enable bit (DSE)	0 : Interrupt disabled $1:$ Interrupt enabled	0	R:W
2	Serial I/O interrupt enable bit (SIE)	0 : Interrupt disabled $1:$ Interrupt enabled	0	R:W
3	f(XIN)/4096 interrupt enable bit (CKE)	0 : Interrupt disabled $1:$ Interrupt enabled	0	R:W
4	INT2 external interrupt enable bit (IN2E)	0 : Interrupt disabled $1:$ Interrupt enabled	0	R:W
5	Multi-master I2C-BUS interface interrupt enable bit (IICE)	0 : Interrupt disabled $1:$ Interrupt enabled	0	R:W
6	Timer 5•6 interrupt enable bit (TM56E)	0 : Interrupt disabled $1:$ Interrupt enabled	0	R:W
7	Timer 5•6 interrupt switch bit (TM56C)	0 : Timer 5 $1:$ Timer 6	0	R:W

Address 020816

PWM Mode Register 1
b7b6 b5b4b3 b2b1b0

PWM Mode Register 2

b7b6 b5b4b3 b2b1 b0

0	0	0				

B	Name	Functions	After reset	R : W
0	P0o/PWM0 output selection bit (PM20)	0 : P00 output 1 : PWM0 output	0	R:W
1	P01/PWM1 output selection bit (PM21)	0 : P01 output 1 : PWM1 output	0	R W
2	P02/PWM2 output selection bit (PM22)	0 : P02 output 1 : PWM2 output	0	R W
3	P03/PWM3 output selection bit (PM23)	0 : P03 output 1 : PWM3 output	0	R W
4	P04/PWM4 output selection bit (PM24)	0 : P04 output 1 : PWM4 output	0	R
$\begin{aligned} & 5 \text { to } \\ & 7 \end{aligned}$	Fix these bits to " 0 ."		0	R

Address 020E16

ROM Correction Enable Register

b7 b6 b5 b4 b3 b2 b1 b0

ROM correction enable register (RCR) [Address 020E 16]

B	Name	Functions	After reset	R
0	Vector 1 enable bit (RC0)	0: Disabled $1:$ Enabled	0	R
1	Vector 2 enable bit (RC1)	0: Disabled $1:$ Enabled	0	R
2 to 7	Nothing is assigned. These bits are write disable bits. When these bits are read out, the values are "0."	0	R	R

Clock frequency set register

b7 b6 b5 b4 b3 b2 b1 b0

Clock frequency set register(CFS) [Address 021016]

B	Name	Functions	After reset	Riw
$\begin{aligned} & 0 \text { to } \\ & 7 \end{aligned}$	Clock frequency bit (CFS 0 to 7)		OE	
	FSCIN $=3.58 \mathrm{MHz}$	Set to 0E16		
	FSCIN $=4.43 \mathrm{MHz}$	Set to 0B16		

Reference clock input	Setting value	Main clock frequency $\mathrm{f}(\mathrm{XIN})[\mathrm{MHz}]$	OSD clock frequency $\mathrm{f}(\mathrm{Osc})[\mathrm{MHz}]$
FSCIN $=3.58 \mathrm{MHz}$	0 E	8.95	26.85
FSCIN $=4.43 \mathrm{MHz}$	0 B	8.86	26.58

Note: Do not set other than the values shown above to CFS.

Clock control register 2

b7 b6 b5 b4 b3 b2 b1 b0

0	0	0	0	1		0
0						

B	Name	Functions	After reset	R	W
0,1	Fix these bits to "0"	0	R	W	
2	Clock sauce switch bit (Note) (CC22)	0: FSCIN input signal $1:$ XCIN-Xcout	0	R	W
3	Fix this bit to "1"	0	R	W	
4 7	to	Fix these bits to "0"	0	R	W

Note: This bit is valid when the CPU Mode Register (address 00FB16) bit 7 (CM7) is set to 1 .

Clock control register 3

Note: When used as the clock control signal, set the Port 1 Direction Register (address 00C316) bit 0 to 1.

19. PACKAGE OUTLINE

42P2R-A/E

EIAJ Package Code	JEDEC Code	Weight(g)	Lead Material
SSOP42-P-450-0.80	-	0.63	Alloy 42

Plastic 42pin 450mil SSOP

Recommended Mount Pad

Symbol	Dimension in Millimeters		
	Min	Nom	Max
A	-	-	2.4
A1	0.05	-	-
A2	-	2.0	-
b	0.25	0.3	0.4
c	0.13	0.15	0.2
D	17.3	17.5	17.7
E	8.2	8.4	8.6
e	-	0.8	-
HE	11.63	11.93	12.23
L	0.3	0.5	0.7
L1	-	1.765	-
Z	-	0.75	-
Z 1	-	-	0.9
y	-	-	0.15
θ	0°	-	10°
b2	-	0.5	-
e 1	-	11.43	-
I 2	1.27	-	-

REVISION HISTORY				M37150M6/M8/MA/MC/MF-XXXFP, M37150EFFP
Rev.	Date			Description
		Page		Summary
1.00	Nov 01, 2002	-	First edi	
1.00	Nov 01, 2002			

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Blidg, 2-6--2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble
may occur with them. roube with semiconductors may lead to personal injury, fire or property damage. (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's Renesas Technology Corp. assumy license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party diagrams, charts, programs, algorithms, or circuit application damage, or infringement of any third-pas contained in these materials
2. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
3. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
4. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
5. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
6. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd

7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
Unit2607 Ruijing Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

