Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

DATA SHEET

MOS INTEGRATED CIRCUIT µPD70F3433(A)

V850E/CG4[™] CarGate-3G-384F 32-Bit Flash Microcontroller

DESCRIPTION

The V850E/CG4 ("CarGate-3G-384F") Flash microcontroller, is a member of NEC's V850 32-bit RISC family, which match the performance gains attainable with RISC-based controllers to the needs of embedded control applications. The V850 CPU offers easy pipeline handling and programming, resulting in compact code size comparable to 16-bit CISC CPUs.

The V850E/CG4 ("CarGate-3G-384F") is especially designed for the high performance requirements of sophisticated algorithms and calculations. It combines a powerful CPU-Core with a 16-bit wide external memory interface and embedded Flash. Furthermore, it offers an excellent combination of general purpose peripheral functions, like serial communication interfaces (UART, clocked SI and I²C) and measurement inputs (A/D converter), with dedicated CAN network support.

Thus equipped, the V850E/CG4 ("CarGate-3G-384F") is ideally suited for automotive applications, like CAN Gateways. It is also an excellent choice for other applications where a combination of sophisticated peripheral functions and CAN network support is required.

Functions in detail are described in the following user's manual. Be sure to read these manual when you design your systems.

V850E/CG4 CarGate-3G-384F Preliminary User's Manual: U17411EE1V0UM00

FEATURES

- 32-bit RISC CPU with Harvard Architecture
- 384 kB Flash, 32 kB RAM
- Full-CAN Interface: 6 channels
- Serial Interfaces: 6 channels
 - 3-wire mode: 3 channels
 - UART mode: 2 channels
- I²C mode: 1 channel
- Timers: 3 channels
 - 16-bit multi purpose timer/event counter: channels: 3 channels
- 10-bit resolution A/D Converter: 4 channels
- Non-Multiplexed External Bus Interface (16-/8-bit data / 20-bit address)

- I/O lines: max. 80
- Power supply voltage range:
 - +4.3 V \leq V_{DD5} \leq +5.5 V
- Frequency range: up to 32 MHz
- Built-in low power saving mode
- Built-in clock oscillator circuit with internal PLL
- Temperature range:
- -40 °C to +85 °C
- Package:
 - 100 LQFP, 0.5 mm pin-pitch (14 \times 14 mm)

ORDERING INFORMATION

Device	Part Number	Package	ROM	RAM	Operating Temperature (T _A)
V850E/C	G4 µPD70F3433(A)	LQFP100 14 mm × 14 mm	384 kB Flash	32 kB	-40°C ~ +85°C

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

INTERNAL BLOCK DIAGRAM

PIN IDENTIFICATION

A0 to A19	: Address Bus	PAL0 to PAL 15	Port AL
D0 to D15	: Data Bus	PCS0, PCS3, PCS4	: Port CS
ANI0 to ANI3	: Analog Input	PCT0, PCT1, PCT4	: Port CT
AV _{DD}	: Analog Power Supply	PDL0 to PDL15	Port PDL
AV _{SS}	: Analog Ground	RESET	: Reset
CRXD0 to CRXD6	: CAN Receive Line Input	RXDA0 to RXDA1	: UART Receive Data Input
CTXD0 to CTXD5	: CAN Transmit Line Output	SCKB0, SCKB1, SCKB2	: Serial Clock
CV _{DD}	: Clock Generator Power Supply	SCL	I ² C Clock
CV _{SS}	: Clock Generator Ground	SDA	I ² C Data
$BVSS_{50}$ to $BVSS_{53}$	Ground for 5 V Power Supply	SIB0, SIB1, SIB2	: Serial Input
$\rm VSS_{50}$ to $\rm VSS_{51}$	Ground for 5 V Power Supply	SOB0, SOB1, SOB2	: Serial Output
INTP0 to INTP10	External interrupt request	TIP00 to TIP01, TIP10 to TIP11, TIP20 to TIC21	: Timer Input
MODE0, MODE1	: Mode Inputs	TOP00 to TOP01, TOP10 to TOP11, TOP20 to TOP21	Timer Output
NMI	: Non-Maskable Interrupt Request	TXDA0 to TXDA1	: Transmit Data Output
P00 to P02	Port 0	TTRGP2	Timer Trigger Input
P10 to P17	: Port 1	BV_{DD50} to BV_{DD53}	: 5 V Power Supply
P20 to P27	: Port 2	V_{DD50} to V_{DD51}	: 5 V Power Supply
P30 to P36	: Port 3	WR0, WR1	Write Enable
P40 to P47	: Port 4	RD	: Read
P70 to P73	Port 7	$\overline{\text{CS0}}, \overline{\text{CS3}}, \overline{\text{CS4}}$	Chip Select
PAH0 to PAH3	: Port AH	X1, X2	: Crystal (Main-OSC)

PIN CONFIGURATION (Top View)

100-Pin Plastic LQFP (fine pitch) (14 mm × 14 mm)

Table of Contents

1.	1.1		9 Functions
2.		Pro	ogramming Flash Memory15
3.			ectrical Specifications
	3.1	Abso	olute Maximum Ratings16
	3.2	Gene	eral Characteristics
		3.2.1	Recommended Main Oscillator circuit17
		3.2.2	Oscillator characteristics17
		3.2.3	Peripheral PLL characteristics17
		3.2.4	I/O capacitances
		3.2.5	Recommended capacitor values for REGC18
	3.3	Ope	rating Conditions
		3.3.1	CPU clock
	3.4		Characteristics
	3.5		Characteristics
		3.5.1	AC test input/output waveform
		3.5.2	AC test load condition
		3.5.3	Clock AC characteristics
		3.5.4	External memory access read timing21
		3.5.5	External memory access write timing
		3.5.6	Reset (power up/down sequence)23
		3.5.7	Interrupt timing
	3.6	-	pheral Function Characteristics25
		3.6.1	Timer P
		3.6.2	CSIB
		3.6.3	UARTA
		3.6.4	I ² C
		3.6.5	AFCAN
		3.6.6	A/D converter
	3.7	Flas	h Memory
		3.7.1	Basic characteristics
		3.7.2	Serial write operation characteristics
4.		Pa	ckage Drawing
5.		Re	commended Soldering Conditions 32
6.		Re	vision History

List of Figures

Figure 1-1:	Pin I/O Circuits	14
Figure 3-1:	Ceramic Resonator or Crystal Resonator Connection	17
Figure 3-2:	AC Test Input/Output Waveform	20
Figure 3-3:	AC Test Load Condition	20
Figure 3-4:	SRAM Read Timing	21
Figure 3-5:	SRAM Write Timing	22
Figure 3-6:	Reset Timing	
Figure 3-7:	Interrupt Timing	24
Figure 3-8:	Timer P Characteristics	25
Figure 3-9:	CSIB Slave Mode Characteristics	26
Figure 3-10:	I ² C Timing	28
Figure 3-11:	Analog Input Equivalent Circuit	29
Figure 3-12:	Flash Memory Timing	30
Figure 4-1:	Package Drawing	31

List of Tables

Table 1-1:	Pin Functions	
Table 1-2:	Non-Port Pins	
Table 3-1:	Absolute Maximum Ratings	
Table 3-2:	DC Characteristics	
Table 3-3:	Reset Timing	
Table 3-4:	Interrupt Timing	
Table 3-5:	Timer P Characteristics	
Table 3-6:	CSIB Master Mode Characteristics	
Table 3-7:	CSIB Slave Mode Characteristics	
Table 3-8:	UARTA Characteristics	
Table 3-9:	Characteristics I ² C	
Table 3-10:	AFCAN Characteristics	
Table 3-11:	A/D Converter Characteristics	
Table 3-12:	Flash Memory Characteristics	
Table 3-13:	Flash Memory Characteristics	30
Table 5-1:	Soldering Conditions	

NEC

1. Pin Functions

(1) Port pins

Port	I/O	Function	Alternate
P00			NMI (I)
P01	I/O	Port 0 3-bit input/output port	INTP0 (I) CRXD5 (I)
P02			CTXD5 (O)
P10			CRXD0 (I)
P11	-		CTXD0 (O)
P12			CRXD1 (I)
P13	I/O	Port 1	CTXD1 (O)
P14	1/0	8-bit input/output port	CRXD2 (I)
P15			CTXD2 (O)
P16			CRXD3 (I)
P17			CTXD3 (O)
P20			TOP00 (O) TIP00 (I) INTP3 (I) CRXD4 (I)
P21		Port 2 8-bit input/output port	INTP4 (I) TOP01 (O) TIP01 (I)
P22			INTP5 (I) TOP10 (O) TIP10 (I)
P23	I/O		INTP6 (I) TOP11 (O) TIP11 (I)
P24			INTP7 (I) TOP20 (O) TIP20 (I)
P25			INTP8 (I) TOP21 (O) TIP21 (I)
P26			TTRGP2 (I) INTP9 (I)
P27			INTP10 (I)
P30			RXDA0 (I) INTP1 (I)
P31			TXDA0 (O)
P32			RXDA1 (I) INTP2 (I)
P33	I/O	Port 3	TXDA1 (O)
P34		7-bit input/output port	SIB2 (I)
P35			SDAO0 (O) SDAI0 (I) SOB2 (O)
P36			SCLO0 (O) SCKIB2 (I) SCLI0 (I) SCKOB2 (O)
P40			SIB0 (I)
P41			SOB0 (O)
P42	3		SCKIB0 (I) SCKOB0 (O)
P43		Port 4	SIB1 (I)
P44	I/O	8-bit input/output port	SOB1 (O)
P45			SCKIB1 (I) SCKOB1 (O)
P46			CRXD4 (I)
P47			CTXD4 (O)

Table 1-1: Pin Functions (1/3)

Port	I/O	Function	Alternate
PAH0			A16 (O)
PAH1	I/O	Port PAH	A17 (O)
PAH2	- 1/O	4-bit input/output	A18 (O)
PAH3			A19 (O)
PAL0			A0 (O)
PAL1			A1 (O)
PAL2			A2 (O)
PAL3	-		A3 (O)
PAL4			A4 (O)
PAL5	-		A5 (O)
PAL6	-		A6 (O)
PAL7	I/O	Port PAL 16-bit input/output	A7 (O)
PAL8	- WO		A8 (O)
PAL9			A9 (O)
PAL10	-		A10 (O)
PAL11			A11 (O)
PAL12			A12 (O)
PAL13			A13 (O)
PAL14			A14 (O)
PAL15			A15 (O)
PCS0		D (D00	CSO (O)
PCS3	I/O	Port PCS 3-bit input/output	CS3 (O)
PCS4]		CS4 (O)
PCT0			WR0 (O)
PCT1	I/O	Port PCT 3-bit input/output	WR1 (O)
PCT4	1	- Struck and carbon	RD (O)

Table 1-1: Pin Functions (2/3)

Port	I/O	Function	Alternate
PDL0	-		DO0 (O) DI0 (I)
PDL1			DO1 (O) DI1 (I)
PDL2			DO2 (O) DI2 (I)
PDL3			DO3 (O) DI3 (I)
PDL4			DI4 (I) DO4 (O)
PDL5			DI5 (I) DO5 (O) MODE1 (I)
PDL6		Port PDL 16-bit input/output	DI6 (I) DO6 (O)
PDL7	I/O		DI7 (I) DO7 (O)
PDL8	1/0		DO8 (O) DI8 (I)
PDL9			DO9 (O) DI9 (I)
PDL10			DI10 (I) DO10 (O)
PDL11			DI11 (I) DO11 (O)
PDL12			DO12 (O) DI12 (I)
PDL13			DO13 (O) DI13 (I)
PDL14			DI14 (I) DO14 (O)
PDL15			DI15 (I) DO15 (O)

Table 1-1: Pin Functions (3/3)

(2) Non-port pins

Pin Name	I/O	Function	Port
A0 - A15	0	Address hus of external hus	PAL0 - PAL15
A16 - A19	0	Address bus of external bus	PAH0 -PAH3
AIN0 - AIN3	I	Analog input for A/D converter	
CRXD0	I		P10
CRXD1	I		P12
CRXD2	I	Serial reseive data input for AECANO to AECANA	P14
CRXD3	I	– Serial receive data input for AFCAN0 to AFCAN4	P16
CRXD4	I		P46
CRXD5	I		P01
CRXD6	I	Additional Receive Input for Mirror Mode	P20
CS0	0		PCS0
CS3	0	Chip select output for external bus	PCS3
CS4	0		PCS4
CTXD0	0		P11
CTXD1	0		P13
CTXD2	0	 Serial transmit data for AFCAN0 to AFCAN4 	P15
CTXD3	0	Senai transmit data for AFCANU to AFCAN4	P17
CTXD4	0		P47
CTXD5	0		P02
D0 - D15	I/O	Data bus of external bus	PDL0 - PDL15
INTP0	I		P01
INTP1	I		P30
INTP2	I		P32
INTP3	I		P20
INTP4	I		P21
INTP5	I	External interrupt request	P22
INTP6	I		P23
INTP7	I		P24
INTP8	I		P25
INTP9	I		P26
INTP10	I		P27
NMI	I	Non maskable interrupt	P00
RD	0	Read strobe signal	PCT4
RXDA0	I	– Serial receive data UARTA0 & UARTA1	P30
RXDA1	I		P32
SCKB0	I/O		P42
SCKB1	I/O	Serial clock I/O from CSIB0 - CSIB2	P45
SCKB2	I/O	7	P36
SCL0	I/O	Serial clock line I ² C	P36
SDAI0	I/O	Serial data line I ² C	P35

Table 1-2: Non-Port Pins (1/2)

Table 1-2: Non-Port Pins (2/2)

Pin Name	I/O	Function	Port
SIB0	I		P40
SIB1	I	Serial data input CSIB0 - CSIB2	P43
SIB2	I		P34
SOB0	0		P41
SOB1	0	Serial data output CSIB0- CSIB2	P44
SOB2	0		P35
TIP00	I		P20
TIP01	I		P21
TIP10	I		P22
TIP11	I	- Capture input 0-1 Timer P0 - Timer P2	P23
TIP20	I		P24
TIP21	I		P25
TOP00	0		P20
TOP01	0		P21
TOP10	0	Compare output 0.4 Timer D0 Timer D2	P22
TOP11	0	Compare output 0-1 Timer P0 - Timer P2	P23
TOP20	0		P24
TOP21	0		P25
TTRGP2	I	Timer Trigger Input Timer P2	P26
TXDA0	0	Serial transmit data output UARTA0 - UARTA1	P31
TXDA1	0		P33
WR0	0	Write strobe signal for external bus	PCT0
WR1	0		PCT1
AV _{DD}	-	5 V power supply ADC	-
AV _{SS}	_	GND potential for 5 V power supply ADC	-
V _{DD50} -V _{DD51}	_		-
BV _{DD50} -BV _{DD53}	_	5 V power supply	_
V _{SS50} -V _{SS50}	_		_
BV _{SS50} -BV _{SS53}	_	GND potential for 5 V power supply	-
MODE	I		_
MODE1	I	Specifies Operation mode	PDL5
REGC0	_		_
REGC1	_	Connection of regulator stabilization capacitance	-
RESET	I	System reset input	-
X1	I		-
X2	0	Connection of external oscillator	-
		prince to each other. On each pin of V _{DD5} , a capacitor or the bin of V _{DD5} , a capacitor or the bin.	containing a very low serial

1.1 I/O Circuits

Figure 1-1: Pin I/O Circuits

2. Programming Flash Memory

The device µPD70F3433(A) supports the programming of the internal flash in two ways: Either by using the *flash*PRO4 programming tool or by performing self-programming using software functions and I/O communications.

For programming details about both methods, see the User's Manual. For timing characteristics about the initial programming using *flash*PRO4 and some more electrical data about the Flash Memory, see 3.7 "Flash Memory" on page 30.

3. Electrical Specifications

All electrical parameters which are shown in the following tables are representing target values.

3.1 Absolute Maximum Ratings

 $(T_A = 25^{\circ}C, V_{SS5} = 0 V)$

Parameter		Symbol	Test Conditions	Ratings	Unit
		V _{DD5}		-0.5 ~ +6.5	V
		AV _{DD}		-0.5 ~ +6.5	V
Supply voltage		BV _{DD5}		-0.5 ~ +6.5	V
		BV _{SS5}		-0.5 ~ +0.5	V
		AV _{SS}		-0.5 ~ +0.5	V
		V _{I4}	V _{I4} < BV _{DD5} + 0.5 V	-0.5 ~ + 6.5	V
Input voltage		V _{IA} Note	$V_{IA} < AV_{DD} + 0.5 V$	-0.5 ~ + 6.5	V
Output ourrent low	1 pin	I _{OL4}		4.0	mA
Output current low	All pins	I _{OLA}		50	mA
	1 pin	I _{OH4}		-4.0	mA
Output current high All pins		I _{OHA}		-50	mA
Output voltage		Vo	V _O < BV _{DD5} +0.5 V	-0.5 ~ +6.5	V
Operating temperature (ambient)		T _{OPR}		-40 ~ +85	°C
Storage temperature		T _{STGB}		-40 ~ +125	°C

 Table 3-1:
 Absolute Maximum Ratings

Note: V_{IA} is the voltage applied to the analog input pins P73...P70

Remark:VDD5 is the supply voltage for the internal voltage regulators applied to pins VDD5x.AVDDAVDD is the supply and reference voltage for analog part of the A/D converterBVDD5 is the supply voltage for the I/O buffers applied to pins BVDD5xVSS5 is the ground for the internal logic applied to pins VS5xAVSS is the ground for the analog part of the A/D converterBVS55 is the ground for the I/O buffers applied to pins BVS5xAVSS is the ground for the analog part of the A/D converterBVS55 is the ground for the I/O buffers applied to pins BVS5x

3.2 General Characteristics

3.2.1 Recommended Main Oscillator circuit

Figure 3-1: Ceramic Resonator or Crystal Resonator Connection

Note: Values of C₁, C₂ and R depend on the used crystal or resonator and must be specified in cooperation with resonator manufacturer.

3.2.2 Oscillator characteristics

$(T_A = -40 \sim +85^{\circ}C, V_{DD5} = BV_{DD5} = 4.3 V \sim 5.5 V, V_{SS5} = BV_{SS5} = 0 V)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Oscillation stabilization time	T _{OST}	OSC MODE			16 ^{Note}	ms

Note: T_{OST} depends on the external crystal and the correct selection of C1, C2 and R.

Remark: This value is valid only for crystal operation.

3.2.3 Peripheral PLL characteristics

$(T_A = -40 \sim +85^{\circ}C, V_{DD5} = BV_{DD} = 4.3 V \sim 5.5 V, V_{SS5} = BV_{SS5} = 0 V)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
PLL start-up time	T _{PST}	OSC MODE			4800/f _{OSC} Note	μs

Note: f_{OSC} is the oscillator frequency.

µPD70F3433(A)

3.2.4 I/O capacitances

$(T_A = -40 \sim +85^{\circ}C, V_{DD5} = BV_{DD5} = 4.3 V \sim 5.5 V, V_{SS5} = BV_{SS5} = 0 V)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cl	f _C = 1 MHz			10	pF
Input/output capacitance	C _{IO}	Unmeasured pins			10	pF
Output capacitance	CO	returned to 0 V			10	pF

3.2.5 Recommended capacitor values for REGC

The recommended capacitor value for REGC0 and REGC1 is 4.7 μ F.

- **Remarks: 1.** NEC recommends to use a second capacitor with 100 nF in parallel to reduce disturbances with high frequencies.
 - 2. The terminals REGC0 and REGC1 must not be connected to each other.

3.3 Operating Conditions

3.3.1 CPU clock

 $(T_A = -40 \sim +85^{\circ}C, V_{DD5} = BV_{DD5} = AV_{DD} = 4.3 V \sim 5.5 V, V_{SS5} = BV_{SS5} = AV_{SS} = 0 V)$

Clock Mode	Operation Mode	Inside Operation Clock Frequency [MHz]
OSC mode, PLL off		4 to 6
OSC mode, PLL \times 4	all modes C ₁ ^{Note 1} = C ₂ ^{Note 2} = 4.7 µF	20 to 24
OSC mode, PLL × 8		32

Notes: 1. C₁ is the external capacitance connected to pin REGC0

2. C_2 is the external capacitance connected to pin REGC1

3.4 DC Characteristics

 $({\rm T_A}=-40 \sim +85^{\circ}{\rm C},\,{\rm V_{DD5}}={\rm BV_{DD5}}={\rm AV_{DD}}=4.3~{\rm V}\sim5.5~{\rm V},\,{\rm V_{SS5}}={\rm BV_{SS5}}={\rm AV_{SS}}=0~{\rm V})$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage high	V _{IH1}	Pin group 1	0.7 BV _{DD5}		BV _{DD5}	V
Input voltage low	V _{IL1}	Note 1	0		0.3 BV _{DD5}	V
Input voltage high	V _{IH1}	Pin group 2	0.7 BV _{DD5}		BV _{DD5}	V
Input voltage low	V _{IL1}	Note 2	0		0.3 BV _{DD5}	V
P73P70 Input voltage high	V _{IHA}		0.7 AV _{DD}		AV _{DD}	V
P73P70 Input voltage low	V _{ILA}		0		0.3 AV _{DD}	V
Output voltage high	V _{OH}	I _{OH} = -3.0 mA	BV _{DD5} - 1			V
Output voltage low	V _{OL}	I _{OL} = 3.0 mA			0.4	V
Input leakage current high	I _{LIH}	$V_{I} = V_{DD5x}$			-3	μA
Input leakage current low	I _{LIL}	V _I = 0 V			3	μA
P73P70 Input leakage current high	I _{LIHA}	$V_{IA} = AV_{DD}$			-3	μA
P73P70 Input leakage current low	I _{LILA}	$V_{IA} = 0 V$			3	μA
	I _{DD10}	Operating f _{CPU} = 32 MHz PLL: on		88	125	mA
	I _{DD11}	Operating (f _{CPU} = 24 MHz) PLL: on		80	115	mA
	I _{DD20}	HALT Mode f _{CPU} = 32 MHz PLL: on		58	83	mA
Supply current	I _{DD21}	HALT Mode (f _{PLL} = 24 MHz) PLL: on		48	68	mA
	I _{DD30}	IDLE Mode f _{CPU} = 32 MHz PLL: on		2.6	4	mA
	I _{DD31}	IDLE Mode (f _{PLL} = 24 MHz) PLL: on		2.6	4	mA
	I _{DD5}	STOP		30	200	μA

Table 3-2:	DC	Characteristics
------------	----	-----------------

Notes: 1. Pin group 1 is PAL, PAH, PDL, PCS, PCT

2. Pin group 2 is P0, P1, P2, P3, P4, P7, MODE, RESET

Remark: These values are without consumption of I/O-pins

3.5 AC Characteristics

$$\label{eq:TA} \begin{split} T_A &= -40 \sim +85^\circ C,\\ BV_{DD5} &= V_{DD5} = AV_{DD} = 4.3 \ V{\sim}5.5 \ V, \ BV_{SS5} = V_{SS5} = A_{VSS5} = 0 \ V,\\ Output \ pin \ load \ capacitance: \ C_L = 50 \ pF \end{split}$$

3.5.1 AC test input/output waveform

3.5.2 AC test load condition

3.5.3 Clock AC characteristics

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
X1, X2 oscillator frequency	f _{osc}	OSC MODE; PLL × 4	4		6	MHz
		PLL × 8	4	4	4	MHz

3.5.4 External memory access read timing

Parameter	Symbol		Conditions	Min.	Max	Unit
Data input set up time (vs. address)	<10>	T _{SAID}			(2+W _T)T - 45	ns
Data input set up time (vs. $\overline{RD}\downarrow$)	<11>	T _{SRDID}			(1.5+W _D)T - 40	ns
RD Low level width	<12>	T _{WRDL}		(1.5+W _D)T - 15		ns
RD High level width	<13>	T _{WRDH}		(0.5+W _{AS} + iT - 13		ns
Address, CSn RD delay time	<14>	T _{DARD}		(0.5+W _{AS})T - 20		ns
RD address delay time	<15>	T _{DRDA}		iT - 15		ns
Data input hold time (vs. \overline{RD}^{\uparrow})	<16>	T _{HRDID}		0		ns
RD data output delay time	<17>	T _{DRDOD}		(0.5+i)T - 35		ns

Note: T : 1 / f _{CPU} (= frequency of system clock	Note:	T :1	/ f _{CPU} (=	frequency	of system	clock
--	-------	------	-----------------------	-----------	-----------	-------

i : Number of idle states specified by BCC register

 W_T : Total Number of waits, $W_T = W_{AS} + W_D$

W_{AS} : Number of waits specified by ASC register

W_D : Number of waits specified by DWC1, DWC2 register

µPD70F3433(A)

3.5.5 External memory access write timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Address, CSn WR0, WR1 delay time	<20>	T _{DAWR}		(0.5+W _{AS})T - 25		ns
Address set up (vs. ₩R0, ₩R1↑)	<21>	T _{SAWR}		(1.5+W _T)T - 20		ns
WR0, WR1 address delay time	<22>	T _{DWRA}		(0.5+i)T - 15		ns
WR0, WR1 High level width	<23>	T _{WWRH}		(1+ i +W _{AS})T - 15		ns
WR0, WR1 Low level width	<24>	T _{WWRL}		(1+W _D)T - 15		ns
Data output set up time (vs. $\overline{\text{WR0}}, \overline{\text{WR1}}$)	<25>	T _{SODWR}		(0.5+W _T)T - 25		ns
Data output hold time (vs. WR0, WR1↑)	<26>	T _{HWROD}		(0.5+I)T - 20		ns

Note: ⊤

: 1 / f_{CPU} (= frequency of system clock)

i : Number of idle states specified by BCC register

- W_T : Total Number of waits, $W_T = W_{AS} + W_D$
- $W_{\mbox{\scriptsize AS}}$: Number of waits specified by ASC register
- W_D : Number of waits specified by DWC1, DWC2 register

Figure 3-5: SRAM Write Timing

3.5.6 Reset (power up/down sequence)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
RESET high-level width	t _{WRSH}		500		ns
RESET low-level width	t _{WRSL0}	STOP Mode release, OSC mode	T _{OST}		ms
	t _{WRSL1}	except STOP Mode release & Power Up	1.5		ms
RESET hold time	t _{DVRR}	OSC Mode on power-on	T _{WRSLx}		ms
RESET setup time	t _{DVRF}	OSC Mode on power-off	0		ns

Figure 3-6: Reset Timing

3.5.7 Interrupt timing

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
NMI high-level width	t _{NIH}	analog filter	500	45		ns
NMI low-level width	t _{NIL}	analog filter	500	45		ns
INTPi ^{Note} high-level width	t _{ITH}	analog filter	500	45		ns
INTPi ^{Note} low-level width	t _{ITL}	analog filter	500	45		ns

Table 3-4: Interrupt Timing

Note: i = 10...0

NEC

3.6 Peripheral Function Characteristics

3.6.1 Timer P

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
TIPmn ^{Note 1} high-level width	t _{TIPH}		150+4/ f _{CLK}	45+4/f _{CLK} Note 2		ns
TIPmn ^{Note 1} low-level width	t _{TIPL}		150+4/ f _{CLK}	45+4/f _{CLK} Note 2		ns

Table 3-5: Timer P Characteristics

Notes: 1. m = 2...0, n = 1...0

2. f_{CLK} is the system clock frequency as specified in section 3.3.1 "CPU clock" on page 18.

Figure 3-8: Timer P Characteristics

µPD70F3433(A)

3.6.2 CSIB

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
SCKBn cycle time	t _{KCY1}		125		ns
SCKBn high level width	t _{KH1}		0.5 t _{KCY1} - 15		ns
SCKBn low level width	t _{KL1}		0.5 t _{KCY1} - 15		ns
SIBn setup time (to SCKBn)	t _{SIK1}		30		ns
SIBn hold time (from SCKBn)	t _{KSI1}		25		ns
Delay time from SCKBn to SOBn	t _{KSO1}			25	ns

Table 3-6: CSIB Master Mode Characteristics

Table 3-7: CSIB Slave Mode Characteristics

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
SCKBn cycle time	t _{KCY1}		200		ns
SCKBn high level width	t _{KH1}		0.5 t _{KCY1} - 15		ns
SCKBn low level width	t _{KL1}		0.5 t _{KCY1} - 15		ns
SIBn setup time (to SCKBn)	t _{SIK1}		50		ns
SIBn hold time (from SCKBn)	t _{KSI1}		50		ns
Delay time from SCKBn to SOBn	t _{KSO1}			50	ns

Remark: n = 2...0

3.6.3 UARTA

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
Transfer rate	T _{UARTA}			312.5	kbps

Table 3-8: UARTA Characteristics

3.6.4 I²C

			Normal	Mode	High-speed	d Mode	
	Parameter				High-speed Mode		Unit
			min.	max.	min.	max.	
SCL0 clock frequ	iency	f _{CLK}	0	100	0	400	kHz
Bus-free time (be	etween stop/start conditions)	t _{BUF}	4.7	—	1.3	—	μs
Hold time ^{Note 1}		t _{HD:STA}	4.0	—	0.6	—	μs
SCL0 clock low-level width		t _{LOW}	4.7	—	1.3	—	μs
SCL0 clock high-level width		t _{HIGH}	4.0	—	0.6	—	μs
Setup time for st	art/restart conditions	t _{SU:STA}	4.7	—	0.6	—	μs
Data hald time	CBUS compatible master	+	5.0	—	_	—	μs
Data hold time	I ² C mode	t _{HD:DAT}	0 ^{Note 2}	—	0 ^{Note 2}	0.9 ^{Note 3}	μs
Data setup time		t _{SU:DAT}	250	—	100 ^{Note 4}	—	ns
STOP condition setup time		t _{SU:STO}	4.0	—	0.6	—	μs
Capacitive load	of each bus line	Cb	—	50	_	50	pF

Table 3-9: Characteristics I²C

Notes: 1. At the start condition, the first clock pulse is generated after the hold time.

- The system requires a minimum of 300 ns hold time Internally for the SDA signal (at V_{IHmin} of SCL0 signal) in order to occupy the undefined area at the falling edge of SCL0.
- If the system does not extend the SCL0 signal low hold time (t_{Iow}), only the maximum data hold time (t_{HD:DAT}) needs to be satisfied.
- 4. The high-speed-mode IIC bus can be used In a normal-mode IIC bus system. In this case, set the high-speed-mode IIC bus so that It meets the following conditions:
 If the system does not extend the SCL0n signal's low state hold time: t_{SU:DAT} ≥ 250 ns
 If the system extends the SCL0n signal's low state hold time: Transmit the following data bit to the SDA0 line prior to releasing the SCL0 line (t_{Rmax}.+t_{SU:DAT} = 1000 + 250 = 1250 ns: Normal mode IIC bus specification).

Remarks: 1. P: Stop condition

- 2. S: Start condition
- **3.** S_R : Restart condition

3.6.5 AFCAN

Table 3-10:	AFCAN Characteristics	;

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
Transfer rate	T _{AFCAN}	$f_{Peripheral} \ge 16 \text{ MHz}$		1	Mbps

NEC

3.6.6 A/D converter

$(T_A = -40 \sim +85^{\circ}C, BV_{DD5} = V_{DD5} = V_{AVDD} = 4.3 \sim 5.5 V, BV_{SS5} = V_{SS5} = AV_{SS} = 0 V)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution	-			10		Bit
Overall error Note 1	-				± 4	LSB
Conversion time Note 2	T _{CONV}		4.84		38.75	μs
Analog input voltage	V _{IAN}		AV _{SS}		AV _{DD}	V
Analogue supply current	I _{AVDD}			5	10	mA

 Table 3-11:
 A/D Converter Characteristics

Notes: 1. Quantization error is not included

2. T_{CONV} depends on register ADA0M1

Note: These are typical values only for reference. This values aren't part of the mass production test.

3.7 Flash Memory

3.7.1 Basic characteristics

$(T_A = -40 \sim +85^{\circ}C, BV_{DD5} = V_{DD5} = V_{AVDD} = 4.3 \sim 5.5 V, BV_{SS5} = V_{SS5} = AV_{SS} = 0 V)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Operation frequency	f _{CPU}		4		40	MHz
Number of rewrites	C _{WRT}				100	times
High level input voltage	V _{IH}	FLMD0 ^{Note}	0.8 BV _{DD}		BV _{DD}	V
Low level input voltage	V _{IL}	FLMD0 ^{read}	0		$0.2 \text{ BV}_{\text{DD}}$	V
Programming temperature	t _{PRG}		-40		+85	°C

 Table 3-12:
 Flash Memory Characteristics

Note: FLMD0 is shared function of the MODE pin.

3.7.2 Serial write operation characteristics

$(T_A = -40 \sim +85^{\circ}C, BV_{DD5} = V_{DD5} = V_{AVDD} = 4.3 \sim 5.5 V, BV_{SS5} = V_{SS5} = AV_{SS} = 0 V)$

Table 3-13:	Flash Memo	ry Characteristics
-------------	------------	--------------------

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Count start time from rising edge of RESET to FLMD0 ^{Note}	t _{RFCF}		t _{OST} + 4500/ f _{OSC}			ms
Count execution time	t _{COUNT}				7800/f _{OSC}	ms
FLMD0 counter High/Low level width	t _{CH} ,t _{CL}		1			μs

Note: FLMD0 is shared function of the MODE pin.

4. Package Drawing

Figure 4-1: Package Drawing

ITEM	MILLIMETERS
A	16.0±0.2
В	14.0±0.2
С	14.0±0.2
D	16.0±0.2
F	1.00
G	1.00
Н	0.22 +0.05 -0.04
I	0.08
J	0.5 (T.P.)
К	1.0±0.2
L	0.5±0.2
М	0.17 ^{+0.03} -0.07
Ν	0.08
Р	1.40 ± 0.05
Q	0.10±0.05
R	3 ⁺⁷ -3
S	1.60 MAX
	S100GC-50-8EU-1

5. Recommended Soldering Conditions

Solder this product under the following recommended conditions.

For details of the recommended soldering conditions, refer to information document Semiconductor Device:

Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended please consult NEC.

Soldering Method	Soldering Condition	Symbol of Recommended Soldering Condition	
Infrared reflow	Package peak temperature: 235 °C, Time: 10 seconds max., Number of times: 3 max., Number of days: 7 ^{Note}	IR35-107-3	

Table 5-1: Soldering Conditions

Note: After that, prebaking is necessary at 125 °C for 10 hours. The number of days refers to storage at 25°C, 65% RH MAX after the dry pack has been opened.

Caution: Do not use two or more soldering methods in combination (except partial heating method).

6. Revision History

Version	Date	Author	Remarks	
0.1	2005/11/21	S.Vollhardt	First released version of this document	

- NOTES FOR CMOS DEVICES -

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to V_{DD} or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

- The information in this document is current as of November, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.11-1

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH

Arcadiastrasse 10 40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office Podbielskistrasse 164

2000 Podbleiskistrasse 164 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office

Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office

Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K.

Tel: 01908-691-133

Succursale Française

9, rue Paul Dautier, B.P. 52180 78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800

Sucursal en España

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial

Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana

Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Limburglaan 5 5616 HR Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd 7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China TEL: 010-8235-1155 http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai P.R. China P.C:200120 Tel: 021-5888-5400 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

12/F., Cityplaza 4, 12 Taikoo Wan Road, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

Seoul Branch

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

G05.11-1A

NEC

Facsimile Message

FAX

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Address

Tel.

From:

Name

Company

Thank you for your kind support.

North America NEC Electronics America Inc. Corporate Communications Dept. Fax: 1-800-729-9288 1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-6250-3583	
Europe NEC Electronics (Europe) GmbH Marketing Services & Publishing Fax: +49(0)-211-6503-1344	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: 02-528-4411	Japan NEC Semiconductor Technical Hotline Fax: +81- 44-435-9608	
	Taiwan NEC Electronics Taiwan Ltd. Fax: 02-2719-5951		

I would like to report the following error/make the following suggestion:

Document title: ___

Document number: ____

_____ Page number: _____

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				

[MEMO]