

RZ/G2I SMARC USB / Ethernet Logic

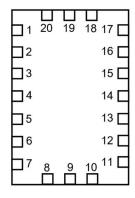
General Description

Renesas SLG7RN45315 is a low power and small form device. The SoC is housed in a 2mm x 3mm STQFN package which is optimal for using with small devices.

Features

- Low Power Consumption
- Pb Free / RoHS Compliant
- Halogen Free
- STQFN 20 Package

Output Summary

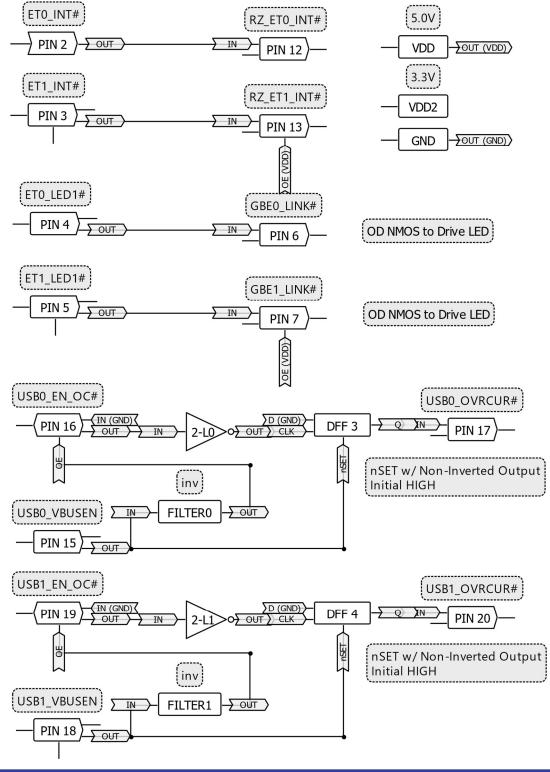

2 Outputs - Open Drain NMOS 1X2 Outputs - Open Drain NMOS 2X

2 Outputs - Push Pull 1X 2 Outputs - Push Pull 2X

Pin name

Pin#	Pin name	Pin#	Pin name
1	VDD	11	GND
2	ET0_INT#	12	RZ_ET0_INT#
3	ET1_INT#	13	RZ_ET1_INT#
4	ET0_LED1#	14	VDD2
5	ET1_LED1#	15	USB0_VBUSEN
6	GBE0_LINK#	16	USB0_EN_OC#
7	GBE1_LINK#	17	USB0_OVRCUR#
8	NC	18	USB1_VBUSEN
9	NC	19	USB1_EN_OC#
10	NC	20	USB1_OVRCUR#

Pin Configuration



STQFN-20 (Top View)

RZ/G2I SMARC USB / Ethernet Logic

Block Diagram

RZ/G2I SMARC USB / Ethernet Logic

Pin Configuration

Pin#	Pin Name	Туре	Pin Description	Internal Resistor
1	VDD	PWR	Supply Voltage	
2	ET0_INT#	Digital Input	Low Voltage Digital Input	floating
3	ET1_INT#	Digital Input	Low Voltage Digital Input	floating
4	ET0_LED1#	Digital Input	Low Voltage Digital Input	floating
5	ET1_LED1#	Digital Input	Low Voltage Digital Input	floating
6	GBE0_LINK#	Digital Output	Open Drain NMOS 2X	floating
7	GBE1_LINK#	Digital Output	Open Drain NMOS 2X	floating
8	NC		Keep Floating or Connect to GND	
9	NC		Keep Floating or Connect to GND	
10	NC		Keep Floating or Connect to GND	
11	GND	GND	Ground	
12	RZ_ET0_INT#	Digital Output	Push Pull 2X	floating
13	RZ_ET1_INT#	Digital Output	Push Pull 2X	floating
14	VDD2	PWR	Supply Voltage	
15	USB0_VBUSEN	Digital Input	Digital Input with Schmitt trigger	floating
16	USB0_EN_OC#	Bi-directional	Digital Input with Schmitt trigger / Open Drain NMOS 1X	10kΩ pullup
17	USB0_OVRCUR#	Digital Output	·	
18	USB1_VBUSEN	Digital Input	Digital Input with Schmitt trigger	floating
19	USB1_EN_OC#	Bi-directional	Digital Input with Schmitt trigger / Open Drain NMOS 1X	10kΩ pullup
20	USB1_OVRCUR#	Digital Output	Push Pull 1X	floating

Ordering Information

Part Number	Package Type
SLG7RN45315V	20-pin STQFN - Tape and Reel (3k units)

RZ/G2I SMARC USB / Ethernet Logic

Absolute Maximum Conditions

Parameter	Min.	Max.	Unit	
Supply Voltage on VDD rela	-0.5	7	V	
Supply voltage on VDD2 rela	ative to GND	-0.5	VDD + 0.5	V
DC Input voltage	PINs 2, 3, 4, 5, 6, 7, 8, 9, 10	GND - 0.5	VDD + 0.5	V
DC Input voltage	PINs 12, 13, 15, 16, 17, 18, 19, 20	GND - 0.5	VDD2 + 0.5	V
	Push-Pull 1x		11	
Maximum Average or DC Current	Push-Pull 2x		16	mA
(Through pin)	OD 1x		11	l IIIA
	OD 2x		21	
Current at Input P	in	-1.0	1.0	mA
Input leakage (Absolute	value)		1000	nA
Storage Temperature	-65	150	°C	
Junction Temperat		150	°C	
ESD Protection (Human Bo	2000		V	
ESD Protection (Charged De	500		V	
Moisture Sensitivity I	_evel		1	

Electrical Characteristics

Symbol	Parameter Condition/Note		Min.	Тур.	Max.	Unit
V_{DD}	Supply Voltage		4.7	5	5.5	V
V_{DD2}	Supply Voltage		3	3.3	3.6	V
TA	Operating Temperature		-40	25	85	°C
C_VDD	Capacitor Value at VDD			0.1		μF
CIN	Input Capacitance			4		рF
lα	Quiescent Current	Static inputs and floating outputs. PINs 15 and18 are HIGH. PINs 2, 3, 4, 5 are LOW.		1.2		μA
Vo	Maximal Voltage Applied to any PIN in High-Impedance State				VDD	V
	Maximum Average or DC Current	T _J = 85°C			45	mA
I _{VDD}	Through VDD Pin (Per chip side, see Note 2)	T _J = 110°C			22	mA
	Maximum Average or DC Current	T _J = 85°C			86	mA
I _{GND}	Through GND Pin (Per chip side, see Note 2)	T _J = 110°C			41	mA
VIH	HIGH-Level Input Voltage PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10	Low-Level Logic Input at VDD=5.0V	1.15		VDD	V
V _{IH2}	HIGH-Level Input Voltage PINs 12, 13, 15, 16, 17, 18, 19, 20	Logic Input with Schmitt Trigger at VDD2=3.3V	2.14		VDD	V
VıL	LOW-Level Input Voltage PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10	Low-Level Logic Input at VDD=5.0V	0		0.77	V
V _{IL2}	LOW-Level Input Voltage PINs 12, 13, 15, 16, 17, 18, 19, 20	Logic Input with Schmitt Trigger at VDD2=3.3V	0		0.97	V
V _{OH2}	HIGH-Level Output Voltage PINs 12, 13, 15, 16, 17, 18, 19, 20	Push-Pull 1X, I _{OH} =3mA at VDD2=3.3V	2.74	3.12		V

RZ/G2I SMARC USB / Ethernet Logic

		Push-Pull 2X, I _{OH} =3mA at VDD2=3.3V	2.87	3.21		V
Vol	LOW-Level Output Voltage PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10	Open Drain NMOS 2X, I _{OL} =5mA at VDD=5.0V		0.07	0.08	٧
		Push-Pull 1X, I _{OL} =3mA at VDD2=3.3V		0.13	0.23	V
V _{OL2}	LOW-Level Output Voltage PINs 12, 13, 15, 16, 17, 18, 19, 20	Push-Pull 2X, I _{OL} =3mA at VDD2=3.3V		0.06	0.11	V
		Open Drain NMOS 1X, I _{OL} =3mA at VDD2=3.3V		0.08	0.15	V
Іон2	HIGH-Level Output Current (see Note 1)	Push-Pull 1X, V _{OH} =2.4V at VDD2=3.3V	6.05	12.08		mA
IOH2	PINs 12, 13, 15, 16, 17, 18, 19, 20	Push-Pull 2X, V _{OH} =2.4V at VDD2=3.3V	11.54	24.16	1	mA
loL	LOW-Level Output Current (see Note 1) PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10	Open Drain NMOS 2X, V _{OL} =0.4V at VDD=5.0V	17.34	34.76	-	mA
	LOW Lovel Output Comment	Push-Pull 1X, V _{OL} =0.4V at VDD2=3.3V	4.88	8.24		mA
I _{OL2}	LOW-Level Output Current (see Note 1)	Push-Pull 2X, V _{OL} =0.4V at VDD2=3.3V	9.75	16.49		mA
	PINs 12, 13, 15, 16, 17, 18, 19, 20	Open Drain NMOS 1X, V _{OL} =0.4V at VDD2=3.3V	7.31	12.37	-	mA
RPULL_UP	Internal Pull Up Resistance	Pull up on PINs 16, 19		10		kΩ
Tsu	Startup Time	From VDD rising past PON _{THR}	0.61	1.24	1.65	ms
PONTHR	Power On Threshold	V _{DD} Level Required to Start Up the Chip	1.41	1.54	1.66	V
POFFTHR	Power Off Threshold	V _{DD} Level Required to Switch Off the Chip	1.00	1.15	1.31	V

Note:

^{1.} DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.


^{2.} The GreenPAK's power rails are divided in two sides. PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 are connected to one side, PINs 12, 13, 15, 16, 17, 18, 19, and 20 to another.

^{3.} Guaranteed by Design.

RZ/G2I SMARC USB / Ethernet Logic

Package Top Marking

XXXXX - Part ID Field: identifies the specific device configuration

DD - Date Code Field: Coded date of manufacture

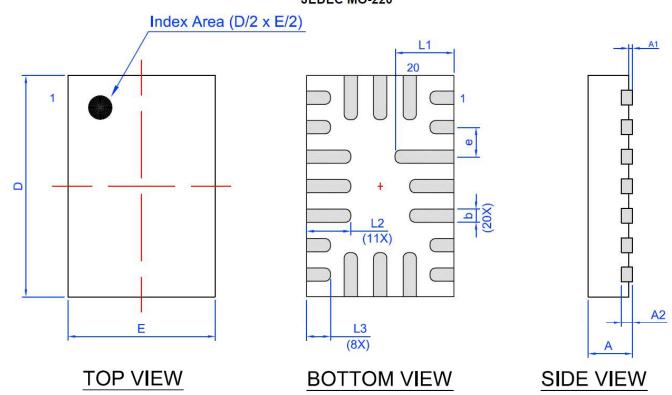
LLL - Lot Code: Designates Lot #

C — Assembly Site/COO: Specifies Assembly Site/Country of Origin

RR - Revision Code: Device Revision

Datasheet Revision	Programming Code Number	Lock Status	Checksum	Part Code	Revision	Date
0.13	002	U	0xD1CEC92D	45315	AA	07/12/2023

Lock coverage for this part is indicated by $\sqrt{\ }$, from one of the following options:


 Unlocked
Locked for read, bits <1535:0>
Locked for write, bits <1535:0>
Locked for write all bits
Locked for read and write bits <1535:0>
Locked for read bits <1535:0> and write of all bits

The IC security bit is locked/set for code security for production unless otherwise specified. The Programming Code Number is not changed based on the choice of locked vs. unlocked status.

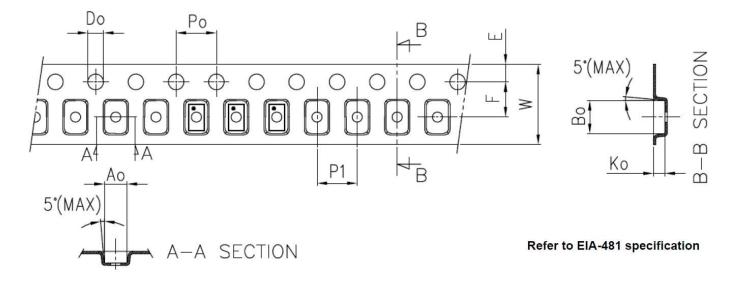
RZ/G2I SMARC USB / Ethernet Logic

Package Drawing and Dimensions

STQFN 20L 2x3mm 0.4P COL Package JEDEC MO-220

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
Α	0.50	0.55	0.60	D	2.95	3.00	3.05
A1	0.005	<u>-</u>	0.050	E	1.95	2.00	2.05
A2	0.10	0.15	0.20	L1	0.75	0.80	0.85
b	0.13	0.18	0.23	L2	0.55	0.60	0.65
е	0.40 BSC			L3	0.275	0.325	0.375


RZ/G2I SMARC USB / Ethernet Logic

Tape and Reel Specification

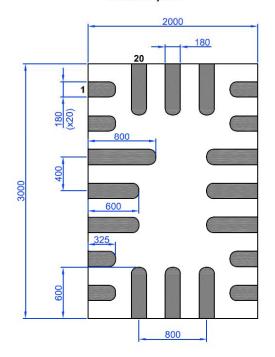
		Nominal	Max	Units		Leade	r (min)	Traile	(min)	Таре	Part
Package Type	# of Pins	Package Size [mm]	per Reel	per Box	Reel & Hub Size [mm]	Pockets	Length [mm]	Pockets	Length [mm]	Width [mm]	Pitch [mm]
STQFN 20L 2x3mm 0.4P COL	20	2x3x0.55	3000	3000	178/60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

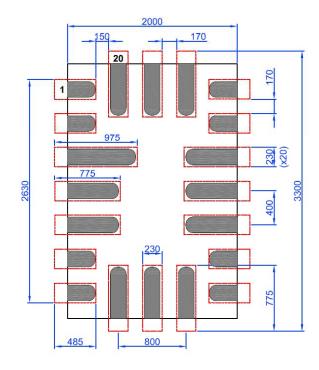
Package Type	Pocket BTM Length	Pocket BTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	В0	K0	P0	P1	D0	E	F	W
STQFN 20L 2x3 mm 0.4P COL	2.2	3.15	0.76	4	4	1.5	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 3.30 mm³ (nominal). More information can be found at www.jedec.org.



SLG7RN45315 RZ/G2I SMARC USB / Ethernet Logic


Recommended Land Pattern

Exposed Pad (Top View)

Units: µm

Recommended Land Pattern (Top View)

RZ/G2I SMARC USB / Ethernet Logic

Datasheet Revision History

Date	Version	Change			
10/13/2021	0.10	New design for SLG46538V chip			
10/29/2021	0.11	Updated some logic			
12/02/2021	0.12	Updated Device Revision Table			
07/12/2023	0.13	Moved to Renesas template			

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.