

Data Sheet

RAA462113FYL#AC2

CMOS Image Sensor (PDAF)

R18DS0033EJ0100 Rev. 1.00 Feb 15, 2021

1. Outline

1.1 Description

The RAA462113FYL is BSI CMOS Image Sensor that achieved High-sensitivity, Low-noise and Low-power with 8M pixels for UHD (Ultra High Definition). The sensor features HDR (High Dynamic Range), PDAF (Phase Detection Auto Focus) functions and selectable output formats, MIPI-CSI2 or SLVS, which support 60fps (12bit digital output).

1.2 Features

Table 1 Features

Category	Item	Description				
	CLGA	144pin (pitch=1.0mm)				
PKG (Package)	CLGA	15.0mm x 13.3mm				
	Optical format	1/1.9 inch				
	Effective area	3872(H) x 2192(V)				
Sensor	HOB (Horizontal Optical Black)	32 pixels				
Serisor	VOB (Vertical Optical Black)	32 pixels				
	Unit cell size	1.85um x 1.85um				
	Primary color filter array	Bayer pattern				
Dower Supply	Power supply voltage	1.2V, 1.8V, 2.8V				
Power Supply	Power consumption	0.9W @ 60fps (typ.)				
	UHD (Ultra High Definition)	Single exposure				
Read Mode	Of ID (Oltra Flight Definition)	Max. 60fps (Active area:3840x2160)				
Nead Mode	UHD-HDR (High Dynamic Range)	Double exposure (Line by Line)				
	OTID-TIDIX (Flight Dynamic Trange)	Max. 30fps (Active area:3840x2160))				
Output Mode	MIPI-CSI2 (Camera Serial Interface)	RAW12, RAW10				
·	SLVS (Scalable Low Voltage Signaling)	12bit, LSB-first				
Output I/E (Interfece)	Output lane	8lane+1clock, 4lane+1clock				
Output I/F (Interface)	Data rate	891Mbps, 445.5Mbps / lane				
Serial Communication	I2C (Inter-Integrated Circuit)	Fast mode, Fast mode plus				
Serial Communication	4-wire (SCE, SCK, SDI, SDO)	2address=1word=16bit, MSB-first				
A/D Converter, Gain	Resolution of A/D converter	12bit				
A/D Conventer, Gain	Gain amplifier	Analog: 0~30dB, Digital: 0~24dB				
	Input: TRIG	Start trigger for Multi-sensor				
Timing Assist	Output: SACK	Register write enable during movie				
	Output: SYNC	Start of frame				
PDAF Assist	Phase Detection Auto Focus assist function	L-open pixel				
ו טאו אפאופנ	Thase Detection Auto Focus assist function	R-open pixel				

1.3 Block Diagram

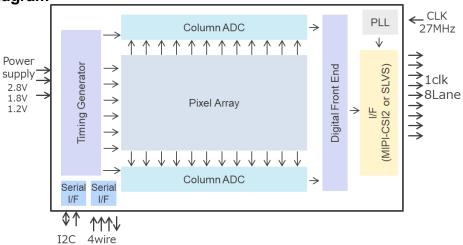


Figure 1 Block diagram

1.4 Pixel Array Structure

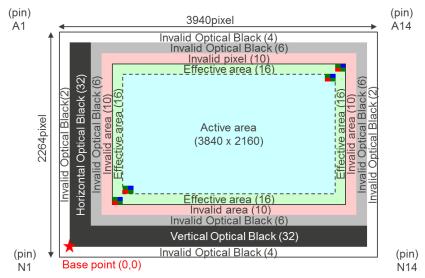


Figure 2 Pixel array structure (Top view)

1.5 PDAF pixel coordinates

L-open / R-open pixel coordinates (Unit: pixels)

Sensor don't output Invalid data; refer to section 4.1 Read Mode.

PDAF pixel coordinates in sensor output image is shown in next expression; refer to Figure 3.

L-open pixel (Odd)

$$X = 16m + 48 (m = 0, 1, 2, 3, \dots, 239)$$

$$Y = 16n + 49 (n = 0, 1, 2, 3, \dots, 134)$$

L-open pixel (Even)

$$X = 16m + 60 (m = 0, 1, 2, 3, \dots, 239)$$

$$Y = 16n + 57 (n = 0, 1, 2, 3, \dots, 134)$$

R-open pixel (Odd)

$$X = 16m + 56 (m = 0, 1, 2, 3, \dots, 239)$$

$$Y = 16n + 49 (n = 0, 1, 2, 3, \dots, 134)$$

R-open pixel (Even)

$$X = 16m + 52 (m = 0, 1, 2, 3, \dots, 239)$$

$$Y = 16n + 57 (n = 0, 1, 2, 3, \dots, 134)$$

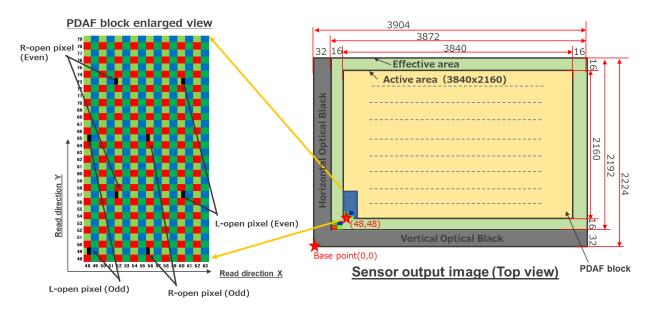


Figure 3 PDAF pixel coordinates

1.6 PKG Structure

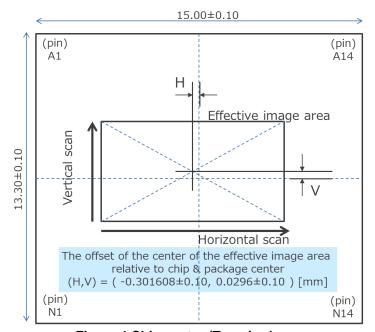
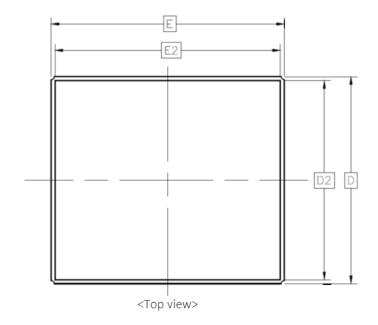
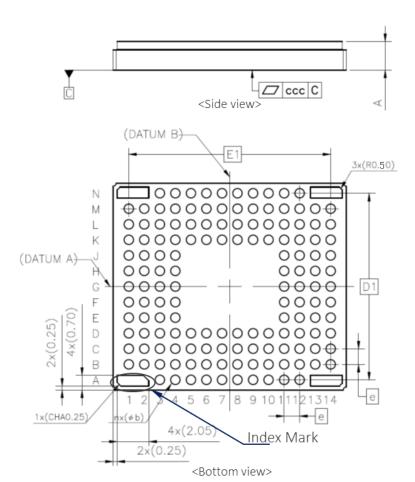




Figure 4 Chip center (Top view)

Reference	Dimen	sion in Millir	meters
Symbol	Min.	Nom.	Max.
D	13.20	13.30	13.40
D2	12.70	12.80	12.90
E	14.90	15.00	15.10
E2	14.40	14.50	14.60
D1	-	12.00	-
E1	-	13.00	-
А	-	-	2.03
b	-	0.60	-
е	-	1.00	-
ccc	-	-	0.05
n	-	144	-

Figure 5 PKG structure

2 Pin Description

2.1 Pin Description

Table 2 Pin description (Power / Analog / Ground)

No.	Pin Name	I/O	Description	Note
1	VDD_PX	PWR	Analog power supply (2.8V)	
2	VDD_RG	PWR	Analog power supply (2.8V)	
3	VDD_AN	PWR	Analog power supply (2.8V)	
4	VDD_AD_N	PWR	Analog power supply (2.8V)	
5	VDD_AD_S	PWR	Analog power supply (2.8V)	
6	VDD_AD_V	PWR	Analog power supply (2.8V)	
7	VDD_AD_C	PWR	Analog power supply (2.8V)	
8	VDD_IO_N	PWR	Digital power supply (1.8V)	
9	VDD_IO_I2C	PWR	Digital power supply (1.8V)	
10	VDD_DG	PWR	Digital power supply (1.2V)	
11	VDD_DG_SL	PWR	Analog power supply (1.2V)	
12	VDD_DG_PL1	PWR	Analog power supply (1.2V)	
13	VDD_DG_PL2	PWR	Analog power supply (1.2V)	
14	VCAP_VTXH	PWR	Analog power supply (2.8V)	
15	VCAP_VDRS	AIO	Capacitor connection (6.8uF)	
16	VCAP_VTXL	AIO	Capacitor connection (22uF)	
17	VCAP_PX_N	AIO	Capacitor connection (1.0uF)	
18	VCAP_PX_S	AIO	Capacitor connection (1.0uF)	
19	IREF	AIO	Resister connection (10kΩ)	
20	VREF	Al	Reference voltage (1.8V)	
21	GND_PX	GND	Analog ground	
22	GND_RG	GND	Analog ground	
23	GND_AN	GND	Analog ground	
24	GND_AD_N	GND	Analog ground	
25	GND_AD_S	GND	Analog ground	
26	GND_AD_V	GND	Analog ground	
27	GND_AD_C	GND	Analog ground	
28	GND_IO_N	GND	Digital ground	
29	GND_IO_I2C	GND	Digital ground	
30	GND_DG	GND	Digital ground	
31	GND_DG_SL	GND	Analog ground (Dedicated to SLVS)	

Table 3 Pin description (Interface)

No.	Pin Name	I/O	Description	Note
34	D1P	DO	MIPI-CSI2 / SLVS output (Data lane-1 positive polarity)	
35	D1N	DO	MIPI-CSI2 / SLVS output (Data lane-1 negative polarity)	
36	D2P	DO	MIPI-CSI2 / SLVS output (Data lane-2 positive polarity)	
37	D2N	DO	MIPI-CSI2 / SLVS output (Data lane-2 negative polarity)	
38	D3P	DO	MIPI-CSI2 / SLVS output (Data lane-3 positive polarity)	
39	D3N	DO	MIPI-CSI2 / SLVS output (Data lane-3 negative polarity)	
40	D4P	DO	MIPI-CSI2 / SLVS output (Data lane-4 positive polarity)	
41	D4N	DO	MIPI-CSI2 / SLVS output (Data lane-4 negative polarity)	
42	D5P	DO	MIPI-CSI2 / SLVS output (Data lane-5 positive polarity)	
43	D5N	DO	MIPI-CSI2 / SLVS output (Data lane-5 negative polarity)	
44	D6P	DO	MIPI-CSI2 / SLVS output (Data lane-6 positive polarity)	
45	D6N	DO	MIPI-CSI2 / SLVS output (Data lane-6 negative polarity)	
46	D7P	DO	MIPI-CSI2 / SLVS output (Data lane-7 positive polarity)	
47	D7N	DO	MIPI-CSI2 / SLVS output (Data lane-7 negative polarity)	
48	D8P	DO	MIPI-CSI2 / SLVS output (Data lane-8 positive polarity)	
49	D8N	DO	MIPI-CSI2 / SLVS output (Data lane-8 negative polarity)	
50	CK1P	DO	MIPI-CSI2 / SLVS output (Clock lane positive polarity)	
51	CK1N	DO	MIPI-CSI2 / SLVS output (Clock lane negative polarity)	
52	CLK_RF1	DI	Reference clock signal input (27MHz)	
53	RSTN	DI	System reset (Low: reset, High: release)	
54	SDA	DIO	Data input / output for I2C serial communication	
55	SCL	DI	Clock input for I2C serial communication	
56	SCE	DI	Data input for 4-wire serial communication	
57	SCK	DI	Clock input for 4-wire serial communication	
58	SDI	DI	Data input for 4-wire serial communication	
59	SDO	DO	Data output for 4-wire serial communication	
60	TRIG	DI	Data input for Synchronization	
61	SYNC	DO	Timing pulse of Start of Frame	
62	SACK	DO	Timing pulse of serial communication write enable	
63	CM4W	DI	Mode select (Low: I2C, High: 4-wire)	
64	CMHP	DI	I2C mode select (Low: fast-mode, High: fast-mode plus)	
65	CMHV	DI	I2C driver select for large load capacitor or Pull-up voltage > 2.5V	

Table 4 Pin description (Test)

No.	Pin Name	I/O	Description	Note
66	CK2P	DO	Test pin (No connection)	
67	CK2N	DO	Test pin (No connection)	
68	CLK_RF2	DI	Test pin (It must be connected to Digital ground by users.)	
69	ATEST_VDC	Al	Test pin (It must be connected to Analog ground by users.)	
70	ATEST_VWC	Al	Test pin (It must be connected to Analog ground by users.)	
71	ATEST_VGC	Al	Test pin (It must be connected to Analog ground by users.)	
72	ATEST_DAC	AO	Test pin (No connection)	
73	DTEST_ED	DI	Test pin with pull down which internally connects to Digital ground	
74	DTEST_M1	DO	Test pin (No connection)	
75	DTEST_M2	DO	Test pin (No connection)	
76	SCAN_MODE	DI	Test pin with pull down which internally connects to Digital ground	
77	TEST_NC1	DIO	Test pin (No connection)	
78	TEST_NC2	DIO	Test pin (No connection)	
79	TEST_NC3	DO	Test pin (No connection)	

2.2 Pin Assignment

Table 5 Pin assignment (Top view)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	G N D _	A D _N	G N D _A D _N	V D D _A D _N	G N D _D G	CLK_RF2	V D D _ ID _N E /N W	G N D _1D _N E,N W	V D D _A D _N	G N D _A D _N	GND_	A D _N		
В	VDD_PX	VREF	GND_AD_V	GND_AD_V	VDD_DG_PL2	VDD_DG_PL2	DTEST_M 2	DTEST_M 1	G N D _ ID _ N E ,N W	VDD_DG_PL1	V D D _D G	G N D _D G	C K 2P	CK2N
C	GND_PX*	GND_AD_V	VDD_AD_V	VDD_AD_V	RSTN	TEST_NC1	TEST_NC2	SCAN_MODE	DTEST_ED	GND_DG	V D D _D G	G N D _D G	D 8P	D 8N
D	VCAP_PX_N	GND_PX*	V D D _D G	V D D _D G	G N D _D G	V D D _D G	V D D _D G	G N D _D G	V D D _D G	GND_DG	V D D _D G	G N D _D G	D 7P	D 7N
E	GND_PX*	V D D _R G	G N D _D G	G N D _D G							VDD_PX	G N D _P X	D 6P	D 6N
F	VCAP_VDRS	G N D _R G	V D D _ A D _ C	VDD_AD_C							V D D _D G	G N D _D G	D 5P	D 5N
G	VCAP_VTXH	ATEST_VDC	GND_AD_C	GND_AD_C							V D D _D G	G N D _D G	D 4P	D 4N
Н	VCAP_VTXL	ATEST_VW C	G N D _D G	ATEST_DAC							V D D _D G _S L	GND_DG_SL	D 3P	D 3N
J	GND_PX*	ATEST_VGC	G N D _D G	G N D _D G							VDD_PX	G N D _P X	D 2P	D 2N
K	VCAP_PX_S	GND_PX*	V D D _D G	V D D _D G	G N D _D G	V D D _D G	V D D _D G	G N D _D G	V D D _D G	GND_DG	V D D _D G	G N D _D G	D 1P	D 1N
L	GND_PX*	GND_AN *	V D D _A N	V D D _A N	SDO	SDO SCE CM4W CMHP CMHV GND_DG VDD_DG GN								CK1N
M	VDD_PX	REF	GND_AN *	GND_AN *	SDI	SCK	SACK	TEST_NC3	SYNC	TR IG	VDD_DG	GND_DG	G N D _D G	GND_DG
N	G N D _	AD_S	GND_AD_S	VDD_AD_S	V D D _10 _12 C	G N D _10 _12 C	SCL	SDA	V D D _ 10 _ 12 C	G N D _1D _12C	VDD_AD_S	GND_AD_S	GND_	AD_S

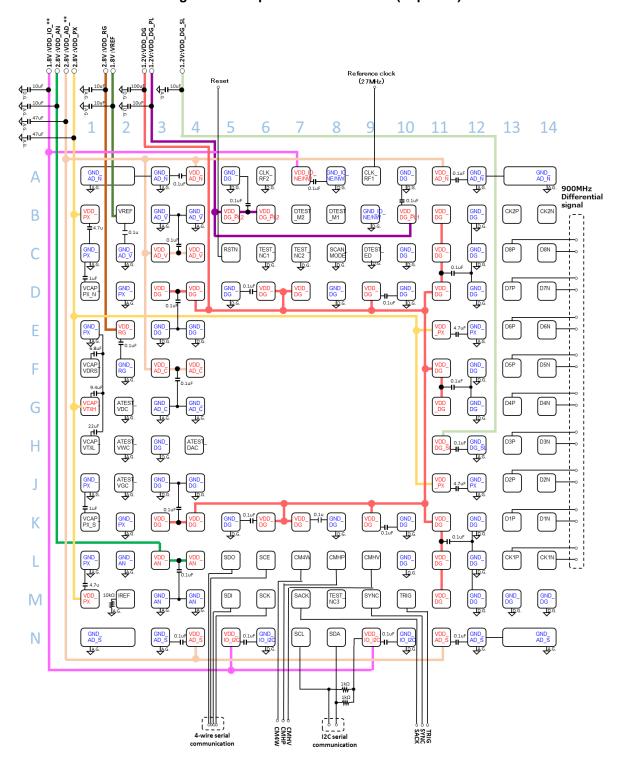


Figure 6 Example of external circuit (Top view)

3. Electrical Characteristics

3.1 Absolute Maximum Ratings

Table 6 Absolute maximum ratings

Item	Symbol	Min	Max	Unit
VDD_PX, VDD_RG, VDD_AD_N, VDD_AD_S, VDD_AD_V VDD_AD_C,VDD_AN, VCAP_VTXH,VREF,IREF, VCAP_VDRS VCAP_PX_N, VCAP_PX_, VDD_IO_N, VDD_IO_I2C SDA, SCL,SCE,SCK,SDI,CM4W, CMHP, CMHV CLK_RF1, RSTN,TRIG,SDO, SACK, SYNC ATEST_VDC, ATEST_VWC,ATEST_VGC,ATEST_DAC DTEST_ED, SCAN_MODE,CLK_RF2, DTEST_M1, DTEST_M2 TEST_NC1, TEST_NC2, TEST_NC3	AVH	-0.3	3.6V	V
VCAP_VTXL	AVN	-0.9	0.3	V
VDD_DG, VDD_DG_PL1, VDD_DG_PL2, VDD_DG_SL D*P, D*N, {*: Lane Number (1~8) },CK1P, CK1N,CK2P, CK2N	AVL	-0.3	1.32	V
Storage temperature	Tstg	-20	110	°C
Operating temperature	Та	-20	85	°C
Storage and operating humidity	-	No cond	ensation	%

3.2 Power Supply

Table 7 Power supply voltage

Item	Symbol	Min	Тур	Max	Unit	Condition
2.8V power supply (analog) VDD_PX, VDD_RG VDD_AD_N, VDD_AD_S VDD_AD_V, VDD_AD_C VDD_AN, VCAP_VTXH	VDA28	2.66	2.80	2.94	V	
1.8V power supply (digital) VDD_IO_N, VDD_IO_I2C	VDD18	1.71	1.80	1.89	V	
1.8V power supply (analog) VREF	VDA18	1.71	1.80	1.89	V	
1.2V power supply (digital) VDD_DG	VDD12	1.14	1.20	1.26	V	
1.2V power supply (analog) VDD_DG_PL1, VDD_DG_PL2 VDD_DG_SL	VDA12	1.14	1.20	1.26	V	

Table 8 Current consumption

Item	Symbol	Min	Тур	Max	Unit	Condition
2.8V power supply (analog) VDD_PX, VDD_RG VDD_AD_N, VDD_AD_S VDD_AD_V, VDD_AD_C VDD_AN, VCAP_VTXH	IVDA28	-	190	210	mA	
1.8V power supply (digital) VDD_IO_N, VDD_IO_I2C	IVDD18	-	0.1	4	mA	
1.8V power supply (analog) VREF	IVDA18	-	0.1	1	mA	
1.2V power supply (digital) VDD_DG	IVDD12	-	300	340	mA	
1.2V power supply (analog) VDD_DG_PL1, VDD_DG_PL2 VDD_DG_SL	IVDA12	-	9	12	mA	

3.3 Pixel Characteristics

3.3.1 Image Sensor Characteristics

Table 9 Sensor characteristics w/o PDAF Pixels

Tj=60°C, power supply voltage: typical if not specified

Item	Symbol	Min	Тур	Max	Unit	Condition
Sensitivity	SENS_G	2100	-	-	LSB	*1
Sensitivity ratio R/G	SENS_R/G	35	-	49	%	*1,*2
Sensitivity ratio B/G	SENS_B/G	64	-	88	%	*1,*2
Maximum output	OUT_MAX	4000	-	-	LSB	
Dark Shading	D_SHAD	-	-	17	LSB	*3
Line crawl R	LINE_C_R	-6		6	%	*4
Line crawl G	LINE_C_G	-6		6	%	*4
Line crawl B	LINE_C_B	-6		6	%	*4

Light Source: D50 (defined in JIS8720 5000K) telecentric illuminator with heat-absorbing filter HOYA HA-50 and color correction filter HOYA CM500S.

*1 Sensitivity

- (1) Apply 5x5 pixels median filter for image data, R/Gb/Gr/B respectively. ----- (a)
- (2) For image (a), calculate average of R/Gb/Gr/B data on center area ----- (b) center area: please refer to Figure 7.
- (3) calculate data(b) offset level (OB data) ----- SENS_R/SENS_G((Gr+Gb)/2)/SENS_B
- *2 Sensitivity ratio
 - (1) calculate SENS_R/SENS_G ----- SENS_R/G
 - (2) calculate SENS_B/SENS_G ----- SENS_B/G
- *3 Dark shading
 - (1) ZoneII divide to 48×27 blocks. 1 block is 80×80, 96×96, 96×80 or 80×96 pixels. Please refer to Figure 7.
 - (2) Averaging output data in a block, R/G/B respectively.
 - (3) SHADE_R/G/B=(MAX-MIN)/(Ave.@center area)
- *4 Line Crawl R/G/B
 - (1) ZoneII divide to 48×27 blocks. Please refer to Figure 7.
 - (2) Averaging output data in a block, Gb and Gr respectively. ----- AVE_Gb/AVE_Gr
 - (3) LINE_C_R/G/B= $(AVE_Gr-AVE_Gb)/{(AVE_Gr+AVE_Gb)/2}\times100$
 - <Lighting condition> LINE_C_R : Red LINE_C_G : Green LINE_C_B : Blue

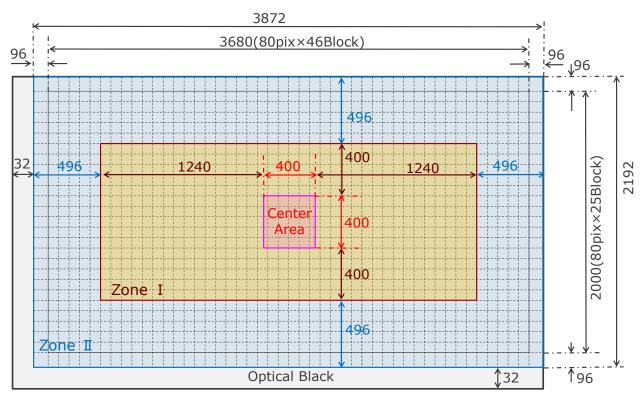


Figure 7 Pixel characteristics calculation area

Table 10 Sensor characteristics of PDAF Pixels

Tj=60°C, power supply voltage: typical if not specified

Item	Symbol	Min	Тур	Max	Unit	Condition
Sensitivity ratio L-open/R-open	SENS_PL/PR	0.67	1	1.5	-	*1
PDAF Sensitivity	SENS_PL, SENS_PR	656	-	-	LSB	*1

Note) This chip doesn't have the function to correct the sensitivity ratio; L-open/R-open inside. When you use PDAF function, please correct the sensitivity ratio to 1 in calculation.

Ex. You should multiply R-open PDAF output data by SENSE_PL/PR or multiply L-open PDAF pixel output data by 1/(SENSE_PL/PR).

Light Source: D50 (defined in JIS8720 5000K) telecentric illuminator with heat-absorbing filter HOYA HA-50 and color correction filter HOYA CM500S.

- *1 PDAF Sensitivity, Sensitivity ratio L-open/R-open
 - (1) Apply 5x5 pixels median filter for image data, L-open/R-open respectively. ----- (a)
 - (2) For image (a), calculate average of L-open/R-open data of all PDAF pixels ----- (b)
 - (3) calculate data(b) offset level (OB data) ----- SENS_PL, SENS_PR
 - (4) calculate SENS_PL/SENS_PR----- SENS_PL/PR

3.3.2 Spectral Characteristics

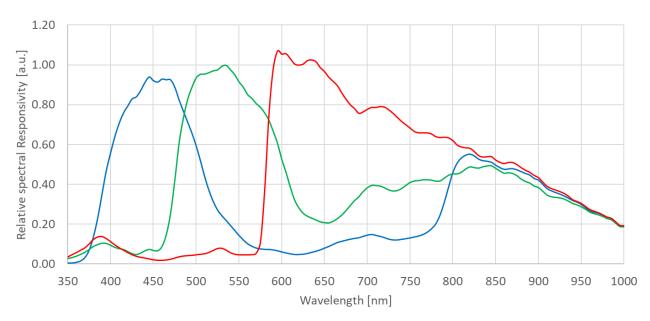


Figure 8 Spectral characteristics

Note: Spectral characteristics has possibility to change in sensor development.

3.3.3 Pixel Defect Specifications

Table 11 Pixel defect specifications

Tj=60°C, power supply voltage: typical if not specified

Item	Symbol	Min	Тур	Max	Unit	Condition
Shine spot defect at Dark	WHI	1	1	1999	pixel	*1
Shine/Black spot defect at Bright (w/o PDAF)	SHIN	-	-	1999	pixel	*2
Shine spot defect at Dark (PDAF)	WHI_P			31	pixel	*3
Shine/Black spot defect at Bright (PDAF)	SHIN_P	-	-	31	pixel	*4
Pixel defect pattern (Mass defect)	MASS_D	-	-	0	pixel	*5
PDAF pixel spot defect in any 16x8 PDAF pixel region	MASS_PDAF			1	pixel	*6

- *1 Shine spot defect at Dark
 - (1) Take dark image @ Analog Gain 30dB----- (a)
 - (2) Apply 5x5 pixels median filter for image data ----- (b)
 - (3) Calculate (a)-(b) each pixel on zone II----- (c)
 - (4) Count shine spot defect on data_(c)
- *2 Shine/Black spot defect at Bright
 - (1) Take image @ Analog Gain 0dB----- (a)
 - (2) Apply 5x5 pixels median filter for image data (R, Gb, Gr and B respectively) ----- (b)
 - (3) Calculate (a)-(b) each pixel on zone II----- (c)
 - (4) Calculate I/((b)-Dark_offset) x 100 each pixel on zone II----- (d)
 - (5) Shine spot defect is over 15% on data (d)
 - (6) Black spot defect is under -15% on data (d)
- *3 Shine spot defect at Dark (PDAF)
 - (1) Take image and pick up PDAF image data @ Analog gain 30dB ----- (a)
 - (2) Apply 5x5 pixel median filter for PDAF image data ----- (b)
 - (3) Calculate (a)-(b) each pixel ----- (c)
 - (4) Count shine spot defect on data_(c).
- *4 Shine/Black spot defect at Bright(PDAF)
 - (1) Take image and pick up PDAF image data @ Analog Gain 0dB----- (a)
 - (2) Apply 5x5 pixels median filter for PDAF image data ----- (b)
 - (3) Calculate (a)-(b) each pixel ----- (c)
 - (4) Calculate I/((b)-Dark_offset) x 100 each pixel ----- (d)
 - (5) Shine spot defect is over 15% on data (d)
 - (6) Black spot defect is under -15% on data (d)
- *5 Pixel defect pattern

Devices which include three or less pixel defects at each color in 3 x 3 Bayer area are not rejected.

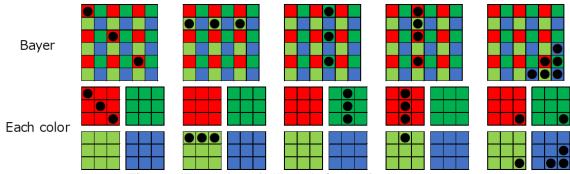


Figure 9 Examples of allowed pixel defect patterns

However, devices which include following pattern (1) or (2) are rejected.

Pattern (1): Devices which include four or more pixels defect at each color in 4 x 4 Bayer area are rejected.

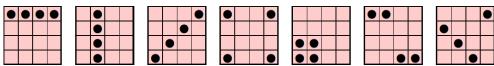


Figure 10 Examples of not allowed pixel defect patterns

Pattern (2): Devices which include consecutive defects at all colors in 3 x 3 Bayer area even including three pixel defects at each color are rejected.

Bayer

Each color

Figure 11 Examples of not allowed pixel defect patterns

Devices which include two L-open PDAF pixel defects in each 16 x 8 PDAF L-open pixel area are rejected.

Devices which include two R-open PDAF pixel defects in each 16 x 8 PDAF R-open pixel area are rejected.

^{*6} PDAF pixel spot defect in each 16 x 8 PDAF pixel region

3.4 Digital I/O (Input/Output)

Table 12 DC characteristics (Common)

Digital input pin: CLK_RF1, RSTN, TRIG, CM4W, CMHP, CMHV Digital output pin: SYNC, SACK

Ta=25°C, power supply voltage: typical if not specified

ia 20 0, points capping remages typical in not of							
Item	Symbol	Min	Тур	Max	Unit	Condition	
Digital Input Voltage at High	VIH	VDD18 x0.8		VDD18 +0.2	٧		
Digital Input Voltage at Low	VIL	-0.2		VDD18 x0.2	٧		
Digital Output Voltage at High	VOH	VDD18 -0.2		-	V	IOH=1mA	
Digital Output Voltage at Low	VOL			0.20	V	IOL=1mA	

Table 13 AC characteristics (Clock)

Clock: CLK_RF1

Ta	=25°C, p	ower sup	ply voltage: typical if not specifi	ied
p	Max	Unit	Condition	

Item	Symbol	Min	Тур	Max	Unit	Condition
Clock cycle time	tCLKcyc	typ -20 ppm	1/27M	typ +20 ppm	s	
High level pulse width	tCLKH	tCLKc yc x0.42		tCLKc yc x0.58	S	
Low level pulse width	tCLKL	tCLKc yc x0.42		tCLKc yc x0.58	S	
Clock Rise Time	tCLKr			1	ns	20% - 80%
Clock Fall Time	tCLKf			1	ns	80% - 20%
Clock Jitter	tCLKj	-15		+15	ps	

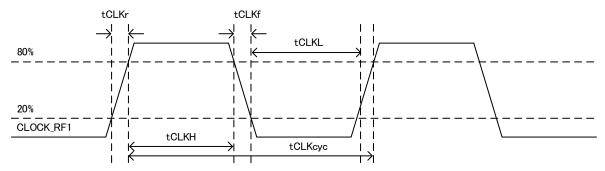


Figure 12 CLK_RF1 waveform

Table 14 AC characteristics (Digital input pin)

Digital input pin: TRIG, RSTN, CM4W, CMHP, CMHV Ta=25°C, power supply voltage: typical if not specified

Item	Symbol	Min	Тур	Max	Unit	Condition
Rise Time	tR			5	ns	20% - 80%
Fall Time	tF			5	ns	80% - 20%
High level pulse width for TRIG	tTRIGH	75		3000	ns	

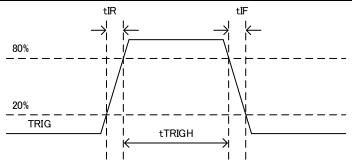


Figure 13 TRIG waveform

3.5 Serial Communication3.5.1 I2C

Table 15 I2C bus DC characteristics

Item	Symbol	Min	Тур	Max	Unit	Condition
Pull-up voltage	VDI	1.72	1.8		V	
Pull-up resistor	RP	VDI *0.7 /3		250/ 0.8473 /CB	kΩ	fast mode
(CB=total capacitance of one bus line in pF)	RP	VDI *0.7 /20		120/ 0.8473 /CB	K22	fast mode plus
LOW level input voltage	VIL	-0.5		VDI *0.3	٧	
HIGH level input voltage	VIH	VDI *0.7		VDI +0.5	V	
Hysteresis of Schmitt trigger inputs	VHYS	VDI *0.05		-	٧	
LOW level output voltage (open drain) at 2mA sink current	VOL	0		VDI *0.2	٧	
HIGH level output voltage	VOH	*0.8		-	V	
Low level output current (VOL=0.4V)	IOL	3 20		-	mA	fast mode fast mode plus
Output fall time from VIHmin to VILmax with bus capacitance (CB)	tOF	VDDI *20 /5.5		250	50	fast mode : <400pF
from 10 pF to 400 pF	ioi	VDDI *20 /5.5		120	ns	fast mode plus : <550pF
Pulse width of spikes which shall be suppressed by the input filter	tSP	0		50	ns	
Input current each I/O pin with an input voltage between 0.1 VDI and 0.9 VDI	lt	-10		10	uA	
Input/Output capacitance (SDA)	CI/O	-		8	рF	
Input capacitance (SCL)	CI	-		6	pF	

Table 16 I2C bus timing characteristics

Item	Symbol	Min	Тур	Max	Unit	Condition
001 1 1 ((0.0)	0	-	400		fast mode
SCL clock frequency	fSCL	0	-	1000	kHz	fast mode plus
Hold time (repeated) START		0.6	-	-		fast mode
condition. After this period, the first clock pulse is generated	tHD;STA	0.26	-	-	us	fast mode plus
LOW period of the SCL clock	tLOW	1.3	-	-	110	fast mode
LOW period of the SCL clock	ILOVV	0.5	-	-	us	fast mode plus
HIGH period of the SCL clock	tHIGH	0.6	-	-	us	fast mode
HIGH period of the SCL clock	เกเษก	0.26	-	-	us	fast mode plus
Setup time for a repeated	tSU;STA	0.6	-	-	us	fast mode
START condition	130,314	0.26	-	-	us	fast mode plus
Data hold time	tHD;DAT	0	-	0.9	110	fast mode
Data fiold time	IND,DAT	0	-	0.45	us	fast mode plus
Data set-up time	tSU;DAT	100	-	-	20	fast mode
Data set-up time	ISU,DAT	50	-	-	ns	fast mode plus
Rise time of both SDA and		20	-	300		fast mode
SCL signals (CB=total capacitance of one bus line in pF)	tR	-	-	120	ns	fast mode plus
Fall time of both SDA and SCL signals (CB=total capacitance	tF	VDI *20 /5.5	-	300	ns	fast mode
of one bus line in pF)	ur	VDI *20 /5.5	-	120	115	fast mode plus
Set-up time for STOP condition	tSU;STO	0.6	-	-	us	fast mode
Set-up time for STOL condition	130,310	0.26	-	-	us	fast mode plus
Bus free time between	tBUF	1.3	-	-	us	fast mode
a STOP and START condition	וטטו	0.5	-	-	us	fast mode plus
Capacitive load for each bus line	СВ	10	-	400	pF	fast mode
Capacitive load for each bus lifte	СВ	10	-	550	PΓ	fast mode plus
Noise margin at the LOW level for each connected device (including hysteresis)	VnL	0.18	-	-	٧	

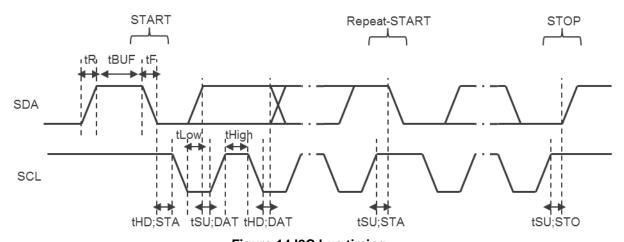


Figure 14 I2C bus timing

3.5.2 4-wire

Table 17 4-wire DC/AC characteristics

Input Pin: SCE, SCK, SDI

Output Pin: SDO Ta=25°C, power supply voltage: typical if not specified

			1 u –	20 0, pov	rci suppiy	voltage. typical ii flot specified
Item	Symbol	Min	Тур	Max	Unit	Condition
District to and Make on a station	VIH	VDD18		VDD18	V	
Digital Input Voltage at High	VIII	x0.8		+0.2	V	
Digital Input Voltage at Low	VIL	-0.2		VDD18	V	
Digital input voltage at Low	VIL	· · ·		x0.2		
Digital Output Valtage at Lligh	VOH	VDD18			V	IOH=1mA
Digital Output Voltage at High	VOH	-0.2		- V	V	IOH=IIIIA
Digital Output Valtage at Law	\/OI			0.00	\/	IOI 4 == A
Digital Output Voltage at Low	VOL	-		0.20	V	IOL=1mA
SCE setup time	tSSCE	40		-	ns	
SCE hold time	tHSCE	40		-	ns	
SCK Cycle time	tSCK	93		-	ns	
SDI input setup time	tSUS	20		-	ns	
SDI input hold time	tHOS	20		-	ns	
SDO output delay	tDLY	-		30	ns	output capacitance 5pF

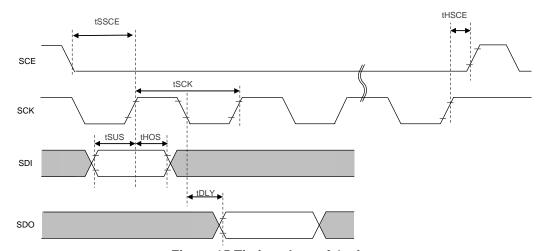


Figure 15 Timing chart of 4-wire

3.6 Image data output Interfaces

3.6.1 MIPI-CSI2 (Low-power mode)

Table 18 Low-power mode DC characteristics

Ta=25°C, power supply voltage: typical if not specified

Item	Symbol	Min	Тур	Max	Unit	Condition
Thevenin output high level	V _{OH}	1.1	1.2	1.3	V	*1
Thevenin output low level	V _{OL}	-50		50	mV	*1
Output impedance of LP transmitter	Z _{OLP}	110			Ω	

^{*1:} The value is specified when the output pin is unloaded.

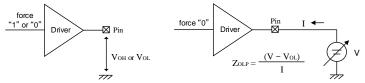


Figure 16 Load circuits for CSI2 Low-power mode

Table 19 Low-power mode AC characteristics

Item	Symbol	Min	Тур	Max	Unit	Condition
Load capacitance condition		0	-	70	pF	
15%-85% fall time	T _{FLP}	-	-	25	ns	
30%-85% rise time	T _{REOT}	-	-	35	ns	
Slew rate @ C _{LOAD} = 0pF	δV/δt _{SR}	-	-	500	mV/ns	*1
Slew rate @ C _{LOAD} = 5pF		-	-	300	mV/ns	*1
Slew rate @ C _{LOAD} = 20pF		-	-	250	mV/ns	*1
Slew rate @ C _{LOAD} = 70pF		-	-	150	mV/ns	*1
Slew rate @ C _{LOAD} = 0 to 70pF (Falling Edge Only)		30	-	-	mV/ns	*2
Slew rate @ C _{LOAD} = 0 to 70pF (Rising Edge Only)		30	-	-	mV/ns	*3
Slew rate @ C _{LOAD} = 0 to 70pF (Rising Edge Only) VO,INST : instantaneous output voltage in mV		30 – 0.075 (VO,I NST – 700)	-	-	mV/ns	*4

^{*1:} When the output voltage is between VOL and VOH.

^{*4:} When the output voltage is between 700mV and 930mV.

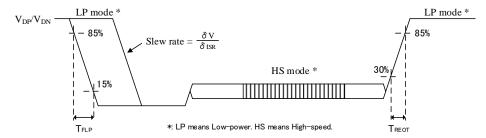


Figure 17 CSI2 Low-power and High-speed

^{*2:} When the output voltage is between 400mV and 930mV.

^{*3:} When the output voltage is between 400mV and 700mV.

3.6.2 SLVS and MIPI-CSI2 (High-speed mode)

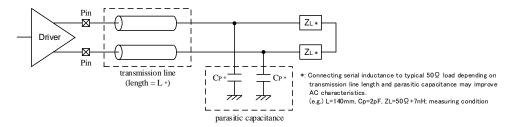


Figure 18 Load circuits for SLVS and CSI2 High-speed mode

Table 20 MIPI-CSI2 High-speed mode DC characteristics

Ta=25°C, power supply voltage: typical if not specified

Item	Symbol	Min	Тур	Max	Unit	Condition
HS transmit static common-mode voltage	V _{СМТХ}	150	200	250	mV	
V _{CMTX} mismatch when output is Differential-1 or Differential-0	ΔV _{CMTX(1,0)}	•		5	mV	
HS transmit differential voltage	Vod	140	200	270	mV	
V _{OD} mismatch when output is Differential-1 or Differential-0	ΔV _{OD}	-	-	14	mV	
HS output high voltage	V _{OHHS}	-	-	360	mV	
Single ended output impedance		40	50	62.5	Ω	
Single ended output impedance mismatch		-	-	10	%	

Table 21 SLVS DC characteristics

Item	Symbol	Min	Тур	Max	Unit	Condition
Common-mode voltage	V _{CMTX}	150	-	250	mV	
VCMTX mismatch when output is Differential-1 or Differential-0	ΔV _{CMTX(1,0)}	-	ı	50	mV	
Differential output voltage	V _{OD}	70	-	-	mV	
Single ended high output voltage	Vohhs		-	380	mV	
Single ended low output voltage	Volhs	40	-	-	mV	
Vсмтх mismatch of lane-to-lane		-	-	100	mV	*1

^{*1:} The voltage between the highest V_{CMTX} and the lowest V_{CMTX} among all output lanes.

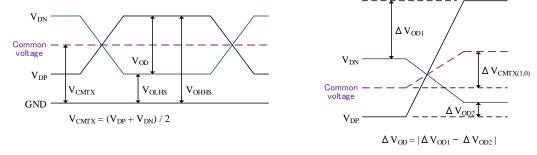


Figure 19 DC characteristics for SLVS and CSI2 High-speed mode

Table 22 MIPI-CSI2 High-speed mode AC characteristics

Ta=25°C, power supply voltage: typical if not specified

Item	Symbol	Min	Тур	Max	Unit	Condition
Output bit rate condition	Bitrate	-	891	-	Mbps	
Data clock frequency	Freq	-	445.5	-	MHz	
Common-level variation	$\Delta V_{\text{CMTX(LF)}}$	-	-	25	mV_{PEAK}	
Data to Clock skew	Tskew	-168.4	-	168.4	ps	
Clock jitter		-	-	224.4	ps	*1
20%-80% rise time and fall time	4	-	-	0.3	UI	
	t _R and t _F	150	-	-	ps	

^{*1:} The value is specified as jitter of unit interval (UI).

Table 23 SLVS AC characteristics

Item	Symbol	Min	Тур	Max	Unit	Condition
Output bit rate condition	Bitrate	-	891	-	Mbps	
Data clock frequency	Freq	-	445.5	-	MHz	
Eye opening	Teye	0.5	-	-	UI	
20%-80% Rise time	t _R		-	0.3	UI	
20%-80% Fall time	t _F	-	-	0.3	UI	

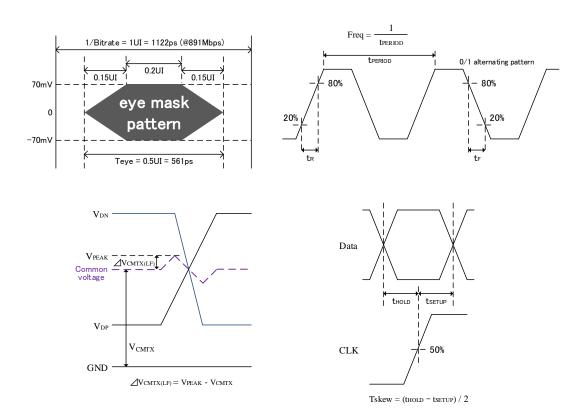


Figure 20 AC characteristics for SLVS and CSI2 High-speed mode

4. Imaging Format

4.1 Read Mode

Table 24 explains the read modes and the maximum frame rates.

- UHD: 3904 x 2224 pixels, Single Exposure.
- UHD-HDR: 3904 x 2224 pixels, Double Exposure (Long exposure & Short exposure, Line by Line).

Each mode, except UHD 10bit mode has two selectable output interfaces, SLVS or MIPI.

Table 24 Read mode

EXP: Exposure, 2: Long & Short,

No.	Read mode	Maximum frame rate	ADC resolution	The number of pixels		Output I/						
		[frame/sec]	[bit]	EXP	Н	V	Format	Lane	Data rate			
1-1	UHD	60	10	1	2004niv	0004=iv	2224niy	2224niv	2224niy	MIPI-CSI2	8data	901Mbpa
1-2	טחט	60	12	1	3904pix.	2224pix.	SLVS	1clock	891Mbps			
2-1	UHD	60	10	1	3904pix.	2224pix.	MIPI-CSI2	8data 1clock	891Mbps			
3-1	UHD	30	12	1	3904pix.	2224pix.	MIPI-CSI2	4data	891Mbps			
3-2	טחט	30	12	'	3904pix.	2224pix.	SLVS	1clock				
4-1	UHD	20	10	1	2004niy	2224pix.	MIPI-CSI2	8data	445 EMbpo			
4-2	UHD	30	12	'	3904pix.		SLVS	1clock	445.5Mbps			
5-1	LILID LIDD	20	40	2	2004=:	2024=1-4	MIPI-CSI2	8data	0041141			
5-2	UHD-HDR	30	12	2	3904pix.	2224pix.	SLVS	1clock	891Mbps			
6-1	UHD-HDR	15	10	2	2004niy	2224niy	MIPI-CSI2	8data	115 FMbpo			
6-2	טחט-חטא	15	12	2	3904pix.	2224pix.	SLVS	1clock 445.5Mbps	equivic.c++			

Figure 21 shows the pixel array structure. 16 pixels in the horizontal invalid area between HOB and Effective, which corresponds to the sum of Invalid Optical Black (6 pixels) and Invalid (10 pixels) depicted in Figure 2, will not be read out. As well as the horizontal invalid areas, 16 pixels in the vertical invalid area between VOB and Effective will not be read out. Therefore, the number of pixels to be read out will be 3904 x 2224.

Regarding to the order of pixels to be read, the first will be the pixel on the lower left corner (Figure 21 Base Point). The next to be read will be the right of the first pixel. In other words, the order of pixels to be read will be rightward from Base Point.

There isn't the read mode to output only PDAF data without normal image data inside chip.

4.1.2 HDR (Line by Line)

Figure 23 indicates the operation of HDR, which will enlarge the sensor dynamic range. Compared with Frame by Frame HDR, Line by Line HDR will realize small time lag between the long exposure and the short exposure.

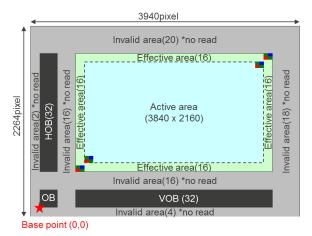


Figure 21 Pixel array structure (Readout area)

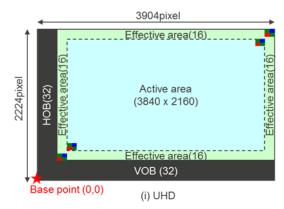


Figure 22 Pixel data

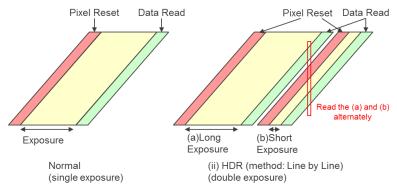


Figure 23 HDR (Line by Line)

4.2 Output I/F Format

4.2.1 Protocol #1 (SLVS)

Figure 24 and Figure 25 shows the data format of source synchronous SLVS. The typical source synchronous clock's rise edge shall be at the center of data [0]. A word consists of 12bit data. A frame consists of pixel data, SOL, SOF, EOL, EOF (synchronous codes), VBLANK and HBLANK (dummy data) as follows.

SOL: Start of LineSOF: Start of FrameEOL: End of LineEOF: End of Frame

VBLANK: Vertical BlankHBLANK: Horizontal Blank

Be careful that there are eight synchronous codes in case of HDR (long exposure and short exposure).

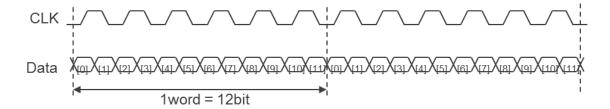


Figure 24 Timing chart of CLK and Data

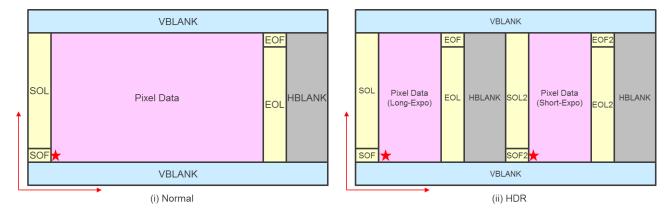


Figure 25 Data format

Table 25 Setting value (Synchronous code and dummy data)

Category	Name	Data	Value (1 st _2 nd _3 rd _4 th)	Note
	SOF (start of frame)	4word	FFF_000_000_"XXX"	XXX is set by register
	EOF (end of frame)	4word	FFF_000_000_"XXX"	XXX is set by register
	SOL (start of line)	4word	FFF_000_000_"XXX"	XXX is set by register
Synobronous ands	EOL (end of line)	4word	FFF_000_000_"XXX"	XXX is set by register
Synchronous code	SOF2 (start of frame)	4word	FFF_000_000_"XXX"	XXX is set by register
	EOF2 (end of frame)	4word	FFF_000_000_"XXX"	XXX is set by register
	SOL2 (start of line)	4word	FFF_000_000_"XXX"	XXX is set by register
	EOL2(end of line)	4word	FFF_000_000_"XXX"	XXX is set by register
D D4-	VBLANK	1word	"XXX"	XXX is set by register
Dummy Data	HBLANK	1word	"XXX"	XXX is set by register

	START	ОВ	OB	ОВ	ОВ	Gr	Gr	Gr	Gr		Gr	Gr	END	
Lane-8	CODE		15	23	31	39	47	55	63		3895	3903	CODE	Blank
Lane-7	START	OB	OB	ОВ	OB	R	R	R	R	L	R	R	END	Blank
Laile-7	CODE	6	14	22	30	38	46	54	62		3894	3902	CODE	DIAIIK
Lane-6	START	OB	OB	OB	ОВ	Gr	Gr	Gr	Gr	L	Gr	Gr	END Blank	
Lane-0	CODE	5	13	21	29	37	45	53	61		3893	3901	CODE	Dialik
Lane-5	START	ОВ	OB	ОВ	OB	R	R	R	R		R	R	END	Blank
Lane-5	CODE	4	12	20	28	36	44	52	60		3892	3900	CODE	Dialik
Lane-4	START	OB	OB	OB	OB	Gr	Gr	Gr	Gr	L	Gr	Gr	END	Blank
Lano i	CODE	3	11	19	27	35	43	51	59		3891	3899	CODE	Diame
Lane-3	START	OB	OB	OB	OB	R	R	R	R		R	R	END	Blank
Lano o	CODE	2	10	18	26	34	42	50	58		3890	3898	CODE	Diame
Lane-2	START	OB	OB	OB	OB	Gr	Gr	Gr	Gr		Gr	Gr	END	Blank
Lano L	CODE	1	9	17	25	33	41	49	57		3889	3897	CODE	Diame
Lane-1	START	OB	OB	OB	ОВ	R	R	R	R		R	R	END	Blank
	CODE	0	8	16	24	32	40	48	56		3888	3896	CODE	
	OTABT	0.5	0.5	0.5	0.0					1		_	END	1
Lane-8	START	OB -	OB	OB	OB	В	В	В	В		В	В	END	Blank
	CODE	7	15	23	31	39	47	55	63		3895	3903	CODE	
Lane-7	START	OB	OB	OB	OB	Gb	Gb	Gb	Gb		Gb	Gb	END	Blank
	CODE	6	14	22	30	38	46	54	62		3894	3902	CODE	
Lane-6	START	OB -	OB	ОВ	ОВ	В	В	В	В		В	В	END	Blank
	CODE	5	13	21	29	37	45	53	61		3893	3901	CODE	
Lane-5	START	OB	OB	OB	OB	Gb	Gb	Gb	Gb		Gb	Gb	END	Blank
	CODE	4	12	20	28	36	44	52	60		3892	3900	CODE	
Lane-4	START	OB	OB	ОВ	ОВ	В	В	В	В		В	В	END	Blank
	CODE	3	11	19	27	35	43	51	59		3891	3899	CODE	
Lane-3	START	OB	OB	OB	OB	Gb	Gb	Gb	Gb		Gb	Gb	END	Blank
	CODE	2	10	18	26	34	42	50	58		3890	3898	CODE	
Lane-2	START	OB	OB	OB	OB	В	В	В	В		В	В	END	Blank
	CODE	1	9	17	25	33	41	49	57		3889	3897	CODE	
Lane-1	START	OB	OB	OB	OB	Gb	Gb	Gb	Gb		Gb	Gb	END	Blank
Lane-i	CODE	0	8	16	24	32	40	48	56		3888	3896	CODE	DIAIIK

Figure 26 Lane distribution (UHD, 8-lane)

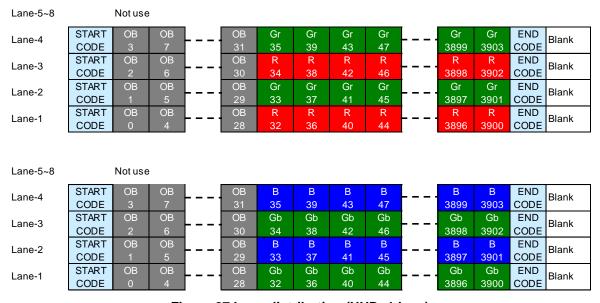


Figure 27 Lane distribution (UHD, 4-lane)

4.2.2 Protocol #2 (MIPI-CSI2)

This protocol is based on the MIPI CSI2 specification. *MIPI: Mobile Industry Processor Interface Alliance

This protocol has two types of packet structures, Short Packet and Long Packet. For each packet structure, exit from the Low Power State followed by the Start of Transmission sequence indicates the start of the packet. The End of Transmission sequence followed by the Low Power State indicates the end of the packet.

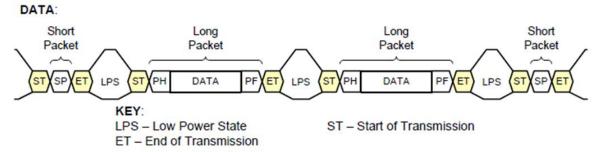


Figure 28 MIPI-CSI2

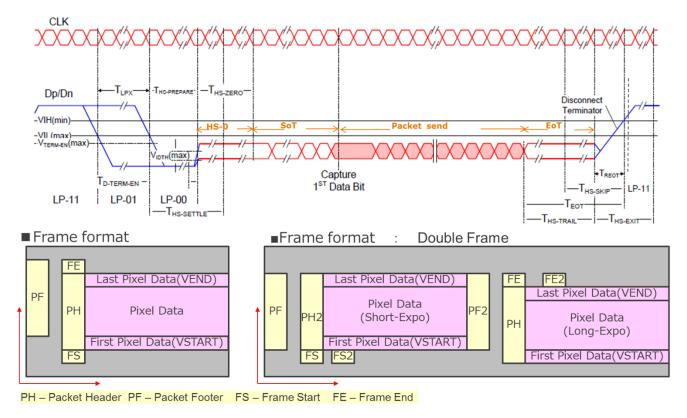


Figure 29 MIPI-CSI2 format

Structure of Short Packet

Figure 30 Short packet

➤ SoT

Start of Transmission (8bit) = 00011101.

Data ID

Data Identifier byte contains Virtual Channel Identifier (2bit) and Data Type (6bit).

Virtual Channel Identifier allows both long exposure and short exposure images within a single data stream.

Virtual Channel Identifier = 00 at the long exposure image of HDR mode.

Virtual Channel Identifier = 01 at the short exposure image of HDR mode.

Data Type = 000000, when the packet is Frame Start Code.

Data Type = 000001, when the packet is Frame End Code.

> WC

Word Count (16bit) = 0x0000.

➤ ECC

Hamming-Modified Code (8bit) to correct single-bit error and to detect 2-bit errors in the packet header.

➤ EoT

End of Transmission = all one-state, when the last payload data bit is zero-state.

End of Transmission = all zero-state, when the last payload data bit is one-state.

Structure of Long Packet

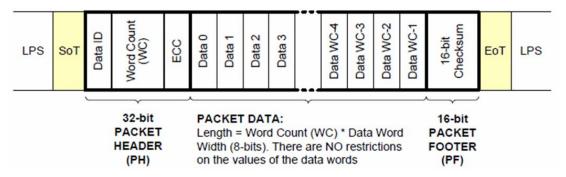


Figure 31 Long packet

➤ SoT

Start of Transmission (8bit) = 00011101.

Data ID

Data Identifier byte contains Virtual Channel Identifier (2bit) and Data Type (6bit).

Virtual Channel Identifier allows both long exposure and short exposure images within a single data stream.

Virtual Channel Identifier = 00 at the long exposure image of HDR mode.

Virtual Channel Identifier = 01 at the short exposure image of HDR mode.

Data Type = 101011, when the data format is RAW10.

Data Type = 101100, when the data format is RAW12.

> WC

Word Count (16bit) defines the number of 8-bit data words in the payload data. Neither the Packet Header nor the Packet Footer is included in the Word Count.

> ECC

Hamming-Modified Code (8bit) to correct single-bit error and to detect 2-bit errors in the packet header.

Checksum

Cyclic Redundancy Code (16bit) to detect possible errors in the payload data.

➤ FoT

End of Transmission = all one-state, when the last payload data bit is zero-state. End of Transmission = all zero-state, when the last payload data bit is one-state.

Supported Data Format

RAW10

The transmission of 10-bit Raw Data is done by packing the four 10-bit pixel data to look like 8-bit data format.

- 1st byte is upper 8-bits of 1st pixel data.
- 2nd byte is upper 8-bits of 2nd pixel data. 3rd byte is upper 8-bits of 3rd pixel data.

- 4th byte is upper 8-bits of 4th pixel data. 5th byte is lower 2-bits of 1st, 2nd, 3rd and 4th pixel data.

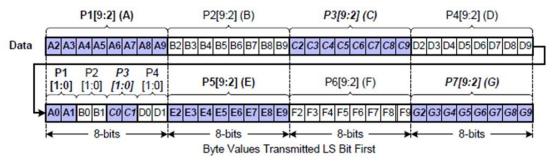


Figure 32 RAW10 format

RAW12

The transmission of 12-bit Raw Data is done by packing the two 12-bit pixel data to look like 8-bit data format. 1st byte is upper 8-bits of 1st pixel data.

- 2nd byte is upper 8-bits of 2nd pixel data.
- 3rd byte is lower 4-bits of 1st and 2nd pixel data.

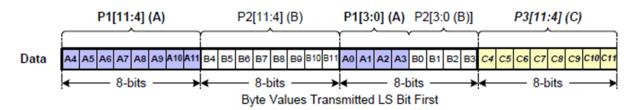


Figure 33 RAW12 format

Lane Distribution

4-Lane and 8-Lane system are supported as follows.

	SoT	Pix_2	Pix_6&7	Pix_13	L	Pix_3901	Ec	T
Lane-8	00011101	[11:4]	[3:0]x2	[11:4]		[11:4]	ALLO / ALL1	
1200 7	SoT	Pix_0&1			Pix_3900	Ed		
Lane-7	00011101	[3:0]x2	[11:4]	[11:4]		[11:4]	ALLO /	ALL1
Lane-6	SoT	Pix_1	Pix_6	Pix_10&11		Pix_3898&3899	PF	EoT
Laile-6	00011101	[11:4]	[11:4]	[3:0]x2		[3:0]x2	CRC[15:8]	ALLO/ALL1
lana E	SoT	Pix_0	Pix_4&5	Pix_11		Pix_3899	PF	EoT
Lane-5	00011101	00011101 [11:4] [3:0]x2 [11:4]		[11:4]	CRC[7:0]	ALLO/ALL1		
Lane-4	SoT	PH	Pix_5	Pix_10		Pix_3898	Pix_3902&3903	EoT
Lane-4	00011101	ECC[7:0]	[11:4]	[11:4]		[11:4]	[3:0]x2	ALLO/ALL1
Lane-3	SoT	PH	Pix_4	Pix_8&9		Pix_3896&3897	Pix_3903	EoT
Laile-3	00011101	WC[15:8]	[11:4]	[3:0]x2		[3:0]x2	[11:4]	ALLO/ALL1
Lane-2	SoT	PH	Pix_2&3	Pix_9		Pix_3897	Pix_3902	EoT
Lane-2	00011101	101 WC[7:0] [3:0]x2 [11:4]		[11:4]	[11:4]	ALLO/ALL1		
lana 1	SoT	PH	Pix_3	Pix_8		Pix_3896	Pix_3900&3901	EoT
Lane-1	00011101	DI[7:0]	[11:4]	[11:4]	19799	[11:4]	[3:0]x2	ALLO/ALL1

Figure 34 UHD RAW12 (8-lane)

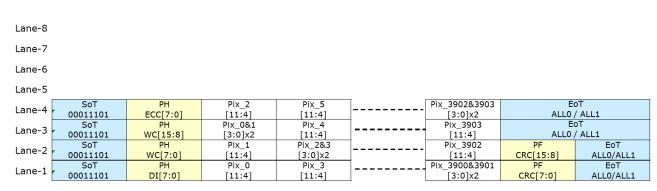


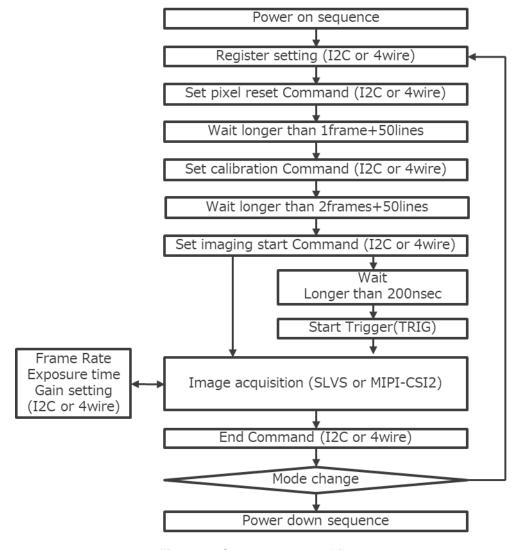
Figure 35 UHD RAW12 (4-lane)

5. Sensor Control

5.1 Sequence

Sequence control flow of this device is shown in Figure 36. Figure 37 and Figure 38 shows the power-up and power-down sequence, respectively. Be careful that the output voltage of SACK will follow VDD18, because the power supply of the output buffer is 1.8V power supply voltage. All registers should be written from front to back at the initial power-up sequence. In case of Control Pin CM4W = Low (I2C fast mode / fast mode plus), SCE should keep High drawn by the black lines in Figure 37 and Figure 38 during the serial communication (I2C). In case of Control Pin CM4W = High (4-wire), SCE should become Low drawn by the red lines in Figure 37 and Figure 38 during the serial communication (4-wire). In case of mode change with the output frequency's change, RSTN should be set to Low before register setting (I2C or 4wire).

Table 26 describes the wait time to run Start command after setting all registers. Please take care of the necessary wait time which depends on the serial communication mode. Major registers relating image acquisitions (Frame rate, Exposure time, Gain) should not be changed during the imaging operation.



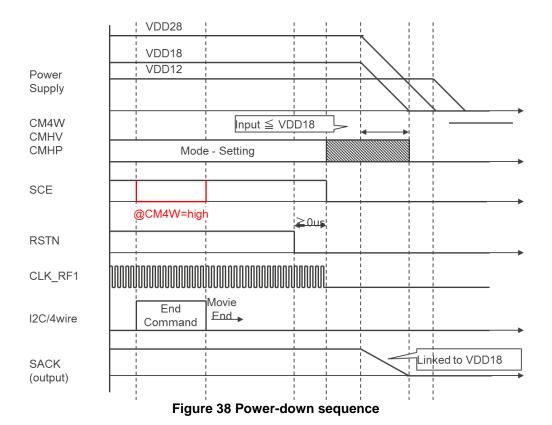

Figure 36 Sequence control flow

Table 26 Wait time between the end of register setting and start command

Serial communication mode	Frequency	Register write time	Wait time	
I2C fast mode	400kHz	20.6 ms	0.0ms	
I2C fast mode plus	1.0MHz	8.3 ms	8.0ms	
4-wire	10MHz	0.8 ms	13.9ms	

Figure 37 Power-up sequence

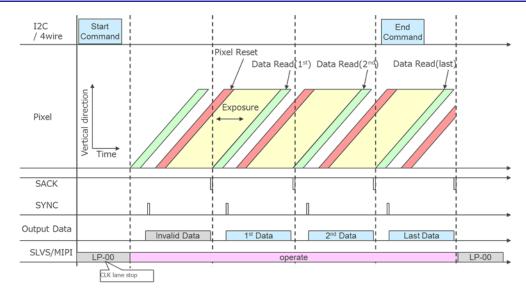


Figure 39 Data acquisition

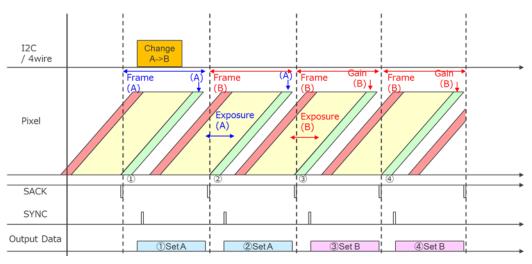


Figure 40 Setting sequence of movie

Table 27 Register setting

Register setting	Setting sequence of movie	Latency from the register setting	Constraint			
Frame Rate	Support	After 2frame data	Write once at burst mode.			
Exposure Time	Support	After 2frame data	2. Don't write registers while SACK = low. 3. Don't write registers during the next			
Gain	Support	After 2frame data	frame after Gain Setting was changed.			
HDR: ON/OFF	Not support	-				
Output Rate(891/445.5 Mbps)	Not support	-				
Output Lane(8/4 lane)	Not support	-	Hardware reset and initial settings are required			
Format(SLVS / MIPI)	Not support	-	Toquitou			
Other	Not support	-				

5.2 Register Setting

The commonly used registers are introduced in this section.

5.2.1 OPECODE

OPECODE is short for Operation-code.

Table 28 OPECODE

OPECODE	State transition	Note
Start command (self-mode)	Movie start	
Start command (Trigger-mode)	Ready mode	Movie start when TRIG is asserted
End command	Movie end	
Pixel reset command	Idle	
Calibration command	Idle	

5.2.2 Frame Rate Setting

It is possible to set arbitrary frame rate by setting VBLANK period and the exposure time.

- Minimum frame rate = 1fps
- Maximum frame rate = 60fps (Refer Table 24)

5.2.3 Exposure Time Setting

Figure 41 indicates long exposure time and short exposure time for HDR, compared with non-HDR. X-axis is time and Y-axis is horizontal line number of the pixel array. The formula filled in Table 29 explains the possible setting of the exposure time, which will be set by the register "1H_width".

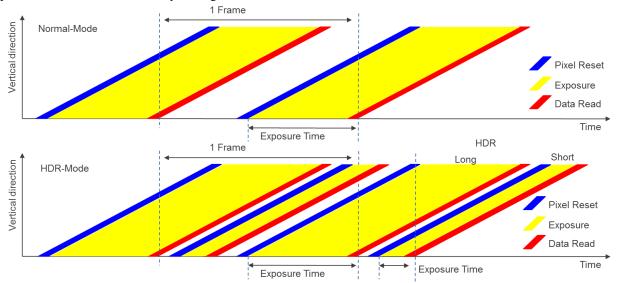


Figure 41 Exposure time

Table 29 Exposure time

1H_width: internal period (7.22us/14.4us)

	Normal	HDR @ long	HDR @ short
Max	1 frame – 8 x1H_width	1 frame – 66 x1H_width	44 x1H_width
Min	4 x1H_with	7 x1H_with	7 x1H_with
Step	1H_width	1H_width	1H_width

5.2.4 Gain Setting

Block diagram (Figure 42) and Gain setting table (Table 30) summarizes how users can set their arbitrary gain.

- Analog Gain (Extract): 1bit register is assigned to select 0dB or 2.44dB.
- Analog Fine Gain (Fine): Two sets of 10bits registers setting provide fine tuning as shown in Figure 44.
- Analog Gain (Coarse): Can be selected 0dB to 12.04dB (6.02dB step) by using 2bits registers.
- Digital Gain (Digital): Can be selected 0dB to 24.08dB (6.02dB step) by using 3bits registers.

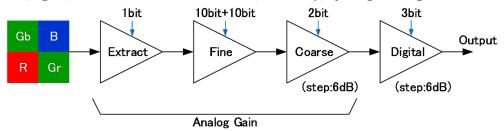


Figure 42 Gain diagram

Table 30 Recommended gain setting (Estimated)

No	Total Gain	Analog Gair	Analog Gain					
NO	Total Gain	Extra	Coarse	Fine	Digital Gain			
Α	0.00dB ~ 2.44dB	0.00dB		0.00dB ~ 2.44dB				
В	2.44dB ~ 6.02dB		0.00dB	0.00dB ~ 3.58dB	0.0040			
С	6.02dB ~ 12.04dB							
D	12.04dB ~ 18.06dB	6.02dB		3.58dB ~ 9.60dB	0.00dB			
Е	18.06dB ~ 24.08dB				_			
F	24.08dB ~ 30.11dB	2.44dB						
G	30.11dB ~ 36.13dB		12 04dB		6.02dB			
Н	36.13dB ~ 42.15dB		12.04dB	9.60dB ~ 15.63dB	12.04dB			
1	42.15dB ~ 48.17dB				18.06dB			
J	48.17dB ~ 54.19dB				24.08dB			

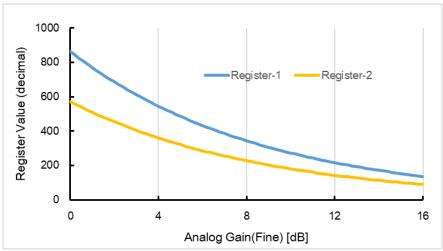


Figure 43 Example of analog gain setting (Fine)

5.3. Serial Communication

There are three types of serial communication modes, I2C fast mode, I2C fast mode plus and 4-wire (Table 31). Each mode can be selected by control pins (CM4W, CMHP and CMHV).

Table 31 Hardware control of serial communication

Serial			e control D, high=VDD18)		Condition	on of CB	Data control		
mode	mode	CM4W	CMHP CMHV		1.8V	VDI @ typ 2.5V	3.3V	sensor control Write (/Read)	
I2C	Normal		Low	Low	Any	<300pF	<200pF		
fast-mode	High	Low	Low	High	-	>300pF	>200pF	I2C	
I2C	Normal	Low	Lliab	Low	Any	<300pF	<200pF	120	
fast-mode plus	High		High	High	-	>300pF	>200pF		
4-wire	-	High	Low	Low	-	-	-	4wire	

Table 32 Serial communication setting and control

Item	I2C	4-wire			
Identification code	Slave address: 7b'0110110	ID: 7b'00000001			
Read/Write selection	0:write 1:read	0:write 1:read			
Register address	Sub address 16bit	Base address 16bit			
Data-unit	2-address=16bit, MSB-first	2-address=16bit, MSB-first			
Address access control	Even number only	Even number only			
Max data rate	400kHz(fast mode) 1MHz(fast mode plus)	10.8MHz			
Pin information	SDA: input/output data SCL: clock	SCE : enable SDI : input data SCK : clock SDO : output data			
Control condition	Start : fall of SDA when SCL is high Repeat start : same of "start" End : rise of SDA when SCL is high CM4W=low : read / write	Enable : SCE is low Disable : SCE is high CM4W=low: read only			
	CM4W=high: no use	CM4W=high: read / write			
Burst mode	Continuous writing or reading Access address is incremented by 2				

Table 33 Register map

Address (hex)	Category	During imaging	Type	Note
0000	Sensor control	Write enable	Normal	OPECODE
0002 ~ 0004	Sensor control	Don't access	Normal	
0006 ~ 0036	Sensor control	Write enable	Normal	Exposure
0038 ~ 038E	Sensor control	Don't access	Normal	
0390 ~ 04A0	Test data	Don't access	Read only	

5.3.1 I2C Serial Communication Protocol

An example of I2C serial communication is shown below. The serial communication can't abort until sending all necessary data.

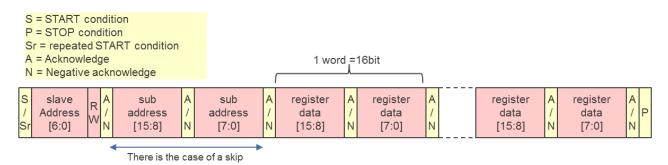


Figure 44 I2C format

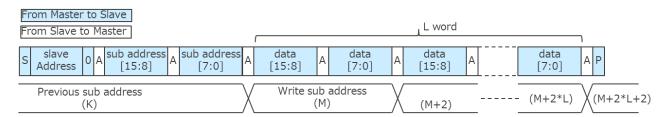


Figure 45 Example of sequential write

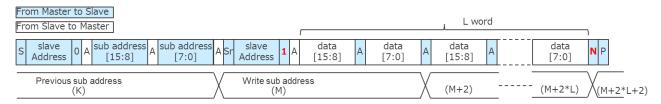


Figure 46 Example of sequential read (Random access)

5.3.2 4-wire Serial Communication Protocol

An example of 4-wire serial communication is shown in Figure 47. While SCE is low, the serial communication will be enabled, and can't abort until sending all necessary data.

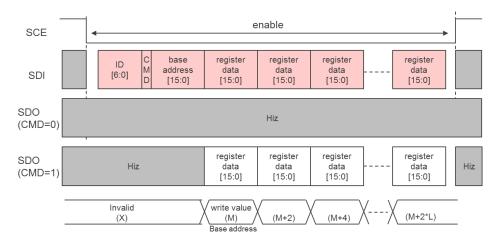


Figure 47 4-wire format

RAA462113FYL Data Sheet

	T	Description		
Rev.	Date	Page	Summary	
0.01	Jan. 7. 2020		Preliminary Version	
0.02	Jun 4. 2020	1	Table 1 Features: Removed AF Assist function.	
			Removed "assist data update" comment in Output sync	
		2	Figure 1; error correction MIPI CIS2 -> MIPI CSI2	
		3	Add PDAF pixel coordinates (Figure 3).	
		12	Error correction	
			1 block is 8080 or 96×96 pixels or 96×80 or 80×96.	
			->1 block is 80×80, 96×96, 96×80 or 80×96 pixels.	
		13	Add a note in sensor characteristics of PDAF Pixels	
			Add specification limit of Sensitivity ratio L-open/R-open	
			Add specification of PDAF Sensitivity.	
		14	Update spectral characteristics graph.	
			Add Note: change possibility of spectral characteristics.	
		15	Table 11; Pixel defect specifications Defined # of PDAF spot defect.	
			Table 11; Shine spot defect at Dark (PDAF)	
			Table 11; add PDAF defect in each 16 x 8 PDAF pixel region	
		17	Modify Table 12, Table 13 and Figure 12.	
			Add Table 14 and Figure 13.	
		24	Add comment for a read mode to output only PDAF data.	
		35	Table 27; Removed Assist function.	
		-	Remove Assist function.	
		-	Renumbering Table and Figure.	
0.03	Dec. 23. 2020	2	Modify Figure 1.	
		4	Modify Figure 4.	
		14	Update spectral characteristics graph.	
		23	Change the specifications of Data to Clock skew and Clock jitter of MIPI and	
			SLVS AC characteristics.	
		33		
			Remove Assist function in Figure 36.	
		35	ů ů	
		38	Remove comment on AF assist function in section 5.3.	
			Remove AF assist function in Table 31 and Table 33	
1.00	Feb. 15. 2021	13	Change the specification of sensitivity ratio L-open/R-open.	

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.