
All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corp. without notice. Please review the latest information published by

Renesas Electronics Corp. through various means, including the Renesas Technology Corp.

website (http://www.renesas.com).

www.renesas.com

Flash Self-Programming
Library

FSL - T06

Flash Self-Programming Library
for RC03F Flash based V850
devices

R01US0046ED, Rev. 1.01
Mar 19, 2013

U
s
e
r M

a
n

u
a
l

32

R01US0046ED Rev. 1.01 2
User Manual

Notice

1. All information included in this document is current as of the date this document is issued. Such
information, however, is subject to change without any prior notice. Before purchasing or using
any Renesas Electronics products listed herein, please confirm the latest product information with
a Renesas Electronics sales office. Also, please pay regular and careful attention to additional
and different information to be disclosed by Renesas Electronics such as that disclosed through
our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other
intellectual property rights of third parties by or arising from the use of Renesas Electronics
products or technical information described in this document. No license, express, implied or
otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product,
whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only
to illustrate the operation of semiconductor products and application examples. You are fully
responsible for the incorporation of these circuits, software, and information in the design of your
equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or
third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with
the applicable export control laws and regulations and follow the procedures required by such
laws and regulations. You should not use Renesas Electronics products or the technology
described in this document for any purpose relating to military applications or use by the military,
including but not limited to the development of weapons of mass destruction. Renesas
Electronics products and technology may not be used for or incorporated into any products or
systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign
laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this
document, but Renesas Electronics does not warrant that such information is error free. Renesas
Electronics assumes no liability whatsoever for any damages incurred by you resulting from
errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades:
“Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas
Electronics product depends on the product’s quality grade, as indicated below. You must check
the quality grade of each Renesas Electronics product before using it in a particular application.
You may not use any Renesas Electronics product for any application categorized as “Specific”
without the prior written consent of Renesas Electronics. Further, you may not use any Renesas
Electronics product for any application for which it is not intended without the prior written consent
of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or
losses incurred by you or third parties arising from the use of any Renesas Electronics product for
an application categorized as “Specific” or for which the product is not intended where you have
failed to obtain the prior written consent of Renesas Electronics.

R01US0046ED Rev. 1.01 3
User Manual

8. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly
specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement
 equipment; audio and visual equipment; home electronic appliances; machine
 tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control
 systems; anti-disaster systems; anti- crime systems; safety equipment; and
 medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control
 systems; medical equipment or systems for life support (e.g. artificial life support
 devices or systems), surgical implantations, or healthcare intervention (e.g.
 excision, etc.), and any other applications or purposes that pose a direct threat to
 human life.

9. You should use the Renesas Electronics products described in this document within the range
specified by Renesas Electronics, especially with respect to the maximum rating, operating
supply voltage range, movement power voltage range, heat radiation characteristics, installation
and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

10. Although Renesas Electronics endeavors to improve the quality and reliability of its products,
semiconductor products have specific characteristics such as the occurrence of failure at a
certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products
are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the
event of the failure of a Renesas Electronics product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention,
appropriate treatment for aging degradation or any other appropriate measures. Because the
evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final
products or system manufactured by you.

11. Please contact a Renesas Electronics sales office for details as to environmental matters such as
the environmental compatibility of each Renesas Electronics product. Please use Renesas
Electronics products in compliance with all applicable laws and regulations that regulate the
inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior
written consent of Renesas Electronics.

13. Please contact a Renesas Electronics sales office if you have any questions regarding the
information contained in this document or Renesas Electronics products, or if you have any other
inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics
Corporation and also includes its majority- owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured
by or for Renesas Electronics.

R01US0046ED Rev. 1.01 4
User Manual

 Regional Information

Some information contained in this document may vary from country to country. Before using any
Renesas Electronics product in your application, please contact the Renesas Electronics office in your
country to obtain a list of authorized representatives and distributors. They will verify:

 • Device availability

 • Ordering information

 • Product release schedule

 • Availability of related technical literature

 • Development environment specifications (for example, specifications for
third-party tools and components, host computers, power plugs, AC supply
voltages, and so forth)

 • Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

Visit

http://www.renesas.com

to get in contact with your regional representatives and distributors.

R01US0046ED Rev. 1.01 5
User Manual

Preface

This manual is intended for users who want to understand the functions of the
concerned libraries.

This manual presents the software manual for the concerned libraries.

This document describes the following sections:

 Architecture

 Implementation and Usage

 API

Additional remark or tip

Item deserving extra attention

Binary: xxxx or xxxB

Decimal: xxxx

Hexadecimal xxxxH or 0x xxxx

Representing powers of 2 (address space, memory capacity):

K (kilo): 2
10

 = 1024

M (mega): 2
20

 = 1024² = 1,048,576

G (giga): 2
30

 = 1024³ = 1,073,741,824

X, x = don’t care

Block diagrams do not necessarily show the exact software flow but the
functional structure. Timing diagrams are for functional explanation purposes only,
without any relevance to the real hardware implementation.

Readers

Purpose

Organization

Note

Caution

Numeric notation

Numeric prefixes

Register contents

Diagrams

R01US0046ED Rev. 1.01 6
User Manual

How to Use This Manual

(1) Purpose and Target Readers

This manual is designed to provide the user with an understanding of the library
itself and the functionality provided by the library. It is intended for users
designing applications using libraries provided by Renesas. A basic knowledge of
software systems as well as Renesas microcontrollers is necessary in order to
use this manual. The manual comprises an overview of the library, its
functionality and its structure, how to use it and restrictions in using the library.

Particular attention should be paid to the precautionary notes when using the
manual. These notes occur within the body of the text, at the end of each section,
and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does
not list all revisions. Refer to the text of the manual for details.

(2) List of Abbreviations and Acronyms

Abbreviation Full Form

API Application Programming Interface

Boot Cluster
A number of flash blocks is combined to a cluster (used
for swapping and protection) located at reset address

Bootloader
A piece of software located in the Boot Cluster handling
the reprogramming of the device

Code Flash
Embedded Flash where the application code or constant
data is stored.

Dual Operation

Dual operation is the capability to access flash memory
during reprogramming another flash memory range.
Dual operation is available between Code Flash and
Data Flash.
Between different Code Flash macros dual operation
depends on the device implementation

ECC Error Correction Code

Firmware
Firmware is a piece of software that is located in a
hidden area of the device, handling the interfacing to the
flash.

Flash
Electrically erasable and programmable nonvolatile
memory. Different to ROM this type of memory can be
re-programmed several times.

Flash Area Area of Flash consists of several coherent Flash Blocks

Flash Block
A flash block is the smallest erasable unit of the flash
memory.

Flash Macro
A certain number of Flash blocks are grouped together in
a Flash macro.

FSL Flash Self-Programming Library

FSS Flash Self-Programming System

FSW Flash Shield Window

FW Firmware

R01US0046ED Rev. 1.01 7
User Manual

NVM
Non volatile memory. All memories that hold the value,
even when the power is cut off. E.g. Flash memory,
EEPROM, MRAM...

RAM
“Random access memory” - volatile memory with
random access

REE Renesas Electronics Europe GmbH

REL Renesas Electronics Japan

ROM
“Read only memory” - nonvolatile memory. The content
of that memory can not be changed.

SCI Status check internal mode (See "Internal mode")

SCU Status check user mode (See "User mode")

Self-Programming
Capability to reprogram the embedded flash without
external programming tool only via control code running
on the microcontroller.

Serial programming
The onboard programming mode is used to program the
device with an external programmer tool.

SPL See "Self-Programming Library"

All trademarks and registered trademarks are the property of their respective
owners.

R01US0046ED Rev. 1.01 8
User Manual

Table of Contents

Chapter 1 Introduction ... 9

1.1 Flash versus EEPROM .. 10

1.2 Dual Operation ... 10

Chapter 2 FSL Architecture.. 11

Chapter 3 FSL Implementation .. 12

3.1 File structure .. 12

3.1.1 Overview .. 12

3.1.2 Delivery package directory structure and files ... 13

3.2 FSL Linker sections .. 15

3.3 MISRA Compliance .. 15

Chapter 4 FSL Usage .. 16

4.1 Flash Security .. 16

4.1.1 Strategy ... 16

4.1.2 Configuration options ... 17

4.2 Flash Safety ... 18

4.2.1 Hardware Protection .. 19

4.2.2 Normal operation (Error Correction Circuit – ECC) ... 19

4.2.3 Safe reprogramming using Self-Programming .. 19

4.3 Code execution in RAM .. 21

4.4 User code execution during Self-Programming ... 22

4.5 Interrupts in RAM .. 23

4.6 Dual CPU operation ... 24

4.7 Option Bytes .. 24

Chapter 5 User Interface (API) ... 25

5.1 Pre-compile configuration .. 25

5.2 Data Types ... 26

5.3 Library Functions .. 27

5.3.1 Initialization .. 28

5.3.2 Operation ... 33

5.3.3 Security .. 37

5.3.4 Administration .. 45

Chapter 6 Integration into the user application 59

6.1 First steps .. 59

6.2 Application sample .. 59

6.3 FSL life cycle .. 59

6.4 Special considerations ... 61

Flash Self-Programming Library Introduction

R01US0046ED Rev. 1.01 9
User Manual

Chapter 1 Introduction

This user’s manual describes the internal structure, the functionality and software
interface (API) of the Renesas V850 Flash Self-Programming Library (FSL) type
T06. The library type T06 is suitable for all Renesas V850 Flash based on the
RC03F Flash technology.

Do not use this library for devices based on other Flash technologies than RC03F,
as this might lead to unwanted behaviour or demolition of the device.

The device features differ depending on the used Flash implementation and
basic technology node. Therefore, pre-compile and run-time configuration options
allow adaptation of the library to the device features and to the application needs.

The libraries are delivered in source code. However it has to be considered
carefully to do any changes, as not intended behaviour and programming faults
might be the result.

The development environments of the companies Green Hills (GHS), IAR and
Renesas are supported. Due to the different compiler and assembler features,
especially the assembler files differ between the environments. So, the library
and application programs are distributed using an installer tool allowing selecting
the appropriate environment.

For support of other development environments, additional development effort
may be necessary. Especially, but maybe not only, the calling conventions to the
assembler code and compiler dependent section defines differ significantly.

The libraries are delivered together with device dependent application programs,
showing the implementation of the libraries and the usage of the library functions.

The different options of setup and usage of the libraries are explained in detail in
this document.

Please read all chapters of the application note carefully.
Much attention has been put to proper conditions and limitations description.
Anyhow, it can never be ensured completely that all not allowed concepts of
library implementation into the user application are explicitly forbidden. So,
please follow exactly the given sequences and recommendations in this
document in order to make full use of the libraries functionality and features and
in order to avoid any possible problems caused by libraries misuse.

The Flash Self-Programming Libraries together with application samples, this
manual and other device dependent information can be downloaded from the
following URL:

http://www.renesas.eu/update

Caution

Caution

http://www.renesas.eu/update

Flash Self-Programming Library Introduction

R01US0046ED Rev. 1.01 10
User Manual

1.1 Flash versus EEPROM

Major difference between Flash and EEPROM (or E
2
PROM) is the

reprogramming granularity. EEPROM can be reprogrammed wordwise, where
the size of one word depends on the organization and interface. It can vary in the
wide range between 8 bit and 256 bytes.

Depending on the implementation, Flash may also be programmed wordwise, but
the Erase can only be done on a complete block. This is the major limitation of
Flash against EEPROM, but due to that the memory hardware effort can be
reduced significantly, making the embedded non volatile memory for program
code affordable.

1.2 Dual Operation

Common for all Flash implementations is, that during Flash modification
operations (Erase/Write) a certain amount of Flash memory is not accessible for
any read operation (e.g. program execution or data read).

This does not only concern the modified Flash range, but a certain part of the
complete Flash system. The amount of not accessible Flash depends on the
device architecture.

A standard architectural approach is the separation of the Flash into Code Flash
and Data Flash. By that, it is possible to read from the Code Flash (to execute
program code or read data) while Data Flash is modified, and vice versa.

To check whether Dual Operation is supported by a device, please refer to the
device user manual.

It is not possible to modify Code Flash and Data Flash in parallel Note

Flash Self-Programming Library FSL Architecture

R01US0046ED Rev. 1.01 11
User Manual

Chapter 2 FSL Architecture

This chapter describes the function of all blocks belonging to the Flash Self-
Programming System.

Even though this manual describes the functional block FSL, a short description
of all concerned functional blocks and their relationship can be beneficial for the
general understanding.

Microcomputer

User Program

User Application

FSL

Flash Hardware

Firmware

Rough relationship between functional system blocks of the FSS

The functional block “Application” is the user application (including a potential
bootloader) provided by the customer.

The functional block “Flash Self-Programming Library” offers all functions and
commands necessary to reprogram the application using a user friendly C
language interface.

The block firmware provides the device internal functionality to control the Flash
programming hardware.

Figure 2-1

Application

Flash Self-
Programming
Library (FSL)

Firmware

Flash Self-Programming Library FSL Implementation

R01US0046ED Rev. 1.01 12
User Manual

Chapter 3 FSL Implementation

3.1 File structure

The library is delivered as a complete compilable sample project which contains
the FSL and in addition an application sample to show the library implementation
and usage in the target application.

The application sample initializes the FSL and does some dummy data set Erase
and Write operations.

Differing from former Self-Programming Libraries, this one is realized not as an
IDE related specific sample project, but as a standard sample project which is
controlled by makefiles.

Following that, the sample project can be built in a command line interface and
the resulting elf file can be run in the debugger.

The delivery package contains dedicated directories for the library containing the
source and the header files.

3.1.1 Overview

The following picture contains the library and application related files:

Libray

EEL_...c

EEL_...c

FSL_...c

Source Code

Library

User

EEL_...c

EEL_...c

App....c

Source Code

Application
FSL.h

FSL_Cfg.h

Library Files – Fix, may not be touched by the user

Library pre-compile configuration – File name fix, File content user configurable

Application (User) Code – Completely in the hand of the user

Library

Configuration

API declaration

Library and application file structure

The library code consists of different source files, starting with FSL_... The files
shall not be touched by the user, independently, if the library is distributed as
source code or pre-compiled.

The file FSL.h is the library interface functions header file. It also includes library
interface parameters and types.

Figure 3-1

Flash Self-Programming Library FSL Implementation

R01US0046ED Rev. 1.01 13
User Manual

In case of source code delivery, the library must be configured for compilation.
The file FSL_Cfg.h contains defines for that. As it is included by the library source
files, the file contents may be modified by the user, but the file name may not.

Wrong configuration of the FSL might lead to undefined results.

FSL_User.c and FSL_User.h do not belong to the libraries themselves, but to the
user application. These files reflect an example, how to activate the Flash
environment and handle the FLMD0 pin.

If overtaking the files FSL_User.c/h into the user application, only the file
FSL_User.c need to be adapted by the user, while FSL_User.h may remain
unchanged.

3.1.2 Delivery package directory structure and files

The following table contains all files installed by the library installer.

 Files in red belong to the build environment, controlling the compile, link and
target build process

 Files in blue belong to the sample application

 Files in green are description files only

 Files in black belong to the FSL

[root]

Release.txt Installer package release notes

[root]\[make]

GNUPublicLicense.txt Make utility license file

libiconv2.dll DLL-File required by make.exe

libintl3.dll DLL-File required by make.exe

make.exe Make utility

[root]\[<device name>]\[compiler]

Build.bat Batch file to build the application sample

Clean.bat Batch file to clean the application sample

Makefile
Makefile that controls the build and clean
process

Caution

Flash Self-Programming Library FSL Implementation

R01US0046ED Rev. 1.01 14
User Manual

[root]\ [<device name>]\[<compiler>]\[sample]

Main.c Main source code

target.h
target device and application related
definitions

device header files

GHS

df<device number>.h

df<device number>_irq.h

io_macros_v2.h

IAR

io_70f< device number>.h

io_macros.h

lxx.h

startup file

GHS cfi.h

IAR l07.s85

REC cstartup.s85

linker directive file

GHS df<dev. num.>.ld

IAR lnk70f<dev. num.>.xcl

REC df<dev. num.>.dir

[root]\ [<device name>]\[<compiler>]\[sample] \[FSL]

FSL_cfg.h
Header file with definitions for library setup at
compile time

linker directive file
Header file containing function prototypes,
error and status codes

FSL_User.h
User file header including Flash environment
activation / deactivation and FLMD0 handling.
To be edited by the user.

startup file
User file including Flash environment
activation / deactivation and FLMD0 handling.
Maybe modified by the user.

[root]\ [<device name>]\[<compiler>]\[sample] \[FSL] \[lib]

FSL_Global.h
Library internal defines, function prototypes
and variables

FSL_UserIF_Init.c Source code for the FSL initialization

linker directive file Source code for the normal FSL operations

FSL_FirmwareIF.c Interface to the firmware

FSL_BasicFct.c
Source code of basic functions used during
Self-Programming

GHS FSL_BasicFct_Asm.850

Assembler code of basic functions used
during Self-Programming

IAR FSL_BasicFct_Asm.s85

REC FSL_BasicFct_Asm.asm

Flash Self-Programming Library FSL Implementation

R01US0046ED Rev. 1.01 15
User Manual

3.2 FSL Linker sections

The following sections are Flash Self-Programming Library related.

FSL data sections

 FSL_DATA

This section contains the variables required for FSL. It can be located either
in internal or in external RAM.

FSL code sections

 FSL_CODE_ROM

This section contains the code executed at the beginning of Self-
Programming. This code is executed at the original location, e.g. internal
Flash. The library initialization is part of this section.

 FSL_CODE_ROMRAM

The section contains the user interface. Depending on the library
configuration, code from this section has to be executed in a Memory area
outside the Flash area affected by the Self-Programming operation (typically
executed in RAM) or not.

 FSL_CODE_RAM

This section contains the firmware interface and has to be executed in a
Memory area outside the Flash area affected by the Self-Programming
operation (typically executed in RAM).

 FSL_CODE_RAM_USRINT

This section may contain user interrupt handler functions.

 FSL_CODE_RAM_USR

This section may contain user functions and has to be executed in a Memory
area outside the Flash area affected by the Self-Programming operation
(typically executed in RAM). User functions may contain code for the Self-
Programming control flow.

 FSL_CODE_RAM_EX_PROT

This is a dummy section to avoid prefetch errors at the borders of the copied
sections during RAM execution.

It is not allowed to place any section in between the FSL code sections. A
violation of that rule or a reordering of the sections will cause a crash of the
library.

3.3 MISRA Compliance

The FSL has been tested regarding MISRA compliance.

The used tool is the QAC Source Code Analyzer which tests against the MISRA
2004 standard rules.

All MISRA related rules have been enabled. Remaining findings are commented
in the code while the QAC checker machine is set to silent mode in the
concerning code lines.

Caution

Flash Self-Programming Library FSL Usage

R01US0046ED Rev. 1.01 16
User Manual

Chapter 4 FSL Usage

4.1 Flash Security

4.1.1 Strategy

In most cases application software contains important intellectual property and/or
data that may not be distributed to others or manipulated by others. In order to
ensure Flash data integrity and to prevent unintended data read-out, Renesas
implements a set of features and mechanisms into Flash devices.

As these mechanisms may also limit the flexibility required for the application and
the programming or reprogramming, it has to be decided carefully what level of
protection is intended.

Two major items to be considered in the protection concept are:

 Illegal read-out of Flash content

 Illegal or accidental reprogramming of Flash

The following descriptions explain the strategies regarding these items are
described in detail:

Illegal read-out of Flash content

Read-out, legal and illegal, can be done on different ways. The following
describes major ways and the appropriate counter measures against illegal
operations:

 Direct read-out via on-chip debug interface

Some devices contain the N-Wire / Nexus debug interface. This allows
full control over all data stored in the device. It can be protected by a
password. As the protection is not directly a Flash feature, it is just
mentioned for reference. Please refer to the device user manual or the
tools description for details.

 Direct read-out via programming interface

The standard programming interface (e.g. PG-FP5) supports a command
to read out the Flash contents on all current devices. This feature helps a
lot in the developing and debugging phase and for failure analysis. This
command can be disabled by a protection flag (see chapter 4.1.2
Configuration options for details)

 Direct read-out by the application itself (via any interface)

E.g. a debug command in the application can be used to dump memory.
Please ensure that this possibility is not implemented or at least
protected in your application.

 Indirect read-out by spy software, programmed into the internal Flash

Software can be programmed into Flash in two different ways:

o By the application itself using Self-Programming

Please ensure that this possibility is not implemented or at least
protected in your application.

Flash Self-Programming Library FSL Usage

R01US0046ED Rev. 1.01 17
User Manual

o By the programmer interface

In order to disable this feature, the commands Flash Write and
Flash Block Erase can be disabled (see chapter 4.1.2
Configuration options for details). By doing so, Flash writing via
this interface is only possible after erasing the complete Flash.

Illegal or accidental reprogramming of Flash

For many applications protection against the illegal Flash read-out is already
sufficient. In other cases reprogramming the device either completely or partly
must be disabled. V850 devices provide features for both:

 Partly reprogramming by the programmer interface

See Illegal read-out of Flash content

 Complete reprogramming by the programmer interface

If also the complete erasing and reprogramming by this interface shall be
disabled, in addition to Flash Write and Flash Block Erase commands
also the Chip Erase command can be disabled (see chapter 4.1.2
Configuration options for details). By doing so the reprogramming via
programmer interface is no longer possible, neither by unauthorized nor
by authorized use. Reprogramming by the application using Self-
Programming is still possible.

 Reprogramming by the application using Self-Programming

It is also possible to protect a certain number of Flash blocks (called boot
cluster) against reprogramming via the application, starting from
0x00000000. The number of blocks is configurable from 1 up to the
complete Flash.

So it is possible to protect e.g. a Bootloader or more code and data up to
the complete application.

In addition a configurable Flash Shield Window is able to protect parts of
the Flash. This Window is configurable via Self-Programming. Only the
Flash blocks covered by the FSW can be reprogrammed via Self-
Programming.

When disabling reprogramming of blocks via the application, the secured part can
no longer be reprogrammed in any way any more.

4.1.2 Configuration options

This chapter explains the protection relevant settings and mechanisms,
implemented in RC03F based Flash devices.

For the usage of these settings and the protection strategy, please refer to
section 4.1.1 Strategy.

(1) Security Flags

The protection configuration can be set by the dedicated Flash programmers, like
PG-FP5 or via Self-Programming.

The following flags and settings are available:

 Read command disable (Programmer interface)

Reading the Flash contents via the programming interface is disabled. It
does not affect Self-Programming (see FSL_SetReadProtectFlag).

Note

Flash Self-Programming Library FSL Usage

R01US0046ED Rev. 1.01 18
User Manual

 Program command disable (Programmer interface)

Writing to the Flash via programming interface is disabled. It does not
affect Self-Programming (see FSL_SetWriteProtectFlag).

 Block Erase command disable (Programmer interface)

Erasing single blocks via programming interface is disabled. It does not
affect Self-Programming. The Flag is valid for the complete Flash (see
FSL_SetBlockEraseProtectFlag).

 Boot Cluster Protection

If set, erasing and writing on the Flash by the application using the Self-
Programming is disabled for the boot cluster (see
FSL_SetBootClusterProtectFlag).

If set once, resetting is only possible for the read and write protection flag.

(2) ID Code Protection

Flash access via N-Wire / Nexus debug interface can be secured via an internal
ID. The ID is stored in the Extra Area and has to match the configure ID in the N-
Wire interface configuration of the debugger to allow Flash access. For details
about the ID, please refer to FSL_SetID.

(3) Flash Shield Window

Internal Flash can be protected from accidental reprogramming by a shield
window. This window is configurable during runtime. It allows to program or to
erase all Flash blocks covered by the window and denies destructive access to
all other blocks. Per default all Flash blocks are covered by the Flash Shield
Window. For details how to configure the Flash Shield Window, please refer to
FSL_SetFSW.

shield window

0x0000 0000 0x0040 0000

protected area protected areaunprotected area

Flash Shield Window

4.2 Flash Safety

All RC03F based Flash devices are equipped with dedicated safety features. The
features have to be separated for normal operation, where data retention is
important and for reprogramming, where safe reprogramming in case of power
fail or other problems is important.

Caution

Figure 4-1

Flash Self-Programming Library FSL Usage

R01US0046ED Rev. 1.01 19
User Manual

4.2.1 Hardware Protection

Device Reprogramming is disabled if FLMD0 Pin is low. By using a port pin or an
external logic FLMD0 must be set to “1” to allow Self-Programming. Additionally
reprogramming can be enabled by a register if supported by the device. Please
refer to the device user manual for further details.

Vss

Port-Pin

FLMD0

R

FLMD0 sample circuit

In the sample circuit, the port pin is input on reset. Thus FLMD0 is held to VSS on
reset. During Self-Programming the port is set to output and to the value “1”. By
that the FLMD0 pin is set to VDD.

4.2.2 Normal operation (Error Correction Circuit – ECC)

RC03F based Flash devices contain Error Correction Circuits (ECC) to provide
correct Flash data. During Flash write operations, beside the user data, also
redundant ECC data is written into additional Flash cells in order to be able to
correct detected Flash errors during Flash read. ECC is an on-line method. That
means from user point of view ECC has no impact on the data read performance.

4.2.3 Safe reprogramming using Self-Programming

When talking about safe Self-Programming, that naming needs to be exactly
defined, as several different ways of understanding are possible.

Basic idea of safe Self-Programming is that if anything during reprogramming
process goes wrong, it must be possible to keep basic application functionality
alive. Usually it is solved by separation of the application into the application that
is updated and therefore temporarily not valid during reprogramming, and a
specific bootloader that must always be executable again after power up or reset.

Two major options with different advantages and disadvantages have to be
considered. Depending on the application and bootloader the appropriate
solution has to be selected:

Figure 4-2

Flash Self-Programming Library FSL Usage

R01US0046ED Rev. 1.01 20
User Manual

 Safe Self-Programming without bootloader update

 Safe Self-Programming with bootloader update

Safe Self-Programming without bootloader update

The easiest way of safe Self-Programming is to occupy some complete Flash
blocks for the bootloader and do not reprogram them again. By that it never
happens, that an interruption of the reprogramming (e.g. power fail) causes an
invalid bootloader.

Although this method might waste some space if the bootloader does not occupy
a complete Flash block, the handling of reprogramming is easy.

Furthermore, increased safety by protection against reprogramming the
bootloader due to program failures is possible. The block protection feature can
be used to protect the bootloader forever against any reprogramming. In that
case, please consider that the block cannot be reprogrammed in any way any
more.

Safe Self-Programming with bootloader update

Bootloader block update might be necessary due to the following items:

 Keep the option to fix bootloader bugs.

 Application code/data, that needs to be updated, is stored in the same
block as the bootloader.

If the bootloader has to be updated, it needs to be ensured, that always a
working version of the bootloader is available, even during the update procedure.
Furthermore, in case of a power failure the valid bootloader needs to be detected
and the program has to be started there. To fulfil these requirements, the Boot
Swap functionality is implemented.

Boot swap means, that a certain number of Flash blocks (clusters) can be
swapped in the address range. This swapping is done depending on Boot Swap
bits, set in the Flash Extra Areas. When a valid bootloader is contained in the
corresponding cluster and the swap bit is set accordingly, the block is
automatically swapped to the address 0x00000000 on device start-up. By that
and by the correct reprogramming sequence can be ensured, that even a block
containing a bootloader can be updated safely.

Old

User application

(invalid)

New bootloader

(boot cluster 1)

Old bootloader

(boot cluster 0)

Old

User application

(invalid)

Old bootloader

(boot cluster 0)

New bootloader

(boot cluster 1)

Swap

Step 2:

Old

User application

(valid)

Old bootloader

(boot cluster 0)

Step 1:

New

User application

(valid)

New bootloader

(boot cluster 1)

Step 3:

SwappedUnswapped

Safe bootloader update

Figure 4-3

Flash Self-Programming Library FSL Usage

R01US0046ED Rev. 1.01 21
User Manual

Two methods are implemented in the Library to swap the boot cluster.

1. Swap the boot cluster only temporary. The boot cluster will be
unswapped again after a device reset. For details, please refer to
FSL_ChangeSwapState.

2. Invert the boot flag. The boot cluster will remain changed after a reset.
An additional parameter forces the device to swap the boot cluster
immediately in addition to changing the swap flag. Please refer to
FSL_ChangeSwapFlag.

4.3 Code execution in RAM

The application, including the control program and the FSL are usually located in
the internal flash. As the memory location of the application is not permanently
available during Self-Programming, parts of the program need to be copied to a
“save” location, where they can be executed. This may be the internal RAM, but
also external RAM, if available, is acceptable.

To copy necessary code parts into available RAM, three different methods are
possible:

 C-Startup

 FSL_CopySections

 User specific

C-Startup

The code is linked to the destination address. The compiler start-up routines copy
the code from a ROM image to the RAM. Please refer to the compiler
documentation for details.

FSL_CopySections

By calling the function FSL_CopySections all specified sections are copied to the
destination address.

User specific

In case of a user specific implementation, the user is responsible for the correct
location of the sections.

During RAM execution as well as during ROM execution, the device tries to
speed up execution time by a code prefetch mechanism. This prefetch
mechanism is responsible for ECC errors in case of uninitialized RAM areas.
Therefore the user has to initialize 32 Bytes behind the RAM placed code in case
of a user specific implementation.

Depending on the configured mode (see section 5.1 Pre-compile configuration)
following linker sections need to be copied to RAM:

User mode

 FSL_CODE_RAM_USRINT

 FSL_CODE_RAM_USR

 FSL_CODE_RAM

 FSL_CODE_ROMRAM

 FSL_CODE_EX_PROT

Note

Flash Self-Programming Library FSL Usage

R01US0046ED Rev. 1.01 22
User Manual

Internal mode

 FSL_CODE_RAM_USRINT

 FSL_CODE_RAM_USR

 FSL_CODE_RAM

 FSL_CODE_EX_PROT

For further information regarding the linker sections please refer to chapter 3.2
“FSL Linker sections”

Beside the mentioned sections, Self-Programming needs additional 4kByte
of RAM located on the top of the RAM. These RAM addresses are reserved
for the internal firmware. The RAM content in this address range will be
destroyed during Self-Programming.

4.4 User code execution during Self-Programming

The activation and deactivation of the Self-Programming Environment can be
handled by the FSL automatically or by the user application.

Especially activation is time consuming. In order to achieve fast reprogramming
the environment should be kept activated during the whole reprogramming. On
the other hand, during activated environment the program execution cannot be
done from Flash. So other memory like internal RAM or external memory is
required. If not sufficient memory is available, sequential activation and
deactivation is necessary and only small code parts are executed from internal
RAM.

Following two major scenarios may be considered for Self-Programming. These
are reflected by the library modes:

User mode

Most parts of the Self-Programming Library are executed in the internal RAM,
additionally the reprogramming control functions and other user code to be
executed during Self-Programming. In order to realise fast reprogramming the
activation/deactivation sequence is done only once for the complete
reprogramming. Every code to be executed between activation and deactivation
needs to be executed outside the Flash.

User Application

User Control Program

FSL_FlashEnv_Activate /

FSL_FlashEnv_Deactivate

FSL User Interface

Firmware Interface

Firmware

...

Execution

in Flash

Execution

in RAM

No Flash access possible

Reprogramming sequence in user mode

Caution

Figure 4-4

Flash Self-Programming Library FSL Usage

R01US0046ED Rev. 1.01 23
User Manual

This sequence is best for devices with sufficient internal RAM. User code
execution is always possible during Self-Programming, because a Flash
operation is just initiated by the FSL command. While the FSL returns control to
the user application, the Flash operation is executed in background. The user
has to poll the command status via the status check function. Interrupt as well as
user code execution is possible if all related functions are located in RAM.

To enable this mode, the library must be configured to use the user mode (see
5.1 Pre-compile configuration).

Internal mode

Only small parts of the library are executed in RAM, the rest is executed in the
Code Flash. Frequent activation and deactivation of the Flash Environment is
necessary and therefore programming time will increase.

User Application

User Control Program

FSL User Interface

Firmware Interface

Firmware

...

Execution

in Flash

Execution

in RAM

No Flash

Access

possible

No Flash

Access

possible

Basic RAM saving reprogramming sequence

Less internal RAM is used as only the device firmware interface need to be
executed in RAM. On the other hand, normal user code execution during Self-
Programming is impossible, because a FSL function starting a command does
not return until the operation is finished. Therefore only interrupts are possible
during Self-Programming.

To enable this mode, the library must be configured to use the internal mode (see
5.1 Pre-compile configuration).

4.5 Interrupts in RAM

As mentioned before, Code Flash is not accessible during Self-Programming.
Therefore the interrupt vector table as well as interrupt handler routines, which
are normally located in the Flash, are not accessible. Interrupt vectors and
handler routines have to be re-routed to not affected memory like external or
internal RAM.

Two methods exist to execute interrupts from RAM:

 Single interrupt vector

All interrupts are mapped to the single interrupt vector of interrupt
channel 0. Based on this interrupt, the interrupt handler routine has to
handle all pending interrupts.

 Interrupt table mapped to RAM

The base address of the interrupt vector table is mapped to a different
location in RAM. In this case the offset of the different channels is added
to the new base address.

Figure 4-5

Flash Self-Programming Library FSL Usage

R01US0046ED Rev. 1.01 24
User Manual

Regardless which method is used, interrupt service routines have to be executed
from and therefore copied to RAM. For details how to copy the routines to RAM,
please refer to chapter 4.3 “Code execution in RAM”.

Further information about interrupt handling from RAM can be found in the device
user manual and in the CPU architecture description (see “V850E2R-V3
Architecture”).

4.6 Dual CPU operation

In case of a dual CPU device the usage of the FSL is not limited to one CPU. The
Flash memory can be controlled by each CPU.

Flash Memory

RAM

Service functions

RAM

CPU1 CPU2

CPU-CPU memory access

bus

(low speed)

Data access bus

(high speed)

Dual CPU operation

Dual CPU operation causes some smaller restrictions. The service functions are
always located in RAM area of CPU1. Therefore the function response time will
increase in case of control by CPU2.

A second restriction is access control in general. To provide a fail safe
mechanism, only access by one CPU at a time is allowed. Simultaneous access
by the other CPU is prohibited. Access rights are controlled automatically by the
library.

4.7 Option Bytes

The Extra Area contains user specific configuration data called Option Bytes.
These configuration settings are adjustable via Self-Programming. The size of the
Option Bytes is 4Byte. For details about possible configuration settings please
refer to the device user manual.

Note

Figure 4-6

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 25
User Manual

Chapter 5 User Interface (API)

5.1 Pre-compile configuration

The pre-compile configuration of the FSL is located in the FSL_cfg.h. The user
has to configure all parameters and attributes by adapting the related constant
definition in that header-file.

This file may also contain device or application specific defines. The define
FSL_STATUS_CHECK needs to be configured. It defines whether the status
check should be performed by the firmware or by the user to allow execution of
user code in between the status checks.

#define FSL_STATUS_CHECK FSL_STATUS_CHECK_INTERNAL

Following configuration options are possible:

 FSL_STATUS_CHECK_INTERNAL

 FSL_STATUS_CHECK_USER

As described in the previous chapter the library behaviour changes depending on
the configure mode.

User mode (FSL_STATUS_CHECK_USER)

Advantages:

 less CPU time

 less activation / deactivation time

 user code execution during Self-Programming

Disadvantages:

 more RAM consumption

 status polling necessary

Additionally, in status check user mode, user can enable or disable polling in the
activation and deactivation functions of the library by setting following define:

#define FSL_ACTIVATION_POLLING

If the activation polling is disabled, the function will automatically return after the
activation operation is finished. The activation / deactivation process needs
longer execution time than any other operation. As this operation is normally
executed once at the beginning, the longer execution time is acceptable. By
setting the pre-processor define, the process is split up and the execution is
controlled by the status check like normal Flash operations. So the function
execution time is reduced.

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 26
User Manual

Internal mode (FSL_STATUS_CHECK_INTERNAL)

Advantages:

 no polling necessary

 less RAM consumption

Disadvantages:

 more activation / deactivation time

 no return to the application during Self-Programming

 user code execution during Self-Programming only by
interrupts

For details refer to chapter 4.4 User code execution during Self-Programming.

Synchronization between Code and Data Flash

It is not possible to access Code Flash during Data Flash access and vice versa
due to similar hardware and limited internal resources, e.g. a single charge pump.
To protect and synchronize Code Flash and Data Flash accesses a
synchronization mechanism is implemented. This mechanism will postpone all
Code Flash access if a Data Flash access is ongoing until the Data Flash access
is terminated. A Data Flash access during Code Flash accesses is very unlikely,
because code execution is only possible from RAM during Self-Programming.
Therefore the access from Data Flash is not synchronized.

To enable the synchronization mechanism, following define is necessary:

#define FSL_CODE_DATA_FLASH_SYNC_ENABLED

5.2 Data Types

Correct result
The operation has been started

successfully and is still running.
0xFFFSL_BUSY

A new function call is

possible
No operation is ongoing0x30FSL_IDLE

Correct resultThe operation finished successfully0x00FSL_OK

FSL Impact
Responsible

process
Explanation

Valu

e
Error

Correct result
The operation has been started

successfully and is still running.
0xFFFSL_BUSY

A new function call is

possible
No operation is ongoing0x30FSL_IDLE

Correct resultThe operation finished successfully0x00FSL_OK

FSL Impact
Responsible

process
Explanation

Valu

e
Error

FSL status codes

Current command

aborted.

The current operation stopped due to

an internal error.
0xAAFSL_ERR_INTERNAL

Current command

rejected

A new operation should be initiated

although the state machine is still

busy.

0x1FFSL_ERR_FLOW

Current command

aborted.

The current operation stopped due to

an error while writing.
0x1CFSL_ERR_WRITE

Current command

aborted.

The current operation stopped due to

an error while erasing.
0x1AFSL_ERR_ERASE

Current command

rejected

A new operation should be initiated

although this operation is forbidden

due to a security feature.

0x10FSL_ERR_PROTECTION

Current command

rejected

A new operation should be initiated,

but an error in the given parameter

occurred.

0x05FSL_ERR_PARAMETER

Current command

rejected
The FLMD0-Pin is not at a High level.0x01FSL_ERR_FLMD0

FSL Impact
Responsible

process
ExplanationValueError

Current command

aborted.

The current operation stopped due to

an internal error.
0xAAFSL_ERR_INTERNAL

Current command

rejected

A new operation should be initiated

although the state machine is still

busy.

0x1FFSL_ERR_FLOW

Current command

aborted.

The current operation stopped due to

an error while writing.
0x1CFSL_ERR_WRITE

Current command

aborted.

The current operation stopped due to

an error while erasing.
0x1AFSL_ERR_ERASE

Current command

rejected

A new operation should be initiated

although this operation is forbidden

due to a security feature.

0x10FSL_ERR_PROTECTION

Current command

rejected

A new operation should be initiated,

but an error in the given parameter

occurred.

0x05FSL_ERR_PARAMETER

Current command

rejected
The FLMD0-Pin is not at a High level.0x01FSL_ERR_FLMD0

FSL Impact
Responsible

process
ExplanationValueError

FSL error codes

Figure 5-1

Figure 5-2

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 27
User Manual

5.3 Library Functions

Functions represent the application interface to the FSL which the user SW can
use. Following list is an overview of all available functions (in alphabetic order).

 FSL_CalcFctAddr

 FSL_ChangeSwapFlag

 FSL_ChangeSwapState

 FSL_CopySections

 FSL_Erase

 FSL_FlashEnv_Activate

 FSL_FlashEnv_Deactivate

 FSL_GetBlockCnt

 FSL_GetBlockEndAdd

 FSL_GetBootClusterSize

 FSL_GetDevice

 FSL_GetFSW

 FSL_GetID

 FSL_GetOPB

 FSL_GetSecurityFlags

 FSL_GetSwapFlag

 FSL_GetSwapState

 FSL_GetVersionString

 FSL_Init

 FSL_ModeCheck

 FSL_Read

 FSL_SetBlockEraseProtectFlag

 FSL_SetBootClusterProtectFlag

 FSL_SetBootClusterSize

 FSL_SetFrequency

 FSL_SetFSW

 FSL_SetID

 FSL_SetOPB

 FSL_SetReadProtectFlag

 FSL_SetWriteProtectFlag

 FSL_StatusCheck

 FSL_Write

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 28
User Manual

5.3.1 Initialization

5.3.1.1 FSL_Init

Description

Function is executed before any execution of other FSL function. It initializes
internal Self-Programming environment and internal variables.

Interface

void FSL_Init(void)

Arguments

None

Return types / values

None

Pre-conditions

None

Post-conditions

None

Example

/* Initialze and start Self-Programming Library */

FSL_Init();

5.3.1.2 FSL_CopySections

Description

If it is necessary to copy the FSL functions to another location than the linked one,
e.g. to a RAM location, the function copies all routines to the specified destination
address. Please refer to chapter 4.3 “Code execution in RAM” for further details.
The function is executed before any execution of other FSL function, but must be
executed after FSL_Init.

Interface

void FSL_CopySections(fsl_u32 addDest_u32)

Arguments

Type Argument Description

fsl_u32 addDest_u32 Destination address of Self-
Programming Library

Return types / values

None

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 29
User Manual

Pre-conditions

Library must be initialized (call function FSL_Init).

Post-conditions

None

Example

/* Copy FSL to internal RAM address 0xffff7000 */

FSL_CopySections(0xffff7000);

5.3.1.3 FSL_CalcFctAddr

Description

Function calculates the new address of a function copied from ROM to RAM. To
locate the new address of the function, the copied function must be located in on
of the FSL linker segments (see chapter 3.2 “FSL Linker sections”).

Interface

fsl_u32 FSL_CalcFctAddr(void *pAddFct_ptr, fsl_u32 destAddr_u32)

Arguments

Type Argument Description

void pAddFct_ptr Pointer to ROM address of copied
function

fsl_u32 destAdd_u32 Destination address of Self-
Programming Library, e.g. value used
for FSL_CopySections.

Return types / values

Type Argument Description

fsl_u32 New RAM address of function

Pre-conditions

Library must be initialized (call function FSL_Init) and copied (call function
FSL_CopySections).

Post-conditions

None

Example

/* Calculate new address of FSL_Write function */

/* FSL copied to RAM addess 0xffff7000 */

fsl_u32 (*fpFct)(void);

fpFct = (fsl_u32(*)())FSL_CalcFctAddr((void *)FSL_Write,

 0xffff7000);

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 30
User Manual

5.3.1.4 FSL_FlashEnv_Activate

Description

Function initializes the Flash control macro and activates and prepares the Flash
environment.

Interface

fsl_status_t FSL_FlashEnv_Activate(void)

Arguments

None

Return types / values

Type Argument Description

fsl_status_t Operation status when returned from
function call:

 FSL_OK
1

 FSL_BUSY
2

 FSL_ERR_FLOW

 FSL_ERR_FLMD0

 FSL_ERR_INTERNAL
1

1
 Status check is performed internally by the firmware

2
 Status check is performed by the user

Pre-conditions

Library must be initialized (call function FSL_Init) and copied (call function
FSL_CopySections).

Post-conditions

In case of user mode and activated polling, call FSL_StatusCheck till function
return value is different from FSL_BUSY.

Example

/* Enable Flash environment */

fsl_status_t status_enu;

status_enu = FSL_FlashEnv_Activate();

#ifdef FSL_ACTIVATION_POLLING

 while(status_enu == FSL_BUSY)

 {

 status_enu = FSL_StatusCheck();

 }

#endif

/* Error treatment */

5.3.1.5 FSL_FlashEnv_Deactivate

Description

Function terminates all Flash operations and deactivates the Flash environment.

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 31
User Manual

Interface

fsl_status_t FSL_FlashEnv_Deactivate(void)

Arguments

None

Return types / values

Type Argument Description

fsl_status_t Operation status when returned from
function call:

 FSL_OK
1

 FSL_BUSY
2

 FSL_ERR_FLOW

 FSL_ERR_FLMD0

 FSL_ERR_INTERNAL
1

1
 Status check is performed internally by the firmware

2
 Status check is performed by the user

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

In case of user mode and activated polling, call FSL_StatusCheck till function
return value is different from FSL_BUSY.

Example

/* Deactivate Flash environment */

fsl_status_t status_enu;

status_enu = FSL_FlashEnv_Deactivate();

#ifdef FSL_ACTIVATION_POLLING

 while(status_enu == FSL_BUSY)

 {

 status_enu = FSL_StatusCheck();

 }

#endif

/* Error treatment */

...

5.3.1.6 FSL_SetFrequency

Description

The function informs the Self-Programming routines about the configured CPU
frequency. A frequency fractional part need to be rounded up, e.g.: 25.3MHz
need to be rounded up to 26MHz.

CPU frequency setting condition:
The Flash programming hardware is provided with a clock, derived from the CPU
frequency. The frequency divider of this derived clock is device family dependent.
The resulting fFlash hardware must be in the range of 8 to 50MHz.

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 32
User Manual

E.g.: Fx4-L, Px4-L:
fFlash hardware = fCpu / 2

 16MHz <= fCpu <= mimimum of <100MHz> or <maximum device frequency>

The CPU frequency must be set correctly. If not, malfunction may occur such as
unstable Flash data without data retention, programming failure, operation
blocking.

Interface

fsl_status_t FSL_SetFrequency(fsl_u32 FreqData_u32)

Arguments

Type Argument Description

fsl_u32 FreqData_u32 Rounded up CPU clock in MHz
(boundaries see above)

Example: clock is 25.7MHz

 → FreqData_u32 = 26

Return types / values

Type Argument Description

fsl_status_t Operation status when returned from
function call:

 FSL_OK
1

 FSL_BUSY
2

 FSL_ERR_FLOW

 FSL_ERR_PARAMETER

 FSL_ERR_INTERNAL
1

1
 Status check is performed internally by the firmware

2
 Status check is performed by the user

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).

Post-conditions

In case of user mode and activated polling, call FSL_StatusCheck till function
return value is different from FSL_BUSY.

Example

/* Set clock to 32MHz */

fsl_status_t status_enu;

status_enu = FSL_SetFrequency(32);

#if FSL_STATUS_CHECK == FSL_STATUS_CHECK_USER

 while(status_enu == FSL_BUSY)

 {

 status_enu = FSL_StatusCheck();

 }

#endif

/* Error treatment */

...

Caution:

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 33
User Manual

5.3.2 Operation

5.3.2.1 FSL_Erase

Description

Function erases a range of blocks.

Interface

fsl_status_t FSL_Erase(fsl_u32 blockNoStart_u32,

 fsl_u32 blockNoEnd_u32)

Arguments

Type Argument Description

fsl_u32 blockNoStart_u32 First block number to be erased. (It is
not the block address, but the number of
the Flash block.)

fsl_u32 blockNoEnd_u32 Last block number to be erased. (It is
not the block address, but the number of
the Flash block.)

Return types / values

Type Argument Description

fsl_status_t Operation status when returned from
function call:

 FSL_OK
1

 FSL_BUSY
2

 FSL_ERR_FLOW

 FSL_ERR_PROTECTION

 FSL_ERR_PARAMETER

 FSL_ERR_ERASE
1

 FSL_ERR_INTERNAL
1

1
 Status check is performed internally by the firmware

2
 Status check is performed by the user

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

In case of user mode call FSL_StatusCheck till function return value is different
from FSL_BUSY.

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 34
User Manual

Example

/* Erase check block 3 to 20 */

fsl_status_t status_enu;

status_enu = FSL_Erase(3, 20);

#if FSL_STATUS_CHECK == FSL_STATUS_CHECK_USER

 while(status_enu == FSL_BUSY)

 {

 status_enu = FSL_StatusCheck();

 }

#endif

/* Error treatment */

...

5.3.2.2 FSL_Write

Description

Function writes the specified number of words from a buffer to consecutive Flash
addresses starting at the specified address.

Interface

fsl_status_t FSL_Write(fsl_u32 *pAddSrc_pu32,

 fsl_u32 addDest_u32,

 fsl_u32 length_u32)

Arguments

Type Argument Description

fsl_u32 pAddSrc_pu32 Pointer to buffer of data to be written

fsl_u32 addDest_u32 64 word aligned destination address of
data to be written

fsl_u32 length_u32 64 word aligned length of data in words

Return types / values

Type Argument Description

fsl_status_t Operation status when returned from
function call:

 FSL_OK
1

 FSL_BUSY
2

 FSL_ERR_FLOW

 FSL_ERR_PROTECTION

 FSL_ERR_PARAMETER

 FSL_ERR_WRITE
1

 FSL_ERR_INTERNAL
1

1
 Status check is performed internally by the firmware

2
 Status check is performed by the user

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 35
User Manual

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

In case of user mode call FSL_StatusCheck till function return value is different
from FSL_BUSY.

Example

/* Write 64 words of data to address 0x00000000 onwards */

fsl_status_t status_enu;

fsl_u32 buf_u32[64];

/* fill buffer */

...

status_enu = FSL_Write(&buf_u32[0], 0x00000000, 64);

#if FSL_STATUS_CHECK == FSL_STATUS_CHECK_USER

 while(status_enu == FSL_BUSY)

 {

 status_enu = FSL_StatusCheck();

 }

#endif

/* Error treatment */

...

5.3.2.3 FSL_Read

Description

Function reads the specified number of words from consecutive Flash addresses
starting at the specified address and writes it into a buffer.

Interface

fsl_status_t FSL_Read(fsl_u32 addSrc_u32,

 fsl_u32 *pDest_pu32,

 fsl_u32 length_u32)

Arguments

Type Argument Description

fsl_u32 addSrc_u32 Word aligned source address of data to
be read

fsl_u32 pDest_pu32 Pointer to buffer of read data

fsl_u32 length_u32 Word aligned length of data in words

Return types / values

Type Argument Description

fsl_status_t Operation status when returned from
function call:

 FSL_OK
1

 FSL_BUSY
2

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 36
User Manual

 FSL_ERR_FLOW

 FSL_ERR_PARAMETER

 FSL_ERR_INTERNAL
1

fsl_u32 pDest Pointer to buffer filled with read data
1
 Status check is performed internally by the firmware

2
 Status check is performed by the user

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

In case of user mode call FSL_StatusCheck till function return value is different
from FSL_BUSY.

Example

/* Read 64 words from address 0x00000000 onwards */

fsl_status_t status_enu;

fsl_u32 buf_u32[64];

status_enu = FSL_Read(0x00000000, &buf_u32[0], 64);

#if FSL_STATUS_CHECK == FSL_STATUS_CHECK_USER

 while(status_enu == FSL_BUSY)

 {

 status_enu = FSL_StatusCheck();

 }

#endif

/* Error treatment */

...

5.3.2.4 FSL_StatusCheck

Description

This function handles the complete state machine. It shall be called frequently,
but the calling style depends on the user application (refer to chapter 4.4 User
code execution during Self-Programming).

This command is only available in the user mode.

Interface

fsl_status_t FSL_StatusCheck(void)

Arguments

None

Return types / values

Type Argument Description

fsl_status_t Function return values:

 FSL_OK

 FSL_IDLE

Note

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 37
User Manual

 FSL_BUSY

 FSL_ERR_FLOW

 FSL_ERR_ERASE

 FSL_ERR_WRITE

 FSL_ERR_INTERNAL

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

None

Example

/* Show FSL_StatusCheck usage */

fsl_status_t status_enu;

/* start some FSL operation (e.g. FSL_Erase) */

status_enu = FSL_Erase(3, 20);

/* Status Check */

#if FSL_STATUS_CHECK == FSL_STATUS_CHECK_USER

 while(status_enu == FSL_BUSY)

 {

 status_enu = FSL_StatusCheck();

 }

#endif

/* Error treatment */

...

5.3.3 Security

5.3.3.1 FSL_GetSecurityFlags

Description

Function reads stored security information.

Interface

fsl_status_t FSL_GetSecurityFlags(fsl_u32 *pFlags_pu32)

Arguments

Type Argument Description

fsl_u32 pFlags_pu32 Pointer to buffer of read security
information

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 38
User Manual

Return types / values

Type Argument Description

fsl_status_t

Function return values:

 FSL_OK

 FSL_ERR_FLOW

 FSL_ERR_PARAMETER

fsl_u32 pFlags_pu32

Pointer to buffer filled with bit
coded security information

 x1xxxx : Read permission

 x0xxxx : Read prohibition

 xx1xxx : Write permission

 xx0xxx : Write prohibition

 xxxx1x : Block erase permission

 xxxx0x : Block erase prohibition

 xxxxx1 : Permission of boot
block cluster programming

 xxxxx0 : Prohibition of boot
block cluster programming

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

None

Example

/* Read security flags */

fsl_u32 flags_u32;

fsl_status_t status_enu;

status_enu = FSL_GetSecurityFlags(&flags_u32);

/* Error treatment */

...

5.3.3.2 FSL_ModeCheck

Description

Function checks whether the FLMD0 pin (hardware protection shield) is pulled up
or not. In case of pulled down no Flash programming is possible.

Interface

fsl_status_t FSL_ModeCheck(void)

Arguments

None

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 39
User Manual

Return types / values

Type Argument Description

fsl_status_t

Function return values:

 FSL_OK

 FSL_ERR_FLMD0

 FSL_ERR_FLOW

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

None

Example

/* Check level of FLMD0 */

fsl_status_t status_enu;

status_enu = FSL_ModeCheck();

/* Error treatment */

...

5.3.3.3 FSL_SetBlockEraseProtectFlag

Description

Function enables block erase protection by setting the according protection flag.

Interface

fsl_status_t FSL_SetBlockEraseProtectFlag(void)

Arguments

None

Return types / values

Type Argument Description

fsl_status_t Operation status when returned from
function call:

 FSL_OK
1

 FSL_BUSY
2

 FSL_ERR_FLOW

 FSL_ERR_INTERNAL
1

 FSL_ERR_WRITE
1

1
 Status check is performed internally by the firmware

2
 Status check is performed by the user

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 40
User Manual

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

In case of user mode call FSL_StatusCheck till function return value is different
from FSL_BUSY.

Example

/* Set block erase protection */

fsl_status_t status_enu;

status_enu = FSL_SetBlockEraseProtectFlag();

#if FSL_STATUS_CHECK == FSL_STATUS_CHECK_USER

 while(status_enu == FSL_BUSY)

 {

 status_enu = FSL_StatusCheck();

 }

#endif

/* Error treatment */

...

5.3.3.4 FSL_SetWriteProtectFlag

Description

Function enables write protection by setting the according protection flag.

Interface

fsl_status_t FSL_SetWriteProtectFlag(void)

Arguments

None

Return types / values

Type Argument Description

fsl_status_t Operation status when returned from
function call:

 FSL_OK
1

 FSL_BUSY
2

 FSL_ERR_FLOW

 FSL_ERR_INTERNAL
1

 FSL_ERR_WRITE
1

1
 Status check is performed internally by the firmware

2
 Status check is performed by the user

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 41
User Manual

Post-conditions

In case of user mode call FSL_StatusCheck till function return value is different
from FSL_BUSY.

Example

/* Set write protection */

fsl_status_t status_enu;

status_enu = FSL_SetWriteProtectFlag();

#if FSL_STATUS_CHECK == FSL_STATUS_CHECK_USER

 while(status_enu == FSL_BUSY)

 {

 status_enu = FSL_StatusCheck();

 }

#endif

/* Error treatment */

...

5.3.3.5 FSL_SetBootClusterProtectFlag

Description

Function enables boot cluster protection by setting the according protection flag.

Interface

fsl_status_t FSL_SetBootClusterProtectFlag(void)

Arguments

None

Return types / values

Type Argument Description

fsl_status_t Operation status when returned from
function call:

 FSL_OK
1

 FSL_BUSY
2

 FSL_ERR_FLOW

 FSL_ERR_PROTECTION

 FSL_ERR_INTERNAL
1

 FSL_ERR_WRITE
1

1
 Status check is performed internally by the firmware

2
 Status check is performed by the user

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

In case of user mode call FSL_StatusCheck till function return value is different
from FSL_BUSY.

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 42
User Manual

Example

/* Set boot cluster protection */

fsl_status_t status_enu;

status_enu = FSL_SetBootClusterProtectFlag();

#if FSL_STATUS_CHECK == FSL_STATUS_CHECK_USER

while(status_enu == FSL_BUSY)

 {

 status_enu = FSL_StatusCheck();

 }

#endif

/* Error treatment */

...

5.3.3.6 FSL_SetReadProtectFlag

Description

Function enables read protection by setting the according protection flag.

Interface

fsl_status_t FSL_SetReadProtectFlag(void)

Arguments

None

Return types / values

Type Argument Description

fsl_status_t Operation status when returned from
function call:

 FSL_OK
1

 FSL_BUSY
2

 FSL_ERR_FLOW

 FSL_ERR_INTERNAL
1

 FSL_ERR_WRITE
1

1
 Status check is performed internally by the firmware

2
 Status check is performed by the user

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

In case of user mode call FSL_StatusCheck till function return value is different
from FSL_BUSY.

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 43
User Manual

Example

/* Set read protection */

fsl_status_t status_enu;

status_enu = FSL_SetReadProtectFlag();

#if FSL_STATUS_CHECK == FSL_STATUS_CHECK_USER

 while(status_enu == FSL_BUSY)

 {

 status_enu = FSL_StatusCheck();

 }

#endif

/* Error treatment */

...

5.3.3.7 FSL_GetFSW

Description

Function returns the start and the end block of the actual Flash shield window.

Interface

fsl_status_t FSL_GetFSW(fsl_u32 *pBlockNoStart_pu32,

 fsl_u32 *pBlockNoEnd_pu32)

Arguments

Type Argument Description

fsl_u32 pBlockNoStart_pu32 Pointer to buffer for starting block
number of FSW

fsl_u32 pBlockNoEnd_pu32 Pointer to buffer for ending block
number of FSW

Return types / values

Type Argument Description

fsl_status_t

Function return values:

 FSL_OK

 FSL_ERR_FLOW

 FSL_ERR_PARAMETER

fsl_u32 pBlockNoStart_pu32
Buffer including starting block number of
FSW

fsl_u32 pBlockNoEnd_pu32
Buffer including ending block number of
FSW

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

None

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 44
User Manual

Example

/* Read Flash Shield Window range */

fsl_status_t status_enu;

fsl_u32 blockStart_u32;

fsl_u32 blockEnd_u32;

status_enu = FSL_GetFSW(&blockStart_u32, &blockEnd_u32);

/* Error treatment */

...

5.3.3.8 FSL_SetFSW

Description

Function sets a new Flash shield window to protect the range of blocks from
unwanted Flash operations.

Interface

fsl_status_t FSL_SetFSW(fsl_u32 blockNoStart_u32,

 fsl_u32 blockNoEnd_u32)

Arguments

Type Argument Description

fsl_u32 BlockNoStart_u32 Starting block number of FSW

fsl_u32 BlockNoEnd_u32 Ending block number of FSW

Return types / values

Type Argument Description

fsl_status_t Operation status when returned from
function call:

 FSL_OK
1

 FSL_BUSY
2

 FSL_ERR_PARAMETER

 FSL_ERR_PROTECTION

 FSL_ERR_FLOW

 FSL_ERR_INTERNAL
1

 FSL_ERR_WRITE
1

1
 Status check is performed internally by the firmware

2
 Status check is performed by the user

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 45
User Manual

Post-conditions

In case of user mode call FSL_StatusCheck till function return value is different
from FSL_BUSY.

Example

/* Set Flash Shield Window for block 2 up to block 3 */

fsl_status_t status_enu;

status_enu = FSL_SetFSW(2, 3);

#if FSL_STATUS_CHECK == FSL_STATUS_CHECK_USER

 while(status_enu == FSL_BUSY)

 {

 status_enu = FSL_StatusCheck();

 }

#endif

/* Error treatment */

...

5.3.4 Administration

5.3.4.1 FSL_GetVersionString

Description

This function returns the pointer to the library version string. The version string is
the zero terminated string identifying the library. The length of the string is up to
19 characters.

Interface

const fsl_u08* FSL_GetVersionString(void)

Arguments

None

Return types / values

Type Argument Description

fsl_u08

Pointer to version string

Version string format:

“SV850T06xxxxxYabcde”

xxxxx

Coded information about the
supported compiler including the
version and the used register
model. If no information is
coded, the library is a generic
library valid for different
compiler.

Y
“E” for engineering version

“V” for final version

abc Library version number Va.b.c.

optional:

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 46
User Manual

de
customer specific version
information

Pre-conditions

None

Post-conditions

None

Example

/* Read library version */

fsl_u08 *version_pu08;

version_pu08 = FSL_GetVersionString();

5.3.4.2 FSL_GetDevice

Description

Function returns the device number to identify the used device.

Interface

fsl_status_t FSL_GetDevice(fsl_u32 *pDeviceNo_pu32)

Arguments

Type Argument Description

fsl_u32 pDeviceNo_pu32 Pointer to buffer of read device number

Return types / values

Type Argument Description

fsl_status_t

Function return values:

 FSL_OK

 FSL_ERR_FLOW

 FSL_ERR_PARAMETER

fsl_u32 pDeviceNo_pu32

Pointer to buffer filled with device
number

Format:

“0000000000000000xxxxxxxxxxxxxxxx”

Example:

uPD70F3377

→3377 = 0x0D31

→xxxxxxxxxxxxxxxx =
000110100110001

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 47
User Manual

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

None

Example

/* Read device name */

fsl_u32 device_u32;

fsl_status_t status_enu;

status_enu = FSL_GetDevice(&device_u32);

/* Error treatment */

...

5.3.4.3 FSL_GetBlockCnt

Description

Function returns number of blocks of the device.

Interface

fsl_ status_t FSL_GetBlockCnt(fsl_u32 *pBlockCnt_pu32)

Arguments

Type Argument Description

fsl_u32 pBlockCnt_pu32 Pointer to buffer of read block count
information

Return types / values

Type Argument Description

fsl_status_t

Function return values:

 FSL_OK

 FSL_ERR_FLOW

 FSL_ERR_PARAMETER

fsl_u32 pBlockCnt_pu32
Pointer to buffer filled with block count
information

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

None

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 48
User Manual

Example

/* Read block count */

fsl_u32 cnt_u32;

fsl_status_t status_enu;

status_enu = FSL_GetBlockCnt(&cnt_u32);

/* Error treatment */

...

5.3.4.4 FSL_GetBlockEndAdd

Description

Function returns the end address of the specified block.

Interface

fsl_status_t FSL_GetBlockEndAdd(fsl_u32 blockNo_u32,

 fsl_u32 *pBlockEndAddr_pu32)

Arguments

Type Argument Description

fsl_u32 blockNo_u32 Block number

fsl_u32 pBlockEndAddr_pu32 Pointer to buffer of read block end
address information

Return types / values

Type Argument Description

fsl_status_t

Function return values:

 FSL_OK

 FSL_ERR_FLOW

 FSL_ERR_PARAMETER

fsl_u32 pBlockEndAddr_pu32
Pointer to buffer filled with requested
end address of the block

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

None

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 49
User Manual

Example

/* Read block end address of block 3*/

fsl_u32 addr_u32;

fsl_status_t status_enu;

status_enu = FSL_GetBlockEndAdd(3, &addr_u32);

/* Error treatment */

...

5.3.4.5 FSL_GetSwapState

Description

Function reads the current swap status.

Interface

fsl_status_t FSL_GetSwapState (fsl_u32 *pSwapState_pu32)

Arguments

Type Argument Description

fsl_u32 pSwapState_pu32 Pointer to buffer of read swap status

Return types / values

Type Argument Description

fsl_status_t

Function return values:

 FSL_OK

 FSL_ERR_FLOW

 FSL_ERR_PARAMETER

fsl_u32 pSwapState_pu32

Pointer to buffer filled with swap status:

 0x00: not swapped

 0x01: swapped

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

None

Example

/* Read boot cluster */

fsl_u32 state_u32

fsl_status_t status_enu

status_enu = FSL_GetSwapState(&state_u32);

/* Error treatment */

...

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 50
User Manual

5.3.4.6 FSL_ChangeSwapState

Description

Function swaps the boot cluster 0 and boot cluster 1 physically without setting
the boot flag. After reset the boot cluster will be activated regarding the boot flag.

Interface

fsl_status_t FSL_ChangeSwapState(void)

Arguments

None

Return types / values

Type Argument Description

fsl_status_t

Function return values:

 FSL_OK

 FSL_ERR_FLOW

 FSL_ERR_PROTECTION

 FSL_ERR_INTERNAL

 FSL_ERR_WRITE

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

None

Example

/* Swap boot cluster */

fsl_status_t status_enu;

status_enu = FSL_ChangeSwapState();

/* Error treatment */

...

5.3.4.7 FSL_GetSwapFlag

Description

Function reads the current value of the boot swap flag from the extra area.

Interface

fsl_status_t FSL_GetSwapFlag (fsl_u32 *pSwapFlag_pu32)

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 51
User Manual

Arguments

Type Argument Description

fsl_u32 pSwapFlag_pu32 Pointer to buffer of read swap flag

Return types / values

Type Argument Description

fsl_status_t

Function return values:

 FSL_OK

 FSL_ERR_FLOW

 FSL_ERR_PARAMETER

fsl_u32 pSwapFlag_pu32

Pointer to buffer filled with current value
of the boot swap flag:

 0x00: not swapped

 0x01: swapped

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

None

Example

/* Read boot cluster */

fsl_u32 flag_u32;

fsl_status_t status_enu

status_enu = FSL_GetSwapFlag(&flag_u32);

/* Error treatment */

...

5.3.4.8 FSL_ChangeSwapFlag

Description

The function inverts the bootswap. Depending on the parameter, additionally the
current swap state is inverted.

Interface

fsl_status_t FSL_ChangeSwapFlag(fsl_u32 immediateSwap_u32)

Arguments

Type Argument Description

fsl_u32 immediateSwap_u32 Swap boot cluster immediately:

 0x00: Do not swap boot cluster

 0x01: Swap boot cluster

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 52
User Manual

Return types / values

Type Argument Description

fsl_status_t Operation status when returned from
function call:

 FSL_OK
1

 FSL_BUSY
2

 FSL_ERR_PROTECTION

 FSL_ERR_FLOW

 FSL_ERR_INTERNAL
1

 FSL_ERR_WRITE
1

1
 Status check is performed internally by the firmware

2
 Status check is performed by the user

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

In case of user mode call FSL_StatusCheck till function return value is different
from FSL_BUSY.

Example

/* Swap the boot flag, but do not generate a reset signal */

fsl_status_t status_enu;

status_enu = FSL_ChangeSwapFlag(0x00);

while(status_enu == FSL_BUSY)

{

 status_enu = FSL_StatusCheck();

}

/* Error treatment */

...

5.3.4.9 FSL_GetBootClusterSize

Description

Function reads current size of protectable boot cluster.

Interface

fsl_status_t FSL_GetBootClusterSize(fsl_u32 *pSize_pu32)

Arguments

Type Argument Description

fsl_u32 pSize_pu32 Pointer to buffer of read boot cluster
size

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 53
User Manual

Return types / values

Type Argument Description

fsl_status_t

Function return values:

 FSL_OK

 FSL_ERR_FLOW

 FSL_ERR_PARAMETER

fsl_u32 pSize_pu32

Pointer to buffer filled with boot cluster
size in number of blocks.

size_u32
Boot Block
Cluster size

Boot
Swap
Cluster
size

0x00 32KB 32KB

0x01 64KB 64KB

0x02-0x03 96-128KB 128KB

0x04-0xE3 160-7296KB 256KB

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

None

Example

/* Read boot cluster size */

fsl_u32 size_u32;

fsl_status_t status_enu;

status_enu = FSL_GetBootClusterSize(&size_u32);

/* Error treatment */

...

5.3.4.10 FSL_SetBootClusterSize

Description

Function sets protectable boot cluster size in the range from 0x00 to 0xE3 (see
also function FSL_SetBootClusterProtectFlag to enable protection).

Interface

fsl_status_t FSL_SetBootClusterSize(fsl_u32 size_u32)

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 54
User Manual

Arguments

Type Argument Description

fsl_u32 size_u32 Boot cluster size (range: 0x00-0xE3)

size_u32
Boot Block
Cluster size

Boot
Swap
Cluster
size

0x00 32KB 32KB

0x01 64KB 64KB

0x02-0x03 96-128KB 128KB

0x04-0xE3 160-7296KB 256KB

Return types / values

Type Argument Description

fsl_status_t Operation status when returned from
function call:

 FSL_OK
1

 FSL_BUSY
2

 FSL_ERR_PARAMETER

 FSL_ERR_FLOW

 FSL_ERR_PROTECTION

 FSL_ERR_INTERNAL
1

 FSL_ERR_WRITE
1

1
 Status check is performed internally by the firmware

2
 Status check is performed by the user

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

In case of user mode call FSL_StatusCheck till function return value is different
from FSL_BUSY.

Example

/* Set boot cluster size to 0x04 */

fsl_status_t status_enu;

status_enu = FSL_SetBootClusterSize(0x04);

#if FSL_STATUS_CHECK == FSL_STATUS_CHECK_USER

 while(status_enu == FSL_BUSY)

 {

 status_enu = FSL_StatusCheck();

 }

#endif

/* Error treatment */

...

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 55
User Manual

5.3.4.11 FSL_GetID

Description

Function reads the current ID data information (12 bytes).

Interface

fsl_status_t FSL_GetID(fsl_u08 *pID_pu08)

Arguments

Type Argument Description

fsl_u08 pID_pu08 Pointer to buffer of read ID

Return types / values

Type Argument Description

fsl_status_t

Function return values:

 FSL_OK

 FSL_ERR_FLOW

 FSL_ERR_PARAMETER

fsl_u08 pID_pu08 Pointer to buffer filled with ID

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

None

Example

/* Read ID */

fsl_status_t status_enu;

fsl_u08 id_u08[12];

status_enu = FSL_GetID(&id_u08[0]);

/* Error treatment */

...

5.3.4.12 FSL_SetID

Description

Function writes new ID settings (12 bytes) into the extra area.

Interface

fsl_status_t FSL_SetID(fsl_u08 *pID_pu08)

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 56
User Manual

Arguments

Type Argument Description

fsl_u32 pID_pu32 Pointer to source data of ID

Return types / values

Type Argument Description

fsl_status_t Operation status when returned from
function call:

 FSL_OK
1

 FSL_BUSY
2

 FSL_ERR_PARAMETER

 FSL_ERR_FLOW

 FSL_ERR_INTERNAL
1

 FSL_ERR_WRITE
1

1
 Status check is performed internally by the firmware

2
 Status check is performed by the user

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

In case of user mode call FSL_StatusCheck till function return value is different
from FSL_BUSY.

Example

/* Write ID */

fsl_status_t status_enu;

fsl_u08 id_u08[] = {

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,

 0x06, 0x07, 0x08, 0x09, 0x0A, 0x8B

 }; /* OCD on -> bit 95 = 1 */

FSL_SetID(&id_u08[0]);

#if FSL_STATUS_CHECK == FSL_STATUS_CHECK_USER

 while(status == FSL_BUSY)

 {

 status = FSL_StatusCheck();

 }

#endif

/* Error treatment */

...

5.3.4.13 FSL_GetOPB

Description

Function reads current OPB settings (4 bytes) from the device.

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 57
User Manual

Interface

fsl_status_t FSL_GetOPB(fsl_u08 *pOPB_pu08)

Arguments

Type Argument Description

fsl_u08 pOPB_pu08 Pointer to buffer of read option byte

Return types / values

Type Argument Description

fsl_status_t

Function return values:

 FSL_OK

 FSL_ERR_FLOW

 FSL_ERR_PARAMETER

fsl_u08 pOPB_pu08 Pointer to buffer filled with option byte

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

None

Example

/* Read option byte */

fsl_status_t status_enu;

fsl_u08 data_u08[4];

status_enu = FSL_GetOPB(&data_u08[0]);

/* Error treatment */

...

5.3.4.14 FSL_SetOPB

Description

Function writes new OPB settings (4 bytes) into the extra area.

Interface

fsl_status_t FSL_SetOPB(fsl_u08 *pOPB_pu08)

Arguments

Type Argument Description

fsl_u08 pOPB_pu08 Pointer to source data of option bytes

Flash Self-Programming Library User Interface (API)

R01US0046ED Rev. 1.01 58
User Manual

Return types / values

Type Argument Description

fsl_status_t Operation status when returned from
function call:

 FSL_OK
1

 FSL_BUSY
2

 FSL_ERR_PARAMETER

 FSL_ERR_FLOW

 FSL_ERR_INTERNAL
1

 FSL_ERR_WRITE
1

1
 Status check is performed internally by the firmware

2
 Status check is performed by the user

Pre-conditions

Library must be initialized (call function FSL_Init), copied (call function
FSL_CopySections) and active (call function FSL_FlashEnv_Activate).
Additionally the library must be informed about FBUS clock by using function
FSL_SetFrequency.

Post-conditions

In case of user mode call FSL_StatusCheck till function return value is different
from FSL_BUSY.

Example

/* Write option byte */

fsl_status_t status_enu;

fsl_u08 data_u08[4] = { 0xFF, 0xFF, 0xFF, 0xFF};

FSL_SetOPB(&data_u08[0]);

#if FSL_STATUS_CHECK == FSL_STATUS_CHECK_USER

 while(status_enu == FSL_BUSY)

 {

 status_enu = FSL_StatusCheck();

 }

#endif

/* Error treatment */

...

Flash Self-Programming Library Integration into the user application

R01US0046ED Rev. 1.01 59
User Manual

Chapter 6 Integration into the user application

6.1 First steps

It is very important to have theoretic background about the Code Flash and the
FSL in order to successfully implement the library into the user application.
Therefore it is important to read this user manual in advance. The best way after
initial reading of the user manual will be testing the FSL application sample.

6.2 Application sample

After a first compile run, it will be worth playing around with the library in the
debugger. By that you will get a feeling for the source code files and the working
mechanism of the library.

Before the first compile run, the compiler path must be configured in the
application sample file “makefile”:

Set the variable COMPILER_INSTALL_DIR to the correct compiler directory

Later on, the sample might be reconfigured to use the internal mode to get a
feeling of the CPU load and execution time during different modes.

After this exercise it might be easier to understand and follow the
recommendations and considerations of this document

6.3 FSL life cycle

The following flow charts represent typical FSL life cycles during device operation
including the API functions to be used.

Error treatment of the FSL function themselves are not detailed described in the
flow chart for simplification of the flow charts.

Note:

Note

Flash Self-Programming Library Integration into the user application

R01US0046ED Rev. 1.01 60
User Manual

Device reprogramming in user mode

All data written ?

Start reprogramming

FSL_Init

Initialization

phase

Normal

operation

FSL_FlashEnv_Activate

Y

Error treatment

FSL_StatusCheck ==

FSL_BUSY ?

FSL_Erase

Y

Error == FSL_OK ?

N

N

Stop reprogramming

Deactivation

phase FSL_FlashEnv_Deactivate

Y

FSL_StatusCheck ==

FSL_BUSY ?

FSL_Write

Y

Error == FSL_OK ?

N

N

Error treatment

Fill buffer

N

Y

FSL_SetFrequency

FSL_StatusCheck ==

FSL_BUSY ?

Y

N

FSL_CopySections

Reprogramming flow – user mode

Figure 6-1

Flash Self-Programming Library Integration into the user application

R01US0046ED Rev. 1.01 61
User Manual

Device reprogramming in internal mode

All data written ?

Start reprogramming

Normal

operation

Y

Error treatment

FSL_Erase

Error == FSL_OK ?
N

Stop reprogramming

Deactivation

phase FSL_FlashEnv_Deactivate

Y

FSL_Write

Error == FSL_OK ?

N

Error treatment

Fill buffer

N

Y

FSL_Init

Initialization

phase

FSL_SetFrequency

FSL_CopySections

Reprogramming flow – internal mode

6.4 Special considerations

Due to the underlying hard- and software concepts, the user application must
take care of some constrains if using the library.

Function re-entrancy

All functions are not re-entrant. So, re-entrant calls of any FSL functions must be
avoided

Entering power safe mode

Entering power safe modes is prohibited during Self-Programming.

Figure 6-2

Flash Self-Programming Library Integration into the user application

R01US0046ED Rev. 1.01 62
User Manual

Code Flash access during Self-Programming

Code Flash accesses during an active Self-Programming Environment are not
possible at all. The user application needs to be executed from other memory
during that time. Please refer to chapter 4.4 “User code execution during Self-
Programming” for further information.

Flash Self-Programming Library Integration into the user application

R01US0046ED Rev. 1.01 63
User Manual

Revision History

Chapter Page Description

Rev 1.00

 Initial version

Rev 1.01

 Updated frequency setting description

R01US0046ED

Flash Self-Programming Library

