

SLG7RN45802 GreenPAK ™ 32PIN adapter #2

General Description

Dialog SLG7RN45802 is a low power and small form device. The SoC is housed in a 2mm x 3mm STQFN package which is optimal for using with small devices.

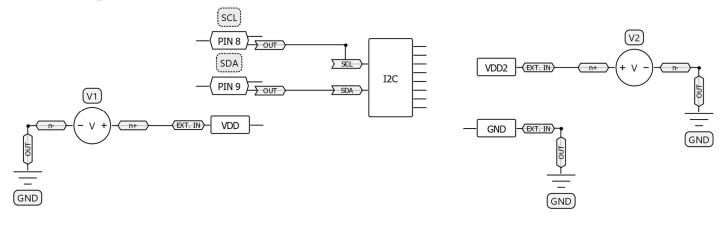
Features

- Low Power Consumption
- Pb Free / RoHS Compliant
- Halogen Free
- STQFN 20 Package

Pin Configuration

L 20	1 9	∐ 18 17 ⊑
		16 🗖
		15 🗖
		14 🗖
		13 🗖
		12 🗖
8	9	

STQFN-20 (Top View)


Pin name

Pin #	Pin name	Pin #	Pin name
1	VDD	11	GND
2	NC	12	NC
3	NC	13	NC
4	NC	14	VDD2
5	NC	15	NC
6	NC	16	NC
7	NC	17	NC
8	SCL	18	NC
9	SDA	19	NC
10	NC	20	NC

Block Diagram

Internal

Resistor

--

--

--

floating

floating

--

--

Pin Configuration Pin Name Pin # **Pin Description** Type PWR 1 VDD Supply Voltage 2 Keep Floating or Connect to GND NC ---3 NC Keep Floating or Connect to GND ---4 NC Keep Floating or Connect to GND 5 NC Keep Floating or Connect to GND ---6 NC Keep Floating or Connect to GND ---7 NC Keep Floating or Connect to GND ---8 SCL **Digital Input** Digital Input without Schmitt trigger 9 SDA **Digital Input** Digital Input without Schmitt trigger 10 NC Keep Floating or Connect to GND ---11 GND GND Ground 12 NC Keep Floating or Connect to GND ---13 NC Keep Floating or Connect to GND ---14 VDD2 PWR Supply Voltage 15 NC Keep Floating or Connect to GND ---16 NC Keep Floating or Connect to GND ---17 NC Keep Floating or Connect to GND ---18 NC Keep Floating or Connect to GND ---19 NC Keep Floating or Connect to GND ---20 NC Keep Floating or Connect to GND ---

Ordering Information

Part Number	Package Type
SLG7RN45802V	20-pin STQFN
SLG7RN45802VTR	20-pin STQFN - Tape and Reel (3k units)

Absolute Maximum Conditions

	Parameter	Min.	Max.	Unit
	age on VDD relative to GND	-0.5	7	V
Supply volta	ge on VDD2 relative to GND	-0.5	VDD + 0.5	V
DC Input voltage PINs 2, 3, 4, 5, 6, 7, 8, 9, 10		GND - 0.5	VDD + 0.5	V
DC input voltage	PINs 12, 13, 15, 16, 17, 18, 19, 20	GND - 0.5	VDD2 + 0.5	v
C	urrent at Input Pin	-1.0	1.0	mA
Input le	akage (Absolute Value)		1000	nA
Storag	je Temperature Range	-65	150	°C
Ju	nction Temperature		150	°C
ESD Prote	ction (Human Body Model)	2000		V
ESD Protect	tion (Charged Device Model)	500		V
Mois	ture Sensitivity Level		1	

Electrical Characteristics

Symbol	Parameter	Condition/Note	Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage		1.71	3.3	5.5	V
V _{DD2}	Supply Voltage		1.71	3.3	5.5	V
TA	Operating Temperature		-40	25	85	°C
CVDD	Capacitor Value at VDD			0.1		μF
CIN	Input Capacitance			4		pF
lq	Quiescent Current	Static inputs and floating outputs		1		μA
Vo	Maximal Voltage Applied to any PIN in High-Impedance State				VDD	V
	Maximum Average or DC	T _J = 85°C			45	mA
I _{VDD}	Current Through VDD Pin (Per chip side, see Note 2)	T _J = 110°C			22	mA
	Maximum Average or DC	T _J = 85°C			86	mA
IGND	Current Through GND Pin (Per chip side, see Note 2)	T _J = 110°C			41	mA
	HIGH-Level Input Voltage	Logic Input at VDD=1.8V	1.06		VDD	V
Vін	PINs 2, 3, 4, 5, 6, 7, 8, 9 and	Logic Input at VDD=3.3V	1.81		VDD	V
	10	Logic Input at VDD=5.0V	2.68		VDD	V
	LOW-Level Input Voltage	Logic Input at VDD=1.8V	1.06		VDD	V
VIL	PINs 2, 3, 4, 5, 6, 7, 8, 9 and	Logic Input at VDD=3.3V	1.81		VDD	V
	10	Logic Input at VDD=5.0V	2.68		VDD	V
Tsu	Startup Time	From VDD rising past PON _{THR}	0.61	1.24	1.65	ms
PONTHR	Power On Threshold	V _{DD} Level Required to Start Up the Chip	1.41	1.54	1.66	V
POFFTHR	Power Off Threshold	V _{DD} Level Required to Switch Off the Chip	1.00	1.15	1.31	V

Note:

1. DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.

2. The GreenPAK's power rails are divided in two sides. PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 are connected to one side, PINs 12, 13, 15, 16, 17, 18, 19, and 20 to another.

3. Guaranteed by Design.

Symbol	Parameter	Condition/Note	Min.	Тур.	Max.	Unit
Fscl	Clock Frequency, SCL	V _{DD} = (1.715.5) V			400	kHz
t∟ow	Clock Pulse Width Low	V _{DD} = (1.715.5) V	1300			ns
tніgн	Clock Pulse Width High	V _{DD} = (1.715.5) V	600			ns
	Input Filter Spike	$V_{DD} = 1.8V \pm 5\%$			168	ns
tı	Input Filter Spike Suppression (SCL, SDA)	$V_{DD} = 3.3V \pm 10\%$			157	ns
	Suppression (SCL, SDA)	$V_{DD} = 5.0V \pm 10\%$			156	ns
t _{AA}	Clock Low to Data Out Valid	V _{DD} = (1.715.5) V			900	ns
t _{BUF}	Bus Free Time between Stop and Start	V _{DD} = (1.715.5) V	1300			ns
thd_sta	Start Hold Time	V _{DD} = (1.715.5) V	600			ns
t _{SU_STA}	Start Set-up Time	V _{DD} = (1.715.5) V	600			ns
thd_dat	Data Hold Time	$V_{DD} = (1.715.5) V$	0			ns
t _{su_dat}	Data Set-up Time	V _{DD} = (1.715.5) V	100			ns
t _R	Inputs Rise Time	V _{DD} = (1.715.5) V			300	ns
t⊨	Inputs Fall Time	$V_{DD} = (1.715.5) V$			300	ns
t _{su_sto}	Stop Set-up Time	V _{DD} = (1.715.5) V	600			ns
t _{DH}	Data Out Hold Time	V _{DD} = (1.715.5) V	50			ns

Chip address

HEX	BIN	DEC
0x20	0100000	32

I2C Description

1. I2C Basic Command Structure

Each command to the I2C Serial Communications block begins with a Control Byte. The bits inside this Control Byte are shown in Figure 1. After the Start bit, the first four bits are a control code, which can be set by the user in reg<1867:1864>. The Block Address is the next three bits (A10, A9, A8), which will define the most significant bits in the addressing of the data to be read ("1") or written ("0") by the command. This Control Byte will be followed by an Acknowledge bit (ACK).

With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word Address. The Word Address, in conjunction with the three address bits in the Control Byte, will define the specific data byte to be read or written in the command. Figure 1 shows this basic command structure.

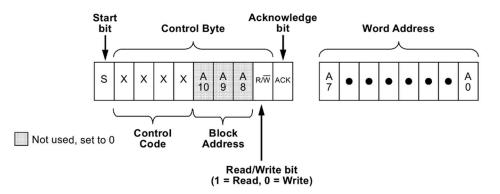


Figure 1. I2C Basic Command Structure

2. I2C Serial General Timing

Shown in Figure 2 is the general timing characteristics for the I2C Serial Communications block.

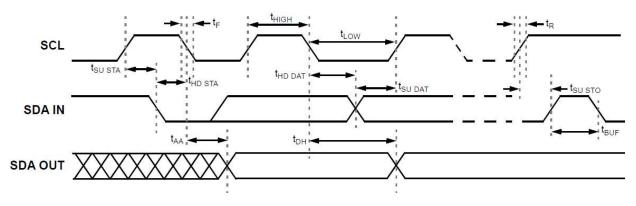


Figure2. I2C Serial General Timing

3. I2C Serial Communications: Read and Write Commands

Following the Start condition from the master, the Control Code [4 bits], the block address [3 bits] and the R/W bit (set to "0"), is placed onto the bus by the Bus Master. After the I2C Serial Communications block has provided an Acknowledge bit (ACK) the next byte transmitted by the master is the Word Address. The Block Address is the next three bits, and is the higher order addressing bits (A10, A9, A8), which when added to the Word Address will together set the internal address pointer in the SLG7RN45802 to the correct data byte to be written. After the SLG7RN45802 sends another Acknowledge bit, the Bus Master will transmit the data byte to be written into the addressed memory location. The SLG7RN45802 again provides an Acknowledge bit and then the Bus Master generates a Stop condition. The internal write cycle for the data will take place at the time that the SLG7RN45802 generates the Acknowledge bit.

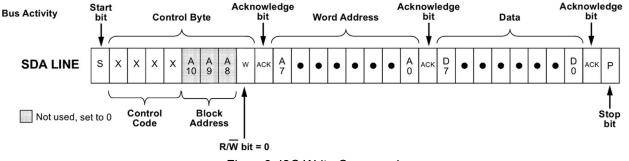
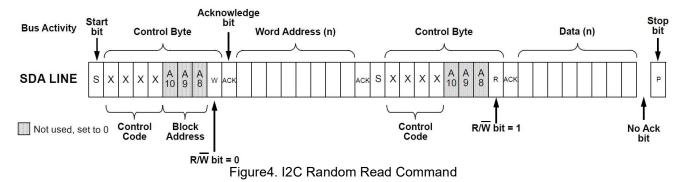



Figure3. I2C Write Command

The Random Read command starts with a Control Byte (with R/\overline{W} bit set to "0", indicating a write command) and Word Address to set the internal byte address, followed by a Start bit, and then the Control Byte for the read (exactly the same as the Byte Write command). The Start bit in the middle of the command will halt the decoding of a Write command, but will set the internal address counter in preparation for the second half of the command. After the Start bit, the Bus

Master issues a second control byte with the R/\overline{W} bit set to "1", after which the SLG7RN45802 issues an Acknowledge bit, followed by the requested eight data bits.

4. I2C register control data

Address Byte Register Bit		Block	Function		
0xF4 reg<1952>		Virtual Input <0>	0 or 1 (VOUT1). Default is 0.		
	reg<1953>	Virtual Input <1>	Enable (0) and disable (1) switch1 (VOUT1) Default is 0.		
0xC5	reg<1583:1576>	CNTO Control Data	PWM control data. Default is 0x65. Duty cycle is 0%.		
0xC6	reg<1591:1584>	CINTO CONITOL Data	FWW control data. Delault is 0x05. Duty cycle is 0%.		

5. I2C Commands:

- 1. [start] [0x20] [w] [0xF4] [xxxxxx(OUT0)] [stop] // OUT0 = 0 or OUT0 = 1.
- 2. [start] [0x20] [w] [0xF4] [xxxxxx(OUT1)x] [stop] // OUT1 = 0 or OUT1 = 1.
- 3. [start] [0x20] [w] [0xF4] [stop] [start] [0x08] [R] [xxxxxx(OUT1)(OUT0)][stop] // read OUT0 and OUT1 state.
- 4. [start] [0x20] [w] [0xC5] [xxxxxxxx] [xxxxxxxx] [stop] // set duty cycle value.

Package Top Marking

Part Code	XXXXX	
Datecode		Lot
<u>COO</u>	CRR	Revision
	0	

XXXXX - Part ID Field: identifies the specific device configuration

DD – Date Code Field: Coded date of manufacture

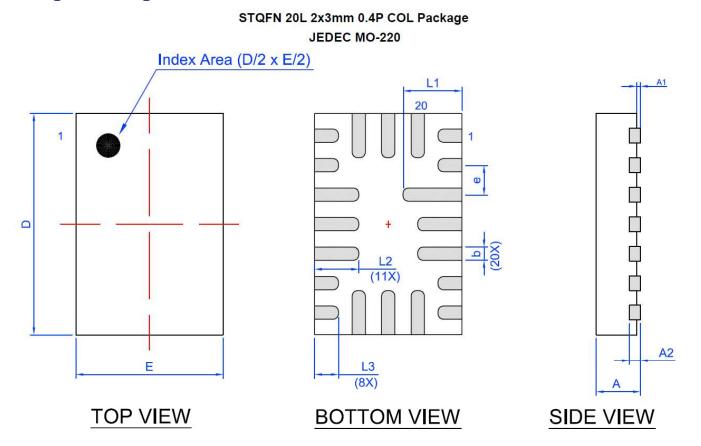
LLL – Lot Code: Designates Lot #

C – Assembly Site/COO: Specifies Assembly Site/Country of Origin

RR – Revision Code: Device Revision

Datasheet Revision	Programming Code Number	Lock Status	Checksum	Part Code	Revision	Date
0.10	001	U	0x2C8DF60E			06/01/2022

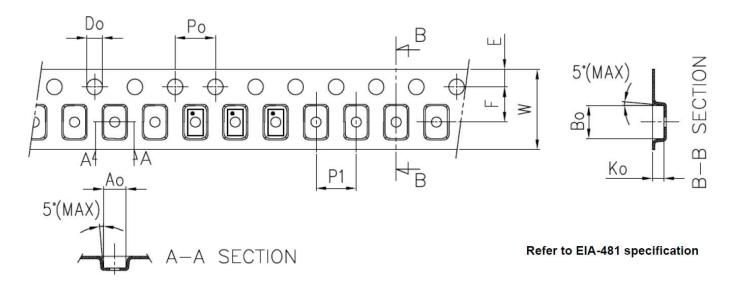
Lock coverage for this part is indicated by $\sqrt{}$, from one of the following options:


 Unlocked
Locked for read, bits <1535:0>
Locked for write, bits <1535:0>
Locked for write all bits
Locked for read and write bits <1535:0>
Locked for read bits <1535:0> and write of all bits

The IC security bit is locked/set for code security for production unless otherwise specified. The Programming Code Number is not changed based on the choice of locked vs. unlocked status.

Package Drawing and Dimensions

Unit: mm								
Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max	
A	0.50	0.55	0.60	D	2.95	3.00	3.05	
A1	0.005		0.050	E	1.95	2.00	2.05	
A2	0.10	0.15	0.20	L1	0.75	0.80	0.85	
b	0.13	0.18	0.23	L2	0.55	0.60	0.65	
е	0.40 BSC			L3	0.275	0.325	0.375	



Tape and Reel Specification

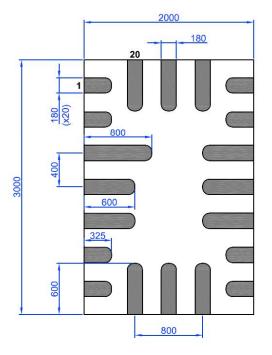
	# of Pins	Nominal Package Size [mm]	Max Units			Leader (min)		Trailer (min)		Таре	Part
			per Reel	per Box	Reel & Hub Size [mm]	Pockets	Length [mm]	Pockets	Length [mm]	Width [mm]	Pitch [mm]
STQFN 20L 2x3mm 0.4P COL	20	2x3x0.55	3000	3000	178/60	100	400	100	400	8	4

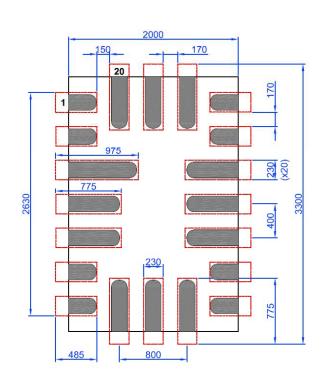
Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length	Pocket BTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	B0	K0	P0	P1	D0	E	F	w
STQFN 20L 2x3 mm 0.4P COL	2.2	3.15	0.76	4	4	1.5	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 3.30 mm³ (nominal). More information can be found at <u>www.jedec.org.</u>




Recommended Land Pattern

Exposed Pad (Top View)

Recommended Land Pattern (Top View)

Datasheet Revision History

Date	Version	Change
06/01/2022	0.10	New design for SLG46538V chip

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.