

Cover

U
ser’s M

anual

32

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

www.renesas.com

RZ Family
RZ/N Series

RZ/N1D Group,
RZ/N1S Group,
RZ/N1L Group

User’s Manual: Peripherals

Rev.1.20 Dec, 2021

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered trademarks
are the property of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be

touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in

a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level

at which resetting is specified.

3. Input of signal during power-off state
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements.

Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced

with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.)

and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level

is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of

internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

How to Use This Manual

1. Objective and Target Users
This manual was written to explain the hardware functions and electrical characteristics of this LSI to the target users,
i.e. those who will be using this LSI in the design of application systems. Target users are expected to understand the
fundamentals of electrical circuits, logic circuits, and microcomputers.

This manual is organized in the following items: an overview of the product, descriptions of the CPU, system control
functions, and peripheral functions, electrical characteristics of the device, and usage notes.

When designing an application system that includes this LSI, take all points to note into account.
Points to note are given in their contexts and at the final part of each section, and in the section giving usage notes.

The list of revisions is a summary of major points of revision or addition for earlier versions. It does not cover all
revised items. For details on the revised points, see the actual locations in the manual.

The following documents have been prepared for reference.

 Documents related to RZ/N1

Document Name Document Number

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group DATASHEET R01DS0323EJ****

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group User’s Manual: System Introduction,
Multiplexing, Electrical and Mechanical Information

R01UH0750EJ****

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group User’s Manual: System Control and Peripheral R01UH0751EJ****

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group User’s Manual: Peripherals R01UH0752EJ****
(this manual)

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group User’s Manual: R-IN Engine and Ethernet
Peripherals

R01UH0753EJ****

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group User’s Manual: PWMTimer R01UH0913EJ****

2. Description of Registers
Each register description includes a bit chart, illustrating the arrangement of bits, and a table of bits, describing the
meanings of the bit settings. The standard format and notation for bit charts and tables are described below.

X.X.X [Register Name]

Address: XXXX XXXXh

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — [Bit Field] — — [Bit Field] — [Bit] [Bit] [Bit]

Value after reset 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0

Table X.X [Register Name] Register Contents

Bit Position Bit Name Function R/W

b12 to b8 [Bit Field] [Description] R/W

b5 to b4 [Bit Field] [Description]
2’b00: Hi-Z
2’b01: L Output
Others: Prohibited

R/W

b2 [Bit] [Description]
1’b0: H-Z
1’b1: Output (defult)

R/W

b1 [Bit] [Description]
1’b0: H-Z
1’b1: Output (defult)

R/W

b0 [Bit] [Description]
1’b0: H-Z
1’b1: Output

R/W

(1) R/W: The bit or field is readable and writable.

 R/(W): The bit or field is readable and writable. However, writing to this bit or field has some
limitations. For details on the limitations, see the description or notes of respective registers.

 R: The bit or field is readable. Writing to this bit or field has no effect.

 W: The bit or field is writable. Reading to this bit or field is not guaranteed.

(2) Reserved. Make sure to use the specified value when writing to this bit or field; otherwise, the correct
operation is not guaranteed.

(3) Setting prohibited. The correct operation is not guaranteed if such a setting is performed.

(2)

(3)

(1)

3. List of Abbreviations and Acronyms
Abbreviation Full Form

AHB Arm Advanced High-performance Bus

APB Arm Advanced Peripheral Bus

AXI Arm Advanced eXtensible Interface

bps bits per second

CA7 Arm Cortex-A7 module

CM3 Arm Cortex-M3 module

CRC Cyclic Redundancy Check

DMA Direct Memory Access

DMAC Direct Memory Access Controller

Hi-Z High Impedance

HSR High-availability Seamless Redundancy

HW-RTOS Hard Ware Real Time OS

I/O Input/Output

INTC Interrupt Controller

LSB Least Significant Bit

MSB Most Significant Bit

NC Non-Connect

NoC Network-on-Chip

PLL Phase Locked Loop

PWM Pulse Width Modulation

UART Universal Asynchronous Receiver/Transmitter

OTP One Time Programmable

PTP Precision Time Protocol

PRP Parallel Redundancy Protocol

SoC System On Chip

4. Description of the Access Size
Access size:

 8 bits = Byte

16 bits = Halfword

32 bits = Word

CAN (Controller Area Network): An automotive network specification developed by Robert Bosch GmbH of Germany
Arm is a registered trademark of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.
All trademarks and registered trademarks are the property of their respective owners.

Table of Contents

Section 1 UART .. 20
1.1 Overview ... 20
1.2 Signal Interfaces ... 22
1.3 Register Map .. 23

1.3.1 Register Map UART 1 .. 23
1.3.2 Register Map UART 2 .. 24
1.3.3 Register Map UART 3 .. 25
1.3.4 Register Map UART 4 .. 26
1.3.5 Register Map UART 5 .. 27
1.3.6 Register Map UART 6 .. 28
1.3.7 Register Map UART 7 .. 29
1.3.8 Register Map UART 8 .. 30

1.4 Register Description ... 31
1.4.1 rUart_DLL — Divisor Latch (Low) .. 31
1.4.2 rUart_DLH — Divisor Latch (High) ... 32
1.4.3 rUart_IIR — Interrupt Identification Register .. 33
1.4.4 rUart_RBR_THR — Receive Buffer/Transmit Holding Register .. 34
1.4.5 rUart_IER — Interrupt Enable Register ... 35
1.4.6 rUart_FCR — FIFO Control Register ... 37
1.4.7 rUart_LCR — Line Control Register .. 39
1.4.8 rUart_MCR — Modem Control Register .. 41
1.4.9 rUart_LSR — Line Status Register .. 43
1.4.10 rUart_MSR — Modem Status Register .. 46
1.4.11 rUart_SCR — Scratchpad Register ... 48
1.4.12 rUart_SRBR_STHR — Shadow Receive Buffer/Transmit Holding Register 49
1.4.13 rUart_FAR — FIFO Access Register ... 50
1.4.14 rUart_TFR — Transmit FIFO Read .. 51
1.4.15 rUart_RFW — Receive FIFO Write .. 52
1.4.16 rUart_USR — UART Status Register .. 53
1.4.17 rUart_TFL — Transmit FIFO Level .. 55
1.4.18 rUart_RFL — Receive FIFO Level ... 56
1.4.19 rUart_SRR — Software Reset Register ... 57
1.4.20 rUart_SRTS — Shadow Request to Send ... 58
1.4.21 rUart_SBCR — Shadow Break Control Register ... 59
1.4.22 rUart_SFE — Shadow FIFO Enable .. 60
1.4.23 rUart_SRT — Shadow RCVR Trigger.. 61
1.4.24 rUart_STET — Shadow TX Empty Trigger .. 62
1.4.25 rUart_HTX — Halt TX .. 63
1.4.26 rUart_DMASA — DMA Software Acknowledge ... 64
1.4.27 rUart_TO — Time-Out Counter Configuration Register... 65

1.4.28 rUart_CTRLTO — Time-Out Control Register ... 67
1.4.29 rUart_STATUSTO — Time-Out Counter Status Register .. 69
1.4.30 rUart_TDMACR — DMA Control Register in Transmit Mode .. 71
1.4.31 rUart_RDMACR — DMA Control Register in Receive Mode .. 73

1.5 Operation .. 75
1.5.1 Main Function Blocks Description .. 75

1.5.1.1 UART (RS232) Serial Protocol ... 75
1.5.1.2 Baud Rate Tolerance to 19200 baud .. 76
1.5.1.3 FIFO Management .. 77
1.5.1.4 Clock Management ... 77
1.5.1.5 Back to Back Character Stream Transmission ... 77
1.5.1.6 Interrupts ... 78
1.5.1.7 Auto Flow Control ... 80
1.5.1.8 Programmable THRE interrupt ... 82
1.5.1.9 DMA Management (Only UART4, 5, 6, 7, 8) .. 84
1.5.1.10 Transceiver & Receiver Time-Out for MODBUS Management 90

1.5.2 Usage Notes .. 96

Section 2 SPI .. 97
2.1 Overview ... 97
2.2 Signal Interfaces ... 99
2.3 Register Map .. 100

2.3.1 Register Map SPI1 (Master) .. 100
2.3.2 Register Map SPI2 (Master) .. 101
2.3.3 Register Map SPI3 (Master) .. 102
2.3.4 Register Map SPI4 (Master) .. 103
2.3.5 Register Map SPI5 (Slave) .. 104
2.3.6 Register Map SPI6 (Slave) .. 105

2.4 Register Description ... 106
2.4.1 rSpi_CTRLR0 — Control Register 0 .. 106
2.4.2 rSpi_CTRLR1 — Control Register 1 .. 108
2.4.3 rSpi_SSIENR — Enable Register .. 109
2.4.4 rSpi_MWCR — Microwire Control Register ... 110
2.4.5 rSpi_SER — Slave Enable Register .. 111
2.4.6 rSpi_BAUDR — Baud Rate Select .. 113
2.4.7 rSpi_TXFTLR — Transmit FIFO Threshold Level ... 114
2.4.8 rSpi_RXFTLR — Receive FIFO Threshold Level .. 115
2.4.9 rSpi_TXFLR — Transmit FIFO Level Register .. 116
2.4.10 rSpi_RXFLR — Receive FIFO Level Register ... 117
2.4.11 rSpi_SR — Status Register ... 118
2.4.12 rSpi_IMR — Interrupt Mask Register ... 120
2.4.13 rSpi_ISR — Interrupt Status Register .. 121
2.4.14 rSpi_RISR — Raw Interrupt Status Register ... 122
2.4.15 rSpi_TXOICR — Transmit FIFO Overflow Interrupt Clear Register 123

2.4.16 rSpi_RXOICR — Receive FIFO Overflow Interrupt Clear Register 124
2.4.17 rSpi_RXUICR — Receive FIFO Underflow Interrupt Clear Register 125
2.4.18 rSpi_ICR — Interrupt Clear Register ... 126
2.4.19 rSpi_DMACR — DMA Control Register ... 127
2.4.20 rSpi_DMATDLR — DMA Transmit Data Level .. 128
2.4.21 rSpi_DMARDLR — DMA Receive Data Level ... 129
2.4.22 rSpi_DR — Data Register .. 130
2.4.23 rSpi_RX_SAMPLE_DLY — RXD Sample Delay Register ... 131
2.4.24 rSpi_TDMACR — DMA Control Register in Transmit Mode ... 132
2.4.25 rSpi_RDMACR — DMA Control Register in Receive Mode .. 134

2.5 Operation .. 136
2.5.1 General description .. 136
2.5.2 Typical Connection between SPI Master & Slave ... 137
2.5.3 Control Slave Select Line by Hardware or Software Mode ... 138
2.5.4 Programmable Prescaler Clock ... 139
2.5.5 Data Input Sample Delay ... 140
2.5.6 Transmit & Receive FIFO & Control .. 141
2.5.7 Interruption Management ... 141
2.5.8 Transfer Mode .. 143

2.5.8.1 Transmit and Receive Mode ... 143
2.5.8.2 Transmit Only Mode.. 143
2.5.8.3 Receive Only Mode ... 143
2.5.8.4 EEPROM Read Mode ... 144

2.5.9 Motorola Serial Peripheral Interface .. 145
2.5.10 Texas Instruments Synchronous Serial Protocol ... 148
2.5.11 National Semiconductor Microwire .. 149
2.5.12 DMA Control ... 155

2.5.12.1 Overview on DMA Operation .. 156
2.5.12.2 Transmit Watermark Level and Transmit FIFO Underflow 156
2.5.12.3 Choosing the Transmit Watermark Level ... 156
2.5.12.4 Selecting DEST_MSIZE and Transmit FIFO Overflow ... 158
2.5.12.5 Receive Watermark Level and Receive FIFO Overflow ... 158
2.5.12.6 Choosing the Receive Watermark Level .. 159
2.5.12.7 Selecting SRC_MSIZE and Receive FIFO Underflow .. 159

2.6 Usage Notes ... 160
2.6.1 Programming Consideration .. 160

2.6.1.1 Programming Master SPI in Motorola & Texas Mode .. 160
2.6.1.2 Programming Master SPI in National Semiconductor Mode 163
2.6.1.3 Programming Slave SPI in Motorola & Texas Mode .. 165
2.6.1.4 Programming Slave SPI in National Semiconductor Mode 167

Section 3 I2C .. 168
3.1 Overview ... 168
3.2 Signal Interfaces ... 169
3.3 Register Map .. 170

3.3.1 I2C1 Register Map ... 170
3.3.2 I2C2 Register Map ... 171

3.4 Register Description ... 172
3.4.1 IC_CON — I2C Control Register ... 172
3.4.2 IC_TAR — I2C Target Address Register ... 174
3.4.3 IC_SAR — I2C Slave Address Register .. 175
3.4.4 IC_DATA_CMD — I2C Rx/Tx Data Buffer and Command Register 176
3.4.5 IC_SS_SCL_HCNT — Standard mode I2C Clock SCL High Count Register 178
3.4.6 IC_SS_SCL_LCNT — Standard mode I2C Clock SCL Low Count Register 179
3.4.7 IC_FS_SCL_HCNT — Fast mode I2C Clock SCL High Count Register 179
3.4.8 IC_FS_SCL_LCNT — Fast mode I2C Clock SCL Low Count Register 180
3.4.9 IC_INTR_STAT — I2C Interrupt Status Register .. 181
3.4.10 IC_INTR_MASK — I2C Interrupt Mask Register ... 182
3.4.11 IC_RAW_INTR_STAT — I2C Raw Interrupt Status Register .. 184
3.4.12 IC_RX_TL — I2C Receive FIFO Threshold Register .. 187
3.4.13 IC_TX_TL — I2C Transmit FIFO Threshold Register .. 188
3.4.14 IC_CLR_INTR — Clear Combined and Individual Interrupt Register 188
3.4.15 IC_CLR_RX_UNDER — Clear RX_UNDER Interrupt Register .. 189
3.4.16 IC_CLR_RX_OVER — Clear RX_OVER Interrupt Register ... 189
3.4.17 IC_CLR_TX_OVER — Clear TX_OVER Interrupt Register .. 190
3.4.18 IC_CLR_RD_REQ — Clear RD_REQ Interrupt Register .. 190
3.4.19 IC_CLR_TX_ABRT — Clear TX_ABRT Interrupt Register ... 191
3.4.20 IC_CLR_RX_DONE — Clear RX_DONE Interrupt Register ... 191
3.4.21 IC_CLR_ACTIVITY — Clear ACTIVITY Interrupt Register.. 192
3.4.22 IC_CLR_STOP_DET — Clear STOP_DET Interrupt Register .. 192
3.4.23 IC_CLR_START_DET — Clear START_DET Interrupt Register 193
3.4.24 IC_CLR_GEN_CALL — Clear GEN_CALL Interrupt Register .. 193
3.4.25 IC_ENABLE — I2C Enable Register ... 194
3.4.26 IC_STATUS — I2C Status Register .. 195
3.4.27 IC_TXFLR — I2C Transmit FIFO Level Register .. 197
3.4.28 IC_RXFLR — I2C Receive FIFO Level Register ... 198
3.4.29 IC_SDA_HOLD — I2C SDA Hold Time Length Register .. 199
3.4.30 IC_TX_ABRT_SOURCE — I2C Transmit Abort Source Register 200
3.4.31 IC_SLV_DATA_NACK_ONLY — Generate Slave Data NACK Register 202
3.4.32 IC_SDA_SETUP — I2C SDA Setup Register ... 203
3.4.33 IC_ACK_GENERAL_CALL — I2C ACK General Call Register .. 204
3.4.34 IC_ENABLE_STATUS — I2C Enable Status Register .. 205
3.4.35 IC_FS_SPKLEN — I2C Sm, Fm Spike Suppression Limit .. 207
3.4.36 IC_CLR_RESTART_DET — Clear RESTART_DET Interrupt Register 208
3.4.37 IC_COMP_PARAM_1 — Component Parameter Register 1 .. 209

3.5 Operation Modes .. 210
3.5.1 Slave Mode Operation ... 210

3.5.1.1 Initial Configuration ... 210

3.5.1.2 Slave Transmitter Operation for a Single Byte ... 211
3.5.1.3 Slave Receiver Operation for a Single Byte ... 212
3.5.1.4 Slave Transfer Operation for Bulk Transfer .. 212

3.5.2 Master Mode Operation ... 214
3.5.2.1 Initial Configuration ... 214
3.5.2.2 Dynamic IC_TAR or IC_10BITADDR_MASTER Update .. 214
3.5.2.3 Master Transmit and Master Receive ... 215

3.5.3 Disabling the I2C controller .. 216
3.5.3.1 Procedure ... 216

3.5.4 Aborting the I2C Transfer ... 217
3.5.4.1 Procedure ... 217

3.6 Programming the I2C Controller ... 218
3.6.1 Spike Suppression ... 218
3.6.2 I2C_SCLK Frequency Configuration.. 219

3.6.2.1 Minimum High and Low Counts .. 219
3.6.3 SDA Hold Time .. 221

3.6.3.1 SDA Hold Timings in Receiver ... 221
3.6.3.2 SDA Hold Timings in Transmitter ... 222

Section 4 Basic GPIO ... 223
4.1 Overview ... 223
4.2 Signal Interfaces ... 225
4.3 Register Map .. 226

4.3.1 Register Map BGPIO1 ... 226
4.3.2 Register Map BGPIO2 ... 226
4.3.3 Register Map BGPIO3 ... 227

4.4 Register Description ... 228
4.4.1 rGPIO_swporta_dr — GPIO Port A Data Output Register .. 228
4.4.2 rGPIO_swporta_ddr — GPIO Port A Data Direction Register ... 228
4.4.3 rGPIO_swportb_dr — GPIO Port B Data Output Register .. 229
4.4.4 rGPIO_swportb_ddr — GPIO Port B Data Direction Register ... 229
4.4.5 rGPIO_inten — GPIO Port A Interrupt Enable Register .. 230
4.4.6 rGPIO_intmask — GPIO Port A Interrupt Mask Register .. 230
4.4.7 rGPIO_inttype_level — GPIO Port A Interrupt Level Register .. 231
4.4.8 rGPIO_int_polarity — GPIO Port A Interrupt Polarity Register .. 231
4.4.9 rGPIO_intstatus — GPIO Port A Interrupt Status .. 232
4.4.10 rGPIO_raw_intstatus — GPIO Port A Raw Interrupt Status (Premasking) 232
4.4.11 rGPIO_porta_eoi — GPIO Port A Clear Interrupt Register ... 233
4.4.12 rGPIO_ext_porta — GPIO Port A Data Input Register .. 233
4.4.13 rGPIO_ext_portb — GPIO Port B Data Input Register .. 234
4.4.14 rGPIO_ls_sync — GPIO Port A Level-Sensitive Synchronization Enable Register 234

4.5 Operation .. 235
4.5.1 Main Functions Blocks Description .. 235

4.5.1.1 Data & Control Flow .. 235
4.5.1.2 Interruption (Only Port A) .. 235

4.5.1.3 Programmable Interrupts Routed on Cortex-A7 and M3 .. 236
4.5.1.4 Trigger Synchronous Operation .. 237

4.6 Usage Notes ... 239
4.6.1 Programming Consideration .. 239

Section 5 Timer Block ... 240
5.1 Overview ... 240
5.2 Signal Interfaces ... 241
5.3 Register Map .. 242

5.3.1 TIMER1 Register Map ... 242
5.3.2 TIMER2 Register Map ... 242

5.4 Register Description ... 243
5.4.1 rTimerLoadCount_[n] — Preset Value of Sub-timer[n] (n = 0..5) 243
5.4.2 rTimerLoadCount_[n] — Preset Value of Sub-timer[n] (n = 6..7) 244
5.4.3 rTimerCurrentCount_[n] — Current Value of Sub-timer[n] (n = 0..5) 245
5.4.4 rTimerCurrentCount_[n] — Current Value of Sub-timer[n] (n = 6..7) 245
5.4.5 rTimerControl_[n] — Control Mode of Sub-timer[n] (n = 0..7) ... 246
5.4.6 rTimerClearInt_[n] — Clears the Interruption of Sub-timer[n] (n = 0..7) 247
5.4.7 rTimerStatusInt0_[n] — Interruption Status before Masking of Sub-timer[n] (n = 0..7) 248
5.4.8 rTimerStatusInt1_[n] — Interruption Status after Masking of Sub-timer[n] (n = 0..7) 249
5.4.9 rTimerAllClearInt — Clear All Interrupt .. 250
5.4.10 rTimerAllStatusInt0 — All Interrupts Status before Masking ... 251
5.4.11 rTimerAllStatusInt1 — All Interrupts Status after Masking ... 252
5.4.12 rTimer_DMA_Pending — TIMER DMA Requests Status .. 253
5.4.13 rTimer_DMA_PendingOvf — TIMER DMA Overflow Status ... 254
5.4.14 rTimer_DMA_PendingClrOvf — TIMER DMA Overflow Clear .. 255

5.5 Operation .. 256
5.5.1 Prescaler Counter .. 256
5.5.2 Counter 16 or 32 Bits ... 256
5.5.3 Interruption ... 259
5.5.4 DMA Control ... 260

5.6 Usage Notes ... 261

Section 6 CAN .. 262
6.1 Overview ... 262
6.2 Signal Interfaces ... 264
6.3 Register Map .. 265

6.3.1 Register Map (CAN1) ... 265
6.3.2 Register Map (CAN2) ... 266

6.4 Register Description ... 267
6.4.1 rCan_MOD — Configuration Mode Register ... 267
6.4.2 rCan_CMR — Command Register .. 269

6.4.3 rCan_SR — Controller Status Register ... 271
6.4.4 rCan_IR — Interrupt Register .. 273
6.4.5 rCan_IER — Interrupt Event Register.. 275
6.4.6 rCan_BTR0 — Bus Timing Register 0 ... 276
6.4.7 rCan_BTR1 — Bus Timing Register 1 ... 277
6.4.8 rCan_OCR — Output Control Register .. 278
6.4.9 rCan_ALC — Arbitration Lost Capture Register .. 279
6.4.10 rCan_ECC — Error Code Capture Register .. 280
6.4.11 rCan_EWLR — Error Warning Limit Register .. 282
6.4.12 rCan_RXERR — Receive Error Counter Register ... 283
6.4.13 rCan_TXERR — Transmit Error Counter Register .. 284
6.4.14 rCan_WrTransmitBuffer — Write Transmit Buffer Register ... 286
6.4.15 rCan_RdReceiveBuffer — Read Receive Buffer Register .. 287
6.4.16 rCan_ACR[n] — Acceptance Code Filter [n] Register (n = 0..3) 288
6.4.17 rCan_AMR[n] — Acceptance Mask Filter [n] Register (n = 0..3) 289
6.4.18 rCan_RMC — Receive Message Counter Register .. 290
6.4.19 rCan_RBSA — Receive Buffer Start Address Register ... 291
6.4.20 rCan_ReceiveFifo — Receive FIFO Register .. 292
6.4.21 rCan_RdTransmitBuffer — Read Transmit Buffer Register .. 293
6.4.22 rCan_SyncTransmitBuffer — Sync Frame Transmit Buffer Register 294
6.4.23 rCan_SyncPeriod — Time Window Sync Frame Transmission Register 295
6.4.24 rCan_SyncStatusInt — Sync Frame Interrupt Status Register .. 297
6.4.25 rCan_SyncMaskInt — Sync Frame Mask Interrupt Register ... 299
6.4.26 rCan_SyncClearInt — Sync Frame Clear Interrupt Register ... 300
6.4.27 rCan_SyncStatus — Sync Frame Status Configuration Register 301
6.4.28 rCan_SyncClearSetRunStop — Sync Frame Generation Register 303
6.4.29 rCan_SyncPassiveError — Sync Passive Error Detection Register 304

6.5 Operation .. 305
6.5.1 Main Features Description ... 305
6.5.2 Operation Mode ... 305
6.5.3 Transmission .. 306
6.5.4 Reception ... 307
6.5.5 Self Reception .. 308
6.5.6 Sleep Mode .. 309
6.5.7 Acceptance Filtering .. 309
6.5.8 Interrupts Generation ... 312

6.5.8.1 Receive Interrupts ... 312
6.5.8.2 Transmit Interrupts .. 313
6.5.8.3 Error Warning Interrupts ... 313
6.5.8.4 Data Overrun Interrupts .. 313
6.5.8.5 Wakeup Interrupts ... 314
6.5.8.6 Error Passive Interrupts .. 314
6.5.8.7 Arbitration Loss Interrupts ... 314
6.5.8.8 Bus Error Interrupts ... 315

6.5.8.9 Transmit “Sync frame” Interrupts .. 315
6.5.8.10 Transmit Overrun “Sync frame” Interrupts .. 316

6.5.9 Bus Arbitration .. 317
6.5.10 Error Handling .. 318
6.5.11 Transmit Buffer Layout ... 320

6.5.11.1 Descriptor Field of the Transmit Buffer ... 321
6.5.11.2 Frame Format (FF) ... 321
6.5.11.3 Remote Request (RTR) .. 321
6.5.11.4 Data Length Code (DLC) .. 321
6.5.11.5 Identifier (ID) ... 322
6.5.11.6 Data Field .. 322

6.5.12 Receive Buffer Layout .. 323
6.5.13 Bit Period and Bus Timing Parameters .. 324
6.5.14 Reset Mode .. 327
6.5.15 Synchronization Frame .. 328

6.5.15.1 CANopen Synchronous Frame Configuration .. 328
6.5.15.2 CANopen Emission of “Sync Frame” .. 333

6.5.16 Difference between CAN Controllers and Reference Philips SJA1000 Devices 336
6.6 Special Notice ... 337

Section 7 ADC Controller and 12bit A/D Converters ... 338
7.1 Overview ... 338

7.1.1 Analog Buffer ... 340
7.2 Signal Interfaces ... 341
7.3 Register Map .. 342

7.3.1 Register Map ADC1 ... 342
7.3.2 Register Map ADC2 ... 343

7.4 Register Description ... 344
7.4.1 Register Description ADC1 .. 344

7.4.1.1 rADC_INTSTATUS0 — Interrupt Status Before Masking 344
7.4.1.2 rADC_INTSTATUS1 — Interrupt Status After Masking .. 345
7.4.1.3 rADC_INTCLR — Clear Interrupt ... 346
7.4.1.4 rADC_INTMASK — Mask Interrupt .. 347
7.4.1.5 rADC_INTOVFSTATUS0 — Interrupt Overflow Before Masking 348
7.4.1.6 rADC_INTOVFSTATUS1 — Interrupt Overflow After Masking 349
7.4.1.7 rADC_INTCLROVF — Clear Interrupt Overflow ... 350
7.4.1.8 rADC_INTOVFMASK — Mask Interrupt Overflow .. 351
7.4.1.9 rADC_PENDING — Start of Operation Pending .. 352
7.4.1.10 rADC_PENDINGOVF — Start of Operation Pending Overflow 354
7.4.1.11 rADC_PENDINGCLROVF — Clear Start of Operation Overflow 355
7.4.1.12 rADC_CONTROL — ADC Control .. 356
7.4.1.13 rADC_FORCE — ADC Request ... 357
7.4.1.14 rADC_SETFORCE — Set ADC Request ... 358
7.4.1.15 rADC_CLRFORCE — Clear ADC Request .. 359
7.4.1.16 rADC_PRIORITY — ADC Priority Mode... 360
7.4.1.17 rADC_CONFIG — ADC Configuration ... 362
7.4.1.18 rADC_ACQS — ADC Control Sample and Hold .. 364
7.4.1.19 rADC_MASKLOCK[n] — Mask Data Locked [n] (n = 0..3) 365

7.4.1.20 rADC_VC[n] — ADC Control Register for Virtual Channel [n] (n = 0..15) 366
7.4.1.21 rADC1_DATA[n] — ADC1 Conversion Data of Virtual Channel [n] (n = 0..15) 371
7.4.1.22 rADC1_DATALOCK[n] — ADC1 DataLock[n] Register (n = 0..15) 372

7.4.2 Register Description ADC2 .. 373
7.4.2.1 rADC2_DATA[n] — ADC2 Conversion Data of Virtual Channel [n] (n = 0..15) 373
7.4.2.2 rADC2_DATALOCK[n] — ADC2 DataLock[n] Register (n = 0..15) 374

7.5 Operation .. 375
7.5.1 Virtual Channel ADC_VC Principle Operation ... 376
7.5.2 Electric ADC Model and Acquisition Sample ... 381
7.5.3 Trigger Selection and Event Management .. 383
7.5.4 Physical Channel Selection ... 384
7.5.5 ADC Operation Priority .. 385
7.5.6 Simultaneous Sample and Hold ... 388
7.5.7 End of Command (EOC) and Interrupt Operation ... 390
7.5.8 Data Copy in Data Lock Register ... 391
7.5.9 Timing .. 393

7.5.9.1 Basic A/D Conversion on 3 Channels ... 393
7.5.9.2 Sample & Hold following by A/D Conversion on One Channel 394
7.5.9.3 Sample & Hold following by A/D Conversion on 3 Channels 396
7.5.9.4 Power Down .. 398
7.5.9.5 A/D Conversion Rate .. 399

7.5.10 DMA control ... 400
7.5.10.1 Overview on DMA Operation .. 401

7.6 Usage Notes ... 402
7.6.1 Restriction .. 402

Section 8 LCD Controller .. 403
8.1 Overview ... 403
8.2 Signal Interfaces ... 405
8.3 Register Map .. 406

8.3.1 Coding Palette (Palette Registers) Map .. 406
8.4 Register Description ... 407

8.4.1 rLcd_CR1 — Control Register 1 .. 407
8.4.2 rLcd_HTR — Horizontal Timing Register .. 410
8.4.3 rLcd_VTR1 — Vertical1 Timing Register ... 411
8.4.4 rLcd_VTR2 — Vertical2 Timing Register ... 412
8.4.5 rLcd_PCTR — Pixel Clock Timing Register .. 413
8.4.6 rLcd_ISR — Interrupt Status Register Before Masking ... 414
8.4.7 rLcd_IMR — Interrupt Mask Register .. 416
8.4.8 rLcd_IVR — Interrupt Status Register After Masking .. 417
8.4.9 rLcd_ISCR — Interrupt Scan Compare Register ... 419
8.4.10 rLcd_DBAR — DMA Start Base Address of Frame Buffer Memory 420
8.4.11 rLcd_DCAR — DMA Current Base Address on Going .. 421
8.4.12 rLcd_DEAR — DMA End Address ... 422

8.4.13 rLcd_PWMFR_0 — PWM0 Frequency Register ... 423
8.4.14 rLcd_PWMDCR_0 — PWM0 Duty Cycle Register .. 424
8.4.15 rLcd_HVTER — Horizontal and Vertical Timing Extension Register 425
8.4.16 rLcd_HPPLOR — Horizontal Pixels-Per-Line Override Control .. 426
8.4.17 rLcd_PWMFR_1 — PWM1 Frequency Register ... 427
8.4.18 rLcd_PWMDCR_1 — PWM1 Duty Cycle Register .. 428
8.4.19 rLcd_GPIOR — Blink Control .. 429
8.4.20 rLcd_CIR — Core Identification Register ... 430
8.4.21 Coding Palette (Palette registers) Description ... 431

8.4.21.1 rLcd_PAL_RGB_555 — Coding Palette when RGB 5:5:5 Mode 431
8.4.21.2 rLcd_PAL_RGB_565 — Coding Palette when RGB 5:6:5 Mode 432
8.4.21.3 rLcd_PAL_BGR_555 — Coding Palette when BGR 5:5:5 Mode 433
8.4.21.4 rLcd_PAL_BGR_565 — Coding Palette when BGR 5:6:5 Mode 434

8.5 Operation .. 435
8.5.1 Main Features Description ... 435
8.5.2 Bandwidth Limitation .. 436
8.5.3 Timing and Control ... 437
8.5.4 DMA Controller and Memory Interface .. 439
8.5.5 Frame Buffer Organization ... 439
8.5.6 Input FIFO .. 439
8.5.7 Pixel Unpack .. 439
8.5.8 Palette Lookup Table ... 442
8.5.9 Output FIFO and Formatter ... 443
8.5.10 Initializing Configuration Registers ... 446
8.5.11 Interrupts .. 446
8.5.12 Power Sequencing ... 447
8.5.13 Frame Buffer 24 bpp Packed Word ... 448
8.5.14 Pulse Width Modulation ... 449
8.5.15 Blink Function ... 449
8.5.16 Limitation .. 451

Section 9 Semaphore ... 452
9.1 Overview ... 452
9.2 Signal Interfaces ... 452
9.3 Register Map .. 453
9.4 Register Description ... 454

9.4.1 rSemaphoreLockCPU[m]_[n] — Semaphore Lock CPU[m] Register [n] 454
9.4.2 rSemaphoreStatusCPU[m]_[n] — Semaphore Status CPU[m] Register [n] 455

9.5 Operation .. 456
9.5.1 Semaphore [n] (n = 0..63) .. 456
9.5.2 CPU Identify and Address Decoding ... 457

9.6 Usage Notes ... 458

Section 10 Medium Speed External Bus Interface (MSEBI) .. 459
10.1 Overview ... 459

10.1.1 Signal Interfaces .. 462
10.1.2 MSEBI Master Address Mapping of CS[n] from CPU .. 462
10.1.3 Multiplexed Signal Interface ... 463

10.1.3.1 Mode32 Multiplexer ... 465
10.1.3.2 Mode16 Multiplexer ... 467
10.1.3.3 Mode8 Multiplexer ... 469

10.2 Register Map .. 471
10.2.1 Register Map MSEBI Master from CPU... 471
10.2.2 Register Map MSEBI Master from DMA .. 471
10.2.3 Register Map MSEBI Slave from CPU ... 471
10.2.4 Register Map MSEBI Slave from MSEBI ... 472

10.3 Register Description ... 473
10.3.1 Register Description MSEBI Master from CPU ... 473

10.3.1.1 rMSEBIM_CYCLESIZE_CS[n]_N — Chip Select CycleSize Register (n = 0..3) ... 473
10.3.1.2 rMSEBIM_SETUPHOLD_CS[n]_N — Chip Select SetupHold Register
 (n = 0..3) .. 475
10.3.1.3 rMSEBIM_TDMACR_CS[n]_N — DMA Transmit Control and Status Register
 (n = 0..1) .. 477
10.3.1.4 rMSEBIM_RDMACR_CS[n]_N — DMA Receive Control and Status Register
 (n = 0..1) .. 479
10.3.1.5 rMSEBIM_ADDRDMA_READ_CS[n]_N — DMA Read Address Register
 (n = 0..1) .. 481
10.3.1.6 rMSEBIM_ADDRDMA_CURRENTREAD_CS[n]_N — DMA Current Read
 Address Register (n = 0..1) ... 482
10.3.1.7 rMSEBIM_ADDRDMA_WRITE_CS[n]_N — DMA Write Address Register
 (n = 0..1) .. 483
10.3.1.8 rMSEBIM_ADDRDMA_CURRENTWRITE_CS[n]_N — DMA Current Write
 Address Register (n = 0..1) ... 484
10.3.1.9 rMSEBIM_DMATDLR_CS[n]_N — DMA Transmit Data Level Register
 (n = 0..1) .. 485
10.3.1.10 rMSEBIM_DMARDLR_CS[n]_N — DMA Receive Data Level Register
 (n = 0..1) .. 487
10.3.1.11 rMSEBIM_CONFIG_CS[n]_N — Chip Select Config Register (n = 0..3) 489
10.3.1.12 rMSEBIM_CONFIG — Common Config Register .. 493
10.3.1.13 rMSEBIM_CPU_FIFOREAD_FLUSH — Flush Receive FIFO Register 495

10.3.2 Register Description MSEBI Master from DMA ... 496
10.3.2.1 rMSEBIM_DMA_FIFOREAD_CS[n]_N — DMA Receive FIFO (64 KB)
 (n = 0..1) .. 496
10.3.2.2 rMSEBIM_DMA_FIFOWRITE_CS[n]_N — DMA Transmit FIFO (64 KB)
 (n = 0..1) .. 497

10.3.3 Register Description MSEBI Slave from CPU ... 498
10.3.3.1 rMSEBIS_CYCLESIZE_CS[n]_N — Chip Select CycleSize Register (n = 0..3) 498
10.3.3.2 rMSEBIS_SETUPHOLD_CS[n]_N — Chip Select SetupHold Register (n = 0..3) . 500
10.3.3.3 rMSEBIS_MMU_ADDR_CS[n]_N — MMU Base Address Register (n = 0..3) 501
10.3.3.4 rMSEBIS_MMU_ADDR_MASK_CS[n]_N — MMU Address Mask Register
 (n = 0..3) .. 502

10.3.3.5 rMSEBIS_DMATX_REQ_CS[n]_N — DMA Transmit Request Register
 (n = 0..1) .. 503
10.3.3.6 rMSEBIS_DMARX_REQ_CS[n]_N — DMA Receive Request Register
 (n = 0..1) .. 504
10.3.3.7 rMSEBIS_DMATDLR_CS[n]_N — DMA Transmit Data Level Register
 (n = 0..1) .. 505
10.3.3.8 rMSEBIS_DMARDLR_CS[n]_N — DMA Receive Data Level Register (n = 0..1) . 507
10.3.3.9 rMSEBIS_CONFIG_CS[n]_N — Chip Select Config Register (n = 0..3) 508
10.3.3.10 rMSEBIS_CONFIG — Common Config Register ... 512
10.3.3.11 rMSEBIS_STATUS_INT0 — Interrupt Status Register .. 515
10.3.3.12 rMSEBIS_STATUS_INT1 — Masked Interrupt Status Register 516
10.3.3.13 rMSEBIS_MASK_INT — Interrupt Mask Register .. 517
10.3.3.14 rMSEBIS_CLR_INT — Interrupt Clear Register ... 518
10.3.3.15 rMSEBIS_EOB_ADDR — End Of Block Address Register 519

10.3.4 Register Description MSEBI Slave from MSEBI .. 520
10.3.4.1 rMSEBIS_INT — Slave Interrupt Register .. 520
10.3.4.2 rMSEBIS_STATUS — Slave Status Register .. 522
10.3.4.3 rMSEBIS_ID_CS[n]_N — Slave ID Register (n = 0..3) .. 524

10.4 Operation .. 525
10.4.1 AHB Interface ... 525

10.4.1.1 AHB Slave Interface.. 525
10.4.1.2 AHB Master Interface (MSEBI Slave only) ... 525

10.4.2 Use Case Device Connection .. 526
10.4.2.1 One Device, Mode32, Synchronous ... 527
10.4.2.2 One Device, Mode16, Synchronous ... 528
10.4.2.3 One Device, Mode8, Synchronous ... 529
10.4.2.4 Three Devices, Mode8/16/32, Synchronous .. 530
10.4.2.5 Three Devices, Mode8/16/32, Asynchronous ... 531
10.4.2.6 Three Devices, Mode8/16/32, Mixed Synchronous and Asynchronous 532
10.4.2.7 One Device, Mode8, Asynchronous, ALE in Parallel Mode 533

10.4.3 Main Principle of Phase ADDRESS CONTROL and DATA .. 534
10.4.3.1 Address Latch Phase ALE (ADDRESS) ... 534
10.4.3.2 Control Latch Phase CLE (CONTROL) .. 540
10.4.3.3 Data Phase SETUP + VALID + HOLD (DATA) .. 540

10.4.4 MSEBI Timing .. 543
10.4.4.1 Asynchronous Mode, One ALE .. 543
10.4.4.2 Asynchronous Mode, No ALE MSEBI Master Only .. 548
10.4.4.3 Asynchronous Mode, Two ALE .. 550
10.4.4.4 Synchronous Mode, No Burst, One ALE .. 555
10.4.4.5 Synchronous Mode, No Burst, No ALE .. 562
10.4.4.6 Synchronous Mode, No Burst, Multiple ALE .. 564
10.4.4.7 Synchronous Mode, Burst, One ALE .. 568
10.4.4.8 Synchronous Mode, Burst, No ALE .. 573

10.4.5 MSEBI Interrupt .. 575
10.4.5.1 MSEBI Interrupt: Overview ... 575
10.4.5.2 MSEBI Interrupt: End of Block Detection by the Master ... 576
10.4.5.3 MSEBI Interrupt: End of Block Detection by the Slave ... 580

10.4.6 MSEBI Master Mode .. 583
10.4.6.1 Master Mode Overview ... 583
10.4.6.2 MSEBI Master: Burst Mode .. 584
10.4.6.3 MSEBI Master: DMA Control .. 595

10.4.7 MSEBI Slave Mode .. 605
10.4.7.1 Slave Mode Overview ... 605
10.4.7.2 MSEBI Slave: Burst Mode .. 607
10.4.7.3 MSEBI Slave: Detection of Request Initiator .. 619
10.4.7.4 MSEBI Slave: Register Access by Master .. 619
10.4.7.5 MSEBI Slave: Chip select Configuration Status ... 620
10.4.7.6 MSEBI Slave: Addressing Mode ... 621
10.4.7.7 MSEBI Slave: Write Protect .. 622
10.4.7.8 MSEBI Slave: Configuration Registers & Synchronization 622

10.5 Usage Notes ... 623

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 20 of 637
Dec 29, 2021

Section 1 UART

Portions Copyright © 2014 Synopsys. Used with permission. All rights reserved. Synopsys & DesignWare are
registered trademarks of Synopsys.

1.1 Overview
The PG0 (Peripheral Group 0) Subsystem and PG1 (Peripheral Group 1) Subsystem of RZ/N1 provide a total of 8
blocks of UART.

Each UART has the same features except DMA capability:

● UART f (Full) in PG1 : UART4, UART5, UART6, UART7, UART8

● UART r (Reduce) in PG0 : UART1, UART2, UART3

Each UART is configured with following features:

● Functionality based on the 16550 UART, as follows:

− Programmable character properties, such as number of data bits per character (5 to 8), optional parity bit (with odd
or even select) and number of stop bits (1, 1.5 or 2)

− Generation and detection of line breaks

− Prioritized interrupt identification

● Separate 16×8 (16 × 8-bit width) transmit and 16×8 receive FIFOs

● RS485 & MODBUSⓇ enhanced features

● Programmable FIFO enable/disable

● There are 2 possible sources for the UART clock (UART_SCLK)
 1. Programmable frequency, 7.81 MHz to 83.33 MHz from MAIN PLL via a programmable integer divider
 2. Fixed 48 MHz from USBPLL

The programmable integer divider which belongs to PG0 is shared by UART1..3, and the one which belongs to PG1
is shared by UART4..8.

● Programmable baud rate generator, up to UART_SCLK/16

● False start bit detection

● Programmable hardware flow control

● Shadow registers to reduce Software overhead and also include a Software programmable reset

● Auto Flow Control mode as specified in the 16750 standard

● Transmit Holding Register Empty (THRE) interrupt mode

● Busy functionality

● Loopback mode that enables greater testing of Modem Control and Auto Flow Control features

● Additional FIFO status registers

● Modem and status lines are independently controlled

● Two Receiver Time-Out provide support in handling the interframe time in MODBUS link

● Two Transceiver Time-Out provide support in handling the interframe time in MODBUS link

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 21 of 637
Dec 29, 2021

● Half-Duplex Management on “Two-Wire” interface by signal “DE (Data Enable)”

● Supports TXD, RXD, CTS_N, RTS_N, DTR_N, DSR_N, DCD_N, RI_N (multiplexed on GPIO pins)

UART Full (UART4..8) has the additional features:

● DMA Coupling

− Peripheral flow controller mode

− 2 DMA channels available (one for transmit, one for receive)

Network
On

Chip

UARTr (Reduce)

Registers

32
b

AP
B

IO
 M

ul
tip

le
xe

r L
ev

el
1

3.
3V

 C
M

O
S

Bu
ff

erRX FIFO
Control Shift Logic

Control

Programmable
Baud clock

UART_DTR_N

Control

RX FIFO
16w x 8b

TX FIFO
16w x 8b

UART_DCD_N

IO
 M

ul
tip

le
xe

r L
ev

el
2

UART_RXD
UART_TXD

UART_RTS_N
UART_CTS_N
UART_DSR_N

UART_RI_N
TX FIFO
Control

Receiver
Timeout

Figure 1.1 UART Reduce Synoptic (UART1..3)

Network
On

Chip

UARTf (full)

Registers

32
b

AP
B

IO
 M

ul
tip

le
xe

r L
ev

el
1

3.
3V

 C
M

O
S

Bu
ff

erRX FIFO
Control Shift Logic

Control

Programmable
Baud clock

UART_DTR_N

Control

RX DMA
Control

TX DMA
Control

RX FIFO
16w x 8b

TX FIFO
16w x 8b

UART_DCD_N

IO
 M

ul
tip

le
xe

r L
ev

el
2

UART_RXD
UART_TXD

UART_RTS_N
UART_CTS_N
UART_DSR_N

UART_RI_N
TX FIFO
Control

Receiver
Timeout

DMAC

Figure 1.2 UART Full Synoptic (UART4..8)

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 22 of 637
Dec 29, 2021

1.2 Signal Interfaces

Signal Name
Input
Output Description

Clock

UART[m]_PCLK Input Internal bus clock (APB)

UART[m]_SCLK Input Serial reference clock

Interrupt

UART[m]_Int Output Level sensitive interrupt output, Active High

External Signal

UART[m]_RXD Input Receive data

UART[m]_TXD Output Transmit data

UART[m]_CTS_N Input Clear to Send Modem Status

UART[m]_DSR_N Input Data Set Ready Modem Status

UART[m]_DCD_N Input Data Carrier Detect Modem Status

UART[m]_RI_N Input Ring Indicator Modem Status

UART[m]_DTR_N Output Modem Control Data Terminal Ready

UART[m]_RTS_N Output Modem Control Request to Send in Full-Duplex Mode
Transmit Data Enable in Half-Duplex Mode

Note: m = 1..8.
Index removed style is mainly used in this chapter.
Ex) UART_PCLK

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 23 of 637
Dec 29, 2021

1.3 Register Map

1.3.1 Register Map UART 1

Table 1.1 Register Map UART 1

Address Register Symbol Register Name

4006 0000h (bUart_DLAB = 0) rUart_RBR_THR Receive Buffer/Transmit Holding Register

 (bUart_DLAB = 1) rUart_DLL Divisor Latch (Low)

4006 0004h (bUart_DLAB = 0) rUart_IER Interrupt Enable Register

 (bUart_DLAB = 1) rUart_DLH Divisor Latch (High)

4006 0008h (when written) rUart_FCR FIFO Control Register

 (when read) rUart_IIR Interrupt Identification Register

4006 000Ch rUart_LCR Line Control Register

4006 0010h rUart_MCR Modem Control Register

4006 0014h rUart_LSR Line Status Register

4006 0018h rUart_MSR Modem Status Register

4006 001Ch rUart_SCR Scratchpad Register

4006 0030h rUart_SRBR_STHR Shadow Receive Buffer/Transmit Holding Register*1

4006 0070h rUart_FAR FIFO Access Register

4006 0074h rUart_TFR Transmit FIFO Read

4006 0078h rUart_RFW Receive FIFO Write

4006 007Ch rUart_USR UART Status Register

4006 0080h rUart_TFL Transmit FIFO Level

4006 0084h rUart_RFL Receive FIFO Level

4006 0088h rUart_SRR Software Reset Register

4006 008Ch rUart_SRTS Shadow Request to Send

4006 0090h rUart_SBCR Shadow Break Control Register

4006 0098h rUart_SFE Shadow FIFO Enable

4006 009Ch rUart_SRT Shadow RCVR Trigger

4006 00A0h rUart_STET Shadow TX Empty Trigger

4006 00A4h rUart_HTX Halt TX

4006 0100h rUart_TO Time-Out Counter Configuration Register

4006 0104h rUart_CTRLTO Time-Out Control Register

4006 0108h rUart_STATUSTO Time-Out Counter Status Register

Note 1. This address is assigned from 4006 0030h to 4006 006Ch

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 24 of 637
Dec 29, 2021

1.3.2 Register Map UART 2

Table 1.2 Register Map UART 2

Address Register Symbol Register Name

4006 1000h (bUart_DLAB = 0) rUart_RBR_THR Receive Buffer/Transmit Holding Register

 (bUart_DLAB = 1) rUart_DLL Divisor Latch (Low)

4006 1004h (bUart_DLAB = 0) rUart_IER Interrupt Enable Register

 (bUart_DLAB = 1) rUart_DLH Divisor Latch (High)

4006 1008h (when written) rUart_FCR FIFO Control Register

 (when read) rUart_IIR Interrupt Identification Register

4006 100Ch rUart_LCR Line Control Register

4006 1010h rUart_MCR Modem Control Register

4006 1014h rUart_LSR Line Status Register

4006 1018h rUart_MSR Modem Status Register

4006 101Ch rUart_SCR Scratchpad Register

4006 1030h rUart_SRBR_STHR Shadow Receive Buffer/Transmit Holding Register*1

4006 1070h rUart_FAR FIFO Access Register

4006 1074h rUart_TFR Transmit FIFO Read

4006 1078h rUart_RFW Receive FIFO Write

4006 107Ch rUart_USR UART Status Register

4006 1080h rUart_TFL Transmit FIFO Level

4006 1084h rUart_RFL Receive FIFO Level

4006 1088h rUart_SRR Software Reset Register

4006 108Ch rUart_SRTS Shadow Request to Send

4006 1090h rUart_SBCR Shadow Break Control Register

4006 1098h rUart_SFE Shadow FIFO Enable

4006 109Ch rUart_SRT Shadow RCVR Trigger

4006 10A0h rUart_STET Shadow TX Empty Trigger

4006 10A4h rUart_HTX Halt TX

4006 1100h rUart_TO Time-Out Counter Configuration Register

4006 1104h rUart_CTRLTO Time-Out Control Register

4006 1108h rUart_STATUSTO Time-Out Counter Status Register

Note 1. This address is assigned from 4006 1030h to 4006 106Ch

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 25 of 637
Dec 29, 2021

1.3.3 Register Map UART 3

Table 1.3 Register Map UART 3

Address Register Symbol Register Name

4006 2000h (bUart_DLAB = 0) rUart_RBR_THR Receive Buffer/Transmit Holding Register

 (bUart_DLAB = 1) rUart_DLL Divisor Latch (Low)

4006 2004h (bUart_DLAB = 0) rUart_IER Interrupt Enable Register

 (bUart_DLAB = 1) rUart_DLH Divisor Latch (High)

4006 2008h (when written) rUart_FCR FIFO Control Register

 (when read) rUart_IIR Interrupt Identification Register

4006 200Ch rUart_LCR Line Control Register

4006 2010h rUart_MCR Modem Control Register

4006 2014h rUart_LSR Line Status Register

4006 2018h rUart_MSR Modem Status Register

4006 201Ch rUart_SCR Scratchpad Register

4006 2030h rUart_SRBR_STHR Shadow Receive Buffer/Transmit Holding Register*1

4006 2070h rUart_FAR FIFO Access Register

4006 2074h rUart_TFR Transmit FIFO Read

4006 2078h rUart_RFW Receive FIFO Write

4006 207Ch rUart_USR UART Status Register

4006 2080h rUart_TFL Transmit FIFO Level

4006 2084h rUart_RFL Receive FIFO Level

4006 2088h rUart_SRR Software Reset Register

4006 208Ch rUart_SRTS Shadow Request to Send

4006 2090h rUart_SBCR Shadow Break Control Register

4006 2098h rUart_SFE Shadow FIFO Enable

4006 209Ch rUart_SRT Shadow RCVR Trigger

4006 20A0h rUart_STET Shadow TX Empty Trigger

4006 20A4h rUart_HTX Halt TX

4006 2100h rUart_TO Time-Out Counter Configuration Register

4006 2104h rUart_CTRLTO Time-Out Control Register

4006 2108h rUart_STATUSTO Time-Out Counter Status Register

Note 1. This address is assigned from 4006 2030h to 4006 206Ch

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 26 of 637
Dec 29, 2021

1.3.4 Register Map UART 4

Table 1.4 Register Map UART 4

Address Register Symbol Register Name

5000 0000h (bUart_DLAB = 0) rUart_RBR_THR Receive Buffer/Transmit Holding Register

 (bUart_DLAB = 1) rUart_DLL Divisor Latch (Low)

5000 0004h (bUart_DLAB = 0) rUart_IER Interrupt Enable Register

 (bUart_DLAB = 1) rUart_DLH Divisor Latch (High)

5000 0008h (when written) rUart_FCR FIFO Control Register

 (when read) rUart_IIR Interrupt Identification Register

5000 000Ch rUart_LCR Line Control Register

5000 0010h rUart_MCR Modem Control Register

5000 0014h rUart_LSR Line Status Register

5000 0018h rUart_MSR Modem Status Register

5000 001Ch rUart_SCR Scratchpad Register

5000 0030h rUart_SRBR_STHR Shadow Receive Buffer/Transmit Holding Register*1

5000 0070h rUart_FAR FIFO Access Register

5000 0074h rUart_TFR Transmit FIFO Read

5000 0078h rUart_RFW Receive FIFO Write

5000 007Ch rUart_USR UART Status Register

5000 0080h rUart_TFL Transmit FIFO Level

5000 0084h rUart_RFL Receive FIFO Level

5000 0088h rUart_SRR Software Reset Register

5000 008Ch rUart_SRTS Shadow Request to Send

5000 0090h rUart_SBCR Shadow Break Control Register

5000 0098h rUart_SFE Shadow FIFO Enable

5000 009Ch rUart_SRT Shadow RCVR Trigger

5000 00A0h rUart_STET Shadow TX Empty Trigger

5000 00A4h rUart_HTX Halt TX

5000 00A8h rUart_DMASA DMA Software Acknowledge

5000 0100h rUart_TO Time-Out Counter Configuration Register

5000 0104h rUart_CTRLTO Time-Out Control Register

5000 0108h rUart_STATUSTO Time-Out Counter Status Register

5000 010Ch rUart_TDMACR DMA Control Register in Transmit Mode

5000 0110h rUart_RDMACR DMA Control Register in Receive Mode

Note 1. This address is assigned from 5000 0030h to 5000 006Ch

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 27 of 637
Dec 29, 2021

1.3.5 Register Map UART 5

Table 1.5 Register Map UART 5

Address Register Symbol Register Name

5000 1000h (bUart_DLAB = 0) rUart_RBR_THR Receive Buffer/Transmit Holding Register

 (bUart_DLAB = 1) rUart_DLL Divisor Latch (Low)

5000 1004h (bUart_DLAB = 0) rUart_IER Interrupt Enable Register

 (bUart_DLAB = 1) rUart_DLH Divisor Latch (High)

5000 1008h (when written) rUart_FCR FIFO Control Register

 (when read) rUart_IIR Interrupt Identification Register

5000 100Ch rUart_LCR Line Control Register

5000 1010h rUart_MCR Modem Control Register

5000 1014h rUart_LSR Line Status Register

5000 1018h rUart_MSR Modem Status Register

5000 101Ch rUart_SCR Scratchpad Register

5000 1030h rUart_SRBR_STHR Shadow Receive Buffer/Transmit Holding Register*1

5000 1070h rUart_FAR FIFO Access Register

5000 1074h rUart_TFR Transmit FIFO Read

5000 1078h rUart_RFW Receive FIFO Write

5000 107Ch rUart_USR UART Status Register

5000 1080h rUart_TFL Transmit FIFO Level

5000 1084h rUart_RFL Receive FIFO Level

5000 1088h rUart_SRR Software Reset Register

5000 108Ch rUart_SRTS Shadow Request to Send

5000 1090h rUart_SBCR Shadow Break Control Register

5000 1098h rUart_SFE Shadow FIFO Enable

5000 109Ch rUart_SRT Shadow RCVR Trigger

5000 10A0h rUart_STET Shadow TX Empty Trigger

5000 10A4h rUart_HTX Halt TX

5000 10A8h rUart_DMASA DMA Software Acknowledge

5000 1100h rUart_TO Time-Out Counter Configuration Register

5000 1104h rUart_CTRLTO Time-Out Control Register

5000 1108h rUart_STATUSTO Time-Out Counter Status Register

5000 110Ch rUart_TDMACR DMA Control Register in Transmit Mode

5000 1110h rUart_RDMACR DMA Control Register in Receive Mode

Note 1. This address is assigned from 5000 1030h to 5000 106Ch

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 28 of 637
Dec 29, 2021

1.3.6 Register Map UART 6

Table 1.6 Register Map UART 6

Address Register Symbol Register Name

5000 2000h (bUart_DLAB = 0) rUart_RBR_THR Receive Buffer/Transmit Holding Register

 (bUart_DLAB = 1) rUart_DLL Divisor Latch (Low)

5000 2004h (bUart_DLAB = 0) rUart_IER Interrupt Enable Register

 (bUart_DLAB = 1) rUart_DLH Divisor Latch (High)

5000 2008h (when written) rUart_FCR FIFO Control Register

 (when read) rUart_IIR Interrupt Identification Register

5000 200Ch rUart_LCR Line Control Register

5000 2010h rUart_MCR Modem Control Register

5000 2014h rUart_LSR Line Status Register

5000 2018h rUart_MSR Modem Status Register

5000 201Ch rUart_SCR Scratchpad Register

5000 2030h rUart_SRBR_STHR Shadow Receive Buffer/Transmit Holding Register*1

5000 2070h rUart_FAR FIFO Access Register

5000 2074h rUart_TFR Transmit FIFO Read

5000 2078h rUart_RFW Receive FIFO Write

5000 207Ch rUart_USR UART Status Register

5000 2080h rUart_TFL Transmit FIFO Level

5000 2084h rUart_RFL Receive FIFO Level

5000 2088h rUart_SRR Software Reset Register

5000 208Ch rUart_SRTS Shadow Request to Send

5000 2090h rUart_SBCR Shadow Break Control Register

5000 2098h rUart_SFE Shadow FIFO Enable

5000 209Ch rUart_SRT Shadow RCVR Trigger

5000 20A0h rUart_STET Shadow TX Empty Trigger

5000 20A4h rUart_HTX Halt TX

5000 20A8h rUart_DMASA DMA Software Acknowledge

5000 2100h rUart_TO Time-Out Counter Configuration Register

5000 2104h rUart_CTRLTO Time-Out Control Register

5000 2108h rUart_STATUSTO Time-Out Counter Status Register

5000 210Ch rUart_TDMACR DMA Control Register in Transmit Mode

5000 2110h rUart_RDMACR DMA Control Register in Receive Mode

Note 1. This address is assigned from 5000 2030h to 5000 206Ch

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 29 of 637
Dec 29, 2021

1.3.7 Register Map UART 7

Table 1.7 Register Map UART 7

Address Register Symbol Register Name

5000 3000h (bUart_DLAB = 0) rUart_RBR_THR Receive Buffer/Transmit Holding Register

 (bUart_DLAB = 1) rUart_DLL Divisor Latch (Low)

5000 3004h (bUart_DLAB = 0) rUart_IER Interrupt Enable Register

 (bUart_DLAB = 1) rUart_DLH Divisor Latch (High)

5000 3008h (when written) rUart_FCR FIFO Control Register

 (when read) rUart_IIR Interrupt Identification Register

5000 300Ch rUart_LCR Line Control Register

5000 3010h rUart_MCR Modem Control Register

5000 3014h rUart_LSR Line Status Register

5000 3018h rUart_MSR Modem Status Register

5000 301Ch rUart_SCR Scratchpad Register

5000 3030h rUart_SRBR_STHR Shadow Receive Buffer/Transmit Holding Register*1

5000 3070h rUart_FAR FIFO Access Register

5000 3074h rUart_TFR Transmit FIFO Read

5000 3078h rUart_RFW Receive FIFO Write

5000 307Ch rUart_USR UART Status Register

5000 3080h rUart_TFL Transmit FIFO Level

5000 3084h rUart_RFL Receive FIFO Level

5000 3088h rUart_SRR Software Reset Register

5000 308Ch rUart_SRTS Shadow Request to Send

5000 3090h rUart_SBCR Shadow Break Control Register

5000 3098h rUart_SFE Shadow FIFO Enable

5000 309Ch rUart_SRT Shadow RCVR Trigger

5000 30A0h rUart_STET Shadow TX Empty Trigger

5000 30A4h rUart_HTX Halt TX

5000 30A8h rUart_DMASA DMA Software Acknowledge

5000 3100h rUart_TO Time-Out Counter Configuration Register

5000 3104h rUart_CTRLTO Time-Out Control Register

5000 3108h rUart_STATUSTO Time-Out Counter Status Register

5000 310Ch rUart_TDMACR DMA Control Register in Transmit Mode

5000 3110h rUart_RDMACR DMA Control Register in Receive Mode

Note 1. This address is assigned from 5000 3030h to 5000 306Ch

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 30 of 637
Dec 29, 2021

1.3.8 Register Map UART 8

Table 1.8 Register Map UART 8

Address Register Symbol Register Name

5000 4000h (bUart_DLAB = 0) rUart_RBR_THR Receive Buffer/Transmit Holding Register

 (bUart_DLAB = 1) rUart_DLL Divisor Latch (Low)

5000 4004h (bUart_DLAB = 0) rUart_IER Interrupt Enable Register

 (bUart_DLAB = 1) rUart_DLH Divisor Latch (High)

5000 4008h (when written) rUart_FCR FIFO Control Register

 (when read) rUart_IIR Interrupt Identification Register

5000 400Ch rUart_LCR Line Control Register

5000 4010h rUart_MCR Modem Control Register

5000 4014h rUart_LSR Line Status Register

5000 4018h rUart_MSR Modem Status Register

5000 401Ch rUart_SCR Scratchpad Register

5000 4030h rUart_SRBR_STHR Shadow Receive Buffer/Transmit Holding Register*1

5000 4070h rUart_FAR FIFO Access Register

5000 4074h rUart_TFR Transmit FIFO Read

5000 4078h rUart_RFW Receive FIFO Write

5000 407Ch rUart_USR UART Status Register

5000 4080h rUart_TFL Transmit FIFO Level

5000 4084h rUart_RFL Receive FIFO Level

5000 4088h rUart_SRR Software Reset Register

5000 408Ch rUart_SRTS Shadow Request to Send

5000 4090h rUart_SBCR Shadow Break Control Register

5000 4098h rUart_SFE Shadow FIFO Enable

5000 409Ch rUart_SRT Shadow RCVR Trigger

5000 40A0h rUart_STET Shadow TX Empty Trigger

5000 40A4h rUart_HTX Halt TX

5000 40A8h rUart_DMASA DMA Software Acknowledge

5000 4100h rUart_TO Time-Out Counter Configuration Register

5000 4104h rUart_CTRLTO Time-Out Control Register

5000 4108h rUart_STATUSTO Time-Out Counter Status Register

5000 410Ch rUart_TDMACR DMA Control Register in Transmit Mode

5000 4110h rUart_RDMACR DMA Control Register in Receive Mode

Note 1. This address is assigned from 5000 4030h to 5000 406Ch

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 31 of 637
Dec 29, 2021

1.4 Register Description

1.4.1 rUart_DLL — Divisor Latch (Low)
● Dependencies: bUart_DLAB bit = 1

Address: 4006 0000h (UART1)

4006 1000h (UART2)
4006 2000h (UART3)
5000 0000h (UART4)
5000 1000h (UART5)
5000 2000h (UART6)
5000 3000h (UART7)
5000 4000h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bUart_DLL

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.9 rUart_DLL Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved R

b7 to b0 bUart_DLL Lower 8 bits of a 16-bit.
Divisor Latch register that contains the baud rate divisor for the UART.
This register may only be accessed when the bUart_DLAB bit is set (rUart_LCR
register) and the UART is not busy, bUart_BUSY bit is zero (rUart_USR register).
The baud clock is equal to UART_SCLK frequency divided by sixteen times the value
of the baud rate divisor, as follows:

baud clock = UART_SCLK / (16 × baud rate divisor).

Note) If the baud rate divisor (bUart_DLL and bUart_DLH) is set to zero, the baud
clock is disabled and no serial communications occur.

Caution) Also, once the bUart_DLL or bUart_DLH is set, at least 8 clock cycles of the
slowest clock should be allowed to pass before transmitting or receiving
data.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 32 of 637
Dec 29, 2021

1.4.2 rUart_DLH — Divisor Latch (High)
● Dependencies: bUart_DLAB bit = 1

Address: 4006 0004h (UART1)

4006 1004h (UART2)
4006 2004h (UART3)
5000 0004h (UART4)
5000 1004h (UART5)
5000 2004h (UART6)
5000 3004h (UART7)
5000 4004h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bUart_DLH

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.10 rUart_DLH Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved R

b7 to b0 bUart_DLH Upper 8 bits of a 16-bit.
Divisor Latch register that contains the baud rate divisor for the UART.
This register may only be accessed when the bUart_DLAB bit is set (rUart_LCR
register) and the UART is not busy, bUart_BUSY bit is zero (rUart_USR register).

Refer to Section 1.4.1, rUart_DLL — Divisor Latch (Low) for a detailed description
of the baud clock.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 33 of 637
Dec 29, 2021

1.4.3 rUart_IIR — Interrupt Identification Register
● When these addresses read

Address: 4006 0008h (UART1)

4006 1008h (UART2)
4006 2008h (UART3)
5000 0008h (UART4)
5000 1008h (UART5)
5000 2008h (UART6)
5000 3008h (UART7)
5000 4008h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bUart_FIFOSE — — bUart_IID

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 1.11 rUart_IIR Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved R

b7, b6 bUart_FIFOSE FIFOs Enabled.
This is used to indicate whether the FIFOs are enabled or disabled.

2’b00 = disabled
2’b11 = enabled

R

b5, b4 Reserved R

b3 to b0 bUart_IID Interrupt ID.
This indicates the highest priority pending interrupt which can be one of the following
types:

4’b0000 = modem status
4’b0001 = no interrupt pending
4’b0010 = THR empty
4’b0100 = received data available
4’b0101 = receiver time out
4’b0110 = receiver line status
4’b0111 = busy detect
4’b1100 = character timeout

The interrupt priorities are split into six levels that are detailed in See Table 1.41,
Interrupt Control Functions.

Note) Bit 3 of bUart_IID indicates an interrupt can only occur when the FIFOs are
enabled and used to distinguish a Character Timeout condition interrupt.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 34 of 637
Dec 29, 2021

1.4.4 rUart_RBR_THR — Receive Buffer/Transmit Holding Register
● Dependencies: bUart_DLAB bit = 0

Address: 4006 0000h (UART1)

4006 1000h (UART2)
4006 2000h (UART3)
5000 0000h (UART4)
5000 1000h (UART5)
5000 2000h (UART6)
5000 3000h (UART7)
5000 4000h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bUart_RBR_THR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.12 rUart_RBR_THR Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved R

b7 to b0 bUart_RBR_THR When reading this register — Receive Buffer Register (rUart_RBR)
● Data byte received on the serial input port UART_RXD.

The data in this register is valid only if the Data Ready (bUart_DR) bit in the Line
Status Register (rUart_LSR) is set.

● If FIFOs are disabled (bUart_FIFOE = 0), the data in the rUart_RBR must be read
before the next data arrives, otherwise it is overwritten, resulting in an over-run
error.

● If FIFOs are enabled (bUart_FIFOE = 1), this register accesses the head of the
receive FIFO. If the receive FIFO is full and this register is not read before the next
data character arrives, then the data already in the FIFO is preserved, but any
incoming data are lost and an overrun error occurs.

When writing to this register — Transmit Holding Register (rUart_THR)
● Data to be transmitted on the serial output port UART_TXD.
● If FIFOs are disabled (bUart_FIFOE = 0) and bUart_THRE is set, writing a single

character to the rUart_THR clears the bUart_THRE. Any additional writes to the
rUart_THR before the bUart_THRE is set again causes the rUart_THR data to be
overwritten.

● If FIFOs are enabled (bUart_FIFOE = 1) and bUart_THRE is set, 16 number of
characters of data may be written to the rUart_THR before the FIFO is full.
Any attempt to write data when the FIFO is full results in the write data being lost.
See Section 1.5.1.8, Programmable THRE interrupt.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 35 of 637
Dec 29, 2021

1.4.5 rUart_IER — Interrupt Enable Register
● Dependencies: bUart_DLAB bit = 0

Address: 4006 0004h (UART1)

4006 1004h (UART2)
4006 2004h (UART3)
5000 0004h (UART4)
5000 1004h (UART5)
5000 2004h (UART6)
5000 3004h (UART7)
5000 4004h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — —
bUart_E
TIMEO

UT3

bUart_E
TIMEO

UT2

bUart_E
TIMEO

UT1

bUart_E
TIMEO

UT0

bUart_P
TIME — — — bUart_E

DSSI
bUart_E

LSI
bUart_E

TBEI
bUart_E

RBFI

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.13 rUart_IER Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b12 Reserved R

b11 bUart_ETIMEOUT3 Enable Receiver or Transceiver Time-Out n (with n = 0..3) interrupt.
Enable Transceiver Time-Out n with n = 3

This is used to enable/disable the generation of Receiver (with n = 0..1) or Transceiver
Time-Out n (with n = 2..3) interrupt.
This is the sixth highest priority interrupt.
For each Time-Out n with n = 0..3, we have:

1’b0 = disabled
1’b1 = enabled

See Section 1.5.1.10(1), Receiver Time-Out.
See Section 1.5.1.10(2), Transceiver Time-Out.

R/W

b10 bUart_ETIMEOUT2 Enable Transceiver Time-Out n with n = 2
See description detailed above

R/W

b9 bUart_ETIMEOUT1 Enable Receiver Time-Out n with n = 1
See description detailed above

R/W

b8 bUart_ETIMEOUT0 Enable Receiver Time-Out n with n = 0
See description detailed above

R/W

b7 bUart_PTIME Programmable THRE Interrupt Mode Enable.
This is used to enable/disable the generation of THRE Interrupt.

1’b0 = disabled
1’b1 = enabled

See Section 1.5.1.8, Programmable THRE interrupt.

R/W

b6 to b4 Reserved R

b3 bUart_EDSSI Enable Modem Status Interrupt.
This is used to enable/disable the generation of Modem Status Interrupt.
This is the fourth highest priority interrupt.

1’b0 = disabled
1’b1 = enabled

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 36 of 637
Dec 29, 2021

Table 1.13 rUart_IER Register Contents (2/2)

Bit Position Bit Name Function R/W

b2 bUart_ELSI Enable Receiver Line Status Interrupt.
This is used to enable/disable the generation of Receiver Line Status Interrupt.
This is the highest priority interrupt.

1’b0 = disabled
1’b1 = enabled

R/W

b1 bUart_ETBEI Enable Transmit Holding Register Empty Interrupt.
This is used to enable/disable the generation of Transmit Holding Register Empty
Interrupt.
This is the third highest priority interrupt.

1’b0 = disabled
1’b1 = enabled

R/W

b0 bUart_ERBFI Enable Received Data Available Interrupt.
This is used to enable/disable the generation of Received Data Available Interrupt and
the Character Timeout Interrupt (if FIFOs enabled).
This is the second highest priority interrupt.

1’b0 = disabled
1’b1 = enabled

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 37 of 637
Dec 29, 2021

1.4.6 rUart_FCR — FIFO Control Register
● When these addresses written

Address: 4006 0008h (UART1)

4006 1008h (UART2)
4006 2008h (UART3)
5000 0008h (UART4)
5000 1008h (UART5)
5000 2008h (UART6)
5000 3008h (UART7)
5000 4008h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bUart_RCVR bUart_TET — bUart_X
FIFOR

bUart_R
FIFOR

bUart_F
IFOE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.14 rUart_FCR Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b8 Reserved R

b7, b6 bUart_RCVR Receive FIFOs trigger.
This is used to select the trigger level in the receive FIFO at which the Received Data
Available Interrupt is generated.
The following trigger levels are supported:

2’b00 = 1 character in the FIFO
2’b01 = FIFO 1/4 full
2’b10 = FIFO 1/2 full
2’b11 = FIFO 2 less than full

W

b5, b4 bUart_TET Transmit FIFOs Empty trigger.
This is used to select the empty threshold level at which the THRE Interrupts are
generated when the mode is active.
The following trigger levels are supported:

2’b00 = FIFO empty
2’b01 = 2 characters in the FIFO
2’b10 = FIFO 1/4 full
2’b11 = FIFO 1/2 full

W

b3 Reserved R

b2 bUart_XFIFOR Transmit FIFO Reset.
This resets the control portion of the transmit FIFO and treats the FIFO as empty by
writing 1b to this bit.

Note) This bit is “self-clearing”. It is not necessary to clear this bit.

W

b1 bUart_RFIFOR Receive FIFO Reset.
This resets the control portion of the receive FIFO and treats the FIFO as empty by
writing 1b to this bit.

Note) This bit is “self-clearing”. It is not necessary to clear this bit.

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 38 of 637
Dec 29, 2021

Table 1.14 rUart_FCR Register Contents (2/2)

Bit Position Bit Name Function R/W

b0 bUart_FIFOE FIFO Enable.
This enables/disables the transmit and receive FIFOs.
Whenever the value of this bit is changed both the transmit and receive controller
portion of FIFOs is reset.

1’b0 = Disable
1’b1 = Enable

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 39 of 637
Dec 29, 2021

1.4.7 rUart_LCR — Line Control Register

Address: 4006 000Ch (UART1)
4006 100Ch (UART2)
4006 200Ch (UART3)
5000 000Ch (UART4)
5000 100Ch (UART5)
5000 200Ch (UART6)
5000 300Ch (UART7)
5000 400Ch (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bUart_D
LAB

bUart_B
C

bUart_S
tickParit

y

bUart_E
PS

bUart_P
EN

bUart_S
TOP bUart_DLS

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.15 rUart_LCR Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b8 Reserved R

b7 bUart_DLAB Divisor Latch Access Bit.
Writeable only when UART is not busy (bUart_BUSY = 0).
This bit is used to enable reading and writing of the baud rate divisor (bUart_DLL and
bUart_DLH) to set the baud rate of the UART.
This bit must be cleared after initial baud rate setup in order to access other registers.

1’b0 = Divisor Latch Access disable
1’b1 = Divisor Latch Access enable

R/W

b6 bUart_BC Break Control Bit.
This is used to cause a break condition to be transmitted to the receiving device.
If set to one the serial output is forced to the spacing (logic 0) state. When not in
Loopback Mode, as determined by bUart_LB, the UART_TXD line is forced low until
the bUart_BC is cleared.
When in Loopback Mode, the break condition is internally looped back to the receiver.

R/W

b5 bUart_StickParity Stick Parity bit.
Writeable only when UART is not busy (bUart_BUSY = 0).
This bit is used to force parity value.
● When bUart_PEN, bUart_EPS, and bUart_StickParity are set to 1, the parity bit is

transmitted and checked as logic 0.
● When bUart_PEN and bUart_StickParity are set to 1 and bUart_EPS is a logic 0,

then parity bit is transmitted and checked as a logic 1.
● When set to 0, Stick Parity is disabled.

R/W

b4 bUart_EPS Even Parity Select.
Writeable only when UART is not busy (bUart_BUSY = 0).
This is used to select between even and odd parity, when parity is enabled
(bUart_PEN = 1).
● If set to one, an even number of logic 1s is transmitted or checked.
● If set to zero, an odd number of logic 1s is transmitted or checked.

R/W

b3 bUart_PEN Parity Enable.
Writeable only when UART is not busy (bUart_BUSY = 0)
This bit is used to enable and disable parity generation and detection in transmitted
and received serial character respectively.

1’b0 = parity disabled
1’b1 = parity enabled

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 40 of 637
Dec 29, 2021

Table 1.15 rUart_LCR Register Contents (2/2)

Bit Position Bit Name Function R/W

b2 bUart_STOP Number of stop bits.
Writeable only when UART is not busy (bUart_BUSY = 0).
This is used to select the number of stop bits per character that the peripheral
transmits and receives.
● If set to zero, one stop bit is transmitted in the serial data.
● If set to one and the data bits are set to 5 (bUart_DLS = 0) one and a half stop bits

is transmitted. Otherwise, two stop bits are transmitted.
Note that regardless of the number of stop bits selected, the receiver checks only the
first stop bit.

1’b0 = 1 stop bit
1’b1 = 1.5 stop bits when bUart_DLS is zero, else 2 stop bit

Note) The STOP bit duration implemented by UART may appear longer due to the
idle time inserted between characters for some configurations and baud rate
divisor values in the transmit direction. For details on idle time between
transmitted transfers, refer to Section 1.5.1.5, Back to Back Character
Stream Transmission.

R/W

b1, b0 bUart_DLS Data Length Select.
Writeable only when UART is not busy (bUart_BUSY = 0).
This is used to select the number of data bits per character that the peripheral
transmits and receives.
The number of bit that may be selected areas follows:

2’b00 = 5 bits
2’b01 = 6 bits
2’b10 = 7 bits
2’b11 = 8 bits

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 41 of 637
Dec 29, 2021

1.4.8 rUart_MCR — Modem Control Register

Address: 4006 0010h (UART1)
4006 1010h (UART2)
4006 2010h (UART3)
5000 0010h (UART4)
5000 1010h (UART5)
5000 2010h (UART6)
5000 3010h (UART7)
5000 4010h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — bUart_A
FCE

bUart_L
B

bUart_
OUT2

bUart_
OUT1

bUart_R
TS

bUart_D
TR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.16 rUart_MCR Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b6 Reserved R

b5 bUart_AFCE Auto Flow Control Enable.
When FIFOs are enabled (bUart_FIFOE bit is set) and the Auto Flow Control Enable
(bUart_AFCE bit is set), Auto Flow Control features are enabled as described in
Section 1.5.1.7, Auto Flow Control.

1’b0 = Auto Flow Control Mode disabled
1’b1 = Auto Flow Control Mode enabled

R/W

b4 bUart_LB LoopBack Bit.
This is used to put the UART into a diagnostic mode for test purposes.
Data on the UART_TXD line is held high, while serial data output is looped back to the
UART_RXD line, internally. In this mode, all the interrupts are fully functional. Also, in
loopback mode, the modem control inputs (UART_DSR_N, UART_CTS_N,
UART_RI_N, UART_DCD_N) are disconnected and the modem control outputs
(UART_DTR_N, UART_RTS_N, UART_OUT1_N, UART_OUT2_N) are looped back
to the inputs, internally.

1’b0 = Loop back mode disable
1’b1 = Loop back mode enable

R/W

b3 bUart_OUT2 This is used to directly control the user-designated Output2 (UART_OUT2_N) output.
The value written to this location is inverted and driven out on UART_OUT2_N, that is:

1’b0 = UART_OUT2_N de-asserted (logic 1)
1’b1 = UART_OUT2_N asserted (logic 0)

Caution) This output pin is not connected on pinout. It uses in Loopback mode.

Note) In Loopback mode (bUart_LB = 1), the UART_OUT2_N output is held inactive
high while the value of this location is internally looped back to an input.

R/W

b2 bUart_OUT1 This is used to directly control the user-designated Output1 (UART_OUT1_N) output.
The value written to this location is inverted and driven out on UART_OUT1_N, that is:

1’b0 = UART_OUT1_N de-asserted (logic 1)
1’b1 = UART_OUT1_N asserted (logic 0)

Caution) This output pin is not connected on pinout. It uses in Loopback mode.

Note) In Loopback mode (bUart_LB = 1), the UART_OUT1_N output is held inactive
high while the value of this location is internally looped back to an input.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 42 of 637
Dec 29, 2021

Table 1.16 rUart_MCR Register Contents (2/2)

Bit Position Bit Name Function R/W

b1 bUart_RTS Request to Send.
This is used to directly control the Request to Send (UART_RTS_N) output.
The Request to Send (UART_RTS_N) output is used to inform the modem or data set
that the UART is ready to exchange data.
When Auto RTS Flow Control is not enabled (bUart_AFCE = 0), the UART_RTS_N
signal is set low by programming bUart_RTS to a high.
In Auto Flow Control, (bUart_AFCE = 1) and FIFOs enable (bUart_FIFOE = 1), the
UART_RTS_N output is controlled in the same way, but it is gated by the receive
FIFO almost-full trigger, where “almost full” refers to two available slots in the FIFO
(UART_RTS_N is inactive high when above the threshold).
The UART_RTS_N signal is de-asserted when bUart_RTS is set low.
See Section 1.5.1.7, Auto Flow Control.

Note) In Loopback mode (bUart_LB = 1), the UART_RTS_N output is held inactive
high while the value of this location is internally looped back to an input.

R/W

b0 bUart_DTR Data Terminal Ready.
This is used to directly control the Data Terminal Ready (UART_DTR_N) output.
The value written to this location is inverted and driven out on UART_DTR_N, that is:

1’b0 = UART_DTR_N de-asserted (logic 1)
1’b1 = UART_DTR_N asserted (logic 0)

The Data Terminal Ready output is used to inform the modem or data set that the
UART is ready to establish communications.

Note) In Loopback mode (bUart_LB = 1), the UART_DTR_N output is held inactive
high while the value of this location is internally looped back to an input.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 43 of 637
Dec 29, 2021

1.4.9 rUart_LSR — Line Status Register

Address: 4006 0014h (UART1)

4006 1014h (UART2)

4006 2014h (UART3)

5000 0014h (UART4)

5000 1014h (UART5)

5000 2014h (UART6)

5000 3014h (UART7)

5000 4014h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bUart_R
FE

bUart_T
EMT

bUart_T
HRE

bUart_B
I

bUart_F
E

bUart_P
E

bUart_
OE

bUart_D
R

Value after reset 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

Table 1.17 rUart_LSR Register Contents (1/3)

Bit Position Bit Name Function R/W

b31 to b8 Reserved R

b7 bUart_RFE Receiver FIFO Error bit.
This bit is only relevant if FIFOs are enabled (bUart_FIFOE = 1).
This is used to indicate if there is at least one parity error, framing error, or break
indication in the receive FIFO.

1’b0 = no error in Receive FIFO
1’b1 = error in Receive FIFO

This bit is cleared when the rUart_LSR is read and the character with the error is at
the top of the receive FIFO and there are no subsequent errors in the FIFO.

R

b6 bUart_TEMT Transmitter Empty bit.
If FIFOs enabled (bUart_FIFOE = 1), this bit is set whenever the Transmitter Shift
Register and the Transmit FIFO are both empty.
If FIFOs are disabled, this bit is set whenever the Transmit Holding Register
(rUart_THR) and the Transmitter Shift Register are both empty.

R

b5 bUart_THRE Transmit Holding Register Empty bit.
If THRE mode is disabled (bUart_PTIME = 0) and regardless of FIFO’s being enabled
or not, this bit indicates that the rUart_THR or Transmit FIFO is empty.
This bit is set whenever data is transferred from the rUart_THR or Transmit FIFO to
the Transmitter Shift Register and no new data has been written to the rUart_THR or
Transmit FIFO.
This also causes a THRE Interrupt to occur, if the THRE Interrupt is Enabled
(bUart_ETBEI).
If THRE mode and FIFO are enabled (bUart_PTIME = 1 and bUart_FIFOE = 1
respectively), the functionality is switched to indicate the transmit FIFO is full, and no
longer controls THRE interrupts, which are then controlled by the bUart_TET threshold
setting.
For more details, see Section 1.5.1.8, Programmable THRE interrupt.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 44 of 637
Dec 29, 2021

Table 1.17 rUart_LSR Register Contents (2/3)

Bit Position Bit Name Function R/W

b4 bUart_BI Break Interrupt bit.
This is used to indicate the detection of a break sequence on the serial input data.
It is set whenever the serial input, UART_RXD, is held in a logic “0” state for longer
than the sum of start time + data bits + parity + stop bits.
A break condition on serial input causes one and only one character, consisting of all
zeros, to be received by the UART.
In the FIFO mode (bUart_FIFOE = 1), the character associated with the break
condition is carried through the FIFO and is revealed when the character is at the top
of the FIFO.
Reading the rUart_LSR clears the bUart_BI bit.
In the non-FIFO mode, the bUart_BI indication occurs immediately and persists until
the rUart_LSR is read.

Note) If a FIFO is full when a break condition is received, a FIFO overrun occurs. The
break condition and all the information associated with it-parity and framing
errors-is discarded any information that a break character was received is lost.

R

b3 bUart_FE Framing Error bit.
This is used to indicate the occurrence of a framing error in the receiver. A framing
error occurs when the receiver does not detect a valid STOP bit in the received data.
In the FIFO mode (bUart_FIFOE = 1), since the framing error is associated with a
character received, it is revealed when the character with the framing error is at the
top of the FIFO.
When a framing error occurs, the UART tries to resynchronize. It does this by
assuming that the error was due to the start bit of the next character and then
continues receiving the other bit i.e. data, and/or parity and stop.
It should be noted that the Framing Error bUart_FE bit is set if a break interrupt has
occurred, as indicated by Break Interrupt bUart_BI bit. This happens because the
break character implicitly generates a framing error by holding the UART_RXD input
to logic 0 for longer than the duration of a character.

1’b0 = no framing error
1’b1 = framing error

Reading the rUart_LSR clears the rUart_FE bit.

R

b2 bUart_PE Parity Error bit.
This is used to indicate the occurrence of a parity error in the receiver if the Parity
Enable bUart_PEN bit is set.
In the FIFO mode (bUart_FIFOE = 1), since the parity error is associated with a
character received, it is revealed when the character with the parity error arrives at the
top of the FIFO.
It should be noted that the Parity Error bUart_PE bit is set if a break interrupt has
occurred, as indicated by Break Interrupt bUart_BI bit and parity generation and
detection are enabled (bUart_PEN=1) and the parity is set to odd (bUart_EPS = 0).

1’b0 = no parity error
1’b1 = parity error

Reading the rUart_LSR clears the bUart_PE bit.

R

b1 bUart_OE Overrun error bit.
This is used to indicate the occurrence of an overrun error. This occurs if a new data
character was received before the previous data was read.
In the non-FIFO mode (bUart_FIFOE = 0), the bUart_OE bit is set when a new
character arrives in the receiver before the previous character was read from the
rUart_RBR. When this happens, the data in the rUart_RBR is overwritten.
In the FIFO mode, an overrun error occurs when the FIFO is full and a new character
arrives at the receiver. The data in the FIFO is retained and the data in the receive
shift register is lost.

1’b0 = no overrun error
1’b1 = overrun error

Reading the rUart_LSR clears the bUart_OE bit.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 45 of 637
Dec 29, 2021

Table 1.17 rUart_LSR Register Contents (3/3)

Bit Position Bit Name Function R/W

b0 bUart_DR Data Ready bit.
This is used to indicate that the receiver contains at least one character in the
rUart_RBR or the receive FIFO.

1’b0 = no data ready
1’b1 = data ready

This bit is cleared when the rUart_RBR is read in non-FIFO mode, or when the receive
FIFO is empty, in FIFO mode.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 46 of 637
Dec 29, 2021

1.4.10 rUart_MSR — Modem Status Register

Address: 4006 0018h (UART1)

4006 1018h (UART2)

4006 2018h (UART3)

5000 0018h (UART4)

5000 1018h (UART5)

5000 2018h (UART6)

5000 3018h (UART7)

5000 4018h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bUart_D
CD

bUart_R
I

bUart_D
SR

bUart_C
TS

bUart_D
DCD

bUart_T
ERI

bUart_D
DSR

bUart_D
CTS

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.18 rUart_MSR Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b8 Reserved R

b7 bUart_DCD Data Carrier Detect.
This is used to indicate the current state of the modem control line UART_DCD_N.
This bit is the complement of UART_DCD_N.
When the Data Carrier Detect input (UART_DCD_N) is asserted, it is an indication
that the carrier has been detected by the modem or data set.

1’b0 = UART_DCD_N input is de-asserted (logic 1)
1’b1 = UART_DCD_N input is asserted (logic 0)

In Loopback Mode (bUart_LB = 1), bUart_DCD is the same as bUart_OUT2.

R

b6 bUart_RI Ring Indicator.
This is used to indicate the current state of the modem control line UART_RI_N. This
bit is the complement of UART_RI_N.
When the Ring Indicator input (UART_RI_N) is asserted, it is an indication that a
telephone ringing signal has been received by the modem or data set.

1’b0 = UART_RI_N input is de-asserted (logic 1)
1’b1 = UART_RI_N input is asserted (logic 0)

In Loopback Mode (bUart_LB = 1), bUart_RI is the same as bUart_OUT1.

R

b5 bUart_DSR Data Set Ready.
This is used to indicate the current state of the modem control line UART_DSR_N.
This bit is the complement of UART_DSR_N.
When the Data Set Ready input (UART_DSR_N) is asserted, it is an indication that
the modem or data set is ready to establish communications with the UART.

1’b0 = UART_DSR_N input is de-asserted (logic 1)
1’b1 = UART_DSR_N input is asserted (logic 0)

In Loopback Mode (bUart_LB = 1), bUart_DSR is the same as bUart_DTR.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 47 of 637
Dec 29, 2021

Table 1.18 rUart_MSR Register Contents (2/2)

Bit Position Bit Name Function R/W

b4 bUart_CTS Clear to Send.
This is used to indicate the current state of the modem control line UART_CTS_N.
This bit is the complement of UART_CTS_N.
When the Clear to Send input (UART_CTS_N) is asserted, it is an indication that the
modem or data set is ready to exchange data with the UART.

1’b0 = UART_CTS_N input is de-asserted (logic 1)
1’b1 = UART_CTS_N input is asserted (logic 0)

In Loopback Mode (bUart_LB = 1), bUart_CTS is the same as bUart_RTS.

R

b3 bUart_DDCD Delta Data Carrier Detect.
This is used to indicate that the modem control line UART_DCD_N has changed since
the last time the rUart_MSR was read.

1’b0 = no change on UART_DCD_N since last read of rUart_MSR
1’b1 = change on UART_DCD_N since last read of rUart_MSR

Reading the rUart_MSR clears the bUart_DDCD bit. In Loopback Mode (bUart_LB =
1), bUart_DDCD reflects changes on bUart_OUT2.

Note) If the bUart_DDCD bit is not set and the UART_DCD_N signal is asserted (low)
and a reset occurs (Software or otherwise), then the bUart_DDCD bit is set
when the reset is removed.

R

b2 bUart_TERI Trailing Edge of Ring Indicator.
This is used to indicate that a change on the input UART_RI_N (from an active-low to
an inactive-high state) has occurred since the last time the rUart_MSR was read.

1’b0 = no change on UART_RI_N since last read of rUart_MSR
1’b1 = change on UART_RI_N since last read of rUart_MSR

Reading the rUart_MSR clears the bUart_TERI bit. In Loopback Mode (bUart_LB = 1),
bUart_TERI reflects when bUart_OUT1 has changed state from a high to a low.

R

b1 bUart_DDSR Delta Data Set Ready.
This is used to indicate that the modem control line UART_DSR_N has changed since
the last time the rUart_MSR was read.

1’b0 = no change on UART_DSR_N since last read of rUart_MSR
1’b1 = change on UART_DSR_N since last read of rUart_MSR

Reading the rUart_MSR clears the bUart_DDSR bit. In Loopback Mode (bUart_LB =
1), bUart_DDSR reflects changes on bUart_DTR.

Note) If the bUart_DDSR bit is not set and the UART_DSR_N signal is asserted (low)
and a reset occurs (Software or otherwise), then the bUart_DDSR bit is set
when the reset is removed.

R

b0 bUart_DCTS Delta Clear to Send.
This is used to indicate that the modem control line UART_CTS_N has changed since
the last time the rUart_MSR was read.

1’b0 = no change on UART_CTS_N since last read of rUart_MSR
1’b1 = change on UART_CTS_N since last read of rUart_MSR

Reading the rUart_MSR clears the bUart_DCTS bit. In Loopback Mode (bUart_LB =
1), bUart_DCTS reflects changes on bUart_RTS.

Note) If the bUart_DCTS bit is not set and the UART_CTS_N signal is asserted (low)
and a reset occurs (Software or otherwise), then the bUart_DCTS bit is set
when the reset is removed.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 48 of 637
Dec 29, 2021

1.4.11 rUart_SCR — Scratchpad Register

Address: 4006 001Ch (UART1)

4006 101Ch (UART2)

4006 201Ch (UART3)

5000 001Ch (UART4)

5000 101Ch (UART5)

5000 201Ch (UART6)

5000 301Ch (UART7)

5000 401Ch (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bUart_SCR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.19 rUart_SCR Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved R

b7 to b0 bUart_SCR This register is for programmers to use as a temporary storage space. It has no
defined purpose in the UART.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 49 of 637
Dec 29, 2021

1.4.12 rUart_SRBR_STHR — Shadow Receive Buffer/Transmit Holding Register
● Dependencies: bUart_DLAB bit =0

Address: 4006 0030h (UART1)

4006 1030h (UART2)

4006 2030h (UART3)

5000 0030h (UART4)

5000 1030h (UART5)

5000 2030h (UART6)

5000 3030h (UART7)

5000 4030h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bUart_SRBR_STHR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.20 rUart_SRBR_STHR Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved R

b7 to b0 bUart_SRBR_STHR When reading this register - Shadow Receive Buffer Register (rUart_SRBR)
● This is a shadow register for the rUart_RBR and has been allocated sixteen 32-bit

locations so as to accommodate burst accesses from the master.
This register contains the data byte received on the serial input port UART_RXD.
The data in this register is valid only if the Data Ready (bUart_DR bit) in the Line
Status Register (rUart_LSR) is set.

● If FIFOs are disabled (bUart_FIFOE = 0), the data in the rUart_RBR must be read
before the next data arrives, otherwise it is overwritten, resulting in an overrun
error.

● If FIFOs are enabled (bUart_FIFOE = 1), this register accesses the head of the
receive FIFO. If the receive FIFO is full and this register is not read before the next
data character arrives, then the data already in the FIFO are preserved, but any
incoming data is lost.
An overrun error also occurs.

When writing to this register - Shadow Transmit Holding Register (rUart_STHR)
● This is a shadow register for the rUart_THR and has been allocated sixteen 32-bit

locations so as to accommodate burst accesses from the master.
This register contains data to be transmitted on the serial output port UART_TXD.
Data should only be written to the rUart_THR when the THR Empty (bUart_THRE)
bit in rUart_LSR register is set.

● If FIFOs are disabled (bUart_FIFOE = 0) and bUart_THRE is set, writing a single
character to the rUart_THR clears the bUart_THRE. Any additional writes to the
rUart_THR before the bUart_THRE is set again causes the rUart_THR data to be
overwritten.

● If FIFOs are enabled (bUart_FIFOE = 1) and bUart_THRE is set, 16 number of
characters of data may be written to the rUart_THR before the FIFO is full. Any
attempt to write data when the FIFO is full results in the write data being lost.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 50 of 637
Dec 29, 2021

1.4.13 rUart_FAR — FIFO Access Register

Address: 4006 0070h (UART1)

4006 1070h (UART2)

4006 2070h (UART3)

5000 0070h (UART4)

5000 1070h (UART5)

5000 2070h (UART6)

5000 3070h (UART7)

5000 4070h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — — bUart_F
AR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.21 rUart_FAR Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 bUart_FAR FIFO access registers.
This register is use to enable a FIFO access mode for testing, so that the receive
FIFO can be written by the master and the transmit FIFO can be read by the master
when FIFOs are enabled.
When FIFOs are not enabled it allows the rUart_RBR to be written by the master and
the rUart_THR to be read by the master.

1’b0 = FIFO access mode disabled
1’b1 = FIFO access mode enabled

Note) When the FIFO access mode is enabled/disabled, the control portion of the
receive FIFO and transmit FIFO is reset and the FIFOs are treated as empty.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 51 of 637
Dec 29, 2021

1.4.14 rUart_TFR — Transmit FIFO Read

Address: 4006 0074h (UART1)

4006 1074h (UART2)

4006 2074h (UART3)

5000 0074h (UART4)

5000 1074h (UART5)

5000 2074h (UART6)

5000 3074h (UART7)

5000 4074h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bUart_TFR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.22 rUart_TFR Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved R

b7 to b0 bUart_TFR Transmit FIFO Read.
These bits are only valid when FIFO access mode is enabled (bUart_FAR = 1).
When FIFOs are enabled (bUart_FIFOE), reading this register gives the data at the
top of the transmit FIFO. Each consecutive read pops the transmit FIFO and gives the
next data value that is currently at the top of the FIFO.
When FIFOs are not enabled, reading this register gives the data in the rUart_THR
register.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 52 of 637
Dec 29, 2021

1.4.15 rUart_RFW — Receive FIFO Write

Address: 4006 0078h (UART1)

4006 1078h (UART2)

4006 2078h (UART3)

5000 0078h (UART4)

5000 1078h (UART5)

5000 2078h (UART6)

5000 3078h (UART7)

5000 4078h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — bUart_R
FFE

bUart_R
FPE bUart_RFWD

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.23 rUart_RFW Register Contents

Bit Position Bit Name Function R/W

b31 to b10 Reserved R

b9 bUart_RFFE Receive FIFO Framing Error.
This bit is only valid when FIFO access mode is enabled (bUart_FAR = 1).
When FIFOs are enabled, this bit is used to write framing error detection information
to the receive FIFO.
When FIFOs are not enabled, this bit is used to write framing error detection
information to the rUart_RBR register.

Note) This bit also active a Break Condition in the Receive FIFO.

W

b8 bUart_RFPE Receive FIFO Parity Error.
This bit is only valid when FIFO access mode is enabled (bUart_FAR = 1).
When FIFOs are enabled, this bit is used to write parity error detection information to
the receive FIFO.
When FIFOs are not enabled, this bit is used to write parity error detection information
to the rUart_RBR register.

W

b7 to b0 bUart_RFWD Receive FIFO Write Data.
These bits are only valid when FIFO access mode is enabled (bUart_FAR = 1).
When FIFOs are enabled, the data that is written to the bUart_RFWD is pushed into
the receive FIFO. Each consecutive write pushes the new data to the next write
location in the receive FIFO.
When FIFOs are not enabled, the data that is written to the bUart_RFWD is pushed
into the rUart_RBR register.

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 53 of 637
Dec 29, 2021

1.4.16 rUart_USR — UART Status Register

Address: 4006 007Ch (UART1)

4006 107Ch (UART2)

4006 207Ch (UART3)

5000 007Ch (UART4)

5000 107Ch (UART5)

5000 207Ch (UART6)

5000 307Ch (UART7)

5000 407Ch (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — bUart_R
FF

bUart_R
FNE

bUart_T
FE

bUart_T
FNF

bUart_B
USY

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Table 1.24 rUart_USR Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b5 Reserved R

b4 bUart_RFF Receive FIFO Full.
This is used to indicate that the receive FIFO is completely full.

1’b0 = Receive FIFO not full
1’b1 = Receive FIFO Full

This bit is cleared when the Receive FIFO is no longer full.

R

b3 bUart_RFNE Receive FIFO Not Empty.
This is used to indicate that the receive FIFO contains one or more entries.

1’b0 = Receive FIFO is empty
1’b1 = Receive FIFO is not empty

This bit is cleared when the Receive FIFO is empty.

R

b2 bUart_TFE Transmit FIFO Empty.
This is used to indicate that the transmit FIFO is completely empty.

1’b0 = Transmit FIFO is not empty
1’b1 = Transmit FIFO is empty

This bit is cleared when the Transmit FIFO is no longer empty.

R

b1 bUart_TFNF Transmit FIFO Not Full.
This is used to indicate that the transmit FIFO in not full.

1’b0 = Transmit FIFO is full
1’b1 = Transmit FIFO is not full

This bit is cleared when the Transmit FIFO is full.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 54 of 637
Dec 29, 2021

Table 1.24 rUart_USR Register Contents (2/2)

Bit Position Bit Name Function R/W

b0 bUart_BUSY UART Busy.
This bit indicates that a serial transfer is in progress, when cleared, indicates that the
UART is idle or inactive.

1’b0 = UART is idle or inactive
1’b1 = UART is busy (actively transferring data)

This bit will be set under any of the following conditions:
● Transmission in progress on serial interface
● Transmit data present in rUart_THR, when FIFO access mode is not being used

(bUart_FAR = 0) and the baud rate divisor is non-zero ({rUart_DLH, rUart_DLL} !=
0) when the divisor latch access bit is 0 (bUart_DLAB = 0)

● Reception in progress on the interface
● Receive data present in rUart_RBR, when FIFO access mode is not being used

(bUart_FAR = 0)

Note) It is possible for the bUart_BUSY bit to be cleared even though a new character
may have been sent from another device.
That is, if the UART has no data in rUart_RBR and bUart_THR and there is no
transmission in progress and a start bit of a new character has just reached the
UART.
This is due to the fact that a valid start is not seen until the middle of the bit
period and this duration is dependent on the baud rate divisor that has been
programmed.
The assertion of this bit is also delayed by several cycles of the slower clock
UART_SCLK and UART_PCLK.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 55 of 637
Dec 29, 2021

1.4.17 rUart_TFL — Transmit FIFO Level

Address: 4006 0080h (UART1)

4006 1080h (UART2)

4006 2080h (UART3)

5000 0080h (UART4)

5000 1080h (UART5)

5000 2080h (UART6)

5000 3080h (UART7)

5000 4080h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — bUart_TFL

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.25 rUart_TFL Register Contents

Bit Position Bit Name Function R/W

b31 to b5 Reserved R

b4 to b0 bUart_TFL Transmit FIFO Level.
This indicates the number of data entries in the transmit FIFO.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 56 of 637
Dec 29, 2021

1.4.18 rUart_RFL — Receive FIFO Level

Address: 4006 0084h (UART1)

4006 1084h (UART2)

4006 2084h (UART3)

5000 0084h (UART4)

5000 1084h (UART5)

5000 2084h (UART6)

5000 3084h (UART7)

5000 4084h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — bUart_RFL

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.26 rUart_RFL Register Contents

Bit Position Bit Name Function R/W

b31 to b5 Reserved R

b4 to b0 bUart_RFL Receive FIFO Level.
This indicates the number of data entries in the receive FIFO.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 57 of 637
Dec 29, 2021

1.4.19 rUart_SRR — Software Reset Register

Address: 4006 0088h (UART1)

4006 1088h (UART2)

4006 2088h (UART3)

5000 0088h (UART4)

5000 1088h (UART5)

5000 2088h (UART6)

5000 3088h (UART7)

5000 4088h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — bUart_X
FR

bUart_R
FR

bUart_U
R

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.27 rUart_SRR Register Contents

Bit Position Bit Name Function R/W

b31 to b3 Reserved R

b2 bUart_XFR Transmit FIFO Reset.
This is a shadow register for the Transmit FIFO Reset bit (bUart_XFIFOR). This can
be used just to reset the transmit FIFO by writing 1b to this bit.
This resets the control portion of the transmit FIFO and treats the FIFO as empty.

Note) This bit is ‘self-clearing’. It is not necessary to clear this bit.

W

b1 bUart_RFR Receive FIFO Reset.
This is a shadow register for the receive FIFO Reset bit (bUart_RFIFOR). This can be
used just to reset the receive FIFO by writing 1b to this bit.
This resets the control portion of the receive FIFO and treats the FIFO as empty.

Note) This bit is ‘self-clearing’. It is not necessary to clear this bit.

W

b0 bUart_UR UART Reset.
This asynchronously resets the UART and synchronously removes the reset assertion
by writing 1b to this bit. Both UART_SCLK and UART_PCLK domains are reset.

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 58 of 637
Dec 29, 2021

1.4.20 rUart_SRTS — Shadow Request to Send

Address: 4006 008Ch (UART1)

4006 108Ch (UART2)

4006 208Ch (UART3)

5000 008Ch (UART4)

5000 108Ch (UART5)

5000 208Ch (UART6)

5000 308Ch (UART7)

5000 408Ch (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — — bUart
_SRTS

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.28 rUart_SRTS Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 bUart_SRTS Shadow Request to Send.
This is a shadow register for the bUart_RTS bit. This can be used to remove the
burden of having to performing a read-modify-write on the rUart_MCR. This is used to
directly control the Request to Send (UART_RTS_N) output. The Request to Send
(UART_RTS_N) output is used to inform the modem or data set that the UART is
ready to exchange data.
When Auto RTS Flow Control is not enabled (bUart_AFCE = 0), the UART_RTS_N
signal is set low by programming bUart_RTS to a high.
In Auto Flow Control, (bUart_AFCE = 1) and FIFOs enable (bUart_FIFOE = 1), the
UART_RTS_N output is controlled in the same way, but it is gated by the receive
FIFO almost-full trigger, where “almost full” refers to two available slots in the FIFO
(UART_RTS_N is inactive high when above the threshold).

Note) In Loopback mode (bUart_LB = 1), the UART_RTS_N output is held inactive-
high while the value of this location is internally looped back to an input.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 59 of 637
Dec 29, 2021

1.4.21 rUart_SBCR — Shadow Break Control Register

Address: 4006 0090h (UART1)

4006 1090h (UART2)

4006 2090h (UART3)

5000 0090h (UART4)

5000 1090h (UART5)

5000 2090h (UART6)

5000 3090h (UART7)

5000 4090h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — — bUart
_SBCR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.29 rUart_SBCR Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 bUart_SBCR Shadow Break Control Bit.
This is a shadow register for the Break bit (bUart_BC), this can be used to remove the
burden of having to performing a read modify write on the rUart_LCR. This is used to
cause a break condition to be transmitted to the receiving device.
If set to one the serial output is forced to the spacing (logic 0) state. When not in
Loopback Mode, as determined by bUart_LB, the UART_TXD line is forced low until
the Break bit is cleared.
When in Loopback Mode, the break condition is internally looped back to the receiver.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 60 of 637
Dec 29, 2021

1.4.22 rUart_SFE — Shadow FIFO Enable

Address: 4006 0098h (UART1)

4006 1098h (UART2)

4006 2098h (UART3)

5000 0098h (UART4)

5000 1098h (UART5)

5000 2098h (UART6)

5000 3098h (UART7)

5000 4098h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — — bUart_S
FE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.30 rUart_SFE Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 bUart_SFE Shadow FIFO Enable.
This is a shadow register for the FIFO enable bit (bUart_FIFOE). This can be used to
remove the burden of having to store the previously written value to the rUart_FCR in
memory and having to mask this value so that only the FIFO enable bit gets updated.
This enables/disables the transmit and receive FIFOs. If this bit is set to zero
(disabled) after being enabled then both the transmit and receive controller portion of
FIFOs are reset.

1’b0 = Disable
1’b1 = Enable

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 61 of 637
Dec 29, 2021

1.4.23 rUart_SRT — Shadow RCVR Trigger

Address: 4006 009Ch (UART1)

4006 109Ch (UART2)

4006 209Ch (UART3)

5000 009Ch (UART4)

5000 109Ch (UART5)

5000 209Ch (UART6)

5000 309Ch (UART7)

5000 409Ch (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — bUart_SRCVR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.31 rUart_SRT Register Contents

Bit Position Bit Name Function R/W

b31 to b2 Reserved R

b1, b0 bUart_SRCVR Shadow Receive FIFO Trigger.
This is a shadow register for the receive FIFO trigger bits (bUart_RCVR). This can be
used to remove the burden of having to store the previously written value to the
rUart_FCR in memory and having to mask this value so that only the Receive FIFO
trigger bit gets updated.
This is used to select the trigger level in the receive FIFO at which the Received Data
Available Interrupt is generated.
The following trigger levels are supported:

2’b00 = 1 character in the FIFO
2’b01 = FIFO 1/4 full
2’b10 = FIFO 1/2 full
2’b11 = FIFO 2 less than full

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 62 of 637
Dec 29, 2021

1.4.24 rUart_STET — Shadow TX Empty Trigger

Address: 4006 00A0h (UART1)

4006 10A0h (UART2)

4006 20A0h (UART3)

5000 00A0h (UART4)

5000 10A0h (UART5)

5000 20A0h (UART6)

5000 30A0h (UART7)

5000 40A0h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — bUart_STET

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.32 rUart_STET Register Contents

Bit Position Bit Name Function R/W

b31 to b2 Reserved R

b1, b0 bUart_STET Shadow Transmit Empty Trigger.
This is a shadow register for the Transmit empty trigger bits (bUart_TET).
This can be used to remove the burden of having to store the previously written value
to the rUart_FCR in memory and having to mask this value so that only the Transmit
empty trigger bit gets updated.
This is used to select the empty threshold level at which the THRE Interrupts are
generated when the mode is active.
The following trigger levels are supported:

2’b00 = FIFO empty
2’b01 = 2 characters in the FIFO
2’b10 = FIFO 1/4 full
2’b11 = FIFO 1/2 full

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 63 of 637
Dec 29, 2021

1.4.25 rUart_HTX — Halt TX

Address: 4006 00A4h (UART1)

4006 10A4h (UART2)

4006 20A4h (UART3)

5000 00A4h (UART4)

5000 10A4h (UART5)

5000 20A4h (UART6)

5000 30A4h (UART7)

5000 40A4h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — — bUart_H
TX

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.33 rUart_HTX Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 bUart_HTX Halt Transmission
This register is used to halt transmissions for testing, so that the transmit FIFO can be
filled by the master when FIFOs are enabled.

1’b0 = Halt Transmission disabled
1’b1 = Halt Transmission enabled

Note) If FIFOs are not enabled, the setting of the bUart_HTX register has no effect on
operation.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 64 of 637
Dec 29, 2021

1.4.26 rUart_DMASA — DMA Software Acknowledge
● Only for UART4..8

Address: 5000 00A8h (UART4)

5000 10A8h (UART5)

5000 20A8h (UART6)

5000 30A8h (UART7)

5000 40A8h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — — bUart_D
MASA

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.34 rUart_DMASA Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 bUart_DMASA This register is used to perform a DMA Software acknowledge if a transfer needs to be
terminated due to an error condition. An ACK response is executed by writing 1b to
this bit.
For example, if the DMA disables the channel, then the UART should clear its request.
This causes the transmit and receive request signals to de-assert.

Note) This bit is “self-clearing”. It is not necessary to clear this bit.

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 65 of 637
Dec 29, 2021

1.4.27 rUart_TO — Time-Out Counter Configuration Register
The Time-Out delay period during which the receiver or transceiver waits for a new character.

Address: 4006 0100h (UART1)

4006 1100h (UART2)

4006 2100h (UART3)

5000 0100h (UART4)

5000 1100h (UART5)

5000 2100h (UART6)

5000 3100h (UART7)

5000 4100h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bUart_TO3 bUart_TO2

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bUart_TO1 bUart_TO0

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.35 rUart_TO Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b24 bUart_TO3 bUart_TO[n] with n = 0..3
Time-Out n value with n = 3
There are 4 Time-Out
● Two for reception bUart_TO0..1, dedicated for idle condition (Silent Interval

Detection) on UART_RXD
● Two for transmission bUart_TO2..3, dedicated for idle condition (Silent Interval

Detection) on UART_TXD

For each Time-Out (n = 0..3), we have:
8’h0:

- The Time-Out is disabled.
8’h1..8’hff:

- The Time-Out is enabled and the Time-out delay is bUart_TO[n] ×
 “Baud clock period”.

See Section 1.5.1.1, UART (RS232) Serial Protocol.
See Section 1.5.1.10(2), Transceiver Time-Out.
See Section 1.5.1.10(1), Receiver Time-Out.
The baud clock is set by the baud rate divisor (bUart_DLL and bUart_DLH).

The time-out delay period is the time during which the receiver or transceiver waits for
a new character on UART_RXD (Time-Out n with n = 0..1) or UART_TXD (Time-Out n
with n = 2..3 output).
If the bUart_TO[n] field is programmed at 0, the clocking of Time-Out Counter is
stopped, the counter keeps current value. The bUart_TIMEOUTInt[n] bit in
rUart_STATUSTO keeps current value.
Otherwise, the receiver counter [n] with n = 0..1 or the transceiver counter [n] with n =
2..3 loads an 8-bit counter with the value programmed in bUart_TO[n].

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 66 of 637
Dec 29, 2021

Table 1.35 rUart_TO Register Contents (2/2)

Bit Position Bit Name Function R/W

 This counter [n] is decremented at each bit period and reloaded each time a new
character is received (n = 0..1) or transmitted (n = 2..3).
If the counter [n] reaches 0, the bUart_TIMEOUTInt[n] bit in the Time-Out Counter
Status Register (rUart_STATUSTO) rises and activates an interruption (if not
masked). When the counter reaches 0, it remains locked until reception of a LOAD
command.
See Figure 1.14, Receiver Time-Out Synoptic.
See Figure 1.15, Transceiver Time-Out Synoptic.
See Figure 1.16, Receiver & Transceiver Time-Out0..3, Timing Description.
See Section 1.5.1.10(1), Receiver Time-Out.
See Section 1.5.1.10(2), Transceiver Time-Out.

b23 to b16 bUart_TO2 Time-Out n value with n = 2
See description detailed above

R/W

b15 to b8 bUart_TO1 Time-Out n value with n = 1
See description detailed above

R/W

b7 to b0 bUart_TO0 Time-Out n value with n = 0
See description detailed above

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 67 of 637
Dec 29, 2021

1.4.28 rUart_CTRLTO — Time-Out Control Register

Address: 4006 0104h (UART1)

4006 1104h (UART2)

4006 2104h (UART3)

5000 0104h (UART4)

5000 1104h (UART5)

5000 2104h (UART6)

5000 3104h (UART7)

5000 4104h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — bUart_TG

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — —

bUart_E
nableFil
teringR

XD

bUart_E
nableD

E

bUart_R
EARMT

O3

bUart_R
EARMT

O2

bUart_R
EARMT

O1

bUart_R
EARMT

O0

bUart_S
TARTT

O3

bUart_S
TARTT

O2

bUart_S
TARTT

O1

bUart_S
TARTT

O0

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.36 rUart_CTRLTO Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b24 Reserved R

b23 to b16 bUart_TG Time-Guard value
Not available in this LSI.
Keep the initial value.

R/W

b15 to b10 Reserved R

b9 bUart_EnableFiltering
RXD

Allows the filtering of UART_RXD in Half-Duplex mode
Not available in this LSI.
Keep the initial value.

R/W

b8 bUart_EnableDE Allow the multiplexing of external pin UART_RTS_N.
Not available in this LSI.
Keep the initial value.

R/W

b7 bUart_REARMTO3 bUart_REARMTO[n] with n = 0..3, Rearm Time-out
Rearm Time-Out n value with n = 3
For each Time-Out (n = 0..3), we have:

0 = No effect
1 = Restart the Time-Out counter

After activation of bUart_REARMTO[n] (n = 0..3) (Rising edge detection), the counter
starts counting down immediately from the bUart_TO[n] (n = 0..3).
See Figure 1.14, Receiver Time-Out Synoptic.
See Figure 1.15, Transceiver Time-Out Synoptic.
See Section 1.5.1.10(1), Receiver Time-Out.
See Section 1.5.1.10(2), Transceiver Time-Out.

R/W

b6 bUart_REARMTO2 Rearm Time-Out n value with n = 2
See description detailed above

R/W

b5 bUart_REARMTO1 Rearm Time-Out n value with n = 1
See description detailed above

R/W

b4 bUart_REARMTO0 Rearm Time-Out n value with n = 0
See description detailed above

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 68 of 637
Dec 29, 2021

Table 1.36 rUart_CTRLTO Register Contents (2/2)

Bit Position Bit Name Function R/W

b3 bUart_STARTTO3 bUart_STARTTO[n] with n = 0..3, Start Time-out
Start Time-Out n value with n=3
For each Time-Out (n = 0..3), we have:

0 = No effect
1 = Starts an initialization of the Time-Out Counter

After activation of bUart_STARTTO[n] (n = 0..3) (Rising edge detection), initializes the
Time-Out counter and turns it in the locked state.
See Figure 1.14, Receiver Time-Out Synoptic.
See Figure 1.15, Transceiver Time-Out Synoptic.
See Section 1.5.1.10(1), Receiver Time-Out.
See Section 1.5.1.10(2), Transceiver Time-Out.

R/W

b2 bUart_STARTTO2 Start Time-Out n value with n = 2
See description detailed above

R/W

b1 bUart_STARTTO1 Start Time-Out n value with n = 1
See description detailed above

R/W

b0 bUart_STARTTO0 Start Time-Out n value with n = 0
See description detailed above

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 69 of 637
Dec 29, 2021

1.4.29 rUart_STATUSTO — Time-Out Counter Status Register
The Software driver (application) reads this register during interrupt service routine or polling to determine the status of
each Time-Out.

Address: 4006 0108h (UART1)

4006 1108h (UART2)

4006 2108h (UART3)

5000 0108h (UART4)

5000 1108h (UART5)

5000 2108h (UART6)

5000 3108h (UART7)

5000 4108h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — bUart_D
E

bUart_T
IMEOU
TStatus

3

bUart_T
IMEOU
TStatus

2

bUart_T
IMEOU
TStatus

1

bUart_T
IMEOU
TStatus

0

bUart_T
IMEOU
TInt3

bUart_T
IMEOU
TInt2

bUart_T
IMEOU
TInt1

bUart_T
IMEOU
TInt0

Value after reset 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

Table 1.37 rUart_STATUSTO Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b9 Reserved R

b8 bUart_DE This register gives the internal value of the Transmit Data Enable.
Not available in this LSI. Ignore the read value.

R

b7 bUart_TIMEOUTStatu
s3

bUart_TIMEOUTStatus[n] with n = 0..3, Time-Out Detection Status
Time-Out n Detection Status with n = 3
This register is usually read by the Software driver during an interrupt service routine
or polling.
There are 4 Time-Out (bUart_TO[n] with n = 0.3)
● Two for reception bUart_TO0..1, dedicated for idle condition (Silent Interval

Detection) on UART_RXD
● Two for transmission bUart_TO2..3, dedicated for idle condition (Silent Interval

Detection) on UART_TXD

For each Time-Out n with n = 0..3, we have:
1’b0 = The Time-Out Counter[n] value is different of “0”.
1’b1 = The Time-Out Counter[n] value is equal of “0”.

See Section 1.5.1.10, Transceiver & Receiver Time-Out for MODBUS
Management.
See Figure 1.14, Receiver Time-Out Synoptic.
See Figure 1.15, Transceiver Time-Out Synoptic.
See Figure 1.16, Receiver & Transceiver Time-Out0..3, Timing Description.
See Section 1.5.1.10(1), Receiver Time-Out.
See Section 1.5.1.10(2), Transceiver Time-Out.

R

b6 bUart_TIMEOUTStatu
s2

Time-Out n Detection Status with n = 2
See description detailed above

R

b5 bUart_TIMEOUTStatu
s1

Time-Out n Detection Status with n = 1
See description detailed above

R

b4 bUart_TIMEOUTStatu
s0

Time-Out n Detection Status with n = 0
See description detailed above

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 70 of 637
Dec 29, 2021

Table 1.37 rUart_STATUSTO Register Contents (2/2)

Bit Position Bit Name Function R/W

b3 bUart_TIMEOUTInt3 bUart_TIMEOUTInt[n] with n = 0..3, Time-Out Detection Interruption
Time-Out n Detection Interruption with n = 3

This register is usually read by the Software driver during an interrupt service routine
or polling. Most of the fields in this register cause the host to be interrupted.
There are 4 Time-Out (bUart_TO[n] with n=0.3)
● Two for reception bUart_TO0..1, dedicated for idle condition (Silent Interval

Detection) on UART_RXD
● Two for transmission bUart_TO2..3, dedicated for idle condition (Silent Interval

Detection) on UART_TXD

For each Time-Out n with n = 0..3, we have:
1’b0 = There has not been a Time-Out since the last Start Time-out command.

There is not active interruption from Time-Out.
1’b1 = There has been a Time-Out since the last Start Time-Out command. When

this bit is high, the interrupt signal, UART_Int, is high. Each field (bits[3:0]) can
be masked by masking the appropriate bit in rUart_IER register. See Section
1.5.1.6, Interrupts.

In this register, the bits are not cleared when read. Writing 1’b1 to (unreserved) bits in
this register (bits[3:0]) clears them and writing 1’b0 has no effect.

Each Time-Out n with n = 0..3 can be started or reset by appropriate bit in
rUart_CTRLTO register
See Section 1.5.1.10, Transceiver & Receiver Time-Out for MODBUS
Management.
See Figure 1.14, Receiver Time-Out Synoptic.
See Figure 1.15, Transceiver Time-Out Synoptic.
See Figure 1.16, Receiver & Transceiver Time-Out0..3, Timing Description.
See Section 1.5.1.10(1), Receiver Time-Out.
See Section 1.5.1.10(2), Transceiver Time-Out.

R/W

b2 bUart_TIMEOUTInt2 Time-Out n Detection Interruption with n = 2
See description detailed above

R/W

b1 bUart_TIMEOUTInt1 Time-Out n Detection Interruption with n = 1
See description detailed above

R/W

b0 bUart_TIMEOUTInt0 Time-Out n Detection Interruption with n = 0
See description detailed above

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 71 of 637
Dec 29, 2021

1.4.30 rUart_TDMACR — DMA Control Register in Transmit Mode
● Only for UART4..8

CAUTION

Only these UARTs can manage DMA request with DMA controller.

Address: 5000 010Ch (UART4)

5000 110Ch (UART5)

5000 210Ch (UART6)

5000 310Ch (UART7)

5000 410Ch (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — bUart_CURRENT_DEST_BLOCK_SIZE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bUart_DEST_BLOCK_SIZE bUart_DEST_B
URST_SIZE

bUart_T
DMAE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.38 rUart_TDMACR Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b29 Reserved R

b28 to b16 bUart_CURRENT_DE
ST_BLOCK_SIZE

Current remaining of DEST_BLOCK_SIZE.
This field is decremented each time the block transfer ends.
bUart_CURRENT_DEST_BLOCK_SIZE is reloaded with bUart_DEST_BLOCK_SIZE
value, when the firmware:

Set “1” on bUart_TDMAE (rising edge)

R

b15 to b3 bUart_DEST_BLOCK
_SIZE

DEST_BLOCK_SIZE
Destination Block Transfer Size in Transmit FIFO.
UART is the flow controller. Thus, the user must write this field before or at the same
time the DMA mode is enabled. The number programmed into DEST_BLOCK_SIZE
indicates the total number of single transactions to perform for each block transfer.
The size of single transaction is one byte.
Once the transfer starts, the read of bUart_DEST_BLOCK_SIZE gives the total
number of data bytes to be written in the Transmit FIFO in order to end the block
transfer.

13’d0 = 0 byte to transfer or end of block transfer
13’d1 = 1 byte to transfer
13’d2 = 2 bytes to transfer
 ∙∙∙ ∙∙∙
13’d8191 = 8191 bytes to transfer

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 72 of 637
Dec 29, 2021

Table 1.38 rUart_TDMACR Register Contents (2/2)

Bit Position Bit Name Function R/W

b2, b1 bUart_DEST_BURST
_SIZE

DEST_BURST_SIZE
Destination Burst Transaction Size in Transmit FIFO.
UART is the flow controller. Thus, the user must write this field before or at the same
time the DMA mode is enabled. Number of data byte, to be written to the Transmit
FIFO every time a transmit burst transaction request are made on DMA request.

2’b00 = 1 byte
2’b01 = 4 bytes
2’b10 = 8 bytes
2’b11 = Reserved, not used

R/W

b0 bUart_TDMAE Transmit DMA Enables/Disables.
1’b0 = Disable the DMA in Transmit mode
1’b1 = Enable the DMA in Transmit mode

The bUart_TDMAE is automatically cleared by hardware to disable the DMA in
Transmit mode after the last transfer in Transmit FIFO has completed
(DEST_BLOCK_SIZE bytes written in Transmit FIFO).
Software can therefore poll this bit to determine when this channel is free for a new
DMA transfer.
When disable, no DMA request is asserted.
When enable, UART manages the DMA request with DMA controllers.

Caution) If this bit is clear during a DMA transfer, the current transfer (Burst or
Single) is finished before the stop of DMA mode. To complete the DMA
Block transfer, write the bUart_DEST_BLOCK_SIZE with the
bUart_CURRENT_DEST_BLOCK_SIZE, and bUart_DEST_BURST_SIZE
with the appropriate value.
The bUart_CURRENT_DEST_BLOCK_SIZE value will be consistent only
when the current transfer is finished.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 73 of 637
Dec 29, 2021

1.4.31 rUart_RDMACR — DMA Control Register in Receive Mode
● Only for UART4..8

CAUTION

Only these UARTs can manage DMA request with DMA controller.

Address: 5000 0110h (UART4)

5000 1110h (UART5)

5000 2110h (UART6)

5000 3110h (UART7)

5000 4110h (UART8)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — bUart_CURRENT_SRC_BLOCK_SIZE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bUart_SRC_BLOCK_SIZE bUart_SRC_BU
RST_SIZE

bUart_R
DMAE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.39 rUart_RDMACR Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b29 Reserved R

b28 to b16 bUart_CURRENT_SR
C_BLOCK_SIZE

Current remaining of SRC_BLOCK_SIZE.
This field is decremented each time the block transfer ends.
bUart_CURRENT_SRC_BLOCK_SIZE is reloaded with bUart_SRC_BLOCK_SIZE
value, when the firmware:

Set “1” on bUart_RDMAE (rising edge)

R

b15 to b3 bUart_SRC_BLOCK_
SIZE

SRC_BLOCK_SIZE
Source Block Transfer Size in Receive FIFO.
UART is the flow controller. Thus, the user must write this field before or at the same
time the DMA mode is enabled. The number programmed into SRC_BLOCK_SIZE
indicates the total number of single transactions to perform for each block transfer.
The size of single transaction is one byte.

13’d0 = 0 byte to transfer or end of block transfer
13’d1 = 1 byte to transfer
13’d2 = 2 bytes to transfer
∙∙∙ ∙∙∙
13’d8191 = 8191 bytes to transfer

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 74 of 637
Dec 29, 2021

Table 1.40 rUart_RDMACR Register Contents (2/2)

Bit Position Bit Name Function R/W

b2, b1 bUart_SRC_BURST_
SIZE

SRC_BURST_SIZE
Source Burst Transaction Size in Receive FIFO.
UART is the flow controller. Thus, the user must write this field before or at the same
time the DMA mode is enabled. Number of data byte, to be read to the Receive FIFO
every time a receive burst transaction request are made on DMA request.

2’b00 = 1 byte
2’b01 = 4 bytes
2’b10 = 8 bytes
2’b11 = Reserved, not used

R/W

b0 bUart_RDMAE Receive DMA Enables/Disables.
1’b0 = Disable the DMA in Receive mode
1’b1 = Enable the DMA in Receive mode

The bUart_RDMAE is automatically cleared by hardware to disable the DMA in
Receive mode after the last transfer in Receive FIFO has completed
(SRC_BLOCK_SIZE bytes read in Receive FIFO). Software can therefore poll this bit
to determine when this channel is free for a new DMA transfer.
When disable, no DMA request is asserted.
When enable, UART manages the DMA request with DMA controllers.

Caution) If this bit is clear during a DMA transfer, the current transfer (Burst or
Single) is finished before the stop of DMA mode. To complete the DMA
Block transfer, write the bUart_SRC_BLOCK_SIZE with the
bUart_CURRENT_SRC_BLOCK_SIZE, and bUart_SRC_BURST_SIZE
with the appropriate value.
The bUart_CURRENT_SRC_BLOCK_SIZE value will be consistent only
when the current transfer is finished.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 75 of 637
Dec 29, 2021

1.5 Operation

1.5.1 Main Function Blocks Description

1.5.1.1 UART (RS232) Serial Protocol
Because the serial communication between the UART and the selected device is asynchronous, additional bits (start and
stop) are added to the serial data to indicate the beginning and end. Utilizing these bits allows two devices to be
synchronized. This structure of serial data accompanied by start and stop bits is referred to as a character, as shown in
figure below.

Bit
Time

StartSerial Data Parity5-8Data bits Stop 1, 1.5, 2

One Character

Figure 1.3 Serial Data Format

An additional parity bit may be added to the serial character. This bit appears after the last data bit and before the stop
bit(s) in the character structure to provide the UART with the ability to perform simple error checking on the received
data.

The UART Line Control Register (rUart_LCR) is used to control the serial character characteristics. The individual bits
of the data word are sent after the start bit, starting with the least significant bit (LSB). These are followed by the
optional parity bit, followed by the stop bit(s), which can be 1, 1.5 or 2.

CAUTION

● For details on idle time between transmitted transfers, refer to Section 1.5.1.5, Back to Back Character Stream
Transmission.

● The STOP bit duration implemented by UART can appear longer due to:
 a) Idle time inserted between characters for some configurations
 b) Baud rate divisor values in the transmit direction

All the bits in the transmission are transmitted for exactly the same time duration; the exception to this is the half-stop
bit when 1.5 stop bits are used. This duration is referred to as a Bit Period or Bit Time; one Bit Time equals a baud
clock period. Internal operation is performed with the base clock (16 times frequency of the baud clock).
To ensure stability on the line, the receiver samples the serial input data at approximately the midpoint of the Bit Time
once the start bit has been detected. Because the exact number of base clocks is known for which each bit was
transmitted, calculating the midpoint for sampling is not difficult; that is, a baud clock after the midpoint sample of the
start bit.
Together with serial input de-bouncing, this sampling helps to avoid the detection of false start bits. Short glitches are
filtered out by de-bouncing, and no transition is detected on the line. If a glitch is wide enough to avoid filtering by de-
bouncing, a falling edge is detected. However, a start bit is detected only if the line is again sampled low after half a bit
time has elapsed.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 76 of 637
Dec 29, 2021

The figure below shows the sampling points of the first couple of bits in a serial character.

StartSerial Data In Data Bit0 (LSB) Data Bit1

8 16 16

Base clock
(16 times frequency
of the baud clock)

Figure 1.4 Receiver Serial Data Sample

As part of the standard 16550, a baud clock module provides timing information. The baud clock of the UART is
controlled by UART_SCLK and the baud rate divisor (rUart_DLH and rUart_DLL). The baud clock is equal to
UART_SCLK frequency divided by sixteen times the value of the baud rate divisor, as follows:

Baud clock =
UART_SCLK

16 × baud rate divisor

1.5.1.2 Baud Rate Tolerance to 19200 baud
Evaluation of tolerance on baud rate in reception at 19200 baud (UART_SCLK: 48 MHz）

Configuration UART baud rate in reception:
● The firmware must write rUart_DLL & rUart_DLH registers a value of 16’d156

− (48/16)/156 = 0.0192307 → 19230 baud

− We have an error of +0.16% on baud rate configuration

Maximum configuration UART baud rate in transmission with reception:
● The firmware must write rUart_DLL & rUart_DLH registers a value of 16’d151

− (48/16)/151 → 19867 baud

− We have an error of +3.47% on baud rate configuration

Minimum configuration UART baud rate in transmission with reception:
● The firmware must write rUart_DLL & rUart_DLH registers a value of 16’d161

− (48/16)/161 → 18633 baud

− We have an error of −2.95% on baud rate configuration

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 77 of 637
Dec 29, 2021

1.5.1.3 FIFO Management
Two separates FIFOs (16 × 8 bits) are available to buffer transmit and receive data to reduce CPU interrupts with
programmable FIFO enable/disable. This means that the CPU does not have to access the UART each time a single byte
of data is received.

The programmable FIFO Access mode is available for test purposes, which allows the receive FIFO to be written by the
CPU and the transmit FIFO to be read by the CPU.

The FIFO Access mode can be enabled with the FIFO Access Register, (rUart_FAR register). Once enabled, the control
portions of the transmit and receive FIFOs are reset and the FIFOs are treated as empty.

Data can be written to the transmit FIFO as normal, however no serial transmission occurs in this mode (normal
operation halted) and hence no data leave the FIFO. The data that has been written to the transmit FIFO can be read
back with the Transmit FIFO Read (rUart_TFR register), which when read gives the current data at the top of the
transmit FIFO.

Similarly, data can be read from the receive FIFO as normal. Since the normal operation of the UART is halted in this
mode, data must be written to the receive FIFO so it may be read back.

Data is written to the receive FIFO with the Receive FIFO Write (rUart_RFW register). The upper two bits of the 10-bit
register (bUart_RFFE & bUart_RFPE) are used to write framing error and parity error detection information to the
receive FIFO.

Setting bUart_RFFE to indicate a framing error and bUart_RFPE to indicate a parity error. Although these bits cannot
be read back via the Receive Buffer Register they can be checked by reading the Line Status Register and checking the
corresponding bits when the data in question is at the top of the receive FIFO.

1.5.1.4 Clock Management
UART uses two asynchronous domain clocks

● UART_PCLK APB clock domain in Subsystem

● UART_SCLK Serial reference clock

A synchronization module is implemented for synchronization of all control and data across the two system clock
boundaries. It generates an additional latency between two domain clocks.

Here are a few things to keep in mind:

● There is slightly more time required after initial serial control register programming before serial data can be
transmitted or received.

● The serial clock modules must have time to see new register values and reset their respective state machines. This
total time is guaranteed to be no more than eight clock cycles of the slower of the two system clocks. Therefore, no
data should be transmitted or received before this maximum time expires, after initial configuration.

1.5.1.5 Back to Back Character Stream Transmission
This section describes:

● Scenarios under which the UART is capable of transmitting back to back characters on the serial interface, with no
idle time between them

● Worst case idle time that exists between back to back characters

When the Transmit FIFO contains multiple data entries, the UART transmits the characters in the FIFO back to back on
the serial bus. However, because synchronization of all control and data across the two system clock boundaries. We

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 78 of 637
Dec 29, 2021

have an additional latency between two domain clocks. This delay can cause an IDLE period between the end of the
current STOP bit and the beginning of the next START bit; this appears as an extended STOP bit duration on the serial
bus.

Because synchronization delay between the transmitter in the UART_SCLK domain and the TX FIFO in the
UART_PCLK domain when querying if another character is ready for transmission. The transmitter begins the
handshake one base clock (16 times frequency of the baud clock) before the end of the current STOP bit. The duration
of the synchronization delay (sync_delay) is given by the following equations:

sync_delay = 4 × UART_SCLK + 5 × UART_PCLK periods

If the sync_delay duration is longer than one base clock (16 times frequency of the baud clock) period, an IDLE period
will be inserted between the end of a STOP bit and the beginning of the next START bit. To prevent insertion of the
IDLE period, the following condition must be true:

sync_delay ≤ base clock period

− The worst case timing of the inserted IDLE period is given by:
 worst_case_idle_duration = sync_delay + (15 × base clock period)
The worst_case_idle_duration can be added to the programmed STOP bit duration to give the overall STOP bit
period

1.5.1.6 Interrupts
The assertion of the UART_Int occurs whenever one of the several prioritized interrupt types are enabled and active.
The following interrupt types can be enabled with the rUart_IER register:

● Receiver Line Status

● Received Data Available

● Character Timeout (in FIFO mode only)

● Transmit Holding Register Empty at/below threshold (in Programmable THRE interrupt mode)

● Modem Status

● Busy Detect Indication

● Receiver Time Out0..1 on UART_RXD

● Transceiver Time Out2..3 on UART_TXD

These interrupt types are covered in more detail in Table 1.41, Interrupt Control Functions.

When an interrupt occurs, the master accesses the rUart_IIR register to determine the source of the interrupt before
dealing with it accordingly.

In the FIFO mode (bUart_FIFOE = 1), the Receiver Line Status interrupt with the following sources: break Interrupt,
framing error, parity error is revealed when the character with the error arrives at the top of the FIFO.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 79 of 637
Dec 29, 2021

Table 1.41 Interrupt Control Functions

bUart_IID
Priority
Level

Interrupt
Type Interrupt Source Interrupt Enable Interrupt Reset Control

4’b0001 — None None — —

4’b0110 Highest Receiver
Line Status

Overrun/parity/framing errors or break
interrupt
In the FIFO mode (bUart_FIFOE set to one),
the Receiver Line Status interrupt with the
following sources: break Interrupt, framing
error, parity error is revealed when the
character with the error arrives at the top of
the FIFO.

bUart_ELSI Reading the Line Status
Register.

4’b0100 Second Received
Data
available

Receiver data available (FIFOs disabled) or
Receive FIFO trigger level reached (FIFOs
enabled).

bUart_ERBFI Reading the Receive
Buffer Register (FIFOs
disabled) or the FIFO
drops below the trigger
level (FIFOs enabled).

4’b1100 Second Character
Timeout
Indication

No characters in or out of the Receive FIFO
during the last 4-character times and there is
at least 1 character in it during this time. (in
FIFO mode only)

bUart_ERBFI Reading the Receive
Buffer Register.

4’b0010 Third Transmit
Holding
Register
empty
or
Transmit
FIFO level
at or below
threshold

Transmit Holding Register empty
(Programmable THRE Mode disabled) or
Transmit FIFO level at or below threshold
(ProgrammableTHRE Mode enabled)
After a clear on THRE interrupt by reading
Interrupt Identification Register, although the
interrupt source is always true, an internal
mask will de-assert the THRE interrupt. This
interrupt will be re-asserted at the start of
each transfer if the interrupt source is always
true.

bUart_ETBEI
bUart_PTIME

Reading the Interrupt
Identification Register (if
THRE is the source of
interrupt) or writing into
Transmit Holding Register
(FIFOs or Programmable
THRE Mode disabled) or
Transmit FIFO level
above threshold (FIFOs
and Programmable THRE
Mode enabled).

4’b0000 Fourth Modem
Status

Clear to send or data set ready or ring
indicator or data carrier detect.

Note) If auto flow control mode is enabled, a
change in bUart_CTS (bUart_DCTS
set) does not cause an interrupt.

bUart_EDSSI Reading the Modem
Status Register.

4’b0111 Fifth Busy Detect
Indication

Master has tried to write to the Line Control
Register while the UART is busy
(bUart_BUSY is set to one).

— Reading the UART Status
Register.

4’b0101 Sixth Receiver
Transceiver
Time-Out

This feature detects an idle condition on the
UART_RXD or UART_TXD line. When a
Time-Out is detected, the
bUart_TIMEOUTInt[n] (n = 0..3) bit in the
status register (rUart_STATUSTO) rises and
generates an interrupt, thus indicating to the
driver an end of frame.
See Section 1.5.1.10, Transceiver &
Receiver Time-Out for MODBUS
Management.

bUart_ETIMEOUT[n]
(n = 0..3)

Reading the Time-Out
Counter Status Register
(rUart_STATUSTO).

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 80 of 637
Dec 29, 2021

1.5.1.7 Auto Flow Control
The UART can be configured to have a 16750 compatible Auto RTS and Auto CTS serial data flow control mode
available. Auto Flow Control mode can be enabled with bUart_AFCE bit in the Modem Control Register (rUart_MCR).

Auto RTS becomes active when the following occurs:

● bUart_RTS and bUart_AFCE bit of rUart_MCR register are both set

● FIFOs are enabled (bUart_FIFOE bit is set)

When Auto RTS is enabled (active), the UART_RTS_N output is forced inactive (high) when the FIFO is almost full,
where “almost full” refers to two available slots in the FIFO. When UART_RTS_N is connected to the UART_CTS_N
input of another UART device, the other UART stops sending serial data until the receive FIFO has available space
(until it is completely empty).

The selectable receive FIFO threshold values are:

● 1

● 1/4

● 1/2

● “2 less than full”

Since one additional character may be transmitted to the UART after UART_RTS_N has become inactive (due to data
already having entered the transmitter block in the other UART), setting the threshold to “2 less than full” allows
maximum use of the FIFO with a safety zone of one character.

Once the receive FIFO becomes completely empty by reading the Receiver Buffer Register (rUart_RBR),
UART_RTS_N again becomes active (low), signaling the other UART to continue sending data.

It is important to note that even if everything else is selected and the rUart_MCR register is set correctly, if the FIFOs
are disabled through bUart_FIFOE, Auto Flow Control is also disabled. When Auto RTS is disabled, UART_RTS_N is
controlled solely by bUart_RTS.

The figure below shows a timing diagram of Auto RTS operation.

start Character T stop start Character T+1 stop

1 2 3 T T+1

This character
was received because UART_RTS_N was not detected before
next character entered the sending-UART’s transmitter

T = Receive FIFO Threshold Value

UART_RXD

UART_RTS_N

Receive FIFO Read

Figure 1.5 Auto RTS Timing

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 81 of 637
Dec 29, 2021

Auto CTS becomes active when the following occurs:

● bUart_AFCE bit of rUart_MCR register is set

● FIFOs are enabled (bUart_FIFOE bit is set)

When Auto CTS is enabled (active), the UART transmitter is disabled whenever the UART_CTS_N input becomes
inactive (high). This prevents overflowing the FIFO of the receiving UART.

If the UART_CTS_N input is not inactivated before the middle of the last STOP bit, another character is transmitted
before the transmitter is disabled. While the transmitter is disabled, the transmit FIFO can still be written to, and even
overflowed.

Therefore, when using this mode, the following happens:

● The UART status register can be read to check if the transmit FIFO is full (bUart_TFNF = 0).

● The current FIFO level can be read via the rUart_TFL register.

● The Programmable THRE Interrupt mode must be enabled to access the “FIFO full” status via the Line Status
Register (rUart_LSR).

When using the “FIFO full” status, Software can poll this before each write to the Transmitter FIFO. See Section
1.5.1.8, Programmable THRE interrupt for details. When the UART_CTS_N input becomes active (low) again,
transmission resumes.

It is important to note that even if everything else is selected, if the FIFOs are disabled via bUart_FIFOE, Auto Flow
Control is also disabled. When Auto CTS is disabled, the transmitter is unaffected by UART_CTS_N.

A timing diagram showing Auto CTS operation can be seen in figure below.

UART_TXD

UART_CTS_N

start start startData Bits stop stopData Bits Data Bits stop

Disabled

Figure 1.6 Auto CTS Timing

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 82 of 637
Dec 29, 2021

1.5.1.8 Programmable THRE interrupt
The UART have a Programmable THRE Interrupt mode available to increase system performance and can be enabled
via the Interrupt Enable Register (bUart_PTIME of rUart_IER).

When FIFOs and the Programmable THRE Mode are enabled, THRE Interrupts mode (when also enabled) and UART
DMA request are active at, and below, a programmed transmit FIFO empty threshold level, as opposed to empty, as
shown in the flowchart in figure below.

CLEAR INTR

FIFO LEVEL >
TX Emtpy Trigger?

THRE Interrupt
Enabled?

SET INTR

FIFO LEVEL >
TX Emtpy Trigger or

rUart_IIR Read?

Y

Y

Y

N

N

N

For the THRE interrupt to be controlled as shown
here, the following conditions must be true:
FIFOs Enable
-- bUart_FIFOE ==1 (rUart_FCR register)
Programmable THRE mode Enabled
-- bUart_PTIME ==1 (rUart_IER register)

THRE Interrupt Enable (see bUart_ETBEI) Transmit
FIFO Level (rUart_TFL register)
Transmit FIFO Empty Trigger (bUart_TET)

Under the condition that there are no other
pending interrupts, the interrupt signal UART_int is
asserted

Figure 1.7 Flowchart of Interrupt Generation, Programmable THRE Interrupt Mode & FIFO Enable

This threshold trigger level (Transmit FIFOs Empty trigger) is programmed into bUart_TET bits. The available empty
thresholds are: empty, 2, 1/4 and 1/2. See rUart_FCR register for threshold setting details.

Selection of the best threshold value depends on the system’s ability to begin a new transmission sequence in a timely
manner. However, one of these thresholds should prove optimum in increasing system performance by preventing the
transmit FIFO from running empty.

In addition to the interrupt change, bUart_THRE bit in Line Status Register (rUart_LSR register) also switches function
from indicating transmit FIFO empty to FIFO full. This allows Software to fill the FIFO each transmit sequence by
polling bUart_THRE before writing another character. The flow then allows the transmit FIFO to be filled whenever an
interrupt occurs and there is data to transmit, rather than waiting until the FIFO is completely empty. Waiting until the
FIFO is empty causes a reduction in performance whenever the system is too busy to respond immediately. Further
system efficiency is achieved when this mode is enabled in combination with Auto Flow Control.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 83 of 637
Dec 29, 2021

Even if everything else is selected and enabled, if the FIFOs are disabled using the bUart_FIFOE bit, the Programmable
THRE Interrupt mode is also disabled. When not selected or disabled, THRE interrupts and the bUart_THRE bit
function normally, signifying an empty THR or FIFO.

The figure below illustrates the flowchart of THRE interrupt generation when not in programmable THRE interrupt
mode.

CLEAR INTR

TX FIFO EMPTY?

THRE Interrupt
Enabled?

SET INTR

TX FIFO Not Empty
or rUart_IIR Read?

N

Y

Y

N

N

Y

Under the condition that there
are no other pending interrupts,
the interrupt signal UART_Int is
asserted

THRE Interrupt Enable (see bUart_ETBEI)
Transmit FIFO Empty (see bUart_THRE)

For the THRE interrupt to be controlled as
shown here, one or more of the following
conditions must be true:
FIFOs Disable
-- bUart_FIFOE ==0 (rUart_FCR register)
Programmable THRE mode Disable
-- bUart_PTIME ==0 (rUart_IER register)

Figure 1.8 Flowchart of Interrupt Generation, Programmable THRE Interrupt Mode or FIFO Disable

After a clear on THRE interrupt by reading rUart_IIR, although the interrupt source is always true, an internal mask will
de-assert the THRE interrupt. This interrupt will be re-asserted at the start of each transfer if the interrupt source is
always true.

If the FIFOs are disabled via bUart_FIFOE (rUart_FCR register), the Programmable THRE Interrupt mode is also
disabled.

When Programmable THRE Interrupt mode are disabled, THRE interrupts and bUart_THRE bit in Line Status Register
(rUart_LSR register) function normally (both reflecting an empty rUart_THR or Transmit FIFO).

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 84 of 637
Dec 29, 2021

1.5.1.9 DMA Management (Only UART4, 5, 6, 7, 8)

(1) Overview on DMA Operation

These UARTs uses two DMA channels, one for the transmit data and one for the receive data. DMA controller must be
configured in peripheral flow controller mode.

These UARTs are configured to have additional DMA interface signals to indicate when data is ready to be read or
when the transmit FIFO is empty:

● Transmit DMA request is asserted under the following conditions:

− When the Transmit Holding Register (rUart_THR) is empty in non FIFO mode, in this mode the
DEST_BURST_SIZE must be programmed to 2’b00 (1 byte).

− When the transmit FIFO is empty in FIFO mode with Programmable THRE interrupt mode disabled

− When the transmit FIFO is at, or below the programmed threshold with Programmable THRE interrupt mode
enabled.

● Receive DMA request is asserted under the following conditions:

− When there is a single character available in the Receive Buffer Register (rUart_RBR) in non FIFO mode, in
this mode the SRC_BURST_SIZE must be programmed to 2’b00 (1 byte).

− When the Receiver FIFO is at or above the programmed trigger level in FIFO mode

With the presence of the DMA additional handshaking signals, the UART does not have to rely on internal status and
level values to recognize the completion of a request and hence remove the request. Instead, the de-assertion of the
DMA transmit and receive request is controlled by the assertion of the DMA acknowledge respectively.

When the UART is configured to have the additional DMA signals, the data flow (transfer lengths) responsibility falls
on the UART and is controlled by the programmed burst transaction lengths & block size.

The extra handshaking signals are explained in the DMA flow below for a UART that is configured with FIFOs and
Programmable THRE interrupt mode.

DMA controller must be configured in peripheral flow controller mode, because UART is a peripheral flow controller.

The UART must be programmed by the processor with the number of data items (block size) that are to be transmitted
or received by the UART. This is programmed into the DEST_BLOCK_SIZE/SRC_BLOCK_SIZE field of the
rUart_TDMACR & rUart_RDMACR registers of UART for Transmit FIFO and Receive FIFO, respectively. The block
is broken into a number of transactions, each initiated by a request from the UART.

The DMA Controller & the UART must also be programmed with the number of data byte by burst transaction (in this
case, UART FIFO entries) to be transferred for each DMA request. This is also known as the burst transaction length,
and is programmed into:

DMA controller:

The DEST_MSIZE/SRC_MSIZE fields of the DMA CTL[n] register for Transmit FIFO and Receive FIFO,
respectively.

UART:

The DEST_BURST_SIZE/SRC_BURST_SIZE fields of the rUart_TDMACR & rUart_RDMACR registers of UART
for Transmit FIFO and Receive FIFO, respectively.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 85 of 637
Dec 29, 2021

CAUTION

The burst transaction size must have the same values on DMA controller and UART.

(2) Transmit Watermark Level and Transmit FIFO Underflow

During UART serial transfers, transmit FIFO requests are made to the DMA whenever the number of entries in the
transmit FIFO is less than or equal to the decoded level of the Transmit Empty Trigger (bUart_TET) of the rUart_FCR
register.

This is known as the watermark level. The DMA responds by writing a burst of data to the transmit FIFO buffer, of
length CTL[n].DEST_MSIZE = DEST_BURST_SIZE.

Data should be fetched from the DMA often enough for the transmit FIFO to perform serial transfers continuously. That
is, when the FIFO begins to empty another DMA request should be triggered. Otherwise the FIFO runs out of data
(underflow). To prevent this condition, a software must set the watermark level correctly.

(3) Choosing the Transmit Watermark Level

Consider the example where the assumption is made:

DEST_BURST_SIZE = DMAC.CTL[n].DEST_MSIZE = FIFO_DEPTH − bUart_TET

Here the number of data items to be transferred in a DMA burst is equal to the empty space in the Transmit FIFO.
Consider two different watermark level settings.

Case1: bUart_TET = 01, which decodes to 2 characters in the FIFO

FIFO_DEPTH - decoded level
of bUart_TET =14

bUart_TET =01

FIFO_DEPTH: 16

FIFO_DEPTH: 16
Transmit FIFO watermark level = decoded level of bUart_TET = 2
DEST_BURST_SIZE= DMAC.CTL[n].DEST_MSIZE = FIFO_DEPTH - bUart_TET = 14 (Size of burst transaction)
DEST_BLOCK_SIZE = 56 (Block size to transfer)

EMPTY

FULL

Transmit FIFO
Watermark level

Data Out

UART Transmit FIFO

DMA
ControllerData In

Figure 1.9 Case 1: Transmit Watermark Level

Therefore, the number of burst transactions needed equals the block size divided by the number of data items per burst:

DEST_BLOCK_SIZE/DEST_BURST_SIZE = 56/14 = 4.

The number of burst transactions in the DMA block transfer is 4. But the watermark level, decoded level of bUart_TET,
is quite low. Therefore, the probability of an UART underflow is high where the UART serial transmit line needs to

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 86 of 637
Dec 29, 2021

transmit data, but where there is no data left in the transmit FIFO. This occurs because the DMA has not had time to
service the DMA request before the transmit FIFO becomes empty.

FIFO_DEPTH - decoded level
of bUart_TET =8

bUart_TET =11

Case2: bUart_TET = 11, which decodes to FIFO 1/2 full, 8 characters in the FIFO

FIFO_DEPTH: 16
Transmit FIFO watermark level = decoded level of bUart_TET = 8
DEST_BURST_SIZE= DMAC.CTL[n].DEST_MSIZE = FIFO_DEPTH - bUart_TET = 8 (Size of burst transaction)
DEST_BLOCK_SIZE = 56 (Block size to transfer)

FIFO_DEPTH: 16
EMPTY

FULL

UART Transmit FIFO
Data Out

Transmit FIFO
Watermark level

DMA
ControllerData In

Figure 1.10 Case 2: Transmit Watermark Level

Number of burst transactions in Block n:

DEST_BLOCK_SIZE/DEST_BURST_SIZE = 56/8 = 7

In this block transfer, there are 7 destination burst transactions in a DMA block transfer. But the watermark level,
decoded level of bUart_TET, is high. Therefore, the probability of an UART underflow is low because the DMA
controller has plenty of time to service the destination burst transaction request before the UART transmit FIFO
becomes empty.

Thus, the second case has a lower probability of underflow at the expense of more burst transactions per block. This
provides a potentially greater amount of request bursts per block and worse bus utilization than the former case.

Therefore, the goal in choosing a watermark level is to minimize the number of transactions per block, while at the
same time keeping the probability of an underflow condition to an acceptable level. In practice, this is a function of the
ratio of the rate at which the UART transmits data to the rate at which the DMA can respond to destination burst
requests.

For example, promoting the channel to the highest priority channel in the DMA, and promoting the DMA master
interface to the highest priority master in the bus layer, increases the rate at which the DMA controller can respond to
burst transaction requests. This in turn allows the user to decrease the watermark level, which improves bus utilization
without compromising the probability of an underflow occurring.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 87 of 637
Dec 29, 2021

(4) Selecting DEST_MSIZE and Transmit FIFO Overflow

It may cause overflow when there is not enough space in the UART transmit FIFO to service the destination burst
request.

Therefore, for optimal operation, we must configure:

● DMAC.CTL[n].DEST_MSIZE = DEST_BURST_SIZE = 4

● Set bUart_TET = 2’b11, FIFO 1/2 full

or

● DMAC.CTL[n].DEST_MSIZE = DEST_BURST_SIZE = 8

● Set bUart_TET = 2’b11, FIFO 1/2 full

CAUTION

The transmit FIFO is not full at the end of a DMA burst transfer if the UART has successfully transmitted one data item or
more on the UART serial transmit line during the transfer.

(5) Receive Watermark Level and Receive FIFO Overflow

During UART serial transfers, receive FIFO requests are made to the DMAC whenever the number of entries in the
receive FIFO is at or above the decoded level of Receiver Trigger (bUart_RCVR) of the rUart_FCR. This is known as
the watermark level.

The DMAC responds by reading a burst of data in the receive FIFO buffer of length CTL[n].SRC_MSIZE =
SRC_BURST_SIZE.

Data should be fetched by the DMAC often enough for the receive FIFO to accept serial transfers continuously. That is,
when the FIFO begins to fill, another DMA transfer is requested. Otherwise, the FIFO fills with data (overflow). To
prevent this condition, you must correctly set the watermark level.

(6) Choosing the Receive Watermark Level

Similar to choosing the transmit watermark level described earlier, the receive watermark level, decoded level of
bUart_RCVR, should be set to minimize the probability of overflow. It is a tradeoff between the number of DMA burst
transactions required per block versus the probability of an overflow occurring.

(7) Selecting SRC_MSIZE and Receive FIFO Underflow

It may cause underflow when there is not enough data to service the source burst request.

Therefore, for optimal operation, we must configure:

● DMAC.CTL[n].SRC_MSIZE = SRC_BURST_SIZE = 4

● Set bUart_RCVR= 2’b01, FIFO 1/4 full

or

● DMAC.CTL[n].SRC_MSIZE = SRC_BURST_SIZE = 8

● Set bUart_RCVR= 2’b10, FIFO 1/2 full

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 88 of 637
Dec 29, 2021

CAUTION

The receive FIFO is not empty at the end of the source burst transaction if the UART has successfully received one data
item or more on the UART serial receive line during the burst.

FIFO_DEPTH: 16

decoded level
of bUart_RCVR

EMPTY

FULL

Receive FIFO
Watermark level

Data Out
DMA

Controller

Data In

UART Receive FIFO

Figure 1.11 Case3: Receive Watermark Level

(8) Potential Deadlock Condition in UART with DMA Coupling on Receive Mode

If the DMA burst transaction length is identical to the UART Receive FIFO threshold (bUart_RCVR bit in
bUart_RCVR bit of the rUart_FCR register), there is risk of a deadlock condition occurring when a character is received
after UART_RTS_N is de-asserted.

The UART de-asserts UART_RTS_N when the Receive FIFO threshold is reached. However, it is possible the
component at the other end of the line starts transmitting a new character before it detects the de-assertion of its
UART_CTS_N input. When this happens, the character transmission completes normally, which means an extra
character will be received and pushed into the Receive FIFO (unless it is already full).

At the same time that UART_RTS_N is de-asserted, the UART asserts receive DMA request, requesting a DMA burst
transaction from the DMA controller. After the DMA controller completes this burst transaction (with length equal to
the Receive FIFO threshold), there is one character left in the Receive FIFO, preventing UART_RTS_N from being
asserted again.

The UART asserts single transaction DMA request, requesting a DMA single transaction to the DMA controller.
However, unless it is operating in the single transaction region, the DMAC ignores single transaction requests.

A deadlock condition is then reached:

● The UART does not receive any extra characters because the UART_RTS_N signal is de-asserted. No data can be
pushed into the Receive FIFO to fill it up to the threshold level again and generate a new burst transaction request
from the DMAC, only single transaction requests can be generated.

● Unless it has reached the single transaction region, the DMAC ignores single transaction requests and does not
read from the Rx FIFO. The Receive FIFO cannot be emptied, which prevents the UART_RTS_N signal from
being asserted again.

This deadlock condition can be avoided if:

● The Receive FIFO threshold level is set to a value smaller than the DMA burst transaction size. This ensures that
the Receive FIFO is always empty after a DMA burst transaction completes, regardless of whether or not one extra
character is received and UART_RTS_N is asserted accordingly.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 89 of 637
Dec 29, 2021

● The DMA block size is set to a value smaller than twice the DMA burst transaction length. This guarantees that the
DMAC enters the single transaction region after the DMA burst transaction completes. It then accepts single
transaction requests from the UART, allowing the Receive FIFO to be emptied.

This deadlock condition is not expected to occur frequently under normal operating conditions.

A timeout interrupt would be generated in this case, which can be used to detect the occurrence of this deadlock
condition.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 90 of 637
Dec 29, 2021

1.5.1.10 Transceiver & Receiver Time-Out for MODBUS Management
MODBUS Serial Line protocol is a Master-Slave protocol. This protocol takes place at level 2 of the OSI model.

A master-slave type system has one node (the master node) that issues explicit commands to one of the “slave” nodes
and processes responses. Slave nodes will not typically transmit data without a request from the master node, and do not
communicate with other slaves.

At the physical level, MODBUS over Serial Line systems may use different physical interfaces (RS485, RS232).
Transmit Data Enable (DE) signals are controlled by software using UART [m]_RTS_N or GPIO.

Two Wire interface is the most common. As an add-on option, a TIA/EIA-485 (RS485) Four Wire interface may also
be implemented. A TIA/EIA-232-E (RS232) serial interface may also be used as an interface, when only short point to
point communication is required.

See typical two-wire interface in figure below.

DI

DE

RO
RE

DI DE RO RE

DI

DE

RO
RE

DI DE RO RE

B/Z

A/Y B A B A

B

A

D

R

R
D D

R

R

D

120Ω 120Ω

Figure 1.12 Typical Half-Duplex RS485 Network

A MODBUS message is placed by the transmitting device into a frame that has a known beginning and ending point.
This allows devices that receive a new frame to begin at the start of the message, and to know when the message is
completed. Partial messages must be detected and errors must be set as a result.

In RTU mode, message frames are separated by a silent interval of at least 3.5-character times. In the following
sections, this time interval is called t3.5. See figure below.

The entire message frame must be transmitted as a continuous stream of characters.

If a silent interval of more than 1.5-character times (t1.5) occurs between two characters, the message frame is declared
incomplete and should be discarded by the receiver.

[Remark]
The implementation of RTU reception driver may imply the management of a lot of interruptions due to the t1.5 and
t3.5 timers. With high communication baud rates, this leads to a heavy CPU load.

Consequently, these two timers must be strictly respected when the baud rate is equal or lower than 19200 baud. For
baud rates greater than 19200 baud, fixed values for the 2 timers should be used: it is recommended to use a value of
750 µs for the inter character time out (t1.5) and a value of 1.750 ms for inter frame delay (t3.5).

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 91 of 637
Dec 29, 2021

Start Address Function Data CRC Check End
8 bits 8 bits N x 8 bits 16 bits

at least 3.5 char at least 3.5 char
t3.5

3.5 char

4.5 char

3.5 char 3.5 char

MODBUS message

t0

Frame 1 Frame 2 Frame 3

RTU Message Frame

t0

Frame 1 Frame 2

1.5 char 1.5 char
t1.5

NOKOK

Figure 1.13 MODBUS Frame & Constraint Timing

CAUTION

To work properly this equation must be true:
 UART_PCLK ≥ 4 × (UART_SCLK / baud rate divisor)

If UART_PCLK = 7.5 MHz and UART_SCLK = 83.33 MHz then

● The minimum baud rate divisor value = (83.33/7.5) × 4 = 45

● The maximum Baud rate is then UART_SCLK/(16 × 45) = 115 Kbaud

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 92 of 637
Dec 29, 2021

(1) Receiver Time-Out

Receiver Time-Out provides support in handling the interframe time (t1.5, t3.5) in MODBUS link.

There are two Receiver Time-Out.

This feature detects an idle condition (Silent Interval Detection) on the UART_RXD line.

The Time-Out delay period (during which the receiver waits for a new character) is programmed in the bUart_TO[n] (n
= 0..1) field of the Time-Out Register (rUart_TO). This time is equal to rUart_TO[n] × “Baud clock period”.

When a Time-Out is detected (0 value on Time-Out Counter[n] with n = 0..1), the bUart_TIMEOUTInt[n] (n = 0..1) bit
in the status register (rUart_STATUSTO) rises and can generate an interrupt (if not masked), thus indicating to the
driver an end of frame.

See Section 1.5.1.1, UART (RS232) Serial Protocol.
The baud clock is set by the baud rate divisor (bUart_DLL and bUart_DLH).

CAUTION

If the rUart_DLL and/or rUart_DLH registers are written during a busy state, the Time-Out functionality will not work
properly until the rUart_DLL and rUart_DLH registers are written during a no busy state.

If the bUart_TO[n] (n = 0..1) field is programmed at 0, the Receiver Time-Out is disabled and no Time-Out is detected.
The bUart_TIMEOUTInt[n] (n = 0..1) bit in rUart_STATUSTO remains at 0.

Otherwise, the counter [n] loads an 8-bit counter with the value programmed in bUart_TO[n] (n = 0..1). This counter is
decremented at each bit period and reloaded each time a new character is received. If the counter reaches 0, the
bUart_TIMEOUTInt[n] (n = 0..1) bit in the status register (rUart_STATUSTO) rises and activates an interrupt (if not
masked).

When the counter reaches 0, it remains locked until reception of a LOAD command (See synoptic below). The
bUart_TIMEOUTStatus[n] (n = 0..1) bit in the status register (rUart_STATUSTO) is available to have a status on
Time-Out Counter[n] (n = 0..1). This register is usually read by the Software driver during an interrupt service routine
or polling:

● 1’b0: The Time-Out Counter value is different of “0”.

● 1’b1: The Time-Out Counter value is equal of “0”.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 93 of 637
Dec 29, 2021

bUart_STARTTO[n]
with n=0..1

=

1 Logic 8 bits
Time-Out
Counter

CK

D Q

OR

Pulse generation when the
« START BIT »

of character is detected
on UART_RXD

bUart_REARMTO[n]
with n=0..1

OR

Baud Clock

0 Logic

iUartTimeOut[n]
with n=0..1

iUartLoadTimeOut[n]
with n=0..1

bUart_TIMEOUTInt[n]
with n=0..1

bUart_TO[n]
with n=0..1

CLR
LOAD

EN

Rise Edge
detection

When the counter reaches 0,
it remains locked
until reception of
a LOAD command

bUart_TIMEOUTStatus[n]
with n=0..1

Set when Rising edge detection
on iUartTimeOut[n] with n=0..1

On Reset
these registers
are cleared to 0

Rise Edge
detection

CKUART_PCLK

Figure 1.14 Receiver Time-Out Synoptic

When bUart_STARTTO[n] (n = 0..1) is set to 1 (Rising edge detection), the Time-Out counter is decremented to 0 by
UART_PCLK and it stops counting until a first character is received. This feature enables waiting for the start of the
next frame when the idle state on UART_RXD is detected.

When a start bit of a character is detected or bUart_REARMTO[n] (n = 0..1) is set to 1 (Rising edge detection), the
Time-Out counter starts counting down from the value of bUart_TO[n] (n = 0..1).

See details in Figure 1.16, Receiver & Transceiver Time-Out0..3, Timing Description.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 94 of 637
Dec 29, 2021

(2) Transceiver Time-Out

Transceiver Time-Out provides support in handling the interframe time (t1.5, t3.5) in MODBUS link.

There are two Transceiver Time-Out.

This feature detects an idle condition (Silent Interval Detection) on the UART_TXD line.

The Time-Out delay period (during which the transceiver waits for a new character) is programmed in the bUart_TO[n]
(n = 2..3) field of the Time-Out Register (rUart_TO). This time is equal to rUart_TO[n] × “Baud clock period”.

When a Time-Out is detected (0 value on Time-Out Counter[n] with n = 2..3), the bUart_TIMEOUTInt[n] (n = 2..3) bit
in the status register (rUart_STATUSTO) rises and can generate an interrupt (if not masked), thus indicating to the
driver an end of frame.

If the bUart_TO[n] (n = 2..3) field is programmed at 0, the clocking of Time-Out Counter is stopped, the counter keeps
current value. The bUart_TIMEOUTInt[n] (n = 2..3) bit in rUart_STATUSTO keeps current value.

Otherwise, the counter [n] loads an 8-bit counter with the value programmed in bUart_TO[n] (n = 2..3). This counter is
decremented at each bit period and reloaded each time a new character is transmitted. If the counter reaches 0, the
bUart_TIMEOUTInt[n] (n = 2..3) bit in the status register (rUart_STATUSTO) rises and activates an interrupt (if not
masked).

When the counter [n] reaches 0, it remains locked until reception of a LOAD command (See synoptic below). The
bUart_TIMEOUTStatus[n] (n = 2..3) bit in the status register (rUart_STATUSTO) is available to have a status on
Time-Out Counter [n] (n = 2..3):

● 1’b0: The Time-Out Counter value is different of “0”.

● 1’b1: The Time-Out Counter value is equal of “0”.

bUart_STARTTO[n]
with n=2..3

=

1 Logic 8 bits
Time-Out
Counter

CK

D Q

OR

Pulse generation when the
« START BIT »

of character is detected
on UART_TXD

bUart_REARMTO[n]
with n=2..3

OR

Baud Clock

0 Logic

iUartTimeOut[n]
with n=2..3

iUartLoadTimeOut[n]
with n=2..3

bUart_TIMEOUTInt[n]
with n=2..3

bUart_TO[n]
with n=2..3

CLR
LOAD

EN

Rise Edge
detection

When the counter reaches 0,
it remains locked
until reception of
a LOAD command

bUart_TIMEOUTStatus[n]
with n=2..3

Set when Rising edge detection
on iUartTimeOut[n] with n=2..3

On Reset
these registers
are cleared to 0

Rise Edge
detection

CKUART_PCLK

Figure 1.15 Transceiver Time-Out Synoptic

When bUart_STARTTO[n] (n = 2..3) is set to 1 (Rising edge detection), the Time-Out counter is decremented to 0 by
UART_PCLK and it stops counting until a first character is transmitted. This feature enables waiting for the start of the
next frame when the idle state on UART_TXD is detected.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 95 of 637
Dec 29, 2021

When a start bit of a character is detected or bUart_REARMTO[n] (n = 2..3) is set to 1 (Rising edge detection), the
Time-Out counter starts counting down from the value of bUart_TO[n] (n = 2..3).

See details in Figure 1.16, Receiver & Transceiver Time-Out0..3, Timing Description.

(3) Time-out counter timing

The figure below describes the timing of Time-Out Counter[n] (n = 0..3).

When the start bit of a character is detected, the Time-Out counter loads the value of rUart_TO register and starts
counting down.

LOAD command

 0 0 0 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0

Initialized to 12 by the LOAD command

« START BIT » of character is detected on

UART_TXD (Transceiver Time-Out2..3)
or

UART_RXD (Receiver Time-Out0..1)

iUartTimeOut[n]

Bit Time

Zero Detection on Counter

When the counter reaches 0, it remains locked
until reception of a LOAD command

bUART_TIMEOUTInt[n]

Time-Out Counter[n]

iUartLoadTimeOut[n]

State of iUartTimeOut[n]bUART_TIMEOUTStatus[n]

Acknowledge by CPU

Bit
Time

StartSerial Data Parity5-8Data bits Stop 1, 1.5, 2

One Character

Figure 1.16 Receiver & Transceiver Time-Out0..3, Timing Description

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 1 UART

R01UH0752EJ0120 Rev.1.20 Page 96 of 637
Dec 29, 2021

1.5.2 Usage Notes
When we will use “Two Wire” interface, we have need to manage the “DE (Data Enable)” signal in Half-Duplex mode.

Data Enable signal can be connected using internal UART_RTS_N signal. The output from internal iUART_DE signal
is not available.

iUART_DE

UART_RTS_N
driven by

UART
UART_RTS_N

bUart_EnableDE

Figure 1.17 UART_RTS_N Management in Half-Duplex Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 97 of 637
Dec 29, 2021

Section 2 SPI

Portions Copyright © 2014 Synopsys. Used with permission. All rights reserved. Synopsys & DesignWare are
registered trademarks of Synopsys.

2.1 Overview
The RZ/N1 provides 4 blocks dedicated for SPI Master and 2 blocks dedicated for SPI slave.

● Master mode

− SPI1, SPI2, SPI3, SPI4 only

● Slave mode

− SPI5, SPI6 only

● Transmit FIFO (TX FIFO) 16 words of 16 bits

● Receive FIFO (RX FIFO) 16 words of 16 bits.

● Serial clock bit rate, dynamic control of the serial bit rate of the data transfer.

− Master mode only

● Programmable data-size for frames (from 4 to 16 bits)

● Slave selects number

− 4 (SPI Master mode, SPI1, SPI2, SPI3, SPI4)

− 1 (SPI Slave mode, SPI5, SPI6)

● Selectable serial interface operation

− Motorola SPI

− Texas Instruments Synchronous Serial Protocol

− National Semiconductor Microwire

● DMA coupling

− Peripheral flow controller mode

− 2 DMA channel available (One for transmit, one for receive)

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 98 of 637
Dec 29, 2021

Network
On

Chip

SPI[m] (m=1..4) Master

Registers

IO
 M

ul
tip

le
xe

r L
ev

el
1

3.
3V

 C
M

O
S

Bu
ff

er

Shift Logic
Control

Programmable
Prescalar

SPI_CLK

RX DMA
Control

TX DMA
Control

SPI_MOSI
SPI_MISO
SPI_SS_N[3:0]

IO
 M

ul
tip

le
xe

r L
ev

el
2

32
b

AP
B

DMAC

Bus clock domain External Clock domain

RX FIFO
Control

RX FIFO
16w x 16b

TX FIFO
16w x 16b

TX FIFO
Control

FSM & Interrupt
Control

Figure 2.1 SPI Master Synoptic

SPI_CLK
SPI_MOSI
SPI_MISO
SPI_SS_N

IO
 M

ul
tip

le
xe

r L
ev

el
1

3.
3V

 C
M

O
S

Bu
ff

er

IO
 M

ul
tip

le
xe

r L
ev

el
2

Network
On

Chip

SPI[m] (m=5..6) Slave

Registers

Shift Logic
Control

RX DMA
Control

TX DMA
Control

32
b

AP
B

DMAC

Bus clock domain External Clock domain

RX FIFO
Control

RX FIFO
16w x 16b

TX FIFO
16w x 16b

TX FIFO
Control

FSM & Interrupt
Control

Figure 2.2 SPI Slave Synoptic

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 99 of 637
Dec 29, 2021

2.2 Signal Interfaces
Signal Name Input Output Description

Clock

SPI[m]_PCLK Input Internal bus clock (APB)

SPI[m]_SCLK Input Serial reference clock*1

Interrupt

SPI[m]_Int Output Level sensitive interrupt output, Active High

External Signal (SPI Master Mode)

SPI[m]_CLK (M) Output Serial clock

SPI[m]_MOSI (M) Output Master transmit data

SPI[m]_MISO (M) Input Master receive data

SPI[m]_SS_N[3:0] (M) Output Slave selection (Chip select), Active Low

External Signal (SPI Slave Mode)

SPI[m]_CLK (S) Input Serial clock

SPI[m]_MOSI (S) Input Slave receive data

SPI[m]_MISO (S) Output Slave transmit data

SPI[m]_SS_N (S) Input Slave selection (Chip select), Active Low

Note: m = 1..6.
Index removed style is used in this chapter.
Ex) SPI_PCLK

Note 1. Input frequency from 7.81 MHz to 125 MHz
Different frequency settings are possible for SPI[m]_SCLK (m = 1..4) and SPI[m]_SCLK (m = 5..6).

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 100 of 637
Dec 29, 2021

2.3 Register Map

2.3.1 Register Map SPI1 (Master)

Table 2.1 Register Map SPI1 (Master)

Address Register Symbol Register Name

5000 5000h rSpi_CTRLR0 Control Register 0

5000 5004h rSpi_CTRLR1 Control Register 1

5000 5008h rSpi_SSIENR Enable Register

5000 500Ch rSpi_MWCR Microwire Control Register

5000 5010h rSpi_SER Slave Enable Register

5000 5014h rSpi_BAUDR Baud Rate Select

5000 5018h rSpi_TXFTLR Transmit FIFO Threshold Level

5000 501Ch rSpi_RXFTLR Receive FIFO Threshold Level

5000 5020h rSpi_TXFLR Transmit FIFO Level Register

5000 5024h rSpi_RXFLR Receive FIFO Level Register

5000 5028h rSpi_SR Status Register

5000 502Ch rSpi_IMR Interrupt Mask Register

5000 5030h rSpi_ISR Interrupt Status Register

5000 5034h rSpi_RISR Raw Interrupt Status Register

5000 5038h rSpi_TXOICR Transmit FIFO Overflow Interrupt Clear Register

5000 503Ch rSpi_RXOICR Receive FIFO Overflow Interrupt Clear Register

5000 5040h rSpi_RXUICR Receive FIFO Underflow Interrupt Clear Register

5000 5048h rSpi_ICR Interrupt Clear Register

5000 504Ch rSpi_DMACR DMA Control Register

5000 5050h rSpi_DMATDLR DMA Transmit Data Level

5000 5054h rSpi_DMARDLR DMA Receive Data Level

5000 5060h rSpi_DR Data Register

5000 50F0h rSpi_RX_SAMPLE_DLY RXD Sample Delay Register

5000 5100h rSpi_TDMACR DMA Control Register in Transmit Mode

5000 5104h rSpi_RDMACR DMA Control Register in Receive Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 101 of 637
Dec 29, 2021

2.3.2 Register Map SPI2 (Master)

Table 2.2 Register Map SPI2 (Master)

Address Register Symbol Register Name

5000 6000h rSpi_CTRLR0 Control Register 0

5000 6004h rSpi_CTRLR1 Control Register 1

5000 6008h rSpi_SSIENR Enable Register

5000 600Ch rSpi_MWCR Microwire Control Register

5000 6010h rSpi_SER Slave Enable Register

5000 6014h rSpi_BAUDR Baud Rate Select

5000 6018h rSpi_TXFTLR Transmit FIFO Threshold Level

5000 601Ch rSpi_RXFTLR Receive FIFO Threshold Level

5000 6020h rSpi_TXFLR Transmit FIFO Level Register

5000 6024h rSpi_RXFLR Receive FIFO Level Register

5000 6028h rSpi_SR Status Register

5000 602Ch rSpi_IMR Interrupt Mask Register

5000 6030h rSpi_ISR Interrupt Status Register

5000 6034h rSpi_RISR Raw Interrupt Status Register

5000 6038h rSpi_TXOICR Transmit FIFO Overflow Interrupt Clear Register

5000 603Ch rSpi_RXOICR Receive FIFO Overflow Interrupt Clear Register

5000 6040h rSpi_RXUICR Receive FIFO Underflow Interrupt Clear Register

5000 6048h rSpi_ICR Interrupt Clear Register

5000 604Ch rSpi_DMACR DMA Control Register

5000 6050h rSpi_DMATDLR DMA Transmit Data Level

5000 6054h rSpi_DMARDLR DMA Receive Data Level

5000 6060h rSpi_DR Data Register

5000 60F0h rSpi_RX_SAMPLE_DLY RXD Sample Delay Register

5000 6100h rSpi_TDMACR DMA Control Register in Transmit Mode

5000 6104h rSpi_RDMACR DMA Control Register in Receive Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 102 of 637
Dec 29, 2021

2.3.3 Register Map SPI3 (Master)

Table 2.3 Register Map SPI3 (Master)

Address Register Symbol Register Name

5000 7000h rSpi_CTRLR0 Control Register 0

5000 7004h rSpi_CTRLR1 Control Register 1

5000 7008h rSpi_SSIENR Enable Register

5000 700Ch rSpi_MWCR Microwire Control Register

5000 7010h rSpi_SER Slave Enable Register

5000 7014h rSpi_BAUDR Baud Rate Select

5000 7018h rSpi_TXFTLR Transmit FIFO Threshold Level

5000 701Ch rSpi_RXFTLR Receive FIFO Threshold Level

5000 7020h rSpi_TXFLR Transmit FIFO Level Register

5000 7024h rSpi_RXFLR Receive FIFO Level Register

5000 7028h rSpi_SR Status Register

5000 702Ch rSpi_IMR Interrupt Mask Register

5000 7030h rSpi_ISR Interrupt Status Register

5000 7034h rSpi_RISR Raw Interrupt Status Register

5000 7038h rSpi_TXOICR Transmit FIFO Overflow Interrupt Clear Register

5000 703Ch rSpi_RXOICR Receive FIFO Overflow Interrupt Clear Register

5000 7040h rSpi_RXUICR Receive FIFO Underflow Interrupt Clear Register

5000 7048h rSpi_ICR Interrupt Clear Register

5000 704Ch rSpi_DMACR DMA Control Register

5000 7050h rSpi_DMATDLR DMA Transmit Data Level

5000 7054h rSpi_DMARDLR DMA Receive Data Level

5000 7060h rSpi_DR Data Register

5000 70F0h rSpi_RX_SAMPLE_DLY RXD Sample Delay Register

5000 7100h rSpi_TDMACR DMA Control Register in Transmit Mode

5000 7104h rSpi_RDMACR DMA Control Register in Receive Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 103 of 637
Dec 29, 2021

2.3.4 Register Map SPI4 (Master)

Table 2.4 Register Map SPI4 (Master)

Address Register Symbol Register Name

5000 8000h rSpi_CTRLR0 Control Register 0

5000 8004h rSpi_CTRLR1 Control Register 1

5000 8008h rSpi_SSIENR Enable Register

5000 800Ch rSpi_MWCR Microwire Control Register

5000 8010h rSpi_SER Slave Enable Register

5000 8014h rSpi_BAUDR Baud Rate Select

5000 8018h rSpi_TXFTLR Transmit FIFO Threshold Level

5000 801Ch rSpi_RXFTLR Receive FIFO Threshold Level

5000 8020h rSpi_TXFLR Transmit FIFO Level Register

5000 8024h rSpi_RXFLR Receive FIFO Level Register

5000 8028h rSpi_SR Status Register

5000 802Ch rSpi_IMR Interrupt Mask Register

5000 8030h rSpi_ISR Interrupt Status Register

5000 8034h rSpi_RISR Raw Interrupt Status Register

5000 8038h rSpi_TXOICR Transmit FIFO Overflow Interrupt Clear Register

5000 803Ch rSpi_RXOICR Receive FIFO Overflow Interrupt Clear Register

5000 8040h rSpi_RXUICR Receive FIFO Underflow Interrupt Clear Register

5000 8048h rSpi_ICR Interrupt Clear Register

5000 804Ch rSpi_DMACR DMA Control Register

5000 8050h rSpi_DMATDLR DMA Transmit Data Level

5000 8054h rSpi_DMARDLR DMA Receive Data Level

5000 8060h rSpi_DR Data Register

5000 80F0h rSpi_RX_SAMPLE_DLY RXD Sample Delay Register

5000 8100h rSpi_TDMACR DMA Control Register in Transmit Mode

5000 8104h rSpi_RDMACR DMA Control Register in Receive Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 104 of 637
Dec 29, 2021

2.3.5 Register Map SPI5 (Slave)

Table 2.5 Register Map SPI5 (Slave)

Address Register Symbol Register Name

5000 9000h rSpi_CTRLR0 Control Register 0

5000 9008h rSpi_SSIENR Enable Register

5000 900Ch rSpi_MWCR Microwire Control Register

5000 9018h rSpi_TXFTLR Transmit FIFO Threshold Level

5000 901Ch rSpi_RXFTLR Receive FIFO Threshold Level

5000 9020h rSpi_TXFLR Transmit FIFO Level Register

5000 9024h rSpi_RXFLR Receive FIFO Level Register

5000 9028h rSpi_SR Status Register

5000 902Ch rSpi_IMR Interrupt Mask Register

5000 9030h rSpi_ISR Interrupt Status Register

5000 9034h rSpi_RISR Raw interrupt Status Register

5000 9038h rSpi_TXOICR Transmit FIFO Overflow Interrupt Clear Register

5000 903Ch rSpi_RXOICR Receive FIFO Overflow Interrupt Clear Register

5000 9040h rSpi_RXUICR Receive FIFO Underflow Interrupt Clear Register

5000 9048h rSpi_ICR Interrupt Clear Register

5000 904Ch rSpi_DMACR DMA Control Register

5000 9050h rSpi_DMATDLR DMA Transmit Data Level

5000 9054h rSpi_DMARDLR DMA Receive Data Level

5000 9060h rSpi_DR Data Register

5000 9100h rSpi_TDMACR DMA Control Register in Transmit Mode

5000 9104h rSpi_RDMACR DMA Control Register in Receive Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 105 of 637
Dec 29, 2021

2.3.6 Register Map SPI6 (Slave)

Table 2.6 Register Map SPI6 (Slave)

Address Register Symbol Register Name

5000 A000h rSpi_CTRLR0 Control Register 0

5000 A008h rSpi_SSIENR Enable Register

5000 A00Ch rSpi_MWCR Microwire Control Register

5000 A018h rSpi_TXFTLR Transmit FIFO Threshold Level

5000 A01Ch rSpi_RXFTLR Receive FIFO Threshold Level

5000 A020h rSpi_TXFLR Transmit FIFO Level Register

5000 A024h rSpi_RXFLR Receive FIFO Level Register

5000 A028h rSpi_SR Status Register

5000 A02Ch rSpi_IMR Interrupt Mask Register

5000 A030h rSpi_ISR Interrupt Status Register

5000 A034h rSpi_RISR Raw Interrupt Status Register

5000 A038h rSpi_TXOICR Transmit FIFO Overflow Interrupt Clear Register

5000 A03Ch rSpi_RXOICR Receive FIFO Overflow Interrupt Clear Register

5000 A040h rSpi_RXUICR Receive FIFO Underflow Interrupt Clear Register

5000 A048h rSpi_ICR Interrupt Clear Register

5000 A04Ch rSpi_DMACR DMA Control Register

5000 A050h rSpi_DMATDLR DMA Transmit Data Level

5000 A054h rSpi_DMARDLR DMA Receive Data Level

5000 A060h rSpi_DR Data Register

5000 A100h rSpi_TDMACR DMA Control Register in Transmit Mode

5000 A104h rSpi_RDMACR DMA Control Register in Receive Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 106 of 637
Dec 29, 2021

2.4 Register Description

2.4.1 rSpi_CTRLR0 — Control Register 0
This register controls the serial data transfer. It is impossible to write to this register when the SPI controller is enabled
by bSpi_SSIENR.

Address: 5000 5000h (SPI1)

5000 6000h (SPI2)

5000 7000h (SPI3)

5000 8000h (SPI4)

5000 9000h (SPI5)

5000 A000h (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bSpi_CFS bSpi_S
RL

bSpi_S
LV_OE bSpi_TMOD bSpi_S

CPOL
bSpi_S

CPH bSpi_FRF bSpi_DFS

Value after reset 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1

Table 2.7 rSpi_CTRLR0 Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b16 Reserved Read as 0 R

b15 to b12 bSpi_CFS Control Frame Size
Selects the length of the control word for the Microwire frame format.

4’b0000: 1-bit control word
4’b0001: 2-bit control word
 ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
4’b1110: 15-bit control word
4’b1111: 16-bit control word

R/W

b11 bSpi_SRL Shift Register Loop
Used for testing purposes only. When set, connects the transmit shift register output to
the receive shift register input. Can be used in both SPI slave and master.

0: Normal Mode Operation
1: Test Mode Operation

When SPI slave is configured as Test Mode, the SPI_CLK and SPI_SS_N signals
must be provided by an external source. In this mode, the slave cannot generate
these signals because there is nothing to which to loop back.

R/W

b10 bSpi_SLV_OE Slave Output Enable (SPI slave only)
This bit enables or disables the setting of the SPI_MISO output from the SPI slave.
When bSpi_SLV_OE = 1, the SPI_MISO output can never be active, a floating state is
always present.
This is useful when the master transmits in broadcast mode (master transmits data to
all slave devices). Only one slave may respond with data on the master SPI_MISO
line.
This bit is enabled after reset and must be disabled by Software (when broadcast
mode is used), if you do not want this device to respond with data.

1’b0: Slave SPI_MISO is enabled
1’b1: Slave SPI_MISO is disabled

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 107 of 637
Dec 29, 2021

Table 2.7 rSpi_CTRLR0 Register Contents (2/2)

Bit Position Bit Name Function R/W

b9, b8 bSpi_TMOD Transfer Mode
Selects the mode of transfer for serial communication. This field does not affect the
duplex setting. Only indicates whether the receive or transmit data are valid.
In Transmit Only Mode, data received from the external device is not valid and is not
stored in the receive FIFO memory, it is overwritten on the next transfer.
In Receive Only Mode, transmitted data are not valid. After the first write to the
transmit FIFO, the same control word is retransmitted for the duration of the transfer.
In Transmit and Receive Mode, both transmit and receive data are valid. The transfer
continues until the transmit FIFO is empty. Data received from the external device are
stored into the receive FIFO memory, where it can be accessed by the host processor.
In EEPROM Read Mode, receive data is not valid while control data is being
transmitted. When all control data is sent to the EEPROM, receive data becomes valid
and transmit data becomes invalid. All data in the transmit FIFO is considered control
data in this mode.This transfer mode is only valid when the SPI controller is a master.

2’b00: Transmit and Receive
2’b01: Transmit Only
2’b10: Receive Only
2’b11: EEPROM Read

R/W

b7 bSpi_SCPOL Serial Clock Polarity
Valid when the frame format (bSpi_FRF) is set to Motorola SPI.
Used to select the polarity of the inactive serial clock, which is held inactive when the
SPI controller is not actively transferring data on the serial bus.

1’b0: Inactive state of the serial clock is low
1’b1: Inactive state of the serial clock is high

R/W

b6 bSpi_SCPH Serial Clock Phase
Valid when the frame format (bSpi_FRF) is set to Motorola SPI. The serial clock phase
selects the relationship of the serial clock with the slave select signal.
When bSpi_SCPH = 0, data are captured on the first edge of the serial clock.
When bSpi_SCPH = 1, the serial clock starts toggling one cycle after the slave select
line is activated, and data are captured on the second edge of the serial clock.

1’b0: The first serial clock toggles at middle of the data bit
1’b1: The first serial clock toggles at start of the data bit

R/W

b5, b4 bSpi_FRF Frame Format
2’b00: Motorola Serial Peripheral Interface
2’b01: Texas Instruments Synchronous Serial Protocol
2’b10: National Semiconductor Microwire
2’b11: Reserved

R/W

b3 to b0 bSpi_DFS Data Frame Size
Selects the data frame length. When the data frame size is programmed to be less
than 16 bits, the receive data are automatically right-justified by the receive logic, with
the upper bits of the receive FIFO zero padded.
You must right-justify transmit data before writing into the transmit FIFO. The transmit
logic ignores the upper unused bits when transmitting the data.

4’b0000: Reserved - undefined operation
4’b0001: Reserved - undefined operation
4’b0010: Reserved - undefined operation
4’b0011: 4-bit serial data transfer
4’b0100: 5-bit serial data transfer
 ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
4’b1110: 15-bit serial data transfer
4’b1111: 16-bit serial data transfer

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 108 of 637
Dec 29, 2021

2.4.2 rSpi_CTRLR1 — Control Register 1
It is impossible to write to this register when the SPI controller is enabled by bSpi_SSIENR.

CAUTION

This register exists in SPI Master only. Data size is up to 64 KB in continuous transfer regardless of frame size.

Address: 5000 5004h (SPI1)

5000 6004h (SPI2)

5000 7004h (SPI3)

5000 8004h (SPI4)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bSpi_NDF

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.8 rSpi_CTRLR1 Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Read as 0. R

b15 to b0 bSpi_NDF Number of Data Frames
When bSpi_TMOD = 2’b10 or bSpi_TMOD = 2’b11, this register field sets the number
of data frames to be continuously received by SPI controller.
The SPI controller continues to receive serial data until the number of data frames
received is equal to this register value plus 1, which enables you to receive up to 64
KB of data in a continuous transfer.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 109 of 637
Dec 29, 2021

2.4.3 rSpi_SSIENR — Enable Register

Address: 5000 5008h (SPI1)

5000 6008h (SPI2)

5000 7008h (SPI3)

5000 8008h (SPI4)

5000 9008h (SPI5)

5000 A008h (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — — bSpi_S
SIENR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.9 rSpi_SSIENR Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved Read as 0. R

b0 bSpi_SSIENR SPI controller Enable
Enables and disables all SPI operations.
When disabled, all serial transfers are halted immediately. Transmit and receive FIFO
buffers are cleared. It is impossible to program some of the SPI control registers when
enabled.

1’b0: Disable
1’b1: Enable

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 110 of 637
Dec 29, 2021

2.4.4 rSpi_MWCR — Microwire Control Register
It is impossible to write to this register when the SPI controller is enabled by bSpi_SSIENR.

Address: 5000 500Ch (SPI1)

5000 600Ch (SPI2)

5000 700Ch (SPI3)

5000 800Ch (SPI4)

5000 900Ch (SPI5)

5000 A00Ch (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — bSpi_M
WHS

bSpi_M
DD

bSpi_M
WMOD

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.10 rSpi_MWCR Register Contents

Bit Position Bit Name Function R/W

b31 to b3 Reserved Read as 0. R

b2 bSpi_MWHS Microwire Handshaking (SPI master only)
Used to enable and disable the “busy/ready” handshaking interface for the Microwire
protocol.
When enabled, the SPI controller checks for a ready status from the target slave, after
the transfer of the last data/control bit, before clearing the BUSY status in the rSpi_SR
register.

0: handshaking interface is disabled
1: handshaking interface is enabled

R/W

b1 bSpi_MDD Microwire Control
Defines the direction of the data word when the Microwire serial protocol is used.

0: the data word is received by the SPI controller from the external serial device.
1: the data word is transmitted from the SPI controller to the external serial device.

R/W

b0 bSpi_MWMOD Microwire Transfer Mode
Defines whether the Microwire transfer is sequential or no-sequential. When
sequential mode is used, only one control word is needed to transmit or receive a
block of data words.
When non-sequential mode is used, there must be a control word for each data word
that is transmitted or received.

0: non-sequential transfer
1: sequential transfer

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 111 of 637
Dec 29, 2021

2.4.5 rSpi_SER — Slave Enable Register
Do not write to this register when SPI controller is busy. See Section 2.5.3, Control Slave Select Line by
Hardware or Software Mode.

CAUTION

This register exists in SPI Master only

Address: 5000 5010h (SPI1)

5000 6010h (SPI2)

5000 7010h (SPI3)

5000 8010h (SPI4)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — bSpi_CtrlSS bSpi_SoftwareSS bSpi_HardwareSS

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.11 rSpi_SER Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b12 Reserved Read as 0. R

b11 to b8 bSpi_CtrlSS Slave Select Mode Enable
The register enables the individual slave select output lines from the SPI master. Up to
4 slave select output signals are available on the SPI master.
Each bSpi_CtrlSS[3:0] in register allow the control of slave respective select lines
SPI_SS_N[3:0] from the SPI master in hardware or Software mode.

0: Hardware mode
 • These lines SPI_SS_N[3:0] are controlled by bSpi_HardwareSS[3:0] bits

respectively from serializer module and activated when a serial transfer begins.
1: Software mode
 • These lines SPI_SS_N[3:0] are directly controlled by bSpi_SoftwareSS[3:0] bits

respectively.

R/W

b7 to b4 bSpi_SoftwareSS Software mode: Slave Select Enable Flag
The register enables the individual slave select output lines from the SPI master. Up to
4 slave select output signals are available on the SPI master.
Each bSpi_SoftwareSS[3:0] in this register corresponds to a slave respective select
line SPI_SS_N[3:0] from the SPI master.
This mode are activated when bSpi_CtrlSS[3:0] is set to 1 respectively for each line.
The corresponding slave select SPI_SS_N[3:0] line from the master are directly
connected to a peripheral device and is controlled by bSpi_SoftwareSS[3:0]
respectively.

Caution) You should select one slave in bSpi_HardwareSS[3:0] to start transfer.
1: Selected
0: Not Selected

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 112 of 637
Dec 29, 2021

Table 2.11 rSpi_SER Register Contents (2/2)

Bit Position Bit Name Function R/W

b3 to b0 bSpi_HardwareSS Hardware mode: Slave Select Enable Flag
The register enables the individual slave select output lines from the SPI master. Up to
4 slave select output signals are available on the SPI master.
Each bSpi_HardwareSS[3:0] in this register corresponds to a respective slave select
line SPI_SS_N[3:0] from the SPI master.
This mode are activated when bSpi_CtrlSS[3:0] is clear to 0 respectively for each line.
In this mode, when a bit in this register is set to 1, the corresponding slave select
SPI_SS_N[3:0] are respectively and activated when a serial transfer begins. These
lines are controlled by the serializer module.
It should be noted that setting or clearing bits in this register have no effect on the
corresponding slave select outputs until a transfer is started. Before beginning a
transfer, you should enable the bit in this register that corresponds to the slave device
with which the master wants to communicate. When not operating in broadcast mode
(master transmits data to all slave devices), only one bit in this field should be set.

1: Selected
0: Not Selected

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 113 of 637
Dec 29, 2021

2.4.6 rSpi_BAUDR — Baud Rate Select
It is impossible to write to this register when the SPI controller is enabled by bSpi_SSIENR.

CAUTION

This register exists in SPI Master only.

Address: 5000 5014h (SPI1)

5000 6014h (SPI2)

5000 7014h (SPI3)

5000 8014h (SPI4)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bSpi_SCKDV

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.12 rSpi_BAUDR Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Read as 0. R

b15 to b0 bSpi_SCKDV SPI Clock Divider
The 16-bit field in this register defines the SPI_CLK divider value.
The LSB for this field is always set to 0 and is unaffected by a write operation, which
ensures an even value is held in this register. If the value is 0, the serial output clock
(SPI_CLK) is disabled.
The frequency of the SPI_CLK is derived from the following equation:

Frequency (SPI_CLK) = Frequency (SPI_SCLK) / bSpi_SCKDV
Where bSpi_SCKDV is any even value between 2 and 65534.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 114 of 637
Dec 29, 2021

2.4.7 rSpi_TXFTLR — Transmit FIFO Threshold Level
This register controls the threshold value for the transmit FIFO memory.

Do not write to this register when the SPI controller is enabled by bSpi_SSIENR.

Address: 5000 5018h (SPI1)

5000 6018h (SPI2)

5000 7018h (SPI3)

5000 8018h (SPI4)

5000 9018h (SPI5)

5000 A018h (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — bSpi_TFT

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.13 rSpi_TXFTLR Register Contents

Bit Position Bit Name Function R/W

b31 to b4 Reserved Read as 0. R

b3 to b0 bSpi_TFT Transmit FIFO Threshold
Controls the level of entries (or below) at which the transmit FIFO controller triggers an
interrupt.
If you attempt to set this value greater than or equal to the depth of the FIFO, this field
is not written and retains its current value.
When the number of transmit FIFO entries is less than or equal to this value, the
transmit FIFO empty interrupt is triggered.

4’d0: iSpi_TXE_Int is asserted when 0 data entries are present in transmit FIFO.
4’d1: iSpi_TXE_Int is asserted when 1 or less data entries are present in transmit

FIFO.
 ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
 ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
4’d14: iSpi_TXE_Int is asserted when 14 or less data entries are present in

transmit FIFO.
4’d15: iSpi_TXE_Int is asserted when 15 or less data entries are present in

transmit FIFO.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 115 of 637
Dec 29, 2021

2.4.8 rSpi_RXFTLR — Receive FIFO Threshold Level
This register controls the threshold value for the receive FIFO memory.
Do not write to this register when the SPI controller is enabled by bSpi_SSIENR.

Address: 5000 501Ch (SPI1)

5000 601Ch (SPI2)

5000 701Ch (SPI3)

5000 801Ch (SPI4)

5000 901Ch (SPI5)

5000 A01Ch (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — bSpi_RFT

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.14 rSpi_RXFTLR Register Contents

Bit Position Bit Name Function R/W

b31 to b4 Reserved Read as 0. R

b3 to b0 bSpi_RFT Receive FIFO Threshold
Controls the level of entries (or above) at which the receive FIFO controller triggers an
interrupt.
If you attempt to set this value greater than the depth of the FIFO, this field is not
written and retains its current value.
When the number of receive FIFO entries is greater than or equal to this value + 1, the
receive FIFO full interrupt is triggered.

4’d0: iSpi_RXF_Int is asserted when 1 or more data entries are present in receive
FIFO.

4’d1: iSpi_RXF_Int is asserted when 2 or more data entries are present in receive
FIFO.

 ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
 ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
4’d14: iSpi_RXF_Int is asserted when 15 or more data entries are present in

receive FIFO.
4’d15: iSpi_RXF_Int is asserted when 16 or more data entries are present in

receive FIFO.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 116 of 637
Dec 29, 2021

2.4.9 rSpi_TXFLR — Transmit FIFO Level Register
This register contains the number of valid data entries in the transmit FIFO memory.

Address: 5000 5020h (SPI1)

5000 6020h (SPI2)

5000 7020h (SPI3)

5000 8020h (SPI4)

5000 9020h (SPI5)

5000 A020h (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — bSpi_TXTFL

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.15 rSpi_TXFLR Register Contents

Bit Position Bit Name Function R/W

b31 to b5 Reserved Read as 0. R

b4 to b0 bSpi_TXTFL Transmit FIFO Level
The number of valid data entries in the transmit FIFO.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 117 of 637
Dec 29, 2021

2.4.10 rSpi_RXFLR — Receive FIFO Level Register
This register contains the number of valid data entries in the receive FIFO memory. This register can be read at any
time.

Address: 5000 5024h (SPI1)

5000 6024h (SPI2)

5000 7024h (SPI3)

5000 8024h (SPI4)

5000 9024h (SPI5)

5000 A024h (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — bSpi_RXTFL

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.16 rSpi_RXFLR Register Contents

Bit Position Bit Name Function R/W

b31 to b5 Reserved Read as 0. R

b4 to b0 bSpi_RXTFL Receive FIFO Level
The number of valid data entries in the receive FIFO.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 118 of 637
Dec 29, 2021

2.4.11 rSpi_SR — Status Register
The status register may be read at any time.

Address: 5000 5028h (SPI1)

5000 6028h (SPI2)

5000 7028h (SPI3)

5000 8028h (SPI4)

5000 9028h (SPI5)

5000 A028h (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — bSpi_T
XE

bSpi_R
FF

bSpi_R
FNE

bSpi_T
FE

bSpi_T
FNF

bSpi_B
USY

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Table 2.17 rSpi_SR Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b6 Reserved Read as 0. R

b5 bSpi_TXE Transmission Error. (SPI slave only)
Set if the transmit FIFO is empty when a transfer is started.
Data from the previous transmission is resent on the SPI_MISO line.
This bit is cleared when read.

0: No error
1: Transmission error

R

b4 bSpi_RFF Receive FIFO Full
When the receive FIFO is completely full, this bit is set.
When the receive FIFO contains one or more empty location, this bit is cleared.

0: Receive FIFO is not full
1: Receive FIFO is full

R

b3 bSpi_RFNE Receive FIFO Not Empty
Set when the receive FIFO contains one or more entries and is cleared when the
receive FIFO is empty.
This bit can be polled by Software to completely empty the receive FIFO.

0: Receive FIFO is empty
1: Receive FIFO is not empty

R

b2 bSpi_TFE Transmit FIFO Empty
When the transmit FIFO is completely empty, this bit is set.
When the transmit FIFO contains one or more valid entries, this bit is cleared. This bit
does not request an interrupt.

0: Transmit FIFO is not empty
1: Transmit FIFO is empty

R

b1 bSpi_TFNF Transmit FIFO Not Full
Set when the transmit FIFO contains one or more empty locations and is cleared
when the FIFO is full.

0: Transmit FIFO is full
1: Transmit FIFO is not full

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 119 of 637
Dec 29, 2021

Table 2.17 rSpi_SR Register Contents (2/2)

Bit Position Bit Name Function R/W

b0 bSpi_BUSY SPI Busy Flag
When set, indicates that a serial transfer is in progress, when cleared indicates that
the SPI controller is idle or disabled.

0: SPI controller is idle or disabled
1: SPI controller is actively transferring data

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 120 of 637
Dec 29, 2021

2.4.12 rSpi_IMR — Interrupt Mask Register

Address: 5000 502Ch (SPI1)

5000 602Ch (SPI2)

5000 702Ch (SPI3)

5000 802Ch (SPI4)

5000 902Ch (SPI5)

5000 A02Ch (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — bSpi_R
XFIM

bSpi_R
XOIM

bSpi_R
XUIM

bSpi_T
XOIM

bSpi_T
XEIM

Value after reset 0 0 0 0 0 0 0 0 0 0 1/0 1 1 1 1 1

Table 2.18 rSpi_IMR Register Contents

Bit Position Bit Name Function R/W

b31 to b6 Reserved Read as 0. R

b5 Reserved Reset value is 1 for SPI master, 0 for SPI slave. Keep initial value. R/W

b4 bSpi_RXFIM Receive FIFO Full Interrupt Mask
1’b0: iSpi_RXF_Int interrupt is masked
1’b1: iSpi_RXF_Int interrupt is not masked

R/W

b3 bSpi_RXOIM Receive FIFO Overflow Interrupt Mask
1’b0: iSpi_RXO_Int interrupt is masked
1’b1: iSpi_RXO_Int interrupt is not masked

R/W

b2 bSpi_RXUIM Receive FIFO Underflow Interrupt Mask
1’b0: iSpi_RXU_Int interrupt is masked
1’b1: iSpi_RXU_Int interrupt is not masked

R/W

b1 bSpi_TXOIM Transmit FIFO Overflow Interrupt Mask
1’b0: iSpi_TXO_Int interrupt is masked
1’b1: iSpi_TXO_Int interrupt is not masked

R/W

b0 bSpi_TXEIM Transmit FIFO Empty Interrupt Mask
1’b0: iSpi_TXE_Int interrupt is masked
1’b1: iSpi_TXE_Int interrupt is not masked

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 121 of 637
Dec 29, 2021

2.4.13 rSpi_ISR — Interrupt Status Register
This register reports the status of the SPI interrupts after they have been masked.

Address: 5000 5030h (SPI1)

5000 6030h (SPI2)

5000 7030h (SPI3)

5000 8030h (SPI4)

5000 9030h (SPI5)

5000 A030h (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — bSpi_R
XFIS

bSpi_R
XOIS

bSpi_R
XUIS

bSpi_T
XOIS

bSpi_T
XEIS

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.19 rSpi_ISR Register Contents

Bit Position Bit Name Function R/W

b31 to b5 Reserved Read as 0. R

b4 bSpi_RXFIS Receive FIFO Full Interrupt Status
1’b0: iSpi_RXF_Int interrupt not active after masking
1’b1: iSpi_RXF_Int interrupt active after masking

R

b3 bSpi_RXOIS Receive FIFO Overflow Interrupt Status
1’b0: iSpi_RXO_Int interrupt not active after masking
1’b1: iSpi_RXO_Int interrupt active after masking

R

b2 bSpi_RXUIS Receive FIFO Underflow Interrupt Status
1’b0: iSpi_RXU_Int interrupt not active after masking
1’b1: iSpi_RXU_Int interrupt active after masking

R

b1 bSpi_TXOIS Transmit FIFO Overflow Interrupt Status
1’b0: iSpi_TXO_Int interrupt not active after masking
1’b1: iSpi_TXO_Int interrupt active after masking

R

b0 bSpi_TXEIS Transmit FIFO Empty Interrupt Status
1’b0: iSpi_TXE_Int interrupt not active after masking
1’b1: iSpi_TXE_Int interrupt active after masking

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 122 of 637
Dec 29, 2021

2.4.14 rSpi_RISR — Raw Interrupt Status Register
This register reports the status of the SPI interrupts prior to masking.

Address: 5000 5034h (SPI1)

5000 6034h (SPI2)

5000 7034h (SPI3)

5000 8034h (SPI4)

5000 9034h (SPI5)

5000 A034h (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — bSpi_R
XFIR

bSpi_R
XOIR

bSpi_R
XUIR

bSpi_T
XOIR

bSpi_T
XEIR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.20 rSpi_RISR Register Contents

Bit Position Bit Name Function R/W

b31 to b5 Reserved Read as 0. R

b4 bSpi_RXFIR Receive FIFO Full Interrupt Status
1’b0: iSpi_RXF_Int interrupt not active prior to masking
1’b1: iSpi_RXF_Int interrupt active prior to masking

R

b3 bSpi_RXOIR Receive FIFO Overflow Interrupt Status
1’b0: iSpi_RXO_Int interrupt not active prior to masking
1’b1: iSpi_RXO_Int interrupt active prior to masking

R

b2 bSpi_RXUIR Receive FIFO Underflow Interrupt Status
1’b0: iSpi_RXU_Int interrupt not active prior to masking
1’b1: iSpi_RXU_Int interrupt active prior to masking

R

b1 bSpi_TXOIR Transmit FIFO Overflow Interrupt Status
1’b0: iSpi_TXO_Int interrupt not active prior to masking
1’b1: iSpi_TXO_Int interrupt active prior to masking

R

b0 bSpi_TXEIR Transmit FIFO Empty Interrupt Status
1’b0: iSpi_TXE_Int interrupt not active prior to masking
1’b1: iSpi_TXE_Int interrupt active prior to masking

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 123 of 637
Dec 29, 2021

2.4.15 rSpi_TXOICR — Transmit FIFO Overflow Interrupt Clear Register

Address: 5000 5038h (SPI1)

5000 6038h (SPI2)

5000 7038h (SPI3)

5000 8038h (SPI4)

5000 9038h (SPI5)

5000 A038h (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — — bSpi_T
XOICR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.21 rSpi_TXOICR Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved Read as 0. R

b0 bSpi_TXOICR Clear Transmit FIFO Overflow Interrupt
This register reflects the status of the interrupt.
A read from this register clears the iSpi_TXO_Int interrupt, writing has no effect.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 124 of 637
Dec 29, 2021

2.4.16 rSpi_RXOICR — Receive FIFO Overflow Interrupt Clear Register

Address: 5000 503Ch (SPI1)

5000 603Ch (SPI2)

5000 703Ch (SPI3)

5000 803Ch (SPI4)

5000 903Ch (SPI5)

5000 A03Ch (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — — bSpi_R
XOICR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.22 rSpi_RXOICR Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved Read as 0. R

b0 bSpi_RXOICR Clear Receive FIFO Overflow Interrupt
This register reflects the status of the interrupt.
A read from this register clears the iSpi_RXO_Int interrupt, writing has no effect.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 125 of 637
Dec 29, 2021

2.4.17 rSpi_RXUICR — Receive FIFO Underflow Interrupt Clear Register

Address: 5000 5040h (SPI1)

5000 6040h (SPI2)

5000 7040h (SPI3)

5000 8040h (SPI4)

5000 9040h (SPI5)

5000 A040h (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — — bSpi_R
XUICR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.23 rSpi_RXUICR Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved Read as 0. R

b0 bSpi_RXUICR Clear Receive FIFO Underflow Interrupt
This register reflects the status of the interrupt.
A read from this register clears the iSpi_RXU_Int interrupt, writing has no effect.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 126 of 637
Dec 29, 2021

2.4.18 rSpi_ICR — Interrupt Clear Register

Address: 5000 5048h (SPI1)

5000 6048h (SPI2)

5000 7048h (SPI3)

5000 8048h (SPI4)

5000 9048h (SPI5)

5000 A048h (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — — bSpi_IC
R

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.24 rSpi_ICR Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved Read as 0. R

b0 bSpi_ICR Clear Interrupts
This register is set if any of the interrupts below are active.
A read clears the interrupts iSpi_TXO_Int, iSpi_RXU_Int and iSpi_RXO_Int interrupts.
Writing to this register has no effect.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 127 of 637
Dec 29, 2021

2.4.19 rSpi_DMACR — DMA Control Register

Address: 5000 504Ch (SPI1)

5000 604Ch (SPI2)

5000 704Ch (SPI3)

5000 804Ch (SPI4)

5000 904Ch (SPI5)

5000 A04Ch (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — bSpi_T
DMAE

bSpi_R
DMAE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.25 rSpi_DMACR Register Contents

Bit Position Bit Name Function R/W

b31 to b2 Reserved Read as 0. R

b1 bSpi_TDMAE Transmit DMA Enable
This bit enables/disables the transmit FIFO DMA channel.

0: Transmit DMA disabled
1: Transmit DMA enabled

R/W

b0 bSpi_RDMAE Receive DMA Enable
This bit enables/disables the receive FIFO DMA channel

0: Receive DMA disabled
1: Receive DMA enabled

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 128 of 637
Dec 29, 2021

2.4.20 rSpi_DMATDLR — DMA Transmit Data Level

Address: 5000 5050h (SPI1)

5000 6050h (SPI2)

5000 7050h (SPI3)

5000 8050h (SPI4)

5000 9050h (SPI5)

5000 A050h (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — bSpi_DMATDLR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.26 rSpi_DMATDLR Register Contents

Bit Position Bit Name Function R/W

b31 to b4 Reserved Read as 0. R

b3 to b0 bSpi_DMATDLR Transmit Data Level
This field controls the level at which a DMA request is made by the transmit logic.
It is equal to the watermark level that is, the DMA request is generated when the
number of valid data entries in the transmit FIFO is equal to or below this field value,
and bSpi_TDMAE= 1.

4’d0: DMA request is asserted when 0 data entries are present in the transmit
FIFO

4’d1: DMA request is asserted when 1 or less data entries are present in the
transmit FIFO

 ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
 ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
4’d14: DMA request is asserted when 14 or less data entries are present in the

transmit FIFO
4’d15: DMA request is asserted when 15 or less data entries are present in the

transmit FIFO

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 129 of 637
Dec 29, 2021

2.4.21 rSpi_DMARDLR — DMA Receive Data Level

Address: 5000 5054h (SPI1)

5000 6054h (SPI2)

5000 7054h (SPI3)

5000 8054h (SPI4)

5000 9054h (SPI5)

5000 A054h (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — bSpi_DMARDLR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.27 rSpi_DMARDLR Register Contents

Bit Position Bit Name Function R/W

b31 to b4 Reserved Read as 0. R

b3 to b0 bSpi_DMARDLR Receive Data Level
This field controls the level at which a DMA request is made by the receive logic. The
watermark level = bSpi_DMARDLR+1 that is, DMA request is generated when the
number of valid data entries in the receive FIFO is equal to or above this field value +
1, and bSpi_RDMAE = 1.

4’d0: DMA request is asserted when 1 or more data entries are present in the
receive FIFO

4’d1: DMA request is asserted when 2 or more data entries are present in the
receive FIFO

 ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
 ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
4’d14: DMA request is asserted when 15 or more data entries are present in the

receive FIFO
4’d15: DMA request is asserted when 16 or more data entries are present in the

receive FIFO

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 130 of 637
Dec 29, 2021

2.4.22 rSpi_DR — Data Register
The SPI data register is a 16-bit read/write buffer for the transmit / receive FIFOs. When the register is read, data in the
receive FIFO buffer is accessed. When it is written to, data are moved into the transmit FIFO buffer, a write can occur
only when bSpi_SSIENR = 1. FIFOs are reset when bSpi_SSIENR = 0.

NOTE

The rSpi_DR register in the SPI controller occupies thirty-six 32-bit locations of the memory map to facilitate AHB burst
transfers. Writing to any of these address locations has the same effect as pushing the data from the APB bus into the
transmit FIFO. Reading from any of these locations has the same effect as popping data from the receive FIFO onto the
APB bus. The FIFO buffers on the SPI controller are not addressable.
If the Data Register (DR) is accessed from an AHB master (such as a DMA controller or a processor), the AHB transfer
type may be a burst. During AHB burst transfers, the address increments after each beat of the burst.

Address: 5000 5060h (SPI1)

5000 6060h (SPI2)

5000 7060h (SPI3)

5000 8060h (SPI4)

5000 9060h (SPI5)

5000 A060h (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bSpi_DR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.28 rSpi_DR Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Read as 0. R

b15 to b0 bSpi_DR Data Register
When writing to this register, you must right-justify the data. Read data are
automatically right-justified.

Read: Receive FIFO buffer
Write: Transmit FIFO buffer

Caution)
In DMA mode, bSpi_TDMAE and bSpi_TDMAE1 or/and bSpi_RDMAE and
bSpi_RDMAE1 set to 1, the DMA controller must be programmed with following
parameters:
● Only one address is used for rSpi_DR register. (12’h060 for example)
The DMA is configured in 16 bits word mode only.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 131 of 637
Dec 29, 2021

2.4.23 rSpi_RX_SAMPLE_DLY — RXD Sample Delay Register
CAUTION

This register exists in SPI Master only.

Address: 5000 50F0h (SPI1)

5000 60F0h (SPI2)

5000 70F0h (SPI3)

5000 80F0h (SPI4)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bSpi_RX_Sample_Delay

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.29 rSpi_RX_SAMPLE_DLY Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 to b0 bSpi_RX_Sample_De
lay

Receive Data (SPI_MISO) Sample Delay
This register is used to delay the sample of the SPI_MISO input signal. Each value
represents a single SPI_SCLK delay on the sample of the SPI_MISO signal.
See Section 2.5.5, Data Input Sample Delay.

Note) If this register is programmed with a value that exceeds the depth of the internal
shift registers (64), a zero (0) delay will be applied to the SPI_MISO sample.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 132 of 637
Dec 29, 2021

2.4.24 rSpi_TDMACR — DMA Control Register in Transmit Mode

Address: 5000 5100h (SPI1)

5000 6100h (SPI2)

5000 7100h (SPI3)

5000 8100h (SPI4)

5000 9100h (SPI5)

5000 A100h (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — bSpi_CURRENT_DEST_BLOCK_SIZE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bSpi_DEST_BLOCK_SIZE bSpi_DEST_BU
RST_SIZE

bSpi_T
DMAE1

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.30 rSpi_TDMACR Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 Reserved Read as 0. R

b30, b29 Reserved Keep initial value R/W

b28 to b16 bSpi_CURRENT_DE
ST_BLOCK_SIZE

Current remaining of DEST_BLOCK_SIZE
This field is decremented each time the block transfer ends.
bSpi_CURRENT_DEST_BLOCK_SIZE is reloaded with
bSpi_DEST_BLOCK_SIZE value, when the firmware:

Set “1” on bSpi_TDMAE1 (rising edge)

R

b15 to b3 bSpi_DEST_BLOCK_
SIZE

DEST_BLOCK_SIZE
Destination Block Transfer Size in Transmit FIFO.
SPI controller is the flow controller. Therefore, the user must write this field before or
at the same time the DMA mode is enabled.
The number programmed into DEST_BLOCK_SIZE indicates the total number of
single transactions to perform for each block transfer.
The size of single transaction is one 16 bits word.
Once the transfer starts, the read of bSpi_DEST_BLOCK_SIZE gives the total number
of data bytes to be written in the Transmit FIFO in order to end the block transfer.

13’d0: 0 word to transfer or end of block transfer
13’d1: 1 word to transfer
13’d2: 2 words to transfer
 ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
13’d8191: 8191 words to transfer

R/W

b2, b1 bSpi_DEST_BURST_
SIZE

DEST_BURST_SIZE
Destination Burst Transaction Size in Transmit FIFO.
The SPI controller is the flow controller. Therefore, the user must write this field before
or at the same time the DMA mode is enabled.

2’b00: 1 word
2’b01: 4 words
2’b10: 8 words
2’b11: Reserved, not used

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 133 of 637
Dec 29, 2021

Table 2.30 rSpi_TDMACR Register Contents (2/2)

Bit Position Bit Name Function R/W

b0 bSpi_TDMAE1 Transmit DMA Enables/Disables
0: Disable the DMA in Transmit mode
1: Enable the DMA in Transmit mode

The bSpi_TDMAE1 is automatically cleared by hardware to disable the DMA in
Transmit mode after the last transfer in Transmit FIFO has completed
(DEST_BLOCK_SIZE words written in Transmit FIFO)
Software can therefore poll this bit to determine when this channel is free for a new
DMA transfer.

Caution)
● Prior to enable this bit, software must enable the bSpi_TDMAE of the rSpi_DMACR

register to enable the DMA mode. After that, the DMA mode is controlled only with
the bSpi_TDMAE1.

● If this bit is clear during a DMA transfer, the current transfer (Burst or Single) is
finished before the stop of DMA mode. To complete the DMA Block transfer, write
the bSpi_DEST_BLOCK_SIZE with the bSpi_CURRENT_DEST_BLOCK_SIZE,
and bSpi_DEST_BURST_SIZE with the appropriate value.
The bSpi_CURRENT_DEST_BLOCK_SIZE value will be consistent only when the
current transfer is finished.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 134 of 637
Dec 29, 2021

2.4.25 rSpi_RDMACR — DMA Control Register in Receive Mode

Address: 5000 5104h (SPI1)

5000 6104h (SPI2)

5000 7104h (SPI3)

5000 8104h (SPI4)

5000 9104h (SPI5)

5000 A104h (SPI6)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — bSpi_CURRENT_SRC_BLOCK_SIZE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bSpi_SRC_BLOCK_SIZE bSpi_SRC_BUR
ST_SIZE

bSpi_R
DMAE1

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.31 rSpi_RDMACR Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 Reserved Read as 0. R

b30, b29 Reserved Keep initial value R/W

b28 to b16 bSpi_CURRENT_SR
C_BLOCK_SIZE

Current remaining of SRC_BLOCK_SIZE
This field is decremented each time the block transfer ends.
bSpi_CURRENT_SRC_BLOCK_SIZE is reloaded with bSpi_SRC_BLOCK_SIZE
value, when the firmware:

Set “1” on bSpi_RDMAE1 (rising edge)

R

b15 to b3 bSpi_SRC_BLOCK_S
IZE

SRC_BLOCK_SIZE
Source Block Transfer Size in Receive FIFO.
SPI controller is the flow controller.
The user must write this field before or at the same time the DMA mode is enabled.
The number programmed into SRC_BLOCK_SIZE indicates the total number of single
transactions to perform for each block transfer.
The size of single transaction is one 16 bits word.

13’d0: 0 word to transfer or end of block transfer
13’d1: 1 word to transfer
13’d2: 2 words to transfer
 ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
13’d8191: 8191 words to transfer

R/W

b2, b1 bSpi_SRC_BURST_S
IZE

SRC_BURST_SIZE
Source Burst Transaction Size in Receive FIFO.
The SPI controller is the flow controller.
The user must write this field before or at the same time the DMA mode is enabled.

2’b00: 1 word
2’b01: 4 words
2’b10: 8 words
2’b11: Reserved, not used

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 135 of 637
Dec 29, 2021

Table 2.31 rSpi_RDMACR Register Contents (2/2)

Bit Position Bit Name Function R/W

b0 bSpi_RDMAE1 Receive DMA Enables/Disables
0: Disable the DMA in Receive mode
1: Enable the DMA in Receive mode

The bSpi_RDMAE1 is automatically cleared by hardware to disable the DMA in
Receive mode after the last transfer in Receive FIFO has completed
(SRC_BLOCK_SIZE words read in Receive FIFO)
Software can therefore poll this bit to determine when this channel is free for a new
DMA transfer.

Caution)
● Prior to enable this bit, Software must enable the bSpi_RDMAE of the

rSpi_DMACR register to enable the DMA mode. After that, the DMA mode is
controlled only with the bSpi_RDMAE1.

● If this bit is clear during a DMA transfer, the current transfer (Burst or Single) is
finished before the stop of DMA mode. To complete the DMA Block transfer, write
the bSpi_SRC_BLOCK_SIZE with the bSpi_CURRENT_SRC_BLOCK_SIZE, and
bSpi_SRC_BURST_SIZE with the appropriate value.
The bSpi_CURRENT_SRC_BLOCK_SIZE value will be consistent only when the
current transfer is finished.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 136 of 637
Dec 29, 2021

2.5 Operation

2.5.1 General description
A serial master or serial slave peripheral device connecting the SPI controller must have at least one of the following
interfaces:

● Motorola Serial Peripheral Interface

− A four-wire, full-duplex serial protocol from Motorola. There are four possible combinations for the serial clock
phase and polarity. The clock phase (bSpi_SCPH) determines whether the serial transfer begins with the falling
edge of the slave select signal or the first edge of the serial clock. The slave select line is held high when the SPI
controller is idle or disabled. For more information, refer to Section 2.5.9, Motorola Serial Peripheral
Interface.

● Texas Instruments Serial Protocol (SSP)

− A four-wire, full-duplex serial protocol. The slave select line used for SPI and Microwire protocols doubles as the
frame indicator for the SSP protocol. For more information, refer to Section 2.5.10, Texas Instruments
Synchronous Serial Protocol.

● National Semiconductor Microwire

− A half-duplex serial protocol, which uses a control word transmitted from the serial master to the target serial
slave. For more information, refer to Section 2.5.11, National Semiconductor Microwire.

You can program the bSpi_FRF (frame format) in the Control Register 0 (rSpi_CTRLR0) to select which protocol is
used. The serial protocols supported by SPI controller allow for serial slaves to be selected or addressed using either
hardware or Software.

When implemented in hardware, serial slaves are selected under the control of dedicated hardware select lines. The
number of select lines generated from the serial master is equal to the number of serial slaves present on the bus. The
serial master device asserts the select line of the target serial slave before data transfer begins. This architecture is
illustrated in Section 2.5.2, Typical Connection between SPI Master & Slave.

When implemented in Software, the input select line of each serial slave should originate either from a single slave
select output signal on the serial master (you must configure the master to have one slave select output). The main
program in the Software domain controls selection of the target slave device, this architecture is illustrated in Section
2.5.2, Typical Connection between SPI Master & Slave. Software would use rSpi_SSIENR register in all slaves
in order to control which slave is to respond to the serial transfer request from the master device.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 137 of 637
Dec 29, 2021

2.5.2 Typical Connection between SPI Master & Slave
The SPI controller enables serial communication between serial master with serial slave peripheral devices. SPI master
initiates and controls all serial transfers.

The figure below shows an example of connection between SPI master and all other SPI slave devices. The serial clock,
generated and controlled by the SPI master is driven out on the SPI_CLK line. When the SPI controller is disabled
(bSpi_SSIENR = 0), no serial transfers can occur and SPI_CLK is held in “inactive” state, as defined by the serial
protocol under which it operates.

SPI Master

SPI_MOSI
SPI_CLK

SPI_SS_N[1]

SPI_MISO
SPI_SS_N[0]

SPI Slave

SPI_MOSI
SPI_CLK

SPI_MISO
SPI_SS_N

SPI_SS_N[2]

SPI_SS_N[3]

SPI Slave

SPI_MOSI
SPI_CLK

SPI_MISO
SPI_SS_N

Figure 2.3 Typical Connection between SPI Master & Slave

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 138 of 637
Dec 29, 2021

2.5.3 Control Slave Select Line by Hardware or Software Mode
The SPI controller enables serial communication between serial master with serial slave peripheral devices can be
controlled in two basics modes:

● Select line controlled in hardware mode from serializer module

● Select line controlled in Software mode

See following bits in rSpi_SER registers:

● bSpi_CtrlSS[3:0]

● bSpi_HardwareSS[3:0]

● bSpi_SoftwareSS[3:0]

CAUTION

● If software slave select control bits (bSpi_SoftwareSS[3:0]) are controlled in software mode, these bits should be
toggled properly when SPI_SS_N (M) must toggle between two SPI data frames (the length of each data frame ranges
from 4 to 16 bits).

● SPI_SS_N (S) needs toggle between two SPI data frames, when frame format is Motorola SPI and bSpi_SCPH in
rSpi_CTRLR0 register is 0.

SPI Master => Shift logics Control

SPI_MOSI
SPI_CLK

SPI_MISO

SPI_SS_N[0]

Serializer
Control

SPI_SS_N[3]

bSpi_HardwareSS[3]

bSpi_HardwareSS[0]

bSpi_SoftwareSS[3]

bSpi_SoftwareSS[0]

bSpi_CtrlSS[3]

bSpi_CtrlSS[0]

M
U

X

M
U

X

Figure 2.4 Control Slave Select Line by Hardware or Software Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 139 of 637
Dec 29, 2021

2.5.4 Programmable Prescaler Clock
The frequency of the SPI_SCLK (serial reference clock, 125 MHz max) must be less than or equal to the frequency of
SPI_PCLK (APB), which guarantees that control signals from the serial reference clock SPI_SCLK domain are
synchronized to the SPI_PCLK domain. When SPI_PCLK and SPI_SCLK are asynchronous, synchronization logic
transfers control signals from one clock domain to the other.

The recommended frequency ratio restriction between the serial clock (SPI_CLK) and the serial reference clock
(SPI_SCLK) are described as:

● Master:
 SPI_SCLK ≥ 2 × (maximum SPI_CLK out)

● Slave (receive only):
 SPI_SCLK ≥ 8 × (maximum SPI_CLK in)

● Slave:
 SPI_SCLK ≥ 10 × (maximum SPI_CLK in)

CAUTION

Actual maximum Frequency (SPI_CLK) should be set within AC spec of the SPI.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 140 of 637
Dec 29, 2021

2.5.5 Data Input Sample Delay
The SPI master includes additional logic in order to delay the default sample time of the SPI_MISO (M) signal. This
additional logic can help to increase the maximum achievable frequency on the serial bus.

Round trip routing delays on the SPI_CLK (M) signal from the master and the SPI_MISO signal from the slave can
mean that the timing of the SPI_MISO signal -as seen by the master- has moved away from the normal sampling time.

The figure below illustrates this situation.

SPI_SCLK

SPI_CLK(M)

SPI_MOSI(M) MSB

Baud-rate=4

SPI_MISO(M)

SPI_CLK(S)

SPI_MOSI(S)

SPI_MISO(S)

Routing delay
Master -> Slave

Sampling delay
in Slave

Routing delay
Slave -> Master

dly=0
dly=5

dly=6
dly=7

MSB

MSB

MSB

Figure 2.5 SPI Data Input Sample Delay

CAUTION

The reference for dly = 0 depends on the type of format. The figure above was given for a capture on the second edge of
serial clock (e.g. Motorola Format with bSpi_SCPH = 1)

The slave uses the SPI_CLK (S) signal from the master as a strobe in order to drive SPI_MISO (S) signal data onto the
serial bus. Routing and sampling delays on the SPI_CLK (M) signal by the slave device can mean that the SPI_MISO
has not stabilized to the correct value before the master samples this signal. The figure SPI Data Input Sample Delay
shows an example of how a routing delay on the SPI_MISO signal can result in an incorrect value at the default time
when the master samples the port.

User can dynamically program a delay value in order to move the sampling time of the SPI_MISO signal from the
default.

The sample delay logic has a resolution of one SPI_SCLK cycle. Software can “train” the serial bus by coding a loop
that continually reads from the slave and increments the master’s “Data Input Sample Delay” value until the correct
data is received by the master.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 141 of 637
Dec 29, 2021

2.5.6 Transmit & Receive FIFO & Control
The depth of both transmit and receive FIFO buffers is 16 words. The width of both transmit and receive FIFO buffers
is fixed at 16 bits. Data frames that are less than 16 bits in size must be right justified when written into the transmit
FIFO buffer. The shift control logic automatically right justifies receive data in the receive FIFO buffer.

Each data entry in the FIFO buffers contains a single data frame. It is impossible to store multiple data frames in a
single FIFO location, for example, you may not store two 8-bit data frames in a single FIFO location. If an 8-bit data
frame is required, the upper 8 bits of the FIFO entry are ignored or unused when the serial shifter transmits the data.

The transmit and receive FIFO buffers are cleared when the SPI controller is disabled (bSpi_SSIENR = 0) or when it is
reset the SPI module.

The transmit FIFO is loaded by CPU write commands to the SPI data register (rSpi_DR). Data are popped (removed)
from the transmit FIFO by the shift control logic into the transmit shift register. The transmit FIFO generates a FIFO
empty interrupt request (iSpi_TXE_Int) when the number of entries in the FIFO is less than or equal to the FIFO
threshold value.

The threshold value, set through the rSpi_TXFTLR, determines the level of FIFO entries at which an interrupt is
generated. The threshold value allows you to provide early indication to the processor that the transmit FIFO is nearly
empty. A transmit FIFO overflow interrupt (iSpi_TXO_Int) is generated if you attempt to write data into an already full
transmit FIFO.

Data are popped from the receive FIFO by APB read commands to the SPI data register (rSpi_DR). The receive FIFO is
loaded from the receive shift register by the shift control logic. The receive FIFO generates a FIFO full interrupt request
(iSpi_RXF_Int) when the number of entries in the FIFO is greater than or equal to the FIFO threshold value plus 1. The
threshold value, set through rSpi_RXFTLR, determines the level of FIFO entries at which an interrupt is generated.

The threshold value allows you to provide early indication to the processor that the receive FIFO is nearly full. A
receive FIFO overflow interrupt (iSpi_RXO_Int) is generated when the receive shift logic attempts to load data into a
completely full receive FIFO. However, this newly received data are lost. A receive FIFO underflow interrupt
(iSpi_RXU_Int) is generated if you attempt to read from an empty receive FIFO. This alerts the processor that the read
data are invalid.

2.5.7 Interruption Management
The SPI controller supports combined and individual interrupt requests, each of which can be masked. The combined
interrupt request is the OR’ed result of all other SPI interrupts after masking.

The SPI interrupts are described as follows:

● Transmit FIFO Empty Interrupt (iSpi_TXE_Int)

− Set when the transmit FIFO is equal to or below its threshold value and requires service to prevent an under run.

− The threshold value, set through a Software programmable register, determines the level of transmit FIFO entries
at which an interrupt is generated.

− This interrupt is cleared by hardware when data are written into the transmit FIFO buffer, bringing it over the
threshold level.

● Transmit FIFO Overflow Interrupt (iSpi_TXO_Int)

− Set when a CPU access attempts to write into the transmit FIFO after it has been completely filled. When set, data
written from the CPU is discarded.

− This interrupt remains set until you read the transmit FIFO overflow interrupt clear register (rSpi_TXOICR).

● Receive FIFO Full Interrupt (iSpi_RXF_Int)

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 142 of 637
Dec 29, 2021

− Set when the receive FIFO is equal to or above its threshold value plus 1 and requires service to prevent an
overflow.

− The threshold value, set through a Software programmable register, determines the level of receive FIFO entries at
which an interrupt is generated.

− This interrupt is cleared by hardware when data are read from the receive FIFO buffer, bringing it below the
threshold level.

● Receive FIFO Overflow Interrupt (iSpi_RXO_Int)

− Set when the receive logic attempts to place data into the receive FIFO after it has been completely filled. When
set, newly received data are discarded.

− This interrupt remains set until you read the receive FIFO overflow interrupt clear register (rSpi_RXOICR).

● Receive FIFO Underflow Interrupt (iSpi_RXU_Int)

− Set when a CPU access attempts to read from the receive FIFO when it is empty.

− When set, zeros are read back from the receive FIFO.

− This interrupt remains set until you read the receive FIFO underflow interrupt clear register (rSpi_RXUICR).

● Combined Interrupt Request (SPI_Int)

− OR’ed result of all the above interrupt requests after masking.

− To mask this interrupt signal, it must mask all other SPI interrupt requests.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 143 of 637
Dec 29, 2021

2.5.8 Transfer Mode
There are four possible transfer modes for performing SPI serial transactions:

● Transmit & Receive. See Section 2.5.8.1, Transmit and Receive Mode.

● Transmit only. See Section 2.5.8.2, Transmit Only Mode.

● Receive only. See Section 2.5.8.3, Receive Only Mode.

● EEPROM read. See Section 2.5.8.4, EEPROM Read Mode.

The transfer mode is set by writing bSpi_TMOD in the Control Register 0 (rSpi_CTRLR0).

CAUTION

● The transfer mode setting does not affect the duplex of the serial transfer.

● bSpi_TMOD is ignored for Microwire transfers, which are controlled by the rSpi_MWCR register.

2.5.8.1 Transmit and Receive Mode
When bSpi_TMOD = 2’b00, both transmit and receive logic are valid.

The data transfer occurs as normal according to the selected frame format (serial protocol). Transmit data are popped
from the transmit FIFO and sent through the SPI_MOSI line to the target device, which replies with data on the
SPI_MISO line. The receive data from the target device is moved from the receive shift register into the receive FIFO at
the end of each data frame.

2.5.8.2 Transmit Only Mode
When bSpi_TMOD = 2’b01, the receive data are invalid and should not be stored in the receive FIFO.

The data transfer occurs as normal, according to the selected frame format (serial protocol). Transmit data are popped
from the transmit FIFO and sent through the SPI_MOSI line to the target device, which replies with data on the
SPI_MISO line. At the end of the data frame, the receive shift register does not load its newly received data into the
receive FIFO. The data in the receive shift register is overwritten by the next transfer. You should mask interrupts
originating from the receive logic when this mode is entered.

2.5.8.3 Receive Only Mode
When bSpi_TMOD = 2’b10, the transmit data are invalid.

When the SPI controller is a slave, the transmit FIFO is never popped in Receive Only mode. The SPI_MISO output
remains at a constant logic level during the transmission. The data transfer occurs as normal according to the selected
frame format (serial protocol).

The receive data from the target device is moved from the receive shift register into the receive FIFO at the end of each
data frame. You should mask interrupts originating from the transmit logic when this mode is entered.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 144 of 637
Dec 29, 2021

2.5.8.4 EEPROM Read Mode
This transfer mode is only valid for master mode.

When bSpi_TMOD = 2’b11, the transmit data is used to transmit an opcode and/or an address to the EEPROM device.
Typically, this takes three data frames (8-bit opcode followed by 8-bit upper address and 8-bit lower address). During
the transmission of the opcode and address, no data is captured by the receive logic (as long as the SPI master is
transmitting data on its SPI_MOSI line, data on the SPI_MISO line is ignored). The SPI master continues to transmit
data until the transmit FIFO is empty.

Therefore, you should ONLY have enough data frames in the transmit FIFO to supply the opcode and address to the
EEPROM. If more data frames are in the transmit FIFO than are needed, then read data is lost.

When the transmit FIFO becomes empty (all control information has been sent), data on the receive line (SPI_MISO) is
valid and is stored in the receive FIFO. The SPI_MOSI output is held at a constant logic level. The serial transfer
continues until the number of data frames received by the SPI master matches the value of the bSpi_NDF in the
rSpi_CTRLR1 register + 1

CAUTION

● EEPROM read mode is only valid for master mode.

● EEPROM read mode is not supported when the SPI controller is configured to be in the Texas Instruments Serial
Protocol.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 145 of 637
Dec 29, 2021

2.5.9 Motorola Serial Peripheral Interface
The Motorola Serial Peripheral Interface is a serial link with four-wire, full-duplex.

There are four possible combinations for the serial clock phase and polarity:

● The clock phase (bSpi_SCPH) determines whether the serial transfer begins with the falling edge of the slave select
signal or the first edge of the serial clock. The slave select line is held high when the SPI link is idle or disabled. With
the Motorola format, the clock polarity (bSpi_SCPOL) configuration bit determines whether the inactive state of the
serial clock is high or low. To transmit data, both SPI peripherals must have identical serial clock phase
(bSpi_SCPH) and clock polarity (bSpi_SCPOL) values. The data frame can be 4 to 16 bits in length. When
bSpi_SCPH = 0, data transmission begins on the falling edge of the slave select signal. The first data bit is captured
by the master and slave peripherals on the first edge of the serial clock, therefore, valid data must be present on the
SPI_MISO and SPI_MOSI lines prior to the first serial clock edge.
The figure below shows the timing diagram for a single SPI data transfer when bSpi_SCPH = 0. The serial clock is
shown for bSpi_SCPOL = 0 and bSpi_SCPOL = 1.

bSPI_SCPOL=0, SPI_CLK

SPI_MOSI

SPI_MISO

MSB

bSPI_SCPOL=1, SPI_CLK

MSB

SPI_SS_N[0] 4 - 16 bits

LSB

LSB

Motorola Mode
Serial Format Single Transfer bSpi_SCPH=0

Figure 2.6 Motorola Mode, Single Transfer, bSPI_SCPH = 0

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 146 of 637
Dec 29, 2021

● When bSpi_SCPH = 0, this SPI slave starts data transmission on the falling edge of the slave select signal, continuous
data transfers require the slave select signal to toggle before beginning the next data frame. This SPI master toggles
out select lines controlled in hardware mode between data frames, and the serial clock is held to its default value
while the slave select signal is not active.
The figure below shows the timing diagram for continuous SPI data transfer when bSpi_SCPH = 0.

bSPI_SCPOL=0, SPI_CLK

SPI_MISO

bSPI_SCPOL=1, SPI_CLK

SPI_SS_N[0]

MSB

Motorola Mode
Serial Format Continuous Transfer bSpi_SCPH=0

LSBMSBLSB

Figure 2.7 Motorola Mode, Continuous Transfer, bSpi_SCPH = 0

● When bSpi_SCPH = 1, both master and slave peripherals begin transmitting data on the first serial clock edge after

the slave select line is activated. The first data bit is captured on the second (trailing) serial clock edge. Data are
propagated by the master and slave peripherals on the leading edge of the serial clock. During continuous data frame
transfers, the slave select line may be held active low until the last bit of the last frame has been captured.
The figure below shows the timing diagram for a single SPI data transfer when bSpi_SCPH = 1.

bSPI_SCPOL=0, SPI_CLK

SPI_MOSI

SPI_MISO

MSB

bSPI_SCPOL=1, SPI_CLK

MSB

SPI_SS_N[0] 4 - 16 bits

LSB

LSB

Motorola Mode
Serial Format Single Transfer bSpi_SCPH=1

Figure 2.8 Motorola Mode, Single transfer, bSpi_SCPH = 1

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 147 of 637
Dec 29, 2021

● Continuous data frames are transferred in the same way as single frames, with the MSB of the next frame following
directly after the LSB of the current frame. The slave select signal is held active for the duration of the transfer.
The figure below shows the timing diagram for continuous SPI data transfer when bSpi_SCPH = 1.

bSPI_SCPOL=0, SPI_CLK

SPI_MISO

bSPI_SCPOL=1, SPI_CLK

SPI_SS_N[0]

Motorola Mode
Serial Format Continuous Transfer bSpi_SCPH=1

LSBMSB

SPI_MISO

LSBMSB

LSBMSB LSBMSB

Figure 2.9 Motorola Mode, Continuous Transfer, bSpi_SCPH = 1

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 148 of 637
Dec 29, 2021

2.5.10 Texas Instruments Synchronous Serial Protocol
Data transfers begin by asserting the frame indicator line SPI_SS_N[0] for one serial clock period.

Data to be transmitted are driven onto the SPI_MOSI line one serial clock cycle later, similarly data from the slave are
driven onto the SPI_MISO line. Data are propagated on the rising edge of the serial clock SPI_CLK and captured on the
falling edge. The length of the data frame ranges from 4 to 16 bits.

The figure below shows the timing diagram for a single Texas serial transfer.

SPI_CLK

SPI_MOSI/MISO MSB LSB

Texas Mode
Serial Format Single Transfer

SPI_SS_N[0]

Figure 2.10 Texas Mode, Single Transfer

Continuous data frames are transferred in the same way as single data frames. The frame indicator is asserted for one
clock period during the same cycle as the LSB from the current transfer, indicating that another data frame follows.
The figure below shows the timing for a continuous Texas serial transfer.

SPI_CLK

SPI_MOSI/MISO MSB LSB

Texas Mode
Serial Format Continuous Transfer

SPI_SS_N[0]

MSB

Figure 2.11 Texas Mode, Continuous Transfer

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 149 of 637
Dec 29, 2021

2.5.11 National Semiconductor Microwire
In this mode, when the SPI controller is a master, data transmission begins with the falling edge of the slave select
signal SPI_SS_N[0]. One-half serial clock SPI_CLK period later, the first bit of the control is sent out on the
SPI_MOSI line.

The length of the control word can be in the range 1 to 16 bits and is set by writing bSpi_CFS (bits 15:12) in
rSpi_CTRLR0 register. The remainder of the control word is transmitted (propagated on the falling edge of SPI_CLK)
by the SPI master. During this transmission, no data are present on the serial master’s SPI_MISO line.

The direction of the data word is controlled by the bSpi_MDD (bit 1) in the Microwire Control Register (rSpi_MWCR)
When bSpi_MDD = 0, this indicates that the SPI master receives data from the external serial slave. One clock cycle
after the LSB of the control word is transmitted, the slave peripheral responds with a dummy 0 bit, followed by the data
frame, which can be 4 to 16 bits in length. Data are propagated on the falling edge of the serial clock and captured on
the rising edge.

The slave select signal is held active low during the transfer and is de-asserted one-half clock cycle later, after the data
are transferred. The figure below shows the timing diagram for a single SPI master read from an external serial slave.

SPI_CLK

SPI_MISO MSB

SPI_SS_N[0]

LSB

National Semiconductor Mode
Serial Format Single Transfer, Receive data

LSB

SPI_MOSI MSB

4 - 16 bits

0

Control word

Figure 2.12 National Semiconductor Mode, Single Transfer, Receive Data

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 150 of 637
Dec 29, 2021

Continuous transfers from the Microwire protocol can be sequential or non-sequential, and are controlled by the
bSpi_MWMOD (bit 0) in the rSpi_MWCR.

No sequential continuous transfers occur as illustrated in figure below, with the control word for the next transfer
following immediately after the LSB of the current data word.

SPI_CLK

SPI_MISO MSB

SPI_SS_N[0]

LSB

National Semiconductor Mode
Serial Format Continuous No Sequential Transfer, Receive data

LSB

SPI_MOSI MSB

0

Control Word 0

LSBMSB

Data Word 0

Control Word 1

MSB LSB0

Data Word 1

Figure 2.13 National Semiconductor Mode, Continuous No Sequential Transfer, Receive Data

During sequential continuous transfers, only one control word is transmitted from the SPI master. The transfer is started
in the same manner as with no sequential read operations, but the cycle is continued to read further data. The slave
device automatically increments its address pointer to the next location and continues to provide data from that location.
Any number of locations can be read in this manner, the SPI master terminates the transfer when the number of words
received is equal to the value in the rSpi_CTRLR1 register plus 1.

The timing diagram in figure below and example show a continuous sequential read of two data frames from the
external slave device.

SPI_CLK

SPI_MISO MSB

SPI_SS_N[0]

LSB

National Semiconductor Mode
Serial Format Sequential Continuous Transfer, Receive data

LSB

SPI_MOSI MSB

0

Control Word 0

Data Word 0

MSB LSB

Data Word 1

Figure 2.14 National Semiconductor Mode, Sequential Continuous Transfer, Receive Data

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 151 of 637
Dec 29, 2021

When bSpi_MDD = 1, this indicates that the SPI master transmits data to the external serial slave. Immediately after the
LSB of the control word is transmitted, the SPI master begins transmitting the data frame to the slave peripheral. The
figure below shows the timing diagram for a single serial master write to an external serial slave.

CAUTION

The SPI controller does not support continuous sequential Microwire writes, where bSpi_MDD = 1 and bSpi_MWMOD =
1.

SPI_CLK

SPI_MISO

MSB

SPI_SS_N[0]

LSB

National Semiconductor Mode
Serial Format Single Transfer, Transmit data

SPI_MOSI MSB

Control word

LSB

Data Word 0

Figure 2.15 National Semiconductor Mode, Single Transfer, Transmit Data

Continuous transfers occur as shown in figure below, with the control word for the next transfer following immediately
after the LSB of the current data word.

SPI_CLK

SPI_MISO

MSB

SPI_SS_N[0]

LSB

National Semiconductor Mode
Serial Format No Sequential Continuous Transfer, Transmit data

LSBSPI_MOSI MSB

Control Word 0

LSBMSB

Data Word 0 Control Word 1

MSB LSB

Data Word 1

Figure 2.16 National Semiconductor Mode, Continuous No Sequential Transfer, Transmit Data

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 152 of 637
Dec 29, 2021

The Microwire handshaking interface can also be enabled for SPI master write operations to external serial slave
devices. To enable the handshaking interface, you must write 1 into the bSpi_MWHS (bit 2) on the rSpi_MWCR
register. When bSpi_MWHS is set to 1, the SPI master checks for a ready status from the slave device before
completing the transfer, or transmitting the next control word for continuous transfers.

The figure below shows an example of a continuous Microwire transfer with the handshaking interface enabled.

SPI_CLK

SPI_MISO

MSB

SPI_SS_N[0]

LSB

National Semiconductor Mode
Serial Format No Sequential Continuous Transfer, Transmit data

With Handshaking

LSBSPI_MOSI MSB LSBMSB MSB LSB

Busy Ready Busy Ready

Control Word 1 Data Word 1Control Word 0 Data Word 0 Start Bit

Figure 2.17 National Semiconductor Mode, Continuous No Sequential Transfer, Transmit Data, Handshaking

After the first data word has been transmitted to the serial slave device, the SPI master polls the SPI_MISO input
waiting for a ready status from the slave device. Upon reception of the ready status, the SPI master begins transmission
of the next control word. After transmission of the last data frame has completed, the SPI master transmits a start bit to
clear the ready status of the slave device before completing the transfer.

To transmit a control word (not followed by data) to a serial slave device from the SPI master, there must be only one
entry in the transmit FIFO buffer. It is impossible to transmit two control words in a continuous transfer, as the shift
logic in the SPI treats the second control word as a data word. When the SPI master transmits only a control word, the
bSpi_MDD (bit 1 of rSpi_MWCR register) must be set to 1.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 153 of 637
Dec 29, 2021

SPI_CLK

SPI_MISO

SPI_SS_N[0]

National Semiconductor Mode
Serial Format Control Word Transfer

With Handshaking

LSBSPI_MOSI MSB

Busy Ready

Control Word 0

Start Bit

Figure 2.18 National Semiconductor Mode, Control Word Transfer, Handshaking

When the SPI controller is a slave, data transmission begins with the falling edge of the slave select signal
(SPI_SS_N[0]). One-half serial clock (SPI_CLK) period later, the first bit of the control is present on the SPI_MOSI
line. The length of the control word can be in the range of 1 to 16 bits and is set by writing bSpi_CFS in the
rSpi_CTRLR0 register.

The bSpi_CFS must be set to the size of the expected control word from the serial master. The remainder of the control
word is received (captured on the rising edge of SPI_CLK) by SPI slave. During this reception, no data are driven on
the serial slave’s SPI_MISO line.

The direction of the data word is controlled by the bSpi_MDD (bit 1) in the rSpi_MWCR register. When bSpi_MDD =
0, this indicates that the SPI slave is to receive data from the external serial master. Immediately after the control word
is transmitted, the serial master begins to drive the data frame onto the SPI slave SPI_MOSI line. Data are propagated
on the falling edge of the serial clock and captured on the rising edge. The slave select signal is held active low during
the transfer and is de-asserted one-half clock cycle later after the data are transferred.

The figure below shows the timing diagram for single SPI slave read from an external serial master.

SPI_CLK

SPI_MOSI MSB

SPI_SS_N[0]

LSB

National Semiconductor Mode
Serial Format Single Transfer, Recieve data

SPI Slave Mode

SPI_MISO

MSB
Control word

LSB

Data Word 0

Figure 2.19 National Semiconductor Mode, Single Transfer, Receive Data, SPI controller in Slave Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 154 of 637
Dec 29, 2021

When bSpi_MDD = 1, this indicates that the SPI slave transmits data to the external serial master. Immediately after the
LSB of the control word is transmitted, the SPI slave transmits a dummy 0 bit, followed by the 4 to 16 bits data frame
on the SPI_MISO line.

The figure below shows the timing diagram for a single SPI slave write to an external serial master.

SPI_CLK

SPI_MOSI

MSB

SPI_SS_N[0]

LSB

National Semiconductor Mode
Serial Format Single Transfer, Transmit data

SPI Slave Mode

SPI_MISO

MSB
Control word

LSB

Data Word 0

0

Figure 2.20 National Semiconductor Mode, Single Transfer, Transmit Data, SPI controller in Slave Mode

Continuous transfers for a SPI slave occur in the same way as those specified for the SPI master. The SPI slave does not
support the handshaking interface, as there is never a busy period.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 155 of 637
Dec 29, 2021

2.5.12 DMA Control
The SPI controller has DMA capability. It has a request interface to a DMA Controller to request and control transfers.
The APB bus is used to perform the data transfer to or from the DMA. The DMA always transfers data using DMA
burst transactions if possible, for efficiency.

CAUTION

In this mode, DMA controller must be configured in peripheral flow controller mode.

The SPI controller uses two DMA channels, one for the transmit data and one for the receive data. The SPI controller
has these DMA registers:

● rSpi_DMACR: Control register to enable DMA operation.

● rSpi_TDMACR, rSpi_RDMACR: Control register to:

− Configuration of DMA operation (block size & burst transaction size).

− Start & stop of DMA transfer.

● rSpi_DMATDLR: Register to set the transmit FIFO level at which a DMA request is made.

● rSpi_DMARDLR: Register to set the receive FIFO level at which a DMA request is made.

To enable the DMA Controller interface on the SPI controller & Enables the transmit request interface:

● Writing a 1 into the bSpi_TDMAE of rSpi_DMACR register

● Writing a 1 into the bSpi_TDMAE1 of rSpi_TDMACR register

To enable the DMA Controller interface on the SPI controller & Enables the receive request interface:

● Writing a 1 into the bSpi_RDMAE of rSpi_DMACR register

● Writing a 1 into the bSpi_RDMAE1 of rSpi_RDMACR register

To configure the block size and burst transaction length:

● Programming the block size into the DEST_BLOCK_SIZE/SRC_BLOCK_SIZE field of the rSpi_TDMACR &
rSpi_RDMACR registers for Transmit FIFO and Receive FIFO, respectively.

● Programming the burst transaction length into the DEST_BURST_SIZE/SRC_BURST_SIZE field of the
rSpi_TDMACR & rSpi_RDMACR registers for Transmit FIFO and Receive FIFO, respectively.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 156 of 637
Dec 29, 2021

2.5.12.1 Overview on DMA Operation
The SPI controller must be programmed by the processor with the number of data items (block size) that are to be
transmitted or received by the SPI controller. This is programmed into the DEST_BLOCK_SIZE/SRC_BLOCK_SIZE
field of the rSpi_TDMACR & rSpi_RDMACR registers of SPI controller for Transmit FIFO and Receive FIFO,
respectively. The block is broken into a number of transactions, each initiated by a request from the SPI controller.

The DMA Controller & the SPI controller must also be programmed with the number of data byte by burst transaction
to be transferred for each DMA request. This is also known as the burst transaction length, and is programmed into:

DMA controller:
the DEST_MSIZE/SRC_MSIZE fields of the DMAC.CTL[n] register for Transmit FIFO and Receive FIFO,
respectively.

SPI controller:
The DEST_BURST_SIZE/SRC_BURST_SIZE field of the rSpi_TDMACR & rSpi_RDMACR registers of SPI
controller for Transmit FIFO and Receive FIFO, respectively.

CAUTION

● The burst transaction size must have the same values on DMA Controller and SPI controller.

● The source and destination transfer width settings in the DMA Controller, DMAC.CTL[n].SRC_TR_WIDTH and
DMAC.CTL[n].DST_TR_WIDTH should be set to 3’b001 because the SPI FIFOs are 16 bits width.

2.5.12.2 Transmit Watermark Level and Transmit FIFO Underflow
During SPI serial transfers, transmit FIFO requests are made to the DMA controller whenever the number of entries in
the transmit FIFO is less than or equal to the DMA transmit data level register rSpi_DMATDLR value, this is known as
the watermark level. The DMA responds by writing a burst of data to the transmit FIFO buffer, of length
DMAC.CTL[n].DEST_MSIZE = DEST_BURST_SIZE.

Data should be fetched from the DMA often enough for the transmit FIFO to perform serial transfers continuously, that
is, when the FIFO begins to empty another DMA request should be triggered. Otherwise the FIFO will run out of data
(underflow). To prevent this condition, the user must set the watermark level correctly.

2.5.12.3 Choosing the Transmit Watermark Level
Consider the example where the assumption is made:

● DEST_BURST_SIZE = DMAC.CTL[n].DEST_MSIZE = FIFO_DEPTH − bSpi_DMATDLR

● Here the number of data items to be transferred in a DMA burst is equal to the empty space in the Transmit FIFO.

Consider two different watermark level settings:

● DEST_BLOCK_SIZE / DEST_BURST_SIZE = 42/14 = 3

● The number of burst transactions in the DMA block transfer is 3. But the watermark level, bSpi_DMATDLR, is
quite low. Therefore, the probability of an SPI underflow is high where the SPI serial transmit line needs to
transmit data, but where there is no data left in the transmit FIFO. This occurs because the DMA controller has not
had time to service the DMA request before the transmit FIFO becomes empty.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 157 of 637
Dec 29, 2021

In the figure below, the number of burst transactions needed equals the block size divided by the number of data items
per burst.

Case1: Transmit Watermark Level

FIFO_DEPTH – bSpi_DMATDLR = 14

bSpi_DMATDLR = 2

FIFO_DEPTH: 16

FIFO_DEPTH: 16
Transmit FIFO watermark level = bSpi_DMATDLR = 2
DEST_BURST_SIZE= DMAC.CTL[n].DEST_MSIZE = FIFO_DEPTH – bSpi_DMATDLR = 14 (Size of burst transaction)
DEST_BLOCK_SIZE = 42 (Block size to transfer)

EMPTY

FULL

Transmit FIFO
Watermark level

Data Out

SPI Transmit FIFO

DMA
ControllerData In

Figure 2.21 SPI Case1: Transmit Watermark Level

In the second case, the number of burst transactions in Block:

● DEST_BLOCK_SIZE / DEST_BURST_SIZE = 42/2 = 21

● In this block transfer, there are 21 destination burst transactions in a DMA block transfer. But the watermark level,
bSpi_DMATDLR is very high. Therefore, the probability of an SPI underflow is low because the DMA controller
has plenty of time to service the destination burst transaction request before the SPI transmit FIFO becomes empty.

● Thus, the second case has a lower probability of underflow at the expense of more burst transactions per block.
This provides a potentially greater amount of request bursts per block and worse bus utilization than the former
case.

Case2: Transmit Watermark Level

FIFO_DEPTH: 16
Transmit FIFO watermark level = bSpi_DMATDLR = 14
DEST_BURST_SIZE= DMAC.CTL[n].DEST_MSIZE = FIFO_DEPTH – bSpi_DMATDLR = 2 (Size of burst transaction)
DEST_BLOCK_SIZE = 42 (Block size to transfer)

FIFO_DEPTH: 16

EMPTY

FULL

SPI Transmit FIFO
Data Out

Transmit FIFO
Watermark level

DMA
ControllerData In

FIFO_DEPTH – bSpi_DMATDLR = 2

bSpi_DMATDLR = 14

Figure 2.22 SPI Case2: Transmit Watermark Level

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 158 of 637
Dec 29, 2021

Therefore, the goal in choosing a watermark level is to minimize the number of transactions per block, while at the
same time keeping the probability of an underflow condition to an acceptable level. In practice, this is a function of the
ratio of the rate at which the SPI controller transmits data to the rate at which the DMA controller can respond to
destination burst requests.

For example, promoting the channel to the highest priority channel in the DMA, and promoting the DMA master
interface to the highest priority master in the bus layer, increases the rate at which the DMA controller can respond to
burst transaction requests. This in turn allows the user to decrease the watermark level, which improves bus utilization
without compromising the probability of an underflow occurring.

2.5.12.4 Selecting DEST_MSIZE and Transmit FIFO Overflow
It may cause underflow when there is not enough space in the SPI transmit FIFO to service the destination burst request.

Therefore, for optimal operation, we must configure:

● DMAC.CTL[n].DEST_MSIZE = DEST_BURST_SIZE = 4

● Set bSpi_DMATDLR = 8

or

● DMAC.CTL[n].DEST_MSIZE = DEST_BURST_SIZE = 8

● Set bSpi_DMATDLR = 8

2.5.12.5 Receive Watermark Level and Receive FIFO Overflow
During SPI serial transfers, receive FIFO requests are made to the DMA controller whenever the number of entries in
the receive FIFO is at or above the DMA Receive Data Level Register; that is bSpi_DMARDLR+1.

This is known as the watermark level. The DMA controller responds by reading a burst of data to the receive FIFO
buffer of length SRC_BURST_SIZE = DMAC.CTL[n].SRC_MSIZE.

Data should be fetched by the DMA often enough for the receive FIFO to accept serial transfers continuously; that is,
when the FIFO begins to fill, another DMA transfer is requested. Otherwise, the FIFO will fill with data (overflow). To
prevent this condition, the user must correctly set the watermark level.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 159 of 637
Dec 29, 2021

2.5.12.6 Choosing the Receive Watermark Level
Similar to choosing the transmit watermark level described earlier, the receive watermark level, bSpi_DMARDLR+1,
should be set to minimize the probability of overflow, as shown in figure below.

It is a tradeoff between the number of DMA burst transactions required per block versus the probability of an overflow
occurring.

Case3: Receive Watermark Level

bSpi_DMARDLR+1

EMPTY

FULL

Receive FIFO
Watermark level

Data Out
DMA

Controller

Data In

SPI Receive FIFO

Figure 2.23 SPI Case3: Receive Watermark Level

2.5.12.7 Selecting SRC_MSIZE and Receive FIFO Underflow
It may cause underflow when there is not enough data to service the source burst request.

Therefore, for optimal operation, we must configure:

● DMAC.CTL[n].SRC_MSIZE = SRC_BURST_SIZE = 4

● Set bSpi_DMARDLR = 3

or

● DMAC.CTL[n].SRC_MSIZE = SRC_BURST_SIZE = 8

● Set bSpi_DMARDLR = 7

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 160 of 637
Dec 29, 2021

2.6 Usage Notes

2.6.1 Programming Consideration
CAUTION

● The BUSY status is not set when the data are written into the transmit FIFO. This bit gets set only when the target
slave has been selected and the transfer is underway.

● After writing data into the transmit FIFO, the shift logic does not begin the serial transfer until a positive edge of the
SPI_CLK signal is present. The delay in waiting for this positive edge depends on the baud rate of the serial transfer.

● Before polling the BUSY status, you should first poll the bSpi_TFE status (waiting for 1) or wait for rSpi_BAUDR ×
SPI_PCLK clock cycles.

● By polling the BUSY status (rSpi_SR.bSpi_BUSY), it is possible to determine when the serial transfer has completed.

2.6.1.1 Programming Master SPI in Motorola & Texas Mode
The sections Motorola Serial Peripheral Interface and Texas Instruments Synchronous Serial Protocol describe serial
protocols, respectively. They include timing diagrams and provide information as to how data are structured in the
transmit and receive the FIFOs before and after the serial transfer.

When the transfer mode is Transmit and Receive Mode or Transmit Only Mode (bSpi_TMOD = 2’b00 or bSpi_TMOD
= 2’b01, respectively), transfers are terminated by the shift control logic when the transmit FIFO is empty.

For continuous data transfers, you must ensure that the transmit FIFO buffer does not become empty before all the data
have been transmitted. The transmit FIFO threshold level (rSpi_TXFTLR) is used to early interrupt (iSpi_TXE_Int) the
processor indicating that the transmit FIFO buffer is nearly empty. When a DMA is used for APB accesses, the transmit
data level (rSpi_DMATDLR) can be used to early request the DMA Controller, indicating that the transmit FIFO is
nearly empty. The FIFO can then be refilled with data to continue the serial transfer. The user may also write a block of
data (at least two FIFO entries) into the transmit FIFO before enabling a serial slave by bSpi_HardwareSS. This ensures
that serial transmission does not begin until the number of data frames that make up the continuous transfer are present
in the transmit FIFO.

When the transfer mode is Receive Only Mode (bSpi_TMOD = 2’b10), a serial transfer is started by writing one
“dummy” data word into the transmit FIFO when a serial slave is selected. The SPI_MOSI output from the SPI is held
at a constant logic level for the duration of the serial transfer. The transmit FIFO is popped only once at the beginning
and may remain empty for the duration of the serial transfer. The end of the serial transfer is controlled by the “number
of data frames” (bSpi_NDF) field in the Control Register 1 (rSpi_CTRLR1)

If, for example, you want to receive 24 data frames from a serial slave peripheral, you should program the bSpi_NDF
field with the value 23, the receive logic terminates the serial transfer when the number of frames received is equal to
the bSpi_NDF value + 1. This transfer mode increases the bandwidth of the APB bus as the transmit FIFO never needs
to be serviced during the transfer. The receive FIFO buffer should be read each time the receive FIFO generates a FIFO
full interrupt request to prevent an overflow.

When the transfer mode is EEPROM Read Mode (bSpi_TMOD = 2’b11), a serial transfer is started by writing the
opcode and/or address into the transmit FIFO when a serial slave (EEPROM) is selected. The opcode and address are
transmitted to the EEPROM device, after which read data is received from the EEPROM device and stored in the
receive FIFO. The end of the serial transfer is controlled by the bSpi_NDF in the Control Register 1 (rSpi_CTRLR1).

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 161 of 637
Dec 29, 2021

CAUTION

EEPROM read mode is not supported when the SPI controller is configured to be in the Texas mode.

The receive FIFO threshold level (rSpi_RXFTLR) can be used to give early indication that the receive FIFO is nearly
full. When a DMA is used for APB accesses, the receive data level (bSpi_DMARDLR) can be used to early request the
DMA Controller, indicating that the receive FIFO is nearly full.

A typical Software flow for completing a serial transfer from the SPI master is outlined as follows:

1. If the SPI controller is enabled, disable it by writing 0 to the SPI Enable (bSpi_SSIENR).

2. Set up the SPI control registers for the transfer; these registers can be set in any order.

− Write Control Register 0 (rSpi_CTRLR0)
(For Motorola transfers, the serial clock polarity and serial clock phase parameters must be set identical to target
slave device.)

− If the transfer mode is Receive Only Mode, write Control Register 1 (rSpi_CTRLR1) with the number of frames
in the transfer minus 1. For example, if you want to receive four data frames, write this register with 3.

− Write rSpi_BAUDR
To set the baud rate for the transfer.

− Write rSpi_TXFTLR and rSpi_RXFTLR registers
To set FIFO threshold levels.

− Write rSpi_IMR register
To set up interrupt masks.

− You can write rSpi_SER register
Can be written here to enable the target slave for selection. If a slave is enabled here, the transfer begins as soon
as one valid data entry is present in the transmit FIFO. If no slaves are enabled prior to writing to the Data
Register (bSpi_DR), the transfer does not begin until a slave is enabled.

3. Enable the SPI controller by writing 1 to the bSpi_SSIENR

4. Write data for transmission to the target slave into the transmit FIFO (write rSpi_DR).

− If no slaves were enabled in the rSpi_SER register at this point, enable it now to begin the transfer.

5. Poll the bSpi_BUSY status to wait for completion of the transfer. The bSpi_BUSY status cannot be polled
immediately, for more information, see Section 2.6.1, Programming Consideration.

− If a transmit FIFO empty interrupt request is made, write the transmit FIFO (write rSpi_DR).

− If a receive FIFO full interrupt request is made, read the receive FIFO (read rSpi_DR).

6. The transfer is stopped by the shift control logic when the transmit FIFO is empty.

− If the transfer mode is Receive Only Mode (bSpi_TMOD = 2’b10), the transfer is stopped by the shift control
logic when the specified number of frames have been received.

− When the transfer is done, the BUSY status is reset to 0.

7. If the transfer mode is not Transmit Only Mode (bSpi_TMOD != 2’b01), read the receive FIFO until it is empty.

8. Disable the SPI controller by writing 0 to bSpi_SSIENR.

The figure below shows a typical Software flow for starting a SPI master Motorola & Texas mode transfer. The
diagram also shows the hardware flow inside the serial master component.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 162 of 637
Dec 29, 2021

SPI in Master mode
Motorola SPI & Texas SSP Mode

with SPI Controller

IDLE

Disable
SPI Controller

Configure Master
by writing CTRLR0,
CTRLR1, BAUDR,
TXFTLR, RXFTLR,

IMR and SER

Enable
SPI Controller

Software Flow

Write data to
Tx FIFO

Transfer in
progress

Interrupt
Service Routine

BUSY?

Interrupt?

Read Rx
FIFO

Yes

No

Yes

No If the transmit FIFO is
requesting and all data have
not been sent, then write
data into transmit FIFO.
If the receive FIFO is
requesting, then read data
from receive FIFO.

You may fill FIFO here:
Transfer begins when first
data word is present in the
transmit FIFO and a slave is
enabled.

IDLE

SPI Controller

Pop data from Tx FIFO
into shifter

Transfer Bit

All bits in
frame

transferred?

Load Rx FIFO

Transmit
FIFO empty?

All frames
transferred?

END

Yes

No

TMOD = 2'b01

TMOD = 2'b10
TMOD = 2'b00
TMOD = 2'b01

Yes Yes

No No

TMOD = 2'b01

Figure 2.24 SPI Controller in Master Mode, Motorola & Texas Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 163 of 637
Dec 29, 2021

2.6.1.2 Programming Master SPI in National Semiconductor Mode
National Semiconductor Microwire describes the Microwire serial protocol in detail, including timing diagrams and
explaining how data are structured in the transmit and receive FIFOs before and after a serial transfer. Microwire serial
transfers from the SPI master are controlled by the Microwire Control Register (rSpi_MWCR). The bSpi_MWHS
enables and disables the Microwire handshaking interface. The bSpi_MDD controls the direction of the data frame (the
control frame is always transmitted by the master and received by the slave). The bSpi_MWMOD defines whether the
transfer is sequential or non-sequential.

All Microwire transfers are started by the SPI master when there is at least one control word in the transmit FIFO and a
slave is enabled. When the SPI master transmits the data frame (bSpi_MDD = 1), the transfer is terminated by the shift
logic when the transmit FIFO is empty.

When the SPI master receives the data frame (bSpi_MDD = 0), the termination of the transfer depends on the setting of
the bSpi_MWMOD. If the transfer is non-sequential (bSpi_MWMOD = 0), it is terminated when the transmit FIFO is
empty after shifting in the data frame from the slave. When the transfer is sequential (bSpi_MWMOD = 1), it is
terminated by the shift logic when the number of data frames received is equal to the value in the rSpi_CTRLR1
register + 1.

When the handshaking interface on the SPI master is enabled (bSpi_MWHS = 1), the status of the target slave is polled
after transmission. Only when the slave reports a ready status does the SPI master complete the transfer and clear its
BUSY status. If the transfer is continuous, the next control/data frame is not sent until the slave device returns a ready
status.

A typical Software flow for completing a Microwire serial transfer from the SPI master is outlined as follows:

1. If the SPI controller is enabled, disable it by writing 0 to bSpi_SSIENR.

2. Set up the SPI control registers for the transfer. These registers can be set in any order.

− Write rSpi_CTRLR0 to set transfer parameters.
If the transfer is sequential and the SPI master receives data, write rSpi_CTRLR1 with the number of frames in
the transfer minus 1; for instance, if you want to receive four data frames, write this register with 3.

− Write rSpi_BAUDR
To set the baud rate for the transfer.

− Write rSpi_TXFTLR and rSpi_RXFTLR registers
To set FIFO threshold levels.

− Write rSpi_IMR register
To set up interrupt masks.

− You can write rSpi_SER register
To enable the target slave for selection. If a slave is enabled here, the transfer begins as soon as one valid data
entry is present in the transmit FIFO. If no slaves are enabled prior to writing to the rSpi_DR register, the
transfer does not begin until a slave is enabled.

3. Enable the SPI controller by writing 1 to the bSpi_SSIENR register.

4. If the SPI master transmits data, write the control and data words into the transmit FIFO (write rSpi_DR).

− If the SPI master receives data, write the control word(s) into the transmit FIFO.

− If no slaves were enabled in the rSpi_SER register at this point, enable now to begin the transfer.

5. Poll the bSpi_BUSY status to wait for completion of the transfer. The bSpi_BUSY status cannot be polled
immediately, for more information, see Section 2.6.1, Programming Consideration.

− If a transmit FIFO empty interrupt request is made, write the transmit FIFO (write rSpi_DR).

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 164 of 637
Dec 29, 2021

− If a receive FIFO full interrupt request is made, read the receive FIFO (read rSpi_DR).

6. The transfer is stopped by the shift control logic when the transmit FIFO is empty. If the transfer mode is
sequential and the SPI master receives data, the transfer is stopped by the shift control logic when the specified
number of data frames is received. When the transfer is done, the BUSY status is reset to 0.

7. If the SPI master receives data, read the receive FIFO until it is empty.

8. Disable the SPI controller by writing 0 to bSpi_SSIENR.

The figure below shows a typical Software flow for starting a SPI master Nation Semiconductor Microwire serial
transfer. The diagram also shows the hardware flow inside the serial master component.

SPI in Master mode
National Semiconductor Mode

with SPI Controller

IDLE

Software Flow

Disable
SPI Controller

Configure Master
by writing CTRLR0,
CTRLR1, BAUDR,
TXFTLR, RXFTLR,
MWCR, IMR, SER

Enable
SPI Controller

Write control &
data to Tx FIFO

Transfer in
progress

Interrupt
Service Routine

BUSY?

Interrupt?

Read Rx
FIFO

If master receives data, user
need only write control
frames into the Tx FIFO.
Transfer begins when first
control word is present in the
Transmit FIFO and a slave is
enabled.

If the transmit FIFO is
requesting and all data have
not been sent, then write
data into transmit FIFO.
If the receive FIFO is
requesting, then read data
from receive FIFO.

Yes

No

Yes

No

IDLE

SPI Controller

Pop control frame from
Tx FIFO into shifter

Transfer Bit

All bits in
control Frame
transmitted?

Receive BitPop data frame from
Tx FIFO into shifter

Load Rx FIFO

Transmit Bit All bits in
data frame
received?

All bits in
data frame

transmitted?

Transmit
FIFO empty?

All frames
transferred?

END

No

YesMWCR[1] = 1 MWCR[1] = 0

No

Yes

Yes

NoNo

No

Yes

Yes

MWCR[0] = 0

MWCR[0] = 1
MWCR[1] = 1

Figure 2.25 SPI Controller in Master Mode, National Semiconductor Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 165 of 637
Dec 29, 2021

2.6.1.3 Programming Slave SPI in Motorola & Texas Mode
The sections Motorola Serial Peripheral Interface and Texas Instruments Synchronous Serial Protocol describe serial
protocols, respectively. The sections also provide timing diagrams and information on how data are structured in the
transmit and receive FIFOs before and after the serial transfer.

If the SPI slave is Receive Only Mode (bSpi_TMOD = 10), the transmit FIFO need not contain valid data because the
data currently in the transmit shift register is resent each time the slave device is selected. You should mask the transmit
FIFO empty interrupt when this mode is used.

If the SPI slave transmits data to the master, you must ensure that data exists in the transmit FIFO before a transfer is
initiated by the serial master device. If the master initiates a transfer to the SPI slave when no data exists in the transmit
FIFO, an error flag (bSpi_TXE) is set in the SPI status register, and the previously transmitted data frame is resent on
SPI_MISO.

For continuous data transfers, you must ensure that the transmit FIFO buffer does not become empty before all the data
have been transmitted. The transmit FIFO threshold level register (rSpi_TXFTLR) can be used to early interrupt
(iSpi_TXE_Int) the processor, indicating that the transmit FIFO buffer is nearly empty.

When a DMA Controller is used for APB accesses, the DMA transmit data level register (rSpi_DMATDLR) can be
used to early request the DMA Controller, indicating that the transmit FIFO is nearly empty. The FIFO can then be
refilled with data to continue the serial transfer. The receive FIFO buffer should be read each time the receive FIFO
generates a FIFO full interrupt request to prevent an overflow. The receive FIFO threshold level register
(rSpi_RXFTLR) can be used to give early indication that the receive FIFO is nearly full.

When a DMA Controller is used for APB accesses, the DMA receive data level register (rSpi_DMARDLR) can be used
to early request the DMA controller, indicating that the receive FIFO is nearly full.

A typical Software flow for completing a continuous serial transfer from a serial master to the SPI slave is described as
follows:

1. If the SPI controller is enabled, disable it by writing 0 to bSpi_SSIENR.

2. Set up the SPI control registers for the transfer. These registers can be set in any order.

− Write rSpi_CTRLR0
For SPI transfers bSpi_SCPH and bSpi_SCPOL must be set identical to the master device.

− Write rSpi_TXFTLR and rSpi_RXFTLR registers
To set FIFO threshold levels.

− Write rSpi_IMR register
To set up interrupt masks.

3. Enable the SPI controller by writing 1 to the bSpi_SSIENR register.

4. If the transfer mode is Transmit and Receive Mode (bSpi_TMOD = 2’b00) or Transmit Only Mode (bSpi_TMOD
= 2’b01), write data for transmission to the master into the transmit FIFO (Write rSpi_DR). If the transfer mode is
Receive Only Mode (bSpi_TMOD = 2’b10), there is no need to write data into the transmit FIFO; the current
value in the transmit shift register is retransmitted.

5. The SPI slave is now ready for the serial transfer. The transfer begins when the SPI slave is selected by a serial
master device.

6. When the transfer is underway, the bSpi_BUSY status can be polled to return the transfer status.

− If a transmit FIFO empty interrupt request is made, write the transmit FIFO (write rSpi_DR).

− If a receive FIFO full interrupt request is made, read the receive FIFO (read rSpi_DR).

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 166 of 637
Dec 29, 2021

7. The transfer ends when the serial master removes the select input to the SPI slave.

− When the transfer is completed, the bSpi_BUSY status is reset to 0.

8. If the transfer mode is not Transmit Only Mode (bSpi_TMOD != 2’b01), read the receive FIFO until empty.

9. Disable the SPI controller by writing 0 to bSpi_SSIENR.

The figure below shows a typical Software flow for a SPI slave Motorola & Texas mode serial transfer. The diagram
also shows the hardware flow inside the serial- slave component.

SPI in Slave mode
Motorola SPI & Texas mode SSP

with SPI Controller

IDLE

Disable
SPI Controller

Configure Slave
by writing CTRLR0,
CTRLR1, TXFTLR,

RXFTLR, MWCR, IMR

Enable
SPI Controller

Software Flow

Write data to
Tx FIFO

Transfer in
progress

Interrupt
Service Routine

BUSY?

Interrupt?

Read Rx
FIFO

Yes

No

Yes

No If the transmit FIFO is
requesting and all data have
not been sent, then write
data into transmit FIFO.
If the receive FIFO is
requesting, then read data
from receive FIFO.

TMOD = 2'b01

Wait for master
to select slave

IDLE

SPI Controller

Pop data from Tx FIFO
into shifter

Transfer Bit

All bits in
frame

transferred?

Load Rx FIFO

Slave still
selected?

END

Yes

No

TMOD = 2'b01

TMOD = 2'b10TMOD = 2'b00
TMOD = 2'b01

Yes Yes

No

TMOD = 2'b10

TMOD = 2'b10

Figure 2.26 SPI Controller in Slave Mode, Motorola & Texas Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 2 SPI

R01UH0752EJ0120 Rev.1.20 Page 167 of 637
Dec 29, 2021

2.6.1.4 Programming Slave SPI in National Semiconductor Mode
National Semiconductor Microwire describes the Microwire serial protocol in detail, including timing diagrams and
information on how data are structured in the transmit and receive FIFOs before and after a serial transfer.

When SPI slave, the Microwire protocol operates in much the same way as the SPI protocol. There is no decode of the
control frame by SPI slave device.

See Figure 2.26, SPI Controller in Slave Mode, Motorola & Texas Mode.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 168 of 637
Dec 29, 2021

Section 3 I2C

Portions Copyright © 2014 Synopsys. Used with permission. All rights reserved. Synopsys & DesignWare are
registered trademarks of Synopsys.

3.1 Overview
● 2 units

● Two speeds:

− Standard mode (0 to 100 kb/s)

− Fast mode (up to 400 kb/s)

● Separate 8×8bits transmit and 8x8bits receive FIFOs

● Master or slave I2C operation

● 7- or 10-bit addressing

● 7- or 10-bit combined format transfers

● Bulk transmit mode

● Transmit and receive buffers

● Interrupt or polled mode operation

● Programmable SDA hold time (tHD;DAT)

● Serial reference clock

− Programmable frequency up to 83.33 MHz

− I2C1 and I2C2 share a same programmable integer divider

The figure below shows the interfaces of both I2C modules and its connections to other blocks.

Network
On

Chip

I2C[m] (m=1 or 2)

Registers

32
b

AP
B

IO
 M

ul
tip

le
xe

r L
ev

el
1

3.
3V

 C
M

O
S

Bu
ff

er

Shift Logic
Control

Clock
generator

Control

IO
 M

ul
tip

le
xe

r L
ev

el
2

I2C[m]_SCL

I2C[m]_SDA

External clock domainBus Clock domain

RX FIFO
8w x 8b

TX FIFO
8w x 8b

Master/Slave
State machine

Figure 3.1 I2C Interfaces and Connections

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 169 of 637
Dec 29, 2021

3.2 Signal Interfaces
Signal Name Input Output Description

Clock

I2C[m]_PCLK Input Internal bus clock (APB)

I2C[m]_SCLK Input Serial reference clock

Interrupt

I2C[m]_Int Output Level sensitive interrupt output, Active High

External Signal

I2C[m]_SCL I/O Serial clock (SCL)

I2C[m]_SDA I/O Serial data (SDA)

Note: m = 1 or 2.
Index removed style is mainly used in this chapter.
Ex) I2C_PCLK

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 170 of 637
Dec 29, 2021

3.3 Register Map

3.3.1 I2C1 Register Map

Table 3.1 I2C1 Register Map

Address Register Symbol Register Name

4006 3000h IC_CON I2C Control Register

4006 3004h IC_TAR I2C Target Address Register

4006 3008h IC_SAR I2C Slave Address Register

4006 3010h IC_DATA_CMD I2C Rx/Tx Data Buffer and Command Register

4006 3014h IC_SS_SCL_HCNT Standard mode I2C Clock SCL High Count Register

4006 3018h IC_SS_SCL_LCNT Standard mode I2C Clock SCL Low Count Register

4006 301Ch IC_FS_SCL_HCNT Fast mode I2C Clock SCL High Count Register

4006 3020h IC_FS_SCL_LCNT Fast mode I2C Clock SCL Low Count Register

4006 302Ch IC_INTR_STAT I2C Interrupt Status Register

4006 3030h IC_INTR_MASK I2C Interrupt Mask Register

4006 3034h IC_RAW_INTR_STAT I2C Raw Interrupt Status Register

4006 3038h IC_RX_TL I2C Receive FIFO Threshold Register

4006 303Ch IC_TX_TL I2C Transmit FIFO Threshold Register

4006 3040h IC_CLR_INTR Clear Combined and Individual Interrupt Register

4006 3044h IC_CLR_RX_UNDER Clear RX_UNDER Interrupt Register

4006 3048h IC_CLR_RX_OVER Clear RX_OVER Interrupt Register

4006 304Ch IC_CLR_TX_OVER Clear TX_OVER Interrupt Register

4006 3050h IC_CLR_RD_REQ Clear RD_REQ Interrupt Register

4006 3054h IC_CLR_TX_ABRT Clear TX_ABRT Interrupt Register

4006 3058h IC_CLR_RX_DONE Clear RX_DONE Interrupt Register

4006 305Ch IC_CLR_ACTIVITY Clear ACTIVITY Interrupt Register

4006 3060h IC_CLR_STOP_DET Clear STOP_DET Interrupt Register

4006 3064h IC_CLR_START_DET Clear START_DET Interrupt Register

4006 3068h IC_CLR_GEN_CALL Clear GEN_CALL Interrupt Register

4006 306Ch IC_ENABLE I2C Enable Register

4006 3070h IC_STATUS I2C Status Register

4006 3074h IC_TXFLR I2C Transmit FIFO Level Register

4006 3078h IC_RXFLR I2C Receive FIFO Level Register

4006 307Ch IC_SDA_HOLD I2C SDA Hold Time Length Register

4006 3080h IC_TX_ABRT_SOURCE I2C Transmit Abort Source Register

4006 3084h IC_SLV_DATA_NACK_ONLY Generate Slave Data NACK Register

4006 3094h IC_SDA_SETUP I2C SDA Setup Register

4006 3098h IC_ACK_GENERAL_CALL I2C ACK General Call Register

4006 309Ch IC_ENABLE_STATUS I2C Enable Status Register

4006 30A0h IC_FS_SPKLEN I2C Sm, Fm Spike Suppression Limit

4006 30A8h IC_CLR_RESTART_DET Clear RESTART_DET Interrupt Register

4006 30F4h IC_COMP_PARAM_1 Component Parameter Register 1

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 171 of 637
Dec 29, 2021

3.3.2 I2C2 Register Map

Table 3.2 I2C2 Register Map

Address Register Symbol Register Name

4006 4000h IC_CON I2C Control Register

4006 4004h IC_TAR I2C Target Address Register

4006 4008h IC_SAR I2C Slave Address Register

4006 4010h IC_DATA_CMD I2C Rx/Tx Data Buffer and Command Register

4006 4014h IC_SS_SCL_HCNT Standard mode I2C Clock SCL High Count Register

4006 4018h IC_SS_SCL_LCNT Standard mode I2C Clock SCL Low Count Register

4006 401Ch IC_FS_SCL_HCNT Fast mode I2C Clock SCL High Count Register

4006 4020h IC_FS_SCL_LCNT Fast mode I2C Clock SCL Low Count Register

4006 402Ch IC_INTR_STAT I2C Interrupt Status Register

4006 4030h IC_INTR_MASK I2C Interrupt Mask Register

4006 4034h IC_RAW_INTR_STAT I2C Raw Interrupt Status Register

4006 4038h IC_RX_TL I2C Receive FIFO Threshold Register

4006 403Ch IC_TX_TL I2C Transmit FIFO Threshold Register

4006 4040h IC_CLR_INTR Clear Combined and Individual Interrupt Register

4006 4044h IC_CLR_RX_UNDER Clear RX_UNDER Interrupt Register

4006 4048h IC_CLR_RX_OVER Clear RX_OVER Interrupt Register

4006 404Ch IC_CLR_TX_OVER Clear TX_OVER Interrupt Register

4006 4050h IC_CLR_RD_REQ Clear RD_REQ Interrupt Register

4006 4054h IC_CLR_TX_ABRT Clear TX_ABRT Interrupt Register

4006 4058h IC_CLR_RX_DONE Clear RX_DONE Interrupt Register

4006 405Ch IC_CLR_ACTIVITY Clear ACTIVITY Interrupt Register

4006 4060h IC_CLR_STOP_DET Clear STOP_DET Interrupt Register

4006 4064h IC_CLR_START_DET Clear START_DET Interrupt Register

4006 4068h IC_CLR_GEN_CALL Clear GEN_CALL Interrupt Register

4006 406Ch IC_ENABLE I2C Enable Register

4006 4070h IC_STATUS I2C Status Register

4006 4074h IC_TXFLR I2C Transmit FIFO Level Register

4006 4078h IC_RXFLR I2C Receive FIFO Level Register

4006 407Ch IC_SDA_HOLD I2C SDA Hold Time Length Register

4006 4080h IC_TX_ABRT_SOURCE I2C Transmit Abort Source Register

4006 4084h IC_SLV_DATA_NACK_ONLY Generate Slave Data NACK Register

4006 4094h IC_SDA_SETUP I2C SDA Setup Register

4006 4098h IC_ACK_GENERAL_CALL I2C ACK General Call Register

4006 409Ch IC_ENABLE_STATUS I2C Enable Status Register

4006 40A0h IC_FS_SPKLEN I2C Sm, Fm Spike Suppression Limit

4006 40A8h IC_CLR_RESTART_DET Clear RESTART_DET Interrupt Register

4006 40F4h IC_COMP_PARAM_1 Component Parameter Register 1

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 172 of 637
Dec 29, 2021

3.4 Register Description

3.4.1 IC_CON — I2C Control Register

Address: 4006 3000h (I2C1)

4006 4000h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — —

RX_FIF
O_FUL
L_HLD_
CTRL

TX_EM
PTY_C

TRL

STOP_
DET_IF
ADDRE
SSED

IC_SLA
VE_DIS
ABLE

IC_RES
TART_

EN

IC_10BIT
ADDR_M
ASTER_r

d_only

IC_10BI
TADDR
_SLAV

E

SPEED
MASTE
R_MOD

E

Value after reset 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1

Table 3.3 IC_CON Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b10 Reserved R

b9 RX_FIFO_FULL_HLD
_CTRL

This bit controls whether the I2C controller should hold the bus when the Rx FIFO is
physically full to its RX_BUFFER_DEPTH (depth = 8).

0: Disable bus hold
1: Enable bus hold

R/W

b8 TX_EMPTY_CTRL This bit controls the generation of the TX_EMPTY interrupt, as described in the
IC_RAW_INTR_STAT register.

R/W

b7 STOP_DET_IFADDR
ESSED

In slave mode:
1: Issues the STOP_DET interrupt only when it is addressed.
0: Issues the STOP_DET irrespective of whether it’s addressed or not.

Note) During a general call address, this slave does not issue the STOP_DET
interrupt if STOP_DET_IF_ADDRESSED = 1’b1, even if the slave responds to
the general call address by generating ACK.
The STOP_DET interrupt is generated only when the transmitted address
matches the slave address (SAR).

R/W

b6 IC_SLAVE_DISABLE This bit controls whether I2C controller has its slave disabled.
If this bit is set (slave is disabled), the I2C controller functions only as a master and
does not perform any action that requires a slave.

0: Slave is enabled
1: Slave is disabled

The slave disabled after reset is applied.

Note) Software should ensure that if this bit is written with 0, then bit 0 should also be
written with a 0.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 173 of 637
Dec 29, 2021

Table 3.3 IC_CON Register Contents (2/2)

Bit Position Bit Name Function R/W

b5 IC_RESTART_EN Determines whether RESTART conditions may be sent when acting as a master.
Some older slaves do not support handling RESTART conditions; however, RESTART
conditions are used in several I2C controller operations.

0: Disable
1: Enable

When RESTART is disabled, the master is prohibited from performing the following
functions:
● Change direction within a transfer (split)
● Send a START BYTE
● Combined format transfers in 7-bit addressing modes
● Read operation with a 10-bit address
● Send multiple bytes per transfer
By replacing RESTART condition followed by a STOP and a subsequent START
condition, split operations are broken down into multiple I2C controller transfers. If the
above operations are performed, it will result in setting bit 6 (TX_ABRT) of the
IC_RAW_INTR_STAT register.

R/W

b4 IC_10BITADDR_MAS
TER_rd_only

Read only bit showing the bit addressing mode: the function of this bit is handled by bit
12 of IC_TAR register

0: 7-bit addressing
1: 10-bit addressing

R

b3 IC_10BITADDR_SLA
VE

When acting as a slave, this bit controls whether the I2C controller responds to 7- or
10-bit addresses.

0: 7-bit addressing. The I2C controller ignores transactions that involve 10-bit
addressing; for 7-bit addressing, only the lower 7 bits of the IC_SAR register are
compared.

1: 10-bit addressing. The I2C controller responds to only 10-bit addressing
transfers that match the full 10 bits of the IC_SAR register.

R/W

b2, b1 SPEED These bits control at which speed the I2C controller operates; its setting is relevant
only if one is operating the I2C controller in master mode. Hardware protects against
illegal values being programmed by software.

1: Standard mode (≤100 kb/s)
2: Fast mode (≤400 kb/s)

R/W

b0 MASTER_MODE This bit controls whether the I2C controller master is enabled.
0: Master disabled
1: Master enabled

Note) Software should ensure that if this bit is written with “1” then bit 6 should also
be written with a “1”.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 174 of 637
Dec 29, 2021

3.4.2 IC_TAR — I2C Target Address Register
All bits can be dynamically updated as long as any set of the following conditions are true:

I2C controller is not enabled (IC_ENABLE[0] is set to 0);
 or
I2C controller is enabled (IC_ENABLE[0]=1);
 AND
I2C controller is not engaged in any Master (tx, rx) operation (IC_STATUS[5]=0);
 AND
I2C controller is enabled to operate in Master mode (IC_CON[0]=1);
 AND
there are NO entries in the TX FIFO (IC_STATUS[2]=1)

Address: 4006 3004h (I2C1)

4006 4004h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — —
IC_10BIT
ADDR_M
ASTER

SPECIA
L

GC_OR
_STAR

T
IC_TAR

Value after reset X X X 1 0 0 0 0 0 1 0 1 0 1 0 1

Table 3.4 IC_TAR Register Contents

Bit Position Bit Name Function R/W

b31 to b13 Reserved R

b12 IC_10BITADDR_MAS
TER

This bit controls whether the I2C controller starts its transfers in 7- or 10-bit addressing
mode when acting as a master.

0: 7-bit addressing
1: 10-bit addressing

R/W

b11 SPECIAL This bit indicates whether software performs a General Call or START BYTE
command.

0: Ignore bit 10 GC_OR_START and use IC_TAR normally
1: Perform special I2C command as specified in GC_OR_START bit

R/W

b10 GC_OR_START If bit 11 (SPECIAL) is set to 1, then this bit indicates whether a General Call or START
byte command is to be performed by the I2C controller.

0: General Call Address after issuing a General Call, only writes may be
performed. Attempting to issue a read command results in setting bit 6
(TX_ABRT) of the IC_RAW_INTR_STAT register. The I2C controller remains in
General Call mode until the SPECIAL bit value (bit 11) is cleared.

1: START BYTE

R/W

b9 to b0 IC_TAR This is the target address for any master transaction. When transmitting a General
Call, these bits are ignored. To generate a START BYTE, the CPU needs to write only
once into these bits.
If the IC_TAR and IC_SAR are the same, loopback exists but the FIFOs are shared
between master and slave, so full loopback is not feasible. Only one direction
loopback mode is supported (simplex), not duplex. A master cannot transmit to itself; it
can transmit to only a slave.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 175 of 637
Dec 29, 2021

3.4.3 IC_SAR — I2C Slave Address Register

Address: 4006 3008h (I2C1)

4006 4008h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — IC_SAR

Value after reset X X X X X X 0 0 0 1 0 1 0 1 0 1

Table 3.5 IC_SAR Register Contents

Bit Position Bit Name Function R/W

b31 to b10 Reserved R

b9 to b0 IC_SAR The IC_SAR holds the slave address when the I2C controller is operating as a slave.
For 7-bit addressing, only IC_SAR[6:0] is used.
This register can be written only when the I2C interface is disabled, which
corresponds to the IC_ENABLE[0] register being set to 0. Writes at other times have
no effect.

Note) This value cannot be any of the reserved address locations: that is, 0x00 to
0x07, or 0x78 to 0x7f. The correct operation of the device is not guaranteed if
you program the IC_SAR or IC_TAR to a reserved value.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 176 of 637
Dec 29, 2021

3.4.4 IC_DATA_CMD — I2C Rx/Tx Data Buffer and Command Register
This is the register the CPU writes to when filling the TX FIFO and the CPU reads from when retrieving bytes from RX
FIFO

Address: 4006 3010h (I2C1)

4006 4010h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — RESTA
RT STOP CMD DAT

Value after reset X X X X X 0 0 0 0 0 0 0 0 0 0 0

Table 3.6 IC_DATA_CMD Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b11 Reserved R

b10 RESTART This bit controls whether a RESTART is issued before the byte is sent or received.
1: If IC_RESTART_EN is 1, a RESTART is issued before the data is sent/received

(according to the value of CMD), regardless of whether or not the transfer
direction is changing from the previous command; if IC_RESTART_EN is 0, a
STOP followed by a START is issued instead.

0: If IC_RESTART_EN is 1, a RESTART is issued only if the transfer direction is
changing from the previous command; if IC_RESTART_EN is 0, a STOP
followed by a START is issued instead.

W

b9 STOP This bit controls whether a STOP is issued after the byte is sent or received.
1: STOP is issued after this byte, regardless of whether or not the Tx FIFO is

empty. If the Tx FIFO is not empty, the master immediately tries to start a new
transfer by issuing a START and arbitrating for the bus.

0: STOP is not issued after this byte, regardless of whether or not the Tx FIFO is
empty. If the Tx FIFO is not empty, the master continues the current transfer by
sending/receiving data bytes according to the value of the CMD bit. If the Tx
FIFO is empty, the master holds the SCL line low and stalls the bus until a new
command is available in the Tx FIFO.

W

b8 CMD This bit controls whether a read or a write is performed.
This bit does not control the direction when the I2C controller acts as a slave. It
controls only the direction when it acts as a master.

1: Read
0: Write

When a command is entered in the TX FIFO, this bit distinguishes the write and read
commands. In slave-receiver mode, this bit is a “don’t care” because writes to this
register are not required. In slave-transmitter mode, a “0” indicates that CPU data is to
be transmitted and as DAT or IC_DATA_CMD[7:0].
When programming this bit, you should remember the following: attempting to perform
a read operation after a General Call command has been sent results in a TX_ABRT
interrupt (bit 6 of the IC_RAW_INTR_STAT register), unless bit 11 (SPECIAL) in the
IC_TAR register has been cleared.
If a “1” is written to this bit after receiving a RD_REQ interrupt, then a TX_ABRT
interrupt occurs.

Note) It is possible that while attempting a master I2C read transfer on I2C controller,
a RD_REQ interrupt may have occurred simultaneously due to a remote I2C
master addressing the I2C controller. In this type of scenario, I2C controller
ignores the IC_DATA_CMD write, generates a TX_ABRT interrupt, and waits to
service the RD_REQ interrupt.

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 177 of 637
Dec 29, 2021

Table 3.6 IC_DATA_CMD Register Contents (2/2)

Bit Position Bit Name Function R/W

b7 to b0 DAT This register contains the data to be transmitted or received on the I2C bus.
If you are writing to this register and want to perform a read, bits 7:0 (DAT) are ignored
by the I2C controller. However, when you read this register, these bits return the value
of data received on the I2C controller interface.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 178 of 637
Dec 29, 2021

3.4.5 IC_SS_SCL_HCNT — Standard mode I2C Clock SCL High Count Register

Address: 4006 3014h (I2C1)

4006 4014h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 IC_SS_SCL_HCNT

Value after reset 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0

Table 3.7 IC_SS_SCL_HCNT Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved R

b15 to b0 IC_SS_SCL_HCNT This register must be set before any I2C bus transaction can take place to ensure
proper I/O timing. This register sets the SCL clock high-period count for Standard
mode.
This register can be written only when the I2C interface is disabled which corresponds
to the IC_ENABLE[0] register being set to 0. Writes at other times have no effect.
The minimum valid value is 6; hardware prevents values less than this being written,
and if attempted results in 6 being set.

Note) This register must not be programmed to a value higher than 65525, because
I2C controller uses a 16-bit counter to flag an I2C bus idle condition when this
counter reaches a value of IC_SS_SCL_HCNT + 10.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 179 of 637
Dec 29, 2021

3.4.6 IC_SS_SCL_LCNT — Standard mode I2C Clock SCL Low Count Register

Address: 4006 3018h (I2C1)

4006 4018h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 IC_SS_SCL_LCNT

Value after reset 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

Table 3.8 IC_SS_SCL_LCNT Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved R

b15 to b0 IC_SS_SCL_LCNT This register must be set before any I2C bus transaction can take place to ensure
proper I/O timing. This register sets the SCL clock low period count for Standard
mode.
This register can be written only when the I2C interface is disabled which corresponds
to the IC_ENABLE[0] register being set to 0. Writes at other times have no effect.
The minimum valid value is 8; hardware prevents values less than this being written,
and if attempted, results in 8 being set.

R/W

3.4.7 IC_FS_SCL_HCNT — Fast mode I2C Clock SCL High Count Register

Address: 4006 301Ch (I2C1)

4006 401Ch (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 IC_FS_SCL_HCNT

Value after reset 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0

Table 3.9 IC_FS_SCL_HCNT Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved R

b15 to b0 IC_FS_SCL_HCNT This register must be set before any I2C bus transaction can take place to ensure
proper I/O timing. This register sets the SCL clock high-period count for Fast mode.
This register can be written only when the I2C interface is disabled, which
corresponds to the IC_ENABLE[0] register being set to 0. Writes at other times have
no effect.
The minimum valid value is 6; hardware prevents values less than this being written,
and if attempted results in 6 being set.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 180 of 637
Dec 29, 2021

3.4.8 IC_FS_SCL_LCNT — Fast mode I2C Clock SCL Low Count Register

Address: 4006 3020h (I2C1)

4006 4020h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 IC_FS_SCL_LCNT

Value after reset 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1

Table 3.10 IC_FS_SCL_LCNT Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved R

b15 to b0 IC_FS_SCL_LCNT This register must be set before any I2C bus transaction can take place to ensure
proper I/O timing. This register sets the SCL clock low period count for Fast mode.
This register can be written only when the I2C interface is disabled, which
corresponds to the IC_ENABLE[0] register being set to 0. Writes at other times have
no effect.
The minimum valid value is 8; hardware prevents values less than this being written,
and if attempted results in 8 being set.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 181 of 637
Dec 29, 2021

3.4.9 IC_INTR_STAT — I2C Interrupt Status Register
Each bit in this register has a corresponding mask bit in the IC_INTR_MASK register. These bits are cleared by reading
the matching interrupt clear register. The unmasked raw versions of these bits are available in the
IC_RAW_INTR_STAT register.

Address: 4006 302Ch (I2C1)

4006 402Ch (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — —
R_MAST
ER_ON_

HOLD

R_RES
TART_

DET

R_GEN
_CALL

R_STA
RT_DE

T

R_STO
P_DET

R_ACTI
VITY

R_RX_
DONE

R_TX_
ABRT

R_RD_
REQ

R_TX_
EMPTY

R_TX_
OVER

R_RX_
FULL

R_RX_
OVER

R_RX_
UNDER

Value after reset X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.11 IC_INTR_STAT Register Contents

Bit Position Bit Name Function R/W

b31 to b14 Reserved Refer to Section 3.4.11, IC_RAW_INTR_STAT — I2C Raw Interrupt Status
Register for detailed descriptions of these bits.

R

b13 R_MASTER_ON_HO
LD

R

b12 R_RESTART_DET R

b11 R_GEN_CALL R

b10 R_START_DET R

b9 R_STOP_DET R

b8 R_ACTIVITY R

b7 R_RX_DONE R

b6 R_TX_ABRT R

b5 R_RD_REQ R

b4 R_TX_EMPTY R

b3 R_TX_OVER R

b2 R_RX_FULL R

b1 R_RX_OVER R

b0 R_RX_UNDER R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 182 of 637
Dec 29, 2021

3.4.10 IC_INTR_MASK — I2C Interrupt Mask Register
These bits mask their corresponding interrupt status bits. A value of 0 prevents a bit from generating an interrupt.

Address: 4006 3030h (I2C1)

4006 4030h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — —
M_MAST
ER_ON_

HOLD

M_RES
TART_

DET

M_GEN
_CALL

M_STA
RT_DE

T

M_STO
P_DET

M_ACTI
VITY

M_RX_
DONE

M_TX_
ABRT

M_RD_
REQ

M_TX_
EMPTY

M_TX_
OVER

M_RX_
FULL

M_RX_
OVER

M_RX_
UNDER

Value after reset X X 0 0 1 0 0 0 1 1 1 1 1 1 1 1

Table 3.12 IC_INTR_MASK Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b14 Reserved R

b13 M_MASTER_ON_HO
LD

Mask bit for the R_MASTER_ON_HOLD interrupt in IC_INTR_STAT register.
0: Disable interrupt
1: Enable interrupt

R/W

b12 M_RESTART_DET Mask bit for the R_RESTART_DET interrupt in IC_INTR_STAT register.
0: Disable interrupt
1: Enable interrupt

R/W

b11 M_GEN_CALL Mask bit for the R_GEN_CALL interrupt in IC_INTR_STAT register.
0: Disable interrupt
1: Enable interrupt

R/W

b10 M_START_DET Mask bit for the R_START_DET interrupt in IC_INTR_STAT register.
0: Disable interrupt
1: Enable interrupt

R/W

b9 M_STOP_DET Mask bit for the R_STOP_DET interrupt in IC_INTR_STAT register.
0: Disable interrupt
1: Enable interrupt

R/W

b8 M_ACTIVITY Mask bit for the R_ACTIVITY interrupt in IC_INTR_STAT register.
0: Disable interrupt
1: Enable interrupt

R/W

b7 M_RX_DONE Mask bit for the R_RX_DONE interrupt in IC_INTR_STAT register.
0: Disable interrupt
1: Enable interrupt

R/W

b6 M_TX_ABRT Mask bit for the R_TX_ABRT interrupt in IC_INTR_STAT register.
0: Disable interrupt
1: Enable interrupt

R/W

b5 M_RD_REQ Mask bit for the R_RD_REQ interrupt in IC_INTR_STAT register.
0: Disable interrupt
1: Enable interrupt

R/W

b4 M_TX_EMPTY Mask bit for the R_TX_EMPTY interrupt in IC_INTR_STAT register.
0: Disable interrupt
1: Enable interrupt

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 183 of 637
Dec 29, 2021

Table 3.12 IC_INTR_MASK Register Contents (2/2)

Bit Position Bit Name Function R/W

b3 M_TX_OVER Mask bit for the R_TX_OVER interrupt in IC_INTR_STAT register.
0: Disable interrupt
1: Enable interrupt

R/W

b2 M_RX_FULL Mask bit for the R_RX_FULL interrupt in IC_INTR_STAT register.
0: Disable interrupt
1: Enable interrupt

R/W

b1 M_RX_OVER Mask bit for the R_RX_OVER interrupt in IC_INTR_STAT register.
0: Disable interrupt
1: Enable interrupt

R/W

b0 M_RX_UNDER Mask bit for the R_RX_UNDER interrupt in IC_INTR_STAT register.
0: Disable interrupt
1: Enable interrupt

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 184 of 637
Dec 29, 2021

3.4.11 IC_RAW_INTR_STAT — I2C Raw Interrupt Status Register
Unlike the IC_INTR_STAT register, these bits are not masked so they always show the true status of the I2C controller.

Address: 4006 3034h (I2C1)

4006 4034h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — —
MASTE
R_ON_
HOLD

RESTA
RT_DE

T

GEN_C
ALL

START
_DET

STOP_
DET

RAW_INT
R_ACTIVI

TY

RX_DO
NE

TX_AB
RT

RD_RE
Q

TX_EM
PTY

TX_OV
ER

RX_FU
LL

RX_OV
ER

RX_UN
DER

Value after reset X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.13 IC_RAW_INTR_STAT Register Contents (1/3)

Bit Position Bit Name Function R/W

b31 to b14 Reserved R

b13 MASTER_ON_HOLD If this bit is set to 1b, it indicates that the master is holding the bus and TX FIFO is
empty.

R

b12 RESTART_DET If this bit is set to 1b, it indicates that a RESTART condition has occurred on the I2C
interface when I2C controller is operating in Slave mode and the slave is being
addressed.

Note) Following are exceptions where the RESTART_DET interrupt will not get
generated. In the case of Start byte transfer, where the RESTART comes
before the Address field as per the I2C protocol defined format, the Slave is still
not in the addressed mode and hence will not generate the RESTART_DET
interrupt.

R

b11 GEN_CALL Set only when a General Call address is received and it is acknowledged. It stays set
until it is cleared either by disabling I2C controller or when the CPU reads bit 0 of the
IC_CLR_GEN_CALL register. I2C controller stores the received data in the Rx buffer.

R

b10 START_DET If this bit is set to 1b, it indicates that a START or RESTART condition has occurred
on the I2C interface regardless of whether I2C controller is operating in slave or
master mode.

R

b9 STOP_DET The behavior of the STOP_DET interrupt status differs based on the
STOP_DET_IFADDRESSED selection in the IC_CON register.

When STOP_DET_IFADDRESSED = 0
If this bit is set to 1b, it indicates that a STOP condition has occurred on the I2C
interface regardless of whether I2C controller is operating in slave or master
mode.
In slave mode, a STOP_DET interrupt is generated irrespective of whether the
slave is addressed or not.

When STOP_DET_IFADDRESSED = 1
In Master Mode (MASTER_MODE = 1’b1), if this bit is set to 1b, it indicates that
a STOP condition has occurred on the I2C interface.
In Slave Mode (MASTER_MODE = 1’b0), STOP_DET interrupt is generated
only if the slave is addressed.

Note) During a general call address, this slave does not issue a STOP_DET interrupt
if STOP_DET_IFADDRESSED = 1’b1, even if the slave responds to the
general call address by generating ACK. The STOP_DET interrupt is generated
only when the transmitted address matches the slave address (SAR).

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 185 of 637
Dec 29, 2021

Table 3.13 IC_RAW_INTR_STAT Register Contents (2/3)

Bit Position Bit Name Function R/W

b8 RAW_INTR_ACTIVIT
Y

This bit captures I2C controller activity and stays set until it is cleared. There are four
ways to clear it:
● Disabling the I2C controller
● Reading the IC_CLR_ACTIVITY register
● Reading the IC_CLR_INTR register
● System reset
Once this bit is set, it stays set unless one of the four methods is used to clear it. Even
if the I2C controller module is idle, this bit remains set until cleared, indicating that
there was activity on the bus.

R

b7 RX_DONE When the I2C controller is acting as a slave-transmitter, this bit is set to 1 if the master
does not acknowledge a transmitted byte. This occurs on the last byte of the
transmission, indicating that the transmission is done.

R

b6 TX_ABRT If this bit is set to 1b, it indicates that I2C controller, as an I2C transmitter, is unable to
complete the intended actions on the contents of the transmit FIFO. This situation can
occur both as an I2C master or an I2C slave, and is referred to as a “transmit abort”.
When this bit is set to 1, the IC_TX_ABRT_SOURCE register indicates the reason
why the transmit abort takes places.

Note) The I2C controller flushes/resets/empties only the TX_FIFO whenever there is
a transmit abort caused by any of the events tracked by the
IC_TX_ABRT_SOURCE register. The Tx FIFO remains in this flushed state
until the IC_CLR_TX_ABRT register is read. Once this read is performed, the
Tx FIFO is then ready to accept more data bytes from the APB interface. Both
Tx FIFO and Rx FIFO will flush on Transmit Abort.

R

b5 RD_REQ This bit is set to 1 when I2C controller is acting as a slave and another I2C master is
attempting to read data from I2C controller. The I2C controller holds the I2C bus in a
wait state (SCL = 0) until this interrupt is serviced, which means that the slave has
been addressed by a remote master that is asking for data to be transferred. The
processor must respond to this interrupt and then write the requested data to the
IC_DATA_CMD register. This bit is set to 0 just after the processor reads the
IC_CLR_RD_REQ register.

R

b4 TX_EMPTY The behavior of the TX_EMPTY interrupt status differs based on the
TX_EMPTY_CTRL selection in the IC_CON register.

When TX_EMPTY_CTRL = 0:
This bit is set to 1 when the transmit buffer is at or below the threshold value set in

the IC_TX_TL register.
When TX_EMPTY_CTRL = 1:
This bit is set to 1 when the transmit buffer is at or below the threshold value set in

the IC_TX_TL register and the transmission of the address/data from the
internal shift register for the most recently popped command is completed.

It is automatically cleared by hardware when the buffer level goes above the
threshold. When IC_ENABLE[0] is set to 0, the TX FIFO is flushed and held in reset.
There the TX FIFO looks like it has no data within it, so this bit is set to 1, provided
there is activity in the master or slave state machines. When there is no longer any
activity, then with IC_ENABLE_STATUS.IC_EN = 0, this bit is set to 0.

R

b3 TX_OVER Set during transmit if the transmit buffer is filled to its depth of 8 and the processor
attempts to issue another I2C command by writing to the IC_DATA_CMD register.
When the module is disabled, this bit keeps its level until the master or slave state
machines go into idle, and when IC_ENABLE_STATUS.IC_EN goes to 0, this interrupt
is cleared.

R

b2 RX_FULL Set when the receive buffer reaches or goes above the RX_TL threshold in the
IC_RX_TL register. It is automatically cleared by hardware when buffer level goes
below the threshold. If the module is disabled (IC_ENABLE[0] = 0), the RX FIFO is
flushed and held in reset; therefore the RX FIFO is not full. So, this bit is cleared once
the IC_ENABLE bit 0 is programmed with a 0, regardless of the activity that continues.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 186 of 637
Dec 29, 2021

Table 3.13 IC_RAW_INTR_STAT Register Contents (3/3)

Bit Position Bit Name Function R/W

b1 RX_OVER Set if the receive buffer is completely filled to its depth of 8 and an additional byte is
received from an external I2C device. The I2C controller acknowledges this, but any
data bytes received after the FIFO is full are lost. If the module is disabled
(IC_ENABLE[0] = 0), this bit keeps its level until the master or slave state machines go
into idle, and when IC_ENABLE_STATUS.IC_EN goes to 0, this interrupt is cleared.

Note) If IC_CON[9] bit (RX_FIFO_FULL_HLD_CTRL) is programmed to HIGH, then
the RX_OVER interrupt will never occur, because the Rx FIFO will never
overflow.

R

b0 RX_UNDER Set to 1b if the processor attempts to read the receive buffer when it is empty by
reading from the IC_DATA_CMD register. If the module is disabled (IC_ENABLE[0] =
0), this bit keeps its level until the master or slave state machines go into idle, and
when IC_ENABLE_STATUS.IC_EN goes to 0, this interrupt is cleared.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 187 of 637
Dec 29, 2021

3.4.12 IC_RX_TL — I2C Receive FIFO Threshold Register

Address: 4006 3038h (I2C1)

4006 4038h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — RX_TL

Value after reset X X X X X X X X 0 0 0 0 0 0 0 0

Table 3.14 IC_RX_TL Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved R

b7 to b0 RX_TL Receive FIFO Threshold Level
Controls the level of entries (or above) that triggers the RX_FULL interrupt (bit 2 in
IC_RAW_INTR_STAT register). The valid range is 0-255, with the additional
restriction that hardware does not allow this value to be set to a value larger than the
depth of the buffer. If an attempt is made to do that, the actual value set will be the
maximum depth of the buffer.
A value of 0 sets the threshold for 1 entry, and a value of 255 sets the threshold for
256 entries.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 188 of 637
Dec 29, 2021

3.4.13 IC_TX_TL — I2C Transmit FIFO Threshold Register

Address: 4006 303Ch (I2C1)

4006 403Ch (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — TX_TL

Value after reset X X X X X X X X 0 0 0 0 0 0 0 0

Table 3.15 IC_TX_TL Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved R

b7 to b0 TX_TL Transmit FIFO Threshold Level
Controls the level of entries (or below) that trigger the TX_EMPTY interrupt (bit 4 in
IC_RAW_INTR_STAT register). The valid range is 0-255, with the additional
restriction that it may not be set to value larger than the depth of the buffer. If an
attempt is made to do that, the actual value set will be the maximum depth of the
buffer.
A value of 0 sets the threshold for 0 entries, and a value of 255 sets the threshold for
255 entries.

R/W

3.4.14 IC_CLR_INTR — Clear Combined and Individual Interrupt Register

Address: 4006 3040h (I2C1)

4006 4040h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — — CLR_IN
TR

Value after reset X X X X X X X X X X X X X X X 0

Table 3.16 IC_CLR_INTR Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 CLR_INTR Read this register to clear the combined interrupt, all individual interrupts, and the
IC_TX_ABRT_SOURCE register. This bit does not clear hardware clearable interrupts
but software clearable interrupts. Refer to Bit 9 of the IC_TX_ABRT_SOURCE register
for an exception to clearing IC_TX_ABRT_SOURCE.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 189 of 637
Dec 29, 2021

3.4.15 IC_CLR_RX_UNDER — Clear RX_UNDER Interrupt Register

Address: 4006 3044h (I2C1)

4006 4044h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — —
CLR_R
X_UND

ER

Value after reset X X X X X X X X X X X X X X X 0

Table 3.17 IC_CLR_RX_UNDER Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 CLR_RX_UNDER Read this register to clear the RX_UNDER interrupt (bit 0) of the
IC_RAW_INTR_STAT register.

R

3.4.16 IC_CLR_RX_OVER — Clear RX_OVER Interrupt Register

Address: 4006 3048h (I2C1)

4006 4048h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — —
CLR_R
X_OVE

R

Value after reset X X X X X X X X X X X X X X X 0

Table 3.18 IC_CLR_RX_OVER Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 CLR_RX_OVER Read this register to clear the RX_OVER interrupt (bit 1) of the IC_RAW_INTR_STAT
register.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 190 of 637
Dec 29, 2021

3.4.17 IC_CLR_TX_OVER — Clear TX_OVER Interrupt Register

Address: 4006 304Ch (I2C1)

4006 404Ch (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — —
CLR_T
X_OVE

R

Value after reset X X X X X X X X X X X X X X X 0

Table 3.19 IC_CLR_TX_OVER Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 CLR_TX_OVER Read this register to clear the TX_OVER
interrupt (bit 3) of the IC_RAW_INTR_STAT register.

R

3.4.18 IC_CLR_RD_REQ — Clear RD_REQ Interrupt Register

Address: 4006 3050h (I2C1)

4006 4050h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — — CLR_R
D_REQ

Value after reset X X X X X X X X X X X X X X X 0

Table 3.20 IC_CLR_RD_REQ Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 CLR_RD_REQ Read this register to clear the RD_REQ interrupt (bit 5) of the IC_RAW_INTR_STAT
register.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 191 of 637
Dec 29, 2021

3.4.19 IC_CLR_TX_ABRT — Clear TX_ABRT Interrupt Register

Address: 4006 3054h (I2C1)

4006 4054h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — —
CLR_T
X_ABR

T

Value after reset X X X X X X X X X X X X X X X 0

Table 3.21 IC_CLR_TX_ABRT Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 CLR_TX_ABRT Read this register to clear the TX_ABRT interrupt (bit 6) of the IC_RAW_INTR_STAT
register, and the IC_TX_ABRT_SOURCE register. This also releases the TX FIFO
from the flushed/reset state, allowing more writes to the TX FIFO.
Refer to Bit 9 of the IC_TX_ABRT_SOURCE register for an exception to clearing
IC_TX_ABRT_SOURCE.

R

3.4.20 IC_CLR_RX_DONE — Clear RX_DONE Interrupt Register

Address: 4006 3058h (I2C1)

4006 4058h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — —
CLR_R
X_DON

E

Value after reset X X X X X X X X X X X X X X X 0

Table 3.22 IC_CLR_RX_DONE Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 CLR_RX_DONE Read this register to clear the RX_DONE interrupt (bit 7) of the IC_RAW_INTR_STAT
register.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 192 of 637
Dec 29, 2021

3.4.21 IC_CLR_ACTIVITY — Clear ACTIVITY Interrupt Register

Address: 4006 305Ch (I2C1)

4006 405Ch (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — —
CLR_A
CTIVIT

Y

Value after reset X X X X X X X X X X X X X X X 0

Table 3.23 IC_CLR_ACTIVITY Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 CLR_ACTIVITY Reading this register clears the ACTIVITY interrupt if the I2C controller is not active
anymore. If the I2C module is still active on the bus, the ACTIVITY interrupt bit
continues to be set. It is automatically cleared by hardware if the module is disabled
and if there is no further activity on the bus. The value read from this register to get
status of the ACTIVITY interrupt (bit 8) of the IC_RAW_INTR_STAT register.

R

3.4.22 IC_CLR_STOP_DET — Clear STOP_DET Interrupt Register

Address: 4006 3060h (I2C1)

4006 4060h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — —
CLR_S
TOP_D

ET

Value after reset X X X X X X X X X X X X X X X 0

Table 3.24 IC_CLR_STOP_DET Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 CLR_STOP_DET Read this register to clear the STOP_DET interrupt (bit 9) of the
IC_RAW_INTR_STAT register.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 193 of 637
Dec 29, 2021

3.4.23 IC_CLR_START_DET — Clear START_DET Interrupt Register

Address: 4006 3064h (I2C1)

4006 4064h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — —
CLR_S
TART_

DET

Value after reset X X X X X X X X X X X X X X X 0

Table 3.25 IC_CLR_START_DET Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 CLR_START_DET Read this register to clear the START_DET interrupt (bit 10) of the
IC_RAW_INTR_STAT register.

R

3.4.24 IC_CLR_GEN_CALL — Clear GEN_CALL Interrupt Register

Address: 4006 3068h (I2C1)

4006 4068h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — —
CLR_G
EN_CA

LL

Value after reset X X X X X X X X X X X X X X X 0

Table 3.26 IC_CLR_GEN_CALL Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 CLR_GEN_CALL Read this register to clear the GEN_CALL interrupt (bit 11) of the
IC_RAW_INTR_STAT register.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 194 of 637
Dec 29, 2021

3.4.25 IC_ENABLE — I2C Enable Register

Address: 4006 306Ch (I2C1)

4006 406Ch (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — ABORT ENABL
E

Value after reset X X X X X X X X X X X X X X 0 0

Table 3.27 IC_ENABLE Register Contents

Bit Position Bit Name Function R/W

b31 to b2 Reserved R

b1 ABORT When set, the controller initiates the transfer abort.
0: ABORT not initiated or ABORT done
1: ABORT operation in progress

The software can abort the I2C transfer in master mode by setting this bit. The
software can set this bit only when ENABLE is already set; otherwise, the controller
ignores any write to ABORT bit. The software cannot clear the ABORT bit once set. In
response to an ABORT, the controller issues a STOP and flushes the Tx FIFO after
completing the current transfer, then sets the TX_ABORT interrupt after the abort
operation. The ABORT bit is cleared automatically after the abort operation.

R/W

b0 ENABLE Controls whether the I2C controller is enabled.
0: Disables I2C controller (TX and RX FIFOs are held in an erased state)
1: Enables I2C controller

Software can disable I2C controller while it is active. However, it is important that care
be taken to ensure that I2C controller is disabled properly.
When I2C controller is disabled, the following occurs:
● The TX FIFO and RX FIFO get flushed.
● Status bits in the IC_INTR_STAT register are still active until I2C controller goes

into IDLE state.
If the module is transmitting, it stops as well as deletes the contents of the transmit
buffer after the current transfer is complete. If the module is receiving, the I2C
controller stops the current transfer at the end of the current byte and does not
acknowledge the transfer.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 195 of 637
Dec 29, 2021

3.4.26 IC_STATUS — I2C Status Register
This is a read-only register used to indicate the current transfer status and FIFO status. The status register may be read
at any time. None of the bits in this register request an interrupt.

When the I2C controller is disabled by writing 0 in bit 0 of the IC_ENABLE register:

● Bits 1 and 2 are set to 1

● Bits 3 and 4 are set to 0

When the master or slave state machines goes to idle and IC_ENABLE_STATUS.IC_EN = 0:

● Bits 5 and 6 are set to 0

Address: 4006 3070h (I2C1)

4006 4070h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — —
SLV_A
CTIVIT

Y

MST_A
CTIVIT

Y
RFF RFNE TFE TFNF

IC_STAT
US_ACTI

VITY

Value after reset X X X X X X X X X 0 0 0 0 1 1 0

Table 3.28 IC_STATUS Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b7 Reserved R

b6 SLV_ACTIVITY Slave FSM Activity Status.
When the Slave Finite State Machine (FSM) is not in the IDLE state, this bit is set.

0: Slave FSM is in IDLE state so the Slave part of I2C controller is not Active
1: Slave FSM is not in IDLE state so the Slave part of I2C controller is Active

R

b5 MST_ACTIVITY Master FSM Activity Status.
When the Master Finite State Machine (FSM) is not in the IDLE state, this bit is set.

0: Master FSM is in IDLE state so the Master part of I2C controller is not Active
1: Master FSM is not in IDLE state so the Master part of I2C controller is Active

Note) IC_STATUS[0] - that is, IC_STATUS_ACTIVITY bit - is the OR of
SLV_ACTIVITY and MST_ACTIVITY bits.

R

b4 RFF Receive FIFO Completely Full.
When the receive FIFO is completely full, this bit is set.
When the receive FIFO contains one or more empty location, this bit is cleared.

0: Receive FIFO is not full
1: Receive FIFO is full

R

b3 RFNE Receive FIFO not empty.
This bit is set when the receive FIFO contains one or more entries; it is cleared when
the receive FIFO is empty.

0: Receive FIFO is empty
1: Receive FIFO is not empty

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 196 of 637
Dec 29, 2021

Table 3.28 IC_STATUS Register Contents (2/2)

Bit Position Bit Name Function R/W

b2 TFE Transmit FIFO Completely Empty.
When the transmit FIFO is completely empty, this bit is set.
When it contains one or more valid entries, this bit is cleared. This bit field does not
request an interrupt.

0: Transmit FIFO is not empty
1: Transmit FIFO is empty

R

b1 TFNF Transmit FIFO Not Full.
Set when the transmit FIFO contains one or more empty locations, and is cleared
when the FIFO is full.

0: Transmit FIFO is full
1: Transmit FIFO is not full

R

b0 IC_STATUS_ACTIVIT
Y

I2C Activity Status.
0: I2C controller is not Active
1: I2C controller is Active

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 197 of 637
Dec 29, 2021

3.4.27 IC_TXFLR — I2C Transmit FIFO Level Register
This register contains the number of valid data entries in the transmit FIFO buffer. It is cleared whenever:

● The I2C controller is disabled

● There is a transmit abort that is, TX_ABRT bit is set in the IC_RAW_INTR_STAT register

● The slave bulk transmit mode is aborted

The register increments whenever data is placed into the transmit FIFO and decrements when data is taken from the
transmit FIFO.

Address: 4006 3074h (I2C1)

4006 4074h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — TXFLR

Value after reset X X X X X X X X X X X X 0 0 0 0

Table 3.29 IC_TXFLR Register Contents

Bit Position Bit Name Function R/W

b31 to b4 Reserved R

b3 to b0 TXFLR Transmit FIFO Level.
Contains the number of valid data entries in the transmit FIFO.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 198 of 637
Dec 29, 2021

3.4.28 IC_RXFLR — I2C Receive FIFO Level Register
This register contains the number of valid data entries in the receive FIFO buffer. It is cleared whenever:

● The I2C controller is disabled

● Whenever there is a transmit abort caused by any of the events tracked in IC_TX_ABRT_SOURCE

The register increments whenever data is placed into the receive FIFO and decrements when data is taken from the
receive FIFO.

Address: 4006 3078h (I2C1)

4006 4078h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — RXFLR

Value after reset X X X X X X X X X X X X 0 0 0 0

Table 3.30 IC_RXFLR Register Contents

Bit Position Bit Name Function R/W

b31 to b4 Reserved R

b3 to b0 RXFLR Receive FIFO Level.
Contains the number of valid data entries in the receive FIFO.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 199 of 637
Dec 29, 2021

3.4.29 IC_SDA_HOLD — I2C SDA Hold Time Length Register
The bits [15:0] of this register are used to control the hold time of SDA during transmit in both slave and master mode
(after SCL goes from HIGH to LOW). The bits [23:16] of this register are used to extend the SDA transition (if any)
whenever SCL is HIGH in the receiver in either master or slave mode. Writes to this register succeed only when
IC_ENABLE[0]=0. The values in this register are in units of I2C_SCLK period. The value programmed in
IC_SDA_TX_HOLD must be greater than the minimum hold time in each mode – one cycle in master mode, seven
cycles in slave mode – for the value to be implemented. The programmed SDA hold time during transmit
(IC_SDA_TX_HOLD) cannot exceed at any time the duration of the low part of SCL. Therefore, the programmed value
cannot be larger than N_SCL_LOW-2, where N_SCL_LOW is the duration of the low part of the SCL period measured
in I2C_SCLK cycles.

Address: 4006 307Ch (I2C1)

4006 407Ch (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — IC_SDA_RX_HOLD

Value after reset X X X X X X X X 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 IC_SDA_TX_HOLD

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 3.31 IC_SDA_HOLD Register Contents

Bit Position Bit Name Function R/W

b31 to b24 Reserved R

b23 to b16 IC_SDA_RX_HOLD Sets the required SDA hold time in units of I2C_SCLK period, when I2C controller acts
as a receiver.

R/W

b15 to b0 IC_SDA_TX_HOLD Sets the required SDA hold time in units of I2C_SCLK period, when I2C controller acts
as a transmitter.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 200 of 637
Dec 29, 2021

3.4.30 IC_TX_ABRT_SOURCE — I2C Transmit Abort Source Register
This register has 32 bits that indicate the source of the TX_ABRT bit. Except for Bit 9, this register is cleared whenever
the IC_CLR_TX_ABRT register or the IC_CLR_INTR register is read. To clear Bit 9, the source of the
ABRT_SBYTE_NORSTRT must be fixed first; RESTART must be enabled (IC_CON[5] = 1), the SPECIAL bit must
be cleared (IC_TAR[11]), or the GC_OR_START bit must be cleared (IC_TAR[10]).
Once the source of the ABRT_SBYTE_NORSTRT is fixed, then this bit can be cleared in the same manner as other bits
in this register. If the source of the ABRT_SBYTE_NORSTRT is not fixed before attempting to clear this bit, Bit 9
clears for one cycle and is then re-asserted.

Address: 4006 3080h (I2C1)

4006 4080h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 TX_FLUSH_CNT — — — — — —
ABRT_
USER_
ABRT

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

ABRT_
SLVRD
_INTX

ABRT_SL
V_ARBL

OST

ABRT_SL
VFLUSH_
TXFIFO

ARB_L
OST

ABRT_
MASTE
R_DIS

ABRT_10
B_RD_N
ORSTRT

ABRT_SB
YTE_NO
RSTRT

—
ABRT_SB
YTE_ACK

DET
—

ABRT_
GCALL
_READ

ABRT_G
CALL_NO

ACK

ABRT_TX
DATA_N
OACK

ABRT_10
ADDR2_
NOACK

ABRT_10
ADDR1_
NOACK

ABRT_7B
ADDR
NOACK

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.32 IC_TX_ABRT_SOURCE Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b23 TX_FLUSH_CNT This field indicates the number of Tx FIFO Data Commands which are flushed due to
TX_ABRT interrupt.
It is cleared whenever I2C controller is disabled.

Role of I2C controller: Master-Transmitter or Slave-Transmitter

R

b22 to b17 Reserved R

b16 ABRT_USER_ABRT This is a master-mode-only bit.
1: Master has detected the transfer abort (IC_ENABLE[1]).
Role of I2C controller: Master-Transmitter

R

b15 ABRT_SLVRD_INTX 1: When the processor side responds to a slave mode request for data to be
transmitted to a remote master and user writes a 1 in CMD (bit 8) of
IC_DATA_CMD register.

Role of I2C controller: Slave-Transmitter

R

b14 ABRT_SLV_ARBLOS
T

1: Slave lost the bus while transmitting data to a remote master.
IC_TX_ABRT_SOURCE[12] is set at the same time.

Note) Even though the slave never “owns” the bus, something could go wrong on the
bus. This is a fail-safe check. For instance, during a data transmission at the
low-to-high transition of SCL, if what is on the data bus is not what is supposed
to be transmitted, then I2C controller no longer own the bus.

Role of I2C controller: Slave-Transmitter

R

b13 ABRT_SLVFLUSH_T
XFIFO

1: Slave has received a read command and some data exists in the TX FIFO so
the slave issues a TX_ABRT interrupt to flush old data in TX FIFO.

Role of I2C controller: Slave-Transmitter

R

b12 ARB_LOST 1: Master has lost arbitration, or if IC_TX_ABRT_SOURCE[14] is also set, then the
slave transmitter has lost arbitration.

Role of I2C controller: Master-Transmitter or Slave-Transmitter

R

b11 ABRT_MASTER_DIS 1: User tries to initiate a Master operation with the Master mode disabled.
Role of I2C controller: Master-Transmitter or Master-Receiver

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 201 of 637
Dec 29, 2021

Table 3.32 IC_TX_ABRT_SOURCE Register Contents (2/2)

Bit Position Bit Name Function R/W

b10 ABRT_10B_RD_NOR
STRT

1: The restart is disabled (IC_RESTART_EN bit (IC_CON[5]) =0) and the master
sends a read command in 10-bit addressing mode.

Role of I2C controller: Master-Receiver

R

b9 ABRT_SBYTE_NOR
STRT

To clear Bit 9, the source of the ABRT_SBYTE_NORSTRT must be fixed first; restart
must be enabled (IC_CON[5]=1), the SPECIAL bit must be cleared (IC_TAR[11]), or
the GC_OR_START bit must be cleared (IC_TAR[10]). Once the source of the
ABRT_SBYTE_NORSTRT is fixed, then this bit can be cleared in the same manner as
other bits in this register. If the source of the ABRT_SBYTE_NORSTRT is not fixed
before attempting to clear this bit, bit 9 clears for one cycle and then gets reasserted.

1: The restart is disabled (IC_RESTART_EN bit (IC_CON[5]) =0) and the user is
trying to send a START Byte.

Role of I2C controller: Master

R

b8 Reserved R

b7 ABRT_SBYTE_ACKD
ET

1: Master has sent a START Byte and the START Byte was acknowledged (wrong
behavior).

Role of I2C controller: Master

R

b6 Reserved R

b5 ABRT_GCALL_READ 1: I2C controller in master mode sent a General Call but the user programmed the
byte following the General Call to be a read from the bus.

Role of I2C controller: Master-Transmitter

R

b4 ABRT_GCALL_NOA
CK

1: I2C controller in master mode sent a General Call and no slave on the bus
acknowledged the General Call.

Role of I2C controller: Master-Transmitter

R

b3 ABRT_TXDATA_NOA
CK

1: This is a master-mode only bit. Master has received an acknowledgement for
the address, but when it sent data byte(s) following the address, it did not
receive an acknowledge from the remote slave(s).

Role of I2C controller: Master-Transmitter

R

b2 ABRT_10ADDR2_NO
ACK

1: Master is in 10-bit address mode and the second address byte of the 10-bit
address was not acknowledged by any slave.

Role of I2C controller: Master-Transmitter or Master-Receiver

R

b1 ABRT_10ADDR1_NO
ACK

1: Master is in 10-bit address mode and the first 10-bit address byte was not
acknowledged by any slave.

Role of I2C controller: Master-Transmitter or Master-Receiver

R

b0 ABRT_7B_ADDR_NO
ACK

1: Master is in 7-bit addressing mode and the address sent was not acknowledged
by any slave.

Role of I2C controller: Master-Transmitter or Master-Receiver

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 202 of 637
Dec 29, 2021

3.4.31 IC_SLV_DATA_NACK_ONLY — Generate Slave Data NACK Register
The register is used to generate a NACK for the data part of a transfer when I2C controller is acting as a slave-receiver.

A write can occur on this register if both of the following conditions are met:

● I2C controller is disabled (IC_ENABLE[0] = 0)

● Slave part is inactive (IC_STATUS[6] = 0)

Address: 4006 3084h (I2C1)

4006 4084h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — — NACK

Value after reset X X X X X X X X X X X X X X X 0

Table 3.33 IC_SLV_DATA_NACK_ONLY Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 NACK Generate NACK.
This NACK generation only occurs when I2C controller is a slave-receiver. If this
register is set to a value of 1, it can only generate a NACK after a data byte is
received; hence, the data transfer is aborted and the data received is not pushed to
the receive buffer.
When the register is set to a value of 0, it generates NACK/ACK, depending on normal
criteria.

1: Generate NACK after data byte received
0: Generate NACK/ACK normally

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 203 of 637
Dec 29, 2021

3.4.32 IC_SDA_SETUP — I2C SDA Setup Register
This register controls the amount of time delay (in terms of number of I2C_SCLK periods) introduced in the rising edge
of SCL, relative to SDA changing, when I2C controller services a read request in a slave-transmitter operation. The
relevant I2C requirement is tSU;DAT as detailed in the I2C Bus Specification. This register must be programmed with a
value equal to or greater than 2.

Writes to this register succeed only when IC_ENABLE[0] = 0.

Address: 4006 3094h (I2C1)

4006 4094h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — SDA_SETUP

Value after reset X X X X X X X X 0 1 1 0 0 1 0 0

Table 3.34 IC_SDA_SETUP Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved R

b7 to b0 SDA_SETUP SDA Setup.
It is recommended that if the required delay is 1000 ns, then for an I2C_SCLK
frequency of 10 MHz, IC_SDA_SETUP should be programmed to a value of 11.
IC_SDA_SETUP must be programmed with a minimum value of 2.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 204 of 637
Dec 29, 2021

3.4.33 IC_ACK_GENERAL_CALL — I2C ACK General Call Register
The register controls whether I2C controller responds with an ACK or NACK when it receives an I2C General Call
address.

NOTE

This register is applicable only when the I2C controller is in slave mode.

Address: 4006 3098h (I2C1)

4006 4098h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — —
ACK_G
EN_CA

LL

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 3.35 IC_ACK_GENERAL_CALL Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 ACK_GEN_CALL ACK General Call
When set to 1, I2C controller responds with a ACK when it receives a General Call.
Otherwise, I2C controller responds with a NACK.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 205 of 637
Dec 29, 2021

3.4.34 IC_ENABLE_STATUS — I2C Enable Status Register
The register is used to report the I2C controller hardware status when the IC_ENABLE[0] register is set from 1 to 0;
that is, when I2C controller is disabled.
If IC_ENABLE[0] has been set to 1, bits 2:1 are forced to 0, and bit 0 is forced to 1.
If IC_ENABLE[0] has been set to 0, bits 2:1 is only be valid as soon as bit 0 is read as “0”.

NOTE

When IC_ENABLE[0] has been written with “0”, a delay occurs for bit 0 to be read as “0” because disabling the I2C
controller depends on I2C bus activities.

Address: 4006 309Ch (I2C1)

4006 409Ch (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — —

SLV_R
X_DAT
A_LOS

T

SLV_DIS
ABLED_
WHILE_B

USY

IC_EN

Value after reset X X X X X X X X X X X X X 0 0 0

Table 3.36 IC_ENABLE_STATUS Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b3 Reserved R

b2 SLV_RX_DATA_LOS
T

Slave Received Data Lost.
This bit indicates if a Slave-Receiver operation has been aborted with at least one
data byte received from an I2C transfer due to the setting bit 0 of IC_ENABLE from 1
to 0.
When read as 1, the I2C controller is deemed to have been actively engaged in an
aborted I2C transfer (with matching address) and the data phase of the I2C transfer
has been entered, even though a data byte has been responded with a NACK.

Note)
● If the remote I2C master terminates the transfer with a STOP condition before the

I2C controller has a chance to NACK a transfer, and IC_ENABLE[0] has been set
to 0, then this bit is also set to 1.
When read as 0, the I2C controller is deemed to have been disabled without being
actively involved in the data phase of a Slave-Receiver transfer.

● The CPU can safely read this bit when IC_EN (bit 0) is read as 0.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 206 of 637
Dec 29, 2021

Table 3.36 IC_ENABLE_STATUS Register Contents (2/2)

Bit Position Bit Name Function R/W

b1 SLV_DISABLED_WHI
LE_BUSY

Slave Disabled While Busy (Transmit, Receive).
This bit indicates if a potential or active Slave operation has been aborted due to the
setting bit 0 of the IC_ENABLE register from 1 to 0. This bit is set when the CPU
writes a 0 to the IC_ENABLE register while: (a) I2C controller is receiving the address
byte of the Slave-Transmitter operation from a remote master; OR, (b) address and
data bytes of the Slave-Receiver operation from a remote master.
When read as 1, I2C controller is deemed to have forced a NACK during any part of
an I2C transfer, irrespective of whether the I2C address matches the slave address
set in I2C controller (IC_SAR register) OR if the transfer is completed before
IC_ENABLE is set to 0 but has not taken effect.

Note)
● If the remote I2C master terminates the transfer with a STOP condition before the

I2C controller has a chance to NACK a transfer, and IC_ENABLE[0] has been set
to 0, then this bit will also be set to 1. When read as 0, I2C controller is deemed to
have been disabled when there is master activity, or when the I2C bus is idle.

● The CPU can safely read this bit when IC_EN (bit 0) is read as 0.

R

b0 IC_EN I2C interface Status.
When read as 1, I2C controller is deemed to be in an enabled state.
When read as 0, I2C controller is deemed completely inactive.

Note) The CPU can safely read this bit anytime. When this bit is read as 0, the CPU
can safely read SLV_RX_DATA_LOST (bit 2) and
SLV_DISABLED_WHILE_BUSY (bit 1).

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 207 of 637
Dec 29, 2021

3.4.35 IC_FS_SPKLEN — I2C Sm, Fm Spike Suppression Limit
This register is used to store the duration, measured in I2C_SCLK cycles, of the longest spike that is filtered out by the
spike suppression logic when the component is operating in Standard mode or Fast mode. The relevant I2C requirement
is tSP as detailed in the I2C Bus Specification. This register must be programmed with a minimum value of 1.

Address: 4006 30A0h (I2C1)

4006 40A0h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — IC_FS_SPKLEN

Value after reset X X X X X X X X 0 0 0 0 0 1 0 1

Table 3.37 IC_FS_SPKLEN Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved R

b7 to b0 IC_FS_SPKLEN This register must be set before any I2C bus transaction can take place to ensure
stable operation. This register sets the duration, measured in I2C_SCLK cycles, of the
longest spike in the SCL or SDA lines that will be filtered out by the spike suppression
logic.
This register can be written only when the I2C interface is disabled which corresponds
to the IC_ENABLE[0] register being set to 0. Writes at other times have no effect.
The minimum valid value is 1; hardware prevents values less than this being written,
and if attempted results in 1 being set.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 208 of 637
Dec 29, 2021

3.4.36 IC_CLR_RESTART_DET — Clear RESTART_DET Interrupt Register

Address: 4006 30A8h (I2C1)

4006 40A8h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset X X X X X X X X X X X X X X X X

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — —
CLR_R
ESTAR
T_DET

Value after reset X X X X X X X X X X X X X X X 0

Table 3.38 IC_CLR_RESTART_DET Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved R

b0 CLR_RESTART_DET Read this register to clear the RESTART_DET interrupt (bit 12) of
IC_RAW_INTR_STAT register.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 209 of 637
Dec 29, 2021

3.4.37 IC_COMP_PARAM_1 — Component Parameter Register 1
This is a constant read-only register that contains encoded information about the I2C controller parameter settings.

Address: 4006 30F4h (I2C1)

4006 40F4h (I2C2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — TX_BUFFER_DEPTH

Value after reset X X X X X X X X 0 0 0 0 0 1 1 1

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 RX_BUFFER_DEPTH
ADD_EN
CODED_
PARAMS

HAS
_DMA

INTR
_IO

HC_CO
UNT_V
ALUES

MAX_SPEED
_MODE

APB_DATA
_WIDTH

Value after reset 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0

Table 3.39 IC_COMP_PARAM_1 Register Contents

Bit Position Bit Name Function R/W

b31 to b24 Reserved R

b23 to b16 TX_BUFFER_DEPTH The value of this register is derived from the depth of transmit buffer.
0x7: The buffer depth is 8.

R

b15 to b8 RX_BUFFER_DEPTH The value of this register is derived from the depth of receive buffer.
0x7: The buffer depth is 8.

R

b7 ADD_ENCODED_PA
RAMS

The value of this register shows if encoded information has been added.
1: The capability of reading these encoded parameters via software has been

included.

R

b6 HAS_DMA The value of this register shows if the DMA handshaking interface signals is available.
0: Not available

R

b5 INTR_IO The value of this register shows if the interrupts are individual or combined to a single
one.

1: Combined

R

b4 HC_COUNT_VALUE
S

The value of this register shows if the *CNT registers are writable or read-only.
0: Writable

R

b3, b2 MAX_SPEED_MODE The value of this register shows the maximum I2C mode supported by the I2C
controller.

2: Fast mode

R

b1, b0 APB_DATA_WIDTH The value of this register shows the width of the APB data bus to which the I2C
controller is attached.

2: 32 bits

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 210 of 637
Dec 29, 2021

3.5 Operation Modes
It is important to note that the I2C controller should only be set to operate as an I2C Master, or I2C Slave, but not both
simultaneously. This is achieved by ensuring that bit 6 (IC_SLAVE_DISABLE) and 0 (MASTER_MODE) of the
IC_CON register are never set to 0 and 1, respectively.

3.5.1 Slave Mode Operation

3.5.1.1 Initial Configuration
To use the I2C controller as a slave, perform the following steps:

(1) Disable the I2C controller by writing a “0” to bit 0 of the IC_ENABLE register.

(2) Write to the IC_SAR register (bits 9:0) to set the slave address. This is the address to which the I2C controller
responds.

(3) Write to the IC_CON register to specify which type of addressing is supported (7- or 10-bit by setting bit 3).
Enable the I2C controller in slave only mode by writing a “0” into bit 6 (IC_SLAVE_DISABLE) and a “0” to bit 0
(MASTER_MODE).

NOTE

Slaves and masters do not have to be programmed with the same type of addressing 7- or 10-bit address. For
instance, a slave can be programmed with 7-bit addressing and a master with 10-bit addressing, and vice versa.

(4) Enable the I2C controller by writing a “1” in bit 0 of the IC_ENABLE register.

CAUTION

● It is recommended that the I2C Slave be brought out of reset only when the I2C bus is IDLE. De-asserting the reset
when a transfer is ongoing on the bus causes internal synchronization flip-flops used to synchronize SDA and SCL to
toggle from a reset value of 1 to the actual value on the bus. This can result in SDA toggling from 1 to 0 while SCL is
1, thereby causing a false START condition to be detected by the I2C Slave.

● This scenario can also be avoided by configuring the I2C controller with IC_SLAVE_DISABLE = 1 and
MASTER_MODE = 1 so that the Slave interface is disabled after reset. It can then be enabled by programming
IC_CON[0] = 0 and IC_CON[6] = 0 after the internal SDA and SCL have synchronized to the value on the bus; this
takes approximately 6 I2C_SCLK cycles after reset de-assertion.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 211 of 637
Dec 29, 2021

3.5.1.2 Slave Transmitter Operation for a Single Byte
When another I2C master device on the bus addresses the I2C controller and requests data, the I2C controller acts as a
slave transmitter and the following steps occur:

(5) The other I2C master device initiates an I2C transfer with an address that matches the slave address in the IC_SAR
register of the I2C controller.

(6) The I2C controller acknowledges the sent address and recognizes the direction of the transfer to indicate that it is
acting as a slave transmitter.

(7) The I2C controller asserts the RD_REQ interrupt (bit 5 of the IC_RAW_INTR_STAT register) and holds the SCL
line low. It is in a wait state until software responds.
If the RD_REQ interrupt has been masked, due to IC_INTR_MASK[5] register (M_RD_REQ bit field) being set
to 0, then it is recommended that a hardware and/or software timing routine be used to instruct the CPU to perform
periodic reads of the IC_RAW_INTR_STAT register.

● Reads that indicate IC_RAW_INTR_STAT[5] (R_RD_REQ bit field) being set to 1 must be treated as the
equivalent of the RD_REQ interrupt being asserted.

● Software must then act to satisfy the I2C transfer.

● The timing interval used should be in the order of 10 times the fastest SCL clock period the I2C controller can
handle. For example, for 400 kb/s, the timing interval is 25 µs.

NOTE

The value of 10 is recommended here because this is approximately the amount of time required for a single byte
of data transferred on the I2C bus.

(8) If there is any data remaining in the Tx FIFO before receiving the read request, then the I2C controller asserts a
TX_ABRT interrupt (bit 6 of the IC_RAW_INTR_STAT register) to flush the old data from the TX FIFO.

NOTE

Because the Tx FIFO is forced into a flushed/reset state whenever a TX_ABRT event occurs, it is necessary for
software to release the I2C controller from this state by reading the IC_CLR_TX_ABRT register before attempting
to write into the Tx FIFO. See IC_RAW_INTR_STAT register for more details.

If the TX_ABRT interrupt has been masked, due to of IC_INTR_MASK[6] register (M_TX_ABRT bit field)
being set to 0, then it is recommended that re using the timing routine (described in the previous step), or a similar
one, be used to read the IC_RAW_INTR_STAT register.

● Reads that indicate bit 6 (R_TX_ABRT) being set to 1 must be treated as the equivalent of the TX_ABRT
interrupt being asserted.

● There is no further action required from software.

● The timing interval used should be similar to that described in the previous step for the
IC_RAW_INTR_STAT[5] register.

(9) Software writes to the IC_DATA_CMD register with the data to be written (by writing a “0” in bit 8).

(10) Software must clear the RD_REQ and TX_ABRT interrupts (bits 5 and 6, respectively) of the
IC_RAW_INTR_STAT register.

(11) The I2C controller releases the SCL and transmits the byte.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 212 of 637
Dec 29, 2021

(12) The master may hold the I2C bus by issuing a RESTART condition or release the bus by issuing a STOP
condition.

3.5.1.3 Slave Receiver Operation for a Single Byte
When another I2C master device on the bus addresses the I2C controller and is sending data, the I2C controller acts as a
slave receiver and the following steps occur:

(1) The other I2C master device initiates an I2C transfer with an address that matches the I2C slave address in the
IC_SAR register.

(2) The I2C controller acknowledges the sent address and recognizes the direction of the transfer to indicate that the
I2C controller is acting as a slave receiver.

(3) I2C controller receives the transmitted byte and places it in the receive buffer.

(4) I2C controller asserts the RX_FULL interrupt (IC_RAW_INTR_STAT[2] register).
If the RX_FULL interrupt has been masked, due to setting IC_INTR_MASK[2] register to 0 or setting IC_RX_TL
to a value larger than 0, then it is recommended that a timing routine (similarly to “Slave Transmitter Operation
for a Single Byte”) be implemented for periodic reads of the IC_STATUS register. Reads of the IC_STATUS
register, with bit 3 (RFNE) set at 1, must then be treated by software as the equivalent of the RX_FULL interrupt
being asserted.

(5) Software may read the byte from the IC_DATA_CMD register (bits 7:0).

(6) The other master device may hold the I2C bus by issuing a RESTART condition, or release the bus by issuing a
STOP condition.

3.5.1.4 Slave Transfer Operation for Bulk Transfer
In the standard I2C protocol, all transactions are single byte transactions and the programmer responds to a remote
master read request by writing one byte into the slave’s TX FIFO. When a slave (slave transmitter) is issued with a read
request (RD_REQ) from the remote master (master receiver), at a minimum there should be at least one entry placed
into the slave transmitter’s TX FIFO. I2C controller is designed to handle more data in the TX FIFO so that subsequent
read requests can take that data without raising an interrupt to get more data. Ultimately, this eliminates the possibility
of significant latencies being incurred between raising the interrupt for data each time had there been a restriction of
having only one entry placed in the TX FIFO.

This mode only occurs when I2C controller is acting as a slave transmitter. If the remote master acknowledges the data
sent by the slave transmitter and there is no data in the slave’s TX FIFO, the I2C controller holds the I2C SCL line low
while it raises the read request interrupt (RD_REQ) and waits for data to be written into the TX FIFO before it can be
sent to the remote master.

If the RD_REQ interrupt is masked, due to bit 5 (M_RD_REQ) of the IC_INTR_MASK register being set to 0, then it
is recommended that a timing routine be used to activate periodic reads of the IC_RAW_INTR_STAT register. Reads
of IC_RAW_INTR_STAT that return bit 5 (RD_REQ) set to 1 must be treated as the equivalent of the RD_REQ
interrupt referred to in this section. This timing routine is similar to that described in “Slave Transmitter Operation for a
Single Byte”.

The RD_REQ interrupt is raised upon a read request, and like interrupts, must be cleared when exiting the interrupt
service handling routine (ISR). The ISR allows you to either write 1 byte or more than 1 byte into the Tx FIFO. During
the transmission of these bytes to the master, if the master acknowledges the last byte, then the slave must raise the
RD_REQ again because the master is requesting for more data.

If the programmer knows in advance that the remote master is requesting a packet of n bytes, the Tx FIFO could be
written with n number bytes and the remote master receives it as a continuous stream of data. For example, the I2C

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 213 of 637
Dec 29, 2021

slave continues to send data to the remote master as long as the remote master is acknowledging the data sent and there
is data available in the Tx FIFO. There is no need to hold the SCL line low or to issue RD_REQ again.

If the remote master is to receive n bytes from the I2C controller but the programmer wrote a number of bytes larger
than n to the Tx FIFO, then when the slave finishes sending the requested n bytes, it clears the Tx FIFO and ignores any
excess bytes.

The I2C controller generates a transmit abort (TX_ABRT) event to indicate the clearing of the Tx FIFO in this example.
At the time an ACK/NACK is expected, if a NACK is received, then the remote master has all the data it wants. At this
time, a flag is raised within the slave’s state machine to clear the leftover data in the Tx FIFO. This flag is transferred to
the processor bus clock domain where the FIFO exists and the contents of the Tx FIFO is cleared at that time.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 214 of 637
Dec 29, 2021

3.5.2 Master Mode Operation

3.5.2.1 Initial Configuration
To use the I2C controller as a master perform the following steps:

(1) Disable the I2C controller by writing 0 to bit 0 of the IC_ENABLE register.

(2) Write to the IC_CON register to set the maximum speed mode supported for slave operation (bits 2:1).

(3) Write to the IC_TAR register the address of the I2C device to be addressed. It also indicates whether a General
Call or a START BYTE command is going to be performed by I2C controller. 7-bit or 10-bit addressing is
controlled by the IC_10BITADDR_MASTER bit field (bit 12).

(4) Enable the I2C controller by writing a 1 to bit 0 of the IC_ENABLE register.

(5) Now write the transfer direction and data to be sent to the IC_DATA_CMD register. If the IC_DATA_CMD
register is written before the I2C controller is enabled, the data and commands are lost as the buffers are kept
cleared when I2C controller is not enabled.

3.5.2.2 Dynamic IC_TAR or IC_10BITADDR_MASTER Update
The I2C controller supports dynamic updating of the IC_TAR (bits 9:0) and IC_10BITADDR_MASTER (bit 12) bit
fields of the IC_TAR register. You can dynamically write to the IC_TAR register provided the software ensures that
there are no other commands in the Tx FIFO that use the existing TAR address. If the software does not ensure this,
then IC_TAR should be re programmed only if the following conditions are met:

● I2C controller is not enabled (IC_ENABLE[0] = 0);
OR
I2C controller is enabled (IC_ENABLE[0] = 1); AND
I2C controller is not engaged in any Master (tx, rx) operation (IC_STATUS[5] = 0); AND
I2C controller is enabled to operate in Master mode (IC_CON[0] = 1); AND
there are NO entries in the Tx FIFO (IC_STATUS[2] = 1);

You can change the TAR address dynamically without losing the bus, only if the following conditions are met.

● I2C controller is enabled (IC_ENABLE[0]=1); AND
I2C controller is enabled to operate in Master mode (IC_CON[0] = 1); AND
there are NO entries in the Tx FIFO and the master is in HOLD state (IC_INTR_STAT[13] = 1);

NOTE

I2C controller uses the TAR address if either of the following conditions is true:

● The command has either RESTART or STOP bit set.

● The direction is changed in commands with a read command following a write command or vice versa.

The updated TAR address comes into effect only when the next START or RESTART occurs on the bus.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 215 of 637
Dec 29, 2021

3.5.2.3 Master Transmit and Master Receive
The I2C controller supports switching back and forth between reading and writing dynamically. To transmit data, write
the data to be written to the lower byte of the I2C Rx/Tx Data Buffer and Command Register (IC_DATA_CMD). The
CMD bit [8] should be written to 0 for I2C write operations. Subsequently, a read command may be issued by writing
“don’t cares” to the lower byte of the IC_DATA_CMD register, and a 1 should be written to the CMD bit. The I2C
controller master continues to initiate transfers as long as there are commands present in the transmit FIFO. If the
transmit FIFO becomes empty the master checks to see if IC_DATA_CMD[9] is set to 1. If set to 1, it issues a STOP
condition after completing the current transfer; if set to 0, it holds SCL low until next command is written to the
transmit FIFO.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 216 of 637
Dec 29, 2021

3.5.3 Disabling the I2C controller
The IC_ENABLE_STATUS register is used to allow software to unambiguously determine when the I2C controller has
been completely disabled in response to bit 0 of the IC_ENABLE register being set from 1 to 0.

NOTE

The I2C Master can be disabled only if the current command being processed -- when the IC_ENABLE de-assertion
occurs -- has the STOP bit set to 1.
When an attempt is made to disable the I2C Master while processing a command without the STOP bit set, the I2C
Master continues to remain active, holding the SCL line low until a new command is received in the Tx FIFO.

3.5.3.1 Procedure
(1) Define a timer interval (ti2c_poll) equal to the 10 times the signaling period for the highest I2C transfer speed

used in the system and supported by I2C controller. For example, if the highest I2C transfer mode is 400 kb/s,
then this ti2c_poll is 25 µs.

(2) Define a maximum time out parameter, MAX_T_POLL_COUNT, such that if any repeated polling operation
exceeds this maximum value, an error is reported.

(3) Execute a blocking thread/process/function that prevents any further I2C master transactions to be started by
software, but allows any pending transfers to be completed.
This step can be ignored if I2C controller is programmed to operate as an I2C slave only.

(4) The variable POLL_COUNT is initialized to zero.

(5) Set bit 0 of the IC_ENABLE register to 0.

(6) Read the IC_ENABLE_STATUS register and test the IC_EN bit (bit 0). Increment POLL_COUNT by one. If
POLL_COUNT >= MAX_T_POLL_COUNT, exit with the relevant error code.

(7) If IC_ENABLE_STATUS[0] is 1, then sleep for ti2c_poll and proceed to the previous step. Otherwise, exit with a
relevant success code.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 217 of 637
Dec 29, 2021

3.5.4 Aborting the I2C Transfer
The ABORT control bit of the IC_ENABLE register allows the software to relinquish the I2C bus before completing
the issued transfer commands from the Tx FIFO. In response to an ABORT request, the controller issues the STOP
condition over the I2C bus, followed by Tx FIFO flush. Aborting the transfer is allowed only in master mode of
operation.

3.5.4.1 Procedure
(1) Stop filling the Tx FIFO (IC_DATA_CMD) with new commands.

(2) Set bit 1 of the IC_ENABLE register (ABORT) to 1.

(3) Wait for the TX_ABRT interrupt.

(4) Read the IC_TX_ABRT_SOURCE register to identify the source as ABRT_USER_ABRT.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 218 of 637
Dec 29, 2021

3.6 Programming the I2C Controller

3.6.1 Spike Suppression
The I2C controller contains programmable spike suppression logic that match requirements imposed by the I2C Bus
Specification for Standard mode/Fast mode (tSP).
This logic is based on counters that monitor the input signals (SCL and SDA), checking if they remain stable for a
predetermined amount of I2C_SCLK cycles before they are sampled internally. There is one separate counter for each
signal (SCL and SDA). The number of I2C_SCLK cycles can be programmed by the user and should be calculated
taking into account the frequency of I2C_SCLK and the relevant spike length specification.
Each counter is started whenever its input signal changes its value. Depending on the behavior of the input signal, one
of the following scenarios occurs:
● The input signal remains unchanged until the counter reaches its count limit value. When this happens, the internal

version of the signal is updated with the input value, and the counter is reset and stopped. The counter is not restarted
until a new change on the input signal is detected.

● The input signal changes again before the counter reaches its count limit value. When this happens, the counter is
reset and stopped, but the internal version of the signal is not updated. The counter remains stopped until a new
change on the input signal is detected.

The I2C Bus Specification calls a maximum spike length of 50ns for the Standard mode and Fast mode:
IC_FS_SPKLEN register holds the maximum spike length for Standard mode and Fast mode.
The register is 8 bits width and accessible through the APB interface for read and write purposes; however, it can be
written to only when the I2C controller is disabled. The minimum value that can be programmed into the register is 1;
attempting to program a value smaller than 1 results in the value 1 being written.
As an example, for a 10 ns I2C_SCLK period the count limit value to be used is 5 (50 ns spike suppression). Because
the minimum value that can be programmed into the IC_FS_SPKLEN registers is 1, the spike length specification can
be exceeded by a long pulse of I2C_SCLK. Consider the simple example of a 10 MHz (100 ns period) I2C_SCLK; in
this case, the minimum spike length that can be programmed is 100 ns, which means that spikes up to this length are
suppressed.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 219 of 637
Dec 29, 2021

3.6.2 I2C_SCLK Frequency Configuration
When the I2C controller is configured as a master, the *CNT registers must be set before any I2C bus transaction can
take place in order to ensure proper I/O timing. The *CNT registers are:

● IC_SS_SCL_HCNT

● IC_SS_SCL_LCNT

● IC_FS_SCL_HCNT

● IC_FS_SCL_LCNT

NOTE

It is not necessary to program any of the *CNT registers if the I2C controller is enabled to operate only as an I2C slave,
since these registers are used only to determine the SCL timing requirements for operation as an I2C master.

3.6.2.1 Minimum High and Low Counts
When the I2C controller operates as an I2C master, in both transmit and receive transfers:

● IC_SS_SCL_LCNT and IC_FS_SCL_LCNT register values must be larger than IC_FS_SPKLEN + 7.

● IC_SS_SCL_HCNT and IC_FS_SCL_HCNT register values must be larger than IC_FS_SPKLEN + 5.

Details regarding the I2C controller high and low counts are as follows:

● The minimum value of IC_FS_SPKLEN + 7 for the *_LCNT registers is due to the time required for the I2C
controller to drive SDA after a negative edge of SCL.

● The minimum value of IC_FS_SPKLEN + 5 for the *_HCNT registers is due to the time required for the I2C
controller to sample SDA during the high period of SCL.

● The I2C controller adds one cycle to the programmed *_LCNT value in order to generate the low period of the SCL
clock; this is due to the counting logic for SCL low counting to (*_LCNT + 1).

● The I2C controller adds IC_FS_SPKLEN + 7 cycles to the programmed *_HCNT value in order to generate the high
period of the SCL clock; this is due to the following factors:

− The counting logic for SCL high counts to (*_HCNT+1).

− The digital filtering applied to the SCL line incurs a delay of IC_FS_SPKLEN + 2 I2C_SCLK cycles.

− This filtering includes metastability removal and the programmable spike suppression on SDA and SCL edges.

− Whenever SCL is driven 1 to 0 by the I2C controller -- that is, completing the SCL high time -- an internal logic
latency of three I2C_SCLK cycles is incurred. Consequently, the minimum SCL low time of which the I2C
controller is capable is nine (9) I2C_SCLK periods (7 + 1 + 1), while the minimum SCL high time is thirteen (13)
I2C_SCLK periods (6 + 1 + 3 + 3).

NOTE

The total high time and low time of SCL generated by the I2C controller master is also influenced by the rise time and fall
time of the SCL line, as shown in the illustration and equations in Figure below. It should be noted that the SCL rise and
fall time parameters vary, depending on external factors such as Characteristics of IO driver, Pull-up resister value, Total
capacitance on SCL line, and so on. These characteristics are beyond the control of the I2C controller.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 220 of 637
Dec 29, 2021

I2C_SCLK

SCL

SCL
rise time

SCL
rise time

SCL
fall time

HCNT+IC_*_SPKLEN+7 LCNT+1

SCL_High_time = [(HCNT + IC_*_SPKLEN + 7) * I2C_SCLK] + SCL_Fall_time
SCL_Low_time = [(LCNT + 1) * I2C_SCLK] – SCL_Fall_time + SCL_Rise_time

Figure 3.2 SCL High and Low Time

The table below lists the minimum I2C_SCLK values for all modes with high and low count values. SCL_Rise_time
and SCL_Fall_time are not considered.

Table 3.40 Minimum High and Low Counts

Speed
Modes

Minimum
I2C_SCLK Freq
(MHz)

Minimum
IC_FS_SPKLEN IC_*_SCL_LCNT

SCL Low Time
(µs) IC_*_SCL_HCNT

SCL High Time
(µs)

Standard mode 2.7 1 12 4.7 6 5.2

Fast mode 12 1 15 1.33 6 1.16

Note: I2C_SCLK must be faster than or equal to I2C_PCLK.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 221 of 637
Dec 29, 2021

3.6.3 SDA Hold Time
The I2C protocol specification requires 300 ns of hold time on the SDA signal (tHD;DAT) in Standard mode and Fast
mode.

Board delays on the SCL and SDA signals can mean that the hold time requirement is met at the I2C master, but not at
the I2C slave (or vice versa). As each application encounters differing board delays, the I2C controller contains a
software programmable register (IC_SDA_HOLD) to enable dynamic adjustment of the SDA hold time.

The bits [15:0] are used to control the hold time of SDA during transmit in both slave and master mode (after SCL goes
from HIGH to LOW).

The bits [23:16] are used to extend the SDA transition (if any) whenever SCL is HIGH in the receiver (in either master
or slave mode).

If different SDA hold times are required for different speed modes, the IC_SDA_HOLD register must be reprogrammed
when the speed mode is being changed. The IC_SDA_HOLD register can be programmed only when the I2C controller
is disabled (IC_ENABLE[0] = 0).

3.6.3.1 SDA Hold Timings in Receiver
When I2C controller acts as a receiver, according to the I2C protocol, the device should internally hold the SDA line to
bridge undefined gap between logic 1 and logic 0 of SCL.

IC_SDA_RX_HOLD can be used to alter the internal hold time which I2C controller applies to the incoming SDA line.
Each value in the IC_SDA_RX_HOLD register represents a unit of one I2C_SCLK period. The minimum value of
IC_SDA_RX_HOLD is 0. This hold time is applicable only when SCL is HIGH. The receiver does not extend the SDA
after SCL goes LOW internally.

The Figure below shows the I2C protocol as receiver with IC_SDA_RX_HOLD programmed to greater than or equal to
3. If IC_SDA_RX_HOLD is greater than 3, I2C controller does not hold SDA beyond 3 I2C_SCLK cycles, because
SCL goes LOW internally.

I2C_SCLK

Scl_int

IC_SDA_RX_HOLD >= 3

Sda_post_spk_suppresion

(internal SCL after filter logic)

(internal signal after filter logic)

Sda_int
(SDA signal after filter and hold)

Figure 3.3 SDA Hold Timings in the Receiver

The maximum values of IC_SDA_RX_HOLD that can be programmed in the register for the respective speed modes
are derived from the following equations:

Standard mode
Maximum IC_SDA_RX_HOLD = IC_SS_SCL_HCNT − IC_FS_SPKLEN − 3

Fast mode
Maximum IC_SDA_RX_HOLD = IC_FS_SCL_HCNT − IC_FS_SPKLEN − 3

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 3 I2C

R01UH0752EJ0120 Rev.1.20 Page 222 of 637
Dec 29, 2021

The above maximum value is applicable in Master mode. In Slave mode, make sure the IC_SDA_RX_HOLD does not
exceed the maximum SCL fall time (tf in Standard mode and Fast mode).

3.6.3.2 SDA Hold Timings in Transmitter
The IC_SDA_TX_HOLD register can be used to alter the timing of the generated SDA signal by the I2C controller.
Each value in the IC_SDA_TX_HOLD register represents a unit of one I2C_SCLK period.

When the I2C controller is operating in Master Mode, the minimum tHD;DAT timing is one I2C_SCLK period. Therefore,
even when IC_SDA_TX_HOLD has a value of zero, the I2C controller will drive SDA one I2C_SCLK cycle after
driving SCL to logic 0. For all other values of IC_SDA_TX_HOLD, the following is true:

● Drive on SDA occurs IC_SDA_TX_HOLD I2C_SCLK cycles after driving SCL to logic 0

When the I2C controller is operating in Slave Mode, the minimum tHD;DAT timing is IC_FS_SPKLEN + 7 I2C_SCLK
periods. This delay allows for synchronization and spike suppression on the SCL sample. Therefore, even when
IC_SDA_TX_HOLD has a value less than IC_FS_SPKLEN + 7, the I2C controller drives SDA IC_FS_SPKLEN + 7
I2C_SCLK cycles after SCL has transitioned to logic 0. For all other values of IC_SDA_TX_HOLD, the following is
true:

● Drive on SDA occurs IC_SDA_TX_HOLD I2C_SCLK cycles after SCL has transitioned to logic 0.

NOTE

The programmed SDA hold time cannot exceed at any time the duration of the low part of SCL. Therefore, the
programmed value cannot be larger than N_SCL_LOW-2, where N_SCL_LOW is the duration of the low part of the SCL
period measured in I2C_SCLK cycles.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 223 of 637
Dec 29, 2021

Section 4 Basic GPIO

Portions Copyright © 2014 Synopsys. Used with permission. All rights reserved. Synopsys & DesignWare are
registered trademarks of Synopsys.

4.1 Overview
RZ/N1 provides 3 Basic GPIO (BGPIO) modules.

The BGPIO supports the following features:

● Up to six ports which are separately configurable:

− BGPIO1 port A, BGPIO1 port B, BGPIO2 port A, BGPIO2 port B, BGPIO3 port A, BGPIO3 port B

● Separate data registers and data direction registers for each signal

● Independently controllable signal bits

● Configurable interrupt mode for BGPIO1 port A, BGPIO2 port A and BGPIO3 port A only (32 interrupts by port)

− This can be programmed to accept external signals as interrupt sources on any of the bits of the signal

− The type of interrupt is programmable with one of the following settings:
 a. Active high and level
 b. Active low and level
 c. Rising edge
 d. Falling edge

● All interrupts from BGPIO1, 2, 3 port A are routed by a programmable wrapper to extract 8 interrupts directly routed
to Cortex®-A7 and Cortex®-M3

● Trigger synchronous operation with dedicated wrapper circuit allowing real time operation controlled by interrupts.
The status of the GPIO signal is updated in synchronization with an interrupt from an on-chip peripheral function.
The trigger synchronous control mode can be enable/disable via register setting.

Network
On

Chip

BGPIO[m] (m=1..3)

Registers

IO
 M

ul
tip

le
xe

r
Le

ve
l1

3.
3V

 C
M

O
S

Bu
ff

er

32
b

AP
BS

BGPIO[m]A_INportA

IO
 M

ul
tip

le
xe

r
Le

ve
l2

portB

Interrupt
Detection BGPIO[m]A_OUT

BGPIO[m]A_OEN

BGPIO[m]B_IN

BGPIO[m]B_OUT

BGPIO[m]B_OEN

Figure 4.1 BGPIO Summary Synoptic

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 224 of 637
Dec 29, 2021

CK

D Q

bGPIO_port_ddr[n]

CK

D Q

bGPIO_port_dr[n]

CK

D Q

bGPIO_ext_port[n]
Metastability

Control

APB

BGPIO[m]_PCLK

Trigger
+

 Synchro

BGPIO[m][x]_IN[n]

BGPIO[m][x]_OUT[n]

BGPIO[m][x]_OEN[n]

m = 1..3, n = 0..31, x = A or B

Figure 4.2 BGPIO Synoptic (Port Management)

bGPIO_int_polarity[n]

Metastability
Control

Rise Edge
Detect

Fall Edge
Detect

Active High
Detect

Active Low
Detect

bGPIO_inttype_level[n]

bGPIO_intmask[n]

bGPIO_raw_intstatus[n]

bGPIO_intstatus[n]

BGPIO_Int[n]

bGPIO_porta_eoi[n]

APB

bGPIO_inten[n],
bGPIO_ls_sync

n = 0..31

Figure 4.3 BGPIO Synoptic (Interrupt Management)

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 225 of 637
Dec 29, 2021

4.2 Signal Interfaces
Table 4.1 BGPIO Signal Interface

Signal Name
Input
Output Description

Clock

BGPIO[m]_PCLK Input Internal bus clock (APB)

Interrupt

BGPIO[m]_Int[31:0] Output Level sensitive interrupt output of port A, Active High

External GPIO Pin Interface Signal

BGPIO1A_OEN[31:0]
BGPIO1B_OEN[31:0]
BGPIO2A_OEN[31:0]
BGPIO2B_OEN[31:0]
BGPIO3A_OEN[31:0]
BGPIO3B_OEN[9:0]

Output GPIO output enable

BGPIO1A_IN[31:0]
BGPIO1B_IN[31:0]
BGPIO2A_IN[31:0]
BGPIO2B_IN[31:0]
BGPIO3A_IN[31:0]
BGPIO3B_IN[9:0]

Input GPIO input

BGPIO1A_OUT[31:0]
BGPIO1B_OUT[31:0]
BGPIO2A_OUT[31:0]
BGPIO2B_OUT[31:0]
BGPIO3A_OUT[31:0]
BGPIO3B_OUT[9:0]

Output GPIO output

GPIO Trigger Control Signal

CFG_GPIOT_PTEN1A[31:0]
CFG_GPIOT_PTEN1B[31:0]
CFG_GPIOT_PTEN2A[31:0]
CFG_GPIOT_PTEN2B[31:0]
CFG_GPIOT_PTEN3A[31:0]
CFG_GPIOT_PTEN3B[9:0]

Input GPIO trigger Enable

GPIO_TRIGGER[3:0] Input GPIO trigger signal

Note: m = 1..3
Output enable, input, output are routed by IO Multiplexing logic.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 226 of 637
Dec 29, 2021

4.3 Register Map

4.3.1 Register Map BGPIO1

Table 4.2 Basic GPIO1 Register Map

Address Register Symbol Register Name

5000 B000h rGPIO_swporta_dr GPIO Port A Data Output Register

5000 B004h rGPIO_swporta_ddr GPIO Port A Data Direction Register

5000 B00Ch rGPIO_swportb_dr GPIO Port B Data Output Register

5000 B010h rGPIO_swportb_ddr GPIO Port B Data Direction Register

5000 B030h rGPIO_inten GPIO Port A Interrupt Enable Register

5000 B034h rGPIO_intmask GPIO Port A Interrupt Mask Register

5000 B038h rGPIO_inttype_level GPIO Port A Interrupt Level Register

5000 B03Ch rGPIO_int_polarity GPIO Port A Interrupt Polarity Register

5000 B040h rGPIO_intstatus GPIO Port A Interrupt Status

5000 B044h rGPIO_raw_intstatus GPIO Port A Raw Interrupt Status (Premasking)

5000 B04Ch rGPIO_porta_eoi GPIO Port A Clear Interrupt Register

5000 B050h rGPIO_ext_porta GPIO Port A Data Input Register

5000 B054h rGPIO_ext_portb GPIO Port B Data Input Register

5000 B060h rGPIO_ls_sync GPIO Port A Level-Sensitive Synchronization Enable Register

4.3.2 Register Map BGPIO2

Table 4.3 Basic GPIO2 Register Map

Address Register Symbol Register Name

5000 C000h rGPIO_swporta_dr GPIO Port A Data Output Register

5000 C004h rGPIO_swporta_ddr GPIO Port A Data Direction Register

5000 C00Ch rGPIO_swportb_dr GPIO Port B Data Output Register

5000 C010h rGPIO_swportb_ddr GPIO Port B Data Direction Register

5000 C030h rGPIO_inten GPIO Port A Interrupt Enable Register

5000 C034h rGPIO_intmask GPIO Port A Interrupt Mask Register

5000 C038h rGPIO_inttype_level GPIO Port A Interrupt Level Register

5000 C03Ch rGPIO_int_polarity GPIO Port A Interrupt Polarity Register

5000 C040h rGPIO_intstatus GPIO Port A Interrupt Status

5000 C044h rGPIO_raw_intstatus GPIO Port A Raw Interrupt Status (Premasking)

5000 C04Ch rGPIO_porta_eoi GPIO Port A Clear Interrupt Register

5000 C050h rGPIO_ext_porta GPIO Port A Data Input Register

5000 C054h rGPIO_ext_portb GPIO Port B Data Input Register

5000 C060h rGPIO_ls_sync GPIO Port A Level-Sensitive Synchronization Enable Register

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 227 of 637
Dec 29, 2021

4.3.3 Register Map BGPIO3

Table 4.4 Basic GPIO3 Register Map

Address Register Symbol Register Name

5000 D000h rGPIO_swporta_dr GPIO Port A Data Output Register

5000 D004h rGPIO_swporta_ddr GPIO Port A Data Direction Register

5000 D00Ch rGPIO_swportb_dr GPIO Port B Data Output Register

5000 D010h rGPIO_swportb_ddr GPIO Port B Data Direction Register

5000 D030h rGPIO_inten GPIO Port A Interrupt Enable Register

5000 D034h rGPIO_intmask GPIO Port A Interrupt Mask Register

5000 D038h rGPIO_inttype_level GPIO Port A Interrupt Level Register

5000 D03Ch rGPIO_int_polarity GPIO Port A Interrupt Polarity Register

5000 D040h rGPIO_intstatus GPIO Port A Interrupt Status

5000 D044h rGPIO_raw_intstatus GPIO Port A Raw Interrupt Status (Premasking)

5000 D04Ch rGPIO_porta_eoi GPIO Port A Clear Interrupt Register

5000 D050h rGPIO_ext_porta GPIO Port A Data Input Register

5000 D054h rGPIO_ext_portb GPIO Port B Data Input Register

5000 D060h rGPIO_ls_sync GPIO Port A Level-Sensitive Synchronization Enable Register

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 228 of 637
Dec 29, 2021

4.4 Register Description

4.4.1 rGPIO_swporta_dr — GPIO Port A Data Output Register

Address: 5000 B000h (BGPIO1)

5000 C000h (BGPIO2)

5000 D000h (BGPIO3)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bGPIO_port_dr

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bGPIO_port_dr

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.5 rGPIO_swporta_dr Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bGPIO_port_dr For each n bit, with n = 0..31, values written to this register are output on the external
pins BGPIO[m]A[n] if the corresponding data direction bits for port are set to output
mode
The value read back is equal to the last value written to this register.

R/W

4.4.2 rGPIO_swporta_ddr — GPIO Port A Data Direction Register

Address: 5000 B004h (BGPIO1)

5000 C004h (BGPIO2)

5000 D004h (BGPIO3)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bGPIO_port_ddr

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bGPIO_port_ddr

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.6 rGPIO_swporta_ddr Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bGPIO_port_ddr For each n bit, with n = 0..31, values written to this register independently control the
direction of the corresponding data bit in external pins BGPIO[m]A[n]

1’b0: Input (default after reset)
1’b1: Output

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 229 of 637
Dec 29, 2021

4.4.3 rGPIO_swportb_dr — GPIO Port B Data Output Register

Address: 5000 B00Ch (BGPIO1)

5000 C00Ch (BGPIO2)

5000 D00Ch (BGPIO3)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bGPIO_port_dr

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bGPIO_port_dr

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.7 rGPIO_swportb_dr Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bGPIO_port_dr For each n bit, with n = 0..31, values written to this register are output on the external
pins BGPIO[m]B[n] if the corresponding data direction bits for port are set to output
mode
The value read back is equal to the last value written to this register.

R/W

4.4.4 rGPIO_swportb_ddr — GPIO Port B Data Direction Register

Address: 5000 B010h (BGPIO1)

5000 C010h (BGPIO2)

5000 D010h (BGPIO3)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bGPIO_port_ddr

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bGPIO_port_ddr

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.8 rGPIO_swportb_ddr Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bGPIO_port_ddr For each n bit, with n = 0..31, values written to this register independently control the
direction of the corresponding data bit in external pins BGPIO[m]B[n]

1’b0: Input (default after reset)
1’b1: Output

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 230 of 637
Dec 29, 2021

4.4.5 rGPIO_inten — GPIO Port A Interrupt Enable Register

Address: 5000 B030h (BGPIO1)

5000 C030h (BGPIO2)

5000 D030h (BGPIO3)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bGPIO_inten

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bGPIO_inten

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.9 rGPIO_inten Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bGPIO_inten Allows each n bit of port A, with n = 0..31, to be configured for interrupts. By default,
the generation of interrupts is disabled.
Whenever a 1 is written to a bit of this register, it configures the corresponding bit on
port A to become an interrupt, otherwise, the port A operates as a normal GPIO
signal.
Interrupts are disabled on the corresponding bits of port A if the corresponding data
direction register is set to Output.

1’b0: Configure port A bit as normal GPIO signal (default)
1’b1: Configure port A bit as interrupt

R/W

4.4.6 rGPIO_intmask — GPIO Port A Interrupt Mask Register

Address: 5000 B034h (BGPIO1)

5000 C034h (BGPIO2)

5000 D034h (BGPIO3)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bGPIO_intmask

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bGPIO_intmask

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.10 rGPIO_intmask Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bGPIO_intmask For each n bit, with n=0..31, controls whether an interrupt on port A can create an
interrupt for the interrupt controller by not masking it. By default, all interrupts bits are
unmasked. Whenever a 1 is written to a bit in this register, it masks the interrupt
generation capability for this signal otherwise interrupts are allowed through. The
unmasked status can be read as well as the resultant status after masking.

1’b0: Interrupt bits are unmasked (default)
1’b1: Mask interrupt

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 231 of 637
Dec 29, 2021

4.4.7 rGPIO_inttype_level — GPIO Port A Interrupt Level Register

Address: 5000 B038h (BGPIO1)

5000 C038h (BGPIO2)

5000 D038h (BGPIO3)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bGPIO_inttype_levell

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bGPIO_inttype_levell

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.11 rGPIO_inttype_level Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bGPIO_inttype_levell For each n bit, with n = 0..31, controls the type of interrupt that can occur on port A.
Whenever a 0 is written to a bit of this register, it configures the interrupt type to be
level-sensitive, otherwise, it is edge-sensitive.

1’b0: Level-sensitive (default)
1’b1: Edge-sensitive

R/W

4.4.8 rGPIO_int_polarity — GPIO Port A Interrupt Polarity Register

Address: 5000 B03Ch (BGPIO1)

5000 C03Ch (BGPIO2)

5000 D03Ch (BGPIO3)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bGPIO_int_polarity

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bGPIO_int_polarity

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.12 rGPIO_int_polarity Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bGPIO_int_polarity For each n bit, with n = 0..31, controls the polarity of edge or level sensitivity that can
occur on input of port A. Whenever a 0 is written to a bit of this register, it configures
the interrupt type to falling-edge or active-low sensitive, otherwise, it is rising-edge or
active-high sensitive.

1’b0: Active-low (default)
1’b1: Active-high

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 232 of 637
Dec 29, 2021

4.4.9 rGPIO_intstatus — GPIO Port A Interrupt Status

Address: 5000 B040h (BGPIO1)

5000 C040h (BGPIO2)

5000 D040h (BGPIO3)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bGPIO_intstatus

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bGPIO_intstatus

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.13 rGPIO_intstatus Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bGPIO_intstatus For each n bit, with n = 0..31, interrupt status of port A.
1’b0: No Interrupt
1’b1: Interrupt generated

R

4.4.10 rGPIO_raw_intstatus — GPIO Port A Raw Interrupt Status (Premasking)

Address: 5000 B044h (BGPIO1)

5000 C044h (BGPIO2)

5000 D044h (BGPIO3)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bGPIO_raw_intstatus

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bGPIO_raw_intstatus

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.14 rGPIO_raw_intstatus Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bGPIO_raw_intstatus For each n bit, with n = 0..31, raw interrupt of status of port A (premasking bits).
1’b0: No interrupt requested
1’b1: Interrupt requested

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 233 of 637
Dec 29, 2021

4.4.11 rGPIO_porta_eoi — GPIO Port A Clear Interrupt Register

Address: 5000 B04Ch (BGPIO1)

5000 C04Ch (BGPIO2)

5000 D04Ch (BGPIO3)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bGPIO_porta_eoi

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bGPIO_porta_eoi

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.15 rGPIO_porta_eoi Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bGPIO_porta_eoi For each n bit, with n = 0..31, controls the clearing of edge type interrupts from port A.
When a 1 is written into a corresponding bit of this register, the interrupt is cleared.
All interrupts are cleared when port A is not configured for interrupts.

1’b0: No interrupt clear (default)
1’b1: Clear interrupt

W

4.4.12 rGPIO_ext_porta — GPIO Port A Data Input Register

Address: 5000 B050h (BGPIO1)

5000 C050h (BGPIO2)

5000 D050h (BGPIO3)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bGPIO_ext_port

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bGPIO_ext_port

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.16 rGPIO_ext_porta Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bGPIO_ext_port For each n bit, with n = 0..31, when port is configured as Input, then reading this
location reads the values on the external pins BGPIO[m]A[n]
When the data direction of port is set as Output, reading this location reads the data
output register for port except if the BGPIO is in trigger mode because of the flip-flops
present on the path in that case.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 234 of 637
Dec 29, 2021

4.4.13 rGPIO_ext_portb — GPIO Port B Data Input Register

Address: 5000 B054h (BGPIO1)

5000 C054h (BGPIO2)

5000 D054h (BGPIO3)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bGPIO_ext_port

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bGPIO_ext_port

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.17 rGPIO_ext_portb Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bGPIO_ext_port For each n bit, with n = 0..31, when port is configured as Input, then reading this
location reads the values on the external pins BGPIO[m]B[n]
When the data direction of port is set as Output, reading this location reads the data
output register for port except if the BGPIO is in trigger mode because of the flip-flops
present on the path in that case.

R

4.4.14 rGPIO_ls_sync — GPIO Port A Level-Sensitive Synchronization Enable
Register

Address: 5000 B060h (BGPIO1)

5000 C060h (BGPIO2)

5000 D060h (BGPIO3)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — — bGPIO_
ls_sync

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.18 rGPIO_ls_sync Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved Read as 0. R

b0 bGPIO_ls_sync Writing a 1 to this register results in all level-sensitive interrupts being synchronized to
clock.

1’b0: No synchronization to BGPIO_PCLK (default)
1’b1: Synchronize to BGPIO_PCLK

Caution) In order to prevent glitches on the interrupt lines to the interrupt controller,
the firmware must configure this bit with 32’h1 value.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 235 of 637
Dec 29, 2021

4.5 Operation

4.5.1 Main Functions Blocks Description

4.5.1.1 Data & Control Flow
The BGPIO controls the external output data and direction of external I/O. It also can read back the data on external
inputs using memory mapped registers.

Each bit in each port A and port B is individually controllable. The data and control flow for a signal are shown in
Figure 4.2, BGPIO Synoptic (Port Management).

● Port direction control

rGPIO_swporta_ddr.bGPIO_port_ddr[n] and rGPIO_swportb_ddr.bGPIO_port_ddr[n]

● Port output data

rGPIO_swporta_dr.bGPIO_port_dr[n] and rGPIO_swportb_dr.bGPIO_port_dr[n]

● Port input data (read only)

rGPIO_ext_porta.bGPIO_ext_port[n] and rGPIO_ext_portb.bGPIO_ext_port[n]

CAUTION

Valid BGPIO ports and registers depend on the device, RZ/N1D, N1S or N1L
Bit9 to 0 of the register related to the BGPIO3 port B are available only for RZ/N1D-400.

4.5.1.2 Interruption (Only Port A)
The port A can be programmed to accept external signals as interrupt sources on any of the bits of the signal. The type
of interrupt is programmable with one of the following settings:

● Active high and level

● Active low and level

● Rising edge

● Falling edge

For each n bit of port A, with n = 0..31, the interrupts can be masked by programming the bGPIO_intmask[n] register.
The interrupt status can be read before masking (called raw status) and after masking.

Whenever the port A is configured for interrupts, the data direction must be set to Input and the mode must be set to
Software for interrupts to be latched. If the data direction register is reprogrammed to Output mode, then any pending
interrupts are not lost. However, no new interrupts are generated.

Figure 4.3, BGPIO Synoptic (Interrupt Management) shows how the interrupts are generated and how the data
flows.

For edge detected interrupts, the interrupt can be cleared by writing a 1 to the bGPIO_porta_eoi[n] bit for the
corresponding bit to disable the interrupt. This write also clears the interrupt status and raw status registers. It is
recommended that the interrupt source is cleared prior to writing to the bGPIO_porta_eoi[n] register. Writing to the
bGPIO_porta_eoi[n] bit has no effect on level sensitive interrupts.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 236 of 637
Dec 29, 2021

If level sensitive interrupts cause an interrupt, then software can poll the bGPIO_raw_intstatus[n] register until the
interrupt source disappears, or it can write to the bGPIO_intmask[n] register to mask the interrupt.

If a software reads the bGPIO_intstatus[n] register to find multiple pending interrupt requests, then it is up to the
processor to prioritize these pending interrupt requests.

There are no restrictions on the number of edge detected interrupts that can be cleared simultaneously by writing
multiple 1’s to the bGPIO_porta_eoi[n] register.

A case may arise where a software writes 1 in order to clear an existing interrupt during the same clock cycle in which a
new interrupt is detected. In such a case, writing to the interrupt clear register clears only the first interrupt. The second
interrupt is not lost, since setting an interrupt has a higher priority than clearing it.

4.5.1.3 Programmable Interrupts Routed on Cortex-A7 and M3
All interrupts from BGPIO1, 2, 3 port A are routed by GPIO interrupt multiplexer in system control to extract 8
interrupts GPIO_Int[7:0] directly routed to Cortex-A7 and M3. The multiplexer is set by rGPIOs_Level2_Gpio_Int_[n]
of Config Sys2.

For each interrupt GPIO_Int[n] with n = 0..7:

● Selects an interrupt source from 3x32 possible interrupt sources (port A only)

− BGPIO1_Int[31:0] or BGPIO2_Int[31:0] or BGPIO3_Int[31:0]

BGPIO1
(Port A)

Cortex-A7
Cortex-M3BGPIO2

(Port A)

BGPIO3
(Port A)

GPIO
Interrupt

Multiplexer

Extract
Interrupt

8 from 3x32

BGPIO1_Int[31:0]

BGPIO2_Int[31:0]

BGPIO3_Int[31:0]

GPIO_Int[7:0]

Figure 4.4 Programmable Interrupts Routed on Cortex-A7 and M3

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 237 of 637
Dec 29, 2021

4.5.1.4 Trigger Synchronous Operation
Trigger Synchronous operation managed with dedicated wrapper circuit allows real time operation by interrupt sources
configured in system controller. The GPIO data signal (input, output) of the GPIO pin is updated in synchronization
with an interrupt source from an on-chip peripheral function. The trigger synchronous control mode can be
enable/disable via register setting. Note the GPIO output enable is always directly connected (no synchronization
feature).

See Figure 4.5, Synchronization Principle and Capture on Event.

● Trigger synchronous control mode disable (Transparent mode):

− The GPIO data signals are directly driven per BGPIO signals, no capture and latch, internal input/output signals
and output enable signals are directly connected

− The bit[n] in System Control CFG_GPIOT_PTEN_mj register should be set to “0” in this case
 a. With m: 1, 2, 3 → Depending on reference port BGPIO1, BGPIO2, BGPIO3
 b. With j: A, B → Depending on if current port is A or B
 c. With n = 0..31 → Bit number of current port addressing

● Trigger synchronous control mode enable:

− The BGPIO internal input signals and output signals are updated in synchronization with an interrupt
(GPIO_TRIGGER[3:0] signals) from an on-chip peripheral function selected inside System Controller.

− The rising edge detection of GPIO_TRIGGER[3:0] signal starts a capture on output and input signals
synchronized with BGPIO_PCLK

− The BGPIO internal input signals and output signals are latched and not changed from last capture event if the
rising edge of GPIO_TRIGGER[3:0] signal is not detected

− The bit[n] in System Control CFG_GPIOT_PTEN_mj register should be set to “1” in this case

− The capture and latch functions are not available on output enable signals (directly connected)

System Controller

BGPIO3B Trigger selection logic
BGPIO3A Trigger selection logic

Basics GPIO

BGPIO2B Trigger selection logic
BGPIO2A Trigger selection logic

BGPIO1B Trigger selection logic
BGPIO1A Trigger selection logic

INT_REQ[3:0]

CFG_GPIOT_PTEN3B[9:0]
CFG_GPIOT_PTEN3A[31:0]

 CFG_GPIOT_PTEN2B[31:0]
 CFG_GPIOT_PTEN2A[31:0]

 CFG_GPIOT_PTEN1B[31:0]
 CFG_GPIOT_PTEN1A[31:0]

BGPIO1A

iGpio1a_port_ext[n]

iGpio1a_port_dr[n]

iGpio1a_port_ddr[n]

32bits BGPIO1A wrapper

GPIO
Trigger

+
 Sync

GPIO_TRIGGER[3:0]

CFG_GPIOT_PTEN1A.PORTEN[31:0]

BGPIO1_PCLK

32bits BGPIO1B wrapper
32bits BGPIO2A wrapper

32bits BGPIO2B wrapper
32bits BGPIO3A wrapper

10bits BGPIO3B wrapper

Same connectivity principle all ports:
BGPIO1A with n=0..31
BGPIO1B with n=0..31
BGPIO2A with n=0..31
BGPIO2B with n=0..31
BGPIO3A with n=0..31
BGPIO3B with n=0..9

BGPIO1A[n]

Internal
Logics

Figure 4.5 Synchronization Principle and Capture on Event

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 238 of 637
Dec 29, 2021

Table 4.19 Trigger Synchronous Operation Allocation Line

BGPIO
Signal Name

GPIO Trigger
Signal Name

PTEN
Signal Name

BGPIO1A

BGPIO1A[7:0] GPIO_TRIGGER[0] CFG_GPIOT_PTEN1A.PORTEN [7:0]

BGPIO1A[15:8] GPIO_TRIGGER[1] CFG_GPIOT_PTEN1A.PORTEN [15:8]

BGPIO1A[23:16] GPIO_TRIGGER[2] CFG_GPIOT_PTEN1A.PORTEN [23:16]

BGPIO1A[31:24] GPIO_TRIGGER[3] CFG_GPIOT_PTEN1A.PORTEN [31:24]

BGPIO1B

BGPIO1B[7:0] GPIO_TRIGGER[0] CFG_GPIOT_PTEN1B.PORTEN [7:0]

BGPIO1B[15:8] GPIO_TRIGGER[1] CFG_GPIOT_PTEN1B.PORTEN [15:8]

BGPIO1B[23:16] GPIO_TRIGGER[2] CFG_GPIOT_PTEN1B.PORTEN [23:16]

BGPIO1B[31:24] GPIO_TRIGGER[3] CFG_GPIOT_PTEN1B.PORTEN [31:24]

BGPIO2A

BGPIO2A[7:0] GPIO_TRIGGER[0] CFG_GPIOT_PTEN2A.PORTEN [7:0]

BGPIO2A[15:8] GPIO_TRIGGER[1] CFG_GPIOT_PTEN2A.PORTEN [15:8]

BGPIO2A[23:16] GPIO_TRIGGER[2] CFG_GPIOT_PTEN2A.PORTEN [23:16]

BGPIO2A[31:24] GPIO_TRIGGER[3] CFG_GPIOT_PTEN2A.PORTEN [31:24]

BGPIO2B

BGPIO2B[7:0] GPIO_TRIGGER[0] CFG_GPIOT_PTEN2B.PORTEN [7:0]

BGPIO2B[15:8] GPIO_TRIGGER[1] CFG_GPIOT_PTEN2B.PORTEN [15:8]

BGPIO2B[23:16] GPIO_TRIGGER[2] CFG_GPIOT_PTEN2B.PORTEN [23:16]

BGPIO2B[31:24] GPIO_TRIGGER[3] CFG_GPIOT_PTEN2B.PORTEN [31:24]

BGPIO3A

BGPIO3A[7:0] GPIO_TRIGGER[0] CFG_GPIOT_PTEN3A.PORTEN [7:0]

BGPIO3A[15:8] GPIO_TRIGGER[1] CFG_GPIOT_PTEN3A.PORTEN [15:8]

BGPIO3A[23:16] GPIO_TRIGGER[2] CFG_GPIOT_PTEN3A.PORTEN [23:16]

BGPIO3A[31:24] GPIO_TRIGGER[3] CFG_GPIOT_PTEN3A.PORTEN [31:24]

BGPIO3B

BGPIO3B[7:0] GPIO_TRIGGER[0] CFG_GPIOT_PTEN3B.PORTEN [7:0]

BGPIO3B[9:8] GPIO_TRIGGER[1] CFG_GPIOT_PTEN3B.PORTEN [10:8]

Table 4.20 Trigger Synchronous Operation Basics Function

GPIO Trigger Mode GPIO Trigger Status of BGPIO Signals

CFG_GPIOT_PTEN[m]A
CFG_GPIOT_PTEN[m]B

GPIO_TRIGGER[3:0] BGPIO[m]A
BGPIO[m]B

1’b0 1’bx Transparent mode

1’b1 On rising edge detection Trigger synchronous control mode, Event capture

1’b1 No rising detection Trigger synchronous control mode, no change from last event capture

Note: m = 1..3

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 4 Basic GPIO

R01UH0752EJ0120 Rev.1.20 Page 239 of 637
Dec 29, 2021

4.6 Usage Notes

4.6.1 Programming Consideration
Programming the BGPIO registers for interrupt capability, edge sensitive or level sensitive interrupts, and interrupt
polarity should be completed prior to enable the interrupts on BGPIO1 port A, BGPIO2 port A and BGPIO3 port A in
order to prevent glitches on the interrupt lines to the interrupt controller.

CAUTION

● In order to prevent glitches, programming the bGPIO_ls_sync bit with “32’h1” value in rGPIO_ls_sync register.

● Writing to the interrupt clear register clears an edge-detected interrupt and has no effect on a level-sensitive interrupt.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 240 of 637
Dec 29, 2021

Section 5 Timer Block

The Peripheral Group1 (PG1) Subsystem includes 2 timer blocks which have 8 Sub-timers.

5.1 Overview
● 2 units

● 6 programmable timers 16 bits, Sub-timer (0..5)

● 2 programmable timers 32 bits, Sub-timer (6..7)

● Each Sub-timer generates single interrupt

● Pre-scaler selectable between 2 time bases

− 25 MHz or 1 MHz

● 2 Function modes

− Auto-reload mode:
An interrupt is activated at pre-set value time. A counter is automatically cleared and restarts.

− Single-shot mode:
An interrupt is activated at pre-set value time. A counter is stopped and disabled.

● DMA Coupling

− DMAC flow controller mode is used

− Start a DMA transaction at interrupt timing

− Available only on Sub-timer (6..7)

TIMER[m] (m=1,2)

Registers

32
b

AP
B

32-bit Counter x 2ch
(Sub-timer6..7)

Control

DMA
Control

Network
On

Chip
(bridge) 32

b
AP

B

16-bit Counter x 6ch
(Sub-timer0..5)

DMAC

PrescalerTIMER[m]_PCLK
 1MHz or
25MHz

Figure 5.1 TIMER Interfaces and Connections

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 241 of 637
Dec 29, 2021

5.2 Signal Interfaces

Signal Name
Input
Output Description

Clock

TIMER[m]_PCLK Input Internal bus clock (APB) and prescaler input clock, 25 MHz

Interrupt

TIMER[m]_Int[7:0] Output Level sensitive interrupt output for each Sub-timer, Active High

Note: m =1 or 2
Index removed description style is used in this chapter.
Ex) TIMER_PCLK

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 242 of 637
Dec 29, 2021

5.3 Register Map

5.3.1 TIMER1 Register Map

Table 5.1 TIMER1 Register Map

Address Register Symbol Register Name

5100 1000h + 20h × n rTimerLoadCount_[n] (n = 0..7) Preset Value of Sub-timer[n]

5100 1004h + 20h × n rTimerCurrentCount_[n] (n = 0..7) Current Value of Sub-timer[n]

5100 1008h + 20h × n rTimerControl_[n] (n = 0..7) Control Mode of Sub-timer[n]

5100 100Ch + 20h × n rTimerClearInt_[n] (n = 0..7) Clears the Interruption of Sub-timer[n]

5100 1010h + 20h × n rTimerStatusInt0_[n] (n = 0..7) Interruption Status before Masking of Sub-timer[n]

5100 1014h + 20h × n rTimerStatusInt1_[n] (n = 0..7) Interruption Status after Masking of Sub-timer[n]

5100 1100h rTimerAllClearInt Clear All Interrupt

5100 1104h rTimerAllStatusInt0 All Interrupts Status before Masking

5100 1108h rTimerAllStatusInt1 All Interrupts Status after Masking

5100 110Ch rTimer_DMA_Pending TIMER DMA Requests Status

5100 1110h rTimer_DMA_PendingOvf TIMER DMA Overflow Status

5100 1114h rTimer_DMA_PendingClrOvf TIMER DMA Overflow Clear

5.3.2 TIMER2 Register Map

Table 5.2 TIMER2 Register Map

Address Register Symbol Register Name

5100 2000h + 20h × n rTimerLoadCount_[n] (n = 0..7) Preset Value of Sub-timer[n]

5100 2004h + 20h × n rTimerCurrentCount_[n] (n = 0..7) Current Value of Sub-timer[n]

5100 2008h + 20h × n rTimerControl_[n] (n = 0..7) Control Mode of Sub-timer[n]

5100 200Ch + 20h × n rTimerClearInt_[n] (n = 0..7) Clears the Interruption of Sub-timer[n]

5100 2010h + 20h × n rTimerStatusInt0_[n] (n = 0..7) Interruption Status before Masking of Sub-timer[n]

5100 2014h + 20h × n rTimerStatusInt1_[n] (n = 0..7) Interruption Status after Masking of Sub-timer[n]

5100 2100h rTimerAllClearInt Clear All Interrupt

5100 2104h rTimerAllStatusInt0 All Interrupts Status before Masking

5100 2108h rTimerAllStatusInt1 All Interrupts Status after Masking

5100 210Ch rTimer_DMA_Pending TIMER DMA Requests Status

5100 2110h rTimer_DMA_PendingOvf TIMER DMA Overflow Status

5100 2114h rTimer_DMA_PendingClrOvf TIMER DMA Overflow Clear

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 243 of 637
Dec 29, 2021

5.4 Register Description

5.4.1 rTimerLoadCount_[n] — Preset Value of Sub-timer[n] (n = 0..5)

Address: 5100 1000h + 20h × n (TIMER1)

5100 2000h + 20h × n (TIMER2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bTimerLoadCount

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.3 rTimerLoadCount_[n] Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Not used. R

b15 to b0 bTimerLoadCount Preset value
The timer counts up from zero until preset value.

Caution)
● The preset value must be different from 0. If preset value = 0, the timer doesn’t run.
● When the timer runs (bTimerEnable set “1”), if the CPU writes the new preset

value, it is immediately recognized.
● When timer mode is auto-reload, the periodic cycle is (bTimerLoadCount + 1).
See Section 5.6, Usage Notes if the firmware modifies bTimerLoadCount when timer
is running.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 244 of 637
Dec 29, 2021

5.4.2 rTimerLoadCount_[n] — Preset Value of Sub-timer[n] (n = 6..7)

Address: 5100 1000h + 20h × n (TIMER1)

5100 2000h + 20h × n (TIMER2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bTimerLoadCount

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bTimerLoadCount

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.4 rTimerLoadCount_[n] Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bTimerLoadCount Preset value
The timer counts up from zero until preset value.

Caution)
● The preset value must be different from 0. If preset value = 0, the timer doesn’t run.
● When the timer runs (bTimerEnable set “1”), if the CPU writes the new preset

value, it is immediately recognized.
● When timer mode is auto-reload, the periodic cycle is (bTimerLoadCount + 1).
See Section 5.6, Usage Notes if the firmware modifies bTimerLoadCount when timer
is running.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 245 of 637
Dec 29, 2021

5.4.3 rTimerCurrentCount_[n] — Current Value of Sub-timer[n] (n = 0..5)

Address: 5100 1004h + 20h × n (TIMER1)

5100 2004h + 20h × n (TIMER2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bTimerCurrentCount

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.5 rTimerCurrentCount_[n] Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Not used. R

b15 to b0 bTimerCurrentCount Current value of timer
When the current value of one timer equals preset value then:

An interruption is triggered.
The timer is cleared if bTimerEnable is set to 1.

R

5.4.4 rTimerCurrentCount_[n] — Current Value of Sub-timer[n] (n = 6..7)

Address: 5100 1004h + 20h × n (TIMER1)

5100 2004h + 20h × n (TIMER2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bTimerCurrentCount

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bTimerCurrentCount

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.6 rTimerCurrentCount_[n] Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bTimerCurrentCount Current value of timer
When the current value of one timer equals preset value then:

An interruption is triggered.
The timer is cleared if bTimerEnable is set to 1.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 246 of 637
Dec 29, 2021

5.4.5 rTimerControl_[n] — Control Mode of Sub-timer[n] (n = 0..7)

Address: 5100 1008h + 20h × n (TIMER1)

5100 2008h + 20h × n (TIMER2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — —
bTimer
DMAEn

able

bTimer
MaskInt

bTimer
Enable

bTimer
Mode

bTimer
Prescal

er

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.7 rTimerControl_[n] Register Contents

Bit Position Bit Name Function R/W

b31 to b5 Reserved Not used. R

b4 bTimerDMAEnable DMA channel Enable
1: DMA channel enable
0: DMA channel disable

• All current DMA request are forced in idle state, after DMA acknowledge
reception for current access.

Note)
● Only implemented on rTimerControl_6 and 7.
● Not used and Reserved on rTimerControl_0..5.

R/W

b3 bTimerMaskInt Interruption mask of Sub-timer
0: Masked
1: Not Masked

R/W

b2 bTimerEnable 0: Disable timer and keep a current value
• Stops the timer, it does not increment bTimerCurrentCount keeps the same
value.

1: Reset and start timer
• Sample status of bTimerMode and bTimerPrescaler
• Reset the prescaler counter
• Reset bTimerCurrentCount
• Start the timer in increment mode

Caution) To rearm timer, the user must disable timer by writing “0” on bTimerEnable
and enable timer by writing “1” on bTimerEnable.

R/W

b1 bTimerMode This bit allows to select the operation mode of the timer, according to the encoding
below:

0: Single-shot
• The timer is incremented up to preset value.
• At preset value time, an interruption is activated, the timer is stopped and
disabled.

1: Auto-reload
• The timer is incremented up to preset value.
• At preset value time, an interruption is activated, the timer is automatically
cleared and restarts.

bTimerMode is sampled when the firmware set “1” on bTimerEnable (rising edge).

R/W

b0 bTimerPrescaler This bit controls the prescaler configuration, according to encoding below:
1: Time base 1 MHz (1 µs)
0: Time base 25 MHz

bTimerPrescaler is sampled when the firmware set “1” on bTimerEnable (rising edge).

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 247 of 637
Dec 29, 2021

5.4.6 rTimerClearInt_[n] — Clears the Interruption of Sub-timer[n] (n = 0..7)

Address: 5100 100Ch + 20h × n (TIMER1)

5100 200Ch + 20h × n (TIMER2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — — bTimer
ClearInt

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.8 rTimerClearInt_[n] Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved Not used. R

b0 bTimerClearInt Reading from this register returns zero (0) and clears the interruption of timer. R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 248 of 637
Dec 29, 2021

5.4.7 rTimerStatusInt0_[n] — Interruption Status before Masking of Sub-timer[n]
(n = 0..7)

Address: 5100 1010h + 20h × n (TIMER1)

5100 2010h + 20h × n (TIMER2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — —
bTimer
StatusIn

t0

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.9 rTimerStatusInt0_[n] Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved Not used. R

b0 bTimerStatusInt0 An interruption is generated on rising edge of TIMER_Int[n]
Interruption status before masking of Sub-timer.

0: CPU interruption is not active on Sub-timer
1: Interruption bit has been set on Sub-timer

Reading from this register does not clear any active interrupts.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 249 of 637
Dec 29, 2021

5.4.8 rTimerStatusInt1_[n] — Interruption Status after Masking of Sub-timer[n]
(n = 0..7)

Address: 5100 1014h + 20h × n (TIMER1)

5100 2014h + 20h × n (TIMER2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — —
bTimer
StatusIn

t1

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.10 rTimerStatusInt1_[n] Register Contents

Bit Position Bit Name Function R/W

b31 to b1 Reserved Not used. R

b0 bTimerStatusInt1 An interruption is generated on rising edge of TIMER_Int[n]
Interruption status after masking of Sub-timer.

0: CPU interruption is not active on Sub-timer or interrupt is masked
1: CPU interruption bit has been set on Sub-timer and not masked

Reading from this register does not clear any active interrupts.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 250 of 637
Dec 29, 2021

5.4.9 rTimerAllClearInt — Clear All Interrupt

Address: 5100 1100h (TIMER1)

5100 2100h (TIMER2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bTimerAllClearInt

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.11 rTimerAllClearInt Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Not used. R

b7 to b0 bTimerAllClearInt Reading this register returns all zeroes (0) and clears all active interruptions. R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 251 of 637
Dec 29, 2021

5.4.10 rTimerAllStatusInt0 — All Interrupts Status before Masking

Address: 5100 1104h (TIMER1)

5100 2104h (TIMER2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bTimerAllStatusInt0

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.12 rTimerAllStatusInt0 Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Not used. R

b7 to b0 bTimerAllStatusInt0 Interruption status before masking of all Sub-timers.
With following bit allocation:

Bit7: Dedicated for Sub-timer7
 ∙∙∙
Bit0: Dedicated for Sub-timer0

For each bit
0: The corresponding Sub-timer CPU interruption is not active
1: The potential corresponding Sub-timer CPU interruption has been set,

depending on bTimerMaskInt bit
Reading from this register does not clear any active interrupts.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 252 of 637
Dec 29, 2021

5.4.11 rTimerAllStatusInt1 — All Interrupts Status after Masking

Address: 5100 1108h (TIMER1)

5100 2108h (TIMER2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bTimerAllStatusInt1

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.13 rTimerAllStatusInt1 Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Not used. R

b7 to b0 bTimerAllStatusInt1 Interruption status after masking of all Sub-timers.
With following bit allocation:

Bit7: Dedicated for Sub-timer7
 ∙∙∙
Bit0: Dedicated for Sub-timer0

For each bit
0: The corresponding Sub-timer CPU interruption is not active
1: The corresponding Sub-timer CPU interruption has been set

Reading from this register does not clear any active interrupts.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 253 of 637
Dec 29, 2021

5.4.12 rTimer_DMA_Pending — TIMER DMA Requests Status
DMA feature is only implemented on Sub-timer 6 and 7.

TIMER DMA requests are started and run until detection end of DMA transfer.

Address: 5100 110Ch (TIMER1)

5100 210Ch (TIMER2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — —
bTimer_D
MA_Runn

ing_7

bTimer_D
MA_Runn

ing_6
— — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.14 rTimer_DMA_Pending Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Not used. R

b7 bTimer_DMA_Runnin
g_7

DMA running status of Sub-timer7
Sub-timer7 counts up from a programmed value and generate an interrupt when the
count reaches the preset value.
When a rising edge of interrupt is detected, a TIMER DMA requests are started and
run until detection end of DMA transfer.

1: DMA requests are running
0: No TIMER DMA request on same channel

Note)
● The bit will be automatically cleared when end of DMA transfer is detected on this

channel.
● If contention exists where this bit receives both a request to set and a request to

clear on the same cycle, regardless of the source of either, this
bTimer_DMA_Running_7 bit will be clear and the request to set will be ignored. In
this case a DMA request process is not restarted.

● In this case the overflow bTimer_DMA_RunningOvf_7 bit in the
rTimer_DMA_PendingOvf register will be set regardless of whether this bit was
previously set or not.

R

b6 bTimer_DMA_Runnin
g_6

Same as bTimer_DMA_Running_7 R

b5 to b0 Reserved Not used. R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 254 of 637
Dec 29, 2021

5.4.13 rTimer_DMA_PendingOvf — TIMER DMA Overflow Status
DMA feature is only implemented on Sub-timer 6 and 7.

Indicates that a new TIMER DMA requests was generated with a previous request was already running.

Address: 5100 1110h (TIMER1)

5100 2110h (TIMER2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — —
bTimer_D
MA_Runn
ingOvf_7

bTimer_D
MA_Runn
ingOvf_6

— — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.15 rTimer_DMA_PendingOvf Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Not used. R

b7 bTimer_DMA_Runnin
gOvf_7

Overflow with TIMER DMA is running on DMA requests of Sub-timer7.
Indicates that a new TIMER DMA requests was generated with a previous request
was already running on Sub-timer7.

1: TIMER DMA overflow on DMA requests
0: No TIMER DMA overflow

Note)
● An overflow condition does not stop TIMER DMA transfer from being processed. It

simply is an indication that a DMA request was missed.
● This means that the first DMA transfer block will be processed normally until the

DMA finish occurred but the second DMA transfer block triggered is not processed.

R

b6 bTimer_DMA_Runnin
gOvf_6

Same as bTimer_DMA_RunningOvf_7 R

b5 to b0 Reserved Not used. R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 255 of 637
Dec 29, 2021

5.4.14 rTimer_DMA_PendingClrOvf — TIMER DMA Overflow Clear
DMA feature is only implemented on Sub-timer 6 and 7.

Address: 5100 1114h (TIMER1)

5100 2114h (TIMER2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — —

bTimer_D
MA_Runn
ingClrOvf

_7

bTimer_D
MA_Runn
ingClrOvf

_6

— — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.16 rTimer_DMA_PendingClrOvf Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Not used. R

b7 bTimer_DMA_Runnin
gClrOvf_7

Clear Overflow with TIMER DMA is running on DMA requests of Sub-timer7.
1: Clear Overflow bit
0: No Action

Note)
● If software tries to write 1 to bTimer_DMA_RunningClrOvf_7 bit on the same clock

cycle that hardware tries to set the overflow bTimer_DMA_RunningOvf_7 bit in the
rTimer_DMA_PendingOvf register, then hardware has priority and the
bTimer_DMA_RunningOvf_7 bit will be set.

● When read, this bit returns “0”.

W

b6 bTimer_DMA_Runnin
gClrOvf_6

Same as bTimer_DMA_RunningClrOvf_7 W

b5 to b0 Reserved Not used. R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 256 of 637
Dec 29, 2021

5.5 Operation

5.5.1 Prescaler Counter
Each sub-timer has an independent clock input that it is connected to 25 MHz or 1 MHz. The prescaler counter builds a
clock in order to increment the timer.

2 clocks can be selected by a signal bTimerPrescaler:

25 MHz:
● Each sub-timer uses directly TIMER_PCLK (25 MHz)

1 MHz (using prescaler counter):
● The divider by 25 builds a new clock from TIMER_PCLK (25 MHz).

● The divider is a counter in up mode (counting from 0 to 24)

● Set bTimerEnable to “1”, initialize the prescaler counter on reset value (0) and after that starting a new cycle (0, 1,
2 ... 22, 23, 24)

● A rise edge on bTimerEnable resets the prescaler counter to “0”

5.5.2 Counter 16 or 32 Bits
Sub-timers count up from 0 until a programmed value and generate an interruption when the count reaches the preset
value. On each Sub-timer, a single interruption is generated, which is active whenever any of the individual timer
interrupts is active. All interruption status registers can be accessed at any time.

The preset value for each Sub-timer is loaded into a dedicated rTimerLoadCount_[n] register.

Two events can clear the timer:
● Enable timer after reset or disabled

● Timer counts up to preset value

Two functions mode are implemented:
● Auto-reload mode:

− The timer is incremented up to preset value.

− At preset value time an interruption is activated, the timer is automatically cleared and restarts.

● Single-shot mode:

− The timer is incremented up to preset value.

− At preset value time an interruption is activated, the timer is stopped and disabled.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 257 of 637
Dec 29, 2021

bTimerCurrentCount

Time

bTimerLoadCount

Timer Interrupt

CPU acknowledge CPU acknowledge

bTimerEnable=1

Count up by
prescaled clock

(1MHz or 25MHz)

Figure 5.2 Timer Mode (bTimerMode) is auto-reload

bTimerCurrentCount

Time

bTimerLoadCount

Timer Interrupt

CPU acknowledge

bTimerEnable=1

Count up by
prescaled clock

(1MHz or 25MHz)

Figure 5.3 Timer Mode (bTimerMode) is single-shot

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 258 of 637
Dec 29, 2021

It can disable or enable a timer.

[Disable]
● Stops timer increment, bTimerCurrentCount keeps the same value.

[Enable]
● Clears the prescaler counter.

● Clears the current counter bTimerCurrentCount.

● Restart timer increment.

bTimerCurrentCount

Time

bTimerEnable

Figure 5.4 bTimerEnable Off and On

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 259 of 637
Dec 29, 2021

5.5.3 Interruption
Timers count up to a programmed value and generate an interruption when the count reaches the preset value. On each
Sub-timer, single interruption is generated, which is active whenever any of the individual timer interrupts is active.

An interruption can be acknowledged only on CPU read in bTimerClearInt bit.

An example for bTimerLoadCount = 5 case is shown as below.

bTimerCurrentCount

Time

bTimerLoadCount=5

Timer Interrupt

CPU acknowledge

5
4

1
2
3

0

CPU acknowledge

Figure 5.5 Timer Interruption

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 260 of 637
Dec 29, 2021

5.5.4 DMA Control
The TIMER has optional DMA capability. It has a handshaking interface to a DMA Controller to request and control
transfers. In this mode, DMA controller must be configured in DMAC flow controller mode. The DMA always
transfers data using DMA burst transactions if possible, for efficiency.

TIMER has two DMA channel to transfer a memory block from source to destination.

For each timer block, the TIMER DMA flow control is managed by these followings DMA bits:
● bTimerDMAEnable bit in rTimerControl_[n] register (n = 6 or 7)

− Enable or disable DMA channel of Sub-timer[n] (n = 6 or 7)

● Interrupt of Sub-timer[n] (n = 6 or 7)

− Sub-timer[n] counts up from a programmed value and generate an interrupt when the count reaches the preset
value.

− When a rising edge of interrupt is detected, a TIMER DMA request is started and run until detection end of DMA
transfer.

● bTimer_DMA_Running_[n] (n = 6 or 7) bit in rTimer_DMA_Pending register

− TIMER DMA request is started and run until detection end of DMA transfer.

To enable the DMA Controller interface on the TIMER and enable the handshaking interface:
● DMA controller must be configured.

− Source and destination addresses

− Burst size on source and destination

− Block size to transfer

− DMAC flow controller mode

− Channel allocation

− Only one block

− Interrupt setting

● Set bTimerDMAEnable bit in rTimerControl_[n] register (n = 6 or 7) to enable TIMER DMA channel.

− When a rising edge of Timer interrupt is detected on Sub-timer[n], a TIMER DMA request is started and run until
detection end of DMA transfer.

● bTimer_DMA_Running_[n] (n = 6 or 7) bit in rTimer_DMA_Pending register gives a current status on DMA
transaction in running.

CAUTION

DMA Controller must be configured in DMAC flow controller mode, because TIMER do not know the size of block
transferred.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 5 Timer Block

R01UH0752EJ0120 Rev.1.20 Page 261 of 637
Dec 29, 2021

5.6 Usage Notes
CAUTION

In order to avoid potential synchronization problems when initializing, loading, and enabling a TIMER module, you should
follow the basic procedure below.

(1) Initialize the Sub-timer through the rTimerControl_[n]

● Disable the Sub-timer by writing a “0” of bTimerEnable.

● Masking of interruption of Sub-timer by writing a “0” of bTimerMaskInt

(2) Reset a potential interruption of Sub-timer through the rTimerClearInt_[n]

● Cleans the interruption by reading a “0” of bTimerClearInt

(3) Initialize the Sub-timer value through the rTimerLoadCount_[n]

● Write a value on 16/32 bits of bTimerLoadCount.

● Warning, 0 is strictly forbidden, the Sub-timer does not run.

(4) Initialize the Sub-timer through the rTimerControl_[n] register

● Select timer mode

● Select prescaler mode

● No Masking interruption of Sub-timer by writing a “1” to bTimerMaskInt.

● Enable the Sub-timer by writing a “1” to bTimerEnable.

CAUTION

Warning if the firmware modifies bTimerLoadCount when Sub-timer is running:

● For example, when Sub-timer is enabled with bTimerCurrentCount = “6” and bTimerLoadCount = “10”.

● If the firmware loads a new value to bTimerLoadCount = “5”, then preset is detected and an interruption is triggered.

● It means that when Sub-timer is enabled and the firmware loads a new value into bTimerLoadCount which is less than
bTimerCurrentCount and different from zero, preset is detected and an interruption is triggered.

● After this, the behavior of Sub-timer depends on bTimerMode (auto-reload mode or single-shot mode).

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 262 of 637
Dec 29, 2021

Section 6 CAN

6.1 Overview
RZ/N1 has two instances of CAN controller with “Sync frame” transmission mechanism.

For CAN 2.0:
● Supports full CAN 2.0 – both 2.0A (equivalent to CAN 1.2) and 2.0B

● Supports both 11-bit and 29-bit identifiers

● Supports bit rates from less than 125 Kbps to more than 1 Mbps

● 64 bytes Receive FIFO

● Acceptance filtering

● Software-driven bit-rate detection (offering hot plug in support)

● Single-shot transmission option, listen only mode, reception of “own” messages

● Arbitration lost interrupt with data of bit position

● Read/write error counters

● Last error register

● Programmable error limit warning

● Broadly compatible with Philips SJA1000 in its PeliCAN mode

Additional features:
Transmission periodic “Sync frame” for CANopen®.

● Programmable time base (in bit period unit) to configure:

− Period of “Sync frame” emission (the emission of the “Sync frame” can be deactivated)

− Mask frame time

− Passive error detection system

Specification 2.0A (which is equivalent to CAN 1.2) covers standard message formats (11-bit identifier). Specification
2.0B covers both standard and extended message formats (both 11-bit and 29-bit identifiers).

The CAN controller is broadly compatible with a Philips SJA1000 working in its PeliCAN mode but with some
exceptions (detailed in Difference between CAN Controllers and Reference Philips SJA1000 Devices chapter).

This specification should be read in conjunction with the BOSCH CAN specification version 2.0 (hereafter referred to
as the CAN 2.0 specification).

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 263 of 637
Dec 29, 2021

CAUTION

● The CAN 2.0 specification uses the convention that, on the CAN bus, Recessive bits are logic “1” while Dominant bits
are logic “0”.

● This convention is also used in this specification.

CAN[m] (m=1 or 2)

Registers

IO
 M

ul
tip

le
xe

r L
ev

el
1

3.
3V

 C
M

O
S

Bu
ff

er

Transmit
Buffer

13Bytes

CAN_RXD

CAN_TXD

32
b

AH
BS

Receive
Machine

IO
 M

ul
tip

le
xe

r L
ev

el
2

Transmit
Machine

Synchro
Transmit

Buffer
13Bytes

Acceptance
Filter

Receive
FIFO

64Bytes

Receive
Buffer

13Bytes

Synchro
Timer

Bit
Timing
Logic

Control

Network
On

Chip

Figure 6.1 CAN Synoptic

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 264 of 637
Dec 29, 2021

6.2 Signal Interfaces

Signal Name
Input
Output Description

Clock

CAN[m]_HCLK Input Internal bus clock (AHB), 48 MHz fixed

Interrupt

CAN[m]_Int Output Level sensitive interrupt output, Active High

External Signal

CAN[m]_RXD Input Receive data

CAN[m]_TXD Output Transmit data

Note: m = 1 or 2.
Index removed style is used in this chapter.
Ex.) CAN_HCLK

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 265 of 637
Dec 29, 2021

6.3 Register Map

6.3.1 Register Map (CAN1)

Table 6.1 CAN1 Register Map

Address Register Symbol Register Name

5210 4000h rCan_MOD Configuration Mode Register

5210 4004h rCan_CMR Command Register

5210 4008h rCan_SR Controller Status Register

5210 400Ch rCan_IR Interrupt Register

5210 4010h rCan_IER Interrupt Event Register

5210 4018h rCan_BTR0 Bus Timing Register 0

5210 401Ch rCan_BTR1 Bus Timing Register 1

5210 4020h rCan_OCR Output Control Register

5210 402Ch rCan_ALC Arbitration Lost Capture Register

5210 4030h rCan_ECC Error Code Capture Register

5210 4034h rCan_EWLR Error Warning Limit Register

5210 4038h rCan_RXERR Receive Error Counter Register

5210 403Ch rCan_TXERR Transmit Error Counter Register

5210 4040h to
5210 4070h

rCan_WrTransmitBuffer Write Transmit Buffer Register

rCan_RdReceiveBuffer Read Receive Buffer Register

5210 4040h + 4h × n rCan_ACR[n] (n = 0..3) Acceptance Code Filter [n] Register

5210 4050h + 4h × n rCan_AMR[n] (n = 0..3) Acceptance Mask Filter [n] Register

5210 4074h rCan_RMC Receive Message Counter Register

5210 4078h rCan_RBSA Receive Buffer Start Address Register

5210 4080h to
5210 417Ch

rCan_ReceiveFifo Receive FIFO Register

5210 4180h to
5210 41B0h

rCan_RdTransmitBuffer Read Transmit Buffer Register

5210 4440h to
5210 4470h

rCan_SyncTransmitBuffer Sync Frame Transmit Buffer Register

5210 4480h rCan_SyncPeriod Time Window Sync Frame Transmission Register

5210 4488h rCan_SyncStatusInt Sync Frame Interrupt Status Register

5210 448Ch rCan_SyncMaskInt Sync Frame Mask Interrupt Register

5210 4490h rCan_SyncClearInt Sync Frame Clear Interrupt Register

5210 4494h rCan_SyncStatus Sync Frame Status Configuration Register

5210 4498h rCan_SyncClearSetRunStop Sync Frame Generation Register

5210 44A0h rCan_SyncPassiveError Sync Passive Error Detection Register

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 266 of 637
Dec 29, 2021

6.3.2 Register Map (CAN2)

Table 6.2 CAN2 Register Map

Address Register Symbol Register Name

5210 5000h rCan_MOD Configuration Mode Register

5210 5004h rCan_CMR Command Register

5210 5008h rCan_SR Controller Status Register

5210 500Ch rCan_IR Interrupt Register

5210 5010h rCan_IER Interrupt Event Register

5210 5018h rCan_BTR0 Bus Timing Register 0

5210 501Ch rCan_BTR1 Bus Timing Register 1

5210 5020h rCan_OCR Output Control Register

5210 502Ch rCan_ALC Arbitration Lost Capture Register

5210 5030h rCan_ECC Error Code Capture Register

5210 5034h rCan_EWLR Error Warning Limit Register

5210 5038h rCan_RXERR Receive Error Counter Register

5210 503Ch rCan_TXERR Transmit Error Counter Register

5210 5040h to
5210 5070h

rCan_WrTransmitBuffer Write Transmit Buffer Register

rCan_RdReceiveBuffer Read Receive Buffer Register

5210 5040h + 4h × n rCan_ACR[n] (n = 0..3) Acceptance Code Filter [n] Register

5210 5050h + 4h × n rCan_AMR[n] (n = 0..3) Acceptance Mask Filter [n] Register

5210 5074h rCan_RMC Receive Message Counter Register

5210 5078h rCan_RBSA Receive Buffer Start Address Register

5210 5080h to
5210 517Ch

rCan_ReceiveFifo Receive FIFO Register

5210 5180h to
5210 51B0h

rCan_RdTransmitBuffer Read Transmit Buffer Register

5210 5440h to
5210 5470h

rCan_SyncTransmitBuffer Sync Frame Transmit Buffer Register

5210 5480h rCan_SyncPeriod Time Window Sync Frame Transmission Register

5210 5488h rCan_SyncStatusInt Sync Frame Interrupt Status Register

5210 548Ch rCan_SyncMaskInt Sync Frame Mask Interrupt Register

5210 5490h rCan_SyncClearInt Sync Frame Clear Interrupt Register

5210 5494h rCan_SyncStatus Sync Frame Status Configuration Register

5210 5498h rCan_SyncClearSetRunStop Sync Frame Generation Register

5210 54A0h rCan_SyncPassiveError Sync Passive Error Detection Register

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 267 of 637
Dec 29, 2021

6.4 Register Description

6.4.1 rCan_MOD — Configuration Mode Register
Used to configure the behavior of the CAN controller in the following modes:

● Sleep Mode, Acceptance Filter Mode, Self Test Mode, Listen Only Mode, Reset Mode

Address: 5210 4000h (CAN1)

5210 5000h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — bCan_S
M

bCan_A
FM

bCan_S
TM

bCan_L
OM

bCan_R
M

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 6.3 rCan_MOD Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b5 Reserved Read as 0. R

b4 bCan_SM Sleep Mode
Can only be written in Operation Mode.
See Section 6.5.6, Sleep Mode.
When there is no bus activity and no interrupts are pending, the CAN controller can be
put into Sleep Mode.
This function is implemented for firmware compatibility and has no impact on power
saving.

1: Sleep Mode
The controller enters its Sleep Mode provided no CAN interrupt is pending and
there is no bus activity. If there is bus activity or an interrupt is pending, the
Wake-Up procedure is executed.

0: Wake-up (normal operation)
If sleeping, the CAN controller wakes up.

[Condition of “Cleared to 0”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)

R/W

b3 bCan_AFM Acceptance Filter Mode
See Section 6.5.7, Acceptance Filtering.

1: Single Filter
Receive data filtered using one 4 bytes filter.

0: Dual Filter
Receive data filtered using two shorter filters.

R/W

b2 bCan_STM Self Test Mode
See Section 6.5.5, Self Reception.

1: Self Test enabled
In this mode, a full node test is possible without any other active node on the
bus using the Self Reception request command. The CAN controller will perform
a successful transmission, even if no acknowledge is received.

0: Normal operation
An acknowledge is required for successful transmission.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 268 of 637
Dec 29, 2021

Table 6.3 rCan_MOD Register Contents (2/2)

Bit Position Bit Name Function R/W

b1 bCan_LOM Listen Only Mode
See Section 6.5.5, Self Reception.

1: Listen Only enabled
In this mode, the CAN controller does not send an acknowledge to the CAN bus,
even when a message is received successfully.

0: Normal operation
The error counters are stopped at the current value.

R/W

b0 bCan_RM Reset Mode
See Section 6.5.14, Reset Mode.

1: Reset Mode selected
Any message currently being transmitted or received is aborted and Reset Mode
is entered.

0: Normal operation
The controller returns to Operating Mode on the “1-to-0” transition of this bit.

[Condition of “Set 1”]
● Switch to “Bus Off” (Set “1” in bCan_BS)

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 269 of 637
Dec 29, 2021

6.4.2 rCan_CMR — Command Register
Setting one or more bits within the Command Register initiates an action within the transfer layer of the CAN
controller.

The potential action on CAN controller are:

● Self Reception Request

● Clear Data Overrun

● Release Receive Buffer

● Abort Transmission

● Transmission Request

CAUTION

● This register is write only. When read, all bits return “0”.

● Setting the command bits bCan_AT and bCan_TR simultaneously results in a single-shot transmission of the transmit
message without re-transmission in the event of an error or loss of arbitration.

● Setting the command bits bCan_AT and bCan_SRR simultaneously results in a single-shot transmission of the
transmit message using the Self Reception feature, again without re-transmission in the event of an error or arbitration
loss.

● If bCan_SRR and bCan_TR are set simultaneously, the bCan_SRR bit is ignored.

● A Transmission Request made in a previous command cannot be cancelled by setting the bCan_TR bit (Transmission
Request) to “0”. The requested transmission can only be cancelled by setting the bCan_AT bit (Abort Transmission) to
“1”.

Address: 5210 4004h (CAN1)

5210 5004h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — bCan_S
RR

bCan_C
DO

bCan_R
RB

bCan_A
T

bCan_T
R

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.4 rCan_CMR Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b5 Reserved Read as 0. R

b4 bCan_SRR Self Reception Request
1: Set when a message is to be transmitted and received simultaneously

[Condition of “Cleared to 0”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 270 of 637
Dec 29, 2021

Table 6.4 rCan_CMR Register Contents (2/2)

Bit Position Bit Name Function R/W

b3 bCan_CDO Clear Data Overrun
1: Set to clear the data overrun condition signaled by the bCan_DOS bit (Data

Overrun Status). No further Data Overrun Interrupt will be generated while the
bCan_DOS bit (Data Overrun Status) remains set

[Condition of “Cleared to 0”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)

W

b2 bCan_RRB Release Receive Buffer
1: Set to release the “Receive Buffer”

[Condition of “Cleared to 0”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)

W

b1 bCan_AT Abort Transmission
1: Set to cancel the next transmission request, provided this is not already in

progress
[Condition of “Cleared to 0”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)

W

b0 bCan_TR Transmission Request
1: Set when a message is to be transmitted

[Condition of “Cleared to 0”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 271 of 637
Dec 29, 2021

6.4.3 rCan_SR — Controller Status Register
CAUTION

● If both the Receive Status (bCan_RS) and the Transmit Status (bCan_TS) bits are “0”, the CAN bus is idle.

● If both bits (bCan_RS and bCan_TS) are “1”, the controller is waiting to become idle again.

● After hardware reset, idle state is entered once the Bus Free sequence (11 consecutive recessive bits) has been
detected.

● After a “Bus Off” event, 128 Bus Free sequences must be received before idle state is entered.

Address: 5210 4008h (CAN1)

5210 5008h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bCan_B
S

bCan_E
S

bCan_T
S

bCan_R
S

bCan_T
CS

bCan_T
BS

bCan_D
OS

bCan_R
BS

Value after reset 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

Table 6.5 rCan_SR Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 bCan_BS Bus Status
1: The CAN controller is in “Bus Off” state and is not involved in bus activities
0: The CAN controller is involved in bus activities

R

b6 bCan_ES Error Status
1: At least one of the error counters has reached or exceeded the CPU warning

limit defined by the Error Warning Limit register (bCan_EWLR bit in rCan_EWLR
register)

0: Both error counters are below the warning limit

R

b5 bCan_TS Transmit Status
1: The CAN controller is in the process of transmitting a message
0: No message is being transmitted

[Condition of “Set 1”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)

R

b4 bCan_RS Receive Status
1: The CAN controller is in the process of receiving a message
0: Nothing is currently being received

[Condition of “Set 1”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)

R

b3 bCan_TCS Transmission Complete Status
1: The last requested transmission has been successfully completed
0: The last requested transmission has not been completed yet

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 272 of 637
Dec 29, 2021

Table 6.5 rCan_SR Register Contents (2/2)

Bit Position Bit Name Function R/W

b2 bCan_TBS Transmit Buffer Status
1: Transmit Buffer Released

The CPU may write a message to the “Transmit Buffer”.
0: Transmit Buffer Locked

The CPU cannot access the “Transmit Buffer” because a message is either
waiting for transmission or is in the process of being transmitted.

[Condition of “Set 1”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)

R

b1 bCan_DOS Data Overrun Status
1: Data Overrun

A message has been lost because there was not enough space for that
message in the Receive FIFO.

0: No data overrun has occurred since the last
Clear Data Overrun command was given. (bCan_CDO bit in rCan_CMR
register).

The overrun condition is only indicated if the entire message was received.
No overrun condition is shown if the message did not complete due to an error.
[Condition of “Cleared to 0”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)

R

b0 bCan_RBS Receive Buffer Status
1: Receive Buffer Not Empty

One or more complete messages are available to be read from the “Receive
FIFO” via the “Receive Buffer”.

0: Receive Buffer Empty
No message currently available to be read.

[Condition of “Cleared to 0”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 273 of 637
Dec 29, 2021

6.4.4 rCan_IR — Interrupt Register
CAUTION

The Interrupt Register is read-only. Also, after the register has been read by the CPU, all interrupt bits except the
Receive Interrupt bit are reset.

Address: 5210 400Ch (CAN1)

5210 500Ch (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bCan_B
EI

bCan_A
LI

bCan_E
PI

bCan_
WUI

bCan_D
OI

bCan_E
I

bCan_T
I

bCan_R
I

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.6 rCan_IR Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 bCan_BEI Bus Error Interrupt
1: Set when the CAN controller detects an error on the CAN bus, provided the

bCan_BEIE bit is set within the Interrupt Enable Register (rCan_IER)
0: No interrupt

[Condition of “Cleared to 0”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)
● Read of this register

R

b6 bCan_ALI Arbitration Lost Interrupt
1: Set when the CAN controller loses arbitration and becomes a receiver, provided

the bCan_ALIE bit is set within the Interrupt Enable Register (rCan_IER)
0: No interrupt

[Condition of “Cleared to 0”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)
● Read of this register

R

b5 bCan_EPI Error Passive Interrupt
1: Set when the CAN controller re-enters error active state after being in error

passive state or when at least one error counter exceeds the protocol-defined
level of 127, provided the bCan_EPIE bit is set within the Interrupt Enable
Register (rCan_IER)

0: No interrupt
[Condition of “Cleared to 0”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set "1" in bCan_BS)
● Read of this register

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 274 of 637
Dec 29, 2021

Table 6.6 rCan_IR Register Contents (2/2)

Bit Position Bit Name Function R/W

b4 bCan_WUI Wake-Up Interrupt
1: Set when bus activity is detected while the CAN controller is sleeping, provided

the bCan_WUIE bit is set within the Interrupt Enable Register (rCan_IER). A
wake-up interrupt is also generated if the CPU tries to set the Sleep Mode
(bCan_SM) bit while the CAN controller is involved in bus activities or a CAN
interrupt is pending

0: No interrupt
[Condition of “Cleared to 0”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)
● Read of this register

R

b3 bCan_DOI Data Overrun Interrupt
1: Set on a “0-to-1” transition of the Data Overrun Status bit (bCan_DOS), provided

the bCan_DOIE bit is set within the Interrupt Enable Register (rCan_IER)
0: No interrupt

[Condition of “Cleared to 0”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)
● Read of this register

R

b2 bCan_EI Error Warning Interrupt
1: Set on every change (set or clear) of either the Bus Status or Error Status bits

(bCan_BS, bCan_ES), provided the bCan_EIE bit is set within the Interrupt
Enable (rCan_IER) register

0: No interrupt
[Condition of “Cleared to 0”]
● Read of this register

Note) If the Reset Mode was entered due to a “Bus Off” condition, the Error Warning
Interrupt will be set (if enabled).

R

b1 bCan_TI Transmit Interrupt
1: Set whenever the Transmit Buffer Status (bCan_TBS) changes from “0-to-1”

(released), provided the bCan_TIE bit is set within the Interrupt Enable Register
(rCan_IER)

0: No interrupt
[Condition of “Cleared to 0”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)
● Read of this register

R

b0 bCan_RI Receive Interrupt
1: Set whenever the Receive Buffer contains one or more messages, provided the

bCan_RIE bit is set within the Interrupt Enable Register (rCan_IER). Cleared
when the release Receive Buffer command (bCan_RRB) is issued, provided
there is no further data to read in the Receive Buffer

0: No interrupt
[Condition of “Cleared to 0”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)
The bCan_RI bit (when enabled) mirrors the Receive Buffer Status bit (bCan_RBS),
which is why it is not automatically cleared when the Interrupt Register is read.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 275 of 637
Dec 29, 2021

6.4.5 rCan_IER — Interrupt Event Register

Address: 5210 4010h (CAN1)

5210 5010h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bCan_B
EIE

bCan_A
LIE

bCan_E
PIE

bCan_
WUIE

bCan_D
OIE

bCan_E
IE

bCan_T
IE

bCan_R
IE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.7 rCan_IER Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 bCan_BEIE Bus Error Interrupt Enable
1: Enabled, an interrupt will be generated when a bus error has been detected
0: Masked, the interrupt is disabled

R/W

b6 bCan_ALIE Arbitration Lost Interrupt Enable
1: Enabled, an interrupt will be generated when the CAN controller loses arbitration
0: Masked, the interrupt is disabled

R/W

b5 bCan_EPIE Error Passive Interrupt Enable
1: Enabled, an interrupt will be generated when the error status of the CAN

controller changes from error active to error passive or vice versa
0: Masked, the interrupt is disabled

R/W

b4 bCan_WUIE Wake-Up Interrupt Enable
1: Enabled, an interrupt will be generated when the sleeping CAN controller wakes

up
0: Masked, the interrupt is disabled

R/W

b3 bCan_DOIE Data Overrun Interrupt Enable
1: Enabled, an interrupt will be generated when the Data Overrun Status bit

(bCan_DOS) is set
0: Masked, the interrupt is disabled

R/W

b2 bCan_EIE Error Warning Interrupt Enable
1: Enabled, an interrupt will be generated when the bus status or error status bits

(bCan_BS, bCan_ES) change
0: Masked, the interrupt is disabled

R/W

b1 bCan_TIE Transmit Interrupt Enable
1: Enabled, an interrupt will be generated when a message has been successfully

transmitted or the “Transmit Buffer” is accessible again
0: Masked, the interrupt is disabled

R/W

b0 bCan_RIE Receive Interrupt Enable
1: Enabled, an interrupt will be generated when the Receive Buffer Status

(bCan_RBS) goes from “0” to “1” (“full”)
0: Masked, the interrupt is disabled

The Receive Interrupt Enable bit has direct influence on the Receive Interrupt bit and
the external interrupt output CAN_Int.
If bCan_RIE is cleared, CAN_Int will immediately become inactive (low) if no other
interrupt is pending.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 276 of 637
Dec 29, 2021

6.4.6 rCan_BTR0 — Bus Timing Register 0
CAUTION

Bus Timing Register 0 defines the values of the Synchronization Jump Width (SJW) and the Baud Rate Prescaler (BRP).
This register can only be written in Reset Mode, in Operating Mode, it is read only.

Address: 5210 4018h (CAN1)

5210 5018h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bCan_SJW bCan_BRP

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.8 rCan_BTR0 Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7, b6 bCan_SJW Synchronization Jump Size
The Synchronization Jump Width defines the maximum number of time quanta by
which a bit period may be shortened or lengthened in attempting to re-synchronize on
the relevant signal edge (recessive to dominant) of the current transmission.
SJW = Tq × (2 × bCan_SJW[1] + bCan_SJW[0] + 1)

R/W

b5 to b0 bCan_BRP Baud Rate Prescaler
The Baud Rate Prescaler defines the “time quantum” Tq of the clock for CAN as a
multiple of the CAN_HCLK period.
The time quantum of the clock for CAN is given by:

Tq = 2 × Tperiod (CAN_HCLK) ×
(32 × bCan_BRP[5] + 16 × bCan_BRP[4]
+ 8 × bCan_BRP[3] + 4 × bCan_BRP[2]
+ 2 × bCan_BRP[1] + bCan_BRP[0] + 1)

Where Tperiod(CAN_HCLK) = time period of the CAN_HCLK
See Section 6.5.13, Bit Period and Bus Timing Parameters.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 277 of 637
Dec 29, 2021

6.4.7 rCan_BTR1 — Bus Timing Register 1
CAUTION

Bus Timing Register 1 defines the length of the bit period, the location of the sample point and the number of samples to
be taken at each sample point.
This register can only be written in Reset Mode, in Operating Mode, it is read only.

Address: 5210 401Ch (CAN1)

5210 501Ch (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bCan_S
AM bCan_TSEG2 bCan_TSEG1

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.9 rCan_BTR1 Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 bCan_SAM Sample Mode
1: The bus will be sampled three times. This is recommended for low/medium

speed buses (class A or B).
0: The bus will be sampled once. This is recommended for high speed buses (SAE

class C).

R/W

b6 to b4 bCan_TSEG2 bCan_TSEG1 and bCan_TSEG2 define the length of the bit period by giving the
number of time quanta up to and after the point(s) at which incoming data will be
sampled.
See Section 6.5.13, Bit Period and Bus Timing Parameters.
See Figure 6.3, CAN: General Structure of a Bit Period, Tsyncseg, Tseg1, Tseg2.

Tsyncseg = 1 × Tq
Tseg2 = Tq × (4 × bCan_TSEG2[2] + 2 × bCan_TSEG2[1] + bCan_TSEG2[0] + 1)

R/W

b3 to b0 bCan_TSEG1 bCan_TSEG1 and bCan_TSEG2 define the length of the bit period by giving the
number of time quanta up to and after the point(s) at which incoming data will be
sampled.
See Section 6.5.13, Bit Period and Bus Timing Parameters.
See Figure 6.3, CAN: General Structure of a Bit Period, Tsyncseg, Tseg1, Tseg2..

Tsyncseg = 1 × Tq
Tseg1 = Tq × (8 × bCan_TSEG1[3] + 4 × bCan_TSEG1[2] + 2 × bCan_TSEG1[1] +

bCan_TSEG1[0] + 1)

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 278 of 637
Dec 29, 2021

6.4.8 rCan_OCR — Output Control Register
CAUTION

This register can only be written in Reset Mode, in Operating Mode, it is read only.

Address: 5210 4020h (CAN1)

5210 5020h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — — bCan_OCMODE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.10 rCan_OCR Register Contents

Bit Position Bit Name Function R/W

b31 to b2 Reserved Read as 0. R

b1, b0 bCan_OCMODE The Output Control Register allows the selection of output driver configurations.
Only one mode “Normal Output” is implemented.
The additional driver configurations available in the SJA1000 through this register are
not supported by the CAN controller.
In Normal Output Mode: The bit sequence is transmitted to CAN_TXD.

2’b00: Reserved
2’b01: Reserved
2’b10: Normal mode
2’b11: Reserved

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 279 of 637
Dec 29, 2021

6.4.9 rCan_ALC — Arbitration Lost Capture Register

Address: 5210 402Ch (CAN1)

5210 502Ch (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — bCan_ALC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.11 rCan_ALC Register Contents

Bit Position Bit Name Function R/W

b31 to b5 Reserved Read as 0. R

b4 to b0 bCan_ALC When bus arbitration lost, an Arbitration Lost Interrupt (bCan_ALI) is generated (to
enable this interrupt, set “1” in bCan_ALIE bit) and the current bit position of the frame
is captured into this register.
The contents of this register are then maintained until the register has been read by
the CPU.
The capture mechanism is then activated again.

5’b0_0000: Arbitration lost in 1st bit of identifier (ID.28)
5’b0_0001: Arbitration lost in 2nd bit of identifier (ID.27)
 ∙∙∙ ∙∙∙ ∙∙∙
5’b0_1001: Arbitration lost in 10th bit of identifier (ID.19)
5’b0_1010: Arbitration lost in 11th bit of identifier (ID.18)
5’b0_1011: Arbitration lost in SRTR bit, (RTR bit in Standard Frame Format

messages)
5’b0_1100: Arbitration lost in IDE bit
For extended Frame Format messages only
5’b0_1101: Arbitration lost in 12th bit of identifier (ID.17)
5’b0_1110: Arbitration lost in 13th bit of identifier (ID.16)
5’b0_1111: Arbitration lost in 14th bit of identifier (ID.15)
5’b1_0000: Arbitration lost in 15th bit of identifier (ID.14)
5’b1_0001: Arbitration lost in 16th bit of identifier (ID.13)
∙∙∙ ∙∙∙ ∙∙∙
5’b1_1101: Arbitration lost in 28th bit of identifier (ID.1)
5’b1_1110: Arbitration lost in 29th bit of identifier (ID.0)
5’b1_1111: Arbitration lost in RTR bit.

See Section 6.5.9, Bus Arbitration.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 280 of 637
Dec 29, 2021

6.4.10 rCan_ECC — Error Code Capture Register

Address: 5210 4030h (CAN1)

5210 5030h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bCan_ECC_Cod
e

bCan_E
CC_Dir
ection

bCan_ECC_Segment

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.12 rCan_ECC Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7, b6 bCan_ECC_Code When a bus error occurs, a Bus Error Interrupt (bCan_BEI) is generated (to enable
this interrupt, set “1” in bCan_BEIE bit) and the current bit position of the frame is
captured into this Error Code Capture Register. The contents of this register are then
maintained until the register has been read by CPU.
The capture mechanism is then activated again.
Error Code:

2’b00: Bit error
2’b01: Form error
2’b10: Stuff error
2’b11: Some other type of error

See Section 6.5.10, Error Handling.

R

b5 bCan_ECC_Direction Error Direction:
1: Error occurred during reception
0: Error occurred during transmission

See Section 6.5.10, Error Handling.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 281 of 637
Dec 29, 2021

Table 6.12 rCan_ECC Register Contents (2/2)

Bit Position Bit Name Function R/W

b4 to b0 bCan_ECC_Segment Error Segment Code:
5’b0_0000: Not used
5’b0_0001: Not used
5’b0_0010: ID.21 to ID.28
5’b0_0011: Start of frame
5’b0_0100: SRTR bit
5’b0_0101: IDE bit
5’b0_0110: ID.18 to ID.20
5’b0_0111: ID.13 to ID.17
5’b0_1000: CRC Sequence
5’b0_1001: Reserved bit0
5’b0_1010: Data Field
5’b0_1011: Data Length Code
5’b0_1100: RTR bit
5’b0_1101: Reserved bit1
5’b0_1110: ID.0 to ID.4
5’b0_1111: ID.5 to ID.12
5’b1_0000: Not used
5’b1_0001: Active Error Flag
5’b1_0010: Intermission
5’b1_0011: Tolerate Dominant bits
5’b1_0100: Not Used
5’b1_0101: Not used
5’b1_0110: Passive Error Flag
5’b1_0111: Error Delimiter
5’b1_1000: CRC Delimiter
5’b1_1001: Acknowledge
5’b1_1010: End of frame
5’b1_1011: Acknowledge Delimiter
5’b1_1100: Overload Flag
5’b1_1101: Not used
5’b1_1110: Not used
5’b1_1111: Not used

See Section 6.5.10, Error Handling.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 282 of 637
Dec 29, 2021

6.4.11 rCan_EWLR — Error Warning Limit Register
CAUTION

This register can only be written in Reset Mode, in Operating Mode, it is read only.

Address: 5210 4034h (CAN1)

5210 5034h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bCan_EWLR

Value after reset 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

Table 6.13 rCan_EWLR Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 to b0 bCan_EWLR Error Warning Limit
The number of errors in either reception or transmission at which a warning should be
generated.
When either the Transmit Error Counter (bCan_TXERR bit) or the Receive Error
Counter (bCan_RXERR bit) passes this value, the Error Status (bCan_ES) bit in the
Status Register (rCan_SR) is set and an Error Warning Interrupt (bCan_EI) is
generated (to enable this interrupt, set “1” in bCan_EIE).
See Section 6.5.10, Error Handling.
You should also note that changes made within Reset Mode are only put into effect on
the return to Operating Mode.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 283 of 637
Dec 29, 2021

6.4.12 rCan_RXERR — Receive Error Counter Register
CAUTION

This register can only be written in Reset Mode, in Operating Mode, it is read only.

Address: 5210 4038h (CAN1)

5210 5038h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bCan_RXERR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.14 rCan_RXERR Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 to b0 bCan_RXERR Receive Error Counter
This counter is incremented when errors are experienced in the Receive bit stream
and decremented when messages are received without error, in line with the rules
given in the CAN 2.0 specification.
Together with the associated Transmit Error Counter (bCan_TXERR), it provides an
indication of the quality of transmission being experienced on the CAN bus.
Two levels of the counter trigger specific events.
● When the counter reaches the level set in the Error Warning Limit register

(bCan_EWLR), an Error Warning Interrupt (bCan_EI) is generated (to enable this
interrupt, set “1” in bCan_EIE) unless this has previously been triggered by the
Transmit Error Counter (bCan_TXERR bit).

● When the counter goes over 127, the device is put into “Error Passive” state in
accordance with the CAN 2.0 specification (unless previously triggered by the
Transmit Error Counter) and a last Active error is sent and an Error Passive
Interrupt (bCan_EPI) is also generated (to enable this interrupt, set “1” in
bCan_EPIE bit).

When a “Bus Off” event occurs, the counter is automatically set to “0” (Set “1” in
bCan_BS).
See Section 6.5.10, Error Handling.
You should note, however, that writing to this register has no effect when the CAN
controller is in “Bus Off” state and that any change made within Reset Mode will in any
case only come into effect on return to Operating Mode.

Note) If the Reset Mode was entered due to a “Bus Off” condition (Set “1” in
bCan_BS), the Receive Error Counter will be cleared and the Transmit Error
Counter will be initialized to 127 and used to count-down the CAN-defined bus-
off recovery time consisting of 128 occurrences of 11 consecutive recessive
bits.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 284 of 637
Dec 29, 2021

6.4.13 rCan_TXERR — Transmit Error Counter Register
CAUTION

This register can only be written in Reset Mode, in Operating Mode, it is read only.

Address: 5210 403Ch (CAN1)

5210 503Ch (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bCan_TXERR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.15 rCan_TXERR Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 to b0 bCan_TXERR Transmit Error Counter
This counter is incremented when Transmission errors are experienced and
decremented when messages are transmitted without error, in line with the rules given
in the CAN 2.0 specification. Together with the associated Receive Error Counter
(bCan_RXERR), it provides an indication of the quality of transmission being
experienced on the CAN bus.
Three levels of the counter trigger specific events.
● When the counter reaches the level set in the Error Warning Limit register

(bCan_EWLR), an Error Warning Interrupt (bCan_EI) is generated (to enable this
interrupt, set “1” in bCan_EIE) unless this has previously been triggered by the
Receive Error Counter (bCan_RXERR bit).

● When the counter goes over 127, the device is put into “Error Passive” state in
accordance with the CAN 2.0 specification (unless previously triggered by the
Receive Error Counter), a last Active error is sent and an Error Passive Interrupt
(bCan_EPI) is generated (to enable this interrupt, set “1” in bCan_EPIE bit)

● When the counter goes over 255, the device is put into “Bus Off” state in
accordance with the CAN 2.0 specification and is automatically put into Reset mode
(except during start-up when there is only one node on the CAN bus). An Error
Warning Interrupt (bCan_EI) is also generated (to enable this interrupt, set “1” in
bCan_EPIE bit).

After a “Bus Off” event, the register is initialized to 127 in order to count the minimum
protocol-defined time before the CAN controller can take part in further transmission
on the CAN bus (128 occurrences of the “Bus-Free” sequence of 11 consecutive
recessive bits).
Reading the Transmit Error Counter during this time will give the status of the “Bus
Off” recovery.
See Section 6.5.10, Error Handling.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 285 of 637
Dec 29, 2021

Table 6.15 rCan_TXERR Register Contents (2/2)

Bit Position Bit Name Function R/W

 Note)
● If the Reset Mode is re-entered before the “Bus Off” recovery has been completed

(bCan_TXERR greater than 0), “Bus Off” will stay active with bCan_TXERR frozen
until the CAN controller is taken back into Operating Mode.

● While in “Bus Off” state, writing a value in the range from 0 to 254 to bCan_TXERR
clears the “Bus Off” flag. The CAN controller will then wait for just one Bus Free
sequence after the Reset Mode has been cleared.

● Writing 255 to bCan_TXERR in Reset Mode initiates a CPU-driven “Bus Off” event.
No error or bus status change happens in response to the new bCan_TXERR value
until the CAN controller is taken back into Operating Mode when a “Bus Off” event
will be performed exactly as if it had been forced by a bus error. This means Reset
Mode is entered again, the Transmit Error Counter is initialized to 127, the Receive
Error counter is cleared and the relevant Status and Interrupt register bits are set.
Clearing Reset Mode now will perform the protocol-defined Bus Off recovery
sequence (waiting for 128 occurrences of the Bus Free signal).

● If the Reset Mode was entered due to a “Bus Off” condition (Set “1” in bCan_BS),
the Receive Error Counter will be cleared and the Transmit Error Counter will be
initialized to 127 and used to count-down the CAN-defined bus-off recovery time
consisting of 128 occurrences of 11 consecutive recessive bits.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 286 of 637
Dec 29, 2021

6.4.14 rCan_WrTransmitBuffer — Write Transmit Buffer Register
CAUTION

This register is write only and it can only be written in Operating Mode.

Address: 5210 4040h - 5210 4070h (CAN1)

5210 5040h - 5210 5070h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bCan_WrTransmitBuffer

Value after reset 0 0 0 0 0 0 0 0 X X X X X X X X

Table 6.16 rCan_WrTransmitBuffer Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 to b0 bCan_WrTransmitBuff
er

Write Transmit buffer
Allows the transmission of frame data to the CAN Bus. The Transmit Buffer has a
length of 13 bytes. It accommodates one transmit message of up to eight data bytes.
See Section 6.5.3, Transmission.
Write-only access to the Transmit Buffer is provided in

Operating Mode using CAN offsets 12’h040 - 12’h070.
Read access to the Transmit Buffer is possible using CAN offsets 12’h180 -

12’h1B0.

The global layout of the Transmit Buffer is described in Section 6.5.11, Transmit
Buffer Layout.
It is important to distinguish between “Standard Frame Format” (SFF) messages and
the “Extended Frame Format” (EFF) messages.

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 287 of 637
Dec 29, 2021

6.4.15 rCan_RdReceiveBuffer — Read Receive Buffer Register

Address: 5210 4040h - 5210 4070h (CAN1)

5210 5040h - 5210 5070h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bCan_RdReceiveBuffer

Value after reset 0 0 0 0 0 0 0 0 X X X X X X X X

Table 6.17 rCan_RdReceiveBuffer Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 to b0 bCan_RdReceiveBuff
er

Read Receive buffer
The Receive Buffer provides the window through which the CPU accesses the
Receive FIFO. Like the Transmit Buffer, the Receive Buffer has a length of 13 bytes
(enough to accommodate one Receive message of up to eight data bytes). See
Section 6.5.4, Reception.
Read-only access to the Receive Buffer is provided in Operating Mode using CAN
offsets 12’h040 - 12’h070.
The global layout of the Receive Buffer is described in Section 6.5.12, Receive
Buffer Layout.
It is important to distinguish between “Standard Frame Format” (SFF) messages and
the “Extended Frame Format” (EFF) messages.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 288 of 637
Dec 29, 2021

6.4.16 rCan_ACR[n] — Acceptance Code Filter [n] Register (n = 0..3)
CAUTION

This register can only be written in Reset Mode.

Address: 5210 4040h + 4h × n (CAN1)

5210 5040h + 4h × n (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bCan_ACR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.18 rCan_ACR[n] Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 to b0 bCan_ACR Acceptance Code Filter
These 8-bit registers hold the bit patterns used by the Acceptance Filter in filtering
received data in conjunction with the masks provided by rCan_AMR[n].
The way in which these bit patterns are applied depends on whether a single filter or
dual filters are being used and on whether the data is in Standard Frame Format
(SFF) or Extended Frame Format (EFF).
See Section 6.5.7, Acceptance Filtering.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 289 of 637
Dec 29, 2021

6.4.17 rCan_AMR[n] — Acceptance Mask Filter [n] Register (n = 0..3)
CAUTION

This register can only be written in Reset Mode.

Address: 5210 4050h + 4h × n (CAN1)

5210 5050h + 4h × n (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bCan_AMR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.19 rCan_AMR[n] Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 to b0 bCan_AMR Acceptance Mask filter
These 8-bit registers hold the mask patterns applied by the Acceptance Filter in
filtering the data received.

“0”s in these registers identify the bits of the incoming data bytes that are required
to match the bit values in the corresponding Acceptance Code Registers
rCan_ACR[n].

“1”s mark individual bits as “don’t care”.
The bits of the incoming data picked out by these masks depends on whether a single
filter or dual filters are being used and on whether the data is in Standard Frame
Format (SFF) or Extended Frame Format (EFF).
See Section 6.5.7, Acceptance Filtering.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 290 of 637
Dec 29, 2021

6.4.18 rCan_RMC — Receive Message Counter Register

Address: 5210 4074h (CAN1)

5210 5074h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — bCan_RMC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.20 rCan_RMC Register Contents

Bit Position Bit Name Function R/W

b31 to b5 Reserved Read as 0. R

b4 to b0 bCan_RMC Receive Message Counter
The Receive Message Counter register holds the number of messages currently
available in the Receive FIFO. It is automatically incremented by each Receive event
and decremented by each Release Receive Buffer command.
See Section 6.5.4, Reception.
[Condition of “Cleared to 0”]
● Software Reset (Set “1” in bCan_RM)
● Switch to “Bus Off” (Set “1” in bCan_BS)

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 291 of 637
Dec 29, 2021

6.4.19 rCan_RBSA — Receive Buffer Start Address Register
CAUTION

This register can only be written in Reset Mode.

Address: 5210 4078h (CAN1)

5210 5078h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — bCan_RBSA

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.21 rCan_RBSA Register Contents

Bit Position Bit Name Function R/W

b31 to b6 Reserved Read as 0. R

b5 to b0 bCan_RBSA Receive Buffer Start Address
The Receive Buffer Start Address register holds the current location of the RX FIFO
Read Pointer within the 64-byte Receive FIFO as a value between 0 and 63.

Location 0 maps to CAN offset 12’h080.
Location 63 maps to CAN offset 12’h17C.

See Section 6.5.4, Reception.
This register is left unchanged by a software reset (which also does not change the
FIFO contents). However, a software reset sets the RX FIFO Write Pointer to the
value of the RX FIFO Read Pointer, so the data accessed by the Receive Buffer
following a software reset will be overwritten by the next message to be held in the
Receive FIFO.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 292 of 637
Dec 29, 2021

6.4.20 rCan_ReceiveFifo — Receive FIFO Register
CAUTION

This register can only be written in Reset Mode.

Address: 5210 4080h - 5210 417Ch (CAN1)

5210 5080h - 5210 517Ch (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bCan_ReceiveFifo

Value after reset 0 0 0 0 0 0 0 0 X X X X X X X X

Table 6.22 rCan_ReceiveFifo Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 to b0 bCan_ReceiveFifo Receive FIFO, 64Bytes
Data received by the controller is first filtered by the “Acceptance Filter” then passed to
the “Receive FIFO”.
The “Receive FIFO” is 64 bytes depth, allowing space for up to five full “Extended
Frame Format” messages, and is used in a circular fashion
The Receive Buffer Start Address register (rCan_RBSA) holds the current location of
the RX FIFO Read Pointer within the 64-byte Receive FIFO as a value between 0 and
63.

Location 0 maps to CAN offset 12’h080
Location 63 maps to CAN offset 12’h17C.

See Section 6.5.4, Reception.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 293 of 637
Dec 29, 2021

6.4.21 rCan_RdTransmitBuffer — Read Transmit Buffer Register

Address: 5210 4180h - 5210 41B0h (CAN1)

5210 5180h - 5210 51B0h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bCan_RdTransmitBuffer

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.23 rCan_RdTransmitBuffer Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 to b0 bCan_RdTransmitBuff
er

Read Transmit buffer
Transmit buffer can be read back. See Section 6.5.3, Transmission.
Write-only access to the Transmit Buffer is provided in

Operating Mode using CAN offsets 12’h040 - 12’h070.
Read access to the Transmit Buffer is possible using CAN offsets 12’h180 -

12’h1B0.
The global layout of the Transmit Buffer is described in Section 6.5.11, Transmit
Buffer Layout.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 294 of 637
Dec 29, 2021

6.4.22 rCan_SyncTransmitBuffer — Sync Frame Transmit Buffer Register

Address: 5210 4440h - 5210 4470h (CAN1)

5210 5440h - 5210 5470h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bCan_SyncTransmitBuffer

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.24 rCan_SyncTransmitBuffer Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 to b0 bCan_SyncTransmitB
uffer

Sync Frame Transmit Buffer
This buffer is written by CPU with the contents of “Sync frame”. It allows the
transmission of “Sync frame” on the CAN Bus in a time window dedicated.
This time window dedicated for “Sync frame” allows the CAN controller to perform the
following actions:
● Send the last frame written by the CPU in rCan_WrTransmitBuffer
● Manage the potential retries on this frame (arbitration loss)
● Send a “Sync frame” initialized in rCan_SyncTransmitBuffer

This time window is managed by bCan_SyncMaskFrame bit in rCan_SyncStatus
register. The size of time window is controlled by a timer bCan_SyncMaskFrameTime
bit in rCan_SyncPeriod register.
See Section 6.5.15, Synchronization Frame.
See Figure 6.4, CANopen: Emission of Periodic Sync Frame.
The Transmit Buffer has a length of 13 bytes. It accommodates one transmit message
of up to eight data bytes. The global layout of the Transmit Buffer is described in
Section 6.5.11, Transmit Buffer Layout.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 295 of 637
Dec 29, 2021

6.4.23 rCan_SyncPeriod — Time Window Sync Frame Transmission Register
Time parameters of “Sync frame” in bit period unit, allows the control of:

● Period of “Sync frame”

● Time window dedicated for the transmission of “Sync frame” on the CAN Bus.

Address: 5210 4480h (CAN1)

5210 5480h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — bCan_SyncMaskFrameTime — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bCan_SyncPeriod

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.25 rCan_SyncPeriod Register Contents (1/2)

Bit Position Bit Name Function R/W

b31, b30 Reserved Read as 0. R

b29 to b20 bCan_SyncMaskFram
eTime

Time window in bit period unit dedicated for the transmission of “Sync frame” on the
CAN Bus.
● This timer configures the time between:

– The rising edge of bCan_SyncMaskFrame bit.
– Next emission of “Sync frame”

● This time window dedicated for “Sync frame” allows the CAN controller to perform
the following actions:
– Send the last frame written by the CPU in rCan_WrTransmitBuffer
– Manage the potential retries on this frame (arbitration loss)
– Send a “Sync frame” initialized in rCan_SyncTransmitBuffer

● To calculate the size of this time window, the user must take in account:
– The time necessary to send on CAN bus the potential last frame contained in

rCan_WrTransmitBuffer without retry.
– The time necessary to manage 2 or 3 retries on CAN bus (arbitration loss). See

Section 6.5.9, Bus Arbitration.
– The time necessary by CAN controller to copy a “Sync frame” initialized in

rCan_SyncTransmitBuffer to rCan_WrTransmitBuffer registers and to send a
Transmission Request (bCan_TR or bCan_SRR) in rCan_CMR register. (Take
8 bits period unit).

See Section 6.5.15, Synchronization Frame.
See Figure 6.4, CANopen: Emission of Periodic Sync Frame.
See Figure 6.6, CANopen: Interrupt Management on Periodic Sync Frame.
See Figure 6.8, CANopen: Time Window dedicated for Emission of Periodic
Sync Frame.

10’h0: 1 bit period
10’h1: 2 bits periods
10’h2: 3 bits periods
 ∙∙∙ ∙∙∙
10’h3FF: 1024 bits periods

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 296 of 637
Dec 29, 2021

Table 6.25 rCan_SyncPeriod Register Contents (2/2)

Bit Position Bit Name Function R/W

 ● We always must have:
– bCan_SyncPeriod greater than bCan_SyncMaskFrameTime greater than 8.

The bit period unit is defined by rCan_BTR0 and rCan_BTR1 registers.
See Figure 6.3, CAN: General Structure of a Bit Period, Tsyncseg, Tseg1, Tseg2.

b19 to b16 Reserved Read as 0. R

b15 to b0 bCan_SyncPeriod Period of “Sync frame” in bit period unit.
See Section 6.5.15, Synchronization Frame.
See Figure 6.4, CANopen: Emission of Periodic Sync Frame.

16’h0: 1 bit period
16’h1: 2 bits periods
16’h2: 3 bits periods
 ∙∙∙ ∙∙∙
16’hFFFF: 65536 bits periods

The bit period unit is defined by rCan_BTR0 and rCan_BTR1 registers.
See Figure 6.3, CAN: General Structure of a Bit Period, Tsyncseg, Tseg1, Tseg2.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 297 of 637
Dec 29, 2021

6.4.24 rCan_SyncStatusInt — Sync Frame Interrupt Status Register
The Interrupt register allows the source of an interrupt to be identified. When one or more bits of this register are set,
the CAN controller sends an interrupt to the CPU. This register is dedicated of “Sync frame” management.

● Status of overrun “Sync frame” interrupt

● Status of “Sync frame” interrupt

Address: 5210 4488h (CAN1)

5210 5488h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — —
bCan_Ov
errunSync
FrameInt

bCan_Se
ndSyncFr

ameInt

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.26 rCan_SyncStatusInt Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b2 Reserved Read as 0. R

b1 bCan_OverrunSyncFr
ameInt

Status of overrun “Sync frame” interrupt
● An interrupt is generated when:

– The time window defined by bCan_SyncMaskFrameTime and
bCan_SyncPeriod bits are not correctly initialized.

– Or many repetition frames (arbitration loss) on CAN Bus. See Section 6.5.9,
Bus Arbitration.

● Normally case:
– No overrun “Sync frame” interrupt.
– The emission of “Sync frame” is synchronous with time base bCan_SyncPeriod

● Overrun case:
– An Overrun “Sync frame” interrupt is generated.
– The emission of “Sync frame” is not synchronous with time base

bCan_SyncPeriod.
– The emission of “Sync frame” is delayed to have enough time to close the

emission of current frame contained in rCan_SyncTransmitBuffer registers with
all repetition necessary on CAN Bus.

1: If bCan_SyncRunStop bit is set to “1”, (emission of “Sync frame” is enabled)
This bit is set when:
• As soon as the “Sync frame” is sent.
• And if there not enough time to send “Sync frame” in time window controlled by
bCan_SyncMaskFrame and bCan_SyncMaskFrameTime bits.

0: No interrupt generated
Cleared to “0” by a write “1” in bCan_OverrunSyncFrameClearInt bit.
See Section 6.5.15, Synchronization Frame.
See Figure 6.4, CANopen: Emission of Periodic Sync Frame.
See Figure 6.6, CANopen: Interrupt Management on Periodic Sync Frame.
See Figure 6.8, CANopen: Time Window dedicated for Emission of Periodic
Sync Frame.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 298 of 637
Dec 29, 2021

Table 6.26 rCan_SyncStatusInt Register Contents (2/2)

Bit Position Bit Name Function R/W

b0 bCan_SendSyncFram
eInt

Status of “Sync frame” interrupt
1: If bCan_SyncRunStop bit is set to “1”, emission of “Sync frame” is enabled.

This bit is set as soon as the “Sync frame” is sent.
0: No interrupt generated

Cleared to “0” by a write “1” in bCan_SendSyncFrameClearInt bit.
See Section 6.5.15, Synchronization Frame.
See Figure 6.4, CANopen: Emission of Periodic Sync Frame.
See Figure 6.6, CANopen: Interrupt Management on Periodic Sync Frame.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 299 of 637
Dec 29, 2021

6.4.25 rCan_SyncMaskInt — Sync Frame Mask Interrupt Register
This register is used to select the events that cause an interrupt to be generated. This register is dedicated of “Sync
frame” management.

Address: 5210 448Ch (CAN1)

5210 548Ch (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — —

bCan_Ov
errunSync
FrameMa

skInt

bCan_Se
ndSyncFr
ameMaskI

nt

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.27 rCan_SyncMaskInt Register Contents

Bit Position Bit Name Function R/W

b31 to b2 Reserved Read as 0. R

b1 bCan_OverrunSyncFr
ameMaskInt

Enable or disable overrun “Sync frame” interrupt
1: No masked, enable overrun “Sync frame” interrupt
0: Masked, disable overrun “Sync frame” interrupt

See Section 6.5.15, Synchronization Frame.
See Figure 6.4, CANopen: Emission of Periodic Sync Frame.
See Figure 6.6, CANopen: Interrupt Management on Periodic Sync Frame.
See Figure 6.8, CANopen: Time Window dedicated for Emission of Periodic
Sync Frame.

R/W

b0 bCan_SendSyncFram
eMaskInt

Enable or disable of “Sync frame” interrupt
1: No masked, enable “Sync frame” interrupt
0: Masked, disable “Sync frame” interrupt

See Section 6.5.15, Synchronization Frame.
See Figure 6.4, CANopen: Emission of Periodic Sync Frame.
See Figure 6.6, CANopen: Interrupt Management on Periodic Sync Frame.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 300 of 637
Dec 29, 2021

6.4.26 rCan_SyncClearInt — Sync Frame Clear Interrupt Register

Address: 5210 4490h (CAN1)

5210 5490h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — —

bCan_Ov
errunSync
FrameCle

arInt

bCan_Se
ndSyncFr
ameClearI

nt

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.28 rCan_SyncClearInt Register Contents

Bit Position Bit Name Function R/W

b31 to b2 Reserved Read as 0. R

b1 bCan_OverrunSyncFr
ameClearInt

Acknowledge Overrun “Sync frame” interrupt
[Write 1]

Acknowledge Overrun “Sync frame” interrupt
Clear bCan_OverrunSyncFrameInt bit to “0”

[Write 0]
No action

Read as 0.
See Section 6.5.15, Synchronization Frame.
See Figure 6.4, CANopen: Emission of Periodic Sync Frame.
See Figure 6.6, CANopen: Interrupt Management on Periodic Sync Frame.
See Figure 6.8, CANopen: Time Window dedicated for Emission of Periodic
Sync Frame.

W

b0 bCan_SendSyncFram
eClearInt

Acknowledge “Sync frame” interrupt
[Write 1]

Acknowledge “Sync frame” interrupt
Clear bCan_SendSyncFrameInt bit to “0”

[Write 0]
No action

Read as 0.
See Section 6.5.15, Synchronization Frame.
See Figure 6.4, CANopen: Emission of Periodic Sync Frame.
See Figure 6.6, CANopen: Interrupt Management on Periodic Sync Frame.

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 301 of 637
Dec 29, 2021

6.4.27 rCan_SyncStatus — Sync Frame Status Configuration Register
Status dedicated for “Sync frame” management. Used to configure the behavior of the CAN controller in the following
modes:

● Run and Stop Mode of “Sync frame” emission

● Time window status of Mask Frame

Address: 5210 4494h (CAN1)

5210 5494h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — —
bCan_T
imerOnl
yMode

bCan_T
imerOnl
yIfBusO

ff

bCan_S
yncMod

e

bCan_S
yncMas
kFrame

— —
bCan_S
yncRun

Stop

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.29 rCan_SyncStatus Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b7 Reserved Read as 0. R

b6 bCan_TimerOnlyMod
e

0: CAN Controller is running in full mode
1: CAN Controller is running in TimerOnlyMode. No Sync Frame launched, the

CAN Controller only send the interrupt of the sync frame.
This field is set by hardware.

R/W

b5 bCan_TimerOnlyIfBus
Off

0: Disable all the “Sync frame” system if the CAN Controller detect a “Bus off”
condition

1: Switch to “TimerOnlyMode” if the CAN Controller detect a “Bus off” condition

Caution)
● The CAN Controller can only detect a “Bus off” condition during the 8-bit period unit

before a Sync Frame launch timing.
● See Figure 6.8, CANopen: Time Window dedicated for Emission of Periodic

Sync Frame.
● In order to let the system detects the bus off, it is recommended to wait for a Sync

Frame interrupt before clearing the bus off status.

R/W

b4 bCan_SyncMode Resources used to send the “Sync frame”
2 functions mode can be used:

– Transmission request mode
– Self Reception request mode

1: Send “Sync frame” with a command written in bCan_SRR (Self Reception
Request mode)

0: Send “Sync frame” with a command written in bCan_TR (Transmission Request
mode)

See Section 6.5.15, Synchronization Frame.
See Figure 6.8, CANopen: Time Window dedicated for Emission of Periodic
Sync Frame.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 302 of 637
Dec 29, 2021

Table 6.29 rCan_SyncStatus Register Contents (2/2)

Bit Position Bit Name Function R/W

b3 bCan_SyncMaskFram
e

Time window reserved for emission of “Sync frame”
Enables or disables the CPU access in rCan_WrTransmitBuffer registers. Must be
polled by CPU before writing a new CAN frame in rCan_WrTransmitBuffer.
Before writing the last CAN frame in rCan_WrTransmitBuffer, the CPU must read “0”
in bCan_SyncMaskFrame bit.

1: Time window reserved for emission of “Sync frame”
The CPU can finish writing the current CAN frame in the rCan_WrTransmitBuffer
registers, but is not allowed to write a new CAN frame in the buffer.

0: Window reserved for emission of standard CAN frame
All CPU accesses in rCan_WrTransmitBuffer are authorized.

This bit is managed by the dedicated timer, the size of the window is programmable
with bCan_SyncMaskFrameTime bit in rCan_SyncPeriod register.
This time window dedicated for “Sync frame” allows the CAN controller to perform the
following actions:

– Send the last frame written by the CPU in rCan_WrTransmitBuffer
– Manage the potential retries on this frame (arbitration loss)
– Send the Sync frame initialized in rCan_SyncTransmitBuffer

See Section 6.5.15, Synchronization Frame.
See Figure 6.4, CANopen: Emission of Periodic Sync Frame.
See Figure 6.6, CANopen: Interrupt Management on Periodic Sync Frame.
See Figure 6.8, CANopen: Time Window dedicated for Emission of Periodic
Sync Frame.

R

b2, b1 Reserved Read as 0. R

b0 bCan_SyncRunStop Status of “Sync frame” emission
A specific sequence allows setting or clearing this bit.

1: “Run Mode”, Enable (Run) the emission of “Sync frame”
Generation of bCan_SyncMaskFrame
An interrupt is generated when a “Sync frame” is sent.
The configuration of “Sync frame” must be valid before going in run, initialization
by CPU of following registers:
 - bCan_SyncMode (Transmit mode used)
 - rCan_SyncTransmitBuffer (Sync frame data)
 - bCan_SyncPeriod (Period of “Sync frame”)
 - bCan_SyncMaskFrameTime (Time base of MaskFrame)

0: “Stop mode”, Disable (Stop) the emission of “Sync frame”
All followings bits are cleared:
 - bCan_SyncRunStop bit
 - bCan_SyncMaskFrame bit
All timers dedicated for “Sync frame” management.

To write at this register, a specific sequence is necessary:
– Write rCan_SyncClearSetRunStop with 32’h2052_756E

 Switch to “Run mode”
– Write rCan_SyncClearSetRunStop with 32’h5374_6F70

 Switch to “Stop mode”
Only these values are accepted, other values are ignored.

Caution)
● Before to send a “Sync frame”, the CAN controller verifies the status of bCan_BS

bit (Bus Status).
● If bCan_BS is read to “1" (“Bus Off” mode), the CAN controller clears

bCan_SyncRunStop bit to “0”.
See Section 6.5.15, Synchronization Frame.
See Figure 6.5, CANopen: Start and Stop of Periodic Sync Frame.
See Figure 6.8, CANopen: Time Window dedicated for Emission of Periodic
Sync Frame.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 303 of 637
Dec 29, 2021

6.4.28 rCan_SyncClearSetRunStop — Sync Frame Generation Register

Address: 5210 4498h (CAN1)

5210 5498h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bCan_SyncClearSetRunStop

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bCan_SyncClearSetRunStop

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.30 rCan_SyncClearSetRunStop Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bCan_SyncClearSetR
unStop

Run or stop the emission of “Sync frame”
Allows setting or clearing with specific sequence bCan_SyncRunStop bit in
rCan_SyncStatus register.
To write at this register, a specific sequence is necessary:

– Write rCan_SyncClearSetRunStop with 32’h2052_756E
 Switch to “Run mode”
 Enable emission of “Sync frame”
 Set “1” in bCan_SyncRunStop bit
 Generation of bCan_SyncMaskFrame
 An interrupt is generated when a “Sync frame” is sent

– Write rCan_SyncClearSetRunStop with 32’h5374_6F70
 Switch to “Stop mode”
 Disable emission of “Sync frame”
 Clear bCan_SyncRunStop bit to “0”
 Clear bCan_SyncMaskFrame bit to “0”
 Clear all timers dedicated for “Sync frame” management

Only these values are accepted, other values are ignored.
Before changing the “Sync frame” configuration, the firmware must change to “Stop
mode” by this register. After writing the configuration, the firmware will have to change
to “Run mode” by this register for activating the “Sync frame” mechanism.
See Section 6.5.15, Synchronization Frame.
See Figure 6.5, CANopen: Start and Stop of Periodic Sync Frame.

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 304 of 637
Dec 29, 2021

6.4.29 rCan_SyncPassiveError — Sync Passive Error Detection Register

Address: 5210 44A0h (CAN1)

5210 54A0h (CAN2)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bCan_SyncPassiveError

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.31 rCan_SyncPassiveError Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Read as 0. R

b15 to b0 bCan_SyncPassiveEr
ror

Enable and configure the Passive Error detection system of the CAN module:
● Writing “0” into bCan_SyncPassiveError disable the “Passive Error detection

system”.
● Writing any other value into bCan_SyncPassiveError enable the “Passive Error

detection system”; the bCan_TimerOnlyMode will be automatically set if the launch
of the “Sync Frame” has been delayed enough that the number of bit period left
before the next “Sync Frame” is lesser than bCan_SyncPassiveError.

See Figure 6.7, CANopen: Triggering the Passive Error Detection System.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 305 of 637
Dec 29, 2021

6.5 Operation

6.5.1 Main Features Description
Messages for transmission are placed into the “Transmit Buffer” by the CPU for transmission on CAN Bus.

Messages received by the device are first filtered by an “Acceptance Filter”, then placed into the “Receive FIFO”. The
CPU accesses the “Receive FIFO” through a 13-byte window referred to as the “Receive Buffer”. The use of the
“Receive Buffer” in conjunction with the “Receive FIFO” allows the CPU to process one message while other messages
are being received. The “Receive FIFO” has a total length of 64 bytes and is used in circular fashion, giving it the
capacity to accommodate up to five “Extended Frame Format” messages at a time.

The “Bit Timing Logic” block is responsible for the baud rate of the device and is programmable. The range of baud
rates supported depends on the frequency of the internal bus clock and can readily span a wider range of baud rates than
the 125 Kbps - 1 Mbps picked out by the BOSCH specification.

The interface to the CAN bus is provided by the signals CAN_TXD for transmit and CAN_RXD for receive.

6.5.2 Operation Mode
The CAN controller has two main modes of operation:

● An “Operating Mode” in which data may be transmitted and received.

● A “Reset Mode” in which bus timing parameters and message acceptance filters can be set. Reset Mode also allows
the Receive and Transmit Error Counters (bCan_RXERR, bCan_TXERR) and the Error Warning Limit
(bCan_EWLR) to be changed.

Reset Mode is selected either by executing a hardware reset or by setting the bCan_RM bit in the Mode Register
(rCan_MOD) to “1”.

The CAN controller is returned to Operating Mode by clearing the bCan_RM bit.

When switching from “Reset mode” to “Operating mode”, CAN controller is in “Waiting to Become Idle” state with
bCan_TS and bCan_RS bits equal to 1; the system is ready to be used (“Idle” state) only when those two bits switch
back to 0.

The CAN controller also supports a “Listen Only Mode” and a “Self Test Mode”, selectable through the Mode Register
(rCan_MOD) in either Operating Mode or Reset Mode.

● In “Listen Only Mode”, the controller is only able to receive data. No transmission is possible. The controller does
not even transmit any acknowledgement of data being successfully received. It is also forced to be “Error Passive”
(See Section 6.5.10, Error Handling).

● In “Self Test Mode”, the controller sends and receives messages using the controller’s Self Reception feature without
looking for acknowledgement from any remote node.

For further information about “Reset Mode”, See Section 6.5.14, Reset Mode.

For further information about the “Listen Only” and “Self Test” Modes, see the description of the rCan_MOD register.

CAUTION

The controller needs to be taken out of Reset Mode to transmit or receive any data.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 306 of 637
Dec 29, 2021

6.5.3 Transmission
To transmit a message, the CAN controller must be in its Operating Mode (bCan_RM = 0).

Enabling the Transmit and the Error Warning interrupts is recommended but it is usually unnecessary to enable the
Arbitration Loss and Bus Error interrupts as the CAN controller will automatically try again to send the message if bus
arbitration is lost or if transmission errors occur while the message is being sent.

Data to be transmitted is written to the CAN’s “Transmit Buffer” in either the “Standard Frame Format (SFF)” or
“Extended Frame Format (EFF)”. The Transmit Buffer comprises the 13 bytes between CAN offsets 12’h040 and
12’h070, giving space for one message frame containing up to eight bytes of data.

● Write in “Transmit Buffer”: See rCan_WrTransmitBuffer registers.

● Read in “Transmit Buffer”: See rCan_RdTransmitBuffer registers.

● For global layout of the “Transmit Buffer”: Section 6.5.11, Transmit Buffer Layout.

CAUTION

Before writing the data to the buffer, the Transmit Buffer Status (bCan_TBS) needs to be checked to ensure that the
buffer is “released” (bCan_TBS = “1”). Any data written to the buffer when the buffer is locked (bCan_TBS = “0”) is simply
lost without any indication.

Transmission of the data that has been written to the “Transmit Buffer” is initiated by issuing either:

● A Transmit Request through the Command Register (by setting bCan_TR = “1”)

● Or a Self Reception Request (bCan_SRR = “1”) if Self Reception of the message is required (See Section 6.5.5,
Self Reception).

The CAN controller then starts a sequence of steps in which it prepares the data for transmission over the bus (including
generating the appropriate 15-bit CRC), waits for the CAN bus to become idle then starts transmission. The moment
transmission starts, the Transmit Status (bCan_TS) changes to “1” and the Transmission Request bit is cleared. The bit
sequence is output on CAN_TXD.

Once transmission is in progress, the CPU simply has to wait for a Transmit Interrupt (bCan_TI) to occur (to enable this
interrupt, set “1” in bCan_TIE) or for the Transmit Buffer to be released (set “1” in bCan_TBS) to indicate that
transmission has finished.

If bus arbitration is lost (See Section 6.5.9, Bus Arbitration) or if transmission errors occur (See Section 6.5.10,
Error Handling) while the message is being sent, the CAN controller will automatically try again to send the message.

A 15-bit Cycle Redundancy Check (CRC) is sent with each frame, generated from the start of frame, arbitration, control
and data fields of the frame to be sent.

Full details are given in the CAN 2.0 specification.

Transmission of a message can be aborted by issuing an Abort Transmission command through the Command Register
(bCan_AT = “1”) provided transmission has not yet started. It is not possible to abort a message after it has started to be
transmitted.

CAUTION

● To see if the original message has been either transmitted successfully or aborted, wait for the Transmit Buffer Status
bit (bCan_TBS) to be set to “1” or a Transmit Interrupt to be generated (bCan_TI) (to enable this interrupt, set
bCan_TIE bit), then check the Transmission Complete Status bit (bCan_TCS). (A Transmit Interrupt is generated even
if the message was aborted because the Transmit Buffer Status bit changes to “released”.)

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 307 of 637
Dec 29, 2021

● Issuing an Abort Transmission at the same time as a Transmit Request (bCan_TR = “1”) results in a “single-shot”
transmission of the current message without any retry in the event of either transmission errors or loss of bus
arbitration.

6.5.4 Reception
To receive messages, the CAN controller must be in its Operating Mode (bCan_RM = 0).

Reception is initiated by the CAN controller detecting a Start of Frame.

Data received by the controller is first filtered by the “Acceptance Filter” then passed to the “Receive FIFO”. The
“Acceptance Filter” only passes on those messages with identifier bits that match the ones held in the “Acceptance
Filter” registers.

The moment data starts being placed in the “Receive FIFO”, the Receive Status bit (bCan_RS) in Status Register
(rCan_SR) goes to “1”. Then once the data has been received, the Receive Buffer Status bit (bCan_RBS) goes to “1”
and a receive interrupt (bCan_RI) is generated (to enable this interrupt, set bCan_RIE bit).

The “Receive FIFO” is 64 bytes depth, allowing space for up to five full “Extended Frame Format (EFF)” messages,
and is used in a circular fashion. If there is not enough space in the FIFO for the data being received, the Data Overrun
Status bit (bCan_DOS) in the Status Register (rCan_SR) is set and the data frame being received is discarded. A Data
Overrun Interrupt bCan_DOI is also generated (to enable this interrupt, set bCan_DOIE bit).

The data placed in the “Receive FIFO” is read through a 13 bytes window referred to as the “Receive Buffer”. This
window is located at CAN offsets 12’h040 - 12’h070, it occupies the same address space as the “Transmit Buffer”. Like
the “Transmit Buffer”, it is wide enough to accommodate one message containing up to eight bytes of data.

As each message is read from the “Receive FIFO”, the host CPU needs to release the window it currently has on the
FIFO by issuing the Release Receive Buffer command (Set bCan_RRB = “1”) through the Command Register
(rCan_CMR). If another message is waiting to be read in the “Receive FIFO”, this will immediately become available
through the “Receive Buffer”. If no message is waiting, the Receive Status bit (bCan_RS), the receive interrupt bit
(bCan_RI) and the Receive Buffer Status bit (bCan_RBS) will all be cleared.

● Read in “Receive buffer”: See rCan_RdReceiveBuffer registers.

● For global layout of the “Receive Buffer”: See Section 6.5.12, Receive Buffer Layout.

A count of the number of messages currently available in the Receive FIFO is given by the Receive Message Counter
Register (see rCan_RMC register).

The data received is written at the position indicated by the RX FIFO Write Pointer with the pointer updated as each
byte is written. The position at which data is currently being read is given by the RX FIFO Read Pointer (rCan_RBSA).

When the Write Pointer coincides with the Read Pointer, there is no longer space in the FIFO for the data being
received. The data frame being received is discarded, the Data Overrun Status (bCan_DOS) bit in the Status Register
(rCan_SR) is set and a Data Overrun Interrupt bCan_DOI is generated (to enable this interrupt, set “1” in bCan_DOIE
bit). It is up to the CPU to recover from this loss of data.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 308 of 637
Dec 29, 2021

Figure 6.2 CAN: Receive Buffer Window or Receive FIFO

6.5.5 Self Reception
A feature of the CAN controller is that it allows the message it is transmitting to another CAN node to be
simultaneously received by the CAN controller.

Self Reception of the current transmit message is selected by issuing a Self Reception Request through the Command
Register (rCan_CMR) (set bCan_SRR bit = “1”).

The CAN controller automatically generates the Transmit and Receive Interrupts required for correct operation.

CAUTION

● If self-reception is requested at the same time as normal transmission (bCan_SRR and bCan_TR set simultaneously),
the Self Reception Request is ignored.

● A special version of the Self Reception feature is offered by the CAN controller’s Self Test Mode in which a test
message is both sent and received, but without requiring an acknowledgement from a remote node. This therefore
allows a full test of the node containing the CAN controller without needing any other active node on the bus.

● See rCan_MOD register.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 309 of 637
Dec 29, 2021

6.5.6 Sleep Mode
When there is no bus activity and no interrupts are pending, the CAN controller can be put into Sleep Mode. This
function is implemented for firmware compatibility and has no impact on power saving.

Sleep Mode is selected by setting the Sleep Mode bit in the Mode Register (bCan_SM) to “1”. CAN_TXD goes high in
Sleep Mode. Any of the following events will cause the CAN controller to “wake up” from Sleep Mode:

● Setting the Sleep Mode (bCan_SM) bit to “0”.

● Activity on the CAN bus input (CAN_RXD)

On waking up, the CAN controller will generate a Wake-Up Interrupt (bCan_WUI) (to enable this interrupt, set
bCan_WUIE bit).

CAUTION

● If the CAN controller is awakened by bus activity, it will not receive any messages until after it has detected a Bus Free
sequence of 11 recessive bits on the bus.

● You should also note that it is not possible to select Sleep Mode while the CAN controller is in Reset Mode.

6.5.7 Acceptance Filtering
Within a CAN network, all nodes receive all messages transmitted on the bus.

To allow a node to ignore messages that are not relevant to it, the CAN controller allows pre-filtering of received
messages by applying a 4 bytes Acceptance Filter to received data. Only the messages with identifier bits that match the
filter are passed to the Receive FIFO.

Normally message filtering is based upon the whole identifier, which can be 11 or 29 bits long depending on whether
the received message is a standard or extended frame format. However, in the CAN controller, optional mask registers
allow messages with groups of identifiers to be received and placed into the Receive FIFO by setting particular
identifier bits to be “don’t care”.

The filtering is carried out using four 8-bit Acceptance Code Registers (rCan_ACR0..3 which hold the bit patterns to
match), together with four 8-bit Acceptance Mask Registers (rCan_AMR0..3) which mark particular bits of the
Acceptance Code bit patterns as “don’t care”. Both sets of registers are applied either as a single 32-bit filter to the first
4 bytes of each received message, or as two separate 16-bit filters to the first 2 bytes of the message. Where two filters
are applied, messages are accepted when the identifier bits tested match at least one of the filters.

The precise application of the filters depends on whether the data is in Standard Frame Format or Extended Frame
Format and on whether one or two filters are applied.

The CAN controller filters the incoming data stream, discarding any message that does not have the required bit pattern
in its identifier.

The bit pattern against which the message identifier is matched is held in the Acceptance Code Registers
(rCan_ACR0..3), masked by the values held in the Acceptance Mask Registers (rCan_AMR0..3).

● “0”s in rCan_AMR0..3 identify the bits at the corresponding positions in rCan_ACR0..3 which must be matched in
the message identifier

● “1”s identify the corresponding bits as “don’t care”.

The bit patterns held as rCan_ACR0..3 can either be used as a single 4 byte filter or two shorter filters. The selection is
made through the bCan_AFM bit of the Mode Register (rCan_MOD).

● If bCan_AFM= “1”, a single filter will be applied.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 310 of 637
Dec 29, 2021

● If bCan_AFM= “0”, two filters will be applied. Where two filters are used, the incoming message will be accepted if
its identifier matches either filter.

The way in which the bit patterns defined by rCan_ACR0..3 are applied further depend on whether the incoming
message is in Standard Frame Format (SFF) or Extended Frame Format (EFF) as follows:

Table 6.32 Standard Frame Format, Single Filter

Standard Frame Format (SFF) Acceptance Filtering Condition

CAN Offset Receive Buffer Field Filter Code Filter Mask

12’h040 RX Frame Information

12’h044 RX Identifier 1
ID[28,27,26,25,24,23,22,21]

Filter1: rCan_ACR0[7:0] Filter1: rCan_AMR0[7:0]

12’h048 RX Identifier 2
ID[20,19,18],RTR,X,X,X,X
X: No filtering

Filter1: rCan_ACR1[7:4]
Not used: rCan_ACR1[3:0]

Filter1: rCan_AMR1[7:4]
Not used: rCan_AMR1[3:0]

12’h04C RX Data byte 1 Filter1: rCan_ACR2[7:0] Filter1: rCan_AMR2[7:0]

12’h050 RX Data byte 2 Filter1: rCan_ACR3[7:0] Filter1: rCan_AMR3[7:0]

Table 6.33 Standard Frame Format, Dual Filter

Standard Frame Format (SFF) Acceptance Filtering Condition

CAN Offset Receive Buffer Field Filter Code Filter Mask

12’h040 RX Frame Information

12’h044 RX Identifier 1
ID[28,27,26,25,24,23,22,21]

Filter1: rCan_ACR0[7:0]
Filter2: rCan_ACR2[7:0]

Filter1: rCan_AMR0[7:0]
Filter2: rCan_AMR2[7:0]

12’h048 RX Identifier 2
ID[20,19,18],RTR,X,X,X,X
X: No filtering

Filter1: rCan_ACR1[7:4]
Filter2: rCan_ACR3[7:4]

Filter1: rCan_AMR1[7:4]
Filter2: rCan_AMR3[7:4]

12’h04C RX Data byte 1
Byte[7:4]
Byte[3:0]

Filter1: rCan_ACR1[3:0]
Filter1: rCan_ACR3[3:0]

Filter1: rCan_AMR1[3:0]
Filter1: rCan_AMR3[3:0]

12’h050 RX Data byte 2
No filtering

Table 6.34 Extended Frame Format, Single Filter

Extended Frame Format (EFF) Acceptance Filtering Condition

CAN Offset Receive Buffer Field Filter Code Filter Mask

12’h040 RX Frame Information

12’h044 RX Identifier 1
ID[28,27,26,25,24,23,22,21]

Filter1: rCan_ACR0[7:0] Filter1: rCan_AMR0[7:0]

12’h048 RX Identifier 2
ID[20,19,18,17,16,15,14,13]

Filter1: rCan_ACR1[7:0]

Filter1: rCan_AMR1[7:0]

12’h04C RX Identifier 3
ID[12,11,10,9,8,7,6,5]

Filter1: rCan_ACR2[7:0] Filter1: rCan_AMR2[7:0]

12’h050 RX Identifier 4
ID[4,3,2,1,0],RTR,X,X
X: No filtering

Filter1: rCan_ACR3[7:2]
Not used: rCan_ACR3[1:0]

Filter1: rCan_AMR3[7:2]
Not used: rCan_AMR3[1:0]

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 311 of 637
Dec 29, 2021

Table 6.35 Extended Frame Format, Dual Filter

Extended Frame Format (EFF) Acceptance Filtering Condition

CAN Offset Receive Buffer Field Filter Code Filter Mask

12’h040 RX Frame Information

12’h044 RX Identifier 1
ID[28,27,26,25,24,23,22,21]

Filter1: rCan_ACR0[7:0]
Filter2: rCan_ACR2[7:0]

Filter1: rCan_AMR0[7:0]
Filter2: rCan_AMR2[7:0]

12’h048 RX Identifier 2
ID[20,19,18,17,16,15,14,13]

Filter1: rCan_ACR1[7:0]
Filter2: rCan_ACR3[7:0]

Filter1: rCan_AMR1[7:0]
Filter2: rCan_AMR3[7:0]

12’h04C RX Identifier 3
ID[12,11,10,9,8,7,6,5]
No filtering

12’h050 RX Identifier 4
ID[4,3,2,1,0],RTR,X,X
No filtering

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 312 of 637
Dec 29, 2021

6.5.8 Interrupts Generation
The CAN controller supports the generation of an interrupt for any of the following conditions:

● Bus activity while the CAN controller is in Sleep Mode (Wake-Up Interrupt, bCan_WUI)

● Receipt of a message (Receive Interrupt, bCan_RI)

● Completion of the current transmission (Transmit Interrupt, bCan_TI)

● Loss of Received data through the FIFO being full (Data Overrun Interrupt, bCan_DOI)

● Loss of Arbitration on the CAN bus (Arbitration Loss Interrupt, bCan_ALI)

● Error on the CAN bus (Bus Error Interrupt, bCan_BEI)

● CAN controller coming out of “Error Passive” state (Error Passive Interrupt, bCan_EPI)

● The number of errors either exceeding the Error Warning Limit (rCan_EWLR) or causing the device to go into “Bus
Off” state (Error Warning Interrupt, bCan_EI)

Only when using “Sync frame” transmission mechanism
● Completion of the “Sync frame” transmission.

− Status of “Sync frame” interrupt, bCan_SendSyncFrameInt

● Overrun on the transmission of “Sync frame”.

− The transmission of “Sync frame” is delayed to have enough time to close the emission of current frame contained
in rCan_SyncTransmitBuffer registers.

− Status of overrun “Sync frame” interrupt, bCan_OverrunSyncFrameInt

Following a hardware reset, these interrupts are disabled. The user therefore needs to enable the ones they require in the
Interrupt Enable Register (rCan_IER and rCan_SyncMaskInt). The selection of interrupts that are enabled is not
however affected by a software reset (bCan_RM = “1” in the Mode Register (rCan_MOD)).

CAUTION

● Normally, CPU doesn’t need to monitor Loss of Arbitration events or individual bus errors as the CAN controller will
automatically retry transmission when these happen.

● Reading the Interrupt Register (rCan_IR) automatically clears all the interrupts in the register with the exception of the
Receive Interrupt (bCan_RI).

The following sections describe the actions to be taken in response to each type of interrupt.

6.5.8.1 Receive Interrupts
The generation of a Receive Interrupt indicates the availability of a message to be read in the Receive FIFO. The
message is read through a 13-byte window onto the Receive FIFO referred the Receive Buffer, which is located at CAN
offsets 12’h040 - 12’h070 (See rCan_RdReceiveBuffer register).

Once the message currently accessible through the Receive Buffer has been read, the CPU needs to release the window
it currently has on the FIFO by issuing a Release Receive Buffer command (bCan_RRB= “1”). The RX FIFO Read
Pointer (and hence the Receive Buffer Start Address) then moves to the position in the Receive FIFO at which the next
message will start.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 313 of 637
Dec 29, 2021

If there is an unread message at this position, this becomes immediately available to read through the Receive Buffer. If
no message is available, the Receive Interrupt (bCan_RI) and Receive Buffer Status (bCan_RBS) bits will be cleared.

6.5.8.2 Transmit Interrupts
The generation of a Transmit Interrupt (bCan_TI) indicates the readiness of the Transmit Buffer to receive another
message for transmission. The response made to this interrupt simply depends on whether there is further data to be
sent. If there is, the transmission procedure outlined in Transmission chapter needs to be repeated. If not, the interrupt
may be ignored.

6.5.8.3 Error Warning Interrupts
The generation of an Error Warning interrupt (bCan_EI) indicates either that the count of transmission errors
(bCan_TXERR) or the count of reception errors (bCan_RXERR) has passed the EWL value held in the Error Warning
Limit Register (rCan_EWLR), or that the CAN controller has been put into “Bus Off” state because the number of
transmission errors (bCan_TXERR) has exceeded 255.

The count of reception errors is held in the rCan_RXERR register, the count of transmission errors is held in the
rCan_TXERR register.

If the CAN controller has been placed in “Bus Off” state, the Bus Status bit (bCan_BS) will be set to “1” (Bus Off). In
addition, the Reset Mode bit (bCan_RM) will have been set, causing a software reset and placing the CAN controller in
Reset Mode where it will then stay until the host CPU clears the Reset Mode bit in the Mode Register (bCan_RM).

Furthermore, on its return to Operating Mode, the CAN controller will wait for 128 occurrences of the Bus Free
sequence of 11 successive recessive bits (the minimum time defined by the CAN protocol) before becoming “Bus On”
again.

CAUTION

● During this period, the progress that is being made towards “Bus On” can be monitored by reading the rCan_TXERR
register. On leaving Reset Mode, this is initially set to 127. It then counts down through the required number of Bus
Free sequences to become zero at the point when the device is allowed to become “Bus On” again.

● If the interrupt has been generated as a result of the EWL value being exceeded, it is up to the programmer what
action is taken in response to the generation of this interrupt.

6.5.8.4 Data Overrun Interrupts
A Data Overrun Interrupt (bCan_DOI) is only generated when the required storage space for the received message is
greater than the number of free bytes in the Receive FIFO. The Data Overrun Status bit (bCan_DOS) will also be set.

The required storage space is determined from the RTR, FF and DLC bits of the received message which respectively
define:

● Whether the message is a Remote Transmission Request

● Whether it is a standard frame format or extended frame format message

● And the number of bytes included in the message.

The assessment of the space required is made after the message has been received. If insufficient space is available to
store the message, the message will be lost.

The recovery that can be made when messages are lost will depend on the system design. However, experiencing
significant numbers of Data Overrun events would suggest that the volume of data traffic has been under estimated and
that the system would benefit from a larger memory buffer for incoming messages.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 314 of 637
Dec 29, 2021

CAUTION

Any interrupt routine that handles Data Overrun events should finish by issuing a Clear Data Overrun command
(bCan_CDO = 1) to clear the Data Overrun Status bit, because no further Data Overrun interrupt (bCan_DOI) will be
generated while the Data Overrun Status bit (bCan_CDO) remains set.

6.5.8.5 Wakeup Interrupts
This function is implemented for firmware compatibility and has no impact on power saving.

● A Wake-Up Interrupt (bCan_WUI) is generated when the CAN controller is awakened from Sleep Mode.

Any of the following events will cause the CAN controller to “wake up” from Sleep Mode.

● Clearing the Sleep Mode bit (bCan_SM)

● Activity on the CAN bus input (CAN_RXD)

● See Section 6.5.6, Sleep Mode.

6.5.8.6 Error Passive Interrupts
The Receive Error (rCan_RXERR) and Transmit Error (rCan_TXERR) counters are respectively automatically
incremented by one each time a Receive error or Transmit error occurs, and decremented by one by each successful
reception or transmission.

If the accumulated total of either Receive or Transmit Errors goes over 127, the CAN controller goes into state in which
further errors continue to be counted but individual interrupts are no longer generated. This state is described as “Error
Passive” and an Error Passive Interrupt (bCan_EPI) is generated (to enable this interrupt, set “1” in bCan_EPIE) to
signal that the Error Passive state has been entered.

The CAN controller remains in Error Passive state while either error count remains over 127. The Transmission Error
count (rCan_TXERR) continues to be incremented and decremented while it remains over 127. The Receive Error
count (rCan_RXERR), however, is automatically reduced to a value between 119 and 127 by each message that is
successfully received, potentially taking the CAN controller out of Error Passive state.

A further Error Passive Interrupt (bCan_EPI) is generated when the CAN controller leaves Error Passive state.

6.5.8.7 Arbitration Loss Interrupts
The generation of an Arbitration Loss Interrupt (bCan_ALI) indicates that the CAN controller has lost control of the
CAN bus while it was in the process of transmitting a message.

Normally, there is no need for any special action to be taken as the CAN controller will automatically try again to
transmit the current message. The fact that arbitration has been lost may however be of importance if the option of a
single-shot transmission has been taken (See Section 6.5.3, Transmission).

The bit position at which arbitration was lost will be held in the Arbitration Lost Capture Register (rCan_ALC). For
details of the way in which this bit position is held, see Section 6.5.9, Bus Arbitration.

CAUTION

The details held in the Arbitration Lost Capture Register (rCan_ALC) are not cleared until this register has been read. As
a result, no further information about arbitration loss can be held until the previously held details have been read from the
rCan_ALC Register.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 315 of 637
Dec 29, 2021

6.5.8.8 Bus Error Interrupts
The generation of a Bus Error Interrupt (bCan_BEI) indicates the occurrence of a transmission error on the CAN bus.
Normally, there is no need for any special action to be taken as the CAN controller will automatically discard any
incoming message in which bus errors have occurred and it will automatically try to send again any transmit message
that experienced bus errors.

However, should additional information on a bus error be required, the type of error (bit/form/stuff/other) and the
location of each error are captured in an Error Code Capture Register (rCan_ECC) where they remain until this register
is read.

Experiencing significant numbers of such errors may however indicate that corrective action should be taken, so the
CAN controller maintains two error counters.

● One for reception errors (rCan_RXERR)

● And one for transmission errors (rCan_TXERR)

Which are automatically incremented whenever an error occurs. Should either counter exceed the value held in the
Error Warning Limit register (rCan_EWLR), an Error Warning interrupt (bCan_EI) is generated (to enable this
interrupt, set “1” in bCan_EIE) while if either counter exceeds a count of 127, an Error Passive interrupt (bCan_EPI) is
generated (to enable this interrupt, set “1” in bCan_EPIE).

An Error Warning interrupt (bCan_EI) will also be generated if the CAN controller goes into “Bus Off” state as a result
of the count of transmission errors exceeding 255.

Both these additional interrupts are discussed above.

6.5.8.9 Transmit “Sync frame” Interrupts
CAUTION

Only when using “Sync frame” transmission mechanism.

Completion of the “Sync frame” transmission.

● If bCan_SyncRunStop bit is set to “1”, (emission of “Sync frame” is enabled), an interrupt (bCan_SendSyncFrameInt
bit) is generated (to enable this interrupt, set “1” in bCan_SendSyncFrameMaskInt bit) when a “Sync frame” is sent.

● Acknowledge the interrupt by writing “1” in bCan_SendSyncFrameClearInt bit.

● See Figure 6.4, CANopen: Emission of Periodic Sync Frame.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 316 of 637
Dec 29, 2021

6.5.8.10 Transmit Overrun “Sync frame” Interrupts
CAUTION

Only when using “Sync frame” transmission mechanism.

Overrun on the transmission of “Sync frame”.

● The transmission of “Sync frame” is delayed to have enough time to close the emission of current frame contained in
rCan_WrTransmitBuffer registers.

● Interrupt (bCan_OverrunSyncFrameInt bit) is generated (to enable this interrupt, set “1” in
bCan_OverrunSyncFrameMaskInt bit) and interrupt (bCan_SendSyncFrameInt bit) is generated (to enable this
interrupt, set “1” in bCan_SendSyncFrameMaskInt bit) when a “Sync frame” is sent.

● Acknowledge the interrupt by writing “1” in bCan_OverrunSyncFrameClearInt and bCan_SendSyncFrameClearInt
bits.

● See Figure 6.6, CANopen: Interrupt Management on Periodic Sync Frame.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 317 of 637
Dec 29, 2021

6.5.9 Bus Arbitration
In CAN communication, the unit that has started transmitting first during a bus idle state gains the right to transmit. If
two or more units start sending at the same time, they are arbitrated for contention by comparing their arbitration fields
bitwise and the unit that has more dominant bits than other units gains the right to transmit.

The resources to manage it:
At any time, the CAN node that has control of the bus is the one with the lowest identifier. A CAN node that loses
arbitration must withdraw and not attempt to control the CAN bus again until the CAN bus is idle.

When the device containing the CAN controller loses arbitration, an Arbitration Lost Interrupt (set “1” in bCan_ALI
bit) will be generated, (to enable this interrupt, set bCan_ALIE bit of rCan_IER register), and the bit position at which
arbitration was lost will be held in the bCan_ALC bits of rCan_ALC register

For details of the way in which this bit position is held, see bCan_ALC bits.

CAUTION

● The details held in the Arbitration Lost Capture Register are not cleared until this register has been read.

● As a result, no further information about arbitration loss can be held until the previously held details have been read
from the register.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 318 of 637
Dec 29, 2021

6.5.10 Error Handling
Errors in reception and transmission are handled according to the CAN 2.0B protocol specification.

The main rules on error detection are:

● All units can detect an error

− Error detection function

● Any unit that has detected an error immediately transmits an error frame to notify the error to all other units
simultaneously.

− Error notification function

● If any message transmitting unit has detected an error, the unit forcibly aborts transmission. Then it attempts to
retransmit repeatedly until its message is transmitted successfully.

− Error recovery function

The type of error (bit, form, stuff, other) and the location of the error within the message frame are captured in an Error
Code Capture (rCan_ECC) register (bCan_ECC_Code, bCan_ECC_Direction, bCan_ECC_Segment bits) where they
remain until this register is read.

Bit Error:
● This error is detected when the output level of any bit and its level on the bus do not match.

Stuff Error:
● This error is detected when the same level is detected for six consecutive bits in the bit stuffing field.

CRC Error:
● This error is detected when the received CRC sequence differs from the result of CRC that is calculated from the

received data.

Form Error:
● This error is detected when a fixed form bit field (CRC delimiter, ACK delimiter, EOF field) contains one or more

illegal bits.

Ack Error:
● This error is detected when a transmit unit detected recessive bits in the ACK slot.

The CAN controller includes two error counters:

● One for reception errors (bCan_RXERR)

● One for transmission errors (bCan_TXERR)

Which are automatically incremented in accordance with the CAN 2.0B specification when an error occurs.

Successful reception and transmission also decrement the counters in accordance with the CAN 2.0 specification.

The CAN controller also includes an Error Warning Limit (bCan_EWLR) register, the value of which represents the
number of errors in either reception or transmission at which a warning should be generated. The default value for the
bCan_EWLR is 8’d96.

When either the Transmit Error Counter (bCan_TXERR) or the Receive Error Counter (bCan_RXERR) passes this
value, the Error Status (bCan_ES) bit in the Status Register (rCan_SR) is set and an Error Warning Interrupt (bCan_EI)
is generated (to enable this interrupt, set “1” in bCan_EIE).

If either counter goes over 127, the CAN controller goes into “Error Passive” state (as defined by the CAN protocol)
and issues an Error Passive (Set “1” in bCan_EPI bit) Interrupt (to enable this interrupt, set “1” in bCan_EPIE bit).

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 319 of 637
Dec 29, 2021

Should the Transmit Error Counter exceed 255 (the limit of the counter), the Bus Status bit (bCan_BS) will be set to “1”
(“Bus Off”), the CAN controller will be set into Reset Mode and an Error Warning Interrupt (bCan_EI) generated (to
enable this interrupt, set “1” in bCan_EIE).

The CAN controller will then stay in Reset Mode until the host CPU clears the Reset Mode bit in the Mode Register
(bCan_RM bit). Furthermore, on its return to Operating Mode, the CAN controller will wait for 128 occurrences of the
Bus Free sequence (the minimum time defined by the CAN protocol) before becoming “Bus On” again.

The table below resumes the main rules to increment or decrement the bCan_RXERR and bCan_TXERR counters.

Table 6.36 Increment/Decrement of Transmit and Receive Error Counter

Error Event Action Taken

Receiver detects an error bCan_RXERR incremented by 1

Receiver detects dominant bit as the first bit after sending an Error flag bCan_RXERR incremented by 8

Receiver detects a bit error while sending an Active error flag or an Overload
flag

bCan_RXERR incremented by 8

Message successfully received bCan_RXERR decremented by 1

Message is received successfully when the count had previously been
above the Error Passive trigger level of 127

bCan_RXERR automatically set to a value between
119 and 127

14th consecutive dominant bit received after sending an Active error flag or
an Overload flag

bCan_RXERR incremented by 8 and bCan_TXERR
incremented by 8 both at this point and after each
additional sequence of 8 consecutive dominant bits 8th consecutive dominant bit received after sending a Passive error flag

Transmitter sends an error flag bCan_TXERR incremented by 8

Transmitter detects a bit error while sending an Active error flag or an Overload
flag

bCan_TXERR incremented by 8

Transmitter successfully transmits message bCan_TXERR decremented by 1

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 320 of 637
Dec 29, 2021

6.5.11 Transmit Buffer Layout
The Transmit Buffer is subdivided into descriptor and data fields. The first byte of the descriptor field holds frame
information. It describes the frame format (SFF or EFF), remote or data frame and the data length. This is then followed
by either two identifier bytes for SFF or four bytes for EFF messages. The data field contains up to eight data bytes.

Table 6.37 Transmit Frame Format Description

Standard Frame Format (SFF) Extended Frame Format (EFF)

CAN Offset Field CAN Offset Field

12’h040 TX Frame Information 12’h040 TX Frame Information

12’h044 TX Identifier 1 12’h044 TX Identifier 1

12’h048 TX Identifier 2 12’h048 TX Identifier 2

12’h04C TX Data byte 1 12’h04C TX Identifier 3

12’h050 TX Data byte 2 12’h050 TX Identifier 4

12’h054 TX Data byte 3 12’h054 TX Data byte 1

12’h058 TX Data byte 4 12’h058 TX Data byte 2

12’h05C TX Data byte 5 12’h05C TX Data byte 3

12’h060 TX Data byte 6 12’h060 TX Data byte 4

12’h064 TX Data byte 7 12’h064 TX Data byte 5

12’h068 TX Data byte 8 12’h068 TX Data byte 6

12’h06C Not used 12’h06C TX Data byte 7

12’h070 Not used 12’h070 TX Data byte 8

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 321 of 637
Dec 29, 2021

6.5.11.1 Descriptor Field of the Transmit Buffer
The bit layout of the Descriptor Field of the Transmit Buffer is shown below, first for SFF then for EFF. The different
elements of the Descriptor Field are explained in the following sections:

● FF: See Frame Format (FF)

● RTR: See Remote Request (RTR)

● DLC: See Data Length Code (DLC)

● ID: See Identifier (ID)

Table 6.38 Standard Transmit Frame (SFF) Format Description

CAN Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

12’h040 FF RTR X*1 X*1 DLC.3 DLC.2 DLC.1 DLC.0

12’h044 ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21

12’h048 ID.20 ID.19 ID.18 X*2 X*1 X*1 X*1 X*1

Table 6.39 Extended Transmit Frame (EFF) Format Description

CAN Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

12’h040 FF RTR X*1 X*1 DLC.3 DLC.2 DLC.1 DLC.0

12’h044 ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21

12’h048 ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13

12’h04C ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5

12’h050 ID.4 ID.3 ID.2 ID.1 ID.0 X*2 X*1 X*1

Note 1. Don’t care but it is recommended to put “0” to be compatible with Receive Buffer in case the Self Reception or the Self Test
option is used.

Note 2. Don’t care but it is recommended to match the RTR bit used in the Receive Buffer in case the Self Reception or the Self Test
option is used.

6.5.11.2 Frame Format (FF)
The FF bit selects the type of frame format to be transmitted.

● “1” Selects Extended Frame Format (EFF).

● “0” Selects Standard Frame Format (SFF).

6.5.11.3 Remote Request (RTR)
The RTR bit is used to identify the frame as either a remote frame or a data frame (as defined in the CAN protocol).

● “1” Indicates a remote frame (A request for data from another node).

● “0” Indicates a data frame

6.5.11.4 Data Length Code (DLC)
The DLC [3:0] bits are used to specify the number of data bytes included in message being sent.

The maximum number of data bytes that can be included in a frame is eight so values of DLC [3:0] greater than eight
are automatically interpreted as eight.

You should also note that, although no data bytes are transmitted from the local host in the case of a remote frame
transmission, the data length of the remote frame should still be specified to avoid bus errors if two CAN controllers
start a remote frame transmission with the same Identifier simultaneously.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 322 of 637
Dec 29, 2021

6.5.11.5 Identifier (ID)
The identifier acts as the message’s name, used in a receiver for acceptance filtering, and also determines the bus access
priority.

The lower the binary value of the identifier the higher the priority.

In Standard Frame Format (SFF) the identifier consists of 11 bits (ID.28 to ID.18).

In Extended Frame Format (EFF) messages the identifier consists of 29 bits (ID.28 to ID.0). ID.28 is the most
significant bit and is transmitted first on the bus.

6.5.11.6 Data Field
The data field should comprise the number of data bytes defined by the Data Length Code. The most significant bit of
data byte 1 at CAN offset 12’h04C (SFF) or CAN offset 12’h054 (EFF) is transmitted first.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 323 of 637
Dec 29, 2021

6.5.12 Receive Buffer Layout
The layout of the Receive Buffer is similar to the Transmit Buffer described in the previous section. Indeed, the
configuration used was chosen specifically to be compatible with the layout of the Transmit Buffer.

Again, it is important to distinguish between Standard Frame Format (SFF) messages and the Extended Frame Format
(EFF) messages.

The Receive Buffer is subdivided into descriptor and data fields. The first byte of the descriptor field holds frame
information. It describes the frame format (SFF or EFF), remote or data frame and the data length. This is then followed
by either two identifier bytes for SFF or four bytes for EFF messages. The data field contains up to eight data bytes.

Table 6.40 Receive Frame Format Description

Standard Frame Format (SFF) Extended Frame Format (EFF)

CAN Offset Field CAN Offset Field

12’h040 RX Frame Information 12’h040 RX Frame Information

12’h044 RX Identifier 1 12’h044 RX Identifier 1

12’h048 RX Identifier 2 12’h048 RX Identifier 2

12’h04C RX Data byte 1 12’h04C RX Identifier 3

12’h050 RX Data byte 2 12’h050 RX Identifier 4

12’h054 RX Data byte 3 12’h054 RX Data byte 1

12’h058 RX Data byte 4 12’h058 RX Data byte 2

12’h05C RX Data byte 5 12’h05C RX Data byte 3

12’h060 RX Data byte 6 12’h060 RX Data byte 4

12’h064 RX Data byte 7 12’h064 RX Data byte 5

12’h068 RX Data byte 8 12’h068 RX Data byte 6

12’h06C Not used 12’h06C RX Data byte 7

12’h070 Not used 12’h070 RX Data byte 8

The bit layout of the Descriptor Field of the Receive Buffer is shown below, first for SFF then for EFF. The different
elements of the Descriptor Field are explained in the following sections:

● FF: See Frame Format (FF)

● RTR: See Remote Request (RTR)

● DLC See Data Length Code (DLC)

● ID: See Identifier (ID)

Table 6.41 Extended Transmit Frame (EFF) Format Description

CAN Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

12’h040 FF RTR 0 0 DLC.3 DLC.2 DLC.1 DLC.0

12’h044 ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21

12’h048 ID.20 ID.19 ID.18 RTR 0 0 0 0

Table 6.42 Extended Receive Frame (EFF) Format Description

CAN Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

12’h040 FF RTR 0 0 DLC.3 DLC.2 DLC.1 DLC.0

12’h044 ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21

12’h048 ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13

12’h04C ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5

12’h050 ID.4 ID.3 ID.2 ID.1 ID.0 RTR 0 0

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 324 of 637
Dec 29, 2021

CAUTION

The received Data Length Code in the frame information byte (CAN Offset 12’h040) represents the length of the data
sent, which may be greater than eight bytes. However, the maximum number of data bytes received will be eight.

6.5.13 Bit Period and Bus Timing Parameters
The bus timing parameters configure the CAN controller for the bit rate used on the CAN bus and set the point within
each bit period at which the received bit stream is to be sampled. They also specify the degree to which the CAN
controller may compensate for variations in the bit rates generated by other nodes by re-synchronizing to the bit stream.

To cater for variations in the bit rate generated by other nodes and for physical delay times both on the bus and within
the CAN nodes, the bit period is seen as being composed of:

● A Synchronization segment

− The Synchronization segment represents the part of the bit period in which the bit edge is expected to arrive.

● A Propagation segment

− The Propagation segment represents the part of the bit time that is allowed to compensate for physical delay times.

● Two Phase Buffers

− The two Phase Buffers surround the sampling point and are shortened or lengthened as necessary to re-
synchronize to the incoming bit stream when the bit edge arrives outside of the Synchronization segment.

The length of each of these segments is defined as a number of “Time Quanta” (Tq),

● The Synchronization segment is always 1 Tq

● The Propagation segment may be 1 - 8 Tq

● The two Phase Buffers may be 1 - 8 Tq

The maximum amount by which the Phase Buffers can be lengthened or shortened is also defined as the
Synchronization Jump Width. This is limited to 1 - 4 Tq and is also required to not be longer than either of the two
Phase Buffers.

The timing parameters used on the CAN controller are selected through the two Bus Timing Registers (rCan_BTR0 and
rCan_BTR1). Together they define the structure of the bit period.

● Both registers can only be written in Reset Mode. In Operating Mode, they are read only.

rCan_BTR0 defines:
● The Baud Rate Prescaler (bCan_BRP) defines the “time quantum” Tq of the clock for CAN as a multiple of the

CAN_HCLK period.

● The number of time quanta (bCan_SJW) by which the bit period may be shortened or lengthened in attempting to re-
synchronize with the current transmission.

rCan_BTR1 defines:
● The number of time quanta up to and after the point at which the sample is taken (bCan_TSEG1 and bCan_TSEG2).

− bCan_TSEG1 represents the time between the Synchronization segment and the sample point (i.e. the Propagation
segment plus the first Phase Buffer).

− bCan_TSEG2 represents the time between the sample point and the end of the bit period (i.e. the second Phase
Buffer).

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 325 of 637
Dec 29, 2021

● The number of samples taken (bCan_SAM), one or three.

The Baud Rate Prescaler defines the “time quantum” Tq of the clock for CAN as a multiple of the CAN_HCLK period.

The time quantum of the clock for CAN is given by:

Tq = 2 × Tperiod (CAN_HCLK) × (32 × bCan_BRP[5] + 16 x bCan_BRP[4]
+ 8 × bCan_BRP[3] + 4 × bCan_BRP[2] + 2 × bCan_BRP[1] + bCan_BRP[0] + 1)

Tseg1 and Tseg2 define the length of the bit period by giving the number of time quanta up to and after the point(s) at
which incoming data will be sampled.

Tsyncseg = 1 × Tq
Tseg1 = Tq × (8 × bCan_TSEG1[3] + 4 x bCan_TSEG1[2] + 2 x bCan_TSEG1[1] + bCan_TSEG1[0] + 1)
Tseg2 = Tq × (4 × bCan_TSEG2[2] + 2 x bCan_TSEG2[1] + bCan_TSEG2[0] + 1)

CAUTION

● In theory, it is possible to define bit periods of between 4 and 25 Tq through these register settings.

● However, the bit periods used in practice are required to follow the BOSCH standard, which defines bit periods
between 8 and 25 Tq in length.

To be sure that your utilization agreed with the CAN 2.0 specification, please follow these simple rules:

● “Resynchronization jump width” (SJW) must be set from 1 to 4 Tq.

● “Propagation Segment” must be set from 1 to 8 Tq.

● “1st Phase Buffer” must be set from “SJW” to 8 Tq.

● “2nd Phase Buffer” must be set from “1st Phase Buffer” to “1st Phase Buffer” + 2 Tq.

Applying to the Can controller registers:

● bCan_SJW = SJW − 1

● bCan_TSEG1 = “Propagation Segment” + “1st Phase Buffer” − 1

● bCan_TSEG2 = “2nd Phase Buffer” − 1

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 326 of 637
Dec 29, 2021

Figure 6.3 CAN: General Structure of a Bit Period, Tsyncseg, Tseg1, Tseg2

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 327 of 637
Dec 29, 2021

6.5.14 Reset Mode
The CAN Controller configuration to operate is set during Reset Mode. The CAN Controller is shifted to Reset Mode
by “immediately after a hardware reset” or software reset (result of setting “1” to the Reset Mode bit (bCan_RM) in the
Mode register (rCan_MOD)).

While in Reset Mode, you may wish to set the following aspects of the CAN controller’s operation:
● The bus timing parameters to be applied (These select the baud rate used on the CAN bus)

● The acceptance filters to be applied to received messages

● The required interrupts

● The desired error warning limit

● The required output mode

The CAN controller is returned to Operating Mode by clearing the Reset Mode bit (bCan_RM). You should also note
that the CAN controller won’t send or receive any data until after it has detected a “Bus Free” sequence of 11 recessive
bits on the bus (if the reset was triggered either by the host CPU or by hardware) or until it has detected 128 such
sequences if the reset was caused by the Bus Status going to “Bus Off” (see rCan_TXERR register).

In running:
● Setting the Reset Mode bit in the Mode Register (bCan_RM) causes the current transmission/reception of any

message to be aborted and the CAN controller to enter the Reset Mode (This happens on the next positive edge of the
internal bus clock).

● The CAN controller also goes into Reset Mode on the Bus Status going to “Bus Off” (bCan_BS is set to “1”) as
happens, for example, if the Transmit Error Counter (rCan_TXERR) goes over 255.

CAUTION

● If the Reset Mode was entered due to a “Bus Off” condition, the Error Warning Interrupt (bCan_EI) will be set (to
enable this interrupt, set bCan_EIE bit).

● If the Reset Mode was entered due to a “Bus Off” condition, the Receive Error Counter (rCan_RXERR) will be cleared
and the Transmit Error Counter (rCan_TXERR) will be initialized to 127 and used to count-down the CAN-defined bus-
off recovery time consisting of 128 occurrences of 11 consecutive recessive bits.

● The CAN controller needs to be taken out of Reset Mode before any data can be sent or received.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 328 of 637
Dec 29, 2021

6.5.15 Synchronization Frame

Only when using “Sync frame” transmission mechanism:
The Can link can be used to communicate with drives and to synchronize them by a synchronization frame (“Sync
frame”). The configuration is limited to 8 drives and the target performance is to refresh 4 drives within 2 ms (or 8
drives within 4 ms). The “Sync frame” must be sent periodically, with a jitter as small as possible, the upper maximum
limit value is 70 µs.

The “Sync frame” is a standard frame without data. Its length on the CAN bus is 44 bits split into:

● 1 bit: Start field (implicit)

● 12 bits: Arbitration field

● 6 bits: Control field

● 0 bits: Data field (could be up to 64 bits)

● 16 bits: CRC field (implicit)

● 2 bits: Ack field (implicit)

● 7 bits: End of frame (implicit)

● + bit stuffing according to the frame content

6.5.15.1 CANopen Synchronous Frame Configuration

Concerning the “Sync frame”, the main features of CAN controller are:
● Send a “Sync frame” periodically controlled by programmable dedicated time base in bit period unit:

− Period of “Sync frame” (bCan_SyncPeriod bit in rCan_SyncPeriod register)

− Time window dedicated for “Sync frame” (bCan_SyncMaskFrameTime bit in rCan_SyncPeriod register)

− Allows the CAN controller to perform the following actions:
 Send the last frame written by the CPU in rCan_WrTransmitBuffer registers
 Manage the potential retries on this frame (arbitration loss).
 See Section 6.5.9, Bus Arbitration.
 Send a “Sync frame” initialized in rCan_SyncTransmitBuffer registers.

− See Figure 6.4, CANopen: Emission of Periodic Sync Frame.

● A “Sync frame” to be transmitted is written to the CAN’s “Sync Frame Transmit Buffer” (rCan_SyncTransmitBuffer
registers), controlled by bCan_SyncRunStop bit (Start and stop “Sync frame” emission) and bCan_SyncMaskFrame
bit (Time window reserved for “Sync frame” emission).

− See Figure 6.5, CANopen: Start and Stop of Periodic Sync Frame.

● When “Sync frame” is sent, send an interrupt to CPU (CAN_Int) controlled by:

− Status Interrupts in rCan_SyncStatusInt register.

− Mask interrupts in rCan_SyncMaskInt register.

− Acknowledge interrupts in rCan_SyncClearInt register.

− See Figure 6.6, CANopen: Interrupt Management on Periodic Sync Frame.

● Function mode controlled by specifics write sequences

− Write rCan_SyncClearSetRunStop with 32’h2052_756E.
 “Run mode”

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 329 of 637
Dec 29, 2021

 Enable emission of “Sync frame”.
 Set “1” in bCan_SyncRunStop bit.
 Generation of bCan_SyncMaskFrame.
 An interrupt is generated when a “Sync frame” is sent.

− Write rCan_SyncClearSetRunStop with 32’h5374_6F70
 “Stop mode”
 Disable emission of “Sync frame”
 Clear bCan_SyncRunStop bit to “0”.
 Clear bCan_SyncMaskFrame bit to “0”.
 Clear all timers dedicated for “sync frame” management

CANopen => Emission of Periodic Sync Frame
Normal case
=> Timer bCan_SyncMaskFrameTime correctly initialized
 and
 Weak frame repetition on CAN Bus

SyncCAN Bus

Sync Frame Emission

bCan_RunStop

bCan_RunStop set to ‘1’ => Start emission of periodic Sync frame

Data 0 Data 1 Data 2

bCan_SyncMaskFrame

Sync Data 0

bCan_SyncPeriod

Data ..

bCan_SyncMaskFrameTime

Data N

Top Synchro Timer
 bCan_SyncPeriod

bCan_SendSyncFrameInt

bCan_OverrunSyncFrameInt

Set ‘1' Interrupt => CPU

Interrupt acknowledge by CPU

Before write the last CAN frame in CAN controller,
the CPU must read ‘0’ in bCan_SyncMaskFrame bit
The timer bCan_SyncMaskFrameTime allows to CAN controller to perform
the following actions:
 -- Send the last frame written by the CPU in rCan_WrTransmitBuffer
 -- Manage the potential retries on this frame
 -- Send the ‘Sync frame’ initialized in rCan_SyncTransmitBuffer

Figure 6.4 CANopen: Emission of Periodic Sync Frame

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 330 of 637
Dec 29, 2021

CANopen => Start & Stop of Periodic Sync Frame

SyncCAN Bus

bCan_RunStop

Data 0..N

bCan_SyncMaskFrame

Sync Data 0..N

bCan_SyncPeriod

bCan_SyncMaskFrameTime

Sync Data 0..N Sync

bCan_RunStop set to ‘1’ =>
Start of periodic « Sync frame » emission

No « Sync frame » emission

Top Synchro Timer
 bCan_SyncPeriod

Sync Frame Emission

bCan_RunStop cleared to ‘0’ =>
Stop of periodic « Sync frame » emission

Clear to ‘0’ value of
bCanSyncMaskFrame

All times are multiples of CAN bit period

Figure 6.5 CANopen: Start and Stop of Periodic Sync Frame

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 331 of 637
Dec 29, 2021

CANopen => Emission of Periodic Sync Frame
Interrupt Management

bCan_RunStop:1, Interrupt enable, Normal & Overrun case
Normal case
=> Timer bCan_SyncMaskFrameTime correctly initialized
 and
 Weak frame repetition on CAN Bus
Overrun case
=> Timer bCan_SyncMaskFrameTime not correctly initialized
 or
 Many frame repetition on CAN Bus

SyncCAN Bus

bCan_SyncMaskFrame

Sync Data ..Data ..

bCan_SyncMaskFrameTime

Data ..

bCan_SendSyncFrameInt

Acknowledge Interrupt by CPU

Sync Frame Emission

bCan_SyncPeriod
Top Synchro Timer
 bCan_SyncPeriod

Data N

bCan_OverrunSyncFrameInt

bCan_SyncPeriod

Before write the last CAN frame in CAN controller,
the CPU must read ‘0’ in bCan_SyncMaskFrame bit

bCan_SyncMaskFrameTime

Set ‘1’ Interrupt to CPU

Overrun Sync frame
Many repetition on CAN Bus

If < 1 Bit Period
no bCan_OverrunSyncFrameInt interrupt

Data N-1 Data N

Figure 6.6 CANopen: Interrupt Management on Periodic Sync Frame

A secondary feature has also been implemented to allow the user to only have the sync frame interrupt without sending
a “Sync frame” on the network.

There is three ways to enable this feature:

● By setting the bCan_TimerOnlyMode in the rCan_SyncStatus register; using this option deactivate the configuration
and the launch of the sync frame but keep the interrupt system enabled, in this mode you can always access the CAN
controller, even when bCan_SyncMaskFrameTime is enabled.

● By setting the bCan_TimerOnlyIfBusOff in the rCan_SyncStatus register; using this option will deactivate the
configuration and the launch of the sync frame only if bCan_BS in the rCan_SR register is set, if such thing happens
the system will automatically set the bCan_TimerOnlyMode in the rCan_SyncStatus.

● By setting the rCan_SyncPassiveError register to a value other than “0”; when activated, the “Passive error detection
system” will check the number of Bit Periods between a delayed launch of a “Sync frame” and the end of the current
“Sync period”, as soon as this number is lesser than bCan_SyncPassiveError, the system will automatically set the
bCan_TimerOnlyMode in the rCan_SyncStatus.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 332 of 637
Dec 29, 2021

CANopen => Triggering the passive error detection system
bCan_RunStop:1, Interrupt enable, Passive error detection system enable

Normal case
=> Timer bCan_SyncMaskFrameTime correctly initialized
 and
 Weak frame repetition on CAN Bus
Timeout case
=> « Sync frame » can’t be launched before the « Passive Error » limit.

SyncCAN Bus

bCan_SyncMaskFrame

Data ..

bCan_SyncMaskFrameTime

Data ..

bCan_SendSyncFrameInt

Acknowledge Interrupt by CPU

Sync Frame Emission

bCan_SyncPeriod
Top Synchro Timer
 bCan_SyncPeriod

bCan_OverrunSyncFrameInt

bCan_SyncPeriod

bCan_SyncMaskFrameTime

Overrun Sync frame
Many repetition on CAN Bus

The system is in « Timer Only » mode, « Sync frame »
transmission has been disabled

Data N Data N Data N

bCan_SyncPassiveError

Data N

Passive error detection system
has been triggered, the system is now

operating in «Timer Only » mode

Figure 6.7 CANopen: Triggering the Passive Error Detection System

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 333 of 637
Dec 29, 2021

6.5.15.2 CANopen Emission of “Sync Frame”

Concerning the time window dedicated for “Sync frame”
This time window allows the CAN controller to perform the following actions:

● Send the last frame written by the CPU in rCan_WrTransmitBuffer registers.

● Manage the potential retries on this frame (arbitration loss)

● Send a “Sync frame” initialized in rCan_SyncTransmitBuffer registers.

To calculate the size of this time window, the user must take in account:

● The time necessary to send on CAN bus the potential last frame contained in rCan_WrTransmitBuffer without retry.

● The time necessary to manage 2 or 3 retries on CAN bus (arbitration loss).

− See Section 6.5.9, Bus Arbitration.

● The time necessary by CAN controller to copy a “Sync frame” initialized in rCan_SyncTransmitBuffer to
rCan_WrTransmitBuffer registers and to send a write command in rCan_CMR register.
Take 8 bits period unit.

Before sending a “Sync frame”, the CAN controller will perform the following actions (starting 8 bits period unit before
the end of the “Sync Period”):

[Step 1] Read bCan_BS bit (Bus Status)

1’b0 : “Bus on” mode, the CAN controller is involved in bus activities, jump to Step2

1’b1 : “Bus off” mode
If bCan_TimerOnlyIfBusOff is cleared to “0”: Clear bCan_SyncRunStop bit to “0”. All the “Sync frame”
system is disabled, the transmission is aborted.
If bCan_TimerOnlyIfBusOff is set to “1”: The CAN controller automatically set “1” in bCan_TimerOnlyMode
bit. The “Sync frame” transmission system is disabled, the transmission is aborted, the interrupt system is still
enabled.

[Step 2] Read bCan_TBS bit (Transmit Buffer Status)

1’b1 : Transmit Buffer release, the buffer is available to write a new frame, jump to Step3

1’b0 : Transmit Buffer lock, transmission frame is running, jump to Step1

[Step 3] Copy “Sync frame” from rCan_SyncTransmitBuffer to rCan_WrTransmitBuffer

Send the “Sync frame” by a write in bCan_TR or bCan_SRR bit (depending on bCan_SyncMode bit) at the end of the
“Sync period”.

[Step 4] Read bCan_BS bit (Bus Status)

1’b0 : “Bus on” mode, wait until bCan_TS is set to “1” before send the “Sync frame” interrupt and disable
bCan_SyncMaskFrame bit.

1’b1 : “Bus off” mode
If bCan_TimerOnlyIfBusOff is cleared to “0”: Clear bCan_SyncRunStop bit to “0”. All the “Sync frame”
system is disabled, the transmission is aborted.
If bCan_TimerOnlyIfBusOff is set to “1”: The CAN controller automatically set “1” in bCan_TimerOnlyMode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 334 of 637
Dec 29, 2021

bit. The “Sync frame” transmission system is disabled, the transmission is aborted, the interrupt system is still
enabled.

CAUTION

● If the “Sync frame” system is enabled and not in “TimerOnlyMode”, the CPU must not do any write access to the CAN
controller during the 8 last bits period of the “Sync Period”: the configuration of the time base
bCan_SyncMaskFrameTime must not be less than 8 bits period unit plus the time needed to accomplish the accesses
(read/write) sequence link to the last check on the bCan_SyncMaskFrame.

● The “passive error detection system” is also checked during the Step1 and Step 4.

● The bus off detection during Step 1 and Step 4 is disabled when bCan_TimerOnlyMode is set to “1”.

● An overrun “Sync frame” interrupt is generated when there is not enough time to send “Sync frame”, please verify if:

─ The time window defined by bCan_SyncMaskFrameTime bit is correctly initialized.

─ Integrity of CAN Bus, many repetition frames (arbitration loss) on CAN Bus.

─ No others CAN master is sending frame(s) at the end of the “Sync Period”.

See Section 6.5.9, Bus Arbitration.

See Figure 6.6, CANopen: Interrupt Management on Periodic Sync Frame.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 335 of 637
Dec 29, 2021

CANopen => Time Window dedicated for Emission of Periodic Sync Frame

SyncCAN Bus

Sync Frame Emission

Data 0

bCan_SyncMaskFrame

Sync Data 0

bCan_SyncPeriod

Data ..

bCan_SyncMaskFrameTime

Data N

Top Synchro Timer
 bCan_SyncPeriod

Before write the last CAN frame in CAN controller, the CPU must read ‘0’ in bCan_SyncMaskFrame bit
The timer bCan_SyncMaskFrameTime allows to CAN controller to perform the following actions:
 -- Send the last frame written by the CPU in rCan_WrTransmitBuffer
 -- Manage the potential retries on this frame
 -- Send the ‘Sync frame’ initialized in rCan_SyncTransmitBuffer

Write Sync frame
in

rWrTransmitBuffer
and

Start transmission

8 bits period unit

Before sending a “Sync frame”, the CAN controller will perform the following actions (starting 8 bits period unit before the end of
the “Sync Period”) :
-- Step1: Read bCan_BS bit (Bus Status)
 1'b0: “Bus on” mode, the CAN controller is involved in bus activities, jump to Step2
 1'b1: “Bus off” mode

If bCan_TimeOnlyIfBusOff is clear to “0”: Clear to “0” bCan_SyncRunStop bit. All the “Sync frame” system is
disabled, the transmission is aborted.
If bCan_TimeOnlyIfBusOff is set to “1”: Set to “1” bCan_TimerOnlyMode bit. The “Sync frame” transmission
system is disabled, the transmission is aborted, the interrupt system is still enabled.

-- Step2: Read bCan_TBS bit (Transmit Buffer Status)
 1'b1: Transmit Buffer release, the buffer is available to write a new frame, jump to Step3
 1'b0: Transmit Buffer lock, transmission frame is running, jump to Step1

-- Step3: Copy “Sync frame” from rCan_SyncTransmitBuffer to rCan_WrTransmitBuffer
 Send the “Sync frame” by a write in bCan_TR or bCan_SRR bit (depends on bCan_SyncMode bit)
 at the end of the “Sync period”.

-- Step4: Read bCan_BS bit (Bus Status)
 1'b0: “Bus on” mode, Wait until bCan_TS set to “1” before send the “Sync frame” interrupt and disable

bCan_SyncMaskFrame bit.
 1'b1: “Bus off” mode

If bCan_TimeOnlyIfBusOff is clear to “0”: Clear to “0” bCan_SyncRunStop bit. All the “Sync frame” system is
disabled, the transmission is aborted.
If bCan_TimeOnlyIfBusOff is set to “1”: Set to “1” bCan_TimerOnlyMode bit. The “Sync frame” transmission
system is disabled, the transmission is aborted, the interrupt system is still enabled.

Maximum time window to:
- Write the next frame in the

CAN Controller.
- Send the frame including

possible repetition or
arbitration loss.

Figure 6.8 CANopen: Time Window dedicated for Emission of Periodic Sync Frame

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 336 of 637
Dec 29, 2021

6.5.16 Difference between CAN Controllers and Reference Philips SJA1000
Devices

This section summarizes the differences between the CAN controller and the reference Philips SJA1000 device.

Operating Modes:
● The reference device has two operating modes referred to as BasicCAN and PeliCAN. The CAN controller has a

single operating mode which is broadly compatible with the SJA1000’s PeliCAN mode.

● The differences between the CAN controller and the Philips SJA1000’s PeliCAN mode are outlined below.

Handling of Transmitted Messages:
● The CAN controller does not copy transmitted messages to the Receive Buffer unlike the reference device.

● Instead, transmitted messages may be read back from CAN offsets 12’h180 - 12’h1B0.

Mode Register:
● Write access to rCan_MOD[3:1] is restricted to Reset Mode in the reference device. In the CAN controller, these bits

can be written from either reset Mode or Operating Mode.

Output Control Register:
● The CAN controller does not support the output voltage level and polarity options selected through rCan_OCR[7:2]

unlike the reference device.

● In the CAN controller, these bits are reserved and will return 0 when read.

● You should also note that the output modes available for selection through rCan_OCR[1:0] are limited to just Normal
Output Mode

Clock Divider Register:
● This register is not supported

AHB Interface:
● All register’s addresses of reference device are byte aligned.

● In CAN controller, all register’s addresses is aligned by 32 bits with all bits 31..24 read to 0.

Sleep Mode:
● The reference device uses internal gating to disable the device on entry into Sleep Mode. The CAN_HCLK signal

which drives the majority of the logic in the core can be gated instead.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 6 CAN

R01UH0752EJ0120 Rev.1.20 Page 337 of 637
Dec 29, 2021

6.6 Special Notice
The document CAN section is for informational and instructional purposes. It contains Mentor Graphics Corporation
copyright and information. In consideration of that, any copy of this document shall retain all copyright and proprietary
notices contained herein. For the avoidance of doubt, nothing contained herein shall be construed as conferring by
implication, estoppel or otherwise any license or right under (i) any patent or trademark of Mentor Graphics or any third
party or (ii) any Mentor Graphics Corporation copyright.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 338 of 637
Dec 29, 2021

Section 7 ADC Controller and 12bit A/D Converters

7.1 Overview

ADC Controller Features
● Software conversion request

● Two level of priority are available

● Round robin management of simultaneous conversion requests with the same level of priority

● Higher priority conversion requests are inserted at the end of a lower priority conversion in progress

● When triggered, the S&H (Sample and hold) channels are sampled at the end of the conversion in progress but will
be converted following the global round robin scheme

● DMA coupling

− Start a DMA transaction on selected “End of Conversion” signal

− Two channels available (Only one channel at the same time)

● Status register to summarize end of conversion information for each channel

● Virtual channel capability

ADC Core Features
● Up to 2 units

● Resolution 12-bit

● Sampling rate from 0.0625 MSPS to 1 MSPS

● Successive approximation

● Maximal conversion time 21 ADC_CLK

● Analog inputs
8 channels per core (5 standard channels + 3 channels with sample/hold)

● Each channel has his own input trigger to start the conversion, the triggers are managed by the ADC Controller

● DNL, ±1.0 LSB (Max.) [at VAIN = 0.0 V to AVDD, fCLK = 20 MHz]

● INL, ±4.0 LSB (Max.) [at VAIN = 0.0 V to AVDD, fCLK = 20 MHz]

● Input leakage current is about 0.2 µA per input

● Power down mode

● ADC clock frequency from 4 MHz to 20 MHz

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 339 of 637
Dec 29, 2021

PG0 bridge

32b APBM

ADC
Controller

32b APBS

Network-On-Chip

32b APBM

32b APBS

ADC
Core1

Analog IO

ADC
Core2

Analog IO

ADC I/F 1 ADC I/F 2

Analog input

ADC2 core available only in
RZ/N1D - FBGA400

Figure 7.1 ADC Interfaces and Connections

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 340 of 637
Dec 29, 2021

7.1.1 Analog Buffer
ADC Cores share some of the analog Pads in order to reduce pinout of the second ADC.

ADC Core 1

Analog IO

ADC Core 2

Analog
Input

Interface

AI
N

0

AI
N

1

AI
N

2

AI
N

3

AI
N

4

AI
N

6

AI
N

7

AI
N

8

AG
N

D

AV
R

EF
M

AV
R

EF
P

AV
D

D

ADC1_IN0

ADC1_IN1

ADC1_IN2

ADC1_IN3

ADC1_IN4

ADC1_IN6

ADC1_IN7

ADC1_IN8

ADC1_AGND

ADC1_VREFN

ADC1_VREFP

ADC1_AVDD

ADC2_IN6

ADC2_IN7

ADC2_IN8

Analog IO

AI
N

0

AI
N

1

AI
N

2

AI
N

3

AI
N

4

AI
N

6

AI
N

7

AI
N

8

AG
N

D

AV
R

EF
M

AV
R

EF
P

AV
D

D

ADC2_IN0

ADC2_IN1

ADC2_IN2

ADC2_IN3

ADC2_IN4

AI
N

5

AI
N

5

ADC2_AGND

ADC2_VREFN

ADC2_VREFP

ADC2_AVDD

ADC2 core available only in
RZ/N1D - FBGA400

Figure 7.2 ADC Cores Analog Signals

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 341 of 637
Dec 29, 2021

7.2 Signal Interfaces

Signal Name
Input
Output Description

Clock

ADC_PCLK Input Internal bus clock (APB)

ADC_CLK Input ADC clock

Interrupt

ADC_Int Output Level sensitive interrupt output, Active High

External Signal

ADC1_IN[8:6,4:0] Input Analog input pins for ADC1

ADC2_IN[8:6,4:0] Input Analog input pins for ADC2

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 342 of 637
Dec 29, 2021

7.3 Register Map
CAUTION

The number of available ADC depends on the package:
 RZ/N1D FBGA400: ADC1 and ADC2, other: ADC1 only

7.3.1 Register Map ADC1
CAUTION

Available with all packages.

Table 7.1 A/D Converters Register Map

Address Register Symbol Register Name

4006 5000h rADC_INTSTATUS0 Interrupt Status Before Masking

4006 5004h rADC_INTSTATUS1 Interrupt Status After Masking

4006 5008h rADC_INTCLR Clear Interrupt

4006 500Ch rADC_INTMASK Mask Interrupt

4006 5010h rADC_INTOVFSTATUS0 Interrupt Overflow Before Masking

4006 5014h rADC_INTOVFSTATUS1 Interrupt Overflow After Masking

4006 5018h rADC_INTCLROVF Clear Interrupt Overflow

4006 501Ch rADC_INTOVFMASK Mask Interrupt Overflow

4006 5020h rADC_PENDING Start of Operation Pending

4006 5024h rADC_PENDINGOVF Start of Operation Pending Overflow

4006 5028h rADC_PENDINGCLROVF Clear Start of Operation Overflow

4006 502Ch rADC_CONTROL ADC Control

4006 5030h rADC_FORCE ADC Request

4006 5034h rADC_SETFORCE Set ADC Request

4006 5038h rADC_CLRFORCE Clear ADC Request

4006 503Ch rADC_PRIORITY ADC Priority Mode

4006 5040h rADC_CONFIG ADC Configuration

4006 50ACh rADC_ACQS ADC Control Sample and Hold

4006 50B0h + 4h × n rADC_MASKLOCK[n] n = 0..3 Mask Data Locked [n]

4006 50C0h + 4h × n rADC_VC[n] n = 0..15 ADC Control Register for Virtual Channel [n]

4006 5100h + 4h × n rADC1_DATA[n] n = 0..15 ADC1 Conversion Data of Virtual Channel [n]

4006 5180h + 4h × n rADC1_DATALOCK[n] n = 0..15 ADC1 DataLock[n] Register

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 343 of 637
Dec 29, 2021

7.3.2 Register Map ADC2
CAUTION

Available with package FBGA400 only.

Table 7.2 ADC2 Register Map

Address Register Symbol Register Name

4006 5140h + 4h × n rADC2_DATA[n] n = 0..15 ADC2 Conversion Data of Virtual Channel [n]

4006 51C0h + 4h × n rADC2_DATALOCK[n] n = 0..15 ADC2 DataLock[n] Register

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 344 of 637
Dec 29, 2021

7.4 Register Description

7.4.1 Register Description ADC1

7.4.1.1 rADC_INTSTATUS0 — Interrupt Status Before Masking

Address: 4006 5000h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bADC_INTSTATUS0_VC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.3 rADC_INTSTATUS0 Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Not used R

b15 to b0 bADC_INTSTATUS0_
VC

Interrupt Status Before Masking on Virtual channel ADC_VC[n] with n = 0..15
ADC_Int is asserted if bADC_INTSTATUS0_VC[n] = 1 and corresponding mask bit in
rADC_INTMASK is set.

Bit [n]: bADC_INTSTATUS0_VC[n] is trigger on rising edge of iADC_EOC_VC[n]

0: No interrupt
1: Interrupt has been set

Note)
● If the ADC_VC[n] is configured in continuous mode (bADC_Continuous bit) then

further trigger pulses are generated whenever a selected iADC_EOC_VC[n] event
occurs even if the flag bit is set.

● An ADC_VC[n] interrupt overflow event occurs in the
bADC_INTOVFSTATUS0_VC[n] bit when the respective
bADC_INTSTATUS0_VC[n] bit is set and a selected additional iADC_EOC_VC[n]
trigger is generated.

● Reading from this register does not clear any active interrupts.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 345 of 637
Dec 29, 2021

7.4.1.2 rADC_INTSTATUS1 — Interrupt Status After Masking

Address: 4006 5004h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bADC_INTSTATUS1_VC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.4 rADC_INTSTATUS1 Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Not used R

b15 to b0 bADC_INTSTATUS1_
VC

Interrupt Status After Masking on Virtual channel ADC_VC[n] with n = 0..15
This field shows logical AND value between bADC_INTMASK and
bADC_INTSTATUS0_VC.

Bit [n]: bADC_INTSTATUS1_VC[n] is trigger on rising edge of iADC_EOC_VC[n]

0: No interrupt
1: Interrupt has been set

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 346 of 637
Dec 29, 2021

7.4.1.3 rADC_INTCLR — Clear Interrupt

Address: 4006 5008h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bADC_INTCLR_VC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.5 rADC_INTCLR Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Not used R

b15 to b0 bADC_INTCLR_VC Clear Interrupt Status on Virtual channel ADC_VC[n] with n = 0..15
Clear respective interrupt bit in rADC_INTSTATUS0 and rADC_INTSTATUS1
registers.

Bit [n]: bADC_INTCLR_VC[n] clear bADC_INTSTATUSx_VC[n] with x = 0..1

0: No action
1: Clears respective interrupt in

bADC_INTSTATUS0_VC[n] and bADC_INTSTATUS1_VC[n]

Note)
● If software tries to set this bit n on the same clock cycle that hardware tries to set

bADC_INTSTATUS0_VC[n] bit in the register, then hardware has priority and the
bADC_INTSTATUS0_VC[n] bit will be set.
In this case, the respective overflow bADC_INTOVFSTATUS0_VC[n] bit in the
register will not be affected regardless of whether the bADC_INTSTATUS0_VC[n]
bit was previously set or not.

● Always read as 0.

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 347 of 637
Dec 29, 2021

7.4.1.4 rADC_INTMASK — Mask Interrupt

Address: 4006 500Ch

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bADC_INTMASK_VC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.6 rADC_INTMASK Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Not used R

b15 to b0 bADC_INTMASK_VC Mask Interrupt Status on Virtual channel ADC_VC[n] with n = 0..15

Bit [n]: bADC_INTMASK_VC[n] mask of bADC_INTSTATUS0_VC[n]

1: interrupt not masked
0: interrupt masked

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 348 of 637
Dec 29, 2021

7.4.1.5 rADC_INTOVFSTATUS0 — Interrupt Overflow Before Masking

Address: 4006 5010h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bADC_INTOVFSTATUS0_VC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.7 rADC_INTOVFSTATUS0 Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Not used R

b15 to b0 bADC_INTOVFSTAT
US0_VC

Interrupt Overflow Before Masking on Virtual channel ADC_VC[n] with n = 0..15
If the respective bADC_INTSTATUS0_VC[n] bit is set and a selected additional
iADC_EOC_VC[n] trigger is generated, then an overflow condition occurs.
ADC_Int is asserted if bADC_INTOVFMASK_VC[n] = 1 and corresponding mask bit in
rADC_INTOVFMASK is 1.

Bit [n]: bADC_INTOVFSTATUS0_VC[n] interrupt overflow of
bADC_INTSTATUS0_VC[n]

0: No interrupt overflow event detected
1: Potential Interrupt overflow detected

Note) The overflow bit does not care about the continuous mode bit state
(bADC_Continuous). An overflow condition is generated irrespective of this
mode selection.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 349 of 637
Dec 29, 2021

7.4.1.6 rADC_INTOVFSTATUS1 — Interrupt Overflow After Masking

Address: 4006 5014h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bADC_INTOVFSTATUS1_VC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.8 rADC_INTOVFSTATUS1 Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Not used R

b15 to b0 bADC_INTOVFSTAT
US1_VC

Interrupt Overflow After Masking on Virtual channel ADC_VC[n] with n = 0..15
This field shows logical AND value between bADC_INTOVFMASK and
bADC_INTOVFSTATUS1_VC.

Bit [n]: bADC_INTOVFSTATUS1_VC[n] interrupt overflow of
bADC_INTSTATUS1_VC[n]

0: No interrupt overflow event detected
1: Potential Interrupt overflow detected and corresponding

bADC_INTOVFMASK = 1

Note) The overflow bit does not care about the continuous mode bit state
(bADC_Continuous). An overflow condition is generated irrespective of this
mode selection.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 350 of 637
Dec 29, 2021

7.4.1.7 rADC_INTCLROVF — Clear Interrupt Overflow

Address: 4006 5018h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bADC_INTCLROVF_VC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.9 rADC_INTCLROVF Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Not used R

b15 to b0 bADC_INTCLROVF_
VC

Clear Interrupt Overflow on Virtual channel ADC_VC[n], with n = 0..15
Clear respective interrupt bit in rADC_INTOVFSTATUS0 and
rADC_INTOVFSTATUS1 registers.

Bit [n]: bADC_INTCLROVF_VC[n] clear bADC_INTOVFSTATUSx_VC[n] with x = 0..1

0: No action
1: Clears respective interrupt in bADC_INTOVFSTATUSx_VC[n] x = 0..1

Note)
● If software tries to set this bit n on the same clock cycle that hardware tries to set

the overflow bADC_INTOVFSTATUS0_VC[n] bit in register, then hardware has
priority and the bADC_INTOVFSTATUS0_VC[n] bit will be set.

● Always read as 0.

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 351 of 637
Dec 29, 2021

7.4.1.8 rADC_INTOVFMASK — Mask Interrupt Overflow

Address: 4006 501Ch

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bADC_INTOVFMASK_VC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.10 rADC_INTOVFMASK Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Not used R

b15 to b0 bADC_INTOVFMASK
_VC

Mask Interrupt Overflow on Virtual channel ADC_VC[n] with n = 0..15

Bit [n]: bADC_INTOVFMASK_VC[n] mask of bADC_INTOVFSTATUS0_VC[n]

1: interrupt not masked
0: interrupt masked

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 352 of 637
Dec 29, 2021

7.4.1.9 rADC_PENDING — Start of Operation Pending

Address: 4006 5020h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

bADC_D
MA1_RU
NNING

bADC_D
MA0_RU
NNING

— — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bADC_PENDING_VC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.11 rADC_PENDING Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 bADC_DMA1_RUNNI
NG

ADC DMA channel1 is running.
When after scheduling by ADC_VC state machine, the ADC_VC[n] is selected to run
and all following conditions are satisfied:
● Event detection: “Data copy into data lock registers”
● Configured with bADC_Mode (rADC_VC[n] register) = 2’b11.
● bADC_DMA_Request[1:0] (rADC_VC[n] register) is set to 2’b11
ADC DMA channel1 requests are started and run until detection end of DMA transfer.

1: DMA requests are running
0: No DMA request on same channel

Note)
● The bit will be automatically cleared when end of DMA transfer is detected on this

channel.
● If contention exists where this bit receives both a request to set and a request to

clear on the same cycle, regardless of the source of either, this
bADC_DMA1_RUNNING bit will be set and the request to clear will be ignored.
In this case, the overflow bADC_DMA1_RUNNINGOVF bit in the
rADC_PENDINGOVF register will not be affected regardless of whether this bit was
previously set or not.

R

b30 bADC_DMA0_RUNNI
NG

ADC DMA channel0 is running.
Same as bADC_DMA1_RUNNING

R

b29 to b16 Reserved Not used R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 353 of 637
Dec 29, 2021

Table 7.11 rADC_PENDING Register Contents (2/2)

Bit Position Bit Name Function R/W

b15 to b0 bADC_PENDING_VC Start of Operation Pending on Virtual channel ADC_VC[n] with n = 0..15

Bit [n]: bADC_PENDING_VC[n] is set when event received on ADC_VC[n]

1: Event has been received. Set when:
- Rising edge detection on trigger selected by bADC_TrigSel of rADC_VC[n]
- CPU changed bADC_FORCE_VC[n] bit to 1 by setting bADC_SETFORCE_VC
bit
- ADC request (conversion, sample and hold or other operation) is pending for
ADC_VC[n]

0: No event received - No operation pending

Note)
● The bit will be automatically cleared when the respective ADC_VC[n] operation is

started.
● If contention exists where this bit n receives both a request to set and a request to

clear on the same cycle, regardless of the source of either, this
bADC_PENDING_VC[n] bit will be set and the request to clear will be ignored.
In this case, the overflow bADC_PENDINGOVF_VC[n] bit in the
rADC_PENDINGOVF register will not be affected regardless of whether this bit was
previously set or not.

● A conversion or sample and hold operation requested depends on bADC_Mode.
● Cleared to 0 when a CPU write to rADC_CONFIG register starts the following

operations:
– bADC_POWER_DOWN (Enable or Disable PowerDown Mode)
– bADC_SAMPLE_HOLD_ENABLE (Enable or disable Sample and Hold feature

on each channel)

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 354 of 637
Dec 29, 2021

7.4.1.10 rADC_PENDINGOVF — Start of Operation Pending Overflow

Address: 4006 5024h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

bADC_D
MA1_RU
NNINGO

VF

bADC_D
MA0_RU
NNINGO

VF

— — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bADC_PENDINGOVF_VC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.12 rADC_PENDINGOVF Register Contents

Bit Position Bit Name Function R/W

b31 bADC_DMA1_RUNNI
NGOVF

Overflow with ADC DMA channel1 is running

Indicates a new bADC_DMA_Request[1:0]: 2’b11 was generated with a previous
request was already running.

1: ADC DMA overflow on ADC_DMA1
0: No ADC overflow

Note)
● An overflow condition does not stop ADC DMA transfer from being processed. It

simply is an indication that a DMA request was missed.
This means that the first DMA transfer block will be processed normally until the
DMA finish occurred but the second DMA transfer block triggered is not processed.

R

b30 bADC_DMA0_RUNNI
NGOVF

Overflow with ADC DMA channel0 is running

Indicates a new bADC_DMA_Request[1:0]: 2’b10 was generated with a previous
request was already running.

1: ADC DMA overflow on ADC_DMA0
0: No ADC overflow

Note)
● An overflow condition does not stop ADC DMA transfer from being processed. It

simply is an indication that a DMA request was missed.
This means that the first DMA transfer block will be processed normally until the
DMA finish occurred but the second DMA transfer block triggered is not processed.

R

b29 to b16 Reserved Not used R

b15 to b0 bADC_PENDINGOVF
_VC

Start of Operation Pending Overflow on Virtual channel ADC_VC[n] with n = 0..15
Indicates a new ADC_VC[n] event was generated while an existing event was already
pending.

Bit [n]: bADC_PENDINGOVF_VC[n] event overflow on ADC_VC[n]

1: Event overflow
0: No event overflow

Note) An overflow condition does not stop ADC_VC[n] events from being processed.
It simply is an indication that a trigger was missed.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 355 of 637
Dec 29, 2021

7.4.1.11 rADC_PENDINGCLROVF — Clear Start of Operation Overflow

Address: 4006 5028h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

bADC_D
MA1_RU
NNINGCL

ROVF

bADC_D
MA0_RU
NNINGCL

ROVF

— — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bADC_PENDINGCLROVF_VC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.13 rADC_PENDINGCLROVF Register Contents

Bit Position Bit Name Function R/W

b31 bADC_DMA1_RUNNI
NGCLROVF

Clear Overflow with ADC DMA channel1 is running
Writing a 1 will clear the bADC_DMA1_RUNNINGOVF bit.

1: Clear the bADC_DMA1_RUNNINGOVF bit
0: No Action

Note)
● If software tries to set this bit on the same clock cycle that hardware tries to set the

overflow bADC_DMA1_RUNNINGOVF bit in the rADC_PENDINGOVF register,
then hardware has priority and the bADC_DMA1_RUNNINGOVF bit will be set.

● Always read as 0.

W

b30 bADC_DMA0_RUNNI
NGCLROVF

Clear Overflow with ADC DMA channel0 is running
Same as bADC_DMA1_RUNNINGCLROVF

W

b29 to b16 Reserved Not used R

b15 to b0 bADC_PENDINGCLR
OVF_VC

Clear Start of Operation Overflow on Virtual channel ADC_VC[n] with n = 0..15
Writing a 1 will clear the respective ADC_VC[n] pending flag overflow.

Bit [n]: bADC_PENDINGCLROVF_VC[n] clear Event overflow on ADC_VC[n]

1: Clear respective bADC_PENDINGOVF_VC[n] in rADC_PENDINGOVF register.
0: No action

Note)
● If software tries to set this bit n on the same clock cycle that hardware tries to set

the overflow bADC_PENDINGOVF_VC[n] bit in the rADC_PENDINGOVF register,
then hardware has priority and the bADC_PENDINGOVF_VC[n] bit will be set.

● Always read as 0.

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 356 of 637
Dec 29, 2021

7.4.1.12 rADC_CONTROL — ADC Control

Address: 4006 502Ch

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — bADC_
BUSY

bADC_
VC_BU

SY
bADC_VC_RUN

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.14 rADC_CONTROL Register Contents

Bit Position Bit Name Function R/W

b31 to b7 Reserved Not used R

b6 bADC_BUSY ADC Configuration Change in Running.
All ADC operations in pending will be stopped.
● Set to 1 when a CPU write to rADC_CONFIG register starts the following

operations:
 bADC_POWER_DOWN

- Enable or Disable PowerDown Mode
 bADC_SAMPLE_HOLD_ENABLE

- Enable or disable Sample and Hold feature on each channel
● Cleared to 0 when the following operations are finished

 bADC_POWER_DOWN
- Enable or Disable PowerDown Mode

 bADC_SAMPLE_HOLD_ENABLE
- Enable or disable Sample and Hold feature on each channel

1: ADCs Configuration change in running
0: ADCs Configuration change finished

Note)
● This bit must be polling by CPU until hardware reset by state machine

(Configuration change finished)
● After CPU read to 0, the configuration of virtual channel can be started.

R

b5 bADC_VC_BUSY ADC_VC Busy
Set when ADC_VC is running and cleared when it is in idle state (wait event)

0: ADC_VC is available to run next virtual channel
1: ADC_VC is busy and cannot run another virtual channel

R

b4 to b0 bADC_VC_RUN ADC_VC Channel Status
When bADC_VC_BUSY = 0, holds the value of the last executed ADC_VC
When bADC_VC_BUSY = 1, reflects the ADC_VC currently being processed

5’h00: ADC_VC0 is currently processing or was last ADC_VC’s executed
 ∙∙∙ ∙∙∙
5’h0F: ADC_VC15 is currently processing or was last ADC_VC’s executed
5’h1x: Reserved

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 357 of 637
Dec 29, 2021

7.4.1.13 rADC_FORCE — ADC Request

Address: 4006 5030h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bADC_FORCE_VC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.15 rADC_FORCE Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Not used R

b15 to b0 bADC_FORCE_VC Force Start of Operation on Virtual channel ADC_VC[n] with n = 0..15
Writing a 1 to rADC_SETFORCE register will force to 1 the respective
bADC_PENDING_VC[n] flag bit in the rADC_PENDING register. This can be used to
initiate a software initiated operation.
Force Start of Operation on each virtual channel ADC_VC[n] is associated directly
with following allocation bits:

Bit [n]: bADC_FORCE_VC[n] set start operation in bADC_PENDING_VC[n] bit

1: Force an ADC request to start once priority is given to ADC_VC[n]
0: No action.

Note)
● If software tries to set this bit on the same clock cycle that hardware tries to clear

the bADC_PENDING_VC[n] bit in the rADC_PENDING register, then software has
priority and the bADC_PENDING_VC[n] bit will be set.
In this case, the overflow bit in the rADC_PENDINGOVF register will not be
affected regardless of whether the bADC_PENDING_VC[n] bit was previously set
or not.

● In Single mode (bADC_Continuous bit is cleared to 1’b0) for each virtual channel
ADC_VC[n] with n = 0..15
– ADC operation (conversion, sample and hold or other) is to be performed only

once. bADC_FORCE_VC[n] bit is automatically cleared to 0 when operation
ends on the selected channel.

● In Continuous mode (bADC_Continuous bit is set to 1’b1) for each virtual channel
ADC_VC[n] with n = 0..15
– ADC operation is continuously performed for the selected channels in sequence

until bADC_FORCE_VC[n] bit is cleared by CPU write to rADC_CLRFORCE
register.

● Cleared to 0 when a CPU write to rADC_CONFIG register starts the following
operations:
– bADC_POWER_DOWN (Enable or Disable PowerDown Mode)
– bADC_SAMPLE_HOLD_ENABLE (Enable or disable Sample and Hold feature

on each channel)

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 358 of 637
Dec 29, 2021

7.4.1.14 rADC_SETFORCE — Set ADC Request

Address: 4006 5034h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bADC_SETFORCE_VC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.16 rADC_SETFORCE Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Not used R

b15 to b0 bADC_SETFORCE_V
C

Set Force Start of Operation on Virtual channel ADC_VC[n] with n = 0..15
Set respective Force Start of Operation bit in rADC_FORCE register.

Bit [n]: bADC_SETFORCE_VC[n] set bADC_FORCE_VC[n] bit

1: Set respective bADC_FORCE_VC[n] bit in rADC_FORCE register
0: No action, writes of 0 are ignored

Note) Always read as 0.

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 359 of 637
Dec 29, 2021

7.4.1.15 rADC_CLRFORCE — Clear ADC Request

Address: 4006 5038h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bADC_CLRFORCE_VC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.17 rADC_CLRFORCE Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Not used R

b15 to b0 bADC_CLRFORCE_
VC

Clear Force Start of Operation on Virtual channel ADC_VC[n] with n = 0..15
Clear respective Force Start of Operation bit in rADC_FORCE register.

Bit [n]: bADC_CLRFORCE_VC[n] clear bADC_FORCE_VC[n] bit

1: Clear respective bADC_FORCE_VC[n] bit in rADC_FORCE register
0: No action, writes of 0 are ignored

Note) Always read as 0.

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 360 of 637
Dec 29, 2021

7.4.1.16 rADC_PRIORITY — ADC Priority Mode

Address: 4006 503Ch

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — bADC_RR_Pointer bADC_Priority

Value after reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Table 7.18 rADC_PRIORITY Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b10 Reserved Not used R

b9 to b5 bADC_RR_Pointer ADC_VC[n] Round Robin Pointer with n=0..15
Holds the value of the last converted round robin ADC_VC[n] to be used by the round
robin scheme to determine order of conversions.

5’h00:
– ADC_VC0 was last round robin ADC_VC to convert.
– ADC_VC1 is highest round robin priority.

5’h01:
– ADC_VC1 was last round robin ADC_VC to convert.
– ADC_VC2 is highest round robin priority.

∙∙∙
5’h0E:
– ADC_VC14 was last round robin ADC_VC to convert.
– ADC_VC14 is highest round robin priority.

5’h0F:
– ADC_VC15 was last round robin ADC_VC to convert.
– ADC_VC0 is highest round robin priority.

5’h10:
– Reset value to indicate no ADC_VC has been converted. ADC_VC0 is highest

round robin priority.
– Set to this value when the bADC_Priority bit is written.

 If a conversion is currently in progress, it will be completed and then the new
priority is become.

– Set to this value when the device is reset or when a CPU write to
rADC_CONFIG register is starting the following operations:
 ● bADC_POWER_DOWN (Enable or Disable PowerDown Mode)
 ● bADC_SAMPLE_HOLD_ENABLE (Enable or disable Sample and Hold
 feature on each channel)
 ● If a conversion is currently in progress, it will be completed and then the new
 priority is become.

5’h11..1F:
– Invalid value

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 361 of 637
Dec 29, 2021

Table 7.18 rADC_PRIORITY Register Contents (2/2)

Bit Position Bit Name Function R/W

b4 to b0 bADC_Priority ADC_VC[n] Priority with n=0..15
Determines the cutoff point for priority mode and round robin arbitration for
ADC_VC[n]

5’h00: ADC_VC priority is handled in round robin mode for all channels.
5’h01: VC0 is high priority, Rest of channels are in round robin mode.
5’h02: VC0..1 are high priority, VC2..15 are in round robin mode.
5’h03: VC0..2 are high priority, VC3..15 are in round robin mode.
5’h04: VC0..3 are high priority, VC4..15 are in round robin mode.
5’h05: VC0..4 are high priority, VC5..15 are in round robin mode.
5’h06: VC0..5 are high priority, VC6..15 are in round robin mode.
5’h07: VC0..6 are high priority, VC7..15 are in round robin mode.
5’h08: VC0..7 are high priority, VC8..15 are in round robin mode.
5’h09: VC0..8 are high priority, VC9..15 are in round robin mode.
5’h0A: VC0..9 are high priority, VC10..15 are in round robin mode.
5’h0B: VC0..10 are high priority, VC11..15 are in round robin mode.
5’h0C: VC0..11 are high priority, VC12..15 are in round robin mode.
5’h0D: VC0..12 are high priority, VC13..15 are in round robin mode.
5’h0E: VC0..13 are high priority, VC14..15 are in round robin mode.
5’h0F: VC0..14 are high priority, VC15 is in round robin mode.
5’h10: All VC[n], with n=0..15, are in high priority mode, arbitrated by VC[n] number
5’h11..1F: Others invalid selection

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 362 of 637
Dec 29, 2021

7.4.1.17 rADC_CONFIG — ADC Configuration

Address: 4006 5040h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — bADC_
DMA

bADC_P
OWER_D

OWN

bADC_SAMPLE_HOLD_
ENABLE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Table 7.19 rADC_CONFIG Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b5 Reserved Not used R

b4 bADC_DMA DMA channel Enable
1: DMA channel 0 and 1 enable
0: DMA channel 0 and 1 disable

All current DMA request are forced in idle state, after DMA acknowledge
reception for current access.

R/W

b3 bADC_POWER_DO
WN

Enable or Disable PowerDown Mode
In power down mode, ADCs cannot be used.
This bit must be cleared before configuration of Virtual channel ADC_VC[n] with
n = 0..15

1: Configure Analog A/D converter ADC1 and ADC2 in power down mode
0: Configure Analog A/D converter ADC1 and ADC2 in operation mode.

When a CPU write is detected, we have the following action:
 - Set bADC_BUSY until end of ADCs configuration change.
 - Clear bADC_TrigEnable bit (Trigger disable) in all rADC_VC[n] registers to 0,

with n = 0..15.
 - Clear bADC_PENDING_VC[n] bit (operation pending on Virtual channel

ADC_VC[n]) in rADC_PENDING register to 0, with n = 0..15.
 - Clear bADC_FORCE_VC[n] bit (Force start of operation on Virtual channel

ADC_VC[n]) in rADC_FORCE register to 0, with n = 0..15.
 - Set bADC_RR_Pointer bits to 5’h10 in rADC_PRIORITY register (ADC_VC0 is

highest round robin priority. If a conversion is currently in progress, it will be
completed and then the new priority is become).

 - Force virtual state machine in idle state at the end of current operation.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 363 of 637
Dec 29, 2021

Table 7.19 rADC_CONFIG Register Contents (2/2)

Bit Position Bit Name Function R/W

b2 to b0 bADC_SAMPLE_HOL
D_ENABLE

Enable or disable Sample and Hold feature on each channel
ADC1 and ADC2 convertor are coupled by virtual machine ADC_VC[n] with n = 0..15,
the same function (sample and hold feature enable or disable) is configured on both
ADCs
Sample and Hold feature is associated directly with following allocation bits:

Bit [0] configures- ADC1 and ADC2 physical channel6
Bit [1] configures- ADC1 and ADC2 physical channel7
Bit [2] configures- ADC1 and ADC2 physical channel8

0: Analog inputs connect multiplexer circuit directly and sample/hold circuit is not

used (through mode).
1: Sample/hold function is available.

When a CPU write is detected, we have the following action:
 - Set bADC_BUSY until end of ADCs configuration change.
 - Clear bADC_TrigEnable bit (Trigger disable) in all rADC_VC[n] registers to 0,

with n = 0..15.
 - Clear bADC_PENDING_VC[n] bit (operation pending on ADC_VC[n]) in

rADC_PENDING register to 0, with n = 0..15.
 - Clear bADC_FORCE_VC[n] bit (Force start of operation on ADC_VC[n]) in

rADC_FORCE register to 0, with n = 0..15.
 - Force virtual state machine in idle state at the end of current operation.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 364 of 637
Dec 29, 2021

7.4.1.18 rADC_ACQS — ADC Control Sample and Hold

Address: 4006 50ACh

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — bADC_TSHOH bADC_TSHSET bADC_TSHSAMP

Value after reset 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0

Table 7.20 rADC_ACQS Register Contents

Bit Position Bit Name Function R/W

b31 to b10 Reserved Read as “0” R

b9 to b7 bADC_TSHOH ADC Sample and Hold SHOUT to SHCNT hold time: tSHOH
Provides the number of ADC_CLK clocks to obtain the 300 ns of hold time between a
falling edge of SHCNT and rising edge of SHOUT in the sample and hold circuit for
ADC1 and ADC2.
tSHOH: Minimum Value is 300 ns.

3’b000: Invalid value
3’b001: Invalid value
3’b010: 2 cycles when 4 MHz ≤ fADC_CLK ≤ 6.66 MHz
3’b011: 3 cycles when 6.66 MHz < fADC_CLK ≤ 10 MHz
 ∙∙∙ ∙∙∙
3’b110: 6 cycles when 16.66 MHz < fADC_CLK ≤ 20 MHz
3’b111: Invalid value

R/W

b6, b5 bADC_TSHSET Delay from ADC Sample and Hold SHOUT to CONV setup time: tSHSET
Provides the number of ADC_CLK clocks to obtain the 100 ns of setup time between
SHOUT and CONV in the sample and hold circuit for ADC1 and ADC2.
tSHSET: Minimum Value is 100 ns.

2’b00: Invalid value
2’b01: 1 cycle when 4MHz ≤ fADC_CLK < 10 MHz
2’b10: 2 cycles when 10MHz ≤ fADC_CLK ≤ 20 MHz
2’b11: Invalid value

R/W

b4 to b0 bADC_TSHSAMP ADC Sample and Hold sampling time: tSHSAMP
Provides the number of ADC_CLK clocks to obtain the window sampling time in the
sample and hold circuit for ADC1 and ADC2.
tSHSAMP: Minimum Value is 300 ns.

5’h0: Invalid value
5’h1: Invalid value
5’h2: 2 cycles
5’h3: 3 cycles
∙∙∙ ∙∙∙
5’h7: 7 cycles
5’h8: 8 cycles
∙∙∙ ∙∙∙
5’h1f: 31 cycles

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 365 of 637
Dec 29, 2021

7.4.1.19 rADC_MASKLOCK[n] — Mask Data Locked [n] (n = 0..3)

Address: 4006 50B0h +4h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bADC_MASKLOCK

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.21 rADC_MASKLOCK[n] Register Contents

Bit Position Bit Name Function R/W

b31 to b16 Reserved Read as “0”. R

b15 to b0 bADC_MASKLOCK Mask Data Locked
Enable or disable a copy from respective registers:
● rADC1_DATA[n] to rADC1_DATALOCK[n] with n = 0..15
● rADC2_DATA[n] to rADC2_DATALOCK[n] with n = 0..15
When after scheduling by ADC_VC state machine, the ADC_VC[n] is selected to run
and all following conditions are satisfied:
● Event detection: “Data copy into data lock registers”
● Configured with bADC_Mode (rADC_VC[n] register) = 2’b11.
Following actions are executed:
● bADC1_ChannelSel selects rADC_MASKLOCK0..3 registers used to enable or

disable data copy from respective rADC1_DATA[n] to rADC1_DATALOCK[n] with
n = 0..15

● bADC2_ChannelSel selects rADC_MASKLOCK0..3 registers used to enable or
disable data copy from respective rADC2_DATA[n] to rADC2_DATALOCK[n] with
n = 0..15

Each bADC_MASKLOCK[n] is associated directly with following allocation bits:
● Bit [n]: bADC_MASKLOCK[n] is the mask data locked of following register.

 - rADC1_DATA[n] if selected by bADC1_ChannelSel
 - rADC2_DATA[n] if selected by bADC2_ChannelSel

0: No action, disable copy
1: bADC1_ChannelSel, enable copy from rADC1_DATA[n] to

rADC1_DATALOCK[n]
bADC2_ChannelSel, enable copy from rADC2_DATA[n] to
rADC2_DATALOCK[n]

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 366 of 637
Dec 29, 2021

7.4.1.20 rADC_VC[n] — ADC Control Register for Virtual Channel [n] (n = 0..15)

Address: 4006 50C0h + 4h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — bADC_DMA_Re
quest

bADC2
_Enable

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bADC1
_Enable

bADC_
Continu

ous

bADC_
TrigEna

ble
bADC_TrigSel bADC_Mode bADC2_ChannelSel bADC1_ChannelSel

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.22 rADC_VC[n] Register Contents (1/5)

Bit Position Bit Name Function R/W

b31 to b19 Reserved Read as “0” R

b18, b17 bADC_DMA_Request ADC DMA Request on Virtual Channel ADC_VC[n] with n = 0..15.

When after scheduling by ADC_VC state machine, the ADC_VC[n] is selected to run
and all following conditions are satisfied:
● Event detection: “Data copy into data lock registers”
● Configured with bADC_Mode (rADC_VC[n] register) = 2’b11.
● bADC_DMA_Request[1] is set to 1
● bADC_DMA bit in rADC_CONFIG register is enabled
ADC DMA requests are started and run until detection end of DMA transfer. The ADC
DMA channel selected depends on bADC_DMA_Request[0] bit status.

2’b00: ADC DMA Disable - No DMA coupling
2’b10: ADC DMA0 Enable - Set bADC_DMA0_RUNNING in rADC_PENDING
2’b11: ADC DMA1 Enable - Set bADC_DMA1_RUNNING in rADC_PENDING

R/W

b16 bADC2_Enable ADC2 Enable on Virtual Channel ADC_VC[n] with n = 0..15.
If set, enable a conversion, sample and hold or other operation on ADC2.

For each virtual channel ADC_VC[n] with n = 0..15

0: ADC2 Disable
– When ADC_VC[n] event selected is set (rising edge detection on trigger or CPU

changed bADC_FORCE_VC[n] bit to 1 by setting bADC_SETFORCE_VC[n] bit)
and when after scheduling by ADC_VC state machine, the ADC_VC[n] is
selected to run.
The function selected and controlled by bADC_Mode, bADC2_ChannelSel
(convert, sample and hold or other operation) are not executed on ADC2.

1: ADC2 Enable:
– When ADC_VC[n] event selected is set (rising edge detection on trigger or CPU

changed bADC_FORCE_VC[n] bit to 1 by setting bADC_SETFORCE_VC[n] bit)
and when after scheduling by ADC_VC state machine, the ADC_VC[n] is
selected to run.
The function selected and controlled by bADC_Mode, bADC2_ChannelSel
(convert, sample and hold or other operation) must be executed on ADC2

Note) If not interrupt only mode and if ADC1 and ADC2 are both disabled, then
dedicated End of Command (EoC) is anyway generated.

Caution)
● When ADC2 is not implemented (ex. RZ/N1S), this bit has not effect on virtual

channel and is set to “0” by hardware.
● When ADC2 is not connected (RZ/N1D-324), the physical channels are gated to

“0”, no conversion or sample and hold on this channel are possible.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 367 of 637
Dec 29, 2021

Table 7.22 rADC_VC[n] Register Contents (2/5)

Bit Position Bit Name Function R/W

b15 bADC1_Enable ADC1 Enable on Virtual Channel ADC_VC[n] with n = 0..15
Same as bADC2_Enable

R/W

b14 bADC_Continuous ADC Continuous Mode on Virtual Channel ADC_VC[n] with n = 0..15.

For each virtual channel ADC_VC[n] with n = 0..15

0: Single mode
1: Continuous mode

Note)
In single mode:
● ADC operation (conversion, sample and hold or other) is to be performed only

once.
● bADC_TrigEnable bit is automatically cleared to 0 when operation ends on the

selected channel.
● bADC_FORCE_VC[n] bit is automatically cleared to 0 when operation ends on the

selected channel.
In continuous mode:
● ADC operation is continuously performed for the selected channels in sequence

until bADC_TrigEnable and bADC_FORCE_VC[n] bits are cleared by software or
hardware reset or firmware ADC reset.

● No change on bADC_TrigEnable and bADC_FORCE_VC[n] bits when operation
ends on the selected channel.

In all case, single mode, continuous mode or other operation on ADC_VC[n] will
be executed when all following conditions are satisfied:
● The dedicated ADC_VC[n] event selected is set (rising edge detection on trigger or

CPU changed bADC_FORCE_VC[n] bit to 1 by setting bADC_SETFORCE_VC bit).
● When after scheduling by ADC_VC state machine, the ADC_VC[n] is selected to

run.
● Respective bADC2_Enable and bADC1_Enable of ADC2 and ADC1 is enabled.

R/W

b13 bADC_TrigEnable Trigger Enable on Virtual Channel ADC_VC[n] with n = 0..15.

For each virtual channel ADC_VC[n] with n = 0..15

0: Trigger disable
– A virtual channel is in idle state and cannot activate by bADC_TrigSel selected

trigger
1: Trigger enable
– When this bit is set, a trigger condition configured by bADC_TrigSel will start an

operation (conversion, sample and hold or other) when ADC_VC[n] is selected
by ADC state machine to run.

Note)
● In single mode (bADC_Continuous bit is set to 0), this bit is automatically cleared to

0 when operation ends on the selected channel.
● Cleared to 0 when a CPU write to rADC_CONFIG register starts the following

operations:
– bADC_POWER_DOWN (Enable or Disable PowerDown Mode)
– bADC_SAMPLE_HOLD_ENABLE (Enable or disable Sample and Hold feature

on each channel)

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 368 of 637
Dec 29, 2021

Table 7.22 rADC_VC[n] Register Contents (3/5)

Bit Position Bit Name Function R/W

b12 to b8 bADC_TrigSel Trigger Select on Virtual Channel ADC_VC[n] with n = 0..15.

Configures which trigger will set to initiate an operation (conversion, sample and hold
or other) to start once priority is given to ADC_VC[n] by ADC state machine.
Only rising edge of trigger is used to start an event on ADC_VC[n].

Trigger selected on virtual channel ADC_VC[n] with n = 0..15:

5’h00 .. 5’h0f: Not used
5’h10: Select iADC_EOC_VC0
 ∙∙∙ ∙∙∙
5’h1f: Select iADC_EOC_VC15

Note) Each rising edge of iADC_EOC_VC[n] is trigger for bADC_INTSTATUS0_VC[n]
with n = 0..15.

R/W

b7, b6 bADC_Mode ADC Mode on Virtual Channel ADC_VC[n] with n = 0..15.
Select the functions mode of virtual channel.
The functions selected below depends on bADC2_Enable and bADC1_Enable for
respective ADC2 and ADC1. See more details in bADC1_ChannelSel and
bADC2_ChannelSel fields description.

Mode is selected on virtual channel ADC_VC[n] with n = 0..15 if respective
bADC2_Enable and bADC1_Enable of ADC2 and ADC1 is enabled:

[Event selected: Physical channel Convert]
● 2’b00: Physical channel convert

– The bADC1_ChannelSel and bADC2_ChannelSel fields select the physical
channel to convert once priority is given to ADC_VC[n] by ADC state machine
to run.

– At the end of command, the resulting value is stored in the rADC1_DATA[n] and
rADC2_DATA[n] register.

– An ADC_VC[n] end of command iADC_EOC_VC[n] is generated for interrupt
management or trigger input for another ADC_VC[n].

[Event Selected: Sample and Hold, physical channel 6..8 only]
● 2’b01: Sample and hold

– The bADC1_ChannelSel and bADC2_ChannelSel fields select the physical
channel to sample and hold once priority is given to ADC_VC[n] by ADC state
machine to run.

– This feature is only available on physical channel ADC1_IN[8:6] and
ADC2_IN[8:6].

– An ADC_VC[n] end of command iADC_EOC_VC[n] is generated for interrupt
management or trigger input for another ADC_VC[n].

Caution)
Concerning Sample and hold on ADC1 and ADC2
● This feature is only available on physical channel 6..8
● Setting this field to 2’b01 on physical channel 0..4 is not effect.

[Event Selected: Only interrupt and end of command]
● 2’b10:

– No action on physical channel.
– An ADC_VC[n] end of command iADC_EOC_VC[n] is generated for interrupt

management or trigger input for another ADC_VC[n].

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 369 of 637
Dec 29, 2021

Table 7.22 rADC_VC[n] Register Contents (4/5)

Bit Position Bit Name Function R/W

 [Event Selected: Data copy into data lock registers]
● 2’b11:

– No action on physical channel.
– The bADC1_ChannelSel and bADC2_ChannelSel fields select the mask data

locked (rADC_MASKLOCK0..3 registers) used to enable or disable copy from
rADC[m]_DATA0..15 to rADC[m]_DATALOCK0..15 (with n = 0..1) once priority
is given to ADC_VC[n] by ADC state machine to run.

– An ADC_VC[n] end of command iADC_EOC_VC[n] is generated for interrupt
management or trigger input for another ADC_VC[n].

– A potential ADC DMA requests are started and run until detection end of DMA
transfer. The ADC DMA channel selected depends on
bADC_DMA_Request[1:0] bit status.

b5 to b3 bADC2_ChannelSel ADC2 Function on virtual channel ADC_VC[n] with n = 0..15.
Several functions are available depending on bADC2_Enable and bADC_Mode bits.

[Event selected: None]
● bADC2_Enable = 0:

– No action
[Event selected: Physical channel Convert]
● bADC2_Enable = 1 and bADC_Mode = 2’b00

– Selects the physical channel ADC2_IN[8:6,4:0] to be converted when
ADC_VC[n] is received by the ADC state machine to run.

– At the end of command, the resulting value is stored in the rADC2_DATA[n]
register.

– An ADC_VC[n] end of command iADC_EOC_VC[n] is generated for interrupt
management or trigger input for another ADC_VC[n].

● Physical channels selected to be converted by ADC2_ChannelSel fields:
 3’b000: Select physical channel ADC2_IN0
 ∙∙∙ ∙∙∙
 3’b100: Select physical channel ADC2_IN4
 3’b101: Select physical channel ADC2_IN6
 ∙∙∙ ∙∙∙.
 3’b111: Select physical channel ADC2_IN8

[Event Selected: Sample and Hold, physical channel 6..8 only]
● bADC2_Enable = 1 and bADC_Mode = 2’b01

– Selects the physical channels ADC2_IN[8:6] to be sampled and hold when
ADC_VC[n] is received by the ADC state machine to run.

– An ADC_VC[n] end of command iADC_EOC_VC[n] is generated for interrupt
management or trigger input for another ADC_VC[n].

– Physical channels selected to be sampled and hold by bADC2_ChannelSel
field:

● bADC2_ChannelSel[2]:
 1: Sample and hold on physical channel ADC2_IN8
 0: No sample and hold

● bADC2_ChannelSel[1]:
 1: Sample and hold on physical channel ADC2_IN7
 0: No sample and hold

● bADC2_ChannelSel[0]:
 1: Sample and hold on physical channel ADC2_IN6
 0: No sample and hold

Example)
If ADC2_ChannelSel[2:0]: 3’b101

Simultaneous sample and hold on ADC2_IN8, ADC2_IN6

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 370 of 637
Dec 29, 2021

Table 7.22 rADC_VC[n] Register Contents (5/5)

Bit Position Bit Name Function R/W

 [Event Selected: Only interrupt and end of command]
● bADC2_Enable = 1 and bADC_Mode = 2’b10:

– No action on physical channel.
– An ADC_VC[n] end of command iADC_EOC_VC[n] is generated for interrupt

management or trigger input for another ADC_VC[n]
● bADC2_ChannelSel:

 3’bxxx: Reserved

[Event Selected: Data copy into data lock registers]
● bADC2_Enable:1’b1 and bADC_Mode: 2’b11:

– No action on physical channel.
– The bADC2_ChannelSel field selects the mask data locked

(rADC_MASKLOCK0..3 registers) used to enable or disable a copy from each
rADC2_DATA0..15 to rADC2_DATALOCK0..15 registers once priority is given
to ADC_VC[n] by ADC state machine to run.

– An ADC_VC[n] end of command iADC_EOC_VC[n] is generated for interrupt
management or trigger input for another ADC_VC[n].

– A potential ADC DMA requests are started and run until detection end of DMA
transfer. The ADC DMA channel selected depends on
bADC_DMA_Request[1:0] bit status.

● Mask data locked register selected by bADC2_ChannelSel field:
 3’b000: Select rADC_MASKLOCK0 register mask.
 3’b001: Select rADC_MASKLOCK1 register mask.
 3’b010: Select rADC_MASKLOCK2 register mask.
 3’b011: Select rADC_MASKLOCK3 register mask.
 3’b1xx: Reserved

Caution)
● When ADC2 is not implemented (ex. RZ/N1S), these bits are not implementing and

read as 0.
● When ADC2 is not connected (RZ/N1D-324), the physical channels are gated to

“0”, no conversion or sample and hold on this channel are possible

b2 to b0 bADC1_ChannelSel ADC1 Function on virtual channel ADC_VC[n] with n = 0..15.
Same as bADC2_ChannelSel

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 371 of 637
Dec 29, 2021

7.4.1.21 rADC1_DATA[n] — ADC1 Conversion Data of Virtual Channel [n] (n = 0..15)

Address: 4006 5100h + 4h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

bADC1
_DATA
_Updat

e

— — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — bADC1_DATA

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.23 rADC1_DATA[n] Register Contents

Bit Position Bit Name Function R/W

b31 bADC1_DATA_Updat
e

Data has been updated since the last copy from rADC1_DATA[n] to respective
rADC1_DATALOCK[n] register with n = 0..15

For each virtual channel ADC_VC[n] with n = 0..15:

0: Data does not be updated in bADC1_DATA
1: Data has been updated in bADC1_DATA

Note) This bit is cleared to 0 when a copy from rADC1_DATA[n] to respective
rADC1_DATALOCK[n] register is running when mask enable.

R

b30 to b12 Reserved Read as “0”. R

b11 to b0 bADC1_DATA ADC1 conversion data for virtual channel ADC_VC[n] channel, with n = 0..15
After the ADC1 completes a conversion required on virtual channel ADC_VC[n], the
digital result is placed in the corresponding rADC1_DATA[n] register, with n = 0..15.

Example)
● If ADC_VC5 is configured to convert the physical channel ADC1_IN0, the

completed result of that conversion will be placed in rADC1_DATA5.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 372 of 637
Dec 29, 2021

7.4.1.22 rADC1_DATALOCK[n] — ADC1 DataLock[n] Register (n = 0..15)

Address: 4006 5180h +4h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

bADC1_D
ATALOC
K_Update

— — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — bADC1_DATALOCK

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.24 rADC1_DATALOCK[n] Register Contents

Bit Position Bit Name Function R/W

b31 bADC1_DATALOCK_
Update

Copy locked of bADC1_DATA_Update bit of rADC1_DATA[n] register, with n = 0..15
When an event: “Data copy into data lock registers” is running by ADC_VC state
machine, this register is updated in under control of rADC_MASKLOCK0..3 registers.

Note) After copy of bADC1_DATA_Update to bADC1_DATALOCK_Update (copy not
masked), bADC1_DATA_Update is cleared by hardware.

R

b30 to b12 Reserved Read as “0” R

b11 to b0 bADC1_DATALOCK Copy locked of bADC1_DATA field of rADC1_DATA[n] register, with n = 0..15
When an event: “Data copy into data lock registers” is running by ADC_VC state
machine, this register is updated in under control of rADC_MASKLOCK0..3 registers.
Data locked can be read by CPU and DMA in parallel with new acquisition in running
on rADC1_DATA[n] register.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 373 of 637
Dec 29, 2021

7.4.2 Register Description ADC2
CAUTION

These registers are only implemented in RZ/N1D, read as 0 in other.

7.4.2.1 rADC2_DATA[n] — ADC2 Conversion Data of Virtual Channel [n] (n = 0..15)

Address: 4006 5140h + 4h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

bADC2_D
ATA_Upd

ate
— — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — bADC2_DATA

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.25 rADC2_DATA[n] Register Contents

Bit Position Bit Name Function R/W

b31 bADC2_DATA_Updat
e

Data has been updated since the last copy from rADC2_DATA[n] to respective
rADC2_DATALOCK[n] register with n = 0..15

For each virtual channel ADC_VC[n] with n = 0..15:

0: Data does not be updated in bADC2_DATA
1: Data has been updated in bADC2_DATA

Note) This bit is cleared to 0 when a copy from rADC2_DATA[n] to respective
rADC2_DATALOCK[n] lock register is running when mask enable.

R

b30 to b12 Reserved Read as “0” R

b11 to b0 bADC2_DATA ADC2 conversion data for virtual channel ADC_VC[n] channel, with n = 0..15
After the ADC2 completes a conversion required on virtual channel ADC_VC[n], the
digital result is placed in the corresponding rADC2_DATA[n] register, with n = 0..15.

Example)
● If ADC_VC7 is configured to sample the physical channel ADC2_IN3, the

completed result of that conversion will be placed in rADC2_DATA7.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 374 of 637
Dec 29, 2021

7.4.2.2 rADC2_DATALOCK[n] — ADC2 DataLock[n] Register (n = 0..15)

Address: 4006 51C0h +4h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

bADC2_D
ATALOC
K_Update

— — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — bADC2_DATALOCK

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.26 rADC2_DATALOCK[n] Register Contents

Bit Position Bit Name Function R/W

b31 bADC2_DATALOCK_
Update

Copy locked of bADC2_DATA_Update bit of rADC2_DATA[n] register, with n = 0..15
When an event: “Data copy into data lock registers” is running by ADC_VC state
machine, this register is updated in under control of rADC_MASKLOCK0..3 registers.

Note) After copy of bADC2_DATA_Update to bADC2_DATALOCK_Update (copy not
masked), bADC2_DATA_Update is cleared by hardware.

R

b30 to b12 Reserved Read as “0”. R

b11 to b0 bADC2_DATALOCK Copy locked of bADC2_DATA field of rADC2_DATA[n] register, with n = 0..15
When an event: “Data copy into data lock registers” is running by ADC_VC state
machine, this register is updated in under control of rADC_MASKLOCK0..3 registers.
Data locked can be read by CPU and DMA in parallel with new acquisition in running
on rADC2_DATA[n] register.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 375 of 637
Dec 29, 2021

7.5 Operation

ADC_PCLK
clock domain

ADC_CLK
clock domain

ADC1 & ADC2 Analog Part controlled by ADC VC[n] state machine

Clock Domain and Synoptic

Two ADC 8 channels coupled by 16 Virtual channel ADC_VC[n]
with ADC1 m:1, ADC2 m:2 and with n:0..15

Analog
Multip lexer

Analog
Sample

&
Hold

ADC2_IN0

ADC2_IN1

ADC2_IN2

ADC2_IN3

ADC2_IN4

ADC2_IN8

ADC2_IN7

ADC2_IN6

Analog
Convertor

iADC2_SEL[3:0]

iADC2_SHOUT[2:0]

iADC2_SHCNT[2:0]

iADC2_SHENB[2:0]

Virtual Channel
ADC_VC

State machine

Analog
Multip lexer

Analog
Sample

&
Hold

ADC1_IN0

ADC1_IN1

ADC1_IN2

ADC1_IN3

ADC1_IN4

ADC1_IN8

ADC1_IN7

ADC1_IN6

Analog
Convertor

iADC1_SEL[3:0]

iADC1_SHOUT[2:0]

iADC1_SHCNT[2:0]

iADC1_SHENB[2:0]

iADC2_DATA[n][11:0]

iADC1_DATA[n][11:0]

iADC2_PDB

iADC2_RSB

iADC2_CONV

iADC2_SEL[3:0]

iADC2_D[11:0]

iADC2_EOCB

iADC2_SHOUT[2:0]

iADC2_SHCNT[2:0]

iADC2_SHENB[2:0]

iADC1_PDB

iADC1_RSB

iADC1_CONV

iADC1_SEL[3:0]

iADC1_D[11:0]

iADC1_EOCB

iADC1_SHOUT[2:0]

iADC1_SHCNT[2:0]

iADC1_SHENB[2:0]

iADC_EOC_VC[n]

All
Registers

rADC[m]_reg

except
rADC[m]_DATA[n]

and
rADC[m]_DATALO

CK[n]

ADC_VC0 – ADC_VC15 Configuration

iADC_VC[n]
Control & Config

Signals

iADC_ACQS

CPU
Interface

Only
Following
registers

rADC[m]_D
ATA[n]

and
rADC[m]_D
ATALOCK[n]

APB
Bus I nterface

Figure 7.3 ADC Controller Synoptic

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 376 of 637
Dec 29, 2021

7.5.1 Virtual Channel ADC_VC Principle Operation
Contrary to standard ADC types, this ADC is not sequencer based. Instead, it is ADC_VC (Virtual channel), with
based. The term ADC_VC is the configuration set defining an operation on a single or dual channel. In that set, we have
the following configurations:

● The trigger source that starts an operation

● The physical channel to process

● Convert or sample and hold mode

● DMA transaction on selected “End of Conversion” signal

● Set an interrupt on selected “End of Conversion” signal

● Update Data lock register

Each ADC_VC is independently configured and can have any combination of the trigger, channel, and mode.

Multiple ADC_VCs can be configured for the same trigger, channel, and/or sample and hold as desired. This provides a
very flexible means of configuring conversions ranging from individual samples of different channels with different
triggers, to oversampling the same channel using a single trigger, to creating your own series of conversions of different
channels all from a single trigger.

For example, ADC_VC[n]:
The trigger source of ADC_VC[n] is configured by a combination of the bADC_TrigSel, bADC_TrigEnable, and
bADC_Continuous fields in the rADC_VC[n] register. Software can also force an ADC_VC[n] event with the
rADC_FORCE register. The physical channel is configured with the bADC1_ChannelSel, bADC2_ChannelSel and
bADC_Mode fields in the rADC_VC[n] register, and sample and hold window size with bADC_TSHSAMP bits in
rADC_ACQS register.

ADC_VC[15]

ADC_VC[n+1]

Virtual Channel ADC_VC principle

Two ADC 8 channels coupled by 16 Virtual channel ADC_VC[n]
with ADC1 m:1, ADC2 m:2 and with n:0..15

iADC_EOC_VC[15:0]

iADC_PENDING_VC[n]

iADC_PENDINGOVF_VC[n]

iADC[m]_SEL

iADC_ACQS

Latch

Clear

Set

Start
Virtual Channel
State machine
ADC_VC[n]

Multiplexer

iADC_EOC_VC[15:0]

bADC_PENDING_VC[n] bit
(after synchronization)

in rADC_PENDING register

bADC_PENDINGOVF_VC[n] bit
(after synchronization)

in rADC_PENDINGOVF register

bADC_ACQS bit
(after synchronization)
of rADC_ACQS register

bADC[m]_Enable, bADC[m]_ChannelSel, bADC_Mode bits
(after synchronization)
of rADC_VC[n] register

bADC_FORCE_VC[n] bit
(after synchronization)
of rADC_FORCE register

bADC_TrigSel, bADC_TriggerEnable, bADC_Continuous
(after synchronization)
in rADC_VC[n] register

ADC_VC[n]

Virtual
Channel
ADC_VC

State
Machine

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 377 of 637
Dec 29, 2021

Figure 7.4 Virtual Channel ADC_VC Architecture

For example, you can configure a single conversion on channel ADC1_IN1 to occur when the iADC_EOC_VC4 is set.
For this we’ll use a virtual channel ADC_VC’s. Then, setup one of the ADC_VC’s using its rADC_VC[n] register. It
makes no difference which ADC_VC[n] is chosen, so it uses ADC_VC8 as example.

It also makes no difference which ADC trigger we choose, so we’ll use iADC_EOC_VC4. The fastest allowable sample
window for the ADC is 6 cycles. Choosing the fastest time for the sample window and channel ADC1_IN1 for the
channel to convert, we’ll set the bADC_TSHSAMP field to 6, the bADC_TrigSel field to 5’h14, bADC_TrigEnable and
bADC1_Enable in enable mode.

The resulting values written into the registers will be:

rADC_VC8:
● bADC1_Enable: 1’b1 (ADC1 Enable)

● bADC2_Enable: 1’b0 (ADC2 Disable)

● bADC_Continuous: 1’b0 (Single conversion)

● bADC_TrigEnable: 1’b1 (Trigger Enable)

● bADC_TrigSel: 5’h14 (Select trigger iADC_EOC_VC4)

● bADC_Mode: 2’b00 (Physical channel to convert)

● bADC1_ChannelSel: 3’h1 (ADC1_IN1 channel selected)

● bADC2_ChannelSel: 3’hx (Not used)

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 378 of 637
Dec 29, 2021

rADC_ACQS:
● bADC_TSHSAMP: 5’h6 (Minimum value)

When configured as such, a single conversion of physical channel ADC1_IN1 will be started on a use
iADC_EOC_VC4 event with the resulting value stored in the rADC1_DATA8 register.

In same time, we would like to have a conversion of physical ADC1_IN2 with oversampled by 4X on same trigger, we
will use for this ADC_VC9..12.

The resulting values written into the registers will be:

rADC_VC8:
● bADC1_Enable: 1’b1 (ADC1 Enable)

● bADC2_Enable: 1’b0 (ADC2 Disable)

● bADC_Continuous: 1’b0 (Single conversion)

● bADC_TrigEnable: 1’b1 (Trigger Enable)

● bADC_TrigSel: 5’h14 (Select trigger iADC_EOC_VC4)

● bADC_Mode: 2’b00 (Physical channel to convert)

● bADC1_ChannelSel: 3’h1 (ADC1_IN1 channel selected)

● bADC2_ChannelSel: 3’hx (Not used)

rADC_VC9..12 (Configured with same value):
● bADC1_Enable: 1’b1 (ADC1 Enable)

● bADC2_Enable: 1’b0 (ADC2 Disable)

● bADC_Continuous: 1’b0 (Single conversion)

● bADC_TrigEnable: 1’b1 (Trigger Enable)

● bADC_TrigSel: 5’h14 (Select trigger iADC_EOC_VC4)

● bADC_Mode: 2’b00 (Physical channel to convert)

● bADC1_ChannelSel: 3’h2 (ADC1_IN2 channel selected)

● bADC2_ChannelSel: 3’hx (Not used)

rADC_ACQS:
● bADC_TSHSAMP: 5’h6 (Minimum value)

rADC_PRIORITY:
● bADC_Priority: 5’h0

Round Robin arbitration on all ADC_VC0..15

When configured as such, a single conversion of physical channel ADC1_IN1 will be started on a use
iADC_EOC_VC4 event with the resulting value stored in the rADC1_DATA8 register.

Four conversions (oversampling 4X) of physical channel ADC1_IN2 will be started on a use iADC_EOC_VC4 event
with the resulting value stored in the rADC1_DATA9..12 registers.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 379 of 637
Dec 29, 2021

Additionally, in same time, we would like to have a conversion of physical ADC1_IN [8:6] and ADC2_IN[8:6] with
simultaneous sample & hold started by use iADC_EOC_VC7, we will use for this ADC_VC0 for sample & hold event
and ADC_VC1..3 for convert ADC1_IN [8:6] and ADC2_IN[8:6]. The sample window for the ADC2 is 12 cycles.

For this acquisition, the priority is high.

The resulting values written into the registers will be:

rADC_VC8:
● bADC1_Enable: 1’b1 (ADC1 Enable)

● bADC2_Enable: 1’b0 (ADC2 Disable)

● bADC_Continuous: 1’b0 (Single conversion)

● bADC_TrigEnable: 1’b1 (Trigger Enable)

● bADC_TrigSel: 5’h14 (Select trigger iADC_EOC_VC4)

● bADC_Mode: 2’b00 (Physical channel to convert)

● bADC1_ChannelSel: 3’h1 (ADC1_IN1 channel selected)

● bADC2_ChannelSel: 3’hx (Not used)

rADC_VC9..12 (Configured with same value):
● bADC1_Enable: 1’b1 (ADC1 Enable)

● bADC2_Enable: 1’b0 (ADC2 Disable)

● bADC_Continuous: 1’b0 (Single conversion)

● bADC_TrigEnable: 1’b1 (Trigger Enable)

● bADC_TrigSel: 5’h14 (Select trigger iADC_EOC_VC4)

● bADC_Mode: 2’b00 (Physical channel to convert)

● bADC1_ChannelSel: 3’h2 (ADC1_IN2 channel selected)

● bADC2_ChannelSel: 3’hx (Not used)

rADC_VC0:
● bADC1_Enable: 1’b1 (ADC1 Enable)

● bADC2_Enable: 1’b1 (ADC2 Enable)

● bADC_Continuous: 1’b0 (Single conversion)

● bADC_TrigEnable: 1’b1 (Trigger Enable)

● bADC_TrigSel: 5’h17 (Select trigger iADC_EOC_VC7)

● bADC_Mode: 2’b01 (Sample and hold)

● bADC1_ChannelSel: 3’h7 (ADC1_IN[8:6] channel selected)

● bADC2_ChannelSel: 3’h7 (ADC2_IN[8:6] channel selected)

rADC_VC1:
● bADC1_Enable: 1’b1 (ADC1 Enable)

● bADC2_Enable: 1’b1 (ADC2 Enable)

● bADC_Continuous: 1’b0 (Single conversion)

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 380 of 637
Dec 29, 2021

● bADC_TrigEnable: 1’b1 (Trigger Enable)

● bADC_TrigSel: 5’h17 (Select trigger iADC_EOC_VC7)

● bADC_Mode: 2’b00 (Physical channel to convert)

● bADC1_ChannelSel: 3’h5 (ADC1_IN6 channel selected)

● bADC2_ChannelSel: 3’h5 (ADC2_IN6 channel selected)

rADC_VC2:
● bADC1_Enable: 1’b1 (ADC1 Enable)

● bADC2_Enable: 1’b1 (ADC2 Enable)

● bADC_Continuous: 1’b0 (Single conversion)

● bADC_TrigEnable: 1’b1 (Trigger Enable)

● bADC_TrigSel: 5’h17 (Select trigger iADC_EOC_VC7)

● bADC_Mode: 2’b00 (Physical channel to convert)

● bADC1_ChannelSel: 3’h6 (ADC1_IN7 channel selected)

● bADC2_ChannelSel: 3’h6 (ADC2_IN7 channel selected)

rADC_VC3:
● bADC1_Enable: 1’b1 (ADC1 Enable)

● bADC2_Enable: 1’b1 (ADC2 Enable)

● bADC_Continuous: 1’b0 (Single conversion)

● bADC_TrigEnable: 1’b1 (Trigger Enable)

● bADC_TrigSel: 5’h17 (Select trigger iADC_EOC_VC7)

● bADC_Mode: 2’b00 (Physical channel to convert)

● bADC1_ChannelSel: 3’h7 (ADC1_IN8 channel selected)

● bADC2_ChannelSel: 3’h7 (ADC2_IN8 channel selected)

rADC_ACQS:
● bADC_TSHSAMP: 5’h0C

rADC_PRIORITY:
● bADC_Priority: 5’h4

ADC_VC0..3 are high priority,
ADC_VC4..15 are in round robin mode.

When configured as such, a single conversion of physical channel ADC1_IN1 will be started on a use
iADC_EOC_VC4 event with the resulting value stored in the rADC1_DATA8 register.

Four conversions (oversampling 4X) of physical channel ADC1_IN2 will be started on a use iADC_EOC_VC4 event
with the resulting value stored in the rADC1_DATA9..12 registers.

A sample and hold will be started on a use iADC_EOC_VC7 event and after that, three conversions (on previous
sample and hold values) of physical channel ADC1_IN[8:6] and ADC2_IN[8:6] will be started with the resulting value
stored in the rADC1_DATA1..3 and rADC2_DATA1..3 registers.

In example above, we can control of one ADC instance has no effect on the other one. So, they can be fully used
simultaneously. The only common parts are external iADC_EOC_VC7.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 381 of 637
Dec 29, 2021

7.5.2 Electric ADC Model and Acquisition Sample
External drivers vary in their ability to drive an analog signal quickly and effectively. Some circuits require longer times
to properly transfer the charge into the sampling capacitor of an ADC.

To address this, the ADC supports control over the sample window length. bADC_TSHSAMP bit field in rADC_ACQS
register has a 5 bits field that determines the sample and hold (S/H) window size tSHSAMP for each ADC.

The value written to this field is one the number of cycles desired for the sampling window of ADC. The minimum time
value of sample cycles allowed is 300 ns. The total sampling time is found by adding the sample window size to the
conversion time of the ADC.

The figure below describes in detail the equivalent circuit of the input block and the sampling error generated by an
external circuit, where:

● Analog input equivalent resistance (RIN) = On resistance of multiplexer + On resistance of sampling SW

● Analog input equivalent capacitance (CIN) = internal parasitic capacitance + sampling capacitance

● Impedance of signal source (Rs) = Output resistance of signal source + external resistance (low pass filter)

● External capacitance (Ce) = External parasitic capacitance + External capacitance (low pass filter)

The accuracy on ADC characteristics described on Electrical Characteristics doesn’t include sampling error was
generated with the effects by external circuits.

It is necessary to charge the analog input equivalent capacitance (CIN) through the analog input equivalent resistance
(RIN) within 0.1LSB of input voltage and sampling time (tSHSAMP) on sampling.

If the impedance of the signal source (Rs) is big, the charge time is insufficient for sampling and then sampling error
occurs. Therefore, please decrease the impedance of signal source satisfactorily (Rs < 300 Ω, Ce < 15 pF).

(tSHSAMP): Sample time window: 6 clocks periods of ADC_CLK frequency
● Min value: 300 ns with ADC_CLK = 20 MHz

● Max value: 1500 ns with ADC_CLK = 4 MHz

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 382 of 637
Dec 29, 2021

Figure 7.5 ADC Analog Model Input

Prefer to insert low pass filter into analog input for the elimination of unneeded signal with high frequency, ex. noise.
Please select RC parameter of low pass filter (Rs and Ce) in accordance with the characteristics of the application.

On the application handling AC signals, it is necessary to decrease the impedance of the signal source fully. When AC
characteristics are not important, you will decrease sampling error adding external capacitance with large capacity (Ce).

You can estimate sampling error as the following expression:

Sampling error ≒
CIN

Ce + CIN
 × 4096 [LSB]

If Ce is not so big, you can estimate sampling error as the following expression.

Sampling error ≒
CIN

Ce + CIN
 × exp �−

tAS
Rs × Ce + (Rs + RIN) × CIN

� × 4096 [LSB]

When doing A/D conversion with switching multiplexer periodically and repeatedly, the sampling error as shown on the
following expression occurs with the impedance of signal source (Rs) and the external capacitance (Ce)

Sampling error ≒ �
CIN

Ce + CIN
+

RS × CIN
tSC

� × 4096 [LSB]

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 383 of 637
Dec 29, 2021

tSC: The period of the multiplexer scan, where multiplexer scan means the periodic and repeated A/D conversion with
switching input of A/D converter.

For example, doing A/D conversion from ADC1_IN0 to ADC1_IN8 sequentially, and after doing ADC1_IN8, return to
ADC1_IN0.

7.5.3 Trigger Selection and Event Management
Each ADC_VC[n] with n = 0..15 can be configured to start on one of many input triggers. Multiple ADC_VC[n] can be
configured for the same channel if desired.

Following is a list of the available input triggers:

● CPU write (set bADC_SETFORCE_VC bit) in bADC_FORCE_VC[n] bit of rADC_FORCE register:

− Force an ADC request (conversion, sample and hold or other operation, depending on configuration) to start once
priority is given to ADC_VC[n]

● iADC_EOC_VC[n] event, End of Operation of ADC_VC[n]:

− Driven by ADC_VC[n] state machine at End of Operation

− This mode is useful if a continuous stream of conversions is desired from ADC_VC to another ADC_VC.

− Configured by bADC_TrigEnable, bADC_TrigSel bits in rADC_VC[n] register

● Single mode:

− In single mode, ADC operation (conversion, sample and hold or other) is to be performed only once.

− bADC_TrigEnable bit is automatically cleared to 0 when operation ends on the selected channel.

− bADC_FORCE_VC[n] bit is automatically cleared to 0 when operation ends on the selected channel.

− Configured by bADC_Continuous: 1’b0 bit in rADC_VC[n] register

● Continuous mode:

− In continuous mode, operation is continuously performed for the selected channels in sequence until
bADC_TrigEnable and bADC_FORCE_VC[n] bits are cleared by software or hardware reset or firmware ADC
reset.

− No change on bADC_TrigEnable and bADC_FORCE_VC[n] bits when operation ends on the selected channel.

− This mode is useful if a continuous stream of conversions is desired from ADC_VC

− Configured by bADC_Continuous:1’b1 bit in rADC_VC[n] register

An event is received at bADC_PENDING_VC[n] bit of rADC_PENDING register of virtual channel ADC_VC[n],
when we have:

● bADC_TrigEnable bit is set to 1’b1

− Rising edge detection on trigger selected by bADC_TrigSel of virtual channel ADC_VC[n]

● CPU write (set bADC_SETFORCE_VC bit) in bADC_FORCE_VC[n] bit of rADC_FORCE register

− Force an ADC request (conversion, sample and hold or other operation, depending on configuration) to start once
priority is given to ADC_VC[n]

● An ADC event (conversion, sample and hold or other operation) is pending for ADC_VC[n]

The event pending in rADC_PENDING register (convert, sample and hold or other operation) must be executed on
ADC1 and or ADC2 when:

● After scheduling by ADC_VC state machine, the ADC_VC[n] is selected to run.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 384 of 637
Dec 29, 2021

− If bADC1_Enable bit is set to 1, the respective operation controlled by bADC_Mode and bADC1_ChannelSel
will be executed on ADC1.

− If bADC2_Enable bit is set to 1. the respective operation controlled by bADC_Mode and bADC2_ChannelSel
will be executed on ADC2

● In same time, concerning event pending in rADC_PENDING register, we have:

− The bADC_PENDING_VC[n] bit of rADC_PENDING register will be automatically cleared when the respective
ADC_VC[n] operation is started.

− In single mode, ADC operation (conversion, sample and hold or other) is to be performed only once.
bADC_TrigEnable bit is automatically cleared to 0 when operation ends on the selected channel.
bADC_FORCE_VC[n] bit is automatically cleared to 0 when operation ends on the selected channel.

− In continuous mode, operation is continuously performed for the selected channels in sequence until
bADC_TrigEnable and bADC_FORCE_VC[n] bits are cleared by software or hardware reset or firmware ADC
reset.

An event overflow is received bADC_PENDINGOVF_VC[n] bit of rADC_PENDINGOVF register of virtual channel
ADC_VC[n], when we have:

● A new ADC_VC[n] event was generated while an existing event was already pending.

● An overflow condition does not stop ADC_VC[n] events from being processed. It simply is an indication that a
trigger was missed

● Writing 1 in bADC_PENDINGCLROVF_VC[n] bit of rADC_PENDINGCLROVF register will clear the
bADC_PENDINGOVF_VC[n] bit.

See Figure 7.4, Virtual Channel ADC_VC Architecture.

7.5.4 Physical Channel Selection
Each ADC_VC[n] with ADC1 m:1, ADC2 m:2 and n = 0..15 can be configured to convert any of the available
ADC[m]_IN[8:6,4:0] input channels.

● When an ADC_VC[n] is configured in convertor mode (bADC_Mode is set to 2’b00)

− bADC[m]_ChannelSel (bADC1_ChannelSel and bADC2_ChannelSel) field of the rADC_VC[n] register defines
which physical channel to convert

− The conversion will be executed on ADC1 if bADC1_Enable is set to 1 and ADC2 if bADC2_Enable bit is set to
1.

− At the end of command, the resulting value is stored in the rADC[m]_DATA[n] (rADC1_DATA[n] and
rADC2_DATA[n]) registers.

● When an ADC_VC[n] is configured for simultaneous sampling mode (bADC_Mode is set to 2’b01)

− bADC[m]_ChannelSel (bADC1_ChannelSel and bADC2_ChannelSel) field of the rADC_VC[n] register defines
which physical channel to process sample and hold operation. In this case, sample and hold operation are only
available on physical channel 6..8 of each ADC

− The sample and hold will be executed on ADC1 if bADC1_Enable is set to 1 and ADC2 if bADC2_Enable bit is
set to 1.

See Figure 7.4, Virtual Channel ADC_VC Architecture.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 385 of 637
Dec 29, 2021

7.5.5 ADC Operation Priority
When multiple ADC_VC[n] with n = 0..15 flags are set at the same time, one of two forms of priority determines the
order in which they are converted. The default priority method is round robin. In this scheme, no ADC_VC[n] has an
inherent higher priority than another. Priority depends on the round robin pointer (bADC_RR_Pointer).

The bADC_RR_Pointer reflected in the rADC_PRIORITY register points to the last ADC_VC[n] converted. The
highest priority ADC_VC[n] is given to the next value greater than the bADC_RR_Pointer value, wrapping around
back to ADC_VC0 after ADC_VC15.

At reset the value is 16, since 0 indicates a conversion has already occurred. When bADC_RR_Pointer equals 16 the
highest priority is given to ADC_VC0.

The bADC_RR_Pointer is reset when we have one of following conditions:

● A device reset

● The rADC_PRIORITY register is written

● A CPU write to rADC_CONFIG register is starting the following operations:

− bADC_POWER_DOWN (Enable or Disable PowerDown Mode)

− bADC_SAMPLE_HOLD_ENABLE (Enable or disable Sample and Hold feature on each channel)

− If a conversion is currently in progress, it will be completed and then the new priority is become

An example of the round robin priority method is given in figure below:

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 386 of 637
Dec 29, 2021

 VC
4

VC
3

VC
2

VC
1

VC
0

VC
12

VC
8

VC
5

VC
6

VC
7

VC
11

VC
10

VC
9

VC
14

VC
15

VC
13

RR_Pointer
Value:12 VC

4

VC
3

VC
2

VC
1

VC
0

VC
12

VC
8

VC
5

VC
6

VC
7

VC
11

VC
10

VC
9

VC
14

VC
15

VC
13

RR_Pointer
Value:2

 VC
4

VC
3

VC
2

VC
1

VC
0

VC
12

VC
8

VC
5

VC
6

VC
7

VC
11

VC
10

VC
9

VC
14

VC
15

VC
13

RR_Pointer
Value:7 VC

4

VC
3

VC
2

VC
1

VC
0

VC
12

VC
8

VC
5

VC
6

VC
7

VC
11

VC
10

VC
9

VC
14

VC
15

VC
13

RR_Pointer
Value:7

 VC
4

VC
3

VC
2

VC
1

VC
0

VC
12

VC
8

VC
5

VC
6

VC
7

VC
11

VC
10

VC
9

VC
14

VC
15

VC
13

RR_Pointer
Value:16

A After reset, VC0 is highest priority VC
 VC7 receives trigger
 VC7 configured channel is converted
 immediately .

B RR_Pointer changes to point to VC7
 VC8 is now highest priority VC

C VC2 & VC12 triggers rcvd simultaneously
 VC12 is first on round robin wheel ;
 VC12 configured channel is converted
 while VC2 stays pending

D RR_Pointer changes to point to VC12
 VC2 configured channel is now converted
.
E RR_Pointer changes to point to VC2
 VC3 is now highest priority VC

CB

D E

A

Round Robin Priority Arbitration
Example

Figure 7.6 ADC Round Robin Priority Arbitration Example

The bADC_Priority field in the rADC_PRIORITY register can be used to assign high priority from a single to all of the
ADC_VC’s. When configured as high priority, an ADC_VC[n] will interrupt the round robin wheel after any current
conversion completes and insert itself in as the next conversion. After its conversion completes, the round robin wheel
will continue where it was interrupted. If two high priority ADC_VC’s are triggered at the same time, the ADC_VC’s
with the lower number will take precedence.

High priority mode is assigned first to ADC_VC0, then in increasing numerical order. The value written in the
bADC_Priority field defines the first ADC_VC’s that is not high priority. In other words, if a value of 4 is written into
bADC_Priority, then ADC_VC0..3 are defined as high priority, with ADC_VC0 the highest.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 387 of 637
Dec 29, 2021

An example using high priority ADC_VC[n]’s is given in figure below:

 VC
4

VC
12

VC
8

VC
5

VC
6

VC
7

VC
11

VC
10

VC
9

VC
14

VC
15

VC
13

RR_Pointer
Value:7 VC

4
VC
12

VC
8

VC
5

VC
6

VC
7

VC
11

VC
10

VC
9

VC
14

VC
15

VC
13

RR_Pointer
Value:12

 VC
4

VC
3

VC
2

VC
1

VC
0

VC
12

VC
8

VC
5

VC
6

VC
7

VC
11

VC
10

VC
9

VC
14

VC
15

VC
13

RR_Pointer
Value:7 VC

4
VC
12

VC
8

VC
5

VC
6

VC
7

VC
11

VC
10

VC
9

VC
14

VC
15

VC
13

RR_Pointer
Value:7

 VC
4

VC
12

VC
8

VC
5

VC
6

VC
7

VC
11

VC
10

VC
9

VC
14

VC
15

VC
13

RR_Pointer
Value:16

A After reset, VC4 is highest priority VC
 VC7 receives trigger
 VC7 configured channel is converted
 immediately .

B RR_Pointer changes to point to VC7
 VC8 is now highest priority VC

C VC2 & VC12 triggers rcvd simultaneously
 VC2 interrupts round robin wheel and
 VC2 configured channel is converted
 while VC12 stays pending

D RR_Pointer stay pointing to VC7
 VC12 configured channel is now converted
.
E RR_Pointer changes to point to VC12
 VC13 is now highest priority VC

CB

D E

A

High Priority Arbitration
Example

VC
3

VC
2

VC
1

VC
0

VC
3

VC
2

VC
1

VC
0

VC
3

VC
2

VC
1

VC
0

VC
3

VC
2

VC
1

VC
0

Figure 7.7 ADC High Priority Arbitration Example

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 388 of 637
Dec 29, 2021

7.5.6 Simultaneous Sample and Hold
In some applications, it is important to keep the delay between the sampling of two or more signals minimal. Each ADC
contains triple sample and hold circuits to allow 3 different channels to be sampled simultaneously.

● When an ADC_VC[n] is configured for simultaneous sampling mode (bADC_Mode is set to 2’b01),
bADC[m]_ChannelSel field of the rADC_VC[n] register defines which channel to process sample and hold
operation.

● These features are only available on physical channel 6..8 of each ADC

See Figure 7.4, Virtual Channel ADC_VC Architecture and Figure 7.3, ADC Controller Synoptic.

In example below, we would like to have a conversion of physical ADC1_IN[8:6] and ADC2_IN[8:6] with
simultaneous sample & hold started by use iADC_EOC_VC7, we will use for this ADC_VC0 for sample & hold event
and ADC_VC1..3 for convert ADC1_IN [8:6] and ADC2_IN[8:6]. The sample window for the ADC2 is 12 cycles.

For this acquisition, the priority is high.

The resulting values written into the registers will be:

rADC_VC0:
● bADC1_Enable: 1’b1 (ADC1 Enable)

● bADC2_Enable: 1’b1 (ADC2 Enable)

● bADC_Continuous: 1’b0 (Single conversion)

● bADC_TrigEnable: 1’b1 (Trigger Enable)

● bADC_TrigSel: 5’h17 (Select trigger iADC_EOC_VC7)

● bADC_Mode: 2’b01 (Sample and hold)

● bADC1_ChannelSel: 3’h7 (ADC1_IN[8:6] channel selected)

● bADC2_ChannelSel: 3’h7 (ADC2_IN[8:6] channel selected)

rADC_VC1:
● bADC1_Enable: 1’b1 (ADC1 Enable)

● bADC2_Enable: 1’b1 (ADC2 Enable)

● bADC_Continuous: 1’b0 (Single conversion)

● bADC_TrigEnable: 1’b1 (Trigger Enable)

● bADC_TrigSel: 5’h17 (Select trigger iADC_EOC_VC7)

● bADC_Mode: 2’b00 (Physical channel to convert)

● bADC1_ChannelSel: 3’h5 (ADC1_IN6 channel selected)

● bADC2_ChannelSel: 3’h5 (ADC2_IN6 channel selected)

rADC_VC2:
● bADC1_Enable: 1’b1 (ADC1 Enable)

● bADC2_Enable: 1’b1 (ADC2 Enable)

● bADC_Continuous: 1’b0 (Single conversion)

● bADC_TrigEnable: 1’b1 (Trigger Enable)

● bADC_TrigSel: 5’h17 (Select trigger iADC_EOC_VC7)

● bADC_Mode: 2’b00 (Physical channel to convert)

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 389 of 637
Dec 29, 2021

● bADC1_ChannelSel: 3’h6 (ADC1_IN7 channel selected)

● bADC2_ChannelSel: 3’h6 (ADC2_IN7 channel selected)

rADC_VC3:
● bADC1_Enable: 1’b1 (ADC1 Enable)

● bADC2_Enable: 1’b1 (ADC2 Enable)

● bADC_Continuous: 1’b0 (Single conversion)

● bADC_TrigEnable: 1’b1 (Trigger Enable)

● bADC_TrigSel: 5’h17 (Select trigger iADC_EOC_VC7)

● bADC_Mode: 2’b00 (Physical channel to convert)

● bADC1_ChannelSel: 3’h7 (ADC1_IN8 channel selected)

● bADC2_ChannelSel: 3’h7 (ADC2_IN8 channel selected)

rADC_ACQS:
● bADC_TSHSAMP: 5’h0C

rADC_PRIORITY:
● bADC_Priority: 5’h4

ADC_VC0..3 are high priority,
ADC_VC4..15 are in round robin mode.
See Figure 7.7, ADC High Priority Arbitration Example.

A sample and hold will be started on a use iADC_EOC_VC7 event and after that, three conversions (on previous
sample and hold values) of physical channel ADC1_IN[8:6] and ADC2_IN[8:6] will be started with the resulting value
stored in the rADC1_DATA1..3 and rADC2_DATA1..3 registers.

In above example, we can control of one ADC instance has no effect on the other one. So, they can be fully used
simultaneously. The only common parts are external iADC_EOC_VC7.

The coupling behavior is as follows:

● In same, trigger iADC_EOC_VC7 trigger will start a sample & hold process on ADC_VC0 and conversion on
ADC_VC1..3

● After arbitration, higher priority, arbiter will give a hand now to ADC_VC0 to run simultaneous sample and hold
operation on physical channel ADC1_IN[8:6] and ADC2_IN[8:6]

● After arbitration, higher priority, arbiter will give a hand now to ADC_VC1 on physical channel6 to convert data of
each ADC

● After arbitration, higher priority, arbiter will give a hand now to ADC_VC2 on physical channel7 to convert data of
each ADC

● After arbitration, higher priority, arbiter will give a hand now to ADC_VC3 on physical channel8 to convert data of
each ADC

● After each conversion, the data result is stored in ADC[m]_DATA1..3 registers with m:1..2

● ADC_VC3 can be configured to generate interrupts at the end of all operations (sample & hold and convert).

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 390 of 637
Dec 29, 2021

7.5.7 End of Command (EOC) and Interrupt Operation
We have 16 independent ADC_VC[n] configuration sets, managed by 16 iADC_EOC_VC[n] pulse (End of Operation
of ADC_VC[n]):

Rising edge of iADC_EOC_VC[n] set an interrupt bADC_INTSTATUS0_VC[n] and bADC_INTSTATUS1_VC [n]
bits in rADC_INTSTATUS0 and rADC_INTSTATUS1 registers with:

● bADC_INTSTATUS0_VC[n] bit:

− Interrupt status before masking on Virtual channel ADC_VC[n] with n = 0..15

● bADC_INTSTATUS1_VC [n] bit:

− Interrupt status after masking on Virtual channel ADC_VC[n] with n = 0..15

− When one bit is high in this register, an interrupt is on ADC_Int

● bADC_INTMASK_VC[n] bit:

− Mask interrupt bit rADC_INTSTATUS0 register.

● bADC_INTCLR_VC[n] bit:

− Clear respective interrupt bit in rADC_INTSTATUS0 and rADC_INTSTATUS1 registers.

Additionally, if the respective bADC_INTSTATUS0_VC[n] bit is set and a selected additional iADC_EOC_VC[n]
trigger is generated, then an overflow condition occurs in bADC_INTOVFSTATUS0_VC[n] and
bADC_INTOVFSTATUS1_VC[n] bits in rADC_INTOVFSTATUS0 and rADC_INTOVFSTATUS1 registers with:

● bADC_INTOVFSTATUS0_VC[n] bit:

− Interrupt overflow status before masking on Virtual channel ADC_VC[n] with n = 0..15

● bADC_INTOVFSTATUS1_VC[n] bit:

− Interrupt overflow status after masking on Virtual channel ADC_VC[n] with n = 0..15

− When one bit is high in this register, an interrupt is on ADC_Int

● bADC_INTOVFMASK_VC[n] bit:

− Mask respective interrupt bit rADC_INTOVFSTATUS0 and rADC_INTOVFSTATUS1 registers.

● bADC_INTCLROVF_VC[n] bit:

− Clear respective interrupt bit in rADC_INTOVFSTATUS0 and rADC_INTOVFSTATUS1 registers.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 391 of 637
Dec 29, 2021

ADC_VC[15]

ADC_VC[n+1]

Virtual Channel ADC_VC and Interrupt Structure

Two ADC 8 channels coupled by 16 Virtual channel ADC_VC[n]
with ADC1 m:1, ADC2 m:2 and with n:0..15

iADC_INTSTATUS0_vc[n]

iADC_INTOVFSTATUS0_VC[n]

Latch

Clear

Set

bADC_INTSTATUS0_VC[n] bit
(after synchronization)

in rADC_INTSTATUS0 register

bADC_INTOVFSTATUS0_VC[n] bit
(after synchronization)

in rADC_INTOVFSTATUS0 register

bADC_INTCLR_VC[n]
(after synchronization)

in rADC_INTCLR register

ADC_VC[n]

Virtual
Channel
ADC_VC

State
Machine

iADC[m]_EOC_VC[15:0]

Figure 7.8 ADC Interrupt Structure

7.5.8 Data Copy in Data Lock Register
Each ADC_VC[n] with ADC1 m:1, ADC2 m:2 and n = 0..15 can be configured to data copy from
rADC[m]_DATA0..15 to rADC[m]_DATALOCK0..15 when an ADC_VC[n] is configured in Data copy into data lock
registers mode (bADC_Mode is set to 2’b11).

An event pending in rADC_PENDING register (Data copy into data lock registers operation) must be executed on
ADC1 and or ADC2 when:

● After scheduling by ADC_VC state machine, the ADC_VC[n] is selected to run.

− If bADC1_Enable bit is set to 1, the respective operation controlled by bADC_Mode (set to 2’b11) and
bADC1_ChannelSel fields will be executed on ADC1.

− If bADC2_Enable bit is set to 1. the respective operation controlled by bADC_Mode (set to 2’b11) and
bADC2_ChannelSel fields will be executed on ADC2

● The bADC1_ChannelSel and bADC2_ChannelSel fields select the mask data locked (rADC_MASKLOCK0..3
registers) used to enable or disable copy from rADC[m]_DATA0..15 to rADC[m]_DATALOCK0..15 (with m =
1..2).

● An ADC_VC[n] end of command iADC_EOC_VC[n] is generated for interrupt management or trigger input for
another ADC_VC[n]

● A potential ADC DMA requests are started and run until detection end of DMA transfer. The ADC DMA channel
selected depends on bADC_DMA_Request[1:0] bit status.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 392 of 637
Dec 29, 2021

See figure below for more details:

rADC1_DATA0 register

ADC1
Data Copy in Data Lock Register Event

rADC1_DATALOCK0 register

rADC1_DATA1 register rADC1_DATALOCK1 register

rADC1_DATA2 register rADC1_DATALOCK2 register

rADC1_DATA[w] register rADC1_DATALOCK[w] register

rADC1_DATA14 register rADC1_DATALOCK14 register

rADC1_DATA15 register rADC1_DATALOCK15 registerTrigger by bADC1_MASKLOCK[15]

Trigger by bADC1_MASKLOCK[14]

Trigger by bADC1_MASKLOCK[w]

Trigger by bADC1_MASKLOCK[2]

Trigger by bADC1_MASKLOCK[1]

Trigger by bADC1_MASKLOCK[0]

Mux

rADC_MASKLOCK0 register

rADC_MASKLOCK1 register

rADC_MASKLOCK2 register

rADC_MASKLOCK3 register

bADC1_ChannelSel bits
In vADC_VC[y] register

bADC1_MASKLOCK[w] bit with w:0..15
In rADC_MASKLOCK0..3 selected

For each w of bADC1_MASKLOCK[w] we have:
1'b0: Disable copy
1'b1: Enable copy from rADC1_DATA[w] to rADC1_DATALOCK[w] register

Virtual State Machine
ADC_VC

Step1
After scheduling the virtual

channel ADC_VC[k] is
selected to run physical

channel convert.

At end of Command after
physical channel convert

rADC1_DATA[k] and
ADC2_DATA[k] registers

are updated

Step2
After scheduling the virtual

channel ADC_VC[y] is
selected to run data copy

in data lock register

At end of Command
bADC1_ChannelSel and

bADC2_ChannelSel
select

rADC_MASKLOCK0..3
used

Copy from
rADC1_DATA[w]

to
rADC1_DATALOCK[w]

Controled by
bADC_MASKLOCK[w]

Assynchronous read
from

DMA or CPU

All datas inside
rADC1_DATALOCK[w]

registers are locked

Figure 7.9 ADC Data Copy in Data Lock Register

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 393 of 637
Dec 29, 2021

7.5.9 Timing

7.5.9.1 Basic A/D Conversion on 3 Channels
A/D conversion without sample & hold feature is performed in 3 steps:

● A/D conversion on physical channel0, Controlled by Virtual channel ADC_VC1

● A/D conversion on physical channel1, Controlled by Virtual channel ADC_VC2

● A/D conversion on physical channel2, Controlled by Virtual channel ADC_VC3

● A/D conversion is performed channel by channel (depending on priority configuration in rADC_PRIORITY)

● Set an interrupt when End of Command detected

● Acknowledge by CPU

● Each A/D conversion is started by setting iADC[m]_CONV (with m = 1..2 depending ADCs) at the rising edge of
clock.

3 basics Conversions

Virtual Channel ADC_VC1: Convert ADC channnel0
Virtual Channel ADC_VC2: Convert ADC channnel1
Virtual Channel ADC_VC3: Convert ADC channnel2

with ADC[m]
m=1: ADC1 and m=2: ADC2

SEL[3:0]=ADC[m] Channel1
Convert n+1

SEL[3:0]=ADC[m] Channel2
Convert n+2

SEL[3:0]=ADC[m] Channel0
Convert n

ADC[m]_DATA[11:0]
Convert n, channel0

ADC[m]_DATA[11:0]
Convert n+1, channel1

ADC[m]_DATA[11:0]
Convert n-1

iADC[m]_EOCB

ADC_CLK

ADC[m]_IN[8:6,4:0]

1 2 3 4 5 6 7 8 1
8

1
9

1 2 3 4 5 6 7 8 1
8

1
9

1 2 3 4 5 6 7 8 1
8

1
9

iADC[m]_CONV

iADC[m]_SHOUT[0]

iADC[m]_SHCNT[0]

iADC[m]_SHENB[0]

iADC[m]_SEL[3:0]

iADC[m]_D[11:0]

bADC_PENDING_VC1

bADC_PENDING_VC3

bADC_PENDING_VC2

iADC[m]_RSB

iADC[m]_PDB

Sampling Start
Rising edge iADC[m]_EOCB

Sampling End
Rising edge iADC[m]_EOCB + 6 Clock

Convert Convert Convert

19 Clocks 19 Clocks 19 Clocks

Reset Pending
Request Reset Pending

Request

Reset Pending
Request

Figure 7.10 No Sample & Hold, Basics A/D Conversion on 3 Channels

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 394 of 637
Dec 29, 2021

7.5.9.2 Sample & Hold following by A/D Conversion on One Channel
A/D conversion with sample & hold feature is performed in 2 steps:

● Sample & Hold operation (without A/D conversion) on physical channel6

− Controlled by Virtual channel ADC_VC0

● A/D conversion on physical channel6

− Controlled by Virtual channel ADC_VC1

● A/D conversion is performed channel by channel (depending on priority configuration in rADC_PRIORITY)

● Set an interrupt when End of Command detected

● Acknowledge by CPU

● A/D conversion is started by setting iADC[m]_CONV (with m = 1..2) at the rising edge of clock.

● When you change ADCs from power down to operation mode, CPU should wait the recovery time (1 us) for it to be
stable (read bADC_BUSY bit as 0 in rADC_CONTROL register).

● You can only do one A/D conversion by one sampling on sample/hold circuit. If you would like to do another A/D
conversion, you should do sampling again.

● The hold time of sample & hold mode is 15 ms maximum and must be managed by firmware.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 395 of 637
Dec 29, 2021

iADC[m]_EOCB

iADC[m]_CONV

iADC[m]_SHOUT[0]

iADC[m]_SHCNT[0]

iADC[m]_SHENB[0]

ADC_CLK

ADC_Int

ADC_PCLK

Sample & Hold Following by One Conversion

Virtual Channel ADC_VC0: Sample & Hold on ADC Channel6
Virtual Channel ADC_VC1: Convert ADC channnel6

with ADC[m]
m=1: ADC1 and m=2: ADC2

bADC_PENDING_VC1

bADC_PENDING_VC0

iADC[m]_PDB

iADC[m]_RSB

SEL[3:0]=ADC[m]_Channel6
Convert n

ADC[m]_DATA[11:0]
Convert n-1

ADC[m]_DATA[11:0]
Convert n

iADC[m]_SEL[3:0]

iADC[m]_D[11:0]

1 2 6 7 1 2 5 6 1 2 7 8 9 1
0

1
8

1
9

1 2 6 7

Set Interrupt at end of operation
(conversion, sample & hold and other)

on virtual channel in running Ack CPU Interrupt

Convert

Sample & Hold
tSHSAMP

tSHSAMP
7 Clocks

tSHOH
6 Clocks

8 Clocks

tSHSET
2 Clocks 19 Clocks

tSHSAMP
7 Clocks

Reset Pending
Request

Reset Pending
Request

Figure 7.11 Sample & Hold following by A/D Conversion on One Channel

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 396 of 637
Dec 29, 2021

7.5.9.3 Sample & Hold following by A/D Conversion on 3 Channels
A/D conversion with sample & hold feature is performed in 4 steps:

● Sample & Hold operation (without A/D conversion) on physical channel 6..8

− Controlled by Virtual channel ADC_VC0

● A/D conversion on physical channel 6 – Controlled by Virtual channel ADC_VC1

● A/D conversion on physical channel 7 – Controlled by Virtual channel ADC_VC2

● A/D conversion on physical channel 8 – Controlled by Virtual channel ADC_VC3

● A/D conversion is performed channel by channel (depending on priority configuration in rADC_PRIORITY)

● Set an interrupt when End of Command detected

● Acknowledge by CPU

● A/D conversion is started by setting iADC[m]_CONV (with m = 1..2) at the rising edge of clock.

● When you change ADCs from power down to operation mode, CPU should wait the recovery time (1 µs) for it to be
stable (read bADC_BUSY bit as 0 in rADC_CONTROL register).

● You can only do three A/D conversions by one sampling on sample/hold circuit. If you would like to do another A/D
conversion, you should do sampling again.

● The hold time of sample & hold mode is 15 ms maximum and must be managed by firmware.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 397 of 637
Dec 29, 2021

19 Clocks19 Clocks
19 Clocks

8 Clocks

8 Clocks

8 Clocks

tSHOH
6 Clocks

tSHSET
2 Clocks

Sample & Hold
tSHSAMP

tSHSET
2 Clocks

tSHSET
2 Clocks

tSHSAMP
7 Clocks

Convert Convert Convert

Reset Pending
Request

Reset Pending
Request

Sample & Hold Following by 3 Conversions

Virtual Channel ADC_VC0: Sample & Hold on ADC Channel6..8
Virtual Channel ADC_VC1: Convert ADC channnel6
Virtual Channel ADC_VC2: Convert ADC channnel7
Virtual Channel ADC_VC3: Convert ADC channnel8

with ADC[m]
m=1: ADC1 and m=2: ADC2

ADC_CLK

iADC[m]_SHENB[0]

iADC[m]_SHENB[1]

iADC[m]_SHENB[2]

iADC[m]_SHCNT[0]

iADC[m]_SHCNT[1]

iADC[m]_SHCNT[2]

iADC[m]_SHOUT[0]

iADC[m]_SHOUT[1]

iADC[m]_SHOUT[2]

iADC[m]_EOCB

iADC[m]_CONV

iADC[m]_SEL[3:0]

iADC[m]_D[11:0]

bADC_PENDING_VC1

bADC_PENDING_VC0

bADC_PENDING_VC2

bADC_PENDING_VC3

iADC[m]_PDB

iADC[m]_RSB

1 2 6 7 1 2 5 6 1 2 7 8 9 1
0

1
8

1
9

1 2 7 8 9 1
0

1
8

1
9

1 2 7 8 9 1
0

1
8

1
9

SEL[3:0]=ADC[m]_Channel6
Convert n

ADC[m]_DATA[11:0]
Convert n-1

SEL[3:0]=ADC[m]_Channel7
Convert n+1

SEL[3:0]=ADC[m]_Channel8
Convert n+2

ADC[m]_DATA[11:0]
Convert n, channel6

ADC[m]_DATA[11:0]
Convert n+1, channnel7

Reset Pending
Request

Reset Pending
Request

Figure 7.12 Sample & Hold following by A/D Conversion on 3 Channels

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 398 of 637
Dec 29, 2021

7.5.9.4 Power Down
Power Down Mode Sequence is performed in following steps:

● Current A/D conversion on physical channel 0

− Controlled by Virtual channel ADC_VC1

● CPU Write sets 1 in bADC_POWER_DOWN bit of rADC_CONFIG register

− Clear iADC[m]_PDB and iADC[m]_RSB signals to 0 (with m = 1..2)

− Set 1 in bADC_BUSY bit of rADC_CONTROL register

● Clear bADC_TrigEnable bit in all rADC_VC[n] registers to 0 (Trigger disable), with n = 0..15

− Clear bADC_PENDING_VC[n] bit (operation pending on Virtual channel ADC_VC[n]) in rADC_PENDING
register to 0, with n = 0..15

− Clear bADC_FORCE_VC[n] bit (Force start of operation on Virtual channel ADC_VC[n]) in rADC_FORCE
register to 0, with n = 0..15

− Stop current conversion in running and force virtual state machine in idle state at the end of current operation

● CPU polls bADC_BUSY bit in rADC_CONTROL register until read as 0 (Configuration change finished)

● CPU Write sets 0 in bADC_POWER_DOWN bit of rADC_CONFIG register

− Set 1 in iADC[m]_PDB and iADC[m]_RSB signals (with m = 1..2)

− Set 1 in bADC_BUSY bit of rADC_CONTROL register until read as 0 (Recovery time ≥ 1 µs)

− After recovery time, ADC1 and ADC2 are configured in operate mode.

● CPU, now, must reconfigure all virtual channel ADC_VC[n] with n = 0..15

● A/D conversion on physical channel 4

− Controlled by Virtual channel ADC_VC2

● A/D conversion is performed channel by channel (depending on priority configuration in rADC_PRIORITY)

● Set an interrupt when End of Command detected

● Acknowledge by CPU

● A/D conversion is started by setting iADC[m]_CONV (with m = 1..2) at the rising edge of clock.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 399 of 637
Dec 29, 2021

12'h0

ADC_CLK

ADC[m]_Channel0
Convert n

1 2 3 4 5 6 7 8 9 1
0

1
1

iADC[m]_CONV

iADC[m]_EOCB

ADC[m]_DATA[11:0]
Convert n-1

iADC[m]_SEL[3:0]

iADC[m]_D[11:0]

1 2 3 4 5 6 7 8 9 1
0

1
1

1
8

1
9

bADC_PENDING_VC1

iADC[m]_PDB

iADC[m]_RSB

ADC[m]_DATA[11:0]
Convert n+1, channel4

PowerDown & Reset Mode Sequency

Virtual Channel ADC_VC1: Convert ADC Channel0
Virtual Channel ADC_VC2: Convert ADC Channel4

With ADC[m]
 m=1: ADC1 and m=2: ADC2

ADC[m]_Channel4
Convert n+1

Reset Pending
Request

bADC_POWER_DOWN

bADC_BUSY

Stop Current Conversion in Running
Force Data to 12'hx

Set bADC_BUSY

Set in Power Down Set in Operation mode

Convert, 19 clocks

Reset Pending
Request

bADC_PENDING_VC2

12'hx

Set bADC_BUSY

Recovery time
 1 microsecond

Set in Reset mode

4'hx 4'h0

If request pending
Start Conversion

Figure 7.13 ADC PowerDown

7.5.9.5 A/D Conversion Rate
Based on previous figures, A/D conversion rates can be calculated.

Table 7.27 A/D Conversion Rate

Mode Number of ADC Clock Periods
Number of ADC Clock Periods
per Conversion (Average)

Basic A/D Conversion 20 20

3 channels simultaneous sample&hold (7 + 6 + 2) + 3 × (20) 25

3 channels separated sample&hold 3 × ((7 + 6 + 2) + 20)) 35

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 400 of 637
Dec 29, 2021

7.5.10 DMA control
The ADC controller has DMA capability. It has a handshaking interface to a DMA Controller to request and control
transfers. The APB bus is used to perform the data transfer to the DMA. In this mode, DMA controller must be
configured in DMAC flow controller mode. The DMA always transfers data using DMA burst transactions if possible,
for efficiency.

The ADC controller uses two DMA channel to transfer ADC conversion values (registers rADC[m]_DATALOCK[n]
with n = 0..15 and m = 1..2).

The DMA ADC flow control is managed by these followings DMA bits:

● bADC_DMA bit in rADC_CONFIG register

− Enable or disable DMA channel 0 & 1

● bADC_DMA_Request bits in rADC_VC[n] registers with n = 0..15

− When after scheduling by ADC_VC state machine, the ADC_VC[n] is selected to run and following events
detected: Event: “Data copy into data lock registers”, an ADC DMA requests are started and run until detection
end of DMA transfer. The ADC DMA channel selected depends on bADC_DMA_Request[1:0] bit status.

● bADC_DMA0_RUNNING and bADC_DMA1_RUNNING bits in rADC_PENDING register

− ADC DMA requests are started and run until detection end of DMA transfer.

● rADC1_DATALOCK[n] and rADC2_DATALOCK[n] registers with n = 0..15

− Copy locked of bADC1_DATA bits of rADC1_DATA[n] register, with n = 0..15 for DMA or CPU read

− Copy locked of bADC2_DATA bits of rADC2_DATA[n] register, with n = 0..15 for DMA or CPU read

− See Figure 7.9, ADC Data Copy in Data Lock Register.

To enable the DMA Controller interface on the ADC and enable the handshaking interface:

● DMA controller must be configured

− Address of source and destination

− Size of burst on source and destination

− Size of block to transfer

− DMAC flow controller mode

− Channel allocation

− Only one block.

− Interrupt

● Set bADC_DMA bit in rADC_CONFIG register to enable ADC DMA channel

− Set bADC_DMA_Request bits in rADC_VC[n] registers with n = 0..15 to start DMA transfer of channel selected
when we have an event “Data copy into data lock registers”, then an ADC DMA request is started and run until
detection end of DMA transfer.

● bADC_DMA0_RUNNING and bADC_DMA1_RUNNING bits in rADC_PENDING register give a current status on
DMA transactions in running.

● Use only rADC1_DATALOCK[n] and rADC2_DATALOCK[n] registers with n = 0..15 to DMA transfer

− Copy locked of rADC1_DATA[n] and rADC2_DATA[n] registers

− See Figure 7.9, ADC Data Copy in Data Lock Register.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 401 of 637
Dec 29, 2021

7.5.10.1 Overview on DMA Operation
CAUTION

● DMA controller must be configured in DMAC flow controller mode, because ADC does not know the size of block
transferred.

● ADC supports only 32 bits width.

Recommended value to manage correctly all transactions in burst and single mode:

● Width of APB: 32 bits

● Burst line size: From 4 × 32 bits to 16 × 32 bits

For example, if the block size programmed into the DMA Controller is 12 and the burst transaction length is set to 4,
the block size is a multiple of the burst transaction length. Therefore, the DMA block transfer consists of a series of
burst transactions.

If the ADC makes a receive request to this channel, four data items are read from rADC1_DATALOCK[n] and
rADC2_DATALOCK[n] registers. Three separate requests must be made to this DMA channel before all 12 data items
are read.

CAUTION

The source transfer width settings in the DMAC, DMAC.CTL[n].SRC_TR_WIDTH must be set to 3’b010 because the
ADC registers are 32 bits width.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 7 ADC Controller and 12bit A/D Converters

R01UH0752EJ0120 Rev.1.20 Page 402 of 637
Dec 29, 2021

7.6 Usage Notes

7.6.1 Restriction
If two channels of DMA are used simultaneously, DMA requests may not work properly.

At this time, bADC_DMA1_RUNNING/bADC_DMA0_RUNNING bit of rADC_PENDING register and
bADC_DMA1_RUNNINGOVF/bADC_DMA0_RUNNINGOVF bit of rADC_PENDINGOVF register may not
indicate proper values. Only single channel of DMA can be available.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 403 of 637
Dec 29, 2021

Section 8 LCD Controller

8.1 Overview
The PG4 (Peripheral Group 4) Subsystem of RZ/N1 provides LCD Controller.

● Wide range of programmable LCD Panel resolutions

● Interface for 1 Port TFT LCD Panel:

− 18-bit digital (6 bits/color)

− 24-bit digital (8 bits/color)

● Programmable frame buffer bits per pixel (bpp)

− 1, 2, 4, 8 bpp mapped through Color Palette to 18-bit LCD pixel

− 16, 18 bpp directly drive 18-bit LCD pixel

− 24 bpp directly drive 24-bit LCD pixel

● Color Palette RAM: 256 words x 16 bits

● Programmable output format

− RGB 6:6:6 or 5:6:5 or 5:5:5 on 18-bit digital interface

− RGB 5:6:5 on 24-bit digital interface (via 8 bpp through palette)

− RGB 8:8:8 on 24-bit digital interface

● Hardware blink supported

● Two Pulse Width Modulation module for LCD panel LED backlight brightness control

− LCD_PWM[1:0]

● Power up and down sequencing supported

● Integrated DMA

● Supported LCD Panel Characteristics:

Panel Interface Bits per Pixel Palette Size Number of Color

18/24 bits (6 bits/color) 1 2 entries by 16 bits 2

18/24 bits (6 bits/color) 2 4 entries by 16 bits 4

18/24 bits (6 bits/color) 4 16 entries by 16 bits 16

18/24 bits (6 bits/color) 8 256 entries by 16 bits 256

18/24 bits (6 bits/color) 16 — 32768/65536

18/24 bits (6 bits/color) 18 — 262144

24 bits (8 bits/color) 8 256 entries by 16 bits 256

24 bits (8 bits/color) 24 — 16777216

● Two FIFO memories:

− Output FIFO: 16 words 24 bits

− Input FIFO: 1K words 64 bits

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 404 of 637
Dec 29, 2021

Network
On

Chip

LCD Controller

Registers

32
b

AH
BS

64
b

AH
BM

LCD
panel

IO
 M

ul
tip

le
xe

r L
ev

el
1

3.
3V

 C
M

O
S

Bu
ff

er

DMAC

Pixel
Unpack

Pallete
256Wx16b

Output
FIFO

16Wx18/24b

Output
Formatter

Pixel Clock
Generation

LCD
Timing and Control

Pulse Width
Generator

Interrupt

LCD_R[7:0]

LCD_B[7:0]

LCD_G[7:0]

LCD_PWM[1:0]

LCD_PCLK

LCD_PE

LCD_DE

LCD_HSYNC

LCD_VSYNC

LCDC internal bus
Clock domain

LCD I/F
Clock domain

Input FIFO
1KW x 64b

Figure 8.1 LCD Controller Synoptic

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 405 of 637
Dec 29, 2021

8.2 Signal Interfaces
Table 8.1 LCD Signal Interface

Signal Name
Input
Output Description

Clock

LCD_HCLK Input Internal bus clock (AHB)

LCD_ECLK Input Reference clock (Pixel Clock domain)

Interrupt

LCDC_Int Output Level sensitive interrupt output, Active High

External Signal

LCD_PCLK Output Pixel Clock

LCD_HSYNC Output Horizontal Sync Pulse

LCD_VSYNC Output Vertical Sync Pulse

LCD_DE Output Data Enable

LCD_PE Output Power Enable

LCD_PWM[1:0] Output LCD LED Pulse Width Modulation

LCD_R[7:0] Output Red Data #Programmable Red/Blue swap mode

LCD_G[7:0] Output Green Data

LCD_B[7:0] Output Blue Data #Programmable Red/Blue swap mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 406 of 637
Dec 29, 2021

8.3 Register Map
Table 8.2 Register Map

Address Register Symbol Register Name

5300 4000h rLcd_CR1 Control Register 1

5300 4008h rLcd_HTR Horizontal Timing Register

5300 400Ch rLcd_VTR1 Vertical1 Timing Register

5300 4010h rLcd_VTR2 Vertical2 Timing Register

5300 4014h rLcd_PCTR Pixel Clock Timing Register

5300 4018h rLcd_ISR Interrupt Status Register Before Masking

5300 401Ch rLcd_IMR Interrupt Mask Register

5300 4020h rLcd_IVR Interrupt Status Register After Masking

5300 4024h rLcd_ISCR Interrupt Scan Compare Register

5300 4028h rLcd_DBAR DMA Start Base Address of Frame Buffer Memory

5300 402Ch rLcd_DCAR DMA Current Base Address on going

5300 4030h rLcd_DEAR DMA End Address

5300 4034h rLcd_PWMFR_0 PWM0 Frequency Register

5300 4038h rLcd_PWMDCR_0 PWM0 Duty Cycle Register

5300 4044h rLcd_HVTER Horizontal and Vertical Timing Extension Register

5300 4048h rLcd_HPPLOR Horizontal Pixels-Per-Line Override Control

5300 404Ch rLcd_PWMFR_1 PWM1 Frequency Register

5300 4050h rLcd_PWMDCR_1 PWM1 Duty Cycle Register

5300 41F8h rLcd_GPIOR Blink Control

5300 41FCh rLcd_CIR Core Identification Register

8.3.1 Coding Palette (Palette Registers) Map
CAUTION

● The coding palette depends on the selected color mode.

● The symbol mapped to the address of the coding palette is different for each mode.

● The table below lists the different symbols (names) of the coding palette for all color modes.

Address Register Symbol Register Name

5300 4200h to
5300 43FCh

rLcd_PAL_RGB_555 Coding Palette when RGB 5:5:5 mode

Address Register Symbol Register Name

5300 4200h to
5300 43FCh

rLcd_PAL_RGB_565 Coding Palette when RGB 5:6:5 mode

Address Register Symbol Register Name

5300 4200h to
5300 43FCh

rLcd_PAL_BGR_555 Coding Palette when BGR 5:5:5 mode

Address Register Symbol Register Name

5300 4200h to
5300 43FCh

rLcd_PAL_BGR_565 Coding Palette when BGR 5:6:5 mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 407 of 637
Dec 29, 2021

8.4 Register Description

8.4.1 rLcd_CR1 — Control Register 1

Address: 5300 4000h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — bLcd_F
BP

bLcd_L
PS bLcd_FDW

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bLcd_P
SS bLcd_OPS bLcd_V

SP
bLcd_H

SP
bLcd_P

CP
bLcd_D

EP
bLcd_E

BO
bLcd_E

PO
bLcd_R

GB bLcd_BPP bLcd_L
PE

bLcd_L
CE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.3 rLcd_CR1 Register Contents (1/3)

Bit Position Bit Name Function R/W

b31 to b20 Reserved Read as 0. R

b19 bLcd_FBP Frame Buffer 24 bpp Packed Word
0: No Packing, one 24 bpp per 32-bit frame buffer word, upper 8-bit is unused
1: 24 bpp Packing, four 24 bpp pixels packed within 3 frame buffer words

Caution) The packed mode (bLcd_FBP = 1) must be used with 24 bpp mode only
(bLcd_BPP = 3’b110).

R/W

b18 bLcd_LPS LCD Port Select
0: One LCD Port Output (Default)
1: Reserved

R/W

b17, b16 bLcd_FDW FIFO DMA Request Burst Size
Allows burst size configuration of DMA read request in word.
The size of elementary word is 64 bits.

2’b00: FIFO DMA request for 4-beat burst when FIFO has room for 4 or more
words

2’b01: FIFO DMA request for 8-beat burst when FIFO has room for 8 or more
words

2’b10: FIFO DMA request for 16-beat burst when FIFO has room for 16 words
2’b11: Reserved

2’b10 is recommended in terms of bandwidth.

R/W

b15 bLcd_PSS Palette Load Source Select
Keep the initial value 0, this controller does not support for Palette Load Source
Select.

0: Load Palette from Slave Bus (CPU transfer used via palette registers)
1: (not available)

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 408 of 637
Dec 29, 2021

Table 8.3 rLcd_CR1 Register Contents (2/3)

Bit Position Bit Name Function R/W

b14 to b12 bLcd_OPS Output Pixel Select
Bit[12]: bLcd_OPS0:

0: 16 bpp Output Format RGB or BGR 5:6:5
1: 16 bpp Output Format RGB or BGR 5:5:5

Bit[13]: bLcd_OPS1: Valid for bLcd_BPP = 1, 2, 4, 8, 16, 18 bits per pixel.
0: RGB 5:6:5 or 5:5:5 placed on LSB of each 3x8bits RGB interface to LCD panel

LCD_R,G,B[5:0]
LCD_R,G,B[5:1]

1: RGB 5:6:5 or 5:5:5 placed on MSB of each 3x8bits RGB interface to LCD panel
LCD_R,G,B[7:2]
LCD_R,G,B[7:3]

Bit[14]: bLcd_OPS2: Reserved

R/W

b11 bLcd_VSP Vertical Sync Polarity
0: LCD_VSYNC signal is active HIGH
1: LCD_VSYNC signal is active LOW

R/W

b10 bLcd_HSP Horizontal Sync Polarity
0: LCD_HSYNC signal is active HIGH
1: LCD_HSYNC signal is active LOW

R/W

b9 bLcd_PCP Pixel Clock Polarity
0: Output data signals driven on LCD_PCLK rising edge
1: Output data signals driven on LCD_PCLK falling edge

R/W

b8 bLcd_DEP Data Enable Polarity
0: LCD_DE signal is active LOW in active display mode
1: LCD_DE signal is active HIGH in active display mode

R/W

b7 bLcd_EBO Big or Little Endian Byte Ordering Mode in Palette
0: Little endian
1: Big endian

R/W

b6 bLcd_EPO Big or Little Endian Pixel Ordering within Byte
Selects pixel endian ordering within byte for pixels 1, 2 4 bpp only.

0: Little endian
1: Big endian

R/W

b5 bLcd_RGB Select RGB or BGR Format Mode in Palette
0: RGB mode. Red and Blue data out of Palette NOT swapped
1: BGR mode. Red and Blue data swapped in Output Formatter

R/W

b4 to b2 bLcd_BPP LCD Bits Per Pixel
3’b000: 1 bpp, 2 16-bit entries of Palette used
3’b001: 2 bpp, 4 16-bit entries of Palette used
3’b010: 4 bpp, 16 16-bit entries of Palette used
3’b011: 8 bpp, 256 16-bit entries of Palette used
3’b100: 16 bpp, No Palette lookup table used
3’b101: 18 bpp, No Palette lookup table used
3’b110: 24 bpp, No Palette lookup table used
3’b111: Reserved

R/W

b1 bLcd_LPE LCD Power Enable.
Directly drives output LCD_PE.
Typically used to enable power to the LCD panel.

0: LCD Power Disabled
1: LCD Power Enabled

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 409 of 637
Dec 29, 2021

Table 8.3 rLcd_CR1 Register Contents (3/3)

Bit Position Bit Name Function R/W

b0 bLcd_LCE LCD Controller Enable
0: LCD Controller Disabled
1: LCD Controller Enabled

Panel signals released to active levels and first frame fetch and display
commences.

Note)
● When bLcd_LCE = 0, CPU should initialize:

Horizontal and vertical Timing rLcd_HTR, rLcd_VTR1, rLcd_VTR2 registers.
Extended Horizontal and vertical Timing rLcd_HPPLOR and rLcd_HVTER
registers.
Pixel Clock RESET released to inactive (no reset state) in rLcd_PCTR register.
DMA controller register (rLcd_DBAR).
Palette Register.

● While bLcd_LCE = 0, LCD panel signals LCD_PCLK, LCD_HSYNC, LCD_VSYNC,
LCD_DE, LCD_R[7:0], LCD_G[7:0] and LCD_B[7:0] are held to logic 0.

● When bLcd_LCE goes from 1 to 0, LCD timing unit waits for current frame display
to finish before forcing panel signals to logic 0.

Caution) Once bLcd_LCE is set to 1, bLcd_LCE must remain 1 throughout the
duration of display operation. bLcd_LCE can only be brought low just prior
to power-down. bLcd_LCE CANNOT be set to 1, then followed by cleared
to 0 (in order to re-configure the controller), then be followed by set to 1
again.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 410 of 637
Dec 29, 2021

8.4.2 rLcd_HTR — Horizontal Timing Register
See Figure 8.2, LCD Horizontal Timing and Section 8.5.3, Timing and Control about the timing.

Address: 5300 4008h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bLcd_HSW bLcd_HBP

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bLcd_PPL bLcd_HFP

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.4 rLcd_HTR Register Contents

Bit Position Bit Name Function R/W

b31 to b24 bLcd_HSW Horizontal Sync Width
● Width of LCD_HSYNC in LCD_PCLK clock periods
● Valid values 0 to 255
● Program with LCD_HSYNC desired sync width minus 1

Note) See bLcd_HSWE of rLcd_HVTER register (Horizontal Sync Width Extension)
for the 2-bit extension to bLcd_HSW.

R/W

b23 to b16 bLcd_HBP Horizontal Back Porch
● Number of LCD_PCLK clock periods to wait from end of horizontal Sync Width to

beginning of first pixel in a line for display, or LCD_DE active
● Valid values 0 to 255

Note) See bLcd_HBPE of rLcd_HVTER register (Horizontal Back Porch Extension)
for the 2-bit extension to bLcd_HBP.

R/W

b15 to b8 bLcd_PPL Horizontal Pixels-Per-Line
● Number of pixels per line
● Actual pixels-per-line = 16 × bLcd_PPL.
● Maximum pixels-per-line = 16 × 255 = 4080
● Valid values 1 to 255
When bLcd_HPOE is set to 1 in rLcd_HPPLOR register (Horizontal Pixels-Per-Line
Override), the bLcd_HPPLO field overrides bLcd_PLL field.
bLcd_HPPLO used for panels with pixels-per-line not divisible by 16.

R/W

b7 to b0 bLcd_HFP Horizontal Front Porch
● Number of LCD_PCLK clock periods to add from end of LCD_DE active period to

beginning of LCD_HSYNC
● Valid values 0 to 255

Note) See bLcd_HFPE of rLcd_HVTER register (Horizontal Front Porch Extension)
for the 2-bit extension to bLcd_HFP.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 411 of 637
Dec 29, 2021

8.4.3 rLcd_VTR1 — Vertical1 Timing Register
See Figure 8.3, LCD Vertical Timing and Section 8.5.3, Timing and Control about the timing.

Address: 5300 400Ch

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — bLcd_VBP

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bLcd_VFP bLcd_VSW

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.5 rLcd_VTR1 Register Contents

Bit Position Bit Name Function R/W

b31 to b24 Reserved Read as 0. R

b23 to b16 bLcd_VBP Vertical Back Porch
● Number of LCD_HSYNC line periods to wait from end of Vertical Sync Width to

beginning of first line with active pixels for display
● Valid values 0 to 255

Note) See bLcd_VBPE of rLcd_HVTER register (Vertical Back Porch Extension) for
the 2-bit extension to bLcd_VBP.

R/W

b15 to b8 bLcd_VFP Vertical Front Porch
● Number of LCD_HSYNC line periods at end of frame, before LCD_VSYNC active

period
● Valid values 0 to 255

Note) See bLcd_VFPE of rLcd_HVTER register (Vertical Front Porch Extension) for
the 2-bit extension to bLcd_VFP.

R/W

b7 to b0 bLcd_VSW Vertical Sync Width:
● Width of LCD_VSYNC pulse in LCD_HSYNC line periods
● Valid values 0 to 255

Note) See bLcd_VSWE of rLcd_HVTER register (Vertical Sync Width Extension) for
the 2-bit extension to bLcd_VSW.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 412 of 637
Dec 29, 2021

8.4.4 rLcd_VTR2 — Vertical2 Timing Register
See Figure 8.3, LCD Vertical Timing and Section 8.5.3, Timing and Control about the timing.

Address: 5300 4010h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — bLcd_LPP

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.6 rLcd_VTR2 Register Contents

Bit Position Bit Name Function R/W

b31 to b12 Reserved Read as 0. R

b11 to b0 bLcd_LPP Lines-Per-Panel
● Number of active lines per frame in a panel
● Valid values 1 to 4095 lines

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 413 of 637
Dec 29, 2021

8.4.5 rLcd_PCTR — Pixel Clock Timing Register

Address: 5300 4014h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — bLcd_P
CR — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.7 rLcd_PCTR Register Contents

Bit Position Bit Name Function R/W

b31 to b11 Reserved Read as 0. R

b10 bLcd_PCR Pixel Clock Domain Reset
0: Pixel Clock RESET held active (reset state)

All logic on the Pixel Clock domain held in reset
1: Pixel Clock RESET released to inactive (no reset state).

In this case, after programming configuration register, the LCD Controller can be
started.

All logic on the Pixel Clock domain held in reset when bLcd_PCR = 0. The reference
clock LCD_ECLK of Pixel Clock domain should be programmed in System Controller
with frequency required depending on LCD resolution. When clock is configured and
stabilized, then the reset for the Pixel Clock domain can be de-asserted via write with
bLcd_PCR set to 1.

R/W

b9 to b0 Reserved Read as 0. R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 414 of 637
Dec 29, 2021

8.4.6 rLcd_ISR — Interrupt Status Register Before Masking
Writing 1 to this bit clears it, no action if writing 0.

Address: 5300 4018h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — bLcd_L
DD

bLcd_B
AU

bLcd_V
CT

bLcd_M
BE

bLcd_F
ER

bLcd_IF
O

bLcd_IF
U

bLcd_O
FO

bLcd_O
FU

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.8 rLcd_ISR Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b9 Reserved Read as 0. R

b8 bLcd_LDD LCD Controller Disable Done Interrupt Status Before Masking (AND logic)
When bLcd_LCE in rLcd_CR1 register goes from 1 to 0 (from LCD Controller active to
inactive mode), LCD timing unit waits for current frame being displayed to finish before
LCD Controller goes into inactive mode and output signals to panel forced to logic 0.
Once LCD Controller goes into inactive mode, bLcd_LDD is set to 1 and an interrupt is
generated (if not masked).

0: LCD Controller has not been disabled
1: LCD Controller has been disabled generates LCDC_Int (if not masked)

R/W

b7 bLcd_BAU DMA Base Address field Update To bLcd_DCAR Interrupt Status Before Masking
(AND logic)

0: DMA Base Address field (bLcd_DBAR) NOT transferred to Current Address field
(bLcd_DCAR)

1: DMA Base Address field (bLcd_DBAR) transferred to Current Address field
(bLcd_DCAR) generates LCDC_Int (if not masked)

R/W

b6 bLcd_VCT Vertical Compare Triggered Interrupt Status Before Masking (AND logic)
0: When Vertical Scan Compare programmed, trigger not reached
1: When Vertical Scan Compare programmed, trigger reached generates

LCDC_Int (if not masked)
See rLcd_ISCR register definition for Vertical Scan Compare programming triggers.

R/W

b5 bLcd_MBE DMA Master AHB Bus Error Interrupt Status Before Masking (AND logic)
0: No Error
1: DMA Master AHB Bus encountered an error generates LCDC_Int (if not

masked)

R/W

b4 bLcd_FER Input or Output FIFO Error, Underrun or Overrun Interrupt Status Before Masking
(AND logic)

0: No Error
1: Any of bLcd_OFU, bLcd_OFO, bLcd_IFU, bLcd_IFO error (OR logics) bits set to

active 1, set also bLcd_FER and generates LCDC_Int (if not masked)

R/W

b3 bLcd_IFO Input FIFO Overrun Interrupt Status Before Masking (AND logic)
0: No Error
1: Input FIFO Overrun Error generates LCDC_Int (if not masked)

R/W

b2 bLcd_IFU Input FIFO Underrun Interrupt Status Before Masking (AND logic)
0: No Error
1: Input FIFO Underrun Error generates LCDC_Int (if not masked)

R/W

b1 bLcd_OFO Output FIFO Overrun Interrupt Status Before Masking. (AND logic)
0: No Error
1: Output FIFO Overrun Error generates LCDC_Int (if not masked)

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 415 of 637
Dec 29, 2021

Table 8.8 rLcd_ISR Register Contents (2/2)

Bit Position Bit Name Function R/W

b0 bLcd_OFU Output FIFO Underrun Interrupt Status Before Masking (AND logic)
0: No Error
1: Output FIFO Underrun Error generates LCDC_Int (if not masked)

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 416 of 637
Dec 29, 2021

8.4.7 rLcd_IMR — Interrupt Mask Register

Address: 5300 401Ch

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — bLcd_L
DDM

bLcd_B
AUM

bLcd_V
CTM

bLcd_M
BEM

bLcd_F
ERM

bLcd_IF
OM

bLcd_IF
UM

bLcd_O
FOM

bLcd_O
FUM

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.9 rLcd_IMR Register Contents

Bit Position Bit Name Function R/W

b31 to b9 Reserved Read as 0. R

b8 bLcd_LDDM LCD Controller Disable Done, Mask Enable/Disable
0: Disable LDD interrupt
1: Enable LDD interrupt (Driven by bLcd_LDD)

R/W

b7 bLcd_BAUM DMA Base Address Register Update To bLcd_DCAR, Mask Enable/Disable
0: Disable BAU interrupt
1: Enable BAU interrupt (Driven by bLcd_BAU)

R/W

b6 bLcd_VCTM Vertical Compare Triggered, Mask Enable/Disable
0: Disable VCT interrupt
1: Enable VCT interrupt (Driven by bLcd_VCT)

R/W

b5 bLcd_MBEM DMA Master AHB Bus Error, Mask Enable/Disable
0: Disable MBE interrupt
1: Enable MBE interrupt (Driven by bLcd_MBE)

R/W

b4 bLcd_FERM Input or Output FIFO Error, Underrun or Overrun, Mask Enable/Disable
0: Disable FER interrupt
1: Enable FER interrupt (Driven by bLcd_FER)

R/W

b3 bLcd_IFOM Input FIFO Overrun, Mask Enable/Disable
0: Disable IFO interrupt
1: Enable IFO interrupt (Driven by bLcd_IFO)

R/W

b2 bLcd_IFUM Input FIFO Underrun, Mask Enable/Disable
0: Disable IFU interrupt
1: Enable IFU interrupt (Driven by bLcd_IFU)

R/W

b1 bLcd_OFOM Output FIFO Overrun, Mask Enable/Disable
0: Disable OFO interrupt
1: Enable OFO interrupt (Driven by bLcd_OFO)

R/W

b0 bLcd_OFUM Output FIFO Underrun, Mask Enable/Disable
0: Disable OFU interrupt
1: Enable OFU interrupt (Driven by bLcd_OFU).

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 417 of 637
Dec 29, 2021

8.4.8 rLcd_IVR — Interrupt Status Register After Masking

Address: 5300 4020h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — bLcd_L
DDV

bLcd_B
AUV

bLcd_V
CTV

bLcd_M
BEV

bLcd_F
ERV

bLcd_IF
OV

bLcd_IF
UV

bLcd_O
FOV

bLcd_O
FUV

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.10 rLcd_IVR Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b9 Reserved Read as 0. R

b8 bLcd_LDDV LCD Controller Disable Done Interrupt Status After Masking (AND logic)
When bLcd_LCE in rLcd_CR1 register goes from 1 to 0 (from LCD Controller active to
inactive mode), LCD timing unit waits for current frame being displayed to finish before
LCD Controller goes into inactive mode and output signals to panel forced to logic 0.
Once LCD Controller goes into inactive mode, if interrupt not masked, bLcd_LDDV is
set to 1 and an interrupt is generated.

0: LCD Controller has not been disabled
1: LCD Controller has been disabled generates LCDC_Int

R

b7 bLcd_BAUV DMA Base Address Register Update To bLcd_DCAR Interrupt Status After Masking
(AND logic)

0: DMA Base Address Register (bLcd_DBAR) NOT transferred to Current Address
Register (bLcd_DCAR)

1: DMA Base Address Register (bLcd_DBAR) transferred to Current Address
Register (bLcd_DCAR) generates LCDC_Int

R

b6 bLcd_VCTV Vertical Compare Triggered Interrupt Status After Masking (AND logic)
0: When Vertical Scan Compare programmed, trigger not reached
1: When Vertical Scan Compare programmed, trigger reached generates

LCDC_Int
See rLcd_ISCR register definition for Vertical Scan Compare programming triggers.

R

b5 bLcd_MBEV DMA Master AHB Bus Error Interrupt Status After Masking (AND logic)
0: No Error
1: DMA Master AHB Bus encountered an error generates LCDC_Int

R

b4 bLcd_FERV Input or Output FIFO Error, Underrun or Overrun Interrupt Status After Masking. (AND
logic)

0: No Error
1: Any of bLcd_OFUV, bLcd_OFOV, bLcd_IFUV, bLcd_IFOV error (OR logics) bits

set to active 1 set also bLcd_FERV and generates LCDC_Int

R

b3 bLcd_IFOV Input FIFO Overrun Interrupt Status After Masking (AND logic)
0: No Error
1: Input FIFO Overrun Error generates LCDC_Int

R

b2 bLcd_IFUV Input FIFO Underrun Interrupt Status After Masking (AND logic)
0: No Error
1: Input FIFO Underrun Error generates LCDC_Int

R

b1 bLcd_OFOV Output FIFO Overrun Interrupt Status After Masking (AND logic)
0: No Error
1: Output FIFO Overrun Error generates LCDC_Int

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 418 of 637
Dec 29, 2021

Table 8.10 rLcd_IVR Register Contents (2/2)

Bit Position Bit Name Function R/W

b0 bLcd_OFUV Output FIFO Underrun Interrupt Status After Masking (AND logic)
0: No Error
1: Output FIFO Underrun Error generates LCDC_Int

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 419 of 637
Dec 29, 2021

8.4.9 rLcd_ISCR — Interrupt Scan Compare Register

Address: 5300 4024h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — bLcd_VSC

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.11 rLcd_ISCR Register Contents

Bit Position Bit Name Function R/W

b31 to b3 Reserved Read as 0. R

b2 to b0 bLcd_VSC Vertical Scan Compare
3’b000: bLcd_VSC inactive
3’b100: Start of Vertical Sync Width (bLcd_VSW) pulse
3’b101: Start of Vertical Back Porch (bLcd_VBP)
3’b110: Start of Active Frame Window
3’b111: Start of Vertical Front Porch (bLcd_VFP)
3’b001, 3’b010, 3’b011: Reserved

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 420 of 637
Dec 29, 2021

8.4.10 rLcd_DBAR — DMA Start Base Address of Frame Buffer Memory

Address: 5300 4028h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bLcd_DBAR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bLcd_DBAR — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.12 rLcd_DBAR Register Contents

Bit Position Bit Name Function R/W

b31 to b3 bLcd_DBAR DMA Base Address
Start address of frame buffer memory.
This value is transferred to bLcd_DCAR at the start of each vertical frame period.
bLcd_DBAR should be written when the LCD Controller is disabled (bLcd_LCE set to
0) or immediately after the bLcd_BAU is set to 1, signifying bLcd_DBAR transferred to
bLcd_DCAR register.

R/W

b2 to b0 Reserved Read as 0. R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 421 of 637
Dec 29, 2021

8.4.11 rLcd_DCAR — DMA Current Base Address on Going

Address: 5300 402Ch

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bLcd_DCAR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bLcd_DCAR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.13 rLcd_DCAR Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bLcd_DCAR DMA Current Address
Current address DMA controller is accessing data from frame buffer memory.
Continuously reflects the next 64 bits frame buffer word to be loaded into the input
FIFO. bLcd_DBAR is transferred to bLcd_DCAR at the start of each vertical frame
period.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 422 of 637
Dec 29, 2021

8.4.12 rLcd_DEAR — DMA End Address

Address: 5300 4030h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bLcd_DEAR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bLcd_DEAR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.14 rLcd_DEAR Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bLcd_DEAR DMA End Address
End address of frame buffer memory. Compared to register bLcd_DCAR to determine
last frame buffer memory address to read from.

Caution)
bLcd_DEAR value must be configured with End of Block to transfer + 1 + 8
Example:
● Start of Block is 32’h5000_0000
● End of Block is 32’h5000_FFFF
● Size Block: 64 KB (32’h1_0000)
Please configures:
● bLcd_DBAR: 32’h5000_0000
● bLcd_DEAR: 32’h5001_0008 (+1+8)

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 423 of 637
Dec 29, 2021

8.4.13 rLcd_PWMFR_0 — PWM0 Frequency Register

Address: 5300 4034h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — —
bLcd_P
WMFC

E_0
bLcd_PWMFCD_0

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bLcd_PWMFCD_0

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.15 rLcd_PWMFR_0 Register Contents

Bit Position Bit Name Function R/W

b31 to b23 Reserved Read as 0. R

b22 bLcd_PWMFCE_0 PWM0 Frequency Clock Enable
0: LCD_PWM[0] inactive
1: LCD_PWM[0] active

Note)
● The output of this PWM0 unit drives the BLINK logic.
● This mode is active when bLcd_BlinkOn is set to “1” and managed by

bLcd_BlinkMode inside Lcd_GPIOR register.

R/W

b21 to b0 bLcd_PWMFCD_0 PWM0 Frequency Clock (PWM_CLK) Divider
The frequency of the internal PWM0 unit derived from LCD_ECLK clock.

0: LCD_ECLK / (256 × 1)
1: LCD_ECLK / (256 × 2)
2: LCD_ECLK / (256 × 3)
∙∙∙ ∙∙∙

Note)
● The output of this PWM0 unit drives the BLINK logic.
● This mode is active when bLcd_BlinkOn is set to “1” and managed by

bLcd_BlinkMode inside Lcd_GPIOR register.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 424 of 637
Dec 29, 2021

8.4.14 rLcd_PWMDCR_0 — PWM0 Duty Cycle Register

Address: 5300 4038h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bLcd_PWMDC_0

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.16 rLcd_PWMDCR_0 Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 to b0 bLcd_PWMDC_0 PWM0 Duty Cycle Register
The duty cycle of LCD_PWM[0] output.

0: 1/256
1: 2/256
2: 3/256
∙∙∙ ∙∙∙

Note)
● The output of this PWM0 unit drives the BLINK logic.
● This mode is active when bLcd_BlinkOn is set to “1” and managed by

bLcd_BlinkMode inside Lcd_GPIOR register.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 425 of 637
Dec 29, 2021

8.4.15 rLcd_HVTER — Horizontal and Vertical Timing Extension Register
See Figure 8.3, LCD Vertical Timing, Figure 8.2, LCD Horizontal Timing, and Section 8.5.3, Timing and
Control about the timing.

Address: 5300 4044h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — bLcd_VSWE — — — — — — bLcd_HSWE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — bLcd_VBPE — — bLcd_VFPE — — bLcd_HBPE — — bLcd_HFPE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.17 rLcd_HVTER Register Contents

Bit Position Bit Name Function R/W

b31 to b26 Reserved Read as 0. R

b25, b24 bLcd_VSWE Vertical Sync Width Extension
Append as two most significant bits to bLcd_VSW in rLcd_VTR1 register (Vertical
Sync Width), forming 10-bit field defining the complete Vertical Sync Width value.

R/W

b23 to b18 Reserved Read as 0. R

b17, b16 bLcd_HSWE Horizontal Sync Width Extension
Append as two most significant bits to bLcd_HSW in rLcd_HTR register (Horizontal
Sync Width), forming 10-bit field defining the complete Horizontal Sync Width value.

R/W

b15, b14 Reserved Read as 0. R

b13, b12 bLcd_VBPE Vertical Back Porch Extension
Append as two most significant bits to bLcd_VBP in rLcd_VTR1 register (Vertical Back
Porch), forming 10-bit field defining the complete Vertical Back Porch value.

R/W

b11, b10 Reserved Read as 0. R

b9, b8 bLcd_VFPE Vertical Front Porch Extension
Append as two most significant bits to bLcd_VFP in rLcd_VTR1 register (Vertical Front
Porch), forming 10-bit field defining the complete Vertical Front Porch value

R/W

b7, b6 Reserved Read as 0. R

b5, b4 bLcd_HBPE Horizontal Back Porch Extension
Append as two most significant bits to bLcd_HBP in rLcd_HTR register (Horizontal
Back Porch), forming 10-bit field defining the complete Horizontal Back Porch value.

R/W

b3, b2 Reserved Read as 0. R

b1, b0 bLcd_HFPE Horizontal Front Porch Extension
Append as two most significant bits to bLcd_HFP in rLcd_HTR register (Horizontal
Front Porch), forming 10-bit field defining the complete Horizontal Front Porch value.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 426 of 637
Dec 29, 2021

8.4.16 rLcd_HPPLOR — Horizontal Pixels-Per-Line Override Control
See Figure 8.2, LCD Horizontal Timing and Section 8.5.3, Timing and Control about the timing.

Address: 5300 4048h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bLcd_H
POE — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — bLcd_HPPLO

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.18 rLcd_HPPLOR Register Contents

Bit Position Bit Name Function R/W

b31 bLcd_HPOE Horizontal Pixels-Per-Line Override Enable
0: Horizontal Pixels-Per-Line Override Disable

bLcd_PPL field of rLcd_HTR register used
Used for panels with pixels-per-line divisible by 16

1: Horizontal Pixels-Per-Line Override Enable.
bLcd_HPPLO field of rLcd_HPPLOR overrides bLcd_PPL field
Used for panels with pixels-per-line not divisible by 16

R/W

b30 to b12 Reserved Read as 0. R

b11 to b0 bLcd_HPPLO Horizontal Pixels-Per-Line Override
Number of Actual pixels per line.
Overrides bLcd_PPL field of rLcd_HTR register when bLcd_HPOE is set to 1.
For panels with pixels-per-line not divisible by 16, set bLcd_HPOE = 1 and
bLcd_HPPLO to the exact number of pixels-per-line.
Thus, for an 800 × 600 panel, use bLcd_HPPLO set to 800.
Valid values 1 to 4095 pixels per line.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 427 of 637
Dec 29, 2021

8.4.17 rLcd_PWMFR_1 — PWM1 Frequency Register

Address: 5300 404Ch

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — —
bLcd_P
WMFC

E_1
bLcd_PWMFCD_1

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bLcd_PWMFCD_1

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.19 rLcd_PWMFR_1 Register Contents

Bit Position Bit Name Function R/W

b31 to b23 Reserved Read as 0. R

b22 bLcd_PWMFCE_1 PWM1 Frequency Clock Enable
0: LCD_PWM[1] inactive
1: LCD_PWM[1] active

R/W

b21 to b0 bLcd_PWMFCD_1 PWM1 Frequency Clock (PWM_CLK) Divider
The frequency of the internal PWM1 unit derived from LCD_ECLK clock.

0: LCD_ECLK / (256 × 1)
1: LCD_ECLK / (256 × 2)
2: LCD_ECLK / (256 × 3)
∙∙∙ ∙∙∙

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 428 of 637
Dec 29, 2021

8.4.18 rLcd_PWMDCR_1 — PWM1 Duty Cycle Register

Address: 5300 4050h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — bLcd_PWMDC_1

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.20 rLcd_PWMDCR_1 Register Contents

Bit Position Bit Name Function R/W

b31 to b8 Reserved Read as 0. R

b7 to b0 bLcd_PWMDC_1 PWM1 Duty Cycle Register
The duty cycle of LCD_PWM[1] output.

0: 1/256
1: 2/256
2: 3/256
∙∙∙ ∙∙∙

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 429 of 637
Dec 29, 2021

8.4.19 rLcd_GPIOR — Blink Control

Address: 5300 41F8h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — —
bLcd_Bl
inkMod

e

bLcd_Bl
inkOn

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.21 rLcd_GPIOR Register Contents

Bit Position Bit Name Function R/W

b31 to b2 Reserved Read as 0. R

b1 bLcd_BlinkMode Blink Brightness Mode
1: Half Bright Blink, switching between ON and OFF:
[ON]
 LCD_R[7:0] = {R7,R6,R5,R4,R3,R2,R1,R1}, R1 value is duplicated on

LCD_R[1:0]
 LCD_G[7:0] = {G7,G6,G5,G4,G3,G2,G1,G0}
 LCD_B[7:0] = {B7,B6,B5,B4,B3,B2,B1,B1}, B1 value is duplicated on LCD_B[1:0]
[OFF]
 LCD_R[7:0] = {0,R7,R6,R5,R4,R3,R2,R1}
 LCD_G[7:0] = {0,G7,G6,G5,G4,G3,G2,G1}
 LCD_B[7:0] = {0,B7,B6,B5,B4,B3,B2,B1}
0: Black blink, switching between ON and OFF:
[ON]
 LCD_R[7:0] = {R7,R6,R5,R4,R3,R2,R1,R1}, R1 value is duplicated on

LCD_R[1:0]
 LCD_G[7:0] = {G7,G6,G5,G4,G3,G2,G1,G0}
 LCD_B[7:0] = {B7,B6,B5,B4,B3,B2,B1,B1}, B1 value is duplicated on LCD_B[1:0]
[OFF]
 LCD_R[7:0] = 8’b00000000
 LCD_G[7:0] = 8’b00000000
 LCD_B[7:0] = 8’b00000000

The blink mode is active when bLcd_BlinkOn is set to “1”.
The blink frequency depends bLcd_PWMFCD_0 and bLcd_PWMFCE_0 inside
rLcd_PWMFR_0 register.

R/W

b0 bLcd_BlinkOn Blink function Enable or Disable
0: Blink Mode disabled
1: Blink Mode enabled

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 430 of 637
Dec 29, 2021

8.4.20 rLcd_CIR — Core Identification Register

Address: 5300 41FCh

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — bLcd_MN

Value after reset 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bLcd_BW bLcd_Bl bLcd_REV

Value after reset 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1

Table 8.22 rLcd_CIR Register Contents

Bit Position Bit Name Function R/W

b31 to b24 Reserved Read as 0. R

b23 to b16 bLcd_MN Core Identification Register - Model Number
8’h90: Model Number

R

b15 to b12 bLcd_BW Core Identification Register - Bit Width of DMA Master Bus
4’h4: 64 Bits

R

b11 to b8 bLcd_Bl Core Identification Register - DMA Master Bus Interface
4’h1: AHB_BUS

R

b7 to b0 bLcd_REV Core Identification Register - Revision
8’h0F: Version 1.15

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 431 of 637
Dec 29, 2021

8.4.21 Coding Palette (Palette registers) Description
CAUTION

● The coding palette depends on the selected color mode.

● The symbol mapped to the address of the coding palette is different for each mode.

● Also, the meaning (function) of the fields depends on the color mode.

● The tables below provide information for all color modes.

See Figure 8.7, LCD Output Formatting, bLcd_BPP: 1, 2, 4, 8 table.

See Figure 8.8, LCD Output Formatting, bLcd_BPP: 16, 18, 24 table.

See Section 8.5.8, Palette Lookup Table.

See Section 8.5.9, Output FIFO and Formatter.

8.4.21.1 rLcd_PAL_RGB_555 — Coding Palette when RGB 5:5:5 Mode
Coding Palette setting, bLcd_RGB = 0, bLcd_OPS0 = 1 in rLcd_CR1 register

Address: 5300 4200h - 5300 43FCh

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — bLcd_RED1 bLcd_GREEN1 bLcd_BLUE1

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — bLcd_RED0 bLcd_GREEN0 bLcd_BLUE0

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.23 rLcd_PAL_RGB_555 Register Contents

Bit Position Bit Name Function R/W

b31 Reserved Read as 0. R

b30 to b26 bLcd_RED1 Red Data palette: 5 bits R/W

b25 to b21 bLcd_GREEN1 Green Data palette: 5 bits R/W

b20 to b16 bLcd_BLUE1 Blue Data palette: 5 bits R/W

b15 Reserved Read as 0. R

b14 to b10 bLcd_RED0 Red Data palette: 5 bits R/W

b9 to b5 bLcd_GREEN0 Green Data palette: 5 bits R/W

b4 to b0 bLcd_BLUE0 Blue Data palette: 5 bits R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 432 of 637
Dec 29, 2021

8.4.21.2 rLcd_PAL_RGB_565 — Coding Palette when RGB 5:6:5 Mode
Coding Palette setting, bLcd_RGB = 0, bLcd_OPS0 = 0 in rLcd_CR1 register

Address: 5300 4200h - 5300 43FCh

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bLcd_RED1 bLcd_GREEN1 bLcd_BLUE1

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bLcd_RED0 bLcd_GREEN0 bLcd_BLUE0

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.24 rLcd_PAL_RGB_565 Register Contents

Bit Position Bit Name Function R/W

b31 to b27 bLcd_RED1 Red Data palette: 5 bits R/W

b26 to b21 bLcd_GREEN1 Green Data palette: 6 bits R/W

b20 to b16 bLcd_BLUE1 Blue Data palette: 5 bits R/W

b15 to b11 bLcd_RED0 Red Data palette: 5 bits R/W

b10 to b5 bLcd_GREEN0 Green Data palette: 6 bits R/W

b4 to b0 bLcd_BLUE0 Blue Data palette: 5 bits R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 433 of 637
Dec 29, 2021

8.4.21.3 rLcd_PAL_BGR_555 — Coding Palette when BGR 5:5:5 Mode
Coding Palette setting, bLcd_RGB = 1, bLcd_OPS0 = 1 in rLcd_CR1 register

Address: 5300 4200h - 5300 43FCh

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — bLcd_BLUE1 bLcd_GREEN1 bLcd_RED1

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — bLcd_BLUE0 bLcd_GREEN0 bLcd_RED0

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.25 rLcd_PAL_BGR_555 Register Contents

Bit Position Bit Name Function R/W

b31 Reserved Read as 0. R

b30 to b26 bLcd_BLUE1 Blue Data palette: 5 bits R/W

b25 to b21 bLcd_GREEN1 Green Data palette: 5 bits R/W

b20 to b16 bLcd_RED1 Red Data palette: 5 bits R/W

b15 Reserved Read as 0. R

b14 to b10 bLcd_BLUE0 Blue Data palette: 5 bits R/W

b9 to b5 bLcd_GREEN0 Green Data palette: 5 bits R/W

b4 to b0 bLcd_RED0 Red Data palette: 5bits R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 434 of 637
Dec 29, 2021

8.4.21.4 rLcd_PAL_BGR_565 — Coding Palette when BGR 5:6:5 Mode
Coding Palette setting, bLcd_RGB = 1, bLcd_OPS0 = 0 in rLcd_CR1 register

Address: 5300 4200h - 5300 43FCh

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bLcd_BLUE1 bLcd_GREEN1 bLcd_RED1

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bLcd_BLUE0 bLcd_GREEN0 bLcd_RED0

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.26 rLcd_PAL_BGR_565 Register Contents

Bit Position Bit Name Function R/W

b31 to b27 bLcd_BLUE1 Blue Data palette: 5 bits R/W

b26 to b21 bLcd_GREEN1 Green Data palette: 6 bits R/W

b20 to b16 bLcd_RED1 Red Data palette: 5 bits R/W

b15 to b11 bLcd_BLUE0 Blue Data palette: 5 bits R/W

b10 to b5 bLcd_GREEN0 Green Data palette: 6 bits R/W

b4 to b0 bLcd_RED0 Red Data palette: 5 bits R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 435 of 637
Dec 29, 2021

8.5 Operation

8.5.1 Main Features Description
The LCD Controller Synoptic figure depicts the LCD Controller architecture.

The LCD Controller is first initialized by the processor via the Slave Bus interface. This interface is a read/write
interface in which the LCD Controller can “only respond and not initiate bus transactions”.

Minimal setup of the Control and Status Registers are:

● The timing registers for horizontal and vertical timing signals (rLcd_HTR, rLcd_VTR1 and rLcd_VTR2)

● The DMA Base Address Registers (rLcd_DBAR)

● The Pixel Clock Timing Register (rLcd_PCTR)

After that, bLcd_LCE in the control register (rLcd_CR1) must be set and the LCD Controller runs, accessing frame
buffer memory and processing and piping the data through to the display.

If the Palette is used, it must first be loaded. The Palette can be loaded statically by the processor via the Slave
Interface.

The start of each frame begins with an internal start sync pulse from the Timing & Control Unit, coincident with the
vertical synchronization signal. This start sync pulse initiates the DMA controller to start accessing data from frame
buffer memory via the DMA Master Interface. The start sync pulse also initiates the Pixel Unpack to start accepting
data from the read side of the input FIFO.

The Master Interface initiates read transactions with the master AHB bus. There are programmable options for 4, 8, 16
words (64 bits word) bursts read lengths to improve bus utilization. Received frame data is written into the input FIFO.
The FIFO bridges the two clock domains, with the LCD panel usually running at LCD_ECLK with tolerances, and the
processor system bus running at LCD_HCLK.

The Pixel Unpack will unpack 1, 2, 4, 8, 16, 18, or 24 bits per pixel (bpp) words from the 64-bit frame buffer word.
Depending on the bpp programming and whether the Palette is used, the pixel data is sent to the Output FIFO either via
the Palette (where it is transformed via a color lookup table) or directly from Pixel Unpack.

The Output FIFO queues ready pixels for synchronization with the LCD panel timing signals. The output of the FIFO
drives the Output Formatter, which formats the RGB data for 18/24-bit panel interfaces.

The remaining sections present more detailed information of each block processing of the pixel data flow.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 436 of 637
Dec 29, 2021

8.5.2 Bandwidth Limitation
The principal limitation on the LCD Panel supported is the available memory bandwidth.

The LCD Controller supports a variety of user programmable LCD panel resolutions and encoded pixel size which
determine the frame buffer memory size and system interconnect bandwidth requirements. Table LCD Frame Buffer
Memory Size lists various LCD panel resolutions versus frame buffer bpp selection, and the required memory size.
Table LCD Bandwidth lists the corresponding required frame buffer bandwidth.

Table 8.27 LCD Bandwidth

 QVGA WQVGA VGA WVGA SVGA WSVGA XGA

Horizontal 320 480 640 800 800 1024 1024

Vertical 240 272 480 480 600 600 768

BitPerPixel Bandwidth (MB/sec @ 60 Hz)

1 0.6 1.0 2.3 2.9 3.6 4.6 5.9

2 1.2 2.0 4.6 5.8 7.2 9.2 11.8

4 2.3 3.9 9.2 11.5 14.4 18.4 23.6

8 4.6 7.8 18.4 23.0 28.8 36.8 47.2

16 9.2 15.7 36.9 46.1 57.6 73.7 94.4*1

24 (Packed) 13.8 23.5 55.3 69.1 86.4*1 110.5*1 141.6*1,*2

18 /
24 (Non-Packed)

18.4 31.3 73.7 92.2*1 115.2*1 147.4*1,*2 188.7*1,*2

Note 1. Underflow can be occurred at 4-burst transfer.

Note 2. Underflow can be occurred at 8-burst transfer.

Table 8.28 LCD Frame Buffer Memory Size

 QVGA WQVGA VGA WVGA SVGA WSVGA XGA

Horizontal 320 480 640 800 800 1024 1024

Vertical 240 272 480 480 600 600 768

BitPerPixel Frame Buffer Memory Requirement (KiB)

1 9.4 15.9 37.5 46.9 58.6 75.0 96.0

2 18.8 31.9 75.0 93.8 117.2 150.0 192.0

4 37.5 63.8 150.0 187.5 234.4 300.0 384.0

8 75.0 127.5 300.0 375.0 468.8 600.0 768.0

16 150.0 255.0 600.0 750.0 937.5 1200.0 1536.0

24 (Packed) 225.0 382.5 900.0 1125.0 1406.3 1800.0 2304.0

18 /
24 (Non-Packed)

300.0 510.0 1200.0 1500.0 1875.0 2400.0 3072.0

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 437 of 637
Dec 29, 2021

8.5.3 Timing and Control
The Timing and Control Unit utilizes the Horizontal Timing Register (rLcd_HTR) and Vertical Timing Registers 1 & 2
(rLcd_VTR1, rLcd_VTR2) and optionally Hor. & Vert. Timing Extension Register (rLcd_HVTER) and Horizontal
Timing Override Register (rLcd_HPPLOR) to generate timing signals LCD_VSYNC, LCD_HSYNC, and LCD_DE to
the LCD panel. The Timing Unit remains inactive till bLcd_LCE in Control Register 1 (rLcd_CR1) goes active. At that
point, the Timing & Control Unit runs till bLcd_LCE is de-asserted. At that time, the timing unit will keep running till
the end of the current frame, and then orderly shutdown. The Timing Unit can be re-activated with bLcd_LCE re-
asserted, but often power to the display must be re-cycled. This can be accomplished by bLcd_LPE in Control Register
1 (rLcd_CR1) connected as an enable to an external power source for the LCD panel.

bLcd_LCE also plays a role in Power Sequencing. On startup, while bLcd_LCE is inactive, timing signals LCD_PCLK,
LCD_HSYNC, LCD_VSYNC, LCD_DE and data signals LCD_R[7:0], LCD_G[7:0], LCD_B[7:0] are held to logic
zero. On bLcd_LCE shutdown, after the current frame being displayed completes and the Timing Unit halt these same
signals are forced to logic zero. At that point power can safely be removed from the LCD panel.

The Timing Unit provides interrupt bLcd_VCT which triggers on one of four timing trigger points during the vertical
scan period. The point of triggering is programmable via register Interrupt Scan Compare Register (rLcd_ISCR).

The figure below gives the definition of different parameters of LCD.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 438 of 637
Dec 29, 2021

bLcd_HSW bLcd_HBP bLcd_PPL bLcd_HFP

bLcd_HSP

LCD_HSYNC

LCD_DE bLcd_HSP: Horizontal Sync Period
bLcd_HSW: Horizontal Sync Width
bLcd_HBP: Horizontal Back Porch
bLcd_HFP: Horizontal Front Porch
bLcd_PPL: Pixels Per Line

Figure 8.2 LCD Horizontal Timing

bLcd_VSW bLcd_VBP bLcd_LPP bLcd_VFP

bLcd_VSP

LCD_VSYNC

Display
Period

bLcd_VSP: Vertical Sync Period
bLcd_VSW: Vertical Sync Width
bLcd_VBP: Vertical Back Porch
bLcd_VFP: Vertical Front Porch
bLcd_LPP: Line Per Panel

1 2 3 bLcd_LPP

LCD_DE

Figure 8.3 LCD Vertical Timing

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 439 of 637
Dec 29, 2021

8.5.4 DMA Controller and Memory Interface
The DMA Controller initializes via the internal frame start pulse with the transfer of the DMA Base Address Register
(rLcd_DBAR) to the DMA Current Address Register (rLcd_DCAR) and the commencement of the first memory
transfer transaction. The numbers of words in a burst are programmed by bLcd_FDW in Control Register 1
(rLcd_CR1). Based on bLcd_FDW and the number of empty words in the FIFO, a service request by the DMA
Controller to the Master Interface initiates a frame buffer read.

Software must program the rLcd_DEAR register with the frame buffer end address. The DMA Controller will keep
reading frame buffer words until the current address in rLcd_DCAR equals rLcd_DEAR. At that point, the DMA
Controller will halt until the next frame, where upon it will read from frame buffer starting with the address in
rLcd_DBAR.

8.5.5 Frame Buffer Organization
The frame buffer memory is located in external memory (DDR or embedded SRAM). The frame buffer attached to the
DMA Master Interface provides encoded or un-encoded pixels for display on the LCD panel.

CAUTION

● DMA Master interface connection has data bus width of 64 bits.

● See Figure 8.1, LCD Controller Synoptic.

8.5.6 Input FIFO
The size of input FIFO is 1K word depth by 64-bit width memory, see Figure 8.1, LCD Controller Synoptic.

The DMA Controller and Master Interface control the write side on the Bus Clock (LCD_HCLK) domain, while the
Pixel Unpack controls the read side on the Pixel Clock (LCD_ECLK) domain. Address pointers are used for FIFO
empty and full flag calculations as well as when there are 4, 8 or 16 empty word locations.

Based on the bLcd_FDW in Control Register 1 (rLcd_CR1) and the number of empty FIFO locations, a service request
for 4-, 8-, or 16-word bursts from memory is issued by the DMA Controller to the Master Interface.

Interrupts bLcd_IFO (Input FIFO - Overrun) and bLcd_IFU (Input FIFO - Underrun) trigger whenever there is a FIFO
write with no empty locations or read with no valid data. The write side by design cannot overrun the FIFO. The read
side unpack logic can cause an underrun, but this is due to insufficient Master Bus bandwidth or frame buffer memory
response, causing the input FIFO to go empty while there is a request for data by the unpack logic.

The first indication of a FIFO underrun due to insufficient Master Bus bandwidth or frame buffer memory response is
the bLcd_OFU (Output FIFO - Underrun).

8.5.7 Pixel Unpack
The Pixel Unpack reads 32-bit data from the input FIFO and extracts 1, 2, 4, 8, 16, 18, or 24 bits per pixel data
depending on the bLcd_BPP in Control Register 1 (rLcd_CR1). Note that 1, 2, 4, 8 bpp are encoded pixels that index an
entry into the palette while 16, 18, 24 bpp are un-encoded pixels that directly drive the LCD panel via the Output
Formatter. The LCD Controller supports big endian, little endian data formats.

With each frame, the internal start sync pulse from the Timing & Control Unit initializes the Pixel Unpack to start de
queuing words from the Input FIFO as they appear on the read side.

The table below lists the structure of the data in each Frame Buffer Word in the input FIFO corresponding to the endian
and bLcd_BPP programming combinations. For each of the three supported data formats, the Pixel Unpack extracts the
appropriate display pixel from the data word.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 440 of 637
Dec 29, 2021

The following list the three data types:

● LEB_LEP: Little Endian Frame Buffer Byte, placed in Little Endian Pixel Byte

− bLcd_EBO = 0 and bLcd_EPO = 0

● BEB_BEP: Big Endian Frame Buffer Byte, placed in Big Endian Pixel Byte

− bLcd_EBO = 1 and bLcd_EPO = x

− There is a difference in 1, 2, 4, 8, 16 bpp only

● LEB_BEP: Little Endian Frame Buffer Byte, placed in Big Endian Pixel Byte

− bLcd_EBO = 0 and bLcd_EPO = 1

− There is a difference in 1, 2, 4 bpp only

Figure 8.4 Pixel Unpack, Little Endian Frame Buffer Byte placed in Little Endian Pixel Byte

BPP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 p31 p30 p29 p28 p27 p26 p25 p24 p23 p22 p21 p20 p19 p18 p17 p16

2
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

4
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

8
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18
- - - - - - - - - - - - - - 17 16

24
- - - - - - - - 23 22 21 20 19 18 17 16

BPP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

2
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

4
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

8
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

24
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

p1 p0

p0

p0

p0

LCD Pixel Unpack and Data Structure
Little Endian Frame Buffer Byte(LEB) placed in Little Endian Pixel Byte(LEP)

bLcd_EBO=0, bLcd_EPO=0

p1 p0

p3 p2 p1 p0

p1

p0

p0

Input FIFO Read Side Output Bits

p7 p6 p5 p4 p3 p2

p7 p6 p5 p4

p3 p2

Input FIFO Read Side Output Bits

p15 p14 p13 p12 p11 p10 p9 p8

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 441 of 637
Dec 29, 2021

Figure 8.5 Pixel Unpack, Big Endian Frame Buffer Byte placed in Big Endian Pixel Byte

BPP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

2
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

4
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

8
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18
- - - - - - - - - - - - - - 17 16

24
- - - - - - - - 23 22 21 20 19 18 17 16

BPP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p31

2
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

4
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

8
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

24
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LCD Pixel Unpack and Data Structure
Big Endian Frame Buffer Byte(BEB) placed in Big Endian Pixel Byte(BEP)

bLcd_EBO=1, bLcd_EPO=x

Input FIFO Read Side Output Bits

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3

p0 p1

p0

p0

p0

Input FIFO Read Side Output Bits

p8 p9 p10 p11 p12 p13 p14 p15

p1

p0

p0

p4 p5 p6 p7

p2 p3

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 442 of 637
Dec 29, 2021

Figure 8.6 Pixel Unpack, Little Endian Frame Buffer Byte placed in Big Endian Pixel Byte

8.5.8 Palette Lookup Table
The Palette is a 256 entry by 16-bit lookup table implemented as a two port 128 entry by 32-bit RAM. One port ties in
with the Bus Clock (LCD_HCLK) domain, the Slave Interface via the processor can fill the Palette. The second port ties
in with the Pixel Clock (LCD_ECLK) domain, enabling the Palette RAMs contents to be indexed by the Pixel Unpack
encoded pixel output. The Palette’s output flows to the Output Formatter.

CAUTION

● DMA Master interface connection has data bus width of 64 bits.

● See Figure 8.1, LCD Controller Synoptic.

Selection of which 16-bit half of the 32-bit Palette entry is determined by the endian setting and the least significant bit
of the indexing encoded pixel input. bLcd_EBO in Control Register 1 (rLcd_CR1) determines the endian setting.

● In little endian mode, when the input index encoded pixel least significant bit is zero, the lower 16-bit palette entry is
selected.

− See Figure 8.6, Pixel Unpack, Little Endian Frame Buffer Byte placed in Big Endian Pixel Byte
table.

BPP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 p24 p25 p26 p27 p28 p29 p30 p31 p16 p17 p18 p19 p20 p21 p22 p23

2
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

4
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

8
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18
- - - - - - - - - - - - - - 17 16

24
- - - - - - - - 23 22 21 20 19 18 17 16

BPP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 p8 p9 p10 p11 p12 p13 p14 p15 p0 p1 p2 p3 p4 p5 p6 p7

2
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

4
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

8
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

24
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

p0

p0

p0

p2 p3 p0 p1

p1 p0

p1

p0

p0

Input FIFO Read Side Output Bits

p4 p5 p6 p7 p0 p1 p2 p3

p6 p7 p4 p5

p3 p2

LCD Pixel Unpack and Data Structure
Little Endian Frame Buffer Byte(LEB) placed in Big Endian Pixel Byte(BEP)

bLcd_EBO=0, bLcd_EPO=1

Input FIFO Read Side Output Bits

p12 p13 p14 p15 p8 p9 p10 p11

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 443 of 637
Dec 29, 2021

● In big endian mode, when the input index encoded pixel least significant bit is zero, the upper 16-bit palette entry is
selected.

− See Figure 8.5, Pixel Unpack, Big Endian Frame Buffer Byte placed in Big Endian Pixel Byte table.

The internal format of the Palette Data Words (rLcd_PAL_BGR_555, rLcd_PAL_BGR_565, rLcd_PAL_RGB_555,
rLcd_PAL_RGB_565 registers) is shown 8.4.21, Coding Palette (Palette registers) Description. There are four
formats, interpreted according to LCD Palette Data Word Interpretation by bLcd_OPS and bLcd_RGB table below.

Note that bLcd_OPS and bLcd_RGB are in Control Register 1 (rLcd_CR1).

● bLcd_OPS[0] controls the Green bit selection of 5 or 6 bits.

● bLcd_RGB controls the RGB or BGR swapping of the Red or Blue fields.

Table 8.29 LCD Palette Data Word Interpretation by bLcd_OPS and bLcd_RGB

bLcd_OPS[0], bLcd_RGB RGB Format Red/Blue, Swap/NoSwap

2’b00 RGB 5:6:5 No Swap

2’b01 BGR 5:6:5 Swap

2’b10 RGB 5:5:5 No Swap

2’b11 BGR 5:5:5 Swap

8.5.9 Output FIFO and Formatter
The Output Formatter contains an output FIFO which comprises of a 16 word by 24-bit memory. Depending on the bits
per pixel programming, the incoming selection is either the Pixel Unpack (16, 18, 24 bpp) or the Palette (1, 2, 4, 8 bpp).

The output FIFO is slave to the Pixel Unpack which drives pixels to it either directly or through the Palette. The output
FIFO provides back pressure pipeline freeze capability when it cannot accept another pixel for queuing. This allows the
LCD Controller to pre-fetch frame buffer data at the start of a frame, filling up both input and output FIFOs and then
freezing till the first line is ready to display. Once the first Data Enable (LCD_DE) signal from the Timing & Control
Unit is active, the output FIFO read side continuously reads for the remainder of each active horizontal line period.
These reads in turn re-activate the Pixel Unpack and subsequently the DMA Controller to access frame buffer data on a
demand basis.

The Output Formatter interprets the pixel read from the output FIFO according to bLcd_BPP, bLcd_OPS and
bLcd_RGB defined in Control Register 1 (rLcd_CR1) and listed in tables below.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 444 of 637
Dec 29, 2021

Figure 8.7 LCD Output Formatting, bLcd_BPP: 1, 2, 4, 8

BPP OPS[1:0] RGB RGB
Format

BGR
Format Pins Note

1 00 0 - RGB defined in Palette
2 00 0 - RGB defined in Palette
4 00 0 - RGB defined in Palette
8 00 0 - RGB defined in Palette

1 10 0 - RGB defined in Palette
2 10 0 - RGB defined in Palette
4 10 0 - RGB defined in Palette
8 10 0 - RGB defined in Palette

1 01 0 - RGB defined in Palette
2 01 0 - RGB defined in Palette
4 01 0 - RGB defined in Palette
8 01 0 - RGB defined in Palette

1 11 0 - RGB defined in Palette
2 11 0 - RGB defined in Palette
4 11 0 - RGB defined in Palette
8 11 0 - RGB defined in Palette

1 00 1 - Palette B,R swapped
2 00 1 - Palette B,R swapped
4 00 1 - Palette B,R swapped
8 00 1 - Palette B,R swapped

1 10 1 - Palette B,R swapped
2 10 1 - Palette B,R swapped
4 10 1 - Palette B,R swapped
8 10 1 - Palette B,R swapped

1 01 1 - Palette B,R swapped
2 01 1 - Palette B,R swapped
4 01 1 - Palette B,R swapped
8 01 1 - Palette B,R swapped

1 11 1 - Palette B,R swapped
2 11 1 - Palette B,R swapped
4 11 1 - Palette B,R swapped
8 11 1 - Palette B,R swapped

LCD_R[7:3]
LCD_G[7:3]
LCD_B[7:3]

5:6:5

5:6:5

5:5:5

5:5:5

LCD_R[5:1]
LCD_G[5:1]
LCD_B[5:1]

LCD_R[7:3]
LCD_G[7:3]
LCD_B[7:3]

5:5:5
LCD_R[5:1]
LCD_G[5:1]
LCD_B[5:1]

BPP: bLcd_BPP
OPS: bLcd_OPS
RGB: bLcd_RGB

LCD Output Formatting
BPP: 1, 2, 4, 8 (Palette)

LCD_R[5:1]
LCD_G[5:1]
LCD_B[5:1]

5:5:5
LCD_R[7:3]
LCD_G[7:3]
LCD_B[7:3]

LCD_R[5:1]
LCD_G[5:0]
LCD_B[5:1]

5:6:5

5:6:5
LCD_R[7:3]
LCD_G[7:2]
LCD_B[7:3]

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 445 of 637
Dec 29, 2021

Figure 8.8 LCD Output Formatting, bLcd_BPP: 16, 18, 24

CAUTION

● Map onto most significant bits of 18-bit RGB interface to LCD panel when bpp < 18 and bLcd_OPS[1] =0. Unused
output pins driven to zero.

● Map onto most significant bits of 24-bit RGB interface to LCD panel when bpp < 18 and bLcd_OPS[1] =1. Unused
output pins driven to zero.

Both the write side and the read side of the output FIFO are on the Pixel Clock (LCD_ECLK) domain. Grey encoded
address pointers are used for FIFO empty and full flag calculations as well as the look-ahead pipeline freeze signal.

Interrupts bLcd_OFO (Output FIFO - Overrun) and bLcd_OFU (Output FIFO - Underrun) trigger whenever there is a
FIFO write with no empty locations or read with no valid data. The write side logic by design cannot overrun (because
of the back pressure pipeline freeze capability). While tested, this protection remains for potential error analysis. The
read side can cause an bLcd_OFU interrupt, and the cause of this could be inadequate bus bandwidth in accessing frame
buffer data.

BPP OPS[1:0] RGB RGB
Format

BGR
Format Pins Note

16 00 - 5:6:5 -
LCD_R[5:1]
LCD_G[5:0]
LCD_B[5:1]

Frame Buffer Direct

16 01 - 5:5:5 -
LCD_R[5:1]
LCD_G[5:1]
LCD_B[5:1]

Frame Buffer Direct

16 10 - 5:6:5 -
LCD_R[7:3]
LCD_G[7:2]
LCD_B[7:3]

Frame Buffer Direct

16 11 - 5:5:5 -
LCD_R[7:3]
LCD_G[7:3]
LCD_B[7:3]

Frame Buffer Direct

18 0- - 6:6:6 -
LCD_R[5:0]
LCD_G[5:0]
LCD_B[5:0]

Frame Buffer Direct

18 1- - 6:6:6 -
LCD_R[7:2]
LCD_G[7:2]
LCD_B[7:2]

Frame Buffer Direct

24 - - 8:8:8 -
LCD_R[7:0]
LCD_G[7:0]
LCD_B[7:0]

Frame Buffer Direct

BPP: bLcd_BPP
OPS: bLcd_OPS
RGB: bLcd_RGB

LCD Output Formatting
BPP: 16, 18, 24 (Frame Buffer)

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 446 of 637
Dec 29, 2021

8.5.10 Initializing Configuration Registers
To change or initialize configuration registers, the LCD Controller provides the following sequencing support:

(1) Clear bLcd_LCE (LCD Disable). LCD timing unit waits for current frame display to finish before forcing panel
signals to logic 0. Internally the LCD Controller core holds the following signals to logic zero:

− LCD_VSYNC

− LCD_HSYNC

− LCD_DE

− LCD_PCLK

− LCD_R[7:0]

− LCD_B[7:0]

− LCD_G[7:0]

(2) All configuration registers must be programmed during this step to avoid LCD malfunctions. The registers
configurations lists are:

− rLcd_CR1 register except bLcd_LCE (Already cleared to 0, LCD Disable) and bLcd_LPE (depending on power
mode sequence required)

− rLcd_HTR, rLcd_VTR1 and rLcd_VTR2 registers (Horizontal and vertical timing)

− rLcd_HPPLOR and rLcd_HVTER registers (Extended horizontal and vertical timing)

− Pixel Clock RESET released to inactive (no reset state) in rLcd_PCTR register

− rLcd_PWMDCR_0, rLcd_PWMDCR_1, rLcd_PWMFR_0, rLcd_PWMFR_1 PWM0 & 1 registers (PWM
control)

− rLcd_DBAR register (DMA base address)

− Palette registers initialization

(3) After initializing configuration registers, bLcd_LCE in Control Register 1 (rLcd_CR1) is set to on. With
bLcd_LCE on, the signals to the LCD panel listed in (1) are free to drive to their programmed active levels and
first frame fetch and display commences.

8.5.11 Interrupts
There are three coordinated interrupt registers; The Interrupt Status Register (rLcd_ISR), the Interrupt Mask Register
(rLcd_IMR), and the Interrupt Vector Register (rLcd_IVR). The rLcd_ISR and rLcd_IMR are both read/write registers
while the rLcd_IVR is read only.

Any of the internally generated interrupts set a corresponding bit in the rLcd_ISR. If the error’s corresponding mask bit
is set in the rLcd_IMR, then the corresponding error bit in the rLcd_IVR register will set, generating an interrupt to the
processor. The processor interrupt handler can respond by reading the rLcd_IVR to determine the particular interrupt to
process. At the end of an interrupt response, the programming can reset the interrupt in the rLcd_ISR by writing logic 1
to the corresponding interrupt bit in the rLcd_ISR. Through the rLcd_IMR register the programming has full control
over which interrupts to enable.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 447 of 637
Dec 29, 2021

8.5.12 Power Sequencing
The LCD Controller provides the following power up sequencing support:

(4) Power is applied to the VLSI device containing the LCD Controller and the LCD panel. Internally the LCD
Controller holds the following signals to logic zero:

− LCD_VSYNC

− LCD_HSYNC

− LCD_DE

− LCD_PCLK

− LCD_R[7:0]

− LCD_B[7:0]

− LCD_G[7:0]

(5) Optionally, all configuration registers must be programmed during this step to avoid LCD malfunctions. The
registers configurations lists are:

− rLcd_CR1 register

− rLcd_HTR, rLcd_VTR1 and rLcd_VTR2 registers (Horizontal and vertical timing)

− rLcd_HPPLOR and rLcd_HVTER registers (Extended horizontal and vertical timing)

− Pixel Clock RESET released to inactive (no reset state) in rLcd_PCTR register

− rLcd_PWMDCR_0, rLcd_PWMDCR_1, rLcd_PWMFR_0, rLcd_PWMFR_1 PWM0 & 1 registers (PWM
control)

− rLcd_DBAR register (DMA base address)

− Palette registers initialization

(6) After a pre-determined amount of time specified by the LCD panel and controlled by a processor timer,
bLcd_LPE in Control Register 1 (rLcd_CR1) is set to on. With bLcd_LPE on, the signals to the LCD panel listed
in (1) are free to drive to their programmed active levels.

The LCD Controller provides the following power down sequencing support:

(1) bLcd_LPE in Control Register 1 (rLcd_CR1) is set to off.

(2) After the current frame being displayed completes, the signals to the LCD panel listed above are forced to zero.

(3) At the time, the signals to the LCD panel are forced to zero, interrupt bLcd_LDD is generated, signaling frame
completion. After a pre-determined amount of time specified by the LCD panel, power to the display can be
removed.

Note that bLcd_LPE in Control Register 1 (rLcd_CR1), connected as an enable to an external power source for the
LCD panel, can be used for enabling and disabling power to the LCD panel.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 448 of 637
Dec 29, 2021

8.5.13 Frame Buffer 24 bpp Packed Word
The LCD Controller can drive a 24 bpp LCD Panel with an unpacked or packed 24-bit pixel within a 32-bit Frame
Buffer Word. For an unpacked 24-bit pixel within a 32-bit word, the frame buffer words are organized as follows:

Table 8.30 LCD Frame Buffer Organization, bLcd_FBP = 0 and bLcd_BPP = 3’b110

Frame Buffer Base Address

Frame Buffer Contents:
Unpacked data 24 bpp mode:
●bLcd_FBP = 0 and bLcd_BPP = 3’b110

Bit 31:24 Bit 23:0

32’h0 Unused Pixel 0 (24-bits Pixel Data: RGB only)

32’h4 Unused Pixel 1 (24-bits Pixel Data: RGB only)

∙∙∙∙ ∙∙∙∙ ∙∙∙∙

Thus, for each 32-bit Frame Buffer Word, the most significant byte is unused.

No Swap mode (only RGB) available in this configuration.

The LCD Controller contains a programming mode whereby when bLcd_FBP in Control Register 1 (rLcd_CR1) is set,
the 24 bpp Pixel in a 32-bit Frame Buffer Word can be packed according to table below:

Table 8.31 LCD Frame Buffer Organization, bLcd_FBP = 1 and bLcd_BPP = 3’b110

Frame Buffer Base Address

Frame Buffer Contents:
Packed data 24 bpp mode:
● bLcd_FBP = 1 and bLcd_BPP = 3’b110, see Warning below

Bit 31:24 Bit 23:0 Bit 15:8 Bit 7:0

32’h0 P1-Byte0: B P0-Byte2: R P0-Byte1: G P0-Byte0: B

32’h4 P2-Byte1: G P2-Byte0: B P1-Byte2: R P1-Byte1: G

32’h8 P3-Byte2: R P3-Byte1: G P3-Byte0: B P2-Byte2: R

∙∙∙∙ ∙∙∙∙ ∙∙∙∙

No Swap mode (only RGB) available in this configuration.

Note that Pn = Pixel n, Bytek = Byte k (within the pixel). Thus, for each successive three 32-bit Frame Buffer Words,
four 24-bit pixels can be unpacked by the LCD Controller.

CAUTION

The packed mode (bLcd_FBP = 1) must be used with 24 bpp mode only (bLcd_BPP = 3’b110).

If firmware does not respect this restriction, the LCD Controller function is not guaranteed.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 449 of 637
Dec 29, 2021

8.5.14 Pulse Width Modulation
With the advent of LED for backlighting of TFT LCD Panels, two additional Pulse Width Modulation (PWM0 & 1)
modules are added to the LCD Controller. Typically, a DC-DC converter provides the constant current to the LEDs, and
the converter contains a brightness input. Modulating the brightness input with a PWM signal trades off power
consumed by the panels versus brightness.

The reference clock of PWM0 & 1 module is LCD_ECLK. The desired PWM frequency is configured with PWM
Frequency Clock Divider Register (rLcd_PWMFR_0 and rLcd_PWMFR_1), which in turn is modulated in pulse width
by the PWM Duty Cycle Register (rLcd_PWMDCR_0 and rLcd_PWMDCR_1).

Since the Control / Status Registers are clocked by the Slave Bus LCD_HCLK while the PWM modules are clocked by
LCD_ECLK, Clock Domain Crossing logic first transfers CSR signals to the selected PWM_CLK domain, and then on
the start of the PWM first PWM_CLK cycle, transferred to Holding Registers. In this way, the PWM can be
dynamically changed in frequency and duty cycle.

8.5.15 Blink Function
The main objective of blink function is the flashing part of picture.

BLINK BLINK BLINK BLINK
0.5s 0.5s 0.5s

Green(Background) is not flashing (Always ON)
Red(Character “BLINK middle speed flashing”) PWM0 clock/2, On/Off duty 50%
Blue(Rectangle “BLINK slow speed flashing”) PWM0 clock/4, On/Off duty 50%

Flashing character or figures in a picture, Blinking black(Flashing)

Figure 8.9 LCD Blink Main Principle

In figure Blink BL[1:0] Attribute Management, it can see in memory frame buffer (inside DDR/SRAM), the mapping of
each pixel (R,G,B on 24 bits) with or without blink function active.

The blink function is controlled by:

● Blink Enable or Disable controlled by bLcd_BlinkOn in rLcd_GPIOR register.

− The Pixel data presented on LCD_R[7:0], LCD_G[7:0], LCD_B[7:0] depends on whether the blink function is
disabled or enabled.

− See Figure 8.10, Blink BL[1:0] Attribute Management.

● Blink Brightness Mode is controlled by bLcd_BlinkMode in rLcd_GPIOR register.

− The blink frequency depends on bLcd_PWMFCD_0 and bLcd_PWMFCE_0 inside rLcd_PWMFR_0 register.

● In this case, the output of this PWM0 unit drives the BLINK logic.

● The blink function can be used in 24 bpp mode only.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 450 of 637
Dec 29, 2021

BL[1:0]: Attribute bit for blink
R[7:0]: Pixel Data (Red)
G[7:0]: Pixel Data (Green)
B[7:0]: Pixel Data (Blue)

In 24 bpp mode only
Convert from

Pixel Data from Memory frame buffer located in DDR/SRAM
to

Pixel Data on LCD_R[7:0], LCD_G[7:0], LCD_B[7:0]
Under control blink attribute BL[1:0]

BL[1:0] Description Blink Frequency
2'b00: No blink Always ON
2'b01: Slow speed blink PWM0 Frequency Clock/4, ON/OFF with duty cycle 50%
2'b10: Middle speed blink PWM0 Frequency Clock/2, ON/OFF with duty cycle 50%
2'b11: Fast speed blink PWM0 Frequency Clock , ON/OFF with duty cycle 50%

PWM0 Frequency Clock is under bLcd_PWMFCD in rLcd_PWMFR_0 register

LCD Blink Function

Blink BL[1:0] Attribute Management, 24 bpp mode only

24 bpp, Memory frame Buffer Structure on each Pixel

bLcd_BlinkOn 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0

BL1 BL0 R7 R6 R5 R4 R3 R2 R1 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1

0

1

bLcd_BlinkOn BL[1:0] LCD_R[7:0] LCD_G[7:0] LCD_B[7:0]
0 1 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0

BL1 BL0 R5 R4 R3 R2 R1 R1 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B1

0

1

R7

R7

R6

R6

Figure 8.10 Blink BL[1:0] Attribute Management

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 8 LCD Controller

R01UH0752EJ0120 Rev.1.20 Page 451 of 637
Dec 29, 2021

8.5.16 Limitation
LCD Controller has following limitation:

● Odd number of pixels per line should not be used (strictly forbidden).

● Due to bandwidth limitation between LCD Controller & DDR2/3, an underrun input or output FIFO can be detected,
to solve it, please:

− Increase bLcd_FDW value (burst size configuration of DMA read request in word).

− Verify if LCD resolution targeted is compatible with bandwidth available on DDR2/3 or SRAM.
 1) Depends on bpp (bits per pixel) and Refresh rate
 2) Frequency limitation max 83.3 MHz
 3) Bandwidth limitation between LCD & DDR2/3
See Section 8.5.2, Bandwidth Limitation.

● Concerning configuration of bLcd_FDW parameter recommended to avoid bandwidth issue:

− bLcd_FDW = 4 must be used only for low resolution

− bLcd_FDW = 16 must be used only for high resolution

● Pixel Packed Mode

− The packed mode (bLcd_FBP = 1) must be used with 24 bpp mode only (bLcd_BPP = 3’b110).

− If firmware does not respect this restriction, the Packed Mode function is not guaranteed, RGB outputs may be
wrong.

− Swap mode is not available in this mode.

● Blink Function

− The blink function must be used with 24 bpp mode only (bLcd_BPP = 3’b110).

− If firmware does not respect this restriction, the blink function is not guaranteed, RGB outputs may be wrong.

− Blink function reuse all resources of PWM0 unit.
PWM0 unit drives the BLINK frequency.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 9 Semaphore

R01UH0752EJ0120 Rev.1.20 Page 452 of 637
Dec 29, 2021

Section 9 Semaphore

9.1 Overview
The semaphores are a group of R/W registers used to configure the hardware lock mechanism which regulates the
exclusivity access of all internal shared resources (Buffers pools, memory regions and peripherals).

Before to use any shared resource, a processor must become the owner of this with a hardware lock semaphore.

64 individual hardware lock semaphores are available and resources are shared between 4 CPUs (includes external
CPU).

rSemaphoreLockCPU1_[n]
rSemaphoreStatusCPU1_[n]

Control [n]

Semaphore [n]

bSemaphoreStatusCPU

bSemaphoreLockCPU

AHB Interface

n=0..63

rSemaphoreLockCPU2_[n]
rSemaphoreStatusCPU2_[n]

bSemaphoreStatusCPU

bSemaphoreLockCPU

rSemaphoreLockCPU3_[n]
rSemaphoreStatusCPU3_[n]

bSemaphoreStatusCPU

bSemaphoreLockCPU

rSemaphoreLockCPU4_[n]
rSemaphoreStatusCPU4_[n]

bSemaphoreStatusCPU

bSemaphoreLockCPU

Figure 9.1 Semaphore Synoptic

9.2 Signal Interfaces
Table 9.1 Signal Interface

Signal Name
Input
Output Description

Clock

SEMAP_HCLK Input Internal bus clock (AHB)

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 9 Semaphore

R01UH0752EJ0120 Rev.1.20 Page 453 of 637
Dec 29, 2021

9.3 Register Map
Table 9.2 Register Map

Address Register Symbol Register Name

5300 0000h + 10h × n rSemaphoreLockCPU1_[n] (n = 0..63) Semaphore Lock CPU1 Register [n]

5300 0004h + 10h × n rSemaphoreStatusCPU1_[n] (n = 0..63) Semaphore Status CPU1 Register [n]

5300 1000h + 10h × n rSemaphoreLockCPU2_[n] (n = 0..63) Semaphore Lock CPU2 Register [n]

5300 1004h + 10h × n rSemaphoreStatusCPU2_[n] (n = 0..63) Semaphore Status CPU2 Register [n]

5300 2000h + 10h × n rSemaphoreLockCPU3_[n] (n = 0..63) Semaphore Lock CPU3 Register [n]

5300 2004h + 10h × n rSemaphoreStatusCPU3_[n] (n = 0..63) Semaphore Status CPU3 Register [n]

5300 3000h + 10h × n rSemaphoreLockCPU4_[n] (n = 0..63) Semaphore Lock CPU4 Register [n]

5300 3004h + 10h × n rSemaphoreStatusCPU4_[n] (n = 0..63) Semaphore Status CPU4 Register [n]

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 9 Semaphore

R01UH0752EJ0120 Rev.1.20 Page 454 of 637
Dec 29, 2021

9.4 Register Description

9.4.1 rSemaphoreLockCPU[m]_[n] — Semaphore Lock CPU[m] Register [n]
With CPU[m] (m = 1..4) and Semaphore[n] (n = 0..63).

CPU[m] is distinguished not by actual CPU but address only.

The semaphore in free state will be reserved for the CPU which reads.

Only the reserved CPU for the semaphore can release it by writing with the value 3’b000.

Address: rSemaphoreLockCPU1_[n]: 5300 0000h + 10h × n

rSemaphoreLockCPU2_[n]: 5300 1000h + 10h × n

rSemaphoreLockCPU3_[n]: 5300 2000h + 10h × n

rSemaphoreLockCPU4_[n]: 5300 3000h + 10h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — bSemaphoreLockCPU

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9.3 rSemaphoreLockCPU[m]_[n] Register Contents

Bit Position Bit Name Function R/W

b31 to b3 Reserved R

b2 to b0 bSemaphoreLockCP
U

For each Semaphore [n]
Read by CPU

3’b000
Semaphore is free
Hardware reservation for CPU

3’b100
Semaphore is already reserved by CPU1

3’b101
Semaphore is already reserved by CPU2

3’b110
Semaphore is already reserved by CPU3

3’b111
Semaphore is already reserved by CPU4

Write by CPU
3’b000

Release semaphore
Not 3’b000

No action

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 9 Semaphore

R01UH0752EJ0120 Rev.1.20 Page 455 of 637
Dec 29, 2021

9.4.2 rSemaphoreStatusCPU[m]_[n] — Semaphore Status CPU[m] Register [n]
With CPU[m] (m = 1..4) and Semaphore[n] (n = 0..63).

Address: rSemaphoreStatusCPU1_[n]: 5300 0004h + 10h × n

rSemaphoreStatusCPU2_[n]: 5300 1004h + 10h × n

rSemaphoreStatusCPU3_[n]: 5300 2004h + 10h × n

rSemaphoreStatusCPU4_[n]: 5300 3004h + 10h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — bSemaphoreStatusCPU

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9.4 rSemaphoreStatusCPU[m]_[n] Register Contents

Bit Position Bit Name Function R/W

b31 to b3 Reserved R

b2 to b0 bSemaphoreStatusC
PU

For each Semaphore [n]
Read a current value of semaphore

3’b000
Semaphore is free

3’b001, 3’b010, 3’b011
Reserved

3’b100
Semaphore is reserved by CPU1

3’b101
Semaphore is reserved by CPU2

3’b110
Semaphore is reserved by CPU3

3’b111
Semaphore is reserved by CPU4

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 9 Semaphore

R01UH0752EJ0120 Rev.1.20 Page 456 of 637
Dec 29, 2021

9.5 Operation

9.5.1 Semaphore [n] (n = 0..63)
This state machine manages the reservation and the release of semaphore.

Free

Busy

Read 3'b000 on bSemaphoreLockCPU by CPU2
Semaphore become Busy, Reservation

3'b101 -> bSemaphoreLockCPU

Read 3'b101 on bSemaphoreLockCPU bits by CPU0
Semaphore is already reserved by CPU2

Not change in state machine

Write 3‘b000 on bSemaphoreLockCPU by CPU2
Release Semaphore

State machine for Semaphore Management

 bSemaphoreLockCPU coding:
 Bit2:0 000: Free

100: Reserved by CPU1
101: Reserved by CPU2
110: Reserved by CPU3
111: Reserved by CPU4

Figure 9.2 Semaphore State Machine

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 9 Semaphore

R01UH0752EJ0120 Rev.1.20 Page 457 of 637
Dec 29, 2021

9.5.2 CPU Identify and Address Decoding
A same Semaphore [n] have 4 separate addresses to be access.

The Semaphore [n] can be accessed by the registers.

● rSemaphoreLockCPU1_[n]

● rSemaphoreLockCPU2_[n]

● rSemaphoreLockCPU3_[n]

● rSemaphoreLockCPU4_[n]

The semaphore state machine uses this address to write a semaphore identify in bSemaphoreLockCPU

● 3’b100: Semaphore reserved by CPU1

● 3’b101: Semaphore reserved by CPU2

● 3’b110: Semaphore reserved by CPU3

● 3’b111: Semaphore reserved by CPU4

To have a good management of semaphore identify, each CPU must use a different address to access in Semaphore.

Base addresse + 16'h0000
rSemaphoreLockCPU1_[n]

rSemaphoreStatusCPU1_[n]
with n=0..63

Base addresse + 16'h1000
rSemaphoreLockCPU2_[n]

rSemaphoreStatusCPU2_[n]
with n=0..63

Base addresse + 16'h2000
rSemaphoreLockCPU3_[n]

rSemaphoreStatusCPU3_[n]
with n=0..63

Base addresse + 16'h 3000
rSemaphoreLockCPU4_[n]

rSemaphoreStatusCPU4_[n]
with n=0..63

Figure 9.3 Semaphore Address Block for Identify CPU

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 9 Semaphore

R01UH0752EJ0120 Rev.1.20 Page 458 of 637
Dec 29, 2021

9.6 Usage Notes
To use a Semaphore in several CPUs, the basic procedures are following below:

Example of Semaphore55 by CPU1 and CPU2:

(1) CPU1 reads bSemaphoreLockCPU of rSemaphoreLockCPU1_55 register.

● Test if 3’b000

− If the read value is 3’b000, Semaphore55 is reserved for CPU1. CPU1 can access exclusivity of all internal shared
resources (Buffer pools, memory regions and peripherals).

− If the read value is 3’b101, Semaphore55 is already reserved for CPU2, CPU1 must wait.

(2) CPU2 reads bSemaphoreLockCPU of rSemaphoreLockCPU2_55 register.

● Test if 3’b000

− If the read value is 3’b000, Semaphore55 is reserved for CPU2. CPU2 can access exclusivity of all internal shared
resources.

− If the read value is 3’b100, Semaphore55 is already reserved for CPU1, CPU2 must wait.

In this example, CPU1 and CPU2 use the Semaphore55 to share a resource:

● CPU1 manages the Semaphore55 with rSemaphoreLockCPU1_55 register

● CPU2 manages the Semaphore55 with rSemaphoreLockCPU2_55 register

Semaphore55 provides different addresses to CPU1 and 2, the hardware uses the semaphore addresses to identify the
CPU.

The semaphore function must be used with following allocation:

● CPU1 must use only rSemaphoreLockCPU1_[n] to manage the Semaphore [n]

● CPU2 must use only rSemaphoreLockCPU2_[n] to manage the Semaphore [n]

● CPU3 must use only rSemaphoreLockCPU3_[n] to manage the Semaphore [n]

● CPU4 must use only rSemaphoreLockCPU4_[n] to manage the Semaphore [n]

CAUTION

Different CPUs should not use the same address to access Semaphore55.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 459 of 637
Dec 29, 2021

Section 10 Medium Speed External Bus Interface (MSEBI)

10.1 Overview
The MSEBI is fully programmable. It has 4 chip selects, address/data/control-data are multiplexed. The 32-bit data bus
can be configured to interface 8, 16 and 32 bits external devices.

MSEBI is composed of 2 independents blocks:

● Master

● Slave

Master Mode feature:
The Medium Speed External Bus Interface (MSEBI) manages the signals which control the access to external
asynchronous and synchronous peripheral devices. Separate read and write control signals allow asynchronous direct
memory and peripheral interfacing. It also provides an external wait request reception (from slave) capability and DMA
coupling. On the same board, synchronous and asynchronous mode, data bus width (32, 16, or 8 bits) can be mixed.

Slave Mode feature:
The Medium Speed External Bus Interface (MSEBI) manages all signals allowing the decode access from the bus in
synchronous mode only. It also provides an external wait request transmission (to master) capability and external DMA
request transmission (to master) capability.

3 basics modes are available with different configurations:

● Multiplexed 32 bits on data bus (MSEBI Mode32)

● Multiplexed 16 bits on data bus (MSEBI Mode16)

● Multiplexed 8 bits on data bus (MSEBI Mode8)

Chip selects CS0_N to CS3_N can be configured to have a programmable address capability until 4 GB, depending on
configuration.

For each of slave and master mode, the CPU can disconnect all pins not used by MSEBI interface. When these pins are
not used, this feature allows using these pins as general purpose inputs or outputs.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 460 of 637
Dec 29, 2021

6 sync FIFOs
32bits / 64bits

Registers

IO
 M

ul
tip

le
xi

ng
 L

ev
el

1

3.
3V

 C
M

O
S

Bu
ffe

r

32
b

AH
BS

MSEBI Controller

IO
 M

ul
tip

le
xin

g
Le

ve
l2

MASTER

MSEBIM_CLK

MSEBIM_WAIT[n]_N (n = 0..3)

MSEBIM_CLE
MSEBIM_ACD[31..0]

MSEBIM_ALE
MSEBIM_DLE

MSEBIM_DMA_RD[n]_N
MSEBIM_DMA_WR[n]_N

MSEBIS_WAIT[n]_N (n = 0..3)
MSEBIS_ALE
MSEBIS_DLE

MSEBIS_DMA_RD[n]_N
MSEBIS_DMA_WR[n]_N

MSEBIM_RD_N
MSEBIM_WR_N

MSEBIS_CLK

MSEBIS_CLE
MSEBIS_ACD[31..0]

MSEBIM_ALE1
MSEBIM_ALE2
MSEBIM_ALE3

6 async FIFOs
32bits

Registers

32
b

AH
BS

32
b

AH
BM

SLAVE

Network
On

Chip

(n = 0..1)

Ex
te

rn
al

 b
us

 In
te

rfa
ce

MSEBIS_Int

Figure 10.1 MSEBI Synoptic

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 461 of 637
Dec 29, 2021

The main features are:
● Data bus width selectable from 8, 16 and 32 bits

● Separate enable control of the master and slave part

● Asynchronous and synchronous mode

● Multi DLE mode

● Burst mode

● DMA coupling

− Peripheral flow controller mode

− 4 DMA channel available (external request reception capability)

● Concerning FIFO size in master mode, we have

− CPU transmit and receive FIFO for master: 2 × 32 Words × 32bits

− DMA transmit and receive FIFO for master: 4 × 32 Words × 64bits

● Concerning FIFO size in slave mode, we have

− CPU transmit and receive FIFO for slave: 2 × 32 Words × 32bits

− DMA transmit and receive FIFO for slave: 4 × 32 Words × 32bits

● Up to 4 chip select Lines

● Programmable address capability from 2 B...4 GB

● Programmable setup time

● Programmable hold time

● External wait request (can be enabled or disabled)

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 462 of 637
Dec 29, 2021

10.1.1 Signal Interfaces

Table 10.1 Signal Interface

Signal Name
Input
Output Description

Clock

MSEBIM_HCLK Input Internal AHB Bus Clock (Master)

MSEBIS_HCLK Input Internal AHB Bus Clock (Slave)

Interrupt

MSEBIS_Int Output Level sensitive interrupt output, Active High

External Signal (Master Mode)

MSEBIM_ACD[31:0] I/O Address, Control and Data multiplexed

MSEBIM_CLK Output Global configurable clock, reference for all timings.

MSEBIM_ALE Output Address Latch Enable (active high)

MSEBIM_ALE1 Output Address Latch Enable (active high)

MSEBIM_ALE2 Output Address Latch Enable (active high)

MSEBIM_ALE3 Output Address Latch Enable (active high)

MSEBIM_CLE Output Address and Control Latch Enable (active high)

MSEBIM_DLE Output Data Latch Enable (active high)

MSEBIM_RD_N Output Read enable (active low)

MSEBIM_WR_N Output Write enable (active low)

MSEBIM_WAIT[n]_N Input Wait insertion in current cycle with n = 0..3 (active low)

MSEBIM_DMA_RD[n]_N Input DMA request dedicated to MSEBI_CS[n]_N in read mode with n = 0..1

MSEBIM_DMA_WR[n]_N Input DMA request dedicated to MSEBI_CS[n]_N in write mode with n = 0..1

External Signal (Slave Mode)

MSEBIS_ACD[31:0] I/O Address, Control and Data multiplexed

MSEBIS_CLK Input Clock given by the master of the bus

MSEBIS_ALE Input Address Latch Enable (active high)

MSEBIS_CLE Input Address and Control Latch Enable (active high)

MSEBIS_DLE Input Data Latch Enable (active high)

MSEBIS_WAIT[n]_N Output Wait insertion in current cycle with n = 0..3 (active low)

MSEBIS_DMA_RD[n]_N Output DMA request dedicated to MSEBI_CS[n]_N in read mode with n = 0..1

MSEBIS_DMA_WR[n]_N Output DMA request dedicated to MSEBI_CS[n]_N in write mode with n = 0..1

Note: In case of GPIO Multiplexed Pin Name, index[n] is added at the end.
Ex) MSEBIM_WAIT_N[n], MSEBIS_DMA_RD_N[n]

10.1.2 MSEBI Master Address Mapping of CS[n] from CPU
Writing or reading data to the area described in the following table pushes a command to the CPU transmit FIFO and
generates an MSEBI access for each MSEBI_CS[n]_N (n = 0..3) according to the address.

Table 10.2 Address Mapping of CS[n] from CPU

CS[n] Base Address

CS0 6000 0000h

CS1 6800 0000h

CS2 7000 0000h

CS3 7800 0000h

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 463 of 637
Dec 29, 2021

10.1.3 Multiplexed Signal Interface
Data multiplexer on MSEBIM_ACD is controlled by MSEBIM_ALE, MSEBIM_CLE, MSEBIM_DLE and latched on
rising edge of MSEBIM_CLK. Details to the associated signals are described in the following tables.

Note that the access is depending on the bus size. Please refer to the following table for details:

● Table 10.4, MSEBI Mode32, Multiplexer Function on ACD31..0

● Table 10.6, MSEBI Mode16, Multiplexer Function on ACD15..0

● Table 10.8, MSEBI Mode8, Multiplexer Function on ACD7..0

Table 10.3 Multiplexed Signal Interface (1/2)

Signal Name Description

MSEBIM_D[31:16] Data (Used only in Mode32)

MSEBIM_D[15:8] Data (Used only in Mode32 or Mode16)

MSEBIM_D[7:0] Data

MSEBIM_A[31:0] Address

MSEBI_BE[n]_N Byte Enable (active low)
● Mode32 with n = 0..3:

BE3_N BE2_N BE1_N BE0_N

0 0 0 0 Word 32 bits

1 1 0 0 Lower halfword 16 bits

0 0 1 1 Upper halfword 16 bits

1 1 1 0 Lower byte

1 1 0 1 Lower byte +1

1 0 1 1 Lower byte +2

0 1 1 1 Upper byte, Lower byte+3

1 1 1 1 Reserved

● Mode16 with n = 0..1:

BE1_N BE0_N

0 0 HalfWord 16 bits

1 0 Lower byte

0 1 Upper byte

1 1 Reserved

● Mode8: No Byte enable in this mode

MSEBI_CS[n]_N Chip select, 4GB programmable address capability for each (active low)
● Concerning address capability

All chip selects (n = 0..3) can be configured to have a programmable address capability
depending on its configuration. Extended address capability modes are important when
user wants reduce the optional number of ALE phases to increase the bandwidth and
reduce the latency.

MSEBI_CSREG_N Access to the global registers to manage interruptions (from Master to Slave) and status
(active low)

Caution) In both modes, master and slave, when the master is accessing the slave’s shared
registers (using MSEBI_CSREG_N), no prefetch allowed.

Following decoding tables describe how to access to the shared registers of a specific chip
select with n = 0..3
MSEBI_CS[n]_N MSEBI_CSREG_N CS[n]_N Access Type

0 0 Access CS[n]_N shared registers

0 1 Access CS[n]_N memory space

1 0 Reserved

1 1 No access

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 464 of 637
Dec 29, 2021

Table 10.3 Multiplexed Signal Interface (2/2)

Signal Name Description

MSEBI_DMA_N Give identification of initiator of the current request (DMA or CPU) and must be associated
with CS[n]_N (n = 0..3)
See details in Table 10.47, Slave Detection of Request Initiator.

MSEBI_R/W_N Read Write control
1: Read Access
0: Write Access

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 465 of 637
Dec 29, 2021

10.1.3.1 Mode32 Multiplexer

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

Table 10.4 MSEBI Mode32, Multiplexer Function on ACD31..0

MSEBI_ACD Bus
Multiplexed

Stage ADDRESS
Controlled by ALE (Optional)

Stage CONTROL
Controlled by CLE

Stage DATA
Controlled by DLE

MSEBI(x)_ALE
Serial mode only

1’b1 1’b0 1’b0

MSEBIM_ALE
Parallel mode only

1’b1 1’b0 1’b0

MSEBIM_ALE1
Parallel mode only

1’b0 1’b0 1’b0

MSEBIM_ALE2
Parallel mode only

1’b0 1’b0 1’b0

MSEBIM_ALE3
Parallel mode only

1’b0 1’b0 1’b0

MSEBI(x)_CLE 1’b0 1’b1 1’b0

MSEBI(x)_DLE 1’b0 1’b0 1’b1

Assignment on ACD

MSEBI(x)_ACD[31:11] 1’b0 MSEBI_A[22:2] MSEBI_D[31:11]

MSEBI(x)_ACD10 1’b0 MSEBI_BE3_N MSEBI_D10

MSEBI(x)_ACD9 1’b0 MSEBI_BE2_N MSEBI_D9

MSEBI(x)_ACD8 MSEBI_A31 MSEBI_BE1_N MSEBI_D8

MSEBI(x)_ACD7 MSEBI_A30 MSEBI_BE0_N MSEBI_D7

MSEBI(x)_ACD6 MSEBI_A29 MSEBI_R/W_N MSEBI_D6

MSEBI(x)_ACD5 MSEBI_A28 MSEBI_DMA_N MSEBI_D5

MSEBI(x)_ACD4 MSEBI_A27 MSEBI_CSREG_N MSEBI_D4

MSEBI(x)_ACD3 MSEBI_A26 MSEBI_CS3_N MSEBI_D3

MSEBI(x)_ACD2 MSEBI_A25 MSEBI_CS2_N MSEBI_D2

MSEBI(x)_ACD1 MSEBI_A24 MSEBI_CS1_N MSEBI_D1

MSEBI(x)_ACD0 MSEBI_A23 MSEBI_CS0_N MSEBI_D0

Table 10.5 MSEBI Mode32, Chip Selects Management

Extended Address Capability Available with 0 ALE phase

4 Chip Selects
8 MB

3 Chip Selects
16 MB

2 Chip Selects
32 MB

1 Chip Select
64 MB

MSEBI_CS3_N MSEBI_A23 MSEBI_A23 MSEBI_A23

MSEBI_CS2_N MSEBI_CS2_N MSEBI_A24 MSEBI_A24

MSEBI_CS1_N MSEBI_CS1_N MSEBI_CS1_N MSEBI_A25

MSEBI_CS0_N MSEBI_CS0_N MSEBI_CS0_N MSEBI_CS0_N

ALE phase is optional to increase bandwidth and reduce latency for each chip select CS[n]_N (n = 0..3).

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 466 of 637
Dec 29, 2021

For Master Mode

CPU (n = 0..3)

● MSEBI_A26 .. MSEBI_A2 are directly driven by CPU (128 MB for each CS[n]_N)

● MSEBI_A31 .. MSEBI_A27 are driven by following registers:

− rMSEBIM_CONFIG_CS[n]_N

DMA (n = 0..1)

● MSEBI_A31 .. MSEBI_A2 are driven by following registers:

− rMSEBIM_ADDRDMA_CURRENTREAD_CS[n]_N

− rMSEBIM_ADDRDMA_CURRENTWRITE_CS[n]_N

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 467 of 637
Dec 29, 2021

10.1.3.2 Mode16 Multiplexer

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

On ALE columns:
● If multiple ALE stages are used, the symbol #k in the column represents the order in which the master will send

the ALE phases to the slave, i.e. #1 is the first ALE, #2 the second, etc.

Table 10.6 MSEBI Mode16, Multiplexer Function on ACD15..0

MSEBI_ACD Bus
Multiplexed

Stage ADDRESS
Controlled by ALE
(Optional, #2)

Stage ADDRESS
Controlled by ALE
(Optional, #1)

Stage CONTROL
Controlled by CLE

Stage DATA
Controlled by DLE

MSEBI(x)_ALE
Serial mode only

1’b1 1’b1 1’b0 1’b0

MSEBIM_ALE
Parallel mode only

1’b0 1’b1 1’b0 1’b0

MSEBIM_ALE1
Parallel mode only

1’b1 1’b0 1’b0 1’b0

MSEBIM_ALE2
Parallel mode only

1’b0 1’b0 1’b0 1’b0

MSEBIM_ALE3
Parallel mode only

1’b0 1’b0 1’b0 1’b0

MSEBI(x)_CLE 1’b0 1’b0 1’b1 1’b0

MSEBI(x)_DLE 1’b0 1’b0 1’b0 1’b1

Assignment on ACD

MSEBI(x)_ACD[15:9] 1’b0 MSEBI_A[23:17] MSEBI_A[7:1] MSEBI_D[15:9]

MSEBI(x)_ACD8 1’b0 MSEBI_A16 MSEBI_BE1_N MSEBI_D8

MSEBI(x)_ACD7 MSEBI_A31 MSEBI_A15 MSEBI_BE0_N MSEBI_D7

MSEBI(x)_ACD6 MSEBI_A30 MSEBI_A14 MSEBI_R/W_N MSEBI_D6

MSEBI(x)_ACD5 MSEBI_A29 MSEBI_A13 MSEBI_DMA_N MSEBI_D5

MSEBI(x)_ACD4 MSEBI_A28 MSEBI_A12 MSEBI_CSREG_N MSEBI_D4

MSEBI(x)_ACD3 MSEBI_A27 MSEBI_A11 MSEBI_CS3_N MSEBI_D3

MSEBI(x)_ACD2 MSEBI_A26 MSEBI_A10 MSEBI_CS2_N MSEBI_D2

MSEBI(x)_ACD1 MSEBI_A25 MSEBI_A9 MSEBI_CS1_N MSEBI_D1

MSEBI(x)_ACD0 MSEBI_A24 MSEBI_A8 MSEBI_CS0_N MSEBI_D0

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 468 of 637
Dec 29, 2021

Table 10.7 MSEBI Mode16, Chip Selects Management

Extended Address Capability Available with 0 ALE phase

4 Chip Selects
256 B

3 Chip Selects
512 B

2 Chip Selects
1 KB

1 Chip Select
2 KB

MSEBI_CS3_N MSEBI_A8 MSEBI_A8 MSEBI_A8

MSEBI_CS2_N MSEBI_CS2_N MSEBI_A9 MSEBI_A9

MSEBI_CS1_N MSEBI_CS1_N MSEBI_CS1_N MSEBI_A10

MSEBI_CS0_N MSEBI_CS0_N MSEBI_CS0_N MSEBI_CS0_N

Extended Address Capability Available with 1 ALE phase

4 Chip Selects
16 MB

3 Chip Selects
32 MB

2 Chip Selects
64 MB

1 Chip Select
128 MB

MSEBI_CS3_N MSEBI_A24 MSEBI_A24 MSEBI_A24

MSEBI_CS2_N MSEBI_CS2_N MSEBI_A25 MSEBI_A25

MSEBI_CS1_N MSEBI_CS1_N MSEBI_CS1_N MSEBI_A26

MSEBI_CS0_N MSEBI_CS0_N MSEBI_CS0_N MSEBI_CS0_N

ALE phase is optional to increase bandwidth and reduce latency for each chip select CS[n]_N (n = 0..3).

For Master Mode
CPU (n = 0..3)

● MSEBI_A26... MSEBI_A1 are directly driven by CPU (128 MB for each CS[n]_N)

● MSEBI_A31... MSEBI_A27 are driven by following registers:

− rMSEBIM_CONFIG_CS[n]_N

DMA (n = 0..1)

● MSEBI_A31... MSEBI_A1 are driven by following registers:

− rMSEBIM_ADDRDMA_CURRENTREAD_CS[n]_N (n = 0..1)

− rMSEBIM_ADDRDMA_CURRENTWRITE_CS[n]_N (n = 0..1)

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 469 of 637
Dec 29, 2021

10.1.3.3 Mode8 Multiplexer

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

On ALE columns:
● If multiple ALE stages are used, the symbol #k in the column represents the order in which the master will send

the ALE phases to the slave, i.e. #1 is the first ALE, #2 the second, etc.

Table 10.8 MSEBI Mode8, Multiplexer Function on ACD7..0

MSEBI_ACD Bus
Multiplexed

Stage
ADDRESS
Controlled by
ALE
(Optional, #4)

Stage
ADDRESS
Controlled by
ALE
(Optional, #3)

Stage
ADDRESS
Controlled by
ALE
(Optional, #2)

Stage
ADDRESS
Controlled by
ALE
(Optional, #1)

Stage
CONTROL
Controlled by CLE

Stage
DATA
Controlled by
DLE

MSEBI(x)_ALE
Serial mode only

1’b1 1’b1 1’b1 1’b1 1’b0 1’b0

MSEBIM_ALE
Parallel mode only

1’b0 1’b0 1’b0 1’b1 1’b0 1’b0

MSEBIM_ALE1
Parallel mode only

1’b0 1’b0 1’b1 1’b0 1’b0 1’b0

MSEBIM_ALE2
Parallel mode only

1’b0 1’b1 1’b0 1’b0 1’b0 1’b0

MSEBIM_ALE3
Parallel mode only

1’b1 1’b0 1’b0 1’b0 1’b0 1’b0

MSEBI(x)_CLE 1’b0 1’b0 1’b0 1’b0 1’b1 1’b0

MSEBI(x)_DLE 1’b0 1’b0 1’b0 1’b0 1’b0 1’b1

Assignment on ACD

MSEBI(x)_ACD7 1’b0 MSEBI_A24 MSEBI_A16 MSEBI_A8 MSEBI_A0 MSEBI_D7

MSEBI(x)_ACD6 MSEBI_A31 MSEBI_A23 MSEBI_A15 MSEBI_A7 MSEBI_R/W_N MSEBI_D6

MSEBI(x)_ACD5 MSEBI_A30 MSEBI_A22 MSEBI_A14 MSEBI_A6 MSEBI_DMA_N MSEBI_D5

MSEBI(x)_ACD4 MSEBI_A29 MSEBI_A21 MSEBI_A13 MSEBI_A5 MSEBI_CSREG_N MSEBI_D4

MSEBI(x)_ACD3 MSEBI_A28 MSEBI_A20 MSEBI_A12 MSEBI_A4 MSEBI_CS3_N MSEBI_D3

MSEBI(x)_ACD2 MSEBI_A27 MSEBI_A19 MSEBI_A11 MSEBI_A3 MSEBI_CS2_N MSEBI_D2

MSEBI(x)_ACD1 MSEBI_A26 MSEBI_A18 MSEBI_A10 MSEBI_A2 MSEBI_CS1_N MSEBI_D1

MSEBI(x)_ACD0 MSEBI_A25 MSEBI_A17 MSEBI_A9 MSEBI_A1 MSEBI_CS0_N MSEBI_D0

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 470 of 637
Dec 29, 2021

Table 10.9 MSEBI Mode8, Chip Selects Management

Extended Address Capability Available with 0 ALE phase

4 Chip Selects
2 B

3 Chip Selects
4 B

2 Chip Selects
8 B

1 Chip Select
16 B

MSEBI_CS3_N MSEBI_A1 MSEBI_A1 MSEBI_A1

MSEBI_CS2_N MSEBI_CS2_N MSEBI_A2 MSEBI_A2

MSEBI_CS1_N MSEBI_CS1_N MSEBI_CS1_N MSEBI_A3

MSEBI_CS0_N MSEBI_CS0_N MSEBI_CS0_N MSEBI_CS0_N

Extended Address Capability with 1 ALE phase

4 Chip Selects
512 B

3 Chip Selects
1 KB

2 Chip Selects
2 KB

1 Chip Select
4 KB

MSEBI_CS3_N MSEBI_A9 MSEBI_A9 MSEBI_A9

MSEBI_CS2_N MSEBI_CS2_N MSEBI_A10 MSEBI_A10

MSEBI_CS1_N MSEBI_CS1_N MSEBI_CS1_N MSEBI_A11

MSEBI_CS0_N MSEBI_CS0_N MSEBI_CS0_N MSEBI_CS0_N

Extended Address Capability Available with 2 ALE phases

4 Chip Selects
128 KB

3 Chip Selects
256 KB

2 Chip Selects
512 KB

1 Chip Select
1 MB

MSEBI_CS3_N MSEBI_A17 MSEBI_A17 MSEBI_A17

MSEBI_CS2_N MSEBI_CS2_N MSEBI_A18 MSEBI_A18

MSEBI_CS1_N MSEBI_CS1_N MSEBI_CS1_N MSEBI_A19

MSEBI_CS0_N MSEBI_CS0_N MSEBI_CS0_N MSEBI_CS0_N

Extended Address Capability Available with 3 ALE phases

4 Chip Selects
32 MB

3 Chip Selects
64 MB

2 Chip Selects
128 MB

1 Chip Select
256 MB

MSEBI_CS3_N MSEBI_A25 MSEBI_A25 MSEBI_A25

MSEBI_CS2_N MSEBI_CS2_N MSEBI_A26 MSEBI_A26

MSEBI_CS1_N MSEBI_CS1_N MSEBI_CS1_N MSEBI_A27

MSEBI_CS0_N MSEBI_CS0_N MSEBI_CS0_N MSEBI_CS0_N

ALE phase is optional to increase bandwidth and reduce latency for Each chip select CS[n]_N (n = 0..3).

For Master Mode
CPU (n = 0..3)

● MSEBI_A26 .. MSEBI_A0 are directly driven by CPU (128 MB for each CS[n]_N)

● MSEBI_A31 .. MSEBI_A27 are driven by following registers:

− rMSEBIM_CONFIG_CS[n]_N

DMA (n = 0..1)

● MSEBI_A31 .. MSEBI_A0 are driven by following registers:

− rMSEBIM_ADDRDMA_CURRENTREAD_CS[n]_N (n = 0..1)

− rMSEBIM_ADDRDMA_CURRENTWRITE_CS[n]_N (n = 0..1)

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 471 of 637
Dec 29, 2021

10.2 Register Map

10.2.1 Register Map MSEBI Master from CPU

Table 10.10 Register Map MSEBI Master from CPU

Address Register Symbol Register Name

400C 0000h + 100h × n rMSEBIM_CYCLESIZE_CS[n]_N (n = 0..3) Chip Select CycleSize Register

400C 0004h + 100h × n rMSEBIM_SETUPHOLD_CS[n]_N (n = 0..3) Chip Select SetupHold Register

400C 0008h + 100h × n rMSEBIM_TDMACR_CS[n]_N (n = 0..1) DMA Transmit Control and Status Register

400C 000Ch + 100h × n rMSEBIM_RDMACR_CS[n]_N (n = 0..1) DMA Receive Control and Status Register

400C 0010h + 100h × n rMSEBIM_ADDRDMA_READ_CS[n]_N (n = 0..1) DMA Read Address Register

400C 0014h + 100h × n rMSEBIM_ADDRDMA_CURRENTREAD_CS[n]_N (n = 0..1) DMA Current Read Address Register

400C 0018h + 100h × n rMSEBIM_ADDRDMA_WRITE_CS[n]_N (n = 0..1) DMA Write Address Register

400C 001Ch + 100h × n rMSEBIM_ADDRDMA_CURRENTWRITE_CS[n]_N (n = 0..1) DMA Current Write Address Register

400C 0020h + 100h × n rMSEBIM_DMATDLR_CS[n]_N (n = 0..1) DMA Transmit Data Level Register

400C 0024h + 100h × n rMSEBIM_DMARDLR_CS[n]_N (n = 0..1) DMA Receive Data Level Register

400C 0060h + 100h × n rMSEBIM_CONFIG_CS[n]_N (n = 0..3) Chip Select Config Register

400C 0800h rMSEBIM_CONFIG Common Config Register

400C 0808h rMSEBIM_CPU_FIFOREAD_FLUSH Flush Receive FIFO Register

10.2.2 Register Map MSEBI Master from DMA

Table 10.11 Register Map MSEBI Master from DMA

Address Register Symbol Register Name

4008 0000h + 20000h × n rMSEBIM_DMA_FIFOREAD_CS[n]_N (n = 0..1) DMA Receive FIFO (32 KB)

4009 0000h + 20000h × n rMSEBIM_DMA_FIFOWRITE_CS[n]_N (n = 0..1) DMA Transmit FIFO (64 KB)

10.2.3 Register Map MSEBI Slave from CPU

Table 10.12 Register Map MSEBI Slave from CPU

Address Register Symbol Register Name

400C 2000h + 100h × n rMSEBIS_CYCLESIZE_CS[n]_N (n = 0..3) Chip Select CycleSize Register

400C 2004h + 100h × n rMSEBIS_SETUPHOLD_CS[n]_N (n = 0..3) Chip Select SetupHold Register

400C 2008h + 100h × n rMSEBIS_MMU_ADDR_CS[n]_N (n = 0..3) MMU Base Address Register

400C 200Ch + 100h × n rMSEBIS_MMU_ADDR_MASK_CS[n]_N (n = 0..3) MMU Address Mask Register

400C 2010h + 100h × n rMSEBIS_DMATX_REQ_CS[n]_N (n = 0..1) DMA Transmit Request Register

400C 2014h + 100h × n rMSEBIS_DMARX_REQ_CS[n]_N (n = 0..1) DMA Receive Request Register

400C 2018h + 100h × n rMSEBIS_DMATDLR_CS[n]_N (n = 0..1) DMA Transmit Data Level Register

400C 201Ch + 100h × n rMSEBIS_DMARDLR_CS[n]_N (n = 0..1) DMA Receive Data Level Register

400C 2060h + 100h × n rMSEBIS_CONFIG_CS[n]_N (n = 0..3) Chip Select Config Register

400C 2800h rMSEBIS_CONFIG Common Config Register

400C 2804h rMSEBIS_STATUS_INT0 Interrupt Status Register

400C 2808h rMSEBIS_STATUS_INT1 Masked Interrupt Status Register

400C 280Ch rMSEBIS_MASK_INT Interrupt Mask Register

400C 2810h rMSEBIS_CLR_INT Interrupt Clear Register

400C 2814h rMSEBIS_EOB_ADDR End Of Block Address Register

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 472 of 637
Dec 29, 2021

10.2.4 Register Map MSEBI Slave from MSEBI

Table 10.13 Register Map MSEBI Slave from MSEBI

CS[n]*1 Address Register Symbol Register Name

CS0 400C 1000h rMSEBIS_INT Slave Interrupt Register

 400C 1004h rMSEBIS_STATUS Slave Status Register

 400C 1008h + 4h × n rMSEBIS_ID_CS[n]_N (n: 0..3) Slave ID Register

CS1 400C 1400h rMSEBIS_INT Slave Interrupt Register

 400C 1404h rMSEBIS_STATUS Slave Status Register

 400C 1408h + 4h × n rMSEBIS_ID_CS[n]_N (n: 0..3) Slave ID Register

CS2 400C 1800h rMSEBIS_INT Slave Interrupt Register

 400C 1804h rMSEBIS_STATUS Slave Status Register

 400C 1808h + 4h × n rMSEBIS_ID_CS[n]_N (n: 0..3) Slave ID Register

CS3 400C 1C00h rMSEBIS_INT Slave Interrupt Register

 400C 1C04h rMSEBIS_STATUS Slave Status Register

 400C 1C08h + 4h × n rMSEBIS_ID_CS[n]_N (n: 0..3) Slave ID Register

Note 1. MSEBI Master can access the register of each MSEBI Slave using MSEBI_CS[n]_N (n = 0..3) according to this table.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 473 of 637
Dec 29, 2021

10.3 Register Description

10.3.1 Register Description MSEBI Master from CPU

10.3.1.1 rMSEBIM_CYCLESIZE_CS[n]_N — Chip Select CycleSize Register (n = 0..3)
CAUTION

Before switching configuration, the user must ensure that no previous accesses are pending by flushing the CPU receive
FIFO (CPU write at rMSEBIM_CPU_FIFOREAD_FLUSH with the pattern 32’h0808). All FIFOs must be empty, and DMA
controller must be stopped.

Address: 400C 0000h + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bMSEBIM_WRDLEDATA_NB bMSEBIM_RDDLEDATA_NB

Value after reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — bMSEBIM_WRD
LEDATA_B — — bMSEBIM_RDD

LEDATA_B — — — — — —
bMSEBI
M_CLE
DATA

bMSEBI
M_ALE
DATA

Value after reset 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1

Table 10.14 rMSEBIM_CYCLESIZE_CS[n]_N Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b24 bMSEBIM_WRDLED
ATA_NB

Size of latch data phase in no burst mode (WRDLEDATA_NB)
Used only:
● On write cycle
● Single access or first access of burst cycle (synchronous mode only).
Time duration (MSEBIM_CLK) of MSEBIM_DLE high

8’h00: 1 MSEBIM_CLK
8’h01: 2 MSEBIM_CLK
 ∙∙∙ ∙∙∙ ∙∙∙
8’hFE: 255 MSEBIM_CLK
8’hFF: 256 MSEBIM_CLK

See Section 10.4.4, MSEBI Timing.

R/W

b23 to b16 bMSEBIM_RDDLEDA
TA_NB

Size of latch data phase in no burst mode (RDDLEDATA_NB)
Used only:
● On read cycle
● Single access or first access of burst cycle (synchronous mode only).
Time duration (MSEBIM_CLK) of MSEBIM_DLE high

8’h00: 1 MSEBIM_CLK
8’h01: 2 MSEBIM_CLK
 ∙∙∙ ∙∙∙ ∙∙∙
8’hFE: 255 MSEBIM_CLK
8’hFF: 256 MSEBIM_CLK

R/W

b15, b14 Reserved Read as 0. R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 474 of 637
Dec 29, 2021

Table 10.14 rMSEBIM_CYCLESIZE_CS[n]_N Register Contents (2/2)

Bit Position Bit Name Function R/W

b13, b12 bMSEBIM_WRDLED
ATA_B

Size of latch data phase in burst mode (WRDLEDATA_B)
Used only:
● On write cycle
● Synchronous mode only with burst enable
Time duration (MSEBIM_CLK) of MSEBIM_DLE high

2’b00: 1 MSEBIM_CLK
2’b01: 2 MSEBIM_CLK
2’b10: 3 MSEBIM_CLK
2’b11: 4 MSEBIM_CLK

See Section 10.4.4, MSEBI Timing.

R/W

b11, b10 Reserved Read as 0. R

b9, b8 bMSEBIM_RDDLEDA
TA_B

Size of latch data phase in burst mode (RDDLEDATA_B)
Use only:
● On read cycle
● Synchronous mode only with burst enable
Time duration (MSEBIM_CLK) of MSEBIM_DLE high

2’b00: 1 MSEBIM_CLK
2’b01: 2 MSEBIM_CLK
2’b10: 3 MSEBIM_CLK
2’b11: 4 MSEBIM_CLK

R/W

b7 to b2 Reserved Read as 0. R

b1 bMSEBIM_CLEDATA Size of control latch phase (CLEDATA)
Time duration (MSEBIM_CLK) of MSEBIM_CLE phase:

0: 1 MSEBIM_CLK (high during 1 MSEBIM_CLK)
1: 2 MSEBIM_CLK (high during 1 MSEBIM_CLK then low during 1 MSEBIM_CLK)

Caution) On asynchronous mode, use an MSEBI_CLE phase length of 2 to
guarantee hold time of external latch.

R/W

b0 bMSEBIM_ALEDATA Size of address latch phase (ALEDATA)
Time duration (MSEBIM_CLK) of MSEBIM_ALE phase:

0: 1 MSEBIM_CLK (high during 1 MSEBIM_CLK)
1: 2 MSEBIM_CLK (high during 1 MSEBIM_CLK then low during 1 MSEBIM_CLK)

Caution) If no ALE phase, this parameter is not used.
On asynchronous mode, use an MSEBI_ALE phase length of 2 to
guarantee hold time of external latch.

See Section 10.4.4, MSEBI Timing.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 475 of 637
Dec 29, 2021

10.3.1.2 rMSEBIM_SETUPHOLD_CS[n]_N — Chip Select SetupHold Register (n = 0..3)
CAUTION

Before switching configuration, the user must ensure that no previous accesses are pending by flushing the CPU receive
FIFO (CPU write at rMSEBIM_CPU_FIFOREAD_FLUSH with the pattern 32’h0808). All FIFOs must be empty, and DMA
controller must be stopped.

Address: 400C 0004h + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — bMSEBIM_WRDLEHOLD — — bMSEBIM_RDDLEHOLD

Value after reset 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — bMSEBIM_WRDLESETUP — — bMSEBIM_RDDLESETUP

Value after reset 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1

Table 10.15 rMSEBIM_SETUPHOLD_CS[n]_N Register Contents (1/2)

Bit Position Bit Name Function R/W

b31, b30 Reserved Read as 0. R

b29 to b24 bMSEBIM_WRDLEH
OLD

Size of hold data phase (WRDLEHOLD)
Used only:
● On write cycle
Time duration (MSEBIM_CLK) of hold phase

6’h00: 0 MSEBIM_CLK
6’h01: 1 MSEBIM_CLK
 ∙∙∙ ∙∙∙ ∙∙∙
6’h3E: 62 MSEBIM_CLK
6’h3F: 63 MSEBIM_CLK

See Section 10.4.4, MSEBI Timing.

R/W

b23, b22 Reserved Read as 0. R

b21 to b16 bMSEBIM_RDDLEH
OLD

Size of hold data phase (RDDLEHOLD)
Used only:
● On read cycle
Time duration (MSEBIM_CLK) of hold phase

6’h00: 0 MSEBIM_CLK
6’h01: 1 MSEBIM_CLK
 ∙∙∙ ∙∙∙ ∙∙∙
6’h3E: 62 MSEBIM_CLK
6’h3F: 63 MSEBIM_CLK

Caution) Length “0” (to avoid bus conflict) should not be used for read access to
peripheral.

R/W

b15, b14 Reserved Read as 0. R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 476 of 637
Dec 29, 2021

Table 10.15 rMSEBIM_SETUPHOLD_CS[n]_N Register Contents (2/2)

Bit Position Bit Name Function R/W

b13 to b8 bMSEBIM_WRDLES
ETUP

Size of setup data phase (WRDLESETUP)
Used only:
● On write cycle
Time duration (MSEBIM_CLK) of setup phase

6’h00: 0 MSEBIM_CLK
6’h01: 1 MSEBIM_CLK
 ∙∙∙ ∙∙∙ ∙∙∙
6’h3E: 62 MSEBIM_CLK
6’h3F: 63 MSEBIM_CLK

R/W

b7, b6 Reserved Read as 0. R

b5 to b0 bMSEBIM_RDDLESE
TUP

Size of setup data phase (RDDLESETUP)
Used only:
● On read cycle
Time duration (MSEBIM_CLK) of setup phase

6’h00: 0 MSEBIM_CLK
6’h01: 1 MSEBIM_CLK
 ∙∙∙ ∙∙∙ ∙∙∙
6’h3E: 62 MSEBIM_CLK
6’h3F: 63 MSEBIM_CLK

Caution) Length “0” (to avoid bus conflict) should not be used for read access to
peripheral.

See Section 10.4.4, MSEBI Timing.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 477 of 637
Dec 29, 2021

10.3.1.3 rMSEBIM_TDMACR_CS[n]_N — DMA Transmit Control and Status Register
(n = 0..1)

Address: 400C 0008h + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 —

bMSEBIM
_SINGLE
DEST
WIDTH

bMSEBIM_CURRENT_DEST_BLOCK_SIZE

bMSEBIM
_DEST_B
LOCK_SI

ZE

Value after reset 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bMSEBIM_DEST_BLOCK_SIZE bMSEBIM_DEST_BURS
T_SIZE

bMSEBI
M_TDM

AE1

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.16 rMSEBIM_TDMACR_CS[n]_N Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 Reserved Read as 0. R

b30 bMSEBIM_SINGLE_
DEST_WIDTH

Size of single transaction
DMAC.CTL[ch].DST_TR_WIDTH Register (ch = 0..7) must be programmed according
to this value.

1’b1: Width is 64 bits

Caution) All other values (8, 16, 32 bits for example) programmed in
DMAC.CTL[ch].DST_TR_WIDTH fields are forbidden, to use the MSEBI
interface

R

b29 to b17 bMSEBIM_CURREN
T_DEST_BLOCK_SIZ
E

Current value of DEST_BLOCK_SIZE
Once the transfer starts, the read of bMSEBIM_CURRENT_DEST_BLOCK_SIZE bits
gives the total number of single transactions to be written in the DMA Transmit FIFO in
order to end the current block transfer.
bMSEBIM_CURRENT_DEST_BLOCK_SIZE is reloaded with
bMSEBIM_DEST_BLOCK_SIZE value, when the firmware:

Set “1’b1” on bMSEBIM_TDMAE1 (rising edge)

R

b16 to b4 bMSEBIM_DEST_BL
OCK_SIZE

DEST_BLOCK_SIZE
Destination Block Transfer Size in DMA Transmit FIFO.
MSEBI is the flow controller.
The user must write this field before or at the same time the DMA mode is enabled.
The number programmed into DEST_BLOCK_SIZE indicates the total number of
single transactions to perform for every block transfer. The size of single transaction
depends on bMSEBIM_SINGLE_DEST_WIDTH bit.

0: 0 single transaction to transfer or end of block transfer
1: 1 single transaction to transfer
2: 2 single transactions to transfer
 ∙∙∙ ∙∙∙ ∙∙∙
8191: 8191 single transactions to transfer

Note) To be able to transfer a max number of element (max DEST_BLOCK_SIZE =
8191 single elements), the destination pointer of the DMAC register
DMAC.DAR[ch] (ch = 0..7) must be set to the base address of the FIFO before
the beginning of the transfer.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 478 of 637
Dec 29, 2021

Table 10.16 rMSEBIM_TDMACR_CS[n]_N Register Contents (2/2)

Bit Position Bit Name Function R/W

b3 to b1 bMSEBIM_DEST_BU
RST_SIZE

DEST_BURST_SIZE
Destination Burst Transaction Size in DMA Transmit FIFO.
The MSEBI is the flow controller.
The user must write this field before or at the same time the DMA mode is enabled.
Number of single transactions, to be written to the DMA Transmit FIFO every time a
transmit burst transaction request is made

3’b000: 1 single transaction
3’b001: 4 single transactions, recommended value
3’b010: 8 single transactions
3’b011: 16 single transactions
3’b100: 32 single transactions
3’b101: Reserved, not used
3’b11x: Reserved, not used

R/W

b0 bMSEBIM_TDMAE1 Transmit DMA Enables/Disables
0: Disable the DMA in Transmit mode
1: Enable the DMA in Transmit mode

A rising edge on bMSEBIM_TDMAE1 flushes the DMA Transmit FIFO.
The bMSEBIM_TDMAE1 bit is automatically cleared by hardware to disable the DMA
in Transmit mode after the last transaction in Transmit FIFO has completed
(DEST_BLOCK_SIZE single transactions are written in DMA Transmit FIFO) and also
all data in DMA Transmit FIFO have been output (FIFO Empty) to MSEBI bus.
Software can therefore poll this bit to determine when this channel is free for a new
DMA transfer.
Caution)
● When the DMA is controlled by MSEBIM_DMA_WR0_N or MSEBIM_DMA_WR1_N

external pin (depends on MSEBI_CS_N used).
Prior to enable this bit, Software must enable the
bMSEBIM_USE_EXT_WRDMA_REQ in the rMSEBIM_DMATDLR_CS0_N (or
rMSEBIM_DMATDLR_CS1_N, depends on MSEBI_CS_N used) register to enable
the DMA mode by external control pins.
After that, the DMA mode is controlled with the bMSEBIM_TDMAE1 and
MSEBIM_DMA_WR0_N or MSEBIM_DMA_WR1_N external pin (depends on
MSEBI_CS_N used).
See Figure 10.53, MSEBI Master: External DMA Request.

● When the DMA is not controlled by MSEBIM_DMA_WR0_N or
MSEBIM_DMA_WR1_N external pin.
Prior to enable this bit, Software must disable the
bMSEBIM_USE_EXT_WRDMA_REQ in the rMSEBIM_DMATDLR_CS0_N (or
rMSEBIM_DMATDLR_CS1_N, depends on MSEBI_CS_N used) register.
After that, the DMA mode is controlled only with the bMSEBIM_TDMAE1.

● If this bit is cleared during a DMA transfer, the current transfer (Burst or Single) is
finished before the stop of DMA mode. The
bMSEBIM_CURRENT_DEST_BLOCK_SIZE value will be consistent only when the
current transfer is finished.
To complete the DMA Block transfer:
– Check the DMA Transmit FIFO is empty

(bMSEBIM_DMA_TRANSMIT_FIFOLEVEL)
– Reload the bMSEBIM_ADDRDMA_WRITE with the

bMSEBIM_ADDRDMA_CURRENTWRITE
– Reload the bMSEBIM_DEST_BLOCK_SIZE with the

bMSEBIM_CURRENT_DEST_BLOCK_SIZE.
– Update bMSEBIM_DEST_BURST_SIZE if necessary.
– Set bMSEBIM_TDMAE1 to 1.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 479 of 637
Dec 29, 2021

10.3.1.4 rMSEBIM_RDMACR_CS[n]_N — DMA Receive Control and Status Register
(n = 0..1)

Address: 400C 000Ch + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 —

bMSEBIM
_SINGLE
_SRC_WI

DTH

bMSEBIM_CURRENT_SRC_BLOCK_SIZE

bMSEBI
M_SRC
_BLOC
K_SIZE

Value after reset 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bMSEBIM_SRC_BLOCK_SIZE bMSEBIM_SRC_BURST
_SIZE

bMSEBI
M_RDM

AE1

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.17 rMSEBIM_RDMACR_CS[n]_N Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 Reserved Read as 0. R

b30 bMSEBIM_SINGLE_
SRC_WIDTH

Size of single transaction
DMAC.CTL[ch].SRC_TR_WIDTH Register (ch = 0..7) must be programmed according
to this value.

1’b1: Width is 64 bits

Caution) All other values (8, 16, 32 bits for example) programmed in
DMAC.CTL[ch].SRC_TR_WIDTH fields are forbidden, to use the MSEBI
interface.

R

b29 to b17 bMSEBIM_CURREN
T_SRC_BLOCK_SIZ
E

Current value of SRC_BLOCK_SIZE
Once the transfer starts, the read of bMSEBIM_CURRENT_SRC_BLOCK_SIZE bits
gives the total number of single transactions to be read in the DMA Receive FIFO in
order to end the current block transfer.
bMSEBIM_CURRENT_SRC_BLOCK_SIZE is reloaded with
bMSEBIM_SRC_BLOCK_SIZE value, when the firmware:

Set “1” on bMSEBIM_RDMAE1 (rising edge)

R

b16 to b4 bMSEBIM_SRC_BLO
CK_SIZE

SRC_BLOCK_SIZE
Source Block Transfer Size in DMA Receive FIFO.
MSEBI is the flow controller.
The user must write this field before or at the same time the DMA mode is enabled.
The number programmed into SRC_BLOCK_SIZE indicates the total number of single
transactions to perform for every block transfer. The size of single transaction
depends on bMSEBIM_SINGLE_SRC_WIDTH bit.

0: 0 single transaction to transfer or end of block transfer
1: 1 single transaction to transfer
2: 2 single transactions to transfer
 ∙∙∙ ∙∙∙ ∙∙∙
8191: 8191 single transactions to transfer

Note) To be able to transfer a maximum number of element (max
DEST_BLOCK_SIZE = 8191 single elements), the source pointer of the DMAC
register DMAC.SAR[ch] (ch = 0..7) must be set to the base address of the FIFO
before the beginning of the transfer.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 480 of 637
Dec 29, 2021

Table 10.17 rMSEBIM_RDMACR_CS[n]_N Register Contents (2/2)

Bit Position Bit Name Function R/W

b3 to b1 bMSEBIM_SRC_BUR
ST_SIZE

SRC_BURST_SIZE
Source Burst Transaction Size in DMA Receive FIFO.
The MSEBI is the flow controller.
The user must write this field before or at the same time the DMA mode is enabled.
Number of single transactions, to be read in the DMA Receive FIFO every time a
receive burst transaction request is made with n = 0 or n = 2 for CS0_N or CS1_N.

3’b000: 1 single transaction
3’b001: 4 single transactions, recommended value
3’b010: 8 single transactions
3’b011: 16 single transactions
3’b100: 32 single transactions
3’b101: Reserved, not used
3’b11x: Reserved, not used

R/W

b0 bMSEBIM_RDMAE1 Receive DMA Enables/Disables
0: Disable the DMA in Receive mode
1: Enable the DMA in Receive mode

A rising edge on bMSEBIM_RDMAE1 flushes the DMA Receive FIFO.
The bMSEBIM_RDMAE1 bit is automatically cleared by hardware to disable the DMA
in Receive mode after the last transaction from DMA Receive FIFO has completed
(SRC_BLOCK_SIZE single transactions read in DMA Receive FIFO). The DMA
controller is stopped and DMA Receive FIFO is flushed. Software can therefore poll
this bit to determine when this channel is free for a new DMA transfer.

Caution)
● When the DMA is controlled by MSEBIM_DMA_RD0_N or MSEBIM_DMA_RD1_N

external pin (depends on MSEBI_CS_N used). Prior to enable this bit, Software
must enable the bMSEBIM_USE_EXT_RDDMA_REQ in the
rMSEBIM_DMARDLR_CS0_N (or rMSEBIM_DMARDLR_CS1_N, depends on
MSEBI_CS_N used) register to enable the DMA mode by external control pins.
After that, the DMA mode is controlled with the bMSEBIM_RDMAE1 and
MSEBIM_DMA_RD0_N or MSEBIM_DMA_RD1_N external pin (depends on
MSEBI_CS_N used).
See Figure 10.53, MSEBI Master: External DMA Request.

● When the DMA is not controlled by MSEBIM_DMA_RD0_N or
MSEBIM_DMA_RD1_N external pin. Prior to enable this bit, Software must disable
the bMSEBIM_USE_EXT_RDDMA_REQ in the rMSEBIM_DMARDLR_CS0_N (or
rMSEBIM_DMARDLR_CS1_N, depends on MSEBI_CS_N used) register. After
that, the DMA mode is controlled only with the bMSEBIM_RDMAE1.

● If this bit is cleared during a DMA transfer, the current transfer (Burst or Single) is
finished before the stop of DMA mode. The
bMSEBIM_CURRENT_SRC_BLOCK_SIZE value will be consistent only when the
current transfer is finished.
To complete the DMA Block transfer:
– Check the DMA Receive FIFO is empty

(bMSEBIM_DMA_RECEIVE_FIFOLEVEL)
– Reload the bMSEBIM_ADDRDMA_READ with the

bMSEBIM_ADDRDMA_CURRENTREAD
– Reload the bMSEBIM_SRC_BLOCK_SIZE with the

bMSEBIM_CURRENT_SRC_BLOCK_SIZE
– Update bMSEBIM_SRC_BURST_SIZE if necessary.
– Set bMSEBIM_RDMAE1 to 1.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 481 of 637
Dec 29, 2021

10.3.1.5 rMSEBIM_ADDRDMA_READ_CS[n]_N — DMA Read Address Register (n = 0..1)

Address: 400C 0010h + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bMSEBIM_ADDRDMA_READ

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bMSEBIM_ADDRDMA_READ

bMSEBIM
_ADDRD
MA_REA

D_2

— —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.18 rMSEBIM_ADDRDMA_READ_CS[n]_N Register Contents

Bit Position Bit Name Function R/W

b31 to b3 bMSEBIM_ADDRDM
A_READ

Address DMA Read Access
First block address used by DMA controller to start a DMA transfer from MSEBI bus to
DMA Receive FIFO when the firmware set “1” on bMSEBIM_RDMAE1 (rising edge).
See Figure 10.49, MSEBI: Burst Mode, DMA Receive FIFO and Bus Interface
Coupling.

R/W

b2 bMSEBIM_ADDRDM
A_READ_2

This bit is ignored to define first block address. R/W

b1, b0 Reserved These bits [1:0] are reset to 0. R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 482 of 637
Dec 29, 2021

10.3.1.6 rMSEBIM_ADDRDMA_CURRENTREAD_CS[n]_N — DMA Current Read Address
Register (n = 0..1)

Address: 400C 0014h + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bMSEBIM_ADDRDMA_CURRENTREAD

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bMSEBIM_ADDRDMA_CURRENTREAD

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.19 rMSEBIM_ADDRDMA_CURRENTREAD_CS[n]_N Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bMSEBIM_ADDRDM
A_CURRENTREAD

Current Address DMA Read Access
Address used by DMA controller to read data from MSEBI bus to DMA Receive FIFO.
At the end of MSEBI access, this value is updated with the size of packed data
reading on the bus.
See Figure 10.49, MSEBI: Burst Mode, DMA Receive FIFO and Bus Interface
Coupling.
bMSEBIM_ADDRDMA_CURRENTREAD is reloaded with
bMSEBIM_ADDRDMA_READ value, when the firmware set “1” on
bMSEBIM_RDMAE1 (rising edge). On reload:
● The bit [2:0] are reset to 0 if bMSEBIM_SINGLE_SRC_WIDTH = 1

(alignment 64 bits).

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 483 of 637
Dec 29, 2021

10.3.1.7 rMSEBIM_ADDRDMA_WRITE_CS[n]_N — DMA Write Address Register (n = 0..1)

Address: 400C 0018h + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bMSEBIM_ADDRDMA_WRITE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bMSEBIM_ADDRDMA_WRITE

bMSEBIM
_ADDRD
MA_WRI

TE_2

— —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.20 rMSEBIM_ADDRDMA_WRITE_CS[n]_N Register Contents

Bit Position Bit Name Function R/W

b31 to b3 bMSEBIM_ADDRDM
A_WRITE

Address DMA Write Access
First block address used by DMA controller to start a DMA transfer from DMA
Transmit FIFO to MSEBI bus when the firmware set “1” on bMSEBIM_TDMAE1 (rising
edge).
The bit [1:0] are reset to 0 (alignment 32 bits).
See Figure 10.48, MSEBI: Burst Mode, DMA Transmit FIFO and Bus Interface
Coupling.

R/W

b2 bMSEBIM_ADDRDM
A_WRITE_2

Depending on bMSEBIM_SINGLE_DEST_WIDTH bit
● bMSEBIM_SINGLE_DEST_WIDTH: 1 (single transaction 64bits).

This bit is ignored to define first block address (alignment 64 bits).

R/W

b1, b0 Reserved These bits [1:0] are reset to 0 (Alignment 32 bits). R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 484 of 637
Dec 29, 2021

10.3.1.8 rMSEBIM_ADDRDMA_CURRENTWRITE_CS[n]_N — DMA Current Write Address
Register (n = 0..1)

Address: 400C 001Ch + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bMSEBIM_ADDRDMA_CURRENTWRITE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bMSEBIM_ADDRDMA_CURRENTWRITE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.21 rMSEBIM_ADDRDMA_CURRENTWRITE_CS[n]_N Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bMSEBIM_ADDRDM
A_CURRENTWRITE

Current Address DMA Write Access
Address used by DMA controller to write data from DMA Transmit FIFO to MSEBI bus.
At the end of MSEBI access, this value is updated with the size of packed data written
on the bus.
See Figure 10.48, MSEBI: Burst Mode, DMA Transmit FIFO and Bus Interface
Coupling.
bMSEBIM_ADDRDMA_CURRENTWRITE is reload with
bMSEBIM_ADDRDMA_WRITE value, when the firmware set “1” on
bMSEBIM_TDMAE1 (rising edge). On reload:
● The bit [2:0] are reset to 0 if bMSEBIM_SINGLE_DEST_WIDTH = 1

(alignment 64 bits).

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 485 of 637
Dec 29, 2021

10.3.1.9 rMSEBIM_DMATDLR_CS[n]_N — DMA Transmit Data Level Register (n = 0..1)
CAUTION

Before switching configuration, the user must ensure that no previous accesses are pending by flushing the CPU receive
FIFO (CPU write at rMSEBIM_CPU_FIFOREAD_FLUSH with the pattern 32’h0808). All FIFOs must be empty, and DMA
controller must be stopped.

Address: 400C 0020h + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — —

bMSEBIM
_USE_EX
T_WRDM
A_REQ

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bMSEBIM_BURST_SIZE
MAX_DMAWRITE — bMSEBIM_DMA_TRANSMIT_FIFOLEVEL — bMSEBIM_DMATDLR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.22 rMSEBIM_DMATDLR_CS[n]_N Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 Reserved Keep initial value. R/W

b30 to b17 Reserved Read as 0. R

b16 bMSEBIM_USE_EXT
_WRDMA_REQ

In transmit mode, Enable the control of DMA channel by MSEBIM_DMA_WR0_N or
MSEBIM_DMA_WR1_N external pin (depends on CS_N used). In this mode, the DMA
mode is also controlled with the bMSEBIM_TDMAE1.
Transmit DMA mode Enables/Disables

1’b0: Disable DMA control by external pins. The DMA transfer starts immediately
on the rising edge of bMSEBIM_TDMAE1 bit.

1’b1: Enable DMA control by MSEBIM_DMA_WR0_N or MSEBIM_DMA_WR1_N
external pin (depends on CS_N used). The DMA transfer starts when an
external DMA request becomes 0 after a rising edge of bMSEBIM_TDMAE1 bit
is detected.

See Figure 10.53, MSEBI Master: External DMA Request.

R/W

b15 to b13 bMSEBIM_BURST_S
IZEMAX_DMAWRITE

For all CS[n]_N (n = 0..1)
Burst Size Max Allowed on Write access from DMA Transmit FIFO to MSEBI bus.
Used by Round Robin Priority arbiter.
See Figure 10.45, MSEBI: Round Robin Priority.

3’b000: 1 word
3’b001: 2 words
3’b010: 4 words
3’b011: 8 words
3’b100: 16 words
3’b101: Not limited
3’b11x: Reserved

A word is 32 bits width for Mode32 device, 16 bits width for Mode16 and 8 bits width
for Mode8 device.

R/W

b12 Reserved Read as 0. R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 486 of 637
Dec 29, 2021

Table 10.22 rMSEBIM_DMATDLR_CS[n]_N Register Contents (2/2)

Bit Position Bit Name Function R/W

b11 to b6 bMSEBIM_DMA_TRA
NSMIT_FIFOLEVEL

DMA Transmit FIFO Level
Contains the number of valid data entries in the DMA transmit FIFO.

6’d0: 0 data entry, DMA Transmit FIFO empty
6’d1: 1 data entry or an activity is present on handshaking and/or MSEBI bus
6’d2: 2 data entries
 ∙∙∙ ∙∙∙ ∙∙∙
6’d32: 32 data entries, DMA Transmit FIFO full

Note) One data entry: 1 word 64 bits

R

b5 Reserved Read as 0. R

b4 to b0 bMSEBIM_DMATDLR DMA Transmit FIFO Data Level
This bit field controls the level at which a DMA request is made by the Transmit logic.
It is equal to the watermark level, that is, the DMA request signal is generated when
the number of valid data entries in the DMA Transmit FIFO is equal to or below this
field value, and bMSEBIM_TDMAE1 = 1.
Refer below for the field decode.

6’d0: DMA request is asserted when 0 data entries are present in the DMA
Transmit FIFO

6’d1: DMA request is asserted when 1 or less data entries are present in the DMA
Transmit FIFO

 ∙∙∙ ∙∙∙ ∙∙∙
6’d31: DMA request is asserted, when 31 or less data entries are present in the

DMA Transmit FIFO
Recommended value for optimal operation (ch = 0..7):

DMAC.CTL[ch].DST_TR_WIDTH = 3 (64 bits)

DMAC.CTL[ch].DEST_MSIZE = 1 (4 single transactions)

bMSEBIM_SINGLE_DEST_WIDTH = 1 (64 bits)

bMSEBIM_DEST_BURST_SIZE = 1 (4 single transactions)

bMSEBIM_DMATDLR = 28

See Figure 10.48, MSEBI: Burst Mode, DMA Transmit FIFO and Bus Interface
Coupling.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 487 of 637
Dec 29, 2021

10.3.1.10 rMSEBIM_DMARDLR_CS[n]_N — DMA Receive Data Level Register (n = 0..1)
CAUTION

Before switching configuration, the user must ensure that no previous accesses are pending by flushing the CPU receive
FIFO (CPU write at rMSEBIM_CPU_FIFOREAD_FLUSH with the pattern 32’h0808). All FIFOs must be empty, and DMA
controller must be stopped.

Address: 400C 0024h + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — —

bMSEBIM
_USE_EX
T_RDDM
A_REQ

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bMSEBIM_BURST_SIZE
MAX_DMAREAD — bMSEBIM_DMA_RECEIVE_FIFOLEVEL — bMSEBIM_DMARDLR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.23 rMSEBIM_DMARDLR_CS[n]_N Register Contents (1/2)

Bit Position Bit Name Function R/W

b31, b30 Reserved Keep initial value. R/W

b29 to b17 Reserved Read as 0. R

b16 bMSEBIM_USE_EXT
_RDDMA_REQ

In receive mode, Enable the control of DMA channel by MSEBIM_DMA_RD0_N or
MSEBIM_DMA_RD1_N external pin (depends on CS_N used). In this mode, the DMA
mode is also controlled with the bMSEBIM_RDMAE1.
Receive DMA mode Enables/Disables

1’b0: Disable DMA control by external pins. The DMA transfer starts immediately
on a rising edge of bMSEBIM_RDMAE1 bit.

1’b1: Enable DMA control by MSEBIM_DMA_RD0_N or MSEBIM_DMA_RD1_N
external pin (depends on CS_N used). The DMA transfer starts when an
external DMA request becomes 0 after a rising edge of bMSEBIM_RDMAE1 bit
is detected.

See Figure 10.53, MSEBI Master: External DMA Request.

R/W

b15 to b13 bMSEBIM_BURST_S
IZEMAX_DMAREAD

For all CS[n]_N (n = 0..1)
Burst Size Max Allowed on Read access from MSEBI bus to DMA Receive FIFO.
Used by Round Robin Priority arbiter.
See Figure 10.45, MSEBI: Round Robin Priority.

3’b000: 1 word
3’b001: 2 words
3’b010: 4 words
3’b011: 8 words
3’b100: 16 words
3’b101: Not limited
3’b11x: Reserved

A word is 32 bits width for Mode32 device, 16 bits width for Mode16 and 8 bits width
for Mode8 device.

R/W

b12 Reserved Read as 0. R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 488 of 637
Dec 29, 2021

Table 10.23 rMSEBIM_DMARDLR_CS[n]_N Register Contents (2/2)

Bit Position Bit Name Function R/W

b11 to b6 bMSEBIM_DMA_RE
CEIVE_FIFOLEVEL

DMA Receive FIFO Level
Contains the number of valid data entries in the DMA Receive FIFO.

6'd0: 0 data entry, DMA Receive FIFO empty
6'd1: 1 data entry or an activity is present on handshaking and/or MSEBI bus
6'd2: 2 data entries
 ∙∙∙ ∙∙∙ ∙∙∙
6'd32: 32 data entries, DMA Receive FIFO full

With one data entry: 1 word 64 bits

R

b5 Reserved Read as 0. R

b4 to b0 bMSEBIM_DMARDL
R

DMA Receive FIFO Data Level
This bit field controls the level at which a DMA request is made by the receive logic.
The watermark level = bMSEBIM_DMARDLR+1, that is, DMA request is generated
when the number of valid data entries in the DMA receive FIFO is equal to or above
this field value + 1, and bMSEBIM_RDMAE1 =1.
Refer below for the field decode.

6'd0: DMA request is asserted, when 1 or more data entries are present in the
receive FIFO

6'd1: DMA request is asserted when 2 or more data entries are present in the
receive FIFO

 ∙∙∙ ∙∙∙ ∙∙∙
6'd31: DMA request is asserted, when 32 or more data entries are present in the

receive FIFO
Recommended value for optimal operation (ch = 0..7):

DMAC.CTL[ch].SRC_TR_WIDTH = 3 (64 bits)

DMAC.CTL[ch].SRC_MSIZE = 1 (4 single transactions)

bMSEBIM_SINGLE_SRC_WIDTH = 1 (64 bits)

bMSEBIM_SRC_BURST_SIZE = 1 (4 single transactions)

bMSEBIM_DMARDLR = 3

See Figure 10.49, MSEBI: Burst Mode, DMA Receive FIFO and Bus Interface
Coupling.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 489 of 637
Dec 29, 2021

10.3.1.11 rMSEBIM_CONFIG_CS[n]_N — Chip Select Config Register (n = 0..3)
CAUTION

Before switching configuration, the user must ensure that no previous accesses are pending by flushing the CPU receive
FIFO (CPU write at rMSEBIM_CPU_FIFOREAD_FLUSH with the pattern 32’h0808). All FIFOs must be empty, and DMA
controller must be stopped.

Address: 400C 0060h + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bMSEBIM_EXTEND_ADDR — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

bMSEBI
M_MUL
TI_DLE

bMSEBIM
CS[n]N
ROUTIN

G_CS3_N

bMSEBIM
CS[n]N
ROUTIN

G_CS2_N

bMSEBIM
_CS0N_R
OUTING_

CS1_N

bMSEBI
M_ALE
_MODE

bMSEBIM_ALE_NUMBE
R

bMSEBI
M_BUR
ST_EN
ABLE

bMSEBIM_MOD
E_WAIT — — bMSEBIM_CONFIG

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.24 rMSEBIM_CONFIG_CS[n]_N Register Contents (1/4)

Bit Position Bit Name Function R/W

b31 to b27 bMSEBIM_EXTEND_
ADDR

Extend address capability from MSEBI_A27 until MSEBI_A31 depending on user use
case by register.
With following allocation bits:

Bit31: MSEBI_A31
Bit30: MSEBI_A30
Bit29: MSEBI_A29
Bit28: MSEBI_A28
Bit27: MSEBI_A27

See Section 10.1.3, Multiplexed Signal Interface.

R/W

b26 to b16 Reserved Read as 0. R

b15 bMSEBIM_MULTI_DL
E

Multi DLE mode is used to give a fast and low pin consumption way to configure
FPGA.
During a write burst access, MSEBI_DLE present a rising edge on each valid signal of
data to allow external FPGA configuration method.

1’b0: Multi DLE mode is disabled.
1’b1: Multi DLE mode is enabled.

Caution) In Multi DLE mode, only write access are supported.
Wait signals are ignored.

See Section 10.4.6.2(3), Master Multi DLE.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 490 of 637
Dec 29, 2021

Table 10.24 rMSEBIM_CONFIG_CS[n]_N Register Contents (2/4)

Bit Position Bit Name Function R/W

b14 bMSEBIM_CS[n]N_R
OUTING_CS3_N

During an access on:
MSEBI_CS0_N
MSEBI_CS1_N
MSEBI_CS2_N

MSEBI_CS3_N can be used as address bit to extend address capability depending on
user use case. The assignment of address bit depends on the number of ALE phases.
These bits are not used and read as 0 for:

rMSEBIM_CONFIG_CS3_N
Bit is managed as follows:

1’b0: No address routing on this line
1’b1: Address routing enabled on this line

See Section 10.1.3, Multiplexed Signal Interface.

R/W

b13 bMSEBIM_CS[n]N_R
OUTING_CS2_N

During an access on:
MSEBI_CS0_N
MSEBI_CS1_N

MSEBI_CS2_N can be used as address bit to extend address capability depending on
user use case. The assignment of address bit depends on the number of ALE phases.
These bits are not used and read as 0 for:

rMSEBIM_CONFIG_CS2_N
rMSEBIM_CONFIG_CS3_N

Bit is managed as follows:
1’b0: No address routing on this line
1’b1: Address routing enabled on this line

See Section 10.1.3, Multiplexed Signal Interface.

R/W

b12 bMSEBIM_CS0N_RO
UTING_CS1_N

During an access on:
MSEBI_CS0_N

MSEBI_CS1_N can be used as address bit to extend address capability depending on
user use case. The assignment of address bit depends on the number of ALE phases.
These bits are not used and read as 0 for:

rMSEBIM_CONFIG_CS1_N
rMSEBIM_CONFIG_CS2_N
rMSEBIM_CONFIG_CS3_N

Bit is managed as follows:
1’b0: No address routing on this line
1’b1: Address routing enabled on this line

See Section 10.1.3, Multiplexed Signal Interface.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 491 of 637
Dec 29, 2021

Table 10.24 rMSEBIM_CONFIG_CS[n]_N Register Contents (3/4)

Bit Position Bit Name Function R/W

b11 bMSEBIM_ALE_MOD
E

MSEBI_ALE is managed in serial or parallel mode
● 1’b0: Serial mode

– Only MSEBIM_ALE used for all ALE cycles
– Serial mode is recommended for synchronous interface

● 1’b1: Parallel mode
– Parallel mode is recommended for asynchronous interface, allowing direct

connection of external latches (74x16373 type), thus reducing the cost of
discrete components on the board

– Mode32
MSEBIM_ALE used for ALE cycle

– Mode16
MSEBIM_ALE used for first ALE cycle
MSEBIM_ALE1 used for second ALE cycle

– Mode8
MSEBIM_ALE used for first ALE cycle
MSEBIM_ALE1 used for second ALE cycle
MSEBIM_ALE2 used for third ALE cycle
MSEBIM_ALE3 used for fourth ALE cycle

See Section 10.1.3, Multiplexed Signal Interface, Section 10.4.4, MSEBI Timing.

R/W

b10 to b8 bMSEBIM_ALE_NUM
BER

Number of phase MSEBI_ALE used to address the peripheral
3’b000: 0 MSEBI_ALE used
3’b001: 1 MSEBI_ALE used
3’b010: 2 MSEBI_ALE used
3’b011: 3 MSEBI_ALE used
3’b100: 4 MSEBI_ALE used
3’b101: Reserved
3’b11x: Reserved

See Section 10.1.3, Multiplexed Signal Interface, Section 10.4.4, MSEBI Timing.

R/W

b7 bMSEBIM_BURST_E
NABLE

Enable the burst mode on read or write access.
The burst mode is only available in synchronous mode.
In asynchronous mode, this bit is ignored.
When burst is enable,

1’b0: Burst disable, on single access.
1’b1: Burst enable, single and burst access.

Caution) When the master is accessing the slave’s shared registers (using
MSEBI_CSREG_N), no prefetch allowed.

See Section 10.4.4, MSEBI Timing.

R/W

b6, b5 bMSEBIM_MODE_W
AIT

For each MSEBI_CS[n]_N (n = 0..3)
MSEBI interface can be configured in 3 basics function:

2’b00: No wait management on MSEBIM_WAIT[n]_N pin. The dedicated
MSEBIM_WAIT[n]_N external pins are not used.

2’b01: Wait management on MSEBIM_WAIT[n]_N pin. The dedicated
MSEBIM_WAIT[n]_N external pins are monitored and managed.

2’b10: Wait management on MSEBIM_WAIT0_N pin. Only one common
MSEBIM_WAIT0_N external pin is monitored and managed for selected
MSEBI_CS[n]_N.

2’b11: Reserved.
For each MSEBI_CS[n]_N, the pins MSEBIM_WAIT[n]_N are managed in
synchronous or asynchronous mode, depends on configuration of
bMSEBIM_CONFIG.
The mode 2’b10 allows to use only one MSEBIM_WAIT0_N external pin for all
MSEBI_CS[n]_N. In this case, we have a reduced number of external pins used.
See Section 10.4.4, MSEBI Timing.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 492 of 637
Dec 29, 2021

Table 10.24 rMSEBIM_CONFIG_CS[n]_N Register Contents (4/4)

Bit Position Bit Name Function R/W

b4, b3 Reserved Keep initial value. R/W

b2 to b0 bMSEBIM_CONFIG MSEBI interface can be configured in 6 basics function:
3’b000: Asynchronous, 16 bits, multiplexed, Mode16, No Burst
3’b001: Synchronous, 16 bits, multiplexed, Mode16, Burst available
3’b010: Asynchronous, 32 bits, multiplexed, Mode32, No Burst
3’b011: Synchronous, 32 bits, multiplexed, Mode32, Burst available
3’b100: Asynchronous, 8 bits, multiplexed, Mode8, No Burst
3’b101: Synchronous, 8 bits, multiplexed, Mode8, Burst available
3’b110: Reserved
3’b111: Reserved

See Section 10.1.3, Multiplexed Signal Interface, Section 10.4.4, MSEBI Timing.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 493 of 637
Dec 29, 2021

10.3.1.12 rMSEBIM_CONFIG — Common Config Register
CAUTION

Before switching configuration, the user must ensure that no previous accesses are pending by flushing the CPU receive
FIFO (CPU write at rMSEBIM_CPU_FIFOREAD_FLUSH with the pattern 32’h0808). All FIFOs must be empty, and DMA
controller must be stopped.

Address: 400C 0800h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — bMSEBIM_CPU_RECEIVE_FIFOLEVEL

bMSEBIM
_CPU_TR
ANSMIT_
FIFOLEV

EL

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bMSEBIM_CPU_TRANSMIT_FIFOLEVEL bMSEBIM_BURST_SIZE
MAX_CPUREAD

bMSEBIM_BURST_SIZE
MAX_CPUWRITE

bMSEBIM
_CLKENA

BLE

bMSEBIM_CLK
H

bMSEBIM_CLK
L

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Table 10.25 rMSEBIM_CONFIG Register Contents (1/2)

Bit Position Bit Name Function R/W

b31, b30 Reserved Keep initial value. R/W

b29 to b23 Reserved Read as 0. R

b22 to b17 bMSEBIM_CPU_REC
EIVE_FIFOLEVEL

CPU receive FIFO Level
Contains the number of valid data entries in the CPU receive FIFO.

6’d0: 0 Data entry, CPU receive FIFO empty
6’d1: 1 Data entry or an activity is present on MSEBI bus
6’d2: 2 Data entries
 ∙∙∙ ∙∙∙ ∙∙∙
6’d31: 31 Data entries
6’d32: 32 Data entries, CPU receive FIFO full

With one data entry: 1 word 32 bits

R

b16 to b11 bMSEBIM_CPU_TRA
NSMIT_FIFOLEVEL

CPU transmit FIFO Level
Contains the number of valid data entries in the CPU transmit FIFO.

6’d0: 0 Data entry, CPU transmit FIFO empty
6’d1: 1 Data entry or an activity is present on MSEBI bus
6’d2: 2 Data entries
 ∙∙∙ ∙∙∙ ∙∙∙
6’d31: 31 Data entries
6’d32: 32 Data entries, CPU transmit FIFO full

With one data entry: 1 word 32 bits

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 494 of 637
Dec 29, 2021

Table 10.25 rMSEBIM_CONFIG Register Contents (2/2)

Bit Position Bit Name Function R/W

b10 to b8 bMSEBIM_BURST_S
IZEMAX_CPUREAD

Burst Size Max Allowed on Read access from MSEBI bus to CPU receive FIFO. Used
by Round Robin Priority arbiter.
See Figure 10.45, MSEBI: Round Robin Priority.

3’b000: 1 word.
3’b001: 2 words.
3’b010: 4 words.
3’b011: 8 words.
3’b100: 16 words.
3’b101: Not limited.
3’b11x: Reserved.

A word is 32 bits width for Mode32, 16 bits width for Mode16 and 8bits width for
Mode8 device.

Note) This bit is also used to control the maximum number of words to be read during
a prefetch operation on the CPU receive FIFO.

R/W

b7 to b5 bMSEBIM_BURST_S
IZEMAX_CPUWRITE

Burst Size Max Allowed on Write access from CPU transmit FIFO to MSEBI bus. Used
by Round Robin Priority arbiter.
See Figure 10.45, MSEBI: Round Robin Priority.

3’b000: 1 word.
3’b001: 2 words.
3’b010: 4 words.
3’b011: 8 words.
3’b100: 16 words.
3’b101: Not limited.
3’b11x: Reserved.

A word is 32 bits width for Mode32, 16 bits width for Mode16 and 8bits width for
Mode8 device.

R/W

b4 bMSEBIM_CLKENAB
LE

Enable MSEBIM_CLK clock generation
1’b0: Disable clock generation, MSEBIM_CLK is reset to 0
1’b1: Enable clock generation. (IO multiplexing setting is required)

No glitch is generated when clock generation is enabled/disabled.

R/W

b3, b2 bMSEBIM_CLKH MSEBIM_CLK clock period configuration
Time duration (MSEBIM_HCLK) of level high of MSEBIM_CLK

2’b00: 1 MSEBIM_HCLK
2’b01: 2 MSEBIM_HCLK
2’b10: 3 MSEBIM_HCLK
2’b11: 4 MSEBIM_HCLK

R/W

b1, b0 bMSEBIM_CLKL MSEBIM_CLK clock period configuration
Time duration (MSEBIM_HCLK) of level low of MSEBIM_CLK

2’b00: 1 MSEBIM_HCLK
2’b01: 2 MSEBIM_HCLK
2’b10: 3 MSEBIM_HCLK
2’b11: 4 MSEBIM_HCLK

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 495 of 637
Dec 29, 2021

10.3.1.13 rMSEBIM_CPU_FIFOREAD_FLUSH — Flush Receive FIFO Register

Address: 400C 0808h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bMSEBIM_CPU_FIFOREAD_FLUSH

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bMSEBIM_CPU_FIFOREAD_FLUSH

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.26 rMSEBIM_CPU_FIFOREAD_FLUSH Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bMSEBIM_CPU_FIF
OREAD_FLUSH

A write by CPU with the pattern 32’h0808 flushes the CPU receive FIFO. No Action
when the pattern written is different of 32’h0808.

Note) Always read as 0.

See Section 10.4.6, MSEBI Master Mode.

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 496 of 637
Dec 29, 2021

10.3.2 Register Description MSEBI Master from DMA

10.3.2.1 rMSEBIM_DMA_FIFOREAD_CS[n]_N — DMA Receive FIFO (64 KB) (n = 0..1)
CAUTION

No CPU access allowed, may produce CPU hangup. This memory region is intended for DMA Controller use only.

Address: 4008 0000h + 20000h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bMSEBIM_DMA_FIFOREAD

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bMSEBIM_DMA_FIFOREAD

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.27 rMSEBIM_DMA_FIFOREAD_CS[n]_N Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bMSEBIM_DMA_FIF
OREAD

DMA Receive FIFO
Reading this register gives the data at the top of the receive FIFO. Each consecutive
read pops the Receive FIFO and gives next data that is currently at the top of the
DMA Receive FIFO.
See Figure 10.49, MSEBI: Burst Mode, DMA Receive FIFO and Bus Interface
Coupling.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 497 of 637
Dec 29, 2021

10.3.2.2 rMSEBIM_DMA_FIFOWRITE_CS[n]_N — DMA Transmit FIFO (64 KB) (n = 0..1)
CAUTION

No CPU access allowed, may produce CPU hangup. This memory region is intended for DMA Controller use only.

Address: 4009 0000h + 20000h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bMSEBIM_DMA_FIFOWRITE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bMSEBIM_DMA_FIFOWRITE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.28 rMSEBIM_DMA_FIFOWRITE_CS[n]_N Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bMSEBIM_DMA_FIF
OWRITE

DMA Transmit FIFO
Writing this register pushes the data in the Transmit FIFO. Each consecutive write
pushes the data to the next write location in the DMA Transmit FIFO.
See Figure 10.48, MSEBI: Burst Mode, DMA Transmit FIFO and Bus Interface
Coupling.

W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 498 of 637
Dec 29, 2021

10.3.3 Register Description MSEBI Slave from CPU

10.3.3.1 rMSEBIS_CYCLESIZE_CS[n]_N — Chip Select CycleSize Register (n = 0..3)
CAUTION

Before switching configuration, user must ensure that no accesses are ongoing by reading bMSEBIS_BUSY = 0 (of the
corresponding chip select).

Any update of this register must be done after clearing the bMSEBIS_CS_ENABLE (of the corresponding chip select).

Address: 400C 2000h + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bMSEBIS_WRDLEDATA_NB bMSEBIS_RDDLEDATA_NB

Value after reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — bMSEBIS_WRD
LEDATA_B — — bMSEBIS_RDD

LEDATA_B — — — — — —
bMSEBI
S_CLE
DATA

—

Value after reset 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1

Table 10.29 rMSEBIS_CYCLESIZE_CS[n]_N Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b24 bMSEBIS_WRDLEDA
TA_NB

Size of latch data phase in no burst mode (WRDLEDATA_NB)
Used only:
● On write cycle
● Single access or first access of burst cycle
Time duration (MSEBIS_CLK) of MSEBIS_DLE high

8’h00: 1 MSEBIS_CLK
8’h01: 2 MSEBIS_CLK
 ∙∙∙ ∙∙∙ ∙∙∙
8’hFE: 255 MSEBIS_CLK
8’hFF: 256 MSEBIS_CLK

See Section 10.4.4, MSEBI Timing.

R/W

b23 to b16 bMSEBIS_RDDLEDA
TA_NB

Size of latch data phase in no burst mode (RDDLEDATA_NB)
Used only:
● On read cycle
● Single access or first access of burst cycle
Time duration (MSEBIS_CLK) of MSEBIS_DLE high

8’h00: 1 MSEBIS_CLK
8’h01: 2 MSEBIS_CLK
 ∙∙∙ ∙∙∙ ∙∙∙
8’hFE: 255 MSEBIS_CLK
8’hFF: 256 MSEBIS_CLK

R/W

b15, b14 Reserved Read as 0. R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 499 of 637
Dec 29, 2021

Table 10.29 rMSEBIS_CYCLESIZE_CS[n]_N Register Contents (2/2)

Bit Position Bit Name Function R/W

b13, b12 bMSEBIS_WRDLEDA
TA_B

Size of latch data phase in burst mode (WRDLEDATA_B)
Used only:
● On write cycle
● Burst enable
Time duration (MSEBIS_CLK) of MSEBIS_DLE high

2’b00: 1 MSEBIS_CLK
2’b01: 2 MSEBIS_CLK
2’b10: 3 MSEBIS_CLK
2’b11: 4 MSEBIS_CLK

See Section 10.4.4, MSEBI Timing.

R/W

b11, b10 Reserved Read as 0. R

b9, b8 bMSEBIS_RDDLEDA
TA_B

Size of latch data phase in burst mode (RDDLEDATA_B)
Use only:
● On read cycle
● Burst enable
Time duration (MSEBIS_CLK) of MSEBIS_DLE high

2’b00: 1 MSEBIS_CLK
2’b01: 2 MSEBIS_CLK
2’b10: 3 MSEBIS_CLK
2’b11: 4 MSEBIS_CLK

R/W

b7 to b2 Reserved Read as 0. R

b1 bMSEBIS_CLEDATA Size of control latch phase (CLEDATA)
Time duration (MSEBIS_CLK) of MSEBIS_CLE:

0: high during 1 MSEBIS_CLK
1: high during 1 MSEBIS_CLK then low during 1 MSEBIS_CLK

R/W

b0 Reserved Keep initial value. R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 500 of 637
Dec 29, 2021

10.3.3.2 rMSEBIS_SETUPHOLD_CS[n]_N — Chip Select SetupHold Register (n = 0..3)
CAUTION

Before switching configuration, user must ensure that no accesses are ongoing by reading bMSEBIS_BUSY = 0 (of the
corresponding chip select).

Any update of this register must be done after clearing the bMSEBIS_CS_ENABLE (of the corresponding chip select).

Address: 400C 2004h + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — bMSEBIS_WRDLESETUP — — bMSEBIS_RDDLESETUP

Value after reset 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1

Table 10.30 rMSEBIS_SETUPHOLD_CS[n]_N Register Contents

Bit Position Bit Name Function R/W

b31 to b14 Reserved Read as 0. R

b13 to b8 bMSEBIS_WRDLESE
TUP

Size of setup data phase (WRDLESETUP)
Used only:
● On write cycle
Time duration (MSEBIS_CLK) of setup phase

6’h00: Reserved
6’h01: 1 MSEBIS_CLK
 ∙∙∙ ∙∙∙ ∙∙∙
6’h3E: 62 MSEBIS_CLK
6’h3F: 63 MSEBIS_CLK

R/W

b7, b6 Reserved Read as 0. R

b5 to b0 bMSEBIS_RDDLESE
TUP

Size of setup data phase (RDDLESETUP)
Used only:
● On read cycle
Time duration (MSEBIS_CLK) of setup phase

6’h00: Reserved
6’h01: 1 MSEBIS_CLK
 ∙∙∙ ∙∙∙ ∙∙∙
6’h3E: 62 MSEBIS_CLK
6’h3F: 63 MSEBIS_CLK

See Section 10.4.4, MSEBI Timing.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 501 of 637
Dec 29, 2021

10.3.3.3 rMSEBIS_MMU_ADDR_CS[n]_N — MMU Base Address Register (n = 0..3)
CAUTION

Before switching configuration, user must ensure that no accesses are ongoing by reading bMSEBIS_BUSY = 0 (of the
corresponding chip select).

Any update of this register must be done after clearing the bMSEBIS_CS_ENABLE (of the corresponding chip select).

Address: 400C 2008h + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bMSEBIS_MMU_ADDR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bMSEBIS_MMU_ADDR — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.31 rMSEBIS_MMU_ADDR_CS[n]_N Register Contents

Bit Position Bit Name Function R/W

b31 to b12 bMSEBIS_MMU_AD
DR

MSEBI Slave controller uses this parameter for address translation when
bMSEBIS_ADDR_MODE is set to MMU mode.
In this configuration, bMSEBIS_MMU_ADDR is the base address for the conversion.
See Section 10.4.7.6, MSEBI Slave: Addressing Mode.

R/W

b11 to b0 Reserved Read as 0. R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 502 of 637
Dec 29, 2021

10.3.3.4 rMSEBIS_MMU_ADDR_MASK_CS[n]_N — MMU Address Mask Register (n = 0..3)
CAUTION

Before switching configuration, user must ensure that no accesses are ongoing by reading bMSEBIS_BUSY = 0 (of the
corresponding chip select).

Any update of this register must be done after clearing the bMSEBIS_CS_ENABLE (of the corresponding chip select).

Address: 400C 200Ch + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bMSEBIS_MMU_ADDR_MASK

Value after reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bMSEBIS_MMU_ADDR_MASK — — — — — — — — — — — —

Value after reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 10.32 rMSEBIS_MMU_ADDR_MASK_CS[n]_N Register Contents

Bit Position Bit Name Function R/W

b31 to b12 bMSEBIS_MMU_AD
DR_MASK

MSEBI Slave controller uses this parameter for address translation when
bMSEBIS_ADDR_MODE is set to MMU mode.
In this configuration, bMSEBIS_MMU_ADDR is the mask of address used for the
conversion.
See Section 10.4.7.6, MSEBI Slave: Addressing Mode.

R/W

b11 to b0 Reserved Read as 12’hFFF. R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 503 of 637
Dec 29, 2021

10.3.3.5 rMSEBIS_DMATX_REQ_CS[n]_N — DMA Transmit Request Register (n = 0..1)

Address: 400C 2010h + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — —

bMSEBI
S_DMA
TX_EN
ABLE

bMSEBI
S_DMA
TX_FO

RCE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 10.33 rMSEBIS_DMATX_REQ_CS[n]_N Register Contents

Bit Position Bit Name Function R/W

b31 to b2 Reserved Read as 0. R

b1 bMSEBIS_DMATX_E
NABLE

For each MSEBI_CS[n]_N (n = 0..1)
MSEBI Slave controller configuration status of DMA TX channel.
This field must be set at the end of the configuration of the chip select.
This bit is used to:
● Set the chip select to active/inactive when MSEBI_CS[n]_N is coupled with

MSEBI_DMA_N. If not empty, the DMA TX FIFO will be read until it becomes
empty.

See Section 10.4.7.3, MSEBI Slave: Detection of Request Initiator.
Enable bit is managed as follows:

1’b0: DMA TX channel of MSEBI Slave controller is not ready to receive request
from the master. If MSEBI_CS[n]_N and MSEBI_DMA_N are set to 0 during
CLE phase, the current access is ignored.

1’b1: DMA TX channel of MSEBI Slave controller is ready to receive request from
the Master. If MSEBI_CS[n]_N and MSEBI_DMA_N are set to 0 during CLE
phase, the current access is executed.

Caution) Chip select MSEBI_CS[n]_N must be configured to active state (Set
dedicated bMSEBIS_CS_ENABLE bit to 1), if not (cleared to 0), the current
access is ignored.

R/W

b0 bMSEBIS_DMATX_F
ORCE

For each MSEBI_CS[n]_N (n = 0..1)
If DMA flow control is enabled (bMSEBIS_DMATX_FLOW_CTRL bit is set to 1),
bMSEBIS_DMATX_FORCE drives DMA flow control pins:

MSEBIS_DMA_WR[n]_N (n = 0..1)
1’b0: MSEBIS_DMA_WR[n]_N is set to 0.
1’b1: MSEBIS_DMA_WR[n]_N is set to 1.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 504 of 637
Dec 29, 2021

10.3.3.6 rMSEBIS_DMARX_REQ_CS[n]_N — DMA Receive Request Register (n = 0..1)

Address: 400C 2014h + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — — — — — — — — — — —

bMSEBI
S_DMA
RX_EN
ABLE

bMSEBI
S_DMA
RX_FO

RCE

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 10.34 rMSEBIS_DMARX_REQ_CS[n]_N Register Contents

Bit Position Bit Name Function R/W

b31 to b2 Reserved Read as 0. R

b1 bMSEBIS_DMARX_E
NABLE

For each MSEBI_CS[n]_N (n = 0..1)
MSEBI Slave controller configuration status of DMA RX channel.
This field must be set at the end of the configuration of the chip select.
This bit is used to:
● Flush corresponding FIFO
● Set the chip select to active/inactive when MSEBI_CS[n]_N is coupled with

MSEBI_DMA_N
See Section 10.4.7.3, MSEBI Slave: Detection of Request Initiator.
Enable bit is managed as follows:

1’b0: DMA RX channel of MSEBI Slave controller is not ready to receive request
from the master. If MSEBI_CS[n]_N and MSEBI_DMA_N are set to 0 during
CLE phase, the current access is ignored.

1’b1: DMA RX channel of MSEBI Slave controller is ready to receive request from
the master. If MSEBI_CS[n]_N and MSEBI_DMA_N are set to 0 during CLE
phase, the current access is executed.

Caution) Chip select MSEBI_CS[n]_N must be configured to active state (Set
dedicated bMSEBIS_CS_ENABLE bit to 1), if not (cleared to 0), the current
access is ignored.

R/W

b0 bMSEBIS_DMARX_F
ORCE

For each MSEBI_CS[n]_N (n = 0..1)
If DMA flow control is enabled (bMSEBIS_DMARX_FLOW_CTRL bit set to 1),
bMSEBIS_DMARX_FORCE drives the DMA flow control signals:

MSEBIS_DMA_RD[n]_N (n = 0..1).
1’b0: MSEBIS_DMA_RD[n]_N is set to 0.
1’b1: MSEBIS_DMA_RD[n]_N is set to 1.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 505 of 637
Dec 29, 2021

10.3.3.7 rMSEBIS_DMATDLR_CS[n]_N — DMA Transmit Data Level Register (n = 0..1)
CAUTION

Any update of this register must be done after clearing the bMSEBIS_CS_ENABLE (of the corresponding chip select).

Address: 400C 2018h + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — bMSEBIS_DMATX_FIFO_LVL — — — —

bMSEBIS
_DMATX
FLOW

CTRL

bMSEBIS
_DMATX
_OPT_BU

RST

bMSEBIS_DMA
TX_MAX_BURS

T

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.35 rMSEBIS_DMATDLR_CS[n]_N Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 Reserved Keep initial value R/W

b30 to b14 Reserved Read as 0. R

b13 to b8 bMSEBIS_DMATX_FI
FO_LVL

DMA TX[n] (n = 0..1) FIFO Level
This FIFO contains the data to write on memory with AHB bus after a write request
from MSEBI bus on MSEBI_CS[n]_N with MSEBI_DMA_N = DMA mode
See Table 10.47, Slave Detection of Request Initiator.
bMSEBIS_DMATX_FIFO_LVL contains the number of valid data entries in the DMA
TX[n] (n = 0..1) FIFO.

6’d0: 0 Data entry, DMA TX[n] FIFO empty
6’d1: 1 Data entry or an activity is present on AHB bus
6’d2: 2 Data entries
 ∙∙∙ ∙∙∙ ∙∙∙
6’d31: 31 Data entries
6’d32: 32 Data entries, DMA TX[n] FIFO full

With one data entry: 1 word 32 bits
See Section 10.4.7.2(2)(a), Slave DMA FIFOs for Requests from Master MSEBI
DMA TX FIFOs.

R

b7 to b4 Reserved Read as 0. R

b3 bMSEBIS_DMATX_F
LOW_CTRL

Enable the DMA flow control for signal MSEBIS_DMA_WR[n]_N (n = 0..1)
See Section 10.4.7.2(3), Slave DMA Flow Control Signals.

1’b0: DMA flow control is disabled.
1’b1: DMA flow control is enabled.

R/W

b2 bMSEBIS_DMATX_O
PT_BURST

MSEBI Slave controller waits to have enough data on the slave’s DMA TX[n] (n = 0..1)
FIFO to prepare a burst before sending write request to the NoC (until the reception of
“end of block event”).
This option optimizes bandwidth of the NoC AHB.
Optimization on DMA TX[n] (n = 0..1) FIFO is enabled as follows:

1’b0: disable burst size optimization
1’b1: enable burst size optimization

See Section 10.4.7.2, MSEBI Slave: Burst Mode, Section 10.4.7.2(2)(a), Slave
DMA FIFOs for Requests from Master MSEBI DMA TX FIFOs.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 506 of 637
Dec 29, 2021

Table 10.35 rMSEBIS_DMATDLR_CS[n]_N Register Contents (2/2)

Bit Position Bit Name Function R/W

b1, b0 bMSEBIS_DMATX_M
AX_BURST

MSEBI Slave controller can optimize access from slave’s DMA TX[n] (n = 0..1) FIFO
to AHB master port by grouping single write access into burst. The size maximum of a
burst can be configured. Size of burst is control by following values:

2’b00: 1 word max
2’b01: 4 words max
2’b10: 8 words max
2’b11: 16 words max

See Section 10.4.7.2, MSEBI Slave: Burst Mode, Section 10.4.7.2(2)(a), Slave
DMA FIFOs for Requests from Master MSEBI DMA TX FIFOs.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 507 of 637
Dec 29, 2021

10.3.3.8 rMSEBIS_DMARDLR_CS[n]_N — DMA Receive Data Level Register (n = 0..1)
CAUTION

Any update of this register must be done after clearing the bMSEBIS_CS_ENABLE (of the corresponding chip select).

Address: 400C 201Ch + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — bMSEBIS_DMARX_FIFO_L — — — — —

bMSEBIS
_DMARX
FLOW

CTRL

bMSEBIS_DMA
RX_MAX_BURS

T

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.36 rMSEBIS_DMARDLR_CS[n]_N Register Contents

Bit Position Bit Name Function R/W

b31 Reserved Keep initial value R/W

b30 to b14 Reserved Read as 0. R

b13 to b8 bMSEBIS_DMARX_F
IFO_L

DMA RX[n] (n = 0..1) FIFO Level
This FIFO contains the data read on AHB bus after a read request from MSEBI bus on
MSEBI_CS[n]_N (n = 0..1) with MSEBI_DMA_N = DMA mode.
bMSEBIS_DMARX_FIFO_LVL contains the number of valid data entries in the DMA
RX[n] (n = 0..1) FIFO.

6’d0: 0 Data entry, DMA RX[n] FIFO empty
6’d1: 1 Data entry or an activity is present on MSEBI bus
6’d2: 2 Data entries
 ∙∙∙ ∙∙∙ ∙∙∙
6’d31: 31 Data entries
6’d32: 32 Data entries, DMA RX[n] FIFO full

With one data entry: 1 word 32 bits
See Table 10.47, Slave Detection of Request Initiator, Figure 10.62, Slave DMA
FIFOs for Requests from Master MSEBI DMA RX FIFOs.

R

b7 to b3 Reserved Read as 0. R

b2 bMSEBIS_DMARX_F
LOW_CTRL

Enable the DMA flow control for signal MSEBIS_DMA_RD[n]_N (n = 0..1)
1’b0: DMA flow control is disabled.
1’b1: DMA flow control is enabled.

R/W

b1 to b0 bMSEBIS_DMARX_M
AX_BURST

MSEBI Slave controller can optimize latency of read accesses coming from the DMA
RX[n] (n = 0..1) FIFO of the master of the MSEBI bus with a prefetch mechanism on
AHB master port.
Size of burst prefetch can be configured:

2’b00: 1 word max
2’b01: 4 words max
2’b10: 8 words max
2’b11: 16 words max

See Section 10.4.7.2, MSEBI Slave: Burst Mode, Section 10.4.7.2(2)(b), Slave
DMA FIFOs for Requests from Master MSEBI DMA RX FIFOs.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 508 of 637
Dec 29, 2021

10.3.3.9 rMSEBIS_CONFIG_CS[n]_N — Chip Select Config Register (n = 0..3)
CAUTION

Before switching configuration, user must ensure that no accesses are ongoing by reading bMSEBIS_BUSY = 0 (of the
corresponding chip select).

Any update of this register must be done after clearing the bMSEBIS_CS_ENABLE (of the corresponding chip select).

Address: 400C 2060h + 100h × n

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 —

bMSEBIS
CS[n]N
ROUTIN

G_CS3_N

bMSEBIS
CS[n]N
ROUTIN

G_CS2_N

bMSEBIS
CS[n]N
ROUTIN

G_CS1_N

— —

bMSEBI
S_CS_
ENABL

E

bMSEBI
S_ADD
R_MOD

E

bMSEBI
S_BUR
ST_EN
ABLE

bMSEBIS_MOD
E_WAIT — bMSEBI

S_WEN

bMSEBI
S_BUS

Y

bMSEBIS_CON
FIG

Value after reset 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Table 10.37 rMSEBIS_CONFIG_CS[n]_N Register Contents (1/4)

Bit Position Bit Name Function R/W

b31 to b15 Reserved Read as 0. R

b14 bMSEBIS_CS[n]N_R
OUTING_CS3_N

During an access on:
MSEBI_CS0_N
MSEBI_CS1_N
MSEBI_CS2_N

MSEBI_CS3_N can be used as address bit to extend address capability depending on
user use case. The assignment of address bit depends on the number of ALE phases.
This bit is not used and read as 0:

rMSEBIS_CONFIG_CS3_N
Bit is managed as follows:

1’b0: No address routing on this line
1’b1: Address routing enabled on this line

See Section 10.1.3, Multiplexed Signal Interface.

R/W

b13 bMSEBIS_CS[n]N_R
OUTING_CS2_N

During an access on:
MSEBI_CS0_N
MSEBI_CS1_N

MSEBI_CS2_N can be used as address bit to extend address capability depending on
user use case. The assignment of address bit depends on the number of ALE phases.
These bits are not used and read as 0 for:

rMSEBIS_CONFIG_CS2_N
rMSEBIS_CONFIG_CS3_N

Bit is managed as follows:
1’b0: No address routing on this line
1’b1: Address routing enabled on this line

See Section 10.1.3, Multiplexed Signal Interface.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 509 of 637
Dec 29, 2021

Table 10.37 rMSEBIS_CONFIG_CS[n]_N Register Contents (2/4)

Bit Position Bit Name Function R/W

b12 bMSEBIS_CS[n]N_R
OUTING_CS1_N

During an access on:
MSEBI_CS0_N

MSEBI_CS1_N can be used as address bit to extend address capability depending on
user use case. The assignment of address bit depends on the number of ALE phases.
These bits are not used and read as 0 for:

rMSEBIS_CONFIG_CS1_N
rMSEBIS_CONFIG_CS2_N
rMSEBIS_CONFIG_CS3_N

Bit is managed as follows:
1’b0: No address routing on this line
1’b1: Address routing enabled on this line

See Section 10.1.3, Multiplexed Signal Interface.

R/W

b11, b10 Reserved Read as 0. R

b9 bMSEBIS_CS_ENAB
LE

MSEBI Slave controller configuration status of channel CPU
This field is set by the slave CPU when it completes the configuration on configuration
registers group dedicated to MSEBI_CS[n]_N (n = 0..3).
Enable bit is managed as follow:
● 1’b0: CPU channel of MSEBI Slave controller is not ready to receive request from

the Master
– Set the chip select (MSEBI_CS[n]_N) to inactive state.
– Controls the status value reported in rMSEBIS_ID_CS[n]_N register
– Configuration registers group dedicated to MSEBI_CS[n]_N are unlocked

(can be written by CPU)
● 1’b1: CPU channel of MSEBI Slave controller is ready to receive request from the

master
– Set the chip select (MSEBI_CS[n]_N) to active state.
– Controls the status value reported in rMSEBIS_ID_CS[n]_N register
– Configuration registers group dedicated to MSEBI_CS[n]_N are locked

(cannot be written by CPU).
If detection of falling edge on bMSEBIS_CS_ENABLE, the dedicated

bMSEBIS_ERROR_CS_CONFIGURATION bit is set inside rMSEBIS_ID_CS
register.

Lock/unlock access to configuration registers:
● rMSEBIS_CYCLESIZE_CS[n]_N (n = 0..3)
● rMSEBIS_SETUPHOLD_CS[n]_N (n = 0..3)
● rMSEBIS_MMU_ADDR_CS[n]_N (n = 0..3)
● rMSEBIS_MMU_MASK_ADDR_CS[n]_N (n = 0..3)
● rMSEBIS_DMATDLR_CS[n]_N (n = 0..1)
● rMSEBIS_DMARDLR_CS[n]_N (n = 0..1)
● rMSEBIS_CONFIG_CS[n]_N (n = 0..3)
● rMSEBIS_CONFIG
● rMSEBIS_EOB_ADDR

Note)

If bMSEBIS_CS_ENABLE is cleared on MSEBI_CS[n]_N (n = 0..3).
● The dedicated request is not taken into account on CLE and DLE phases decoding.
● The dedicated request inside CPU and DMA FIFO is not executed.
● If access on MSEBI_CS[n]_N is ongoing, we can lose data and synchronization

between MSEBI master and slave.

See Section 10.4.7.8, MSEBI Slave: Configuration Registers & Synchronization.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 510 of 637
Dec 29, 2021

Table 10.37 rMSEBIS_CONFIG_CS[n]_N Register Contents (3/4)

Bit Position Bit Name Function R/W

b8 bMSEBIS_ADDR_MO
DE

MSEBI Slave interface can be configured in 2 basics function:
1’b0: address management by direct access
1’b1: address management by MMU mode

See Section 10.4.7.6, MSEBI Slave: Addressing Mode.

R/W

b7 bMSEBIS_BURST_E
NABLE

For each MSEBI_CS[n]_N (n = 0..3), enable the burst mode on read or write access
on AHB master port.
The size of a burst is limited depending on the configuration parameters for max burst
size on rMSEBIS_CONFIG.
If burst is disable, no prefetch allowed for this chip select.

1’b0: Burst disable, only single access.
1’b1: Burst enable, single and burst access

See Section 10.4.7.2, MSEBI Slave: Burst Mode, Section 10.4.4, MSEBI Timing.

Caution) When the master is accessing the slave’s shared registers (using
MSEBI_CSREG_N), no prefetch allowed.

R/W

b6, b5 bMSEBIS_MODE_W
AIT

For each MSEBI_CS[n]_N (n = 0..3), MSEBI Slave interface can be configured in 3
basic functions:

2’b00: Reserved
2’b01: Wait management on MSEBIS_WAIT[n]_N pin. The dedicated

MSEBIS_WAIT[n]_N external pins are driven.
2’b10: Wait management on MSEBIS_WAIT0_N pin. Only one common

MSEBIS_WAIT0_N external pin is driven for the selected MSEBI_CS[n]_N.
2’b11: Reserved

The mode 2’b10 allows to use only one MSEBIS_WAIT0_N external pin for all
MSEBI_CS[n]_N. In this case we reduce the number of external pins needed.
See Section 10.4.4, MSEBI Timing.

R/W

b4 Reserved Keep initial value R/W

b3 bMSEBIS_WEN This bit permits to manage write access right to the device.
If a write access occurs when bMSEBIS_WEN is set to 0, an error is flag on
rMSEBIS_STATUS.
Rights access are set as follow:

1’b0: Write on device is disabled.
1’b1: Write on device is enabled.

See Section 10.4.7.7, MSEBI Slave: Write Protect.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 511 of 637
Dec 29, 2021

Table 10.37 rMSEBIS_CONFIG_CS[n]_N Register Contents (4/4)

Bit Position Bit Name Function R/W

b2 bMSEBIS_BUSY For each MSEBI_CS[n]_N (n = 0..3), gives MSEBI slave controller communication
status. bMSEBIS_BUSY is set to 1 until all following conditions are met:
● No MSEBI bus access is ongoing on chip select (MSEBI_CS[n]_N) in CPU or DMA

mode
● No AHB bus access is ongoing
● DMA Mode: Read from AHB bus to DMA RX FIFO

– If DMA disabled (bMSEBIS_DMARX_ENABLE bit is cleared), FIFO flushed and
empty.

– If DMA enabled (bMSEBIS_DMARX_ENABLE bit is set), DMA RX FIFO empty
and no AHB access is ongoing.

● DMA Mode: Write from DMA TX FIFO to AHB bus
– DMA TX FIFO empty (if not wait “end of block event” required) and no AHB

access is ongoing.
● CPU Mode: Write from CPU receive FIFO to AHB bus

– No request pending inside CPU receive FIFO
– No AHB access ongoing

● CPU Mode: From AHB Bus to CPU transmit FIFO
– No request pending inside CPU transmit FIFO
– No AHB access ongoing

1’b0: MSEBI slave controller is idle for this chip select (MSEBI_CS[n]_N)
1’b1: A request is still ongoing on this chip select (MSEBI_CS[n]_N)

See figures:
Figure 10.62, Slave DMA FIFOs for Requests from Master MSEBI DMA RX FIFOs
Figure 10.61, Slave DMA FIFOs for Requests from Master MSEBI DMA TX FIFOs
Figure 10.58, MSEBI Slave CPU FIFOs Example 1
Figure 10.59, MSEBI Slave CPU FIFOs Example 1 Mode8
Figure 10.60, MSEBI Slave CPU FIFOs Example 2

R

b1, b0 bMSEBIS_CONFIG MSEBI Slave interface can be configured in 3 basics function:
2’b00: Synchronous, 16 bits, multiplexed, Mode16, Burst available
2’b01: Synchronous, 32 bits, multiplexed, Mode32, Burst available
2’b10: Synchronous, 8 bits, multiplexed, Mode8, Burst available
2’b11: Reserved

See Sections:
Section 10.1.3, Multiplexed Signal Interface
Section 10.4.4, MSEBI Timing

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 512 of 637
Dec 29, 2021

10.3.3.10 rMSEBIS_CONFIG — Common Config Register
CAUTION

Before switching configuration, user must ensure that no accesses are ongoing by reading bMSEBIS_BUSY = 0 (of the
corresponding chip select).

Any update of this register must be done after clearing the bMSEBIS_CS_ENABLE of all the chip selects
MSEBI_CS[n]_N. (Except bMSEBIS_TIMEOUT_REG_ACCESS that can be accessed at any time)

Address: 400C 2800h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 —
bMSEBI
S_WAIT
_CONF

—

bMSEBIS
_TIMEOU
T_REG_A
CCESS

bMSEBIS_TIMEOUT_REG_ACC
ESS_DELAY

bMSEBIS
_AHB_M
ASTER_
CACHE

bMSEBIS
_AHB_M
ASTER_B

UF

bMSEBIS_CPUTX_FIFO_LVL

Value after reset 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — bMSEBIS_CPURX_FIFO_LVL — — — —
bMSEBIS_BUR
ST_SIZEMAX_C

PUWRITE

bMSEBIS_BUR
ST_SIZEMAX_C

PUREAD

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.38 rMSEBIS_CONFIG Register Contents (1/3)

Bit Position Bit Name Function R/W

b31 Reserved Keep initial value R/W

b30 bMSEBIS_WAIT_CO
NF

Should be set to 1. R/W

b29 Reserved Keep initial value R/W

b28 bMSEBIS_TIMEOUT
_REG_ACCESS

Flag a timeout during the synchronization mechanism for write access on slave’s
configuration registers.
For read access:

1’b0: no timeout detected
1’b1: timeout detected

For write access (can be cleared at any time):
1’b0: write 0 has no effect
1’b1: write 1 clear the bit

In order to be able to clear this bit, the synchronization mechanism must first exit the
timeout condition, or the flag will stay at 1’b1. To exit this state, the user can:
● Wait for the MSEBIS_CLK clock to start, so that the synchronization mechanism

could end Properly
● Stop the last chip select(s) started
Then, the user will be able to clear the flag.
See bit field: bMSEBIS_TIMEOUT_REG_ACCESS_DELAY in this register.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 513 of 637
Dec 29, 2021

Table 10.38 rMSEBIS_CONFIG Register Contents (2/3)

Bit Position Bit Name Function R/W

b27 to b24 bMSEBIS_TIMEOUT
_REG_ACCESS_DEL
AY

bMSEBIS_TIMEOUT_REG_ACCESS_DELAY defines the delay (number of
MSEBIS_HCLK clock cycles) before the timeout is triggered when unlocking
configuration registers for chip select [n] (n = 0..3). Write accesses to configuration
register are locked when the chip select [n] is set as enable:

bMSEBIS_CS_ENABLE
Before writing a configuration register, user must unlock registers by clearing
bMSEBIS_CS_ENABLE. When the MSEBI slave controller receives the unlock
command, AHB access on configuration registers are suspended until the internal
synchronization mechanism completes.
● Synchronization lasts 2 MSEBIS_CLK clock cycle + 2 MSEBIS_HCLK clock Cycle.

When MSEBIS_CLK clock is cut by the master of the bus, internal synchronization
mechanism cannot complete. To avoid dead lock on AHB, MSEBI slave controller
uses a timeout based on MSEBIS_HCLK.

Delay before timeout can be configured:
4’h0: timeout after 4 MSEBIS_HCLK clock cycle
4’h1: timeout after 8 MSEBIS_HCLK clock cycle
 ∙∙∙ ∙∙∙ ∙∙∙
4’hE: timeout after 60 MSEBIS_HCLK clock cycle
4’hF: timeout after 64 MSEBIS_HCLK clock cycle

After timeout:
● AHB bus is released
● Synchronization is still ongoing
● Write access to configuration registers are locked until the end of the

synchronization mechanism
● Flag is set on bMSEBIS_TIMEOUT_REG_ACCESS
See Section 10.4.7.8, MSEBI Slave: Configuration Registers & Synchronization.

R/W

b23 bMSEBIS_AHB_MAS
TER_CACHE

Request from AHB master port of the slave can be configured to allow use of the
cache.
This parameter drives the AHB signal: HPROT[3].
Configuration is as follow:

1’d0: Data is not cacheable
1’d1: Data is cacheable

R/W

b22 bMSEBIS_AHB_MAS
TER_BUF

Request from AHB master port of the slave can be configured to allow use of
bufferable access.
This parameter drives the AHB signal: HPROT[2].
Configuration is as follow:

1’d0: Data is not bufferable
1’d1: Data is bufferable

R/W

b21 to b16 bMSEBIS_CPUTX_FI
FO_LVL

CPU transmit FIFO Level
This FIFO contains the data read on AHB bus after a read request from MSEBI bus
with MSEBI_DMA_N = CPU mode.
See Table 10.47, Slave Detection of Request Initiator.
bMSEBIS_CPUTX_FIFO_LVL contains the number of valid data entries in the CPU
transmit FIFO.

6’d0: 0 Data entry, CPU transmit FIFO empty
6’d1: 1 Data entry or an activity is present on AHB bus
6’d2: 2 Data entries
 ∙∙∙ ∙∙∙ ∙∙∙
6’d31: 31 Data entries
6’d32: 32 Data entries, CPU transmit FIFO full

Size of one data entry can be 8/16/32bits depending on size MSEBI bus and type
access (burst, no burst).
See Figure 10.58, MSEBI Slave CPU FIFOs Example 1, Figure 10.59, MSEBI Slave
CPU FIFOs Example 1 Mode8, Figure 10.60, MSEBI Slave CPU FIFOs Example 2.

R

b15, b14 Reserved Read as 0. R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 514 of 637
Dec 29, 2021

Table 10.38 rMSEBIS_CONFIG Register Contents (3/3)

Bit Position Bit Name Function R/W

b13 to b8 bMSEBIS_CPURX_FI
FO_LVL

CPU receive FIFO Level
This FIFO contains all incoming requests from MSEBI bus with MSEBI_DMA_N =
CPU mode.
See Table 10.47, Slave Detection of Request Initiator.
bMSEBIS_CPURX_FIFO_LVL contains the number of valid data entries in the CPU
receive FIFO.

6’d0: 0 Data entry, CPU receive FIFO empty
6’d1: 1 Data entry or an activity is present on MSEBI bus
6’d2: 2 Data entries
 ∙∙∙ ∙∙∙ ∙∙∙
6’d31: 31 Data entries
6’d32: 32 Data entries, CPU receive FIFO full

Size of one data entry can be 8/16/32bits depending on size MSEBI bus.
See Figure 10.58, MSEBI Slave CPU FIFOs Example 1, Figure 10.59, MSEBI Slave
CPU FIFOs Example 1 Mode8, Figure 10.60, MSEBI Slave CPU FIFOs Example 2.

R

b7 to b4 Reserved Read as 0. R

b3, b2 bMSEBIS_BURST_SI
ZEMAX_CPUWRITE

MSEBI Slave controller can optimize access from slave’s CPU receive FIFO to AHB
master port by grouping single write access into burst.
The size maximum of a burst can be configured.
Size of burst is control by following values:

2’b00: 1 word max
2’b01: 4 words max
2’b10: 8 words max
2’b11: 16 words max

See Section 10.4.7.2, MSEBI Slave: Burst Mode, Section 10.4.7.2(1), Slave CPU
FIFOs.

R/W

b1, b0 bMSEBIS_BURST_SI
ZEMAX_CPUREAD

MSEBI Slave controller can optimize latency of read accesses coming from the CPU
transmit FIFO of the master of the MSEBI bus with a prefetch mechanism on AHB
master port.
Size of a prefetch burst can be configured:

2’b00: 1 word max
2’b01: 4 words max
2’b10: 8 words max
2’b11: 16 words max

See Section 10.4.7.2, MSEBI Slave: Burst Mode, Section 10.4.7.2(1), Slave CPU
FIFOs.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 515 of 637
Dec 29, 2021

10.3.3.11 rMSEBIS_STATUS_INT0 — Interrupt Status Register
These bits refer to the “end of block event” interrupt on the slave part of the controller.

They contain the MSEBI Slave interrupt status before mask (rMSEBIS_MASK_INT register) is applied. Each bit is
independently set when the master of the MSEBI bus write 1 on the corresponding bit of the register:

● rMSEBIS_INT

See Section 10.4.5, MSEBI Interrupt.

Address: 400C 2804h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — bMSEBIS_INT0
_DMATX — — bMSEBIS_INT0

_DMARX bMSEBIS_INT0_CPUTX bMSEBIS_INT0_CPURX

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.39 rMSEBIS_STATUS_INT0 Register Contents

Bit Position Bit Name Function R/W

b31 to b14 Reserved Read as 0. R

b13, b12 bMSEBIS_INT0_DMA
TX

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..1
1’b0: end of block not detected
1’b1: end of block detected

R

b11, b10 Reserved Read as 0. R

b9, b8 bMSEBIS_INT0_DMA
RX

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..1
1’b0: end of block not detected
1’b1: end of block detected

R

b7 to b4 bMSEBIS_INT0_CPU
TX

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..3
1’b0: end of block not detected
1’b1: end of block detected

R

b3 to b0 bMSEBIS_INT0_CPU
RX

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..3
1’b0: end of block not detected
1’b1: end of block detected

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 516 of 637
Dec 29, 2021

10.3.3.12 rMSEBIS_STATUS_INT1 — Masked Interrupt Status Register
These bits refer to the “end of block event” interrupt on the slave part of the controller.

They contain the MSEBI Slave interrupt status after mask (rMSEBIS_MASK_INT register) is applied on the
rMSEBIS_STATUS_INT0 register. Each bit is the result of a logical and between the corresponding bit of register:

● rMSEBIS_MASK_INT

● rMSEBIS_STATUS_INT0

See Section 10.4.5, MSEBI Interrupt.

Address: 400C 2808h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — bMSEBIS_INT1
_DMATX — — bMSEBIS_INT1

_DMARX bMSEBIS_INT1_CPUTX bMSEBIS_INT1_CPURX

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.40 rMSEBIS_STATUS_INT1 Register Contents

Bit Position Bit Name Function R/W

b31 to b14 Reserved Read as 0. R

b13, b12 bMSEBIS_INT1_DMA
TX

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..1
1’b0: end of block interrupt not detected or masked
1’b1: end of block detected and not masked

R

b11, b10 Reserved Read as 0. R

b9, b8 bMSEBIS_INT1_DMA
RX

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..1
1’b0: end of block interrupt not detected or masked
1’b1: end of block detected and not masked

R

b7 to b4 bMSEBIS_INT1_CPU
TX

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..3
1’b0: end of block interrupt not detected or masked
1’b1: end of block detected and not masked

R

b3 to b0 bMSEBIS_INT1_CPU
RX

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..3
1’b0: end of block interrupt not detected or masked
1’b1: end of block detected and not masked

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 517 of 637
Dec 29, 2021

10.3.3.13 rMSEBIS_MASK_INT — Interrupt Mask Register
This register contains the interruption mask dedicated for MSEBI Slave interrupt.

Each bit refers to a bit on the rMSEBIS_STATUS_INT0 register.

Address: 400C 280Ch

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — bMSEBIS_MAS
K_INT_DMATX — — bMSEBIS_MAS

K_INT_DMARX bMSEBIS_MASK_INT_CPUTX bMSEBIS_MASK_INT_CPURX

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.41 rMSEBIS_MASK_INT Register Contents

Bit Position Bit Name Function R/W

b31 to b14 Reserved Read as 0. R

b13, b12 bMSEBIS_MASK_INT
_DMATX

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..1
1’b0: end of block interrupt mask
1’b1: end of block interrupt not mask

R/W

b11, b10 Reserved Read as 0. R

b9, b8 bMSEBIS_MASK_INT
_DMARX

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..1
1’b0: end of block interrupt mask
1’b1: end of block interrupt not mask

R/W

b7 to b4 bMSEBIS_MASK_INT
_CPUTX

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..3
1’b0: end of block interrupt mask
1’b1: end of block interrupt not mask

R/W

b3 to b0 bMSEBIS_MASK_INT
_CPURX

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..3
1’b0: end of block interrupt mask
1’b1: end of block interrupt not mask

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 518 of 637
Dec 29, 2021

10.3.3.14 rMSEBIS_CLR_INT — Interrupt Clear Register
When CPU writes 1 on any bit of this field, it clears the corresponding interrupt source on rMSEBIS_STATUS_INT0.

NOTE

Clearing an interrupt with this register also clears the corresponding bit on rMSEBIS_INT.

Address: 400C 2810h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — bMSEBIS_CLR_
INT_DMATX — — bMSEBIS_CLR_

INT_DMARX bMSEBIS_CLR_INT_CPUTX bMSEBIS_CLR_INT_CPURX

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.42 rMSEBIS_CLR_INT Register Contents

Bit Position Bit Name Function R/W

b31 to b14 Reserved Read as 0. R

b13, b12 bMSEBIS_CLR_INT_
DMATX

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..1
Write 1 to clear the interrupt status bit.

R/W

b11, b10 Reserved Read as 0. R

b9, b8 bMSEBIS_CLR_INT_
DMARX

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..1
Write 1 to clear the interrupt status bit.

R/W

b7 to b4 bMSEBIS_CLR_INT_
CPUTX

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..3
Write 1 to clear the interrupt status bit.

R/W

b3 to b0 bMSEBIS_CLR_INT_
CPURX

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..3
Write 1 to clear the interrupt status bit.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 519 of 637
Dec 29, 2021

10.3.3.15 rMSEBIS_EOB_ADDR — End Of Block Address Register
NOTE

Addresses for the descriptors for CS[n]_N (n = 0..3) are automatically computed.
See Table 10.43, rMSEBIS_EOB_ADDR Register Contents.

CAUTION

Before switching configuration, user must ensure that no accesses are ongoing by reading bMSEBIS_BUSY = 0 (of the
corresponding chip select). Any update of this register must be done after clearing the bMSEBIS_CS_ENABLE of all chip
selects MSEBI_CS[n]_N.

Address: 400C 2814h

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bMSEBIS_EOB_ADDR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bMSEBIS_EOB_ADDR — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.43 rMSEBIS_EOB_ADDR Register Contents

Bit Position Bit Name Function R/W

b31 to b2 bMSEBIS_EOB_ADD
R

Contains the address of the descriptor used to complete the write transfer in memory
for MSEBI_CS[n]_N
● CPU mode: n = 0..3
● DMA mode: n = 0..1
This address is also used to compute the addresses of descriptors as follows:
rMSEBIS_EOB_ADDR for CPU:

rMSEBIS_EOB_ADDR refers to MSEBI_CS0_N
rMSEBIS_EOB_ADDR + 32’h04 refers to MSEBI_CS1_N
rMSEBIS_EOB_ADDR + 32’h08 refers to MSEBI_CS2_N
rMSEBIS_EOB_ADDR + 32’h0C refers to MSEBI_CS3_N

rMSEBIS_EOB_ADDR for DMA:
rMSEBIS_EOB_ADDR + 32’h10 refers to MSEBI_CS0_N
rMSEBIS_EOB_ADDR + 32’h14 refers to MSEBI_CS1_N

The MSEBI slave controller writes the block transfer descriptor at address
rMSEBIS_EOB_ADDR+offset (writes 0x1234_5678 through AHB bus) when “end of
block event” arrives from MSEBI bus master. MSEBI master writes the
bMSEBIS_SET_INT_CPUTX or bMSEBIS_SET_INT_DMATX in the rMSEBIS_INT
register depending on:
● The initiator of the transfer (CPU or DMA)
● The side of the transfer (TX)
● The MSEBI_CS[n]_N (n = 0..3) used for the transfer

Note) After a read of the descriptor on slave memory, the user needs to clear the
descriptor to 32’h0 and reset bMSEBIS_SET_INT_CPUTX or
bMSEBIS_SET_INT_DMATX to allow next transfer.

See Section 10.4.5.3, MSEBI Interrupt: End of Block Detection by the Slave.

R/W

b1, b0 Reserved These bits [1:0] are reset to 0 (Alignment 32 bits). R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 520 of 637
Dec 29, 2021

10.3.4 Register Description MSEBI Slave from MSEBI

10.3.4.1 rMSEBIS_INT — Slave Interrupt Register
CAUTION

This register cannot be access by the CPU. It is reserved for MSEBI bus accesses. MSEBI Master can access this
register of each MSEBI Slave using MSEBI_CS[n]_N (n = 0..3) according to Section 10.2.4, Register Map MSEBI
Slave from MSEBI.

Address: 400C 1000h (MSEBI_CS0_N access)

400C 1400h (MSEBI_CS1_N access)

400C 1800h (MSEBI_CS2_N access)

400C 1C00h (MSEBI_CS3_N access)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — bMSEBIS_SET_
INT_DMATX — — bMSEBIS_SET_

INT_DMARX bMSEBIS_SET_INT_CPUTX bMSEBIS_SET_INT_CPURX

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.44 rMSEBIS_INT Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b14 Reserved Read as 0. R

b13, b12 bMSEBIS_SET_INT_
DMATX

Set MSEBI Slave interrupt
“end of block event” detection on DMA TX channel.
When this field is written:
● First the block transfer descriptor is written on memory at address at corresponding

MSEBI_CS[n]_N (n = 0..1) offset in DMA mode:
– MSEBIS_EOB_ADDR
– See Figure 10.42, MSEBI Slave: End of Write Block Transfer from MSEBI

CPU Master.
1’b0: write 0 has no effect
1’b1: write 1 set the corresponding flag “end of block event” on the

rMSEBIS_STATUS_INT0 register
A read returns the value of the corresponding bit on rMSEBIS_STATUS_INT0
register.
Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..1.
A clear on the corresponding bit of the rMSEBIS_CLR_INT register clears this field.

R/W

b11, b10 Reserved Read as 0. R

b9, b8 bMSEBIS_SET_INT_
DMARX

Set MSEBI Slave interrupt
“end of block event” detection on DMA RX channel.
When this register is written:

1’b0: write 0 has no effect
1’b1: write 1 set the corresponding flag “end of block event” on the

rMSEBIS_STATUS_INT0 register.
A read returns the value of the corresponding bit on rMSEBIS_STATUS_INT0
register.
Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..1.
A clear on the corresponding bit of the rMSEBIS_CLR_INT register clears this field.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 521 of 637
Dec 29, 2021

Table 10.44 rMSEBIS_INT Register Contents (2/2)

Bit Position Bit Name Function R/W

b7 to b4 bMSEBIS_SET_INT_
CPUTX

Set MSEBI Slave interrupt
“end of block event” detection on MSEBI master CPU TX channel.
When this field is written:
● First the block transfer descriptor is written on memory at address at corresponding

MSEBI_CS[n]_N (n = 0..3) offset in CPU mode:
– rMSEBIS_EOB_ADDR
– See Figure 10.42, MSEBI Slave: End of Write Block Transfer from MSEBI

CPU Master.
1’b0: write 0 has no effect
1’b1: write 1 set the corresponding flag “end of block event” on the

rMSEBIS_STATUS_INT0 register.
A read returns the value of the corresponding bit on rMSEBIS_STATUS_INT0
register.
Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..3.
A clear on the corresponding bit of the rMSEBIS_CLR_INT register clears this field.

R/W

b3 to b0 bMSEBIS_SET_INT_
CPURX

Set MSEBI Slave interrupt
“end of block event” detection on MSEBI master CPU RX channel.
When this register is written:

1’b0: write 0 has no effect
1’b1: write 1 set the corresponding “end of block event” on the

rMSEBIS_STATUS_INT0 register
A read returns the value of the corresponding bit on rMSEBIS_STATUS_INT0
register.
Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..3.
A clear on the corresponding bit of the rMSEBIS_CLR_INT register clears this field.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 522 of 637
Dec 29, 2021

10.3.4.2 rMSEBIS_STATUS — Slave Status Register
CAUTION

This register cannot be access by the CPU. It is reserved for MSEBI bus accesses. MSEBI Master can access this
register of each MSEBI Slave using MSEBI_CS[n]_N (n = 0..3) according to Section 10.2.4, Register Map MSEBI
Slave from MSEBI.

Address: 400C 1004h (MSEBI_CS0_N access)

400C 1404h (MSEBI_CS1_N access)

400C 1804h (MSEBI_CS2_N access)

400C 1C04h (MSEBI_CS3_N access)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 — — — — — — — — — — — — — — — —

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 — — — — bMSEBIS_ERROR_CS_CONFIG
URATION bMSEBIS_ERROR_WEN bMSEBIS_ERROR_ADDR

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.45 rMSEBIS_STATUS Register Contents (1/2)

Bit Position Bit Name Function R/W

b31 to b12 Reserved Read as 0. R

b11 to b8 bMSEBIS_ERROR_C
S_CONFIGURATION

Give MSEBI slave controller error status.
A change configuration has been detected inside configuration registers group
dedicated to MSEBI_CS[n]_N (n = 0..3) with following potential issues:
● Data exchanged between MSEBI master and slave can be lost.
● MSEBIS master and slave synchronization can be lost.

See bit field: bMSEBIS_CS_ENABLE in rMSEBIS_CONFIG_CS[n]_N register.
Read by the master of the MSEBI bus:

1’b0: no error detected
1’b1: MSEBI slave controller has detected a configuration change, data and

synchronization can be lost.
Clear by the master of the MSEBI bus:

Write 1’b0 has no effect
Write 1’b1 clear the flag

This bit can be used by the master MSEBI to check that a new configuration has been
correctly loaded in the slave.
Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..3.

R/W

b7 to b4 bMSEBIS_ERROR_
WEN

Give MSEBI slave controller error status.
A write access from the master of the bus has been detected while write protect is
enabled on the slave. See bit filed: bMSEBIS_WEN in rMSEBIS_CONFIG_CS[n]_N
register.
Read by the master of the MSEBI bus:

1’b0: no error detected
1’b1: MSEBI slave controller has detected an error on write access write

Clear by the master of the MSEBI bus:
Write 1’b0 has no effect
Write 1’b1 clear the flag

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..3.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 523 of 637
Dec 29, 2021

Table 10.45 rMSEBIS_STATUS Register Contents (2/2)

Bit Position Bit Name Function R/W

b3 to b0 bMSEBIS_ERROR_A
DDR

Give MSEBI slave controller error status.
During an access on AHB master port, NoC has reported an error due to a bad
address range. It may be due to an error of the master of the bus or an error on the
configuration of addressing mode. See bit field: bMSEBIS_ADDR_MODE in
rMSEBIS_CONFIG_CS[n]_N register.
Read by the master of the MSEBI bus:

1’b0: no error detected
1’b1: MSEBI slave controller has detect an access to bad address

Clear by the master of the MSEBI bus:
Write 1’b0 has no effect
Write 1’b1 clear the flag

Bit [n] of this field refers to the MSEBI_CS[n]_N with n = 0..3.

R/W

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 524 of 637
Dec 29, 2021

10.3.4.3 rMSEBIS_ID_CS[n]_N — Slave ID Register (n = 0..3)
Used by the master to determine if the chip select is available.

CAUTION

This register cannot be access by the CPU. It is reserved for MSEBI bus accesses. MSEBI Master can access this
register of each MSEBI Slave using MSEBI_CS[n]_N (n = 0..3) according to Section 10.2.4, Register Map MSEBI
Slave from MSEBI.

Address: 400C 1008h + 4h × n (MSEBI_CS0_N access)

400C 1408h + 4h × n (MSEBI_CS1_N access)

400C 1808h + 4h × n (MSEBI_CS2_N access)

400C 1C08h + 4h × n (MSEBI_CS3_N access)

Bit b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

 bMSEBIS_ID

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 bMSEBIS_ID

Value after reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10.46 rMSEBIS_ID_CS[n]_N Register Contents

Bit Position Bit Name Function R/W

b31 to b0 bMSEBIS_ID This register is read by the master of the bus to determine when a chip select is ready
for communication.
If bMSEBIS_CS_ENABLE =1:
● Master read on rMSEBIS_ID_CS[n]_N (n = 0..3) returns 0x1234_FEDn (n = 0..3).
If bMSEBIS_CS_ENABLE = 0
● Master read on rMSEBIS_ID_CS[n]_N (n = 0..3) returns 0x0.
See Section 10.4.7.5, MSEBI Slave: Chip select Configuration Status.

R

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 525 of 637
Dec 29, 2021

10.4 Operation

10.4.1 AHB Interface

10.4.1.1 AHB Slave Interface
MSEBI Master and Slave have independent AHB slaves, respectively.

For MSEBI Master
MSEBI supports 8/16/32 bits AHB access. So, one AHB 32 bits access generates one MSEBI access (Mode32) or two
MSEBI accesses (Mode16) or four accesses (Mode8). When AHB burst transfer, the AHB access size is required to be
equal to or more than the MSEBI bus size.

For MSEBI Slave
MSEBI supports 8/16/32 bits AHB access.

10.4.1.2 AHB Master Interface (MSEBI Slave only)
Burst size, 4/8/16 words, can be managed on following registers:

● rMSEBIS_CONFIG (CPU only)

● rMSEBIS_DMARDLR_CS[n]_N (DMA receive, n = 0..1)

● rMSEBIS_DMATDLR_CS[n]_N (DMA transmit, n = 0..1)

Attributes of AHB accesses can be managed by the following bits:

● bMSEBIS_AHB_MASTER_BUF

● bMSEBIS_AHB_MASTER_CACHE

AHB master is able to manage an “error” response from the NoC in case of bad address.

See bMSEBIS_ERROR_ADDR in rMSEBIS_STATUS register.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 526 of 637
Dec 29, 2021

10.4.2 Use Case Device Connection
On signal name:

● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

Signal Name Description

MSEBI(x)_ACD[31:0] Address, Control and Data multiplexed on 32, 16 and 8 bits, controlled by MSEBIM_ALE, MSEBIM_CLE,
MSEBIM_DLE and latched on rising edge clock of MSEBIM_CLK

MSEBI(x)_CLK ● For Master Mode, the clock can be configured to:
 MSEBIM_HCLK divided by 2, 3, 4, 5, 6, 7 or 8.

● For Slave Mode, the clock is given by the master of the bus.

Caution) Clock duty cycle can be different of 50 %

MSEBI(x)_WAIT[n]_N For Master Mode
● MSEBIM_WAIT[n]_N can be configured in synchronous or asynchronous mode by bMSEBIM_CONFIG

bits.
● MSEBIM_WAIT[n]_N are taken into account during the VALID sub phase with MSEBI_CS[n]_N is low

(with n = 0..3) and MSEBIM_DLE high when:
– RDDLEDATA_NB/WRDLEDATA_NB time expired for the first access of burst access in

synchronous mode, or for no burst access in asynchronous or synchronous mode.
Or
– RDDLEDATA_B/WRDLEDATA_B time expired for all burst access after the first access in

synchronous mode.
For Slave Mode
<Only in synchronous mode>
● MSEBIS_WAIT[n]_N is generated during the VALID sub phase with MSEBI_CS[n]_N Low (with n: 0..3)

and MSEBIS_DLE High when:
– RDDLEDATA_NB/WRDLEDATA_NB time expired for the first access of a burst or for no burst

access.
Or
– RDDLEDATA_B/WRDLEDATA_B time expired for all burst access after the first access in

synchronous mode.

MSEBI(x)_CLE Address and Control Latch Enable (active high)

MSEBI(x)_DLE Data Latch Enable (active high)
The first data transfer is done during the length of RDDLEDATA_NB (read) or WRDLEDATA_NB (Write),
then (only in burst mode) if MSEBI_DLE is kept active, successive transfer occurs at the burst interval
programmed by RDDLEDATA_B (read) or WRDLEDATA_B (write). The burst has a linear address
increment and length is undefined.

MSEBI(x)_ALE Address Latch Enable (active high)

MSEBIM_ALE1 Address Latch Enable (active high)
Used only for Master in Parallel Mode and Mode8 or Mode16.

MSEBIM_ALE2 Address Latch Enable (active high)
Used only for Master in Parallel Mode and Mode8.

MSEBIM_ALE3 Address Latch Enable (active high)
Used only for Master in Parallel Mode and Mode8.

MSEBIM_RD_N Read enable (active low)
Same as inverted MSEBI_DLE during read only
Optional function, used only for Master in asynchronous mode.

MSEBIM_WR_N Write enable (active low)
Same as inverted MSEBI_DLE during write only
Optional function, used only for Master in asynchronous mode.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 527 of 637
Dec 29, 2021

10.4.2.1 One Device, Mode32, Synchronous

MSEBI
Mode32 on CS0..3_N
ALE in Serial mode

Synchronous
Device

32MB 32bits
Multiplexed

MSEBIS_CLK

MSEBIS_ACD[31:0]

MSEBIS_ALE

MSEBIS_CLE

MSEBIS_DLE

MSEBIS_WAIT0_N

MSEBIM_CLK

MSEBIM_ACD[31:0]

MSEBIM_ALE

MSEBIM_CLE

MSEBIM_DLE

MSEBIM_WAIT0_N

MSEBIM_WAIT1_N

MSEBI Mode32, Synchronous mode
Connection 1 device 32bits

36 pins min

ALE
Optional

Figure 10.2 One Device, Mode32, Synchronous

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 528 of 637
Dec 29, 2021

10.4.2.2 One Device, Mode16, Synchronous

MSEBI
Mode16 on CS0..3_N
ALE in Serial mode

Synchonous
Device

32MB 16bits
Multiplexed

MSEBI Mode16, Synchronous mode
Connection 1 device 16bits

20 pins min

ALE
Optional

MSEBIM_CLK

MSEBIM_ACD[15:0]

MSEBIM_ALE

MSEBIM_CLE

MSEBIM_DLE

MSEBIM_WAIT0_N

MSEBIM_WAIT1_N

MSEBIS_CLK

MSEBIS_ACD[15:0]

MSEBIS_ALE

MSEBIS_CLE

MSEBIS_DLE

MSEBIS_WAIT0_N

Figure 10.3 One Device, Mode16, Synchronous

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 529 of 637
Dec 29, 2021

10.4.2.3 One Device, Mode8, Synchronous

MSEBI
Mode8 on CS0..3_N
ALE in serial mode

Synchonous
Device

32MB 8bits
Multiplexed

MSEBI Mode8, Synchronous mode
Connection 1 device 8bits

12 pins min

MSEBIS_CLK

MSEBIS_ACD[7:0]

MSEBIS_ALE

MSEBIS_CLE

MSEBIS_DLE

MSEBIS_WAIT0_N

ALE
Optional

MSEBIM_CLK

MSEBIM_ACD[7:0]

MSEBIM_ALE

MSEBIM_CLE

MSEBIM_DLE

MSEBIM_WAIT0_N

MSEBIM_WAIT1_N

Figure 10.4 One Device, Mode8, Synchronous

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 530 of 637
Dec 29, 2021

10.4.2.4 Three Devices, Mode8/16/32, Synchronous

Device 16bits
Multiplexed

MSEBIS_CLK

MSEBIS_ACD[15:0]

MSEBIS_ALE

MSEBIS_CLE

MSEBIS_DLE

MSEBIS_WAIT2_N

Device 32bits
Multiplexed

MSEBI
Mixed mode

Mode16 on CS2_N
Mode32 on CS1_N
Mode8 on CS0_N

ALE in Serial mode

MSEBIM_CLK

MSEBIM_ACD[31:0]

MSEBIM_ALE

MSEBIM_CLE

MSEBIM_DLE

MSEBIM_WAIT2_N

MSEBIM_WAIT1_N

MSEBIM_WAIT0_N

MSEBIM_WR_N

MSEBIM_RD_N

Device 8bits
Multiplexed

MSEBI
Synchronous Mode

Connection 3 devices
32, 16 & 8bits

MSEBIS_CLK

MSEBIS_ACD[31:0]

MSEBIS_ALE

MSEBIS_CLE

MSEBIS_DLE

MSEBIS_WAIT1_N

MSEBIS_CLK

MSEBIS_ACD[7:0]

MSEBIS_ALE

MSEBIS_CLE

MSEBIS_DLE

MSEBIS_WAIT0_N

Figure 10.5 Three Devices, Mode8/16/32, Synchronous

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 531 of 637
Dec 29, 2021

10.4.2.5 Three Devices, Mode8/16/32, Asynchronous

Asynchronous Device
16bits

Latch

MSEBI
Asynchronous

Mode16 on CS0
Mode32 on CS1
Mode8 on CS2

ALE in Serial mode

Asynchronous Device
32bits D[31:0]

A[22:2]
BE0_N..BE3_N

CS_N

WAIT1_N
WR_N
RD_N

MSEBIM_ACD[31:0]

MSEBIM_CLE
MSEBIM_ALE

MSEBIM_WAIT1_N
MSEBIM_WR_N
MSEBIM_RD_N

Latch

Q D

CLK

Q D

CLK

Latch

Q D

 CLK

D[15:0]

A[23:8]

A[7:1]
BE0_N .. BE1_N

CS_N

WAIT0_N
WR_N
RD_N

Asynchronous Device
8bits

Latch

Q D

 CLK

Latch

Q D

CLK

D[7:0]

A[8:1]

A[0]
CS_N

WAIT2_N
WR_N
RD_N

MSEBIM_WAIT0_N

MSEBIM_WAIT2_N

MSEBI
Asynchronous Mode

Connection 3 devices
32, 16 & 8bits

Figure 10.6 Three Devices, Mode8/16/32, Asynchronous

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 532 of 637
Dec 29, 2021

10.4.2.6 Three Devices, Mode8/16/32, Mixed Synchronous and Asynchronous

Asynchronous Device
16bits

Latch

MSEBI

Asynchronous
Mode16 on CS0

Asynchronous
Mode8 on CS2

Synchronous
Mode32 on CS1

ALE in Serial mode

Synchronous Device
32bits

MSEBIS_CLK
MSEBIS_D[31:0]

MSEBIS_CLE

MSEBIS_DLE
MSEBIS_WAIT1_N

MSEBIM_CLK
MSEBIM_ACD[31:0]
MSEBIM_CLE
MSEBIM_ALE

MSEBIM_DLE
MSEBIM_WAIT1_N
MSEBIM_WR_N
MSEBIM_RD_N

Q D

 CLK

Latch

Q D

CLK

D[15:0]

A[23:8]

A[7:1]
BE0_N .. BE1_N

CS_N

WAIT0_N
WR_N
RD_N

Asynchronous Device
8bits

Latch

Q D

 CLK

Latch

Q D

 CLK

D[7:0]

A[8:1]

A[0]
CS_N

WAIT2_N
WR_N
RD_N

MSEBIM_WAIT0_N

MSEBIM_WAIT2_N

MSEBI
Mixed

Asynchronous Mode
& Synchronous Mode

Connection 2 devices
32, 16, 8bits

Figure 10.7 Three Devices, Mode8/16/32, Mixed Synchronous and Asynchronous

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 533 of 637
Dec 29, 2021

10.4.2.7 One Device, Mode8, Asynchronous, ALE in Parallel Mode

Assynchronous
Device
8bits

Latch

MSEBI
Asynchronous
Mode8 on CS0

ALE in parallel mode

Q D

CLK

Latch

Q D

 CLK

MSEBI M (Master)
Asynchronous Mode

Mode 8bits

D[7:0]

latMSEBI_A[8:1]

latMSEBI_A[0]
latMSEBI_CS0_N

Latch

Q D

 CLK

latMSEBI_A[16:9]
A[16:9]

A[8:1]

A[0]
CS_N

WR_N
RD_N

READY

MSEBIM_ACD[7:0]

MSEBIM_ALE1

MSEBIM_ALE

MSEBIM_CLE

MSEBIM_WR_N
MSEBIM_RD_N

MSEBIM_WAIT0_N

Figure 10.8 One Device, Mode8, Asynchronous, ALE in Parallel Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 534 of 637
Dec 29, 2021

10.4.3 Main Principle of Phase ADDRESS CONTROL and DATA
Accesses are made of 3 major phases:

● Address latch (ADDRESS phase) controlled by MSEBIM_ALE/MSEBIS_ALE (depending if master or slave), this
phase is optional

● Control latch (CONTROL phase) controlled by MSEBIM_CLE/MSEBIS_CLE (depending if master or slave)

● Data transfer (DATA phase) controlled by MSEBIM_DLE/MSEBIS_DLE (depending if master or slave)

The following signal are controlled and configured by the master:

● MSEBIM_CLK

● MSEBIM_ALE

● MSEBIM_CLE

● MSEBIM_DLE

The following signals are driven by the master of the bus. The configuration parameters on slave side must be
compliant with master parameters:

● MSEBIS_CLK

● MSEBIS_ALE

● MSEBIS_CLE

● MSEBIS_DLE

CAUTION

Due to synchronization limitations, the frequency of the MSEBIS_CLK (generated by the MSEBI master) must be lower
than the frequency of the MSEBIS_HCLK (AHB Bus Clock).

10.4.3.1 Address Latch Phase ALE (ADDRESS)
MSEBIM_ALE, MSEBIM_ALE1, MSEBIM_ALE2, MSEBIM_ALE3 are used to latch from bus a part of address
depending on the mode in used.

These phases are optional. The assignment of address bits depends on the number of MSEBI_ALE phases used (From 0
until 4 depending on mode).

● See Table 10.4, MSEBI Mode32, Multiplexer Function on ACD31..0.

● See Table 10.6, MSEBI Mode16, Multiplexer Function on ACD15..0.

● See Table 10.8, MSEBI Mode8, Multiplexer Function on ACD7..0.

For Master Mode Only
The length of these phases is configurable per CS[n]_N (n = 0..3) from 1 to 2 MSEBIM_CLK periods (Configured only
by master).

In asynchronous mode, an external latch (74x16373 type) can be used to latch address part by connecting
MSEBIM_ALE, MSEBIM_ALE1, MSEBIM_ALE2, MSEBIM_ALE3 to inputs of the latch. Use an MSEBI_ALE
phase length of 2 to guarantee hold time of external latch, or use a synchronous latch. MSEBIM_ALE,
MSEBIM_ALE1, MSEBIM_ALE2, MSEBIM_ALE3 are driven only during the first clock period of this phase.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 535 of 637
Dec 29, 2021

This phase is optional. The assignment of address bits depends on the number of MSEBI_ALE phases used and allows
a maximum flexibility on address capability.

MSEBI_ALE can be configured in serial mode or parallel mode by bMSEBIM_ALE_MODE bit.

● Serial mode is recommended for synchronous interface.

− See Figure 10.15, MSEBI Timing, Asynchronous Mode, Read, NoWait, NoBurst, Two ALE Serial
Mode and Figure 10.17, MSEBI Timing, Asynchronous Mode, Write, NoWait, NoBurst, Two ALE
Serial Mode.

● Parallel mode is recommended for asynchronous interface and connect external latch (74x16373 type), allowing a
minimal cost on board.

− See Figure 10.16, MSEBI Timing, Asynchronous Mode, Read, NoWait, NoBurst, Two ALE Parallel
Mode and Figure 10.18, MSEBI Timing, Asynchronous Mode, Write, NoWait, NoBurst, Two ALE
Parallel Mode.

For example, in Mode8, access by CPU
[Case 1]

4 MSEBI_ALE phases allow to latch:

● First access: A8..A1

● Second access: A16..A9

● Third access: A24..A17

● Fourth access: A31..A25

● A0 is generated on MSEBIM_CLE phase allowing an address capability of 4 GB.

● 4 Chip selects available: CS[n]_N (n = 0..3)

● MSEBI_A26 .. MSEBI_A0 are directly driven by CPU

● MSEBI_A31 .. MSEBI_A27 are driven by register

See Table 10.8, MSEBI Mode8, Multiplexer Function on ACD7..0.

[Case 2]

3 MSEBI_ALE phases allow to latch:

● First access: A8..A1

● Second access: A16..A9

● Third access: A24.. A17

● A0 is generated on MSEBIM_CLE phase allowing an address capability of 32 MB.

● 4 Chip selects available: CS[n]_N (n = 0..3)

● MSEBI_A24 .. MSEBI_A0 are directly driven by CPU

● MSEBI_A31 .. MSEBI_A25 are not used in this configuration

See Table 10.8, MSEBI Mode8, Multiplexer Function on ACD7..0.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 536 of 637
Dec 29, 2021

[Case 3]

2 MSEBI_ALE phases allow to latch:

● First access: A8..A1

● Second access: A16..A9

● A0 is generated on MSEBIM_CLE phase allowing an address capability of 128 KB.

● 4 Chip selects available: CS[n]_N (n = 0..3)

● MSEBI_A16 .. MSEBI_A0 are directly driven by CPU

● MSEBI_A31 .. MSEBI_A17 are not used in this configuration

See Table 10.8, MSEBI Mode8, Multiplexer Function on ACD7..0.

[Case 4]

1 MSEBI_ALE phase allows to latch:

● First access: A8..A1

● A0 is generated on MSEBIM_CLE phase allowing an address capability of 512 B.

● 4 Chip selects available: CS[n]_N (n = 0..3)

● MSEBI_A8 .. MSEBI_A0 are directly driven by CPU

● MSEBI_A31 .. MSEBI_A9 are not used in this configuration

See Table 10.8, MSEBI Mode8, Multiplexer Function on ACD7..0.

[Case 5]

0 MSEBI_ALE phase:

● A0 is generated on MSEBIM_CLE phase allowing an address capability of 2 B.

● 4 Chip selects available: CS[n]_N (n = 0..3)

● MSEBI_A0 is directly driven by CPU

● MSEBI_A31 .. MSEBI_A1 are not used in this configuration

See Table 10.8, MSEBI Mode8, Multiplexer Function on ACD7..0.

Each CS[n]_N (n = 1..3) can be used as address bit to extend address capability depending on user use case.

The tables below describe in detail all address capabilities:

● See Table 10.5, MSEBI Mode32, Chip Selects Management.

● See Table 10.7, MSEBI Mode16, Chip Selects Management.

● See Table 10.9, MSEBI Mode8, Chip Selects Management.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 537 of 637
Dec 29, 2021

For example, in Mode8, access by CPU
[Case 1]

1 MSEBI_ALE phase allows to latch:

● First access: A8..A1

● A0 is generated on MSEBIM_CLE phase allowing an address capability of 512 B.

● 4 Chip selects available: CS[n]_N (n = 0..3)

● MSEBI_A8 .. MSEBI_A0 are directly driven by CPU

● MSEBI_A31 .. MSEBI_A9 are not used in this configuration

See Table 10.9, MSEBI Mode8, Chip Selects Management.

[Case 2]

1 MSEBI_ALE phase allows to latch:

● First access: A8..A1

● CS3_N configured to automatically map: A9

● A0 is generated on MSEBIM_CLE phase allowing an address capability of 1 KB.

● 3 Chip selects available: CS[n]_N (n = 0..2)

● MSEBI_A9 .. MSEBI_A0 are directly driven by CPU

● MSEBI_A31 .. MSEBI_A10 are not used in this configuration

See Table 10.9, MSEBI Mode8, Chip Selects Management.

[Case 3]

1 MSEBI_ALE phase allows to latch:

● First access: A8..A1

● CS3_N configured to automatically map: A9

● CS2_N configured to automatically map: A10

● A0 is generated on MSEBIM_CLE phase allowing an address capability of 2 KB.

● 2 Chip selects available: CS[n]_N (n = 0..1)

● MSEBI_A10 .. MSEBI_A0 are directly driven by CPU

● MSEBI_A31 .. MSEBI_A11 are not used in this configuration

See Table 10.9, MSEBI Mode8, Chip Selects Management.

[Case 4]

1 MSEBI_ALE phase allows to latch:

● First access: A8..A1

● CS3_N configured to automatically map: A9

● CS2_N configured to automatically map: A10

● CS1_N configured to automatically map: A11

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 538 of 637
Dec 29, 2021

● A0 is generated on MSEBIM_CLE phase allowing an address capability of 4 KB.

● 1 Chip select available: CS0_N

● MSEBI_A11 .. MSEBI_A0 are directly driven by CPU

● MSEBI_A31 .. MSEBI_A12 are not used in this configuration

See Table 10.9, MSEBI Mode8, Chip Selects Management.

For example, in Mode16 access by CPU
[Case 1]

1 MSEBI_ALE phase allows to latch:

● First access: A23..A8

● A7..A1 is generated on MSEBIM_CLE phase allowing an address capability of 16 MB.

● 4 Chip selects available: CS[n]_N (n = 0..3)

● MSEBI_A23 .. MSEBI_A1 are directly driven by CPU

● MSEBI_A31 .. MSEBI_A24 are not used in this configuration

See Table 10.7, MSEBI Mode16, Chip Selects Management.

[Case 2]

1 MSEBI_ALE phase allows to latch:

● First access: A23..A8

● CS3_N configured to automatically map: A24

● A7..A1 is generated on MSEBIM_CLE phase allowing an address capability of 32 MB.

● 3 Chip selects available: CS[n]_N (n = 0..2)

● MSEBI_A24 .. MSEBI_A1 are directly driven by CPU

● MSEBI_A31 .. MSEBI_A25 are not used in this configuration

See Table 10.7, MSEBI Mode16, Chip Selects Management.

[Case 3]

1 MSEBI_ALE phase allows to latch:

● First access: A23..A8

● CS3_N configured to automatically map: A24

● CS2_N configured to automatically map: A25

● A7..A1 is generated on MSEBIM_CLE phase allowing an address capability of 64 MB.

● 2 Chip selects available: CS[n]_N (n = 0..1)

● MSEBI_A25 .. MSEBI_A1 are directly driven by CPU

● MSEBI_A31 .. MSEBI_A26 are not used in this configuration

See Table 10.7, MSEBI Mode16, Chip Selects Management.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 539 of 637
Dec 29, 2021

[Case 4]

1 MSEBI_ALE phase allows to latch:

● First access: A23..A8

● CS3_N configured to automatically map: A24

● CS2_N configured to automatically map: A25

● CS1_N configured to automatically map: A26

● A7..A1 is generated on MSEBIM_CLE phase allowing an address capability of 128 MB.

● 1 Chip select available: CS0_N

● MSEBI_A26 .. MSEBI_A1 are directly driven by CPU

● MSEBI_A31 .. MSEBI_A27 are not used in this configuration

See Table 10.7, MSEBI Mode16, Chip Selects Management.

(1) Remarks Regarding ALE Phase Behavior

For Master
The number of ALE phases directly impacts the addressing range of the master.

It is obvious that a wrap effect will appear when the address given by the CPU is not reachable by the MSEBI bus due
to insufficient number of ALE phases.

For example, a master is configured in 8bits with 1 ALE phase (no rerouting), thus it can access 512 B of data (range
[A8:A0] or 0x000001FF to 0x00000000) through the MSEBI bus.

If the CPU wants to put the address 0x000002F4 (756th byte) on the MSEBI bus, it will be impossible to do so without
more ALE phases (address will be: 0x000000F4): a wrap just occurred.

For Slave
If the master is configured to generate a burst on the MSEBI bus, the address is given only once to the slave, at the
beginning of the burst.

The slave then generates by itself, for each beat of the burst, the corresponding address.

Using that, it is possible for a master to access data outside of the normal address range given by the number of ALE
phases.

However, this possibility must not be used as it is not reliable, because a burst is generated by the master as soon as the
number of data items in FIFO is sufficient and burst is enabled (only maximum burst length is configurable, not
minimum).

As we cannot predict the size of the burst (or even if a burst will occur or not), it is not advisable to try to access data
out of address range.

[Example 1]

● The master is configured in 8bits with 1 ALE phase (no rerouting), thus it can access 512 B of data (range [A8:A0]
or 0x000001FF to 0x00000000) through the MSEBI bus.

● If the CPU starts a burst4 at address 0x000001FF, the slave will correctly managed addresses for each beat, i.e. it
starts with 0x000001FF, then it generates addresses 0x00000200, then 0x00000201, and last 0x00000202.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 540 of 637
Dec 29, 2021

● If burst was not used, we would have ended with wrapping single access at addresses: 0x000001FF, 0x00000000,
0x00000001, 0x00000002.

[Example 2]

● The master is configured in 16bits with 1 ALE phase (no rerouting), thus it can access 16 MB of data (range
[A23:A0] or 0x00FFFFFF to 0x00000000) through the MSEBI bus.

● If the CPU starts a burst4 at address 0x00FFFFFF, the slave will correctly managed addresses for each beat, i.e. it
starts with 0x00FFFFFF, then it generates addresses 0x01000000, then 0x01000001, and last 0x01000002.

● If burst was not used, we would have ended with wrapping single accesses at addresses:
0x00FFFFFF,0x00000000, 0x00000001, 0x00000002.

10.4.3.2 Control Latch Phase CLE (CONTROL)
MSEBIM_CLE/MSEBIS_CLE is used to latch from bus low part of address bus and control: R/W_N, BE[n]_N,
DMA_N, CSREG_N, CS[n]_N depending on mode in use (n = 0..3).

● See Table 10.4, MSEBI Mode32, Multiplexer Function on ACD31..0.

● See Table 10.6, MSEBI Mode16, Multiplexer Function on ACD15..0.

● See Table 10.8, MSEBI Mode8, Multiplexer Function on ACD7..0.

For Master Mode Only
The length of this phase is configurable per CS[n]_N from 1 or 2 MSEBIM_CLK/MSEBIS_CLK periods.

In asynchronous mode, an external latch (74x16373 type) can be used to latch all signals by connecting MSEBIM_CLE
to inputs of the latch. Use an MSEBI_CLE phase length of 2 to guarantee hold time of external latch, or use a
synchronous latch. MSEBI_CLE is driven only during the first clock period of this phase.

10.4.3.3 Data Phase SETUP + VALID + HOLD (DATA)
Data phase consist of 3 sub phases: SETUP, VALID and HOLD.

(1) SETUP

[On Write command]

SETUP sub phase is used to extend address, control, data setup time before the start of Write command.
See bMSEBIM_WRDLESETUP in rMSEBIM_SETUPHOLD_CS[n]_N / bMSEBIS_WRDLESETUP in
rMSEBIS_SETUPHOLD_CS[n]_N bits.

[On Read command]

SETUP sub phase is also used to extend address, control signal setup time before the start of Read command. During
this sub phase, data bus is floating to avoid bus conflict with external buffer. It is like turn around state (See
bMSEBIM_RDDLESETUP in rMSEBIM_SETUPHOLD_CS[n]_N / bMSEBIS_RDDLESETUP in
rMSEBIS_SETUPHOLD_CS[n]_N).

The length of this phase is configurable per CS[n]_N (n = 0..3) from 0 to 63 MSEBIM_CLK periods.

CAUTION

Length “0” should not be used for read access to external peripheral (to avoid bus conflict).

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 541 of 637
Dec 29, 2021

(2) VALID

For Master
During VALID sub phase, MSEBIM_DLE and MSEBIM_RD_N (asynchronous mode only) or MSEBIM_WR_N
(asynchronous mode only) are actively driven.

For Slave
During VALID sub phase, MSEBIS_DLE is asserted.

For Both (n = 0..3)
In Single transfer mode, data are sampled at the end of last VALID clock period. The length of this phase is
configurable per CS[n]_N from 1 to 256 MSEBIM_CLK/MSEBIS_CLK.
See bMSEBIM_RDDLEDATA_NB and bMSEBIM_WRDLEDATA_NB bits in rMSEBIM_CYCLESIZE_CS[n]_N
for master.
See bMSEBIS_RDDLEDATA_NB and bMSEBIS_WRDLEDATA_NB bits in rMSEBIS_CYCLESIZE_CS[n]_N for
slave.

In Burst mode (Synchronous Mode only), first data is sampled like for single transfer mode, at end of programmed
length. Then the phase is extended per CS[n]_N by RDDLEDATA_B and WRDLEDATA_B (or RDDLEDATA_B and
WRDLEDATA_B for slave) between 1..4 MSEBIM_CLK for each access in the burst cycle. The next data are sampled
at each burst period clock interval. Address is linearly incremented, never cross a 1 kB boundary.

For increment we can have the following values:

● Mode32: 4 Bytes.

● Mode16: 2 Bytes.

● Mode8: 1 Byte.

Slave is allowed to prefetch data in burst read. (so that burst transfer should not be done on FIFO for instance).

CAUTION

The burst length is undefined from 1/2/4 (depending on mode) to 1Kbytes and never cross a 1 kB boundary.

Burst transfer can be aborted by DMA/CPU.

If external MSEBIM_WAIT[n]_N / MSEBIS_WAIT[n]_N (n = 0..3) is implemented, the VALID sub phase is paused
as long as wait is signaled.

Outside of VALID sub phase, wait signal is ignored.

(3) HOLD

[On Write command]

Hold sub phase is used to maintain address, control, data hold time after the end of Write command

See bMSEBIM_WRDLEHOLD bits in rMSEBIM_SETUPHOLD_CS[n]_N for master.

[On Read command]

Hold sub phase is used to put the data bus in floating to avoid bus conflict with external buffer.
It is like turn around state.

See bMSEBIM_RDDLEHOLD bits in rMSEBIM_SETUPHOLD_CS[n]_N for master.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 542 of 637
Dec 29, 2021

This sub phase is recommended on Read command and can also be used in Write command to delay the next cycle. At
end of this phase, during read cycle, the peripheral shall have returned its data bus to floating.

For Master Only
The length of this phase is configurable per CS[n]_N (n = 0..3) from 0 to 63 MSEBIM_CLK periods.

CAUTION

Length “0” should not be used for read access to external peripheral (to avoid bus conflict).

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 543 of 637
Dec 29, 2021

10.4.4 MSEBI Timing

10.4.4.1 Asynchronous Mode, One ALE

For Master Mode Only
To manage the asynchronous mode, MSEBI interface must be configured with following features (n = 0..3):

● Asynchronous is enabled (Set bMSEBIM_CONFIG bits)

● Burst mode is always disabled, bMSEBIM_BURST_ENABLE bit is ignored

● External MSEBIM_WAIT[n]_N is generated by an external slave on the bus and synchronized on internal
MSEBIM_HCLK clock (take into account potential latency from 1 to 3 periods of MSEBIM_HCLK clock and take
into account when MSEBI_CS[n]_N is Low and MSEBIM_DLE is High, and at the end of VALID sub phase when
RDDLEDATA_NB (read) or WRDLEDATA_NB (write) time expired).

● MSEBI master bus controls all following signals in asynchronous mode:

− MSEBIM_CLK

− MSEBIM_ALE

− MSEBIM_CLE

− MSEBIM_DLE

− MSEBIM_RD_N

− MSEBIM_WR_N

NOTE

The timing parameter must be compliant between master and slave.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 544 of 637
Dec 29, 2021

@1

MSEBIM_ALE

MSEBIM_ACD

MSEBIM_CLE

MSEBIM_DLE

@1,Ctrl1 Data1 @2

MSEBIM_WR_N

MSEBIM_RD_N

Asynchronous Mode
Wr Access, No Wait, No Burst, One ALE

ALEDATA:2, CLEDATA:2, WRDLEDATA_NB:2, WRDLESETUP:1, WRDLEHOLD:0

1 MSEBIM_CLK

WRDLESETUP

WRDLEHOLD

ALEDATA CLEDATA WRDLEDATA_NB

Start memory access

ALE optional

2 3 4 5 6 7 8

Figure 10.9 MSEBI Timing, Asynchronous Mode, Write1, NoWait, NoBurst, One ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 545 of 637
Dec 29, 2021

@1

MSEBIM_ALE

MSEBIM_ACD

ALEDATA

MSEBIM_CLE

CLEDATA

MSEBIM_DLE

WRDLEDATA_NB

@1,Ctrl1 Data1 @2

MSEBIM_WR_N

MSEBIM_RD_N

Asynchronous Mode
Wr Access, No Wait, No Burst, One ALE

ALEDATA:2, CLEDATA:2, WRDLEDATA_NB:2, WRDLESETUP:0, WRDLEHOLD:1

1 MSEBIM_CLK

WRDLESETUP WRDLEHOLD

ALE optional

Start memory access

2 3 4 5 6 7 8

Figure 10.10 MSEBI Timing, Asynchronous Mode, Write2, NoWait, NoBurst, One ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 546 of 637
Dec 29, 2021

@1

MSEBIM_ALE

MSEBIM_ACD

MSEBIM_CLK

MSEBIM_CLE

MSEBIM_DLE

RDDLEDATA_NB

@1,Ctrl1 @2

MSEBIM_RD_N

MSEBIM_WR_N

RDDLESETUP RDDLEHOLD

Setup data:
tMSEBIM_SETUP

Hold data:
tMSEBIM_HOLD:0

Asynchronous Mode
Rd Access, No Wait, No Burst, One ALE

ALEDATA:2, CLEDATA:2, RDDLEDATA_NB:2, RDDLESETUP:1, RDDLEHOLD:1

1

ALEDATA CLEDATA

Start memory access

ALE optional End memory access

Data1

2 3 4 5 6 7 8 9

Figure 10.11 MSEBI Timing, Asynchronous Mode, Read1, NoWait, NoBurst, One ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 547 of 637
Dec 29, 2021

MSEBIM_ALE

MSEBIM_ACD @1

MSEBIM_CLE

CLEDATA

MSEBIM_DLE

@1,Ctrl1 @2

MSEBIM_WAIT0_N

Internal Synchronization WAIT0_N

Synchronization Delay of
MSEBIM_WAIT0_N (2 or 3 MSEBIM_HCLK)

MSEBIM_RD_N

Asynchronous Mode
Rd Access, Wait, No Burst, One ALE

ALEDATA:2, CLEDATA:2, RDDLEDATA_NB:2, RDDLESETUP:1, RDDLEHOLD:1

1 2 3 4 5 6 7 8 9MSEBIM_CLK

MSEBIM_WR_N

Not take into account

WAIT0_N will be taken into account only when CS0_N is low,
DLE is High and at the end of VALID sub-phase (RDDLEDATA_NB time expired).

Hold data:
tMSEBIM_HOLD:0

Data1

RDDLEDATA_NB + WAIT0_N (Time)

Figure 10.12 MSEBI Timing, Asynchronous Mode, Read2, Wait, NoBurst, One ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 548 of 637
Dec 29, 2021

10.4.4.2 Asynchronous Mode, No ALE MSEBI Master Only

@1

MSEBIM_ALE

MSEBIM_ACD

CLEDATA

1 MSEBIM_CLK

MSEBIM_CLE

MSEBIM_DLE

WRDLEDATA_NB

Data1 @2

MSEBIM_WR_N

MSEBIM_RD_N

Asynchronous Mode
Wr Access, No Wait, No Burst, No ALE

CLEDATA:2, WRDLEDATA_NB:3, WRDLESETUP:1, WRDLEHOLD:1

WRDLESETUP WRDLEHOLD
Start memory access

2 3 4 5 6 7 8

Figure 10.13 MSEBI Timing, Asynchronous Mode, Write1, No Wait, NoBurst, No ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 549 of 637
Dec 29, 2021

@1

MSEBIM_ALE

MSEBIM_ACD

CLEDATA

MSEBIM_CLK

MSEBIM_CLE

MSEBIM_DLE

RDDLEDATA_NB

@2

MSEBIM_RD_N

MSEBIM_WR_N

RDDLESETUP

Setup data:
tMSEBIM_SETUP

Hold data:
tMSEBIM_HOLD: 0

Asynchronous Mode
Rd Access, No Wait, No Burst, No ALE

CLEDATA:2, RDDLEDATA_NB:2, RDDLESETUP:2, RDDLEHOLD:2

RDDLEHOLD

1

Start memory access

End memory access

Data1

2 3 4 5 6 7 8 9

Figure 10.14 MSEBI Timing, Asynchronous Mode, Read1, No Wait, NoBurst, No ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 550 of 637
Dec 29, 2021

10.4.4.3 Asynchronous Mode, Two ALE

For Master Mode Only
To manage the asynchronous mode, MSEBI interface must be configured with following features (n = 0..3):

● Asynchronous enabled (Set bMSEBIM_CONFIG bits).

● Burst mode is always disabled, bMSEBIM_BURST_ENABLE bit is ignored

● External MSEBIM_WAIT[n]_N is generated by an external slave on the bus and synchronized on internal
MSEBIM_HCLK clock (take into account potential latency from 1 to 3 periods of MSEBIM_HCLK clock and take
into account when MSEBI_CS[n]_N is Low and MSEBIM_DLE is High, and at the end of VALID sub phase when
RDDLEDATA_NB (read) or WRDLEDATA_NB (write) time expired).

● MSEBI master bus controls all following signals in asynchronous mode:

− MSEBIM_CLK

− MSEBIM_ALE (optional MSEBIM_ALE1), 2 modes available
 Serial, ALE are generated on same line (MSEBIM_ALE)
 Parallel mode, each ALE is routed on different line (MSEBIM_ALE, MSEBIM_ALE1)

− MSEBIM_CLE

− MSEBIM_DLE

− MSEBIM_RD_N

− MSEBIM_WR_N

NOTE

The timing parameter must be compliant between master and slave.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 551 of 637
Dec 29, 2021

@1

MSEBIM_ALE

MSEBIM_ACD

MSEBIM_CLK

MSEBIM_CLE

MSEBIM_DLE

RDDLEDATA_NB

@1,Ctrl1 @2

MSEBIM_RD_N

MSEBIM_WR_N

RDDLESETUP
RDDLEHOLD

Setup data:
tMSEBIM_SETUP

Asynchronous Mode
Rd Access, No Wait, No Burst, Two ALE (serial mode)

ALEDATA:2, CLEDATA:2, RDDLEDATA_NB:2, RDDLESETUP:1, RDDLEHOLD:1

@1

End memory accessALE optional

1
ALEDATA CLEDATAALEDATA

Hold data:
tMSEBIM_HOLD: 0

Start memory access

Data1

2 3 4 5 6 7 8 9

Figure 10.15 MSEBI Timing, Asynchronous Mode, Read, NoWait, NoBurst, Two ALE Serial Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 552 of 637
Dec 29, 2021

@1

MSEBIM_ALE

Start memory access

MSEBIM_ACD

ALEDATA

1MSEBIM_CLK

MSEBIM_CLE

CLEDATA

MSEBIM_DLE

RDDLEDATA_NB

@1,Ctrl1 @2

MSEBIM_RD_N

MSEBIM_WR_N

RDDLESETUP RDDLEHOLD

Setup data:
tMSEBIM_SETUP

Hold data:
tMSEBIM_HOLD: 0

Asynchronous Mode
Rd Access, No Wait, No Burst, Two ALE (parallel mode)
ALEDATA:2, CLEDATA:2, RDDLEDATA_NB:2, RDDLESETUP:1, RDDLEHOLD:1

@1

ALEDATA

MSEBIM_ALE1

End memory accessALE optional

Data1

2 3 4 5 6 7 8 9

Figure 10.16 MSEBI Timing, Asynchronous Mode, Read, NoWait, NoBurst, Two ALE Parallel Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 553 of 637
Dec 29, 2021

@1

MSEBIM_ALE

MSEBIM_ACD

ALEDATA

MSEBIM_CLE

CLEDATA

MSEBIM_DLE

WRDLEDATA_NB

@1,Ctrl1 Data1 @2

MSEBIM_WR_N

MSEBIM_RD_N

Asynchronous Mode
Wr Access, No Wait, No Burst, Two ALE (Serial mode)

ALEDATA:2, CLEDATA:2, WRDLEDATA_NB:1, WRDLESETUP:1, WRDLEHOLD:1

1 MSEBIM_CLK

WRDLESETUP

@1

ALEDATA

Start memory access ALE optional
WRDLEHOLD

2 3 4 5 6 7 8

Figure 10.17 MSEBI Timing, Asynchronous Mode, Write, NoWait, NoBurst, Two ALE Serial Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 554 of 637
Dec 29, 2021

@1

MSEBIM_ALE

Start memory access

MSEBIM_ACD

ALEDATA

MSEBIM_CLE

CLEDATA

MSEBIM_DLE

WRDLEDATA_NB

@1,Ctrl1 Data1 @2

MSEBIM_WR_N

MSEBIM_RD_N

Asynchronous Mode
Wr Access, No Wait, No Burst, Two ALE (Parallel mode)
ALEDATA:2, CLEDATA:2, WRDLEDATA_NB:1, WRDLESETUP:1, WRDLEHOLD:1

1 2 3 4 5 6 7 8 MSEBIM_CLK

WRDLESETUP WRDLEHOLD

ALE optional

@1

ALEDATA

MSEBIM_ALE1

Figure 10.18 MSEBI Timing, Asynchronous Mode, Write, NoWait, NoBurst, Two ALE Parallel Mode

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 555 of 637
Dec 29, 2021

10.4.4.4 Synchronous Mode, No Burst, One ALE
To manage the synchronous mode, MSEBI interface must be configured with following features (n = 0..3):

● Synchronous enabled (Set bMSEBIM_CONFIG bits for master or bMSEBIS_CONFIG for slave).

● The burst mode can be disabled on master side with the bMSEBIM_BURST_ENABLE bit.

● External MSEBIM_WAIT[n]_N is generated by an external slave on the bus and is synchronous with
MSEBIM_CLK clock. It is taken into account by the master during the VALID sub phase with MSEBI_CS[n]_N is
low and MSEBIM_DLE is high and when RDDLEDATA_NB (read) or WRDLEDATA_NB (write) time expired.

● MSEBI master bus controls all following signals in synchronous mode:

− MSEBIM_CLK

− MSEBIM_ALE

− MSEBIM_CLE

− MSEBIM_DLE

● And set following signals to 1:

− MSEBIM_RD_N

− MSEBIM_WR_N

● MSEBI slave device on the bus, use the following signals:

− MSEBIS_CLK

− MSEBIS_ALE

− MSEBIS_CLE

− MSEBIS_DLE

● And generate following signals:

− MSEBIM_WAIT[n]_N

NOTE

The timing parameter must be compliant between master and slave.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 556 of 637
Dec 29, 2021

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@1

MSEBI(x)_ALE

MSEBI(x)_ACD

MSEBI(x)_CLE

MSEBI(x)_DLE

Data1 @2

MSEBI(y)_WR_N

MSEBI(y)_RD_N

Synchronous Mode
Wr Access, No Wait, No Burst, One ALE

ALEDATA:2, CLEDATA:2, WRDLEDATA_NB:1, WRDLESETUP:0, WRDLEHOLD:2
Warning: This configuration can be mixed with asynchronous mode

Set 1'b1 on WR_N

MSEBI(x)_CLK

WRDLEHOLD
WRDLESETUP

@1,Ctrl1

1

ALEDATA WRDLEDATA_NBCLEDATA

Start memory access

2 3 4 5 6 7 8

Figure 10.19 MSEBI Timing, Synchronous Mode, Write1, NoWait, NoBurst, One ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 557 of 637
Dec 29, 2021

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@1

MSEBI(x)_ALE

MSEBI(x)_ACD

ALEDATA

MSEBI(x)_CLE

CLEDATA

MSEBI(x)_DLE

@1,Ctrl1 Data1 @2

ALEDATA CLEDATA

MSEBI(y)_WR_N

MSEBI(y)_RD_N

@2,Ctrl2

WRDLEDATA_NB

Data2

WRDLEDATA_NB

Idle

Synchronous Mode
Wr Access, no Wait, no Burst, One ALE

ALEDATA:1, CLEDATA:1, WRDLEDATA_NB:1, WRDLESETUP:0, WRDLEHOLD:0
Warning: This configuration cannot be mixed with asynchronous mode

Set 1'b1 on WR_N

MSEBI(x)_CLK

WRDLESETUP

WRDLEHOLD

Start memory access

1 2 3 4 5 6 7 8

Figure 10.20 MSEBI Timing, Synchronous Mode, Write2, NoWait, NoBurst, One ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 558 of 637
Dec 29, 2021

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

CLEDATA

@2,Ctrl2 Data2

Synchronous Mode
Wr Access, no Wait, no Burst, One ALE

ALEDATA:1, CLEDATA:1, WRDLEDATA_NB:1, WRDLESETUP:2, WRDLEHOLD:0
Warning: This configuration cannot be mixed with asynchronous mode

Set 1'b1 on WR_N

MSEBI(x)_CLK

@1

MSEBI(x)_ALE

MSEBI(x)_ACD

ALEDATA

MSEBI(x)_CLE

CLEDATA

MSEBI(x)_DLE

WRDLEDATA_NB

@1,Ctrl1 Data1 @2

ALEDATA

MSEBI(y)_WR_N

MSEBI(y)_RD_N

Start memory access

1

WRDLESETUP

WRDLEHOLD

2 3 4 5 7 86

Figure 10.21 MSEBI Timing, Synchronous Mode, Write3, NoWait, NoBurst, One ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 559 of 637
Dec 29, 2021

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@1

MSEBI(x)_ALE

MSEBI(x)_ACD

MSEBI(x)_CLE

MSEBI(x)_DLE

@1,Ctrl1 @2

MSEBI(y)_RD_N

MSEBI(y)_WR_N

Floating Floating

Synchronous Mode
Rd Access, No Wait, No Burst, One ALE

ALEDATA:1, CLEDATA:1, RDDLEDATA_NB:1, RDDLESETUP:2, RDDLEHOLD:2
Warning: This configuration cannot be mixed with asynchronous mode

Set 1'b1 on RD_N

1 2 3 4 5 6 7 8 MSEBI(x)_CLK

RDDLEDATA_NBStart memory access

End memory access

Data1

Figure 10.22 MSEBI Timing, Synchronous Mode, Read1, NoWait, NoBurst, One ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 560 of 637
Dec 29, 2021

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@1

MSEBI(x)_ALE

MSEBI(x)_ACD

MSEBI(x)_CLK

MSEBI(x)_CLE

CLEDATA

MSEBI(x)_DLE

RDDLEDATA_NB

@1,Ctrl1 @2

MSEBI(y)_RD_N

MSEBI(y)_WR_N

Floating Floating

Synchronous Mode
Rd Access, No Wait, No Burst, One ALE

ALEDATA:2, CLEDATA:2, RDDLEDATA_NB:2, RDDLESETUP:1, RDDLEHOLD:1
Warning: This configuration can be mixed with asynchronous mode

Set 1'b1 on RD_N

Start memory access

1 2 3 4 5 6 7 8 9

Data1

End memory access

Figure 10.23 MSEBI Timing, Synchronous Mode, Read2, NoWait, NoBurst, One ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 561 of 637
Dec 29, 2021

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@1

MSEBI(x)_ALE

MSEBI(x)_ACD

MSEBI(x)_CLE

MSEBI(x)_DLE

@1,Ctrl1 @2

MSEBI(y)_RD_N

MSEBI(y)_WR_N

Floating Floating

Synchronous Mode
Rd Access, Wait, No Burst, One ALE

ALEDATA:1, CLEDATA:1, RDDLEDATA_NB:2, RDDLESETUP:1, RDDLEHOLD:1
Warning: This configuration cannot be mixed with asynchronous mode

Set 1'b1 on RD_N

MSEBI(x)_WAIT0_N Not take into account

MSEBI(x)_CLK

Start memory access

Synchronous WAIT0_N
WAIT0_N will be taken into account only

when CS0_N is low, DLE is High and at the end of VALID sub-phase (RDDLEDATA_NB time expired).

1 2 3 4 5 6 7 8

Hold data:
tMSEBI(x)_HOLD: 0

Data1

RDDLEDATA_NB + WAIT0_N (Time)

Figure 10.24 MSEBI Timing, Synchronous Mode, Read3, Wait, NoBurst, One ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 562 of 637
Dec 29, 2021

10.4.4.5 Synchronous Mode, No Burst, No ALE

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@1

MSEBI(x)_ALE

MSEBI(x)_ACD

CLEDATA

MSEBI(x)_CLE

MSEBI(x)_DLE

WRDLEDATA_NB

Data1 @2

MSEBI(y)_WR_N

MSEBI(y)_RD_N

Synchronous Mode
Wr Access, No Wait, No Burst, No ALE

CLEDATA:2, WRDLEDATA_NB:2, WRDLESETUP:1, WRDLEHOLD:2
Warning: This configuration can be mixed with asynchronous mode

Set 1'b1 on WR_N

MSEBI(x)_CLK

WRDLESETUP WRDLEHOLD
Start memory access

1 2 3 4 5 6 7 8

Figure 10.25 MSEBI Timing, Synchronous Mode, Write1, No Wait, NoBurst, No ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 563 of 637
Dec 29, 2021

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@1

MSEBI(x)_ALE

MSEBI(x)_ACD

MSEBI(x)_CLK

MSEBI(x)_CLE

MSEBI(x)_DLE

@2

MSEBI(y)_RD_N

MSEBI(y)_WR_N

Floating Floating

Synchronous Mode
Rd Access, No Wait, No Burst, No ALE

CLEDATA:2, RDDLEDATA_NB:4, RDDLESETUP:1, RDDLEHOLD:1
Warning: This configuration can be mixed with asynchronous mode

Set 1'b1 on RD_N

1 2 3 4 5 6 7 8 9

Data1

End memory access

Start memory access

Figure 10.26 MSEBI Timing, Synchronous Mode, Read1, No Wait, NoBurst, No ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 564 of 637
Dec 29, 2021

10.4.4.6 Synchronous Mode, No Burst, Multiple ALE

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@10

MSEBI(x)_ALE

MSEBI(x)_ACD

ALEDATA

MSEBI(x)_CLE

CLEDATA

MSEBI(x)_DLE

@12,Ctrl1 Data1 @2

MSEBI(y)_WR_N

MSEBI(y)_RD_N

Synchronous Mode
Wr Access, No Wait, No Burst, Dual ALE

ALEDATA:2, CLEDATA:2, WRDLEDATA_NB:1, WRDLESETUP:0, WRDLEHOLD:0
Warning: This configuration can be mixed with asynchronous mode

Set 1'b1 on WR_N

MSEBI(x)_CLK

WRDLEHOLD

WRDLESETUP

@11

ALEDATA

1

WRDLEDATA_NB

Dual ALE

Start memory access

2 3 4 5 6 7 8

Figure 10.27 MSEBI Timing, Synchronous Mode, Write1, No Wait, NoBurst, Dual ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 565 of 637
Dec 29, 2021

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@10

MSEBI(x)_ALE

MSEBI(x)_ACD

ALEDATA

MSEBI(x)_CLE

CLEDATA

MSEBI(x)_DLE

@12,Ctrl1 Data1

MSEBI(y)_WR_N

MSEBI(y)_RD_N

Synchronous Mode
Wr Access, No Wait, No Burst, Triple ALE

ALEDATA:2, CLEDATA:2, WRDLEDATA_NB:1, WRDLESETUP:0, WRDLEHOLD:0
Warning: This configuration can be mixed with asynchronous mode

Set 1'b1 on WR_N

MSEBI(x)_CLK

WRDLEHOLD

WRDLESETUP

@11

ALEDATA

@11

ALEDATA

Start memory access

1 2 3 4 5 6 7 8

WRDLEDATA_NB

Triple ALE

Figure 10.28 MSEBI Timing, Synchronous Mode, Write2, No Wait, NoBurst, Triple ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 566 of 637
Dec 29, 2021

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@10

MSEBI(x)_ALE

MSEBI(x)_ACD

ALEDATA

MSEBI(x)_CLE

CLEDATA

MSEBI(x)_DLE

@13,Ctrl1 Data1 @20

ALEDATA CLEDATA

MSEBI(y)_WR_N

MSEBI(y)_RD_N

@22,Ctrl2

WRDLEDATA_NB

Data2

WRDLEDATA_NB

Synchronous Mode
Wr Access, no Wait, no Burst, Dual ALE

ALEDATA:1, CLEDATA:1, WRDLEDATA_NB:1, WRDLESETUP:0, WRDLEHOLD:0
Warning: This configuration cannot be mixed with asynchronous mode

Set 1'b1 on WR_N

MSEBI(x)_CLK

WRDLESETUP

WRDLEHOLD

@11

ALEDATA

@21

ALEDATA

1

Dual ALE

Start memory access

2 3 4 5 6 7 8

Figure 10.29 MSEBI Timing, Synchronous Mode, Write3, No Wait, NoBurst, Dual ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 567 of 637
Dec 29, 2021

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@10

MSEBI(x)_ALE

MSEBI(x)_ACD

MSEBI(x)_CLE

MSEBI(x)_DLE

@13,Ctrl1 Data1 @20

MSEBI(y)_WR_N

MSEBI(y)_RD_N

@22 @23,Ctrl2

Synchronous Mode
Wr Access, no Wait, no Burst, Triple ALE

ALEDATA:1, CLEDATA:1, WRDLEDATA_NB:1, WRDLESETUP:0, WRDLEHOLD:0
Warning: This configuration cannot be mixed with asynchronous mode

Set 1'b1 on WR_N

MSEBI(x)_CLK

WRDLESETUP

@11 @21@12

WRDLEHOLD

1

ALEDATA CLEDATA ALEDATA ALEDATAWRDLEDATA_NB CLEDATAALEDATA ALEDATAALEDATA

Triple ALE

Start memory access

2 3 4 5 6 7 8

Figure 10.30 MSEBI Timing, Synchronous Mode, Write4, No Wait, NoBurst, Triple ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 568 of 637
Dec 29, 2021

10.4.4.7 Synchronous Mode, Burst, One ALE
To manage the synchronous mode, MSEBI interface must be configured with following features (n = 0..3):

● Synchronous enable (Set bMSEBIM_CONFIG bits for master or bMSEBIS_CONFIG for slave).

● The burst mode is enabled on master side by the bMSEBIM_BURST_ENABLE bit.

● External MSEBIM_WAIT[n]_N is generated by an external slave on the bus and is synchronous with
MSEBIM_CLK clock. It is taken into account by the master when MSEBI_CS[n]_N is low and MSEBIM_DLE is
high, and at the end of VALID sub phase when RDDLEDATA_NB (read) or WRDLEDATA_NB (write) time
expired on the first access of burst access, or RDDLEDATA_B (read) or WRDLEDATA_B (write) time expired on
all burst access after the first access.

● MSEBI master bus controls all following signals in synchronous mode:

− MSEBIM_CLK

− MSEBIM_ALE

− MSEBIM_CLE

− MSEBIM_DLE

● And set following signals to 1:

− MSEBIM_RD_N

− MSEBIM_WR_N

● MSEBI slave device on the bus, use the following signals:

− MSEBIS_CLK

− MSEBIS_ALE

− MSEBIS_CLE

− MSEBIS_DLE

● And generate following signals:

− MSEBIM_WAIT[n]_N

NOTE

The timing parameter must be compliant between master and slave.

● The max burst size on MSEBI bus is configured on master side by

− CPU: bMSEBIM_BURST_SIZEMAX_CPUREAD and bMSEBIM_BURST_SIZEMAX_CPUWRITE bits

− DMA: bMSEBIM_BURST_SIZEMAX_DMAREAD and bMSEBIM_BURST_SIZEMAX_DMAWRITE bits

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 569 of 637
Dec 29, 2021

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@1

MSEBI(x)_ALE

MSEBI(x)_ACD

ALEDATA

MSEBI(x)_CLE

CLEDATA

MSEBI(x)_DLE

WRDLEDATA_NB

@1,Ctrl1 Data11

MSEBI(y)_WR_N

MSEBI(y)_RD_N

Data.. Data1n @2

MSEBI(x)_CLK

(n-2)*WRDLEDATA_B

WRDLEDATA_B

Synchronous Mode
Wr Access, No Wait, n Burst, One ALE

ALEDATA:2, CLEDATA:2, WRDLEDATA_NB:1, WRDELDATA_B:1, WRDLESETUP:0, WRDLEHOLD:0
Warning: This configuration can be mixed with asynchronous mode

Set 1'b1 on WR_N

1

Start memory access

2 3 4 5 6 7 8

Figure 10.31 MSEBI Timing, Synchronous Mode, Write1, NoWait, n Burst, One ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 570 of 637
Dec 29, 2021

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@1

MSEBI(x)_ALE

MSEBI(x)_ACD

ALEDATA

MSEBI(x)_CLE

CLEDATA

MSEBI(x)_DLE

WRDLEDATA_NB

@1,Ctrl1 Data11 @2

ALEDATA CLEDATA

MSEBI(y)_WR_N

MSEBI(y)_RD_N

@2,Ctrl2Data12 Data1nData...

Synchronous Mode
Wr Access, no Wait, n Burst, One ALE

ALEDATA:1, CLEDATA:1, WRDLEDATA_NB:1, WRDELDATA_B:1, WRDLESETUP:0, WRDLEHOLD:0
Warning: This configuration cannot be mixed with asynchronous mode

Set 1'b1 on WR_N

MSEBI(x)_CLK

WRDLEDATA_B

WRDLEDATA_B

Start memory access

1 2 3 4 5 6 7 8

Figure 10.32 MSEBI Timing, Synchronous Mode, Write2, NoWait, n Burst, One ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 571 of 637
Dec 29, 2021

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@1

MSEBI(x)_ALE

MSEBI(x)_ACD

MSEBI(x)_CLE

MSEBI(x)_DLE

@1,Ctrl1 @2

MSEBI(y)_WR_N

MSEBI(y)_RD_N

@2,Ctrl2Data12

Synchronous Mode
Wr Access, no Wait, 2 Burst, One ALE

ALEDATA:1, CLEDATA:1, WRDLEDATA_NB:2, WRDELDATA_B:2, WRDLESETUP:0, WRDLEHOLD:0
Warning: This configuration cannot be mixed with asynchronous mode

Set 1'b1 on WR_N

Data11

MSEBI(x)_CLK

Start memory access

1

ALEDATA CLEDATA WRDLEDATA_NB ALEDATA CLEDATAWRDLEDATA_B

2 3 4 5 6 7 8

Figure 10.33 MSEBI Timing, Synchronous Mode, Write3, NoWait, 2 Burst, One ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 572 of 637
Dec 29, 2021

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@1

MSEBI(x)_ALE

MSEBI(x)_ACD

MSEBI(x)_CLE

MSEBI(x)_DLE

@1,Ctrl1 @2

MSEBI(y)_RD_N

MSEBI(y)_WR_N

Floating Floating

Synchronous Mode
Rd Access, No Wait, n Burst, One ALE

ALEDATA:1, CLEDATA:1, RDDLEDATA_NB:1, RDDLEDATA_B:1, RDDLESETUP:1, RDDLEHOLD:1
Warning: This configuration cannot be mixed with asynchronous mode

Set 1'b1 on RD_N

Data11 Data1n

MSEBI(x)_CLK

RDDLEDATA_NB

RDDLEDATA_BStart memory access

1 2 3 4 5 6 7 8

End memory access

Data..

RDDLEDATA_B

Figure 10.34 MSEBI Timing, Synchronous Mode, Read1, NoWait, n Burst

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 573 of 637
Dec 29, 2021

10.4.4.8 Synchronous Mode, Burst, No ALE

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@1

MSEBI(x)_ALE

MSEBI(x)_ACD

CLEDATA

MSEBI(x)_CLE

MSEBI(x)_DLE

WRDLEDATA_NB

Data11

MSEBI(y)_WR_N

MSEBI(y)_RD_N

Synchronous Mode
Wr Access, No Wait, n Burst, No ALE

CLEDATA:2, WRDLEDATA_NB:1, WRDLEDATA_B:1, WRDLESETUP:0, WRDLEHOLD:0
Warning: This configuration can be mixed with asynchronous mode

Set 1'b1 on WR_N

Data.. Data1n @2

MSEBI(x)_CLK

WRDLEDATA_B

(n-2)*WRDLEDATA_B

WRDLEHOLD
WRDLESETUP

Start memory access

1 2 3 4 5 6 7 8

Figure 10.35 MSEBI Timing, Synchronous Mode, Write1, NoWait, Burst, No ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 574 of 637
Dec 29, 2021

On signal name:
● MSEBI(x) represents MSEBIM for master interface

● MSEBI(x) represents MSEBIS for slave interface

● MSEBI(y) represents only MSEBIM for Master interface

@1

MSEBI(x)_ALE

MSEBI(x)_ACD

CLEDATA

MSEBI(x)_CLE

MSEBI(x)_DLE

WRDLEDATA_NB

Data11 @2

CLEDATA

MSEBI(y)_WR_N

MSEBI(y)_RD_N

Data12 Data1nData...

Synchronous Mode
Wr Access, no Wait, n Burst, No ALE

CLEDATA:1, WRDLEDATA_NB:1, WRDLEDATA_B:1, WRDLESETUP:0 , WRDLEHOLD:0
Warning: This configuration cannot be mixed with asynchronous mode

Set 1'b1 on WR_N

MSEBI(x)_CLK

Data21

WRDLEDATA_B WRDLEDATA_B

WRDLESETUP WRDLEHOLD

Start memory access

1 2 3 4 5 6 7 8

Figure 10.36 MSEBI Timing, Synchronous Mode, Write2, NoWait, Burst, No ALE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 575 of 637
Dec 29, 2021

10.4.5 MSEBI Interrupt

10.4.5.1 MSEBI Interrupt: Overview
MSEBI provides one interrupt line: MSEBIS_Int.

This interrupt is used for “end of block event” detection by the slave.

See:

● Interrupt is set by register (access by CPU of the master through MSEBI).

− Section 10.3.4.1, rMSEBIS_INT — Slave Interrupt Register.

● Status of interrupt is read by register (access by CPU).

− Section 10.3.3.11, rMSEBIS_STATUS_INT0 — Interrupt Status Register.

− Section 10.3.3.12, rMSEBIS_STATUS_INT1 — Masked Interrupt Status Register.

● Interrupt can be masked by register (access by CPU).

− Section 10.3.3.13, rMSEBIS_MASK_INT — Interrupt Mask Register.

● Interrupt is cleared by register (access by CPU).

− Section 10.3.3.14, rMSEBIS_CLR_INT — Interrupt Clear Register.

● Contains the address of the descriptor used to complete the write transfer in memory (access by CPU).

− Section 10.3.3.15, rMSEBIS_EOB_ADDR — End Of Block Address Register.

− CPU MSEBI_CS[n]_N (n = 0..3) and DMA MSEBI_CS[n]_N (n = 0..1) descriptors addresses are automatically
computed (please refer to the register description).

MSEBI Slave
Controller

Bus MSEBI

External
bus

MSEBI MSEBI write request
 from the master on
MSEBIS_CS1_N

with MSEBI_CSREG_N
set to 0

0 0 0 0 0 1 0
rMSEBIS_STATUS_INT0

rMSEBIS_INT

End Of Block
From CPU RX on
MSEBIS_CS1_N

0 0 0 0 0 1 0
rMSEBIS_MASK_INT

0 0 0 0 0 1 0
rMSEBIS_STATUS_INT1

MSEBIS_Int

MSEBI Slave Controller
Interrupt generation

0 0 0 0 0 1 0

Figure 10.37 MSEBI Slave Interrupt Generation

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 576 of 637
Dec 29, 2021

10.4.5.2 MSEBI Interrupt: End of Block Detection by the Master
The section below provides a way to manage the end of block detection on master side.

For a transfer using DMA TX[n] FIFO (n = 0..1)
● At the end of block transfer with DMA, DMA can generate an interrupt to indicate that the last data of the transfer

has been pushed on the DMA TX[n] FIFO.

− See Figure 10.48, MSEBI: Burst Mode, DMA Transmit FIFO and Bus Interface Coupling.

● CPU manages the interrupt by polling the bMSEBIM_TDMAE1 which is automatically cleared after all data in the
FIFO has been sent to the MSEBI bus and bMSEBIM_DEST_BLOCK_SIZE single elements have been sent.

− See Section 10.4.6.3, MSEBI Master: DMA Control.

DMA TX[n] FIFO DMAC MEMORY CPU

MSEBI Master: End Of Block Handling
For transfer with DMA TX[n] FIFO (n = 0..1)

Figure 10.38 MSEBI Master: End of Block Transfer with DMA TX

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 577 of 637
Dec 29, 2021

For a transfer using DMA RX[n] FIFO (n = 0..1)
● At the end of block transfer with DMA, DMA can generate an interrupt to indicate that the last read data of the

transfer has been sent to the memory.

− See Figure 10.49, MSEBI: Burst Mode, DMA Receive FIFO and Bus Interface Coupling.

● CPU must ensure that all the data are really available on the memory (not stored in the write buffer) before using
them. User may use the write back feature of the DMA (ch = 0..7).

Write back feature is a mechanism where a status of the DMA transfer (DMAC.CTL[ch].DONE) is copied by the
DMA to the memory at the end of a block transfer. The copy is done on a structure called LLI (linked list item) at a
location pointed by the DMAC.LLP[ch].

The CPU polls the location of the status on memory until the LLI DMAC.CTL[ch].DONE bit is set to 1. The transfer
is guaranteed to be completed because:
 1) The order of write access (from a specific initiator) is guaranteed on the NoC
 2) The write back command is sent by the DMA after the last write of the transfer

− See Section 10.4.6.3, MSEBI Master: DMA Control.

DMA RX[n] FIFO DMAC MEMORY CPU

MSEBI Master: End Of Block Handling
For transfer with DMA RX[n] FIFO (n=0..1, ch=0..7)

Figure 10.39 MSEBI Master: End of Block Transfer with DMA RX

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 578 of 637
Dec 29, 2021

For a write transfer using CPU
● At the end of block transfer with CPU, the end of the last write on MSEBI controller indicates that the command has

been pushed on the CPU transmit FIFO.

− See Figure 10.46, MSEBI: Burst Mode, CPU Transmit and Receive FIFO and Bus Interface
Coupling, Example1 and Figure 10.47, MSEBI: Burst Mode, CPU Transmit and Receive FIFO and
Bus Interface Coupling, Example2.

● CPU manages the end of block to ensure that the command sent on the bus.
By polling the FIFO level bit (bMSEBIM_CPU_TRANSMIT_FIFOLEVEL).

Or by reading a status register in MSEBI Slave
 1) Read and write transfers are executed in the order in which they are received.
 2) In order to force a write in MSEBI slave, it is necessary to perform a read because a read will drain the write
and read commands out of the CPU transmit FIFO.

CPU TX FIFO CPU MEMORY

MSEBI Master: End Of Block Handling
For write transfer with CPU FIFO

Figure 10.40 MSEBI Master: End of Write Block Transfer with CPU FIFO

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 579 of 637
Dec 29, 2021

For a Read transfer using CPU
● At the end of block transfer with CPU, the read data is copied by the CPU to the memory. No specific action is

required.

− See Figure 10.46, MSEBI: Burst Mode, CPU Transmit and Receive FIFO and Bus Interface
Coupling, Example1 and Figure 10.47, MSEBI: Burst Mode, CPU Transmit and Receive FIFO and
Bus Interface Coupling, Example2.

MSEBI Master: End Of Block Handling
For read transfer with CPU FIFO

CPU RX FIFO
CPU TX FIFO CPU MEMORY

Figure 10.41 MSEBI Master: End of Read Block Transfer with CPU FIFO

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 580 of 637
Dec 29, 2021

10.4.5.3 MSEBI Interrupt: End of Block Detection by the Slave
After a block transfer between an MSEBI master and an MSEBI slave device, slave device may be informed of the
block completion.

The section below presents the sequence that allows the slave to detect the end of a write block transfer (n = 0..1):

● MSEBI master transfers a block of data to the slave with CPU or DMA part of the MSEBI master controller.

− See following figures:
 Figure 10.58, MSEBI Slave CPU FIFOs Example 1.
 Figure 10.61, Slave DMA FIFOs for Requests from Master MSEBI DMA TX FIFOs.

● At the end of the transfer, the firmware on master side must ensure that the block has been totally written on the slave
memory:

− Firmware on master side sends an “end of block event” to the slave by writing bMSEBIS_SET_INT_CPUTX or
bMSEBIS_SET_INT_DMATX in the rMSEBIS_INT register (see Section 10.4.7.4, MSEBI Slave: Register
Access by Master).
The value to write on the rMSEBIS_INT register depends on:
 1) The initiator of the transfer (CPU/DMA)
 2) The side of the transfer (TX)
 3) The MSEBI_CS[n]_N used for the transfer

● At the reception of the “end of block event”, MSEBI slave pushes the block transfer descriptor on the corresponding
FIFO (CPU receive FIFO or DMA transmit FIFO) at a location in memory pointed by rMSEBIS_EOB_ADDR
register (an offset is applied depending on the MSEBI_CS[n]_N and access type: CPU/DMA).

● MSEBI slave sets the interrupt on rMSEBIS_STATUS_INT0 register

● CPU manages the interrupt by polling the descriptor on memory before resetting block transfer descriptor to 0 and
clearing the interrupt with rMSEBIS_CLR_INT register

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 581 of 637
Dec 29, 2021

MSEBI master MSEBI slave
CPU RX

slave
MEMORY

Slave
CPU

MSEBI Slave: End Of Block Handling
For write transfer with CPU master

Master
CPU

Figure 10.42 MSEBI Slave: End of Write Block Transfer from MSEBI CPU Master

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 582 of 637
Dec 29, 2021

The section below presents the sequence to allow the slave to detect the end of a read block transfer (n = 0..3):

● MSEBI master read a block of data from the slave with CPU or DMA part of the MSEBI master controller.

− See following figures:
 Figure 10.58, MSEBI Slave CPU FIFOs Example 1.
 Figure 10.62, Slave DMA FIFOs for Requests from Master MSEBI DMA RX FIFOs.

● At the end of the transfer, the firmware on master side sends an “end of block event” to the slave by writing the
rMSEBIS_INT register (see Section 10.4.7.4, MSEBI Slave: Register Access by Master).

− The value to write on bMSEBIS_SET_INT_CPURX or bMSEBIS_SET_INT_DMARX in the rMSEBIS_INT
register depends on:
 1) The initiator of the transfer (CPU/DMA)
 2) The side of the transfer (RX)
 3) The MSEBI_CS[n]_N used for the transfer

● MSEBI slave sets the interrupt on rMSEBIS_STATUS_INT0 register.

● Slave CPU manages the interrupt by clearing the interrupt with rMSEBIS_CLR_INT register.

MSEBI master CPU TX slave
MEMORY

Slave
CPU

MSEBI Slave: End Of Block Handling
For read transfer with CPU master

Master
CPU CPU RX

MSEBI slave

Figure 10.43 MSEBI Slave: End of Read Block Transfer from MSEBI CPU Master

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 583 of 637
Dec 29, 2021

10.4.6 MSEBI Master Mode

10.4.6.1 Master Mode Overview
The main features are:

● Asynchronous and synchronous mode

● MSEBI interface width selectable from 8, 16 and 32 bits

● Multi DLE mode

● Burst mode on MSEBI Interface

● Support for burst access 1-4-8-16 on AHB

● Prefetch capability for CPU receive FIFO

● DMA coupling with 4 DMA channels (external request reception capability)

● CPU transmit and receive FIFO for master: 2 × 32 Words × 32 bits

● DMA transmit and receive FIFO for master: 4 × 32 Words × 64 bits with configurable watermark level

● Up to 4 chip select Lines

● Programmable address capability from 2 B...4 GB

● Programmable setup time on read/write

● Programmable hold time on read/write

● External wait request (can be enabled or disabled)

3 sync FIFOs
32bits / 64bits Tx

MSEBIM_CLK

MSEBIM_WAIT[n]_N (n=0..3)

MSEBIM_CLE
MSEBIM_ACD[31..0]

MSEBIM_ALE
MSEBIM_DLE

MSEBIM_DMA_RD[n]_N
MSEBIM_DMA_WR[n]_N

MSEBIM_RD_N
MSEBIM_WR_N

Network
On

Chip

Registers

IO
 M

ul
tip

le
xe

r L
ev

el
1

3.
3V

 C
M

O
S

Bu
ffe

r

32
b

AH
BS

Ex
te

rn
al

 b
us

 In
te

rfa
ce

IO
 M

ul
tip

le
xe

r L
ev

el
2

3 sync FIFOs
32bits / 64bits Rx

(n=0..1)

Figure 10.44 Master Mode Overview

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 584 of 637
Dec 29, 2021

10.4.6.2 MSEBI Master: Burst Mode
To manage the burst access, MSEBI interface must be configured with following features:

● Synchronous mode enabled (Set bMSEBIM_CONFIG bits).

● Burst mode enabled (Set bMSEBIM_BURST_ENABLE bit to 1’b1)

● Burst is allowed on each CS[n]_N (n = 0..3)

● Burst is allowed depending on the chip select configuration. Access size must match with the following conditions:

− MSEBI configured in Mode32: Access Word

− MSEBI configured in Mode16: Access Word and Half Word.

− MSEBI configured in Mode8: All type of access.

● The burst cycle can be generated by five potential requesters

− CPU

− DMA Transmit FIFO on CS0_N

− DMA Transmit FIFO on CS1_N

− DMA Receive FIFO on CS0_N

− DMA Receive FIFO on CS1_N

● Between each requester, the arbiter manages a Round Robin Priority

● Prefetch mode is only available if:

− Burst mode is enable with bMSEBIM_BURST_ENABLE for each CS[n]_N (n = 0..3)

− In CPU mode: bMSEBIM_BURST_SIZEMAX_CPUREAD is set to a value greater than 1

− In DMA mode: bMSEBIM_BURST_SIZEMAX_DMAREAD is set to a value greater than 1

● MSEBI will generate a burst if possible

● The burst size is undefined

− MODE32: From 4..1 kbytes and never cross a 1 kbyte boundary

− MODE16: From 2..1 kbytes and never cross a 1 kbyte boundary

− MODE8: From 1..1 kbyte and never cross a 1 kbyte boundary

● The max burst size is configured by

− CPU: bMSEBIM_BURST_SIZEMAX_CPUREAD and bMSEBIM_BURST_SIZEMAX_CPUWRITE bits

 CPU prefetch: bMSEBIM_BURST_SIZEMAX_CPUREAD is also used to control the maximum
number of words to be read during a prefetch operation.

− DMA: bMSEBIM_BURST_SIZEMAX_DMAREAD and bMSEBIM_BURST_SIZEMAX_DMAWRITE bits

● FIFO size

− CPU: 32 words × 32 bits as Transmit and Receive FIFO

− DMA: For each CS[n]_N (n = 0..1), 32 words × 64 bits as Transmit and Receive FIFO

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 585 of 637
Dec 29, 2021

Write0 @a CS0_N
Write1 @a+4 CS0_N
Write2 @a+8 CS0_N

Write3 @a+12 CS0_N
Write4 @a+16 CS0_N

Transmit Fifo
Dedicated for CPU

 32 words 32bits

Empty

Read7 @c CS3_N
Read8 @d CS2_N

Write5 @b CS3_N
Write6 @b+4 CS3_N

Read8 @d CS2_N
Read8 @d+4 CS2_N
Read8 @d+8 CS2_N

Read8 @d+12 CS2_N

Empty

Receive Fifo
Dedicated for CPU

 32 words 32bits

Read7 @c CS3_N

Transmit Fifo
Dedicated for DMA

2 Fifos available
for CS[n]_N

32 words 64bits for each

Write0 Data0
Write1 Data1
Write2 Data2
Write3 Data3

Empty

Write0 Data0
Write1 Data1
Write2 Data2
Write3 Data3

Empty

Receive Fifo
Dedicated for DMA

2 Fifos available
for CS[n]_N

32 words 64bits for each

Read0 Data0
Read1 Data1
Read2 Data2
Read3 Data3

Empty

Read4 Data4
Read5 Data5
Read6 Data6
Read7 Data7

Burst size:5
CPU Write0..4 Idle Burst size:8

DMA Write0..3 Idle

Bus Interface

Read0 Data0
Read1 Data1
Read2 Data2
Read3 Data3

Empty

Read4 Data4
Read5 Data5
Read6 Data6
Read7 Data7

Arbiter Request

For each requester, The maximum burst size allowed on MSEBI interface can be configured:
-- CPU from 1..16 words or not limited
-- DMA from 1..16 words or not limited
A word is 32 bits wide for Mode32, 16 bits wide for Mode16 and 8bits for Mode8 device.

On this example:
-- bMSEBIM_BURST_SIZEMAX_CPUREAD = 4
-- bMSEBIM_BURST_SIZEMAX_CPUWRITE = illimited
-- bMSEBIM_BURST_SIZEMAX_DMAWRITE = 8 for CS0_N and CS1_N
-- bMSEBIM_BURST_SIZEMAX_DMAREAD = 16 for CS0_N and CS1_N

MSEBI mode32 => Round Robin Priority
CPU FIFO size => 32 words 32bits
DMA FIFO size => 32 words 64bits

(n=0..1)

Burst size:8
DMA Write0..3

Burst size:16
DMA Read0..7

Burst size:16
DMA Read0..7

Burst size:2
CPU Write5..6

CS1_N

CS0_N

CS1_N

CS0_N

 CPU Transmit Fifo DMA Transmit Fifo CS0_N DMA Receive Fifo CS0_N

 DMA Transmit Fifo CS1_N DMA Receive Fifo CS1_N

Round Robin Priority

Figure 10.45 MSEBI: Round Robin Priority

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 586 of 637
Dec 29, 2021

The main features of “Burst access” are:

● For CPU FIFO, the order of access must be strictly respected, whatever the chip select that is accessed.

● For DMA Transmit FIFO (CS0_N dedicated), the order of access must be strictly respected on chip select CS0_N.

● For DMA Transmit FIFO (CS1_N dedicated), the order of access must be strictly respected on chip select CS1_N.

● For DMA Receive FIFO (CS0_N dedicated), the order of access must be strictly respected on chip select CS0_N.

● For DMA Receive FIFO (CS1_N dedicated), the order of access must be strictly respected on chip select CS1_N.

● Between each FIFO (CPU, 4 DMA FIFO), the orders of access are not respected.

● The bus interface can stop a burst access at any time.

● The burst on the external bus is generated on data cacheable or not cacheable, the information in the AHB burst is not
used.

● A FIFO stores all the requests of the CPU (single, burst, read, write).

● On Write, the bus interface is always trying (depending on the contents of the FIFO) to generate a burst size as large
as possible (Limited by burst size max allowed).

● On Read, when after the current read request, the FIFO is empty, the bus interface generates a burst access in prefetch
mode to anticipate prefetch the following CPU read request until FIFO full or limited by burst size max allowed:
bMSEBIM_BURST_SIZEMAX_CPUREAD.

− Address is supposed to be linearly incremented by 1/2/4 in 8/16/32 bits mode respectively and never crosses a 1
kB boundary.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 587 of 637
Dec 29, 2021

(1) Master CPU FIFOs

Burst size:5
Write0..4 @a

CS0_N
Idle

Bus Interface

Write0 @a CS0_N
Write1 @a+4 CS0_N
Write2 @a+8 CS0_N

Write3 @a+12 CS0_N
Write4 @a+16 CS0_N

MSEBI 32Bits (Mode32) => CPU FIFO & Interface Bus coupling
Example1

bMSEBIM_BURST_SIZEMAX_CPUREAD = 4
bMSEBIM_BURST_SIZEMAX_CPUWRITE = illimited

Transmit FIFO
Dedicated for CPU

 32 words 32bits

Empty

Read8 @d+8 CS2_N
Read8 @d+12 CS2_N

Empty

Receive FIFO
Dedicated for CPU

 32 words 32bits

Burst size:2
Write5..6 @b

CS3_N

Burst size:2
Read7 @c

CS3_N

Burst prefetch size: 4
Read8 @d

CS2_N

On Write0..4 from @a to @a+16 (CS0_N)
The bus interface is always trying

(depending on the contents of the CPU Transmit FIFO)
to generate a burst size as large as possible

(Limited by burst size max allowed)

The order of access must be strictly respected,
whatever the chip select that is accessed

Read7 @c CS3_N
Read8 @d CS2_N

Write5 @b CS3_N
Write6 @b+4 CS3_N

Read7 @c CS3_N

 On Read8 at @d (CS2_N)
When after the current read request, the CPU Transmit FIFO is empty,

the bus interface generates a burst access in prefetch mode to anticipate
the following CPU read request until CPU Receive FIFO full

or limited by bMSEBIM_BURST_SIZEMAX_CPUREAD
or detection of new request inside CPU Transmit FIFO.

These datas are available in CPU Receive FIFO for next CPU read access

For each request, CPU Transmit FIFO
contains:

Write: @, control, data
Read: @, control

For read request, CPU Receive FIFO contains:
Read: @, control, data reading

Prefetch interrupted by read8
Not used,

this data is flushed

Read8 @d CS2_N
Read8 @d+4 CS2_N

Read7 @c+4 CS3_N

CPU

Figure 10.46 MSEBI: Burst Mode, CPU Transmit and Receive FIFO and Bus Interface Coupling, Example1

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 588 of 637
Dec 29, 2021

Burst size:5
Write0..4 @a

CS0_N
Idle

Burst prefetch size:4
Read5 @b

CS1_N
Idle

Bus Interface

Write0 @a CS0_N
Write1 @a+4 CS0_N
Write2 @a+8 CS0_N

Write3 @a+12 CS0_N
Write4 @a+16 CS0_N

MSEBI 32Bits (Mode32) => CPU FIFO & Interface Bus coupling
Example2

bMSEBIM_BURST_SIZEMAX_CPUREAD = 4
bMSEBIM_BURST_SIZEMAX_CPUWRITE = illimited

Transmit FIFO
Dedicated for CPU

 32 words 32bits

Read5 @b CS1_N

Empty

Read6 @b+4 CS1_N
Read7 @b+8 CS1_N

Read8 @c CS1_N

Read5 @b CS1_N
Read5 @b+4 CS1_N

Empty

Burst prefetch size:4
Read8 @c

CS1_N

Read8 @c CS1_N
Read8 @c+4 CS1_N
Read8 @c+8 CS1_N

Receive FIFO
Dedicated for CPU

 32 words 32bits

 On first Read5 at @b (CS1_N)
When after the current read request, the CPU Transmit FIFO is empty,

the bus interface generates a burst access in prefetch mode to anticipate
the following CPU read request until CPU Receive FIFO full or Limited by burst size max allowed:

bMSEBIM_BURST_SIZEMAX_CPUREAD
or detection of new request inside CPU Transmit FIFO.

These datas are available in CPU Receive FIFO for next CPU read access

On next Read6..7 from @b+4 to @b+8 (CS1_N)
The data are available in CPU Receive FIFO,

 because we have already prefetched in burst mode
from @b to @b+3*4 (Burst size:4)

No read access are generated on Interface Bus

For each request, CPU Transmit FIFO
contains:

Write: @, control, data
Read: @, control

For read request, CPU Receive FIFO contains:
Read: @, control, data reading

Read5 @b+8 CS1_N

Not used,
This data is flushed

CPU

Read5 @b+12 CS1_N

On next Read8 at @c(CS1_N)
Flush of CPU Receive FIFO

& Receive next data in prefetch mode
Read8 @c+12 CS1_N

Figure 10.47 MSEBI: Burst Mode, CPU Transmit and Receive FIFO and Bus Interface Coupling, Example2

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 589 of 637
Dec 29, 2021

(2) Master DMA FIFOs

Bus Interface

Idle

Write0..3 Data0..3
Write4..7 Data4..7

Write8..11 Data8..11
Write12..15 Data12..15

Empty

MSEBI 16Bits (Mode16) => DMA Transmit FIFO & Interface Bus coupling
DMA FIFO size => 32 words 64bits

bMSEBIM_BURST_SIZEMAX_DMAWRITE = 16

Burst size:16
Write0..15 @a

CS0_N

Transmit FIFO
Dedicated for DMA
2 FIFOs available

for CS[n]_N with (n:0..1)
32 words 64bits for each

DMA

The number of entries in the DMA Transmit FIFO is less than or equal
 to the DMA Transmit FIFO watermark level (bMSEBIM_DMATDLR value).

The DMA responds by writing a burst of data to
the DMA Transmit FIFO of length

CTLx.DEST_MSIZE = DEST_BURST_SIZE.

bMSEBIM_DMATDLR
Transmit FIFO

Watermark level
 rMSEBIM_ADDRDMA_CURRENTWRITE_CS0_N

 => Current value @a & CS0_N

On Write0..15 from @a to @a+30 (CS0_N)
The address is generated from current value inside

rMSEBIM_ADDRDMA_CURRENTWRITE_CS0_N register,
After each access, this register is incremented from 1/2/4, (depends of size MSEBI Bus)

On Write0..15 from @a to @a+30 (CS0_N)
The bus interface is always trying

(depending on the contents of the DMA Transmit FIFO)
to generate a burst size as large as possible

(Limited by burst size max allowed)

In this case, 4 words 64bits are available, the bus size is 16bits,
MSEBI generates a burst cycle of 16 words 16bits

Figure 10.48 MSEBI: Burst Mode, DMA Transmit FIFO and Bus Interface Coupling

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 590 of 637
Dec 29, 2021

Bus Interface

Idle

Empty

MSEBI 16Bits (Mode16) => DMA Receive FIFO & Interface Bus coupling
DMA FIFO size => 32 words 64bits

bMSEBIM_BURST_SIZEMAX_DMAREAD = 16

Burst size:16
Read0..15 @a

CS0_N

Receive FIFO
Dedicated for DMA
2 FIFOs available

for CS[n]_N with (n:0..1)
32 words 64bits for each

DMA

bMSEBIM_DMARDLR+1
Receive FIFO Watermark

level

 rMSEBIM_ADDRDMA_CURRENTREAD_CS0_N
=> Current value @a & CS0_N

Read0..3 Data0..3
Read4..7 Data4..7

Read8..11 Data8..11
Read12..15 Data12..15

The number of entries in the DMA Receive FIFO is at or above
 to the DMA Receive FIFO watermark level (bMSEBIM_DMATDLR +1 value).

The DMA responds by reading a burst of data to
the DMA Receive FIFO of length

CTLx.SRC_MSIZE = SRC_BURST_SIZE.

On first Read at @a (CS0_N)
The bus interface generates a burst access in prefetch mode to anticipate

the following DMA read request until DMA Receive FIFO full.
(Limited by burst size max allowed)

In this case, the bus size is 16bits,
MSEBI generates a burst cycle of 16 words 16bits

On Read0..15 from @a to @a+30 (CS0_N)
The address is generated from current value inside

rMSEBIM_ADDRDMA_CURRENTREAD_CS0_N register,
After each access, this register is incremented from 1/2/4, (depends of size MSEBI Bus)

Figure 10.49 MSEBI: Burst Mode, DMA Receive FIFO and Bus Interface Coupling

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 591 of 637
Dec 29, 2021

(3) Master Multi DLE

Multi DLE (bMSEBIM_MULTI_DLE) mode can be set for each chip select independently and presents the following
limitations:

● Write only

● No wait management

● WRDLEDATA_NB / WRDLEDATA_B must be greater or equal to 2 MSEBIM_CLK

This mode can be used for external FPGA configuration with the following possibilities:

● With an external flash: expensive and hard to maintain

● With JTAG or Passive Serial: slow

● With Parallel Access: can be driven by an MSEBI bus, if MSEBI_DLE signal is used as a clock.

− Advantage of this method is:
<Faster than JTAG method>
In standard mode, FPGA needs to communicate with RZ/N1. MSEBI may be use for standard communication
between RZ/N1 and FPGA so, if it is also used for programming of the FPGA, no other bus needs to be
implemented (save some pins/place on the PCB).

− Inconvenience of this method, over standard use of MSEBI, is that it supports only single access.

The main idea of Multi DLE mode is to permit to use external FPGA configuration with an MSEBI in burst mode. In
the figure below, the Multi DLE mode allows to manage the Configuration Interface of the FPGA. The signal
MSEBIM_DLE will be used as a Configuration Clock Input, and will also provide a rising edge for each valid signal of
data. The signals MSEBIM_CLK, MSEBIM_ALE and MSEBIM_CLE are not used. Communication may be in 8 or 16
bits depending on the target FPGA.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 592 of 637
Dec 29, 2021

MSEBI interfaced with FPGA for configuraton in MULTI_DLE mode in 8bits
configuration

MSEBI Master

MSEBIM_ACD[7..0]

MSEBIM_DLE

GPIO

RZ/N1

MSEBIM_ALE

MSEBIM_CLE

MSEBIM_CLK

MSEBIM_ACD[31..8]

Control Signals

Data[7..0] Input
Clock Input

FPGA

FPGA
Configuration Interface

FPGA
MSEBI Slave

MSEBIS_ALE

MSEBIS_CLE

MSEBIS_CLK

MSEBIS_ACD[7..0]

MSEBIS_ACD[31..8]

MSEBIS_DLE

Figure 10.50 MSEBI Interfaced with FPGA for Configuration in MULTI_DLE Mode in 8 bits Configuration

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 593 of 637
Dec 29, 2021

CAUTION

● To be able to use MSEBI in standard mode after the configuration of the FPGA, signal MSEBI_DLE must be routed in
parallel to another IO of the FPGA as the configuration clock input is a dedicated configuration pin.

● Depending on targeted FPGA, some MSEBI_ACD bits must be routed in parallel to others IO of the FPGA as some
configuration data pins are dedicated to configuration.

In Multi DLE mode, MSEBI_DLE signal is set on last cycle of WRDLEDATA_NB or WRDLEDATA_B, see figures
below with WRDLEDATA_NB and WRDLEDATA_B configured to 2 and 3.

@1

MSEBIM_ALE

MSEBIM_ACD

MSEBIM_CLE

MSEBIM_DLE

@1,Ctrl1 @2

MSEBIM_WR_N

MSEBIM_RD_N

@2,Ctrl2

Synchronous Mode
Wr Access, no Wait, 2 Burst, One ALE, Multi DLE

ALEDATA:1, CLEDATA:1, WRDLEDATA_NB:2, WRDELDATA_B:2, WRDLESETUP:0, WRDLEHOLD:0
Warning: This configuration cannot be mixed with asynchronous mode

Set 1'b1 on WR_N

MSEBIM_CLK

Start memory access

Data12Data11

ALEDATA CLEDATA ALEDATA CLEDATAWRDLEDATA_NB WRDLEDATA_B

1 2 3 4 5 6 7 8

Figure 10.51 Timing1, Synchronous Mode, Burst, Multi DLE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 594 of 637
Dec 29, 2021

@1

MSEBIM_ALE

MSEBIM_ACD

MSEBIM_CLE

MSEBIM_DLE

@1,Ctrl1 @2

MSEBIM_WR_N

MSEBIM_RD_N

@2,Ctrl2Data12

Synchronous Mode
Wr Access, no Wait, 2 Burst, One ALE, Multi DLE

ALEDATA:1, CLEDATA:1, WRDLEDATA_NB:3, WRDELDATA_B:3, WRDLESETUP:0, WRDLEHOLD:0
Warning: This configuration cannot be mixed with asynchronous mode

Set 1'b1 on WR_N

Data11

MSEBIM_CLK

Start memory access

ALEDATA CLEDATA ALEDATA CLEDATAWRDLEDATA_NB WRDLEDATA_B

1 2 3 4 5 6 7 8

Figure 10.52 Timing2, Synchronous Mode, Burst, Multi DLE

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 595 of 637
Dec 29, 2021

10.4.6.3 MSEBI Master: DMA Control
The MSEBI controller has DMA capability. It has a handshaking interface to a DMA Controller to request and control
transfers. The AHB bus is used to perform the data transfer to or from the DMA. In this mode, DMA controller must be
configured in peripheral flow controller mode. The DMA always transfers data using DMA burst transactions if
possible, for efficiency.

The MSEBI controller uses four DMA channels, two for the transmit data and two for the receive data (one for each of
CS0_N and CS1_N).

The MSEBI has these following DMA registers:

● bMSEBIM_USE_EXT_RDDMA_REQ and bMSEBIM_USE_EXT_WRDMA_REQ bits: Control register to enable
DMA control operation by external pins

● rMSEBIM_TDMACR_CS0_N, rMSEBIM_RDMACR_CS0_N, rMSEBIM_TDMACR_CS1_N, and
rMSEBIM_RDMACR_CS1_N registers: Control register to configuration DMA operation (block size and burst
request size) and start/stop DMA transfer.

● bMSEBIM_DMATDLR bit (Transmit watermark level): Register to set the DMA Transmit FIFO level at which a
DMA request is made.

● bMSEBIM_DMARDLR bit (Receive watermark level): Register to set the DMA Receive FIFO level at which a
DMA request is made.

● bMSEBIM_BURST_SIZEMAX_DMAWRITE and bMSEBIM_BURST_SIZEMAX_DMAREAD bits: Burst Size
Max Allowed on Write and Read access

To manage the burst access, MSEBI interface must be configured with following features:

● Synchronous mode enable (Set bMSEBIM_CONFIG bits).

● Burst mode enable (Set bMSEBIM_BURST_ENABLE bit to 1’b1)

The max burst size is configured by:

● DMA: bMSEBIM_BURST_SIZEMAX_DMAREAD and bMSEBIM_BURST_SIZEMAX_DMAWRITE bits

To enable the DMA Controller interface on the MSEBI and enables the transmit handshaking interface (with n = 0..1):

● MSEBI supports 64 bits single transaction size. (refer to the bMSEBIM_SINGLE_DEST_WIDTH field in the
rMSEBIM_TDMACR_CS[n]_N registers)

● The MSEBI must be programmed by the processor with the number of single transactions (block size) that are to be
transmitted. This is programmed into the bMSEBIM_DEST_BLOCK_SIZE field in the
rMSEBIM_TDMACR_CS[n]_N registers of MSEBI for DMA Transmit FIFO.

● The MSEBI use all incoming AHB request with an address included in the memory range reserved for the DMA
FIFO as a push on the FIFO (see Section 10.3.2.2, rMSEBIM_DMA_FIFOWRITE_CS[n]_N — DMA
Transmit FIFO (64 KB) (n = 0..1)). In order to be able to transfer max number of elements (max
DEST_BLOCK_SIZE = 8191 single elements), the destination pointer of the DMAC register (DAR[ch]) must be set
to the base address of the FIFO.

● The MSEBI must be programmed by the processor with the size of burst transfer (burst size). This is programmed
into the bMSEBIM_DEST_BURST_SIZE field in the rMSEBIM_TDMACR_CS[n]_N registers of MSEBI for DMA
Transmit FIFO.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 596 of 637
Dec 29, 2021

● Enable external DMA request, writing a 1 into the bMSEBIM_USE_EXT_WRDMA_REQ bit field of
rMSEBIM_DMATDLR_CS[n]_N registers.

● Writing DMA Write Access address (rMSEBIM_ADDRDMA_WRITE_CS[n]_N registers). First block address used
by DMA controller to start a DMA transfer from DMA Transmit FIFO to MSEBI bus when the firmware set “1” on
bMSEBIM_TDMAE1 (rising edge).

● Writing Transmit watermark level (bMSEBIM_DMATDLR). This bit field controls the level at which a DMA burst
request is made by the Transmit logic.

● Writing a 1 into the bMSEBIM_TDMAE1 bit field of rMSEBIM_TDMACR_CS[n]_N registers. Now, the DMA
Transmit channel is running until all data have been transferred (DEST_BLOCK_SIZE single transactions). The
DMA controller is stopped (the bMSEBIM_TDMAE1 bit is reset to 0) when all data (DEST_BLOCK_SIZE single
transactions) have been transferred from DMA Transmit FIFO to MSEBI bus (FIFO Empty)

NOTE

A rising edge on bMSEBIM_TDMAE1 flushes the DMA Transmit FIFO

Case with external DMA request enable, writing a 1 into the bMSEBIM_USE_EXT_WRDMA_REQ:
When bMSEBIM_TDMAE1 is set from 0 to 1 (start DMA), the MSEBI controller then waits
MSEBIM_DMA_WR0_N or MSEBIM_DMA_WR1_N (depends on CS_N used) is reset to 0.

At this moment, the DMA Transmit FIFO requests are made to the DMA controller whenever the number of entries in
the DMA Transmit FIFO is less than or equal to the watermark level bMSEBIM_DMATDLR value.

The DMA responds by writing a burst of data to the DMA Transmit FIFO buffer.

At this moment, the DMA Transmit FIFO is read and the read data is output to MSEBI Bus in Burst mode.

Case with external DMA request disable, writing a 0 into the bMSEBIM_USE_EXT_WRDMA_REQ:
Same function, but not use external DMA request (MSEBIM_DMA_WR0_N or MSEBIM_DMA_WR1_N is reset to
0).

The DMA transfer starts immediately.

To enable the DMA Controller interface on the MSEBI and enables the receive handshaking interface (with n = 0..1):

● MSEBI supports 64 bits single transaction size. (refer to the bMSEBIM_SINGLE_SRC_WIDTH field in the
rMSEBIM_RDMACR_CS[n]_N registers)

● The MSEBI must be programmed by the processor with the number of single transactions (block size) that are to be
received. This is programmed into the bMSEBIM_SRC_BLOCK_SIZE field in the rMSEBIM_RDMACR_CS[n]_N
registers of MSEBI for DMA Receive FIFO.

● The MSEBI use all incoming AHB request with an address include in the memory range reserved for the DMA FIFO
as a read on the FIFO (see Section 10.3.2.1, rMSEBIM_DMA_FIFOREAD_CS[n]_N — DMA Receive FIFO
(64 KB) (n = 0..1)). In order to be able to transfer max number of elements (max DEST_BLOCK_SIZE = 8191
single elements), the source pointer of the DMAC register (SAR[ch]) must be set to the base address of the FIFO.

● The MSEBI must be programmed by the processor with the size of burst transfer (burst size). This is programmed
into the bMSEBIM_SRC_BURST_SIZE field in the rMSEBIM_RDMACR_CS[n]_N registers of MSEBI for DMA
Receive FIFO.

● Enable external DMA request, writing a 1 into the bMSEBIM_USE_EXT_RDDMA_REQ bit field of
rMSEBIM_DMARDLR_CS[n]_N registers.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 597 of 637
Dec 29, 2021

● Writing DMA Read Access address (rMSEBIM_ADDRDMA_READ_CS[n]_N registers). First block address used
by DMA controller to start a DMA transfer from MSEBI bus to DMA Receive FIFO when the firmware set “1” on
bMSEBIM_RDMAE1 (rising edge).

● Writing Receive watermark level (bMSEBIM_DMARDLR). This bit field controls the level at which a DMA burst
request is made by the Receive logic.

● Writing a 1 into the bMSEBIM_RDMAE1 bit field of rMSEBIM_RDMACR_CS[n]_N registers. Now, the DMA
Receive channel is running until all data have been transferred (SRC_BLOCK_SIZE single transactions). When all
data have been transferred, the bMSEBIM_RDMAE1 bit is reset to 0, the DMA controller is stopped and DMA
Receive FIFO is flushed.

NOTE

A rising edge on bMSEBIM_RDMAE1 flushes the DMA Receive FIFO

Case with external DMA request enable, writing a 1 into the bMSEBIM_USE_EXT_RDDMA_REQ:
When bMSEBIM_RDMAE1 is set from 0 to 1 (start DMA), the MSEBI controller then waits MSEBIM_DMA_RD0_N
or MSEBIM_DMA_RD1_N (depends on CS_N used) is reset to 0.

At this moment, the data is input from the MSEBI bus and MSEBI controller writes data to DMA Receive FIFO.

When the number of entries in the DMA Receive FIFO is at or above the watermark level bMSEBIM_DMARDLR+1,
the DMA responds by reading a burst of data from the DMA Receive FIFO buffer.

Case with external DMA request disable, writing a 0 into the bMSEBIM_USE_EXT_RDDMA_REQ:
Same function, but not use external DMA request (MSEBIM_DMA_RD0_N or MSEBIM_DMA_RD1_N is reset to 0).

The DMA transfer starts immediately.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 598 of 637
Dec 29, 2021

(1) Overview on DMA Operation

DMA controller must be configured in peripheral flow controller mode, because MSEBI is a peripheral flow controller
and must know the size of block transferred (see detail below with n = 0..1).

The MSEBI must be programmed by the processor with the number of data items (block size) that are to be transmitted
or received. This is programmed into the bMSEBIM_DEST_BLOCK_SIZE / bMSEBIM_SRC_BLOCK_SIZE field in
the rMSEBIM_TDMACR_CS[n]_N and rMSEBIM_RDMACR_CS[n]_N registers of MSEBI for DMA Transmit FIFO
and Receive FIFO, respectively. The block is broken into a number of transactions, each initiated by a request from the
MSEBI.

The DMA Controller and the MSEBI must also be programmed with the number of single transactions by burst to be
transferred for each DMA request. This is also known as the burst transaction length, and is programmed into:

● DMA controller (ch = 0..7): The DEST_MSIZE / SRC_MSIZE fields of the DMAC.CTL[ch] register for Transmit
FIFO and Receive FIFO, respectively.

● MSEBI: Programmed into the bMSEBIM_DEST_BURST_SIZE /
bMSEBIM_SRC_BURST_SIZE field in the rMSEBIM_TDMACR_CS[n]_N and
rMSEBIM_RDMACR_CS[n]_N registers of MSEBI for Transmit FIFO and Receive
FIFO, respectively.

Be careful to take into account the size of AHB bus managed by DMA controller configured through
DST_TR_WIDTH/SRC_TR_WIDTH fields of the DMAC.CTL[ch] register for DMA Transmit FIFO and DMA
Receive FIFO respectively.

MSEBI supports 64 bits width (refer to bMSEBIM_SINGLE_DEST_WIDTH and bMSEBIM_SINGLE_SRC_WIDTH
bits).

Recommended value to manage correctly all transactions in burst and single mode.

● Size of AHB Bus: 64 bits

● Size of Burst line: 4×64 bits

CAUTION

The burst size transaction must have the same values on DMAC and MSEBI.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 599 of 637
Dec 29, 2021

(2) External DMA Request

4 inputs are available to start a DMA transfer frame.

● MSEBIM_DMA_RD0_N: Start and Stop Receive frame on CS0_N.

● MSEBIM_DMA_RD1_N: Start and Stop Receive frame on CS1_N.

● MSEBIM_DMA_WR0_N: Start and Stop Transmit frame on CS0_N.

● MSEBIM_DMA_WR1_N: Start and Stop Transmit frame on CS1_N.

All external requests are asynchronous.

Before use (n = 0..1):
Each external request (MSEBIM_DMA_RD[n]_N) must be enabled for DMA read.

● With bMSEBIM_USE_EXT_RDDMA_REQ in rMSEBIM_DMARDLR_CS[n]_N registers

● With bMSEBIM_RDMAE1 in rMSEBIM_RDMACR_CS[n]_N registers

After channel enabled and when a level “0” is detected on MSEBIM_DMA_RD[n]_N, a DMA read cycle is started
from MSEBI bus to DMA Receive FIFO.

During a DMA transfer, if MSEBIM_DMA_RD[n]_N is set to “1”, the DMA read cycle is suspended. It means that the
DMA is still allowed to read data from the DMA Receive FIFO but no read request is sent to the MSEBI bus.

If MSEBIM_DMA_RD[n]_N is reset to “0” during a suspended transfer, the transfer will continue and next read
command is sent to the MSEBI bus.

The bMSEBIM_RDMAE1 bit is automatically cleared by hardware to disable the DMA in Receive mode after the last
transfer in DMA Receive FIFO has completed (SRC_BLOCK_SIZE data item read in DMA Receive FIFO). Software
can therefore poll this bit to determine when this channel is free for a new DMA transfer.

Each external request (MSEBIM_DMA_WR[n]_N) must be enabled for DMA write.

● With bMSEBIM_USE_EXT_WRDMA_REQ in rMSEBIM_DMATDLR_CS[n]_N registers

● With bMSEBIM_TDMAE1 in rMSEBIM_TDMACR_CS[n]_N registers

After channel enabled and when a level “0” is detected on MSEBIM_DMA_WR[n]_N, a DMA write request cycle is
started from DMA Transmit FIFO to DMA Controller.

During a DMA transfer, if MSEBIM_DMA_WR[n]_N is set to “1”, the DMA write cycle is suspended. It means that
the DMA is still allowed to write data on the DMA Transmit FIFO but no write request is send to the MSEBI bus.

If MSEBIM_DMA_WR[n]_N is reset to “0” during a suspended transfer, the transfer will continue and next write
command is send to the MSEBI bus.

The bMSEBIM_TDMAE1 bit is automatically cleared by hardware to disable the DMA in Transmit mode after the last
transfer in DMA Transmit FIFO has completed (DEST_BLOCK_SIZE data item read in DMA Transmit FIFO).
Software can therefore poll this bit to determine when this channel is free for a new DMA transfer.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 600 of 637
Dec 29, 2021

MSEBIM_DMA_RD[n]_N

Start of DMA read frame on CS[n]_N End of DMA receive frame

MSEBIM_DMA_WR[n]_N

Start of DMA write frame on CS[n]_N End of DMA write frame

MSEBI master: External DMA Request
(n=0..1)

All external requests are asynchronous

Before use, each external request MSEBIM_DMA_RD[n]_N must be enabled
-- With bMSEBIM_USE_EXT_RDDMA_REQ & bMSEBIM_RDMAE1
 See rMSEBIM_DMARDLR_CS[n]_N & rMSEBIM_RDMACR_CS[n]_N registers

And each external request MSEBIM_DMA_WR[n]_N must be enabled
-- With bMSEBIM_USE_EXT_WRDMA_REQ & bMSEBIM_TDMAE1
 See rMSEBIM_DMATDLR_CS[n]_N & rMSEBIM_TDMACR_CS[n]_N registers

Figure 10.53 MSEBI Master: External DMA Request

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 601 of 637
Dec 29, 2021

(3) Transmit Watermark Level and Transmit FIFO Underflow

During MSEBI bus transfers, transmit FIFO requests are made to the DMA controller (ch = 0..7) whenever the number
of entries in the transmit FIFO is less than or equal to the bMSEBIM_DMATDLR value of DMA transmit data level
register, this is known as the watermark level. The DMA responds by writing a burst of data to the transmit FIFO
buffer, of length DMAC.CTL[ch].DEST_MSIZE = DEST_BURST_SIZE. Data should be fetched from the DMA often
enough for the transmit FIFO to perform serial transfers continuously; that is, when the FIFO begins to empty another
DMA request should be triggered. Otherwise the FIFO will run out of data (underflow). To prevent this condition, the
user must set the watermark level correctly.

(4) Choosing the Transmit Watermark Level

Consider the example where the assumption is made:

DEST_BURST_SIZE = DMAC.CTL[ch].DEST_MSIZE = FIFO_DEPTH – bMSEBIM_DMATDLR

Here the number of data items to be transferred in a DMA burst is equal to the empty space in the Transmit FIFO.
Consider two different watermark level settings:

In the figure below, the number of burst transactions needed equals the block size divided by the number of data items
per burst:

DEST_BLOCK_SIZE / DEST_BURST_SIZE = 120/30 = 4

The number of burst transactions in the DMA block transfer is 4. But the watermark level, bMSEBIM_DMATDLR, is
quite low. Therefore, the probability of an MSEBI underflow is high where the MSEBI bus needs to transmit data, but
where there is no data left in the transmit FIFO. This occurs because the DMA has not had time to service the DMA
request before the transmit FIFO becomes empty.

MSEBI DMA Transmit FIFO

bMSEBIM_DMATDLR
= 2

FIFO_DEPTH = 32

Example with FIFO_DEPTH = 32
Transmit FIFO watermark level = bMSEBIM_DMATDLR = 2

Burst Size: DEST_BURST_SIZE = DMAC.CTL[ch].DEST_MSIZE = FIFO_DEPTH - bMSEBIM_DMATDLR = 30
Block Size: DEST_BLOCK_SIZE= 120 (Block size to transfer)

Case1: Transmit Watermark Level

Example with
FIFO_DEPH=32

FIFO-DEPTH - bMSEBIM_DMATDLR= 30

Figure 10.54 MSEBI Case1: Transmit Watermark Level

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 602 of 637
Dec 29, 2021

In the second case, the number of burst transactions in Block:

DEST_BLOCK_SIZE / DEST_BURST_SIZE = 120/2 = 60

In this block transfer, there are 60 destination burst transactions in a DMA block transfer. But the watermark level,
bMSEBIM_DMATDLR is very high. Therefore, the probability of an MSEBI underflow is low because the DMA
controller has plenty of time to service the destination burst transaction request before the MSEBI transmit FIFO
becomes empty. Thus, the second case has a lower probability of underflow at the expense of more burst transactions
per block. This provides a potentially greater amount of request bursts per block and worse bus utilization than the
former case.

MSEBI DMA Transmit FIFO

bMSEBIM_DMATDLR
= 30

FIFO-DEPTH - bMSEBIM_DMATDLR = 2

Case2: Transmit Watermark Level

FIFO_DEPTH = = 32

Transmit FIFO watermark level = bMSEBIM_DMATDLR = 30
Burst Size: DEST_BURST_SIZE = CTL[ch].DEST_MSIZE = FIFO_DEPTH - bMSEBIM_DMATDLR = 2

Block Size: DEST_BLOCK_SIZE= 120 (Block size to transfer)

FIFO_DEPH=32/64
Example with

FIFO_DEPH=32

Figure 10.55 MSEBI Case2: Transmit Watermark Level

Therefore, the goal in choosing a watermark level is to minimize the number of transactions per block, while at the
same time keeping the probability of an underflow condition to an acceptable level. In practice, this is a function of the
ratio of the rate at which the MSEBI transmits data to the rate at which the DMA can respond to destination burst
requests.

For example, promoting the channel to the highest priority channel in the DMA, and promoting the DMA master
interface to the highest priority master in the bus layer, increases the rate at which the DMA controller can respond to
burst transaction requests. This in turn allows the user to decrease the watermark level, which improves bus utilization
without compromising the probability of an underflow occurring.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 603 of 637
Dec 29, 2021

(5) Selecting DEST_MSIZE and Transmit FIFO Overflow

It may cause overflow when there is not enough space in the MSEBI transmit FIFO to service the destination burst
request.

Therefore, for optimal operation, we must configure (ch = 0..7):

● DMAC.CTL[ch].DST_TR_WIDTH = 3 (64bits)

● DMAC.CTL[ch].DEST_MSIZE = 1 (4 single transactions)

● bMSEBIM_SINGLE_DEST_WIDTH = 1 (64bits)

● bMSEBIM_DEST_BURST_SIZE = 1 (4 single transactions)

● bMSEBIM_DMATDLR = 28

(6) Receive Watermark Level and Receive FIFO Overflow

During MSEBI bus transfers, receive FIFO requests are made to the DMA controller whenever the number of entries in
the receive FIFO is at or above the DMA Receive Data Level Register, that is bMSEBIM_DMARDLR+1.

This is known as the watermark level. The DMA controller (ch = 0..7) responds by reading a burst of data to the receive
FIFO buffer of length SRC_BURST_SIZE= DMAC.CTL[ch].SRC_MSIZE.

Data should be fetched by the DMA often enough for the receive FIFO to accept MSEBI bus transfers continuously,
that is, when the FIFO begins to fill, another DMA transfer is requested. Otherwise, the FIFO will fill with data
(overflow). To prevent this condition, the user must correctly set the watermark level.

(7) Choosing the Receive Watermark Level

Similar to choosing the transmit watermark level described earlier, the receive watermark level,
bMSEBIM_DMARDLR+1, should be set to minimize the probability of overflow, as shown in figure below. It is a
tradeoff between the number of DMA burst transactions required per block versus the probability of an overflow
occurring.

Case3: Receive Watermark Level

MSEBI DMA Receive FIFO

bMSEBIM_DMARDLR+1

Figure 10.56 MSEBI Case3: Receive Watermark Level

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 604 of 637
Dec 29, 2021

(8) Selecting SRC_MSIZE and Receive FIFO Underflow

It may cause underflow when there is not enough data on the MSEBI receive FIFO to service the source burst request.

Therefore, for optimal operation, we must configure (ch = 0..7):

● DMAC.CTL[ch].SRC_TR_WIDTH = 3 (64bits)

● DMAC.CTL[ch].SRC_MSIZE = 1 (4 single transactions)

● bMSEBIM_SINGLE_SRC_WIDTH = 1 (64bits)

● bMSEBIM_SRC_BURST_SIZE = 1 (4 single transactions)

● bMSEBIM_DMARDLR = 3

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 605 of 637
Dec 29, 2021

10.4.7 MSEBI Slave Mode

10.4.7.1 Slave Mode Overview
Main features on slave mode are:

● Synchronous only

● MSEBI interface width selectable from 8, 16 and 32 bits

● Support for burst access 1-4-8-16 on AHB

● 4 DMA flow control signals (external request transmission) capability

● 1 interrupt line for the detection of "end of block"

● 2 addressing mode

− Direct

− MMU

● Write protect bit to avoid write on the device

● 6 FIFOs of 32 bits to manage requests from MSEBI

● Prefetch capability for CPU transmit FIFO and DMA RX FIFO

● Optimized burst capability for DMA TX FIFO

● Up to 4 chip select Lines

● 6 shared registers accessed by the master of the bus

− 1 register to manage errors

− 1 register to manage end of block interrupt

− 1 ID register for each chip select
 Used by the master to determine if the chip select is ready.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 606 of 637
Dec 29, 2021

Clock Domain MSEBIS_HCLK Clock Domain MSEBIS_CLK

Resynch

MSEBIS_WAIT[n]_N (n=0..3)
MSEBIS_ALE
MSEBIS_DLE

MSEBIS_DMA_RD[n]_N
MSEBIS_DMA_WR[n]_N

MSEBIS_CLK

MSEBIS_CLE
MSEBIS_ACD[31..0]

IO
 M

ul
tip

le
xe

r L
ev

el
1

3.
3V

 C
M

O
S

Bu
ffe

r

Ex
te

rn
al

 b
us

 In
te

rfa
ce

IO
 M

ul
tip

le
xe

r L
ev

el
2

RegistersRegisters

32
b

AH
BS

32
b

AH
BM

3 async FIFOs 32bits
dual ports

Rx

3 async FIFOs 32bits
dual ports

Tx

Network
On

Chip

Resynch

(n=0..1)

MSEBIS_Int

Figure 10.57 Slave Mode Overview

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 607 of 637
Dec 29, 2021

10.4.7.2 MSEBI Slave: Burst Mode
To manage the burst access on AHB bus, MSEBI slave interface uses the following set of rules:

● Burst mode enabled (Set bMSEBIS_BURST_ENABLE bit to 1’b1) for each MSEBI_CS[n]_N (n = 0..3).

● The burst cycle can be generated by five potential requesters:

− CPU receive FIFO
Contains command from the CPU part of the master of the MSEBI bus

− DMA Transmit FIFO on CS0_N
Contains command from the DMA TX 0 part of the master of the bus

− DMA Transmit FIFO on CS1_N
Contains command from the DMA TX 1 part of the master of the bus

− DMA Receive FIFO on CS0_N
Manage a command from the DMA RX 0 part of the master of the bus

− DMA Receive FIFO on CS1_N
Manage a command from the DMA RX 1 part of the master of the bus

● A specific logic is used to detect the initiator of the request. See Section 10.4.7.3, MSEBI Slave: Detection of
Request Initiator.

● Between each request, the arbiter manages a Round Robin Priority

● Prefetch mode is only available if all of the following conditions are met:

− Burst mode is enabled with bMSEBIS_BURST_ENABLE for each MSEBI_CS[n]_N (n = 0..3).

− In CPU mode: bMSEBIS_BURST_SIZEMAX_CPUREAD is set to a value greater than 1.

− In DMA mode: bMSEBIS_DMARX_MAX_BURST is set to a value greater than 1.

● The max burst size is configured by:

− CPU: bMSEBIS_BURST_SIZEMAX_CPUWRITE and bMSEBIS_BURST_SIZEMAX_CPUREAD registers.

 CPU prefetch: bMSEBIS_BURST_SIZEMAX_CPUREAD is also used to control the maximum
number of words to be read during a prefetch operation.

− DMA: bMSEBIS_DMARX_MAX_BURST (rMSEBIS_DMARDLR_CS[n]_N register, n = 0..1) and
bMSEBIS_DMATX_MAX_BURST (rMSEBIS_DMATDLR_CS[n]_N register, n = 0..1)

 DMA prefetch: bMSEBIS_DMARX_MAX_BURST (rMSEBIS_DMARDLR_CS[n]_N register, n =
0..1) is also used to control the maximum number of words to be read during a prefetch
operation.

● MSEBI will generate a write burst only

● FIFO size

− CPU: 32 words × 32 bits as Transmit and Receive FIFO

− DMA: For each MSEBI_CS[n]_N (n = 0..1), 32 words × 32 bits as Transmit and Receive FIFO

● An AHB burst access will never cross a 1 kB boundary.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 608 of 637
Dec 29, 2021

(1) Slave CPU FIFOs

Receive FIFO:
● All transaction from MSEBI bus with id=CPU are stored on the receive FIFO.

● Order of transaction is strictly respected.

● The MSEBI slave controller is always trying (depending on the contents of the FIFO) to generate a burst on the AHB
bus with a size as large as possible (Limited by burst size max allowed:
bMSEBIS_BURST_SIZEMAX_CPUWRITE).

− MSEBI Slave controller will generate a burst only

− Address is supposed to be linearly incremented by 4 and never cross a 1 kB boundary.

● Access on MSEBI_CS[n]_N (n = 0..3) is allowed only if dedicated bMSEBIS_CS_ENABLE bit is set. If not (bit
cleared), the access on MSEBI_CS[n]_N is ignored

Transmit FIFO:
● Data from read requests are stored on the transmit FIFO.

● On Read command from the MSEBI bus, if prefetch is enabled and when the FIFO is empty after the current read
request, the bus interface generates a burst access in prefetch mode (Limited by parameter:
bMSEBIS_BURST_SIZEMAX_CPUREAD) to anticipate the following MSEBI read request.

− MSEBI Slave controller will generate a prefetch operation only

− Address is supposed to be linearly incremented by 4 and never cross a 1 kB boundary.

● Content of the FIFO is flushed when a read request appends with a non-incremental address

● Access on MSEBI_CS[n]_N (n = 0..3) is allowed only if dedicated bMSEBIS_CS_ENABLE bit is set. If not (bit
cleared), the access on MSEBI_CS[n]_N is ignored

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 609 of 637
Dec 29, 2021

Clock Domain MSEBIS_HCLKAHB Bus Interface

Write4 @a+16 CS0_N

MSEBI 32Bits (Mode32) => Slave Fifos & AHB Bus coupling
Example1

bMSEBIS_BURST_SIZEMAX_CPUWRITE = 2'b01 (4 word max)
bMSEBIS_BURST_SIZEMAX_CPUREAD = 2'b01 (4 word max)

Receive Fifo
 32 words 32bits

Read8 @d+20 CS2_N

Transmit Fifo
 32 words 32bits

For each request, Receive Fifo contains:
Write: @, control, data

Read: @, control
For read request, Transmit Fifo contains:

Read: @, control, data reading

MSEBI Bus
slave

Interface

Read8 @d+8 CS2_N
Read8 @d+12 CS2_N

Empty

Read7 @c CS3_N

Read8 @d CS2_N
Read8 @d+4 CS2_N

Read7 @c+4 CS3_N
Read7 @c+8 CS3_N
Read7 @c+12 CS3_N Not used,

these data are flushed

Single access
Write4 @a+16

CS0_N
Idle

Single access
Write5 @b

CS3_N

Burst prefetch size:4
Read7 @c

CS3_N

Burst prefetch size: 4
Read8 @d

CS2_N

Burst size:4
Write0..3 @a

CS0_N

Single access
Write6 @b+4

CS3_N

Write0 @a CS0_N
Write1 @a+4 CS0_N
Write2 @a+8 CS0_N
Write3 @a+12 CS0_N

Empty

Read7 @c CS3_N
Read8 @d CS2_N

Write5 @b CS3_N
Write6 @b+4 CS3_N On Read8 at @d (CS2_N)

When after the current read request, the CPU Receive Fifo is empty,
the bus interface generates a burst access in prefetch mode to anticipate

the following MSEBI read request until Transmit Fifo full or burst size max reach.
These datas are available in Transmit Fifo for next MSEBI read access.

When start, AHB burst access can not be interrupt.

On Write0..4 from @a to @a+16 (CS0_N)
Five write commands are available on the receive Fifo.

Burst size is limited by parameter
bMSEBIS_BURST_SIZEMAX_CPUWRITE = 4 words

so the first access to AHB master port is a burst 4
followed by a single access.

The order of access must be strictly respected,
whatever the chip select that is accessed

Figure 10.58 MSEBI Slave CPU FIFOs Example 1

NOTE

On the figure above, all accesses are supposed to be aligned 32 bits.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 610 of 637
Dec 29, 2021

Clock Domain MSEBIS_HCLK
AHB Bus Interface

Write4 @a+4 CS0_N

MSEBI 8 Bits (Mode8) => Slave FIFOs & AHB Bus coupling
bMSEBIS_BURST_SIZEMAX_CPUWRITE = 2'b01 (4 word max)
bMSEBIS_BURST_SIZEMAX_CPUREAD = 2'b01 (4 word max)

Receive FIFO
 32 words 32bits

Read8 @d+20 CS2_N

Transmit FIFO
 32 words 32bits

For each request, Receive FIFO contains:
Write: @, control, data

Read: @, control
For read request, Transmit FIFO contains:

Read: @, control, data reading

MSEBI Bus
slave

Interface

Not used,
these data are flushed

Single access 8b
Write4 @a+4

CS0_N
Idle

Single access 8b
Write5 @b

CS3_N

Burst prefetch size:4 words 32b
Read7 @c

CS3_N

Single access 8b
Read8 @d

CS2_N

Single access 32b
Write0..3 @a

CS0_N

Single access 8b
Write6 @b+4

CS3_N

Write0 @a CS0_N
Write1 @a+1 CS0_N
Write2 @a+2 CS0_N
Write3 @a+3 CS0_N

Empty

Read7 @c CS3_N
Read8 @d CS2_N

Write5 @b CS3_N
Write6 @b+4 CS3_N

On Write0..4 from @a to @a+4 (CS0_N)
MSEBI is configured on 8 bits mode

so all datas on the CPU receive FIFO have a size = 8 bits.

Before sending an access on the bus AHB,
the content of the FIFO is analysed:

-- @a is aligned 32 bits
-- the 4 following write commands have incremental address (n=5)

MSEBI Slave controller will generate 1 single access 32 bits
followed by one single access 8 bits

Empty

Read7 @c CS3_N

Read8 @d CS2_N

Read7 @c+4 CS3_N
Read7 @c+8 CS3_N
Read7 @c+12 CS3_N

 On Read7 at @c (CS3_N)
When after the current read request, the CPU Receive FIFO is empty,

Before sending an access on the bus AHB, the content of the FIFO is analysed:
-- @c is aligned 32 bits

 prefetch
the bus interface generates a burst access in prefetch mode to anticipate

the following MSEBI read request until Transmit FIFO full or burst size max reach.
These datas are available in Transmit FIFO for next MSEBI read access.

When start, AHB burst access can not be interrupt.

On Read8 at @d (CS2_N)
Before sending an access on the bus AHB,

the content of the FIFO is analysed:
-- @d is not aligned 32 bits

 No prefetch

MSEBI Slave controller will generate
1 single access 8 bits

Figure 10.59 MSEBI Slave CPU FIFOs Example 1 Mode8

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 611 of 637
Dec 29, 2021

Clock Domain MSEBIS_HCLKAHB Bus Interface

MSEBI 32Bits (Mode32) => CPU FIFO & Interface Bus coupling
Example2

bMSEBIS_BURST_SIZEMAX_CPUWRITE = 2'b01 (4 word max)
bMSEBIS_BURST_SIZEMAX_CPUREAD = 2'b01 (4 word max)

Receive FIFO
 32 words 32bits

Read5 @b CS1_N
Read5 @b+4 CS1_N
Read5 @b+8 CS1_N

Empty

Read8 @c CS1_N
Read8 @c+4 CS1_N
Read8 @c+8 CS1_N

Transmit FIFO
 32 words 32bits

On next Read8 at @c(CS1_N)
Flush of Transmit FIFO

& Receive next data in prefetch mode

On next Read6..7 from @b+4 to @b+8 (CS1_N)
The data are available in Transmit FIFO,

 because we have already prefetched in burst mode
from @b to @b+3*4 (Burst size:4)

No read access are generated on Interface Bus

For each request, Receive FIFO contains:
Write: @, control, data

Read: @, control
For read request, Transmit FIFO contains:

Read: @, control, data reading

Read5 @b+12 CS1_N

Not used,
this data is flushed

 On first Read5 at @b (CS1_N)
When after the current read request, the Receive FIFO is empty,

the AHB bus generates a burst access in prefetch mode to anticipate
the following MSEBI read request until Transmit FIFO full or burst size max reach

(in this example burst size max=4).
These datas are available in Transmit FIFO for next MSEBI read access.

When start, AHB burst access can not be interrupt.

Single access
Write4 @a+16

CS0_N
Idle

Burst prefetch size:4
Read5 @b

CS1_N
Idle

Burst prefetch size:4
Read8 @c

CS1_N

Burst size: 4
Write0..3 @a

CS0_N

MSEBI Bus
slave

Interface

Write0 @a CS0_N
Write1 @a+4 CS0_N
Write2 @a+8 CS0_N
Write3 @a+12 CS0_N
Write4 @a+16 CS0_N

Read5 @b CS1_N

Empty

Read6 @b+4 CS1_N
Read7 @b+8 CS1_N

Read8 @c CS1_N

Read8 @c+12 CS1_N

Figure 10.60 MSEBI Slave CPU FIFOs Example 2

NOTE

On the figure above, all accesses are supposed to be aligned 32 bits.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 612 of 637
Dec 29, 2021

(2) Slave DMA FIFOs

(a) Slave DMA FIFOs for Requests from Master MSEBI DMA TX FIFOs

● All write request from MSEBI bus with id=DMA are stored on a DMA Transmit FIFO.

● Order of transaction is strictly respected.

● The MSEBI slave controller is always trying (depending on the contents of the FIFO) to generate a burst on the
AHB bus with a size as large as possible (Limited by burst size max allowed: bMSEBIS_DMATX_MAX_BURST
(rMSEBIS_DMATDLR_CS[n]_N register, n = 0..1)).

− MSEBI Slave controller will generate a burst only

− Address is supposed to be linearly incremented by 1/2/4 and never cross a 1 kB boundary.

● MSEBI can optimize burst request by waiting to have enough requests on the FIFO to send a burst size
(bMSEBIS_DMATX_MAX_BURST (rMSEBIS_DMATDLR_CS[n]_N register, n = 0..1)). This mode is selected
by bMSEBIS_DMATX_OPT_BURST (rMSEBIS_DMATDLR_CS[n]_N register, n = 0..1).

● Content of the FIFO is read until it becomes empty when bMSEBIS_DMATX_ENABLE in
rMSEBIS_DMATX_REQ_CS[n]_N register (n = 0..1) is set to 0 .

CAUTION

When MSEBI slave is optimized for a low occupation of the NoC (bMSEBIS_DMATX_OPT_BURST = 1), write request
are grouped on DMA TX FIFOs. If the size of the block to write is not a multiple of burst size word 32 bits, the block
transfer will not be completed until the “end of block event” is received (optimization is considered disabled on the
channel after the reception of the “end of block event” and until the FIFO is empty: see Section 10.4.5.3, MSEBI
Interrupt: End of Block Detection by the Slave).

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 613 of 637
Dec 29, 2021

AHB bus Interface

MSEBI 16Bits (Mode16) => Slave DMA Transmit FIFO & Interface Bus coupling
DMA FIFO size => 32 words 32bits

bMSEBIS_DMATX_MAX_BURST = 2'b01 (4 words)
bMSEBIS_DMATX_OPT_BURST = 1'b1

(n=0..1)

Burst size:4
Write(0,1)..(6,7)

@a

Transmit FIFO
Dedicated for request
initiated by DMA Tx on

master side:
2 FIFOs available

for CS[n]_N
32 words 32 bits for each

On Write0..15 from @a to @a+30 (CS0_N)
As long as the slave does not receives

the message end of block,
the bus interface wait to have enough datas
to send a burst with the size max allowed.

 Write0,1 Data0,1 @a
 Write2,3 Data2,3 @a+4
 Write4,5 Data4,5 @a+8
 Write6,7 Data6,7 @a+12

Empty

The logic detects that the initiator of the
incoming request is the DMA Tx CS[n]_N

Idle
Burst size:16

Write0..15 @a
CS0_N

MSEBI bus Interface

 Write8,9 Data8,9 @a+16
 Write10,11 Data10,11 @a+20
 Write12,13 Data12,13 @a+24
 Write14,15 Data14,15 @a+28

All command generated by the master are:
 write 32 bits aligned

Word 8 and16 bits are rebuild into word 32 bits width
to maximize bandwidth.

Burst size:4
Write(8,9)..(14,15)

@a+16
Idle

Figure 10.61 Slave DMA FIFOs for Requests from Master MSEBI DMA TX FIFOs

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 614 of 637
Dec 29, 2021

(b) Slave DMA FIFOs for Requests from Master MSEBI DMA RX FIFOs

● All read request from MSEBI bus with id=DMA are stored on a DMA Receive FIFO.

● Order of transaction is strictly respected.

● On Read command from the MSEBI bus, if prefetch is enabled and when the FIFO is empty after the current read
request, the bus interface generates a burst access in prefetch mode (Limited by parameter:
bMSEBIS_DMARX_MAX_BURST on rMSEBIS_DMARDLR_CS[n]_N register (n = 0..1)) to anticipate the
following MSEBI read request on this channel.

− MSEBI Slave controller will generate a prefetch operation only

− Address is supposed to be linearly incremented by 4 and never cross a 1 kB boundary.

● After a prefetch operation, MSEBI slave controller will send another burst in prefetch mode as soon as there are
enough places on the FIFO to generate a read burst on AHB bus (to avoid wait cycle on MSEBI bus between two
prefetch operations when FIFO is empty). This type of prefetch is generated when all of the following conditions
are met:

− A first prefetch operation has been generated.

− FIFO has not been flushed since last prefetch operation.

− There are at least bMSEBIS_DMARX_MAX_BURST (rMSEBIS_DMARDLR_CS[n]_N register, n = 0..1)
places available on the FIFO.

● Content of the FIFO is flushed when a read request appends with a non-incremental address or when
bMSEBIS_DMARX_ENABLE in the rMSEBIS_DMARX_REQ_CS[n]_N register (n = 0..1) is set to 0 .

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 615 of 637
Dec 29, 2021

Clock Domain MSEBIS_HCLK

MSEBI 16Bits (Mode16) => Slave DMA Receive FIFO & Interface Bus coupling
DMA FIFO size => 32 words 32bits

bMSEBIS_DMARX_MAX_BURST = 16
(n=0..1)

The logic detects that the initiator of the
incoming request is the DMA Rx CS0_N

First access is aligned 32 bits
 prefetch allowed

Read datas are send to the bus as
soon as they are available

Only four words 32 bits are
Needed for this access

Idle
Burst size:8

Read0..7 @a
CS0_N

MSEBI bus Interface

AHB bus Interface

IdleBurst size:16
Read0..31 @a

Receive FIFO
Dedicated for request

initiated by DMA Rx on
master side:

2 FIFOs available
for CS[n]_N

32 words 32bits for each

Read18,19 Data18,19 address
Read20,21 Data20,21 address
Read22,23 Data22,23 address
Read24,25 Data24,25 address
Read26,27 Data26,27 address
Read28,29 Data28,29 address
Read30,31 Data30,31 address

Read0,1 Data0,1 address
Read2,3 Data2,3 address
Read4,5 Data4,5 address
Read6,7 Data6,7 address
Read8,9 Data8,9 address
Read10,11 Data10,11 address
Read12,13 Data12,13, address
Read14,15 Data14,15 address

On first Read at @a (CS0_N)

If address of data on receive FIFO does not match with current request or FIFO is empty:
FIFO is flushed and the bus interface generates an access to the ahb master interface.

In order to maximize bandwidth, the bus interface generates a burst with a size defined by the
parameter bMSEBIS_DMARX_MAX_BURST.

If address of data on receive FIFO match with current request:
Data is directly sent to the MSEBI bus interface.

Read16,17 Data16,17 address

Burst size:16
Read32..63 @a+60

The size of the FIFO = 32 words and
bMSEBIS_DMARX_MAX_BURST = 16.

After the first prefetch operation, there are 16 places available on the FIFO.
 a new prefetch operation is generated on the bus AHB

Read50,51 Data50,51 address
Read52,53 Data52,53 address
Read54,55 Data54,55 address
Read56,57 Data56,57 address
Read58,59 Data58,59 address
Read60,61 Data60,61 address
Read62,63 Data62,63 address

Read32,33 Data32,33 address
Read34,35 Data34,35 address
Read36,37 Data36,37 address
Read38,39 Data38,39 address
Read40,41 Data40,41 address
Read42,43 Data42,43 address
Read44,45 Data44,45, address
Read46,47 Data46,47 address
Read48,49 Data48,49 address

These data are not used
for this access MSEBI,
but keep in memory for

the next one

Figure 10.62 Slave DMA FIFOs for Requests from Master MSEBI DMA RX FIFOs

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 616 of 637
Dec 29, 2021

(3) Slave DMA Flow Control Signals

MSEBI Slave controller can manage DMA flow control signals:

● MSEBIS_DMA_RD0_N

● MSEBIS_DMA_RD1_N

● MSEBIS_DMA_WR0_N

● MSEBIS_DMA_WR1_N

Flow control of MSEBIS_DMA_RD0_N and MSEBIS_DMA_RD1_N pins can be enabled by
bMSEBIS_DMARX_FLOW_CTRL field in rMSEBIS_DMARDLR_CS[n]_N (n = 0..1) register.

Flow control of MSEBIS_DMA_WR0_N and MSEBIS_DMA_WR1_N pins can be enabled by
bMSEBIS_DMATX_FLOW_CTRL field in rMSEBIS_DMATDLR_CS[n]_N (n = 0..1) register.

MSEBI controller provides one DMA flow control signal for each DMA FIFO.

When flow control is enabled, MSEBIS_DMA_RD[n]_N and MSEBIS_DMA_WR[n]_N pins are driven by following
bits in rMSEBIS_DMARX_REQ_CS[n]_N and rMSEBIS_DMATX_REQ_CS[n]_N (n = 0..1) registers:

● bMSEBIS_DMARX_FORCE

● bMSEBIS_DMATX_FORCE

For more information about the behavior of flow control signals, please refer to Section 10.4.6.3(2), External DMA
Request on the master part of the documentation.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 617 of 637
Dec 29, 2021

Clock Domain MSEBIS_HCLK

MSEBIS_DMA_RD[n]_N

Allow start or restart of DMA read
frame on CS[n]_N End or suspend DMA receive frame

MSEBIS_DMA_WR[n]_N

Allow start or restart of DMA write
 frame on CS[n]_N End or suspend DMA write frame

MSEBI slave: External DMA Request
(n=0..1)

Before being use in MSEBI Slave Controller, external request MSEBIS_DMA_RD[n]_N must be
configured on rMSEBIS_DMARDLR_CS[n]_N:
-- With bMSEBIS_DMARX_ENABLE set to 1
-- With bMSEBIS_DMARX_FLOW_CTRL set to 1

And external request MSEBIS_DMA_WR[n]_N must configured on
rMSEBIS_DMATDLR_CS[n]_N:
-- With bMSEBIS_DMATX_ENABLE set to 1
-- With bMSEBIS_DMATX_FLOW_CTRL set to 1

When enable, MSEBIS_DMA_RD[n]_N/MSEBIS_DMA_WR[n]_N are driven by following bits:
-- bMSEBIS_DMARX_FORCE
-- bMSEBIS_DMATX_FORCE

Figure 10.63 MSEBI Slave: External DMA Request

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 618 of 637
Dec 29, 2021

(4) Slave FIFOs Arbiter: Round Robin

Clock Domain MSEBIS_HCLK

Receive FIFO
Dedicated for CPU

 32 words 32bits

Read7 @d CS2_N
Read7 @d+4 CS2_N
Read7 @d+8 CS2_N
Read7 @d+12 CS2_N

Empty

Transmit FIFO
Dedicated for CPU

 32 words 32bits

Read6 @c CS3_N

DMA FIFOs
4 FIFOs available

for CS[n]_N
32 words 32bits for each

Burst size:4
CPU Write0..3

Burst size:4
DMA Write0..3

AHB bus Interface

Arbiter Request

Round Robin Priority

For each requester, The maximum burst size allowed on AHB master interface can be configured:
-- CPU from 1..16 words
-- DMA from 1..16 words

a word can be 32/16/8 bits wide for single access.
a word is 32 bits wide for a burst or prefetch access.

On this example:
-- bMSEBIS_BURST_SIZEMAX_CPUWRITE = 2'b01 (4 word max)
-- bMSEBIS_BURST_SIZEMAX_CPUREAD = 2'b01 (4 word max)
-- bMSEBIS_DMATX_MAX_BURST = 2'b01 (4 words) on CS0_N and CS1_N
-- bMSEBIS_DMARX_MAX_BURST = 2'b10 (8 words) on CS0_N and CS1_N

MSEBI Slave mode32 => Round Robin Priority
CPU FIFO size => 32 words 32 bits
DMA FIFO size => 32 words 32 bits

(n=0..1)

Burst size:4
DMA Write0..3

Burst size:8
DMA Read0..7

Burst size:8
DMA Read0..7

Single Access
CPU Write4

Write0 Data0, address
Write1 Data1, address
Write2 Data2, address
Write3 Data3, address

Empty

Write0 Data0, address
Write1 Data1, address
Write2 Data2, address
Write3 Data3, address

Empty

Read0 Data0, address
Read1 Data1, address
Read2 Data2, address
Read3 Data3, address

Empty

Read4 Data4, address
Read5 Data5, address
Read6 Data6, address
Read7 Data7, address

Read0 Data0, address
Read1 Data1, address
Read2 Data2, address
Read3 Data3, address

Empty

Read4 Data4, address
Read5 Data5, address
Read6 Data6, address
Read7 Data7, address

Read6 @c+12 CS3_N
Read6 @c+8 CS3_N
Read6 @c+4 CS3_N

Not used,
these data are

flushed

Empty

Write1 @a+4 CS0_N
Write2 @a+8 CS0_N
Write3 @a+12 CS0_N

Read6 @c CS3_N
Read7 @d CS2_N

Write4 @b CS3_N
Write5 @b+4 CS3_N

Write0 @a CS0_N

CS1_N Rx

CS0_N Tx

CS0_N Rx

CS1_N Tx

 CPU Receive FIFO DMA Transmit FIFO
CS0_N

 DMA Receive FIFO
CS0_N

 DMA Transmit FIFO
CS1_N

 DMA Receive FIFO
CS1_N

Figure 10.64 Slave FIFOs Arbiter: Round Robin

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 619 of 637
Dec 29, 2021

10.4.7.3 MSEBI Slave: Detection of Request Initiator
The detection of the initiator of the request is done with the MSEBI_DMA_N bit during the CLE phase.

This information is used to route the incoming request to the correct FIFO in order to optimize transfers (grouping the
request from the same initiator increase the probability to generate a burst).

See:

● For Table 10.4, MSEBI Mode32, Multiplexer Function on ACD31..0.

● For Table 10.6, MSEBI Mode16, Multiplexer Function on ACD15..0.

● For Table 10.8, MSEBI Mode8, Multiplexer Function on ACD7..0.

Table 10.47 Slave Detection of Request Initiator

Initiator MSEBI_DMA_N
MSEBI_CS1_N,
MSEBI_CS0_N Request Type Targeted FIFO

CPU 1 X, X X CPU receive

DMA RX CS0 0 1, 0 read DMA RX CS0

DMA TX CS0 0 1, 0 write DMA TX CS0

DMA RX CS1 0 0, 1 read DMA RX CS1

DMA TX CS1 0 0, 1 write DMA TX CS1

10.4.7.4 MSEBI Slave: Register Access by Master
MSEBI master on the bus can access six slave’s shared registers. The MSEBI access corresponding to
MSEBI_CS[n]_N (n = 0..3) is generated according to the address of each register.

● rMSEBIS_INT

● rMSEBIS_STATUS

● rMSEBIS_ID_CS[n]_N (n = 0..3)

Access to the shared registers of a slave where MSEBI_CS[n]_N is an active chip select is available when following
conditions are reach:

● The command set simultaneously MSEBI_CSREG_N and MSEBI_CS[n]_N to 0 during the phase MSEBI_CLE of
an access to the chip select [n].

● The request is managed on the device where the chip select is active:

− bMSEBIS_CS_ENABLE is set to 1.

The following table explains the conditions on MSEBI_CSREG_N and MSEBI_CS[n]_N to access the slave’s shared
registers.

Table 10.48 MSEBI Slave Shared Register Access

MSEBI_CS[n]_N MSEBI_CSREG_N CS[n]_N Access Type

0 0 Access CS[n]_N shared registers

0 1 Access CS[n]_N memory space

1 0 Reserved

1 1 No access

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 620 of 637
Dec 29, 2021

See table below:

● For Table 10.4, MSEBI Mode32, Multiplexer Function on ACD31..0.

● For Table 10.6, MSEBI Mode16, Multiplexer Function on ACD15..0.

● For Table 10.8, MSEBI Mode8, Multiplexer Function on ACD7..0.

10.4.7.5 MSEBI Slave: Chip select Configuration Status
All chip select of MSEBI slave controller can present their configuration status to the master of the MSEBI bus.
(n = 0..3)

● This feature is mainly used after a change of the MSEBI bus configuration to inform the master of the MSEBI bus
that the chip selects (on slave device) are ready to receive requests from MSEBI bus.

● Status is available by reading the slave’s shared rMSEBIS_ID_CS[n]_N registers through the MSEBI bus

− For more information about slave’s shared registers, see Section 10.4.7.4, MSEBI Slave: Register Access
by Master.

● The master of the MSEBI bus can access to the slave’s shared registers with all chip select.

− With MSEBI_CSREG_N and MSEBI_CS[n]_N driven to 1’b0

− See Section 10.4.7.4, MSEBI Slave: Register Access by Master.

● A read of the correct value on the corresponding slave’s shared register validate the configuration of the chip select.

− Read 0x1234_FEDn on rMSEBIS_ID_CS[n]_N validates the configuration of the chip select [n].

− Any others value indicates that the chip select [n] is not ready for communication.

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 621 of 637
Dec 29, 2021

10.4.7.6 MSEBI Slave: Addressing Mode
MSEBI slave can manage the address of the new incoming transaction in two different ways:

● Direct access: address decoded by the slave is directly used to generate a new transaction on the AHB master port.

● MMU mode access: A base offset (aligned 4KB) can be added to the address decoded by the slave before being used
to generate a new transaction on the AHB master port.

See following registers:

● Section 10.3.3.4, rMSEBIS_MMU_ADDR_MASK_CS[n]_N — MMU Address Mask Register (n = 0..3)
and Section 10.3.3.3, rMSEBIS_MMU_ADDR_CS[n]_N — MMU Base Address Register (n = 0..3).

MMU mode increases performance as it may save some ALE phases.

0 0 0 0 0 1 1 1 1 1
31 0

U T S R Q P O M L K
31 0

Decoded address from bus MSEBI

MMU register base offset:
rMSEBIS_MMU_ADDR_CS[n]_N

MSEBI Mode Slave,
Addressing mode: MMU

For CS0[n]_N
(n=0..3)

Mask: rMSEBIS_MMU_MASK_ADDR_CS[n]_N

J I H G F E D C B A
31 0

U T S R Q E D C B A
31

Address use on the device
through AHB bus

0

Figure 10.65 Slave Addressing on MMU Mode

The selection of the addressing mode is made with bMSEBIS_ADDR_MODE bit

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 622 of 637
Dec 29, 2021

10.4.7.7 MSEBI Slave: Write Protect
If this bit is set, all writes on the slave memory space are forbidden.

Setting of write protect is done with the bMSEBIS_WEN and can be managed separately for each MSEBI_CS[n]_N (n
= 0..3).

If a write request arrives from the MSEBI on a chip select where write protect is enable (bMSEBIS_WEN = 0), an error
flag (bMSEBIS_ERROR_WEN) is set on the corresponding rMSEBIS_STATUS register reachable by the master of the
bus.

bMSEBIS_ERROR_WEN is clear when the master of the bus writes 1’b1 to the corresponding bit in the
rMSEBIS_STATUS register.

rMSEBIS_STATUS register cannot be access by the CPU. It is reserved for the MSEBI master bus accesses.

10.4.7.8 MSEBI Slave: Configuration Registers & Synchronization
All registers are clocked on the AHB clock domain, MSEBIS_HCLK, but some configuration fields (phases delay,
routing capability, wait configuration, etc.) are on the MSEBI clock domain, MSEBIS_CLK.

For a configuration update on all registers managed by MSEBI_CS[n]_N, these fields need to be synchronized as
follows:

● On the first AHB access, bMSEBIS_CS_ENABLE is cleared by CPU.

● Until the end of the synchronization mechanism.

− Data from AHB bus is not copied on MSEBI slave registers

− AHB is in wait state (delay max controlled by timeout)

● Once the synchronization mechanism completes, the write is enabled on the configuration registers and the value of
the fields to synchronize on MSEBIS_CLK clock are set to a default value (to avoid side effect).

● After the end of the configuration from AHB (set bMSEBIS_CS_ENABLE), write access to registers are locked and
the value of the fields to synchronize on MSEBIS_CLK clock are driven by registers.

NOTE

Configuration registers managed on a different MSEBIS_CS[m]_N with m < > n are not changed, and all accesses in
MSEBIS_CS[m]_N continue to execute normally

MSEBI Slave => wait AHB during write register
synchronization

(n=0..3)

@ rMSEBIS_CONFIG_CS[n]_N

Data rMSEBIS_CONFIG_CS[n]_N

MSEBIS_HCLK

AHB addr

AHB data

AHB ready

Data rMSEBIS_CONFIG_CS[n]_N

Synch ongoing

Figure 10.66 Wait AHB during Register Synchronization Mechanism

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group Section 10 Medium Speed External Bus Interface (MSEBI)

R01UH0752EJ0120 Rev.1.20 Page 623 of 637
Dec 29, 2021

10.5 Usage Notes
In case DMA controller goes down during a DMA transfer, a recovery procedure shall be implemented:

1. Stop current DMA transfers in MSEBI Master

2. Reset burst size value in DMA RX control register (rMSEBIM_RDMACR_CS[n]_N n = 0..1) to allow single
access only

3. Reset DMARDLR registers (rMSEBIM_DMARDLR_CS[n]_N n = 0..1)

4. Restart DMA controller with initial parameters if possible to unlock DMA MSEBI FIFOs. Burst size value
(SRC_MSIZE or DEST_MSIZE) is tied to 1 (single access)

5. Wait and check DMA receive FIFOs are empty

6. Disable/stop DMA controller

7. Restart DMA transfers in MSEBI Master

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group REVISION HISTORY

R01UH0752EJ0120 Rev.1.20 Page 624 of 637
Dec 29, 2021

REVISION HISTORY RZ/N1D Group, RZ/N1S Group, RZ/N1L Group
User’s Manual: Peripherals

REVISION HISTORY
 Description

Rev. Date Page Summary

0.50 Jun 30, 2017  First Edition issued

0.80 Oct 31, 2017 20 to 21 1.1, description, modified

 70, 71 1.4.30, Table 1.38, revised

 72, 73 1.4.31, Table 1.39, revised

 75 1.5.1.2, chapter title, corrected

 81 1.5.1.7, Figure 1.6: figure title, corrected

 90 to 95 1.5.1.10, description, modified

 99 to 100 1.6, chapter, deleted

 99 2.1, description, revised

 108 2.4.1, “Value after reset” of b2-b0, corrected (0 → 7)

 134, 135 2.4.24, Table 2.30, revised

 136, 137 2.4.25, Table 2.31, revised

 173, 174, 210 3.3 and 3.4.35, I2C SS, Register Name: FS Spike Suppression Limit → I2C Sm, Fm Spike
Suppression Limit, corrected

 223 3.6.2.1, Table 3.40: Note, added

 229 to 237 4.3 and 4.4, Register Name, modified (Port GPIO Port A Data Ouput Register → GPIO Port
A Data Output Register, Port GPIO Port A Data Direction Register → GPIO Port A Data
Direction Register, Port GPIO Port B Data Ouput Register → GPIO Port B Data Output
Register, Port GPIO Port B Data Direction Register → GPIO Port B Data Direction Register,
Port GPIO Port A Data Input Register → GPIO Port A Data Input Register, Port GPIO Port
B Data Input Register → GPIO Port B Data Input Register)

 231 and 236 4.4.1, 4.4.2 and 4.4.12, the external pins GPIO[n] → the external pins BGPIO[m]A[n],
corrected

 232 to 237 4.4.3, 4.4.4 and 4.4.13, the external pins GPIO[n] → the external pins BGPIO[m]B[n],
corrected

 239 4.5.1.3, Figure 4.4, revised (CortexA7 → Cortex-A7)

 241 4.5.1.4, Table 4.19: BGPIO Pins Name, corrected (BGPIO1a → BGPIO1A, BGPIO1b →
BGPIO1B, BGPIO2a → BGPIO2A, BGPIO2b → BGPIO2B, BGPIO3a → BGPIO3A,
BGPIO3b → BGPIO3B)

 241 4.5.1.4, Table 4.20: Status Pins of header line, corrected (GPIO[m]a → BGPIO[m]A,
GPIO[m]b → BGPIO[m]B)

 243 5.1, description, revised

 244 5.2, Timer[m]_Int[7:0] → TIMER[m]_Int[7:0], corrected

 245 5.3.1 and 5.3.2, Timer[n] → Sub-timer[n], modified

 246 to 253 5.4.1 to 5.4.9, Timer[n] → Sub-timer[n], modified

 249 5.4.5, Table 5.7: bTimerMaskInt: Function, modified

 251, 252 5.4.7 and 5.4.8, iTimerInt → TIMER_Int[n], timer → Sub-timer, corrected

 263 5.5.4, description, revised

 265 5.6, description, revised

 269 6.3, Register Name: Error Warning Interrupt Register → Error Warning Limit Register,
corrected

 269 6.3.1, Table 6.1: Address of rCan_ReceiveFifo, corrected (5210 4080h → 5210 4080h to
5210 417Ch)

 269 6.3.1, Table 6.1: Address of rCan_RdTransmitBuffer, corrected (5210 4180h to 5120 41B0h
→ 5210 4180h to 5210 41B0h)

 270 6.3.2, Table 6.2: Address of rCan_ReceiveFifo, corrected (5210 5080h → 5210 5080h to
5210 517Ch)

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group REVISION HISTORY

R01UH0752EJ0120 Rev.1.20 Page 625 of 637
Dec 29, 2021

 Description

Rev. Date Page Summary

0.80 Oct 31, 2017 279 6.4.5, chapter title, corrected

 286 6.4.11, Register Name: Error Warning Interrupt Register → Error Warning Limit Register,
corrected

 290 6.4.14, NOTE, corrected

 290 6.4.14, Address, corrected (5210 4040h - 5120 4070h (CAN1) → 5210 4040h - 5210 4070h
(CAN1), 5210 5040h - 5120 5070h (CAN2) → 5210 5040h - 5210 5070h (CAN2))

 314 to 315 6.5.7, Table 6.32 to 6.35: header line, corrected (Acceptange → Acceptance)

 342 7.1, description, revised

 346 to 377 7.3 and 7.4, corrected (ADC-1 → ADC1, ADC-2 → ADC2)

 365 7.4.1.16, Table 7.18: bADC_Priority, modified

 370 7.4.1.20, Table 7.22: bADC2_Enable, modified

 409 8.3.1, chapter title, corrected

 410 8.4.1, Table 8.3: bLcd_FBP: packet mode → packed mode, corrected

 423 8.4.10, Table 8.12: bLcd_DBAR, modified

 439 8.5.2, Table 8.27 and 8.28, modified

 450, 451 8.5.9, Figure 8.7 and 8.8, figure title, corrected

 452 8.5.10, chapter title, corrected

 454 8.5.13, unpacket → unpacked, packet → packed, corrected

 457 8.5.16, packet → packed, corrected

 460 9.4.1, chapter title, corrected

 461 9.4.2, chapter title, corrected

 464 9.6, description, modified

 465, 467 10.1, description, revised

 483 10.3.1.3, Table 10.15: bMSEBIM_SINGLE_DEST_WIDTH, modified

 485 10.3.1.4, Table 10.16: bMSEBIM_SINGLE_SRC_WIDTH, modified

 496 10.3.1.11, Table 10.23: Bit Name, corrected (bMSEBIM_CS[n]_N_ROUTING_CS3_N →
bMSEBIM_CS[n]N_ROUTING_CS3_N, MSEBIM_CS[n]_N_ROUTING_CS2_N →
bMSEBIM_CS[n]N_ROUTING_CS2_N)

 497 10.3.1.11, Table 10.23: bMSEBIM_MODE_WAIT, corrected (MSEBIM_WAIT[n] →
MSEBIM_WAIT[n]_N, MSEBIM_WAIT0[n]_N → MSEBIM_WAIT[n]_N)

 591 10.4.6.1, description, revised

 603, 605 10.4.6.3, description, corrected

 607 10.4.6.3(2), description, corrected

 608 10.4.6.3(2), Figure 10.55, corrected

 613 10.4.7.1, description, revised

 624 10.4.7.2(3), Figure 10.65, corrected

 631 10.5, MSEBIS_WAIT_[n]_N → MSEBIS_WAIT[n]_N, corrected

0.90 Dec 28, 2017 all All sections, corrected English spelling and syntax errors

 20, 226, 266 1.1, 4.1, and 6.1, add trademarks

 39 1.4.7, Table 1.15: Function of bUart_STOP, revised

 53 1.4.16, Table 1.24: Function of bUart_BUSY, revised

 56 1.4.19, Table 1.27: Function of bUart_UR, revised

 67 1.4.28, Table 1.36: Function of bUart_EnableDE, external pads → external pin, modified

 71 1.4.30, Table 1.38: Function of bUart_TDMAE, Uart_DEST_BURST_SIZE →
bUart_DEST_BURST_SIZE

 85, 86 1.5.1.9(3), Figure 1.9 and 1.10, Size block → Block size, corrected

 86 1.5.1.9(3), description, revised

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group REVISION HISTORY

R01UH0752EJ0120 Rev.1.20 Page 626 of 637
Dec 29, 2021

 Description

Rev. Date Page Summary

0.90 Dec 28, 2017 90 1.5.1.10, description, revised

 97 1.5.1.11(1), description, external pad → external pin, modified

 99 to 170 Section 2, SPI (indicating the module name) → SPI controller, revised

 108 2.4.1, Table 2.7: bSpi_SLV_OE, high impedance → floating, corrected

 109, 146, 163,
164, 168, 169

2.4.1, 2.5.8, 2.5.8.2 (chapter title), 2.6.1.1, and 2.6.1.3, Transmit Mode Only → Transmit
Only Mode, corrected

 109, 141, 146,
163, 164, 168

2.4.1, 2.5.4, 2.5.8, 2.5.8.3 (chapter title), 2.6.1.1, and 2.6.1.3, Receive Mode Only →
Receive Only Mode, corrected

 133 2.4.23, Table 2.29: Function of bSpi_RX_Sample_Delay, revised

 143 2.5.5, description, corrected

 144 2.5.6, description, revised

 147 2.5.8.4, master configurations → master mode, modified

 148 to 150 2.5.9, description, revised

 152 2.5.11, description, no data are present (high impedance) → no data are present, corrected

 156 2.5.11, description, no data are driven (high impedance) → no data are driven, corrected

 157 2.5.11, SPI master configuration → SPI master, SPI slave configuration → SPI slave,
modified

 160 2.5.12.3, Figure 2.23 and 2.24, Size block → Block size, corrected

 161 2.5.12.3, description, revised

 164 2.6.1.1 5., see Warning on polling Busy → see CAUTION of 2.6.1, corrected

 166 2.6.1.2 5., see Warning on polling Busy → see CAUTION of 2.6.1, corrected

 171 to 225 Section 3, I2C (indicating the module name) → I2C controller, revised

 171 3.1, description, revised

 173, 174, 201 3.3 and 3.4, Register Name of IC_RXFLR, Receive FIFO Level Register → I2C Receive
FIFO Level Register, changed

 186 3.4.10, description, revised. 3.4.10, Table 3.12: Function, revised

 215 3.5.1.4, chapter title, corrected

 220 3.5.4.1, M_TX_ABRT → TX_ABRT, corrected

 221 3.6.1, I2C_clock → I2C_SCLK, corrected

 225 3.6.3.1, below maximum value → above maximum value,corrected

 226, 227 4.1, Figure 4.1 to 4.3, corrected

 238 4.5.1.1, CAUTION, revised

 239 4.5.1.3 Figure 4.4, corrected

 239, 240 4.5.1.4, description, revised. 4.5.1.4, Figure 4.5, corrected

 241 4.5.1.4, Table 4.19, header line, corrected. 4.5.1.4, Table 4.20, revised

 242 4.6.1, CAUTION, revised

 256 5.4.12, Table 5.14: Function, revised

 259 5.5.1, description, revised

 259 5.5.2, description, revised.

 260, 261 5.5.2, Figure 5.2 to 5.4, figure title, modified

 266 to 341 Section 6, CAN (indicating the module name) → CAN controller, revised

 266 6.1, description, revised

 269, 270, 298 6.3 and 6.4, Register Name of rCan_SyncTransmitBuffer, Sync Transmit Buffer Register →
Sync Frame Transmit Buffer Register, changed

 271, 272 6.4.1, Table 6.3: Function of bCan_SM and bCan_RM, revised

 273, 274 6.4.2, Table 6.4: Function, revised

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group REVISION HISTORY

R01UH0752EJ0120 Rev.1.20 Page 627 of 637
Dec 29, 2021

 Description

Rev. Date Page Summary

0.90 Dec 28, 2017 275, 276 6.4.3, Table 6.5: Function of bCan_TS, bCan_RS, bCan_TBS, bCan_DOS, and
bCan_RBS, revised

 277, 278 6.4.4, Table 6.6: Function, revised

 294 6.4.18 Table 6.20, Function, revised

 298 6.4.22, Table 6.24, Function, revised

 298, 299, 301,
306

6.4.22, 6.4.23, 6.4.24, and 6.4.27, loss arbitration → arbitration loss, modified

 305 6.4.27, description, revised

 305 6.4.27, Table 6.29: Function of bCan_TimerOnlyMode, Reduce mode → CAN Controller is
running in TimerOnlyMode, revised

 305 6.4.27, Table 6.29: Function of bCan_TimerOnlyIfBusOff, CAN Controller is running in full
mode → Disable all the “Sync frame” system if the CAN Controller detect a “Bus off”
condition

 307 6.4.28, Table 6.30: Function, revised

 308 6.4.29, Table 6.31, CAN Full module → CAN module, corrected

 314, 315 6.5.7, Table 6.32 to 6.35: Receive Buffer Field colum, Not matched → No filtering, modified

 316, 319, 320,
332

6.5.8, 6.5.8.9, 6.5.8.10, and 6.5.15, Only for CAN full (with transmit “Sync frame”
mechanism) → Only when using “Sync frame” transmission mechanism, corrected

 325 6.5.11.1, Table 6.38 and 6.39, (1) → *1 and (2) → *2, corrected.
6.5.11.1, first Note → Note 1, second Note → Note 2, corrected

 331 6.5.14, description, revised

 332 6.5.15, description, revised

 337, 338 6.5.15.2, description, revised

 340 6.5.16, description, revised

 356, 357 7.4.1.9, Table 7.11: Function of bADC_DMA1_RUNNING and bADC_PENDING_VC,
revised

 364 7.4.1.16, Table 7.18: Function of bADC_RR_Pointer, revised

 366 7.4.1.17, Table 7.19: Function of bADC_POWER_DOWN, revised

 369 7.4.1.19, Table 7.21: Function of bADC_MASKLOCK, revised

 370 7.4.1.20, Table 7.22: Function of bADC_DMA_Request, corrected

 370, 371 7.4.1.20, Table 7.22: Function of bADC_DMA_Request, bADC2_Enable, and
bADC_Continuous, revised

 371 7.4.1.20, Table 7.22: Function of bADC_TrigEnable, ADC1 Trigger Enable → Trigger
Enable, corrected

 381 7.5.1, “bADC_TrigSel field to 5’h13” → “bADC_TrigSel field to 5’h14” at example of single
conversion, corrected

 382 7.5.1, “on a use iADC_EOC_VC3 event” → “on a use iADC_EOC_VC4 event” at example
of oversampling 4X, corrected

 384 7.5.1, bADC_TSHSAMP: 5’h12 → bADC_TSHSAMP: 5’h0C at example of sample & hold
setting, corrected

 385 7.5.2, “3.3 DC characteristics” → “ADC characteristics described on Electrical
Characteristics”, corrected

 393 7.5.6, bADC_TSHSAMP: 6’h6 (Minimum value) → bADC_TSHSAMP: 5’h0C

 404 7.5.10, bADC_DMA_Request bits in rADC_VC[n] registers with n = 0..1 →
bADC_DMA_Request bits in rADC_VC[n] registers with n = 0..15, corrected.

 404

7.5.10, The ADC DMA channel selected depends onf bADC_DMA_Request[1] bit status →
The ADC DMA channel selected depends onf bADC_DMA_Request[1:0] bit status,
corrected

 405 7.5.10.1, description, revised

 410 8.4.1, Table 8.3: Function of bLcd_FBP, modified

 443 8.5.5, Table 8.30: Encoded Pixel Data → Pixel Data, corrected

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group REVISION HISTORY

R01UH0752EJ0120 Rev.1.20 Page 628 of 637
Dec 29, 2021

 Description

Rev. Date Page Summary

0.90 Dec 28, 2017 443 8.5.5, Table 8.31 and 8.32: 32’h20, joined P0 and P1 cells, revised

 444 8.5.5, Table 8.33: 32’h40, joined P0 and P1 cells, revised

 444 8.5.5, Table 8.34: 32’h400, joined P0 and P1 cells, revised

 445 8.5.6 and 8.5.7, description, revised

 451 8.5.9, CAUTION, revised

 454 8.5.13, description, modified. CAUTION, revised

 457 8.5.16, description, revised

 458 9.2, Table 9.1, table title, corrected

 465 10.1, description, revised

 468 10.1.1, chapter title, changed. Table 10.1, table title, changed

 468 10.1.1, Table 10.1: Description of MSEBIM_ACD[31..0] and MSEBIS_ACD[31..0], modified

 469 10.1.2, chapter title, changed. Table 10.2, table title, changed

 469 10.1.2, Table 10.2: Description of MSEBI_CS[n]_N, modified

 469 10.1.2, Table 10.2: Description of MSEBI_CSREG_N, changed MSEBI_CSREG_N from 1
to 0 on “CS[n]_N Access Type” is” Access CS[n]_N shared registers“, corrected

 480 10.3.1.1, Table 10.13: Function of bMSEBIM_CLEDATA and bMSEBIM_ALEDATA, revised

 483 10.3.1.3, Table 10.15: Function of bMSEBIM_SINGLE_DEST_WIDTH, revised

 484 10.3.1.3, Table 10.15: Function of bMSEBIM_TDMAE1, revised

 485 10.3.1.4, Table 10.16: Function of bMSEBIM_SINGLE_SRC_WIDTH, revised

 486 10.3.1.4, Table 10.16: Function of bMSEBIM_RDMAE1, revised

 487 10.3.1.5, Table 10.17: Function of bMSEBIM_ADDRDMA_READ_2, modified

 488 10.3.1,6, Table 10.18: Function of bMSEBIM_ADDRDMA_CURRENTREAD, modified

 489 10.3.1.7, Table 10.19: Function of bMSEBIM_ADDRDMA_WRITE_2, modified

 490 10.3.1.8, Table 10.20: Function of bMSEBIM_ADDRDMA_CURRENTWRITE, modified

 492 10.3.1.9, Table 10.21: Funciton of bMSEBIM_DMATDLR, DEST_BURST_SIZE →
bMSEBIM_DEST_BURST_SIZE, corrected

 494 10.3.1.10, Table 10.22: Function of bMSEBIM_DMARDLR, SRC_BURST_SIZE →
bMSEBIM_SRC_BURST_SIZE, corrected

 496 10.3.1.11, Table 10.23: Function of b14 to b12, revised

 504, 505 10.3.3.1, b0, bMSEBIS_ALEDATA → Reserved, modified

 514, 515 10.3.3.9, Table 10.36: Function of b14 to b12, revised

 517 10.3.3.9, Table 10.36: Function of bMSEBIS_BUSY, revised

 518 10.3.3.10, b30, Reserved → bMSEBIS_WAIT_CONF, modified

 532 10.4.2, Command phase → Control phase, CMD sub-phase → VALID sub-phase, modified

 542 to 547 10.4.3.1, description, revised

 548 10.4.3.3, chapter title, changed

 548 to 559 10.4.3.3, CMD sub phase → VALID sub phase, modified

 548 to 550 10.4.3.3, high Impedance → floating, modified

 561 to 576 10.4.4 (including sub-section), CMD sub phase → VALID sub phase, modified

 555 10.4.4.1, Figure 10.14, modified

 567 to 569 10.4.4.4, Figure 10.24 to 10.26, modified

 571 10.4.4.5, Figure 10.28, modified

 580 10.4.4.7, Figure 10.36, modified

 592 10.4.6.2, description, revised

 603 to 605 10.4.6.3, description, revised

 606 10.4.6.3 (1), description, revised

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group REVISION HISTORY

R01UH0752EJ0120 Rev.1.20 Page 629 of 637
Dec 29, 2021

 Description

Rev. Date Page Summary

0.90 Dec 28, 2017 609 10.4.6.3 (4), 120/30 = 3 → 120/30 = 4, DMA block transfer is 3 → DMA block transfer is 4,
corrected

 609 to 610 10.4.6.3 (4), Figure 10.56 to 10.57, modified (spell error)

 610 10.4.6.3 (4), description, modified

 620 10.4.7.2 (2) (a), bMSEBIS_DMATX_ENABLE in rMSEBIS_CONFIG_CS[n]_N →
bMSEBIS_DMATX_ENABLE in rMSEBIS_DMATX_REQ_CS[n]_N, corrected

 622 10.4.7.2 (2) (b), bMSEBIS_DMARX_ENABLE in the rMSEBIS_CONFIG_CS[n]_N →
bMSEBIS_DMARX_ENABLE in the rMSEBIS_DMARX_REQ_CS[n]_N, corrected

 624 10.4.7.2 (3), description, revised

 628 10.4.7.5, Read 0x1234_FEDk on rMSEBIS_ID_CS[n]_N → Read 0x1234_FEDn on
rMSEBIS_ID_CS[n]_N, corrected

 631 10.5, description, modified

0.95 Oct 19, 2018 — All sections, spelling, syntax errors and appearances are corrected, and expressions are
modified properly

 — All sections, unified clock notation

 4 How to Use This Manual, 1. Objective and Target Users, Documents related to RZ/N1
(R18DS0026 → R01DS0323), table modified

 6 How to Use This Manual, 3. List of Abbreviations and Acronyms, INTC, OTP, description
modified

 22 1.2 Signal Interfaces, UART[m]_SCLK (External Internal → Serial), description modified

 23 to 30 1.3.1..8 Register Map UART 1..8, Table 1.1..8 Register Map UART 1..8, note added

 38 1.4.7 rUart_LCR — Line Control Register, bUart_StickParity, expression modified

 43 1.4.9 rUart_LSR — Line Status Register, bUart_PE, description modified

 50 1.4.14 rUart_TFR — Transmit FIFO Read, bUart_TFR, expression modified

 56 1.4.19 rUart_SRR — Software Reset Register, bUart_XFR, bUart_RFR, description
modified

 75 1.5.1.2 Baud Rate Tolerance to 19200 baud, description deleted

 76 1.5.1.3 FIFO Management (byte → bits), description modified

 76 1.5.1.4 Clock Management, description modified

 78 1.5.1.6 Interrupts, Table 1.41 Interrupt Control Functions, bUart_IID (4’b0100 → 4’b1100),
value modified

 79 1.5.1.7 Auto Flow Control (rUart_MCR bits → rUart_MCR register), expression modified

 86 1.5.1.9 DMA Management (Only UART4, 5, 6, 7, 8), (4) Selecting DEST_MSIZE and
Transmit FIFO Overflow (underflow → overflow, others), description modified

 86 1.5.1.9 DMA Management (Only UART4, 5, 6, 7, 8), (7) Selecting SRC_MSIZE and
Receive FIFO Underflow, description modified

 98 2.1 Overview, Slave selects number, (delete: Baud rate reference clock), description
modified

 100 2.2 Signal Interfaces, description modified

 107 2.4.1 rSpi_CTRLR0 — Control Register 0 (by bSpi_SSIENR), description, added
2.4.2..8 Same as 2.4.1 rSpi_CTRLR0

 108 2.4.1 rSpi_CTRLR0 — Control Register 0, bSpi_TMOD, description modified

 109 2.4.2 rSpi_CTRLR1 — Control Register 1, caution modified

 112, 113 2.4.5 rSpi_SER — Slave Enable Register, bSpi_SoftwareSS, bSpi_HardwareSS,
description modified

 114 2.4.6 rSpi_BAUDR — Baud Rate Select, bSpi_SCKDV, description modified

 117 2.4.9 rSpi_TXFLR — Transmit FIFO Level Register, bSpi_TXTFL (b3 to b0 → b4 to b0),
description modified

 118 2.4.10 rSpi_RXFLR — Receive FIFO Level Register, bSpi_RXTFL (b3 to b0 → b4 to b0),
description modified

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group REVISION HISTORY

R01UH0752EJ0120 Rev.1.20 Page 630 of 637
Dec 29, 2021

 Description

Rev. Date Page Summary

0.95 Oct 19, 2018 131 2.4.22 rSpi_DR — Data Register, NOTE, description modified

 138 2.5.2 Typical Connection between SPI Master & Slave (The serial bit rate clock → The
serial clock), term modified

 139 2.5.3 Control Slave Select Line by Hardware or Software Mode, caution modified

 139 2.5.3 Control Slave Select Line by Hardware or Software Mode, Figure 2.4 Control Slave
Select Line by Hardware or Software Mode, description deleted

 140 2.5.4 Programmable Prescaler Clock, description modified

 141 2.5.4 Programmable Prescaler Clock, Figure 2.5 SPI Master Mode, Maximum Clock Ratio,
figure deleted

 141 2.5.4 Programmable Prescaler Clock, Figure 2.6 SPI Slave Mode, Maximum clock Ratio,
figure deleted

 141 2.5.5 Data Input Sample Delay (SPI_MOSI → SPI_MISO, others), description modified

 142 2.5.6 Transmit & Receive FIFO & Control, description modified

 144 2.5.8.3 Receive Only Mode (SPI_MOSI → SPI_MISO, others), description modified

 146 to 148 2.5.9 Motorola Serial Peripheral Interface, description modified

 154 2.5.11 National Semiconductor Microwire, Figure 2.19 National Semiconductor Mode,
Single Transfer, Receive Data, SPI controller in Slave Mode, figure modified

 155 2.5.11 National Semiconductor Microwire, Figure 2.20 National Semiconductor Mode,
Single Transfer, Transmit Data, SPI controller in Slave Mode, figure modified

 156 2.5.12 DMA Control, (handshaking → request), expression modified

 158 2.5.12.3 Choosing the Transmit Watermark Level, Figure 2.22 SPI Case2: Transmit
Watermark Level (UART → SPI), figure modified

 159 2.5.12.4 Selecting DEST_MSIZE and Transmit FIFO Overflow, description modified

 160 2.5.12.6 Choosing the Receive Watermark Level, Figure 2.23 SPI Case3: Receive
Watermark Level (UART → SPI), figure modified

 160 2.5.12.7 Selecting SRC_MSIZE and Receive FIFO Underflow, description modified

 161, 162 2.6.1.1 Programming Master SPI in Motorola & Texas Mode, description modified

 166 2.6.1.3 Programming Slave SPI in Motorola & Texas Mode, description modified

 174 3.4.1 IC_CON — I2C Control Register, SPEED ((100 kb/s) → (≤100 kb/s)), description
modified

 176 3.4.3 IC_SAR — I2C Slave Address Register, IC_SAR (The default values → This value),
description modified

 196 3.4.26 IC_STATUS — I2C Status Register, (Bits 3 and 10 → Bits 3 and 4),
MST_ACTIVITY, description modified

 202 3.4.30 IC_TX_ABRT_SOURCE — I2C Transmit Abort Source Register,
ABRT_GCALL_READ, description deleted

 204 3.4.32 IC_SDA_SETUP — I2C SDA Setup Register (tSU;DAT (note 4) → tSU;DAT),
description modified

 208 3.4.35 IC_FS_SPKLEN — I2C Sm, Fm Spike Suppression Limit (tSP(table 4) → tSP),
description modified

 211 3.5.1.1 Initial Configuration, (4) Enable the I2C controller by writing a “1” in bit 0 of the
IC_ENABLE register., note deleted

 212 3.5.1.2 Slave Transmitter Operation for a Single Byte, (6) Software must clear the
RD_REQ and TX_ABRT interrupts, description modified

 213 3.5.1.3 Slave Receiver Operation for a Single Byte, (4) I2C controller asserts the RX_FULL
interrupt (IC_TX_TL → IC_RX_TL, described in → similarly to), description modified

 213 3.5.1.4 Slave Transfer Operation for Bulk Transfer (IC_INTR_STAT → IC_INTR_MASK,
R_RD_REQ → RD_REQ, others), description modified

 215 3.5.2.1 Initial Configuration, (2), (3), description modified

 217 3.5.3 Disabling the I2C controller (hardware → I2C controller, others), description modified

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group REVISION HISTORY

R01UH0752EJ0120 Rev.1.20 Page 631 of 637
Dec 29, 2021

 Description

Rev. Date Page Summary

0.95 Oct 19, 2018 219 3.6.1 Spike Suppression ((tSP, Table 4) → (tSP) , for low frequencies → by a long pulse),
description modified

 221 3.6.2.1 Minimum High and Low Counts, Table 3.40 Minimum High and Low Counts (than
equal I2C_PCLK. → than or equal to I2C_PCLK.), note modified

 224 4.1 Overview, (pin → signal), expression modified

 224 4.1 Overview, Figure 4.1 BGPIO Summary Synoptic (32b AHBS → 32b APBS), figure
modified

 226 4.2 Signal Interfaces, Table 4.1 BGPIO Signal Interface (by GPIO multiplexing logic. → by
IO Multiplexing logic.), note modified

 234 4.4.12 rGPIO_ext_porta — GPIO Port A Data Input Register, bGPIO_ext_port (data
register → data output register), description modified

 235 4.4.13 rGPIO_ext_portb — GPIO Port B Data Input Register, bGPIO_ext_port (data
register → data output register), description modified

 236 4.5.1.1 Data & Control Flow (the output → the external output, I/O pins → I/O, external pins
→ external inputs), description modified

 236 4.5.1.2 Interruption (Only Port A), description deleted

 237, 238 4.5.1.4 Trigger Synchronous Operation (CFG_GPIOT_PTEN_mj[n] → The bit in System
Control CFG_GPIOT_PTEN_mj[n], others), description modified

 238 4.5.1.4 Trigger Synchronous Operation, Figure 4.5 Synchronization Principle and Capture
on Event (INT_REQ[31:0] → INT_REQ[3:0], [k] → [n]), figure modified

 239 4.5.1.4 Trigger Synchronous Operation, Table 4.19 Trigger Synchronous Operation
Allocation Line, (pin → signal), expression modified

 240 4.6.1 Programming Consideration (Programming → In order to prevent glitches,
programming), caution modified

 244 5.4.1 rTimerLoadCount_[n] — Preset Value of Sub-timer[n] (n = 0..5), bTimerLoadCount,
description added

 245 5.4.2 rTimerLoadCount_[n] — Preset Value of Sub-timer[n] (n = 6..7), bTimerLoadCount,
description added

 256 5.4.14 rTimer_DMA_PendingClrOvf — TIMER DMA Overflow Clear,
bTimer_DMA_RunningClrOvf_7 (Always Reserved → When read, this bit returns “0”,
others), description modified

 256 5.4.14 rTimer_DMA_PendingClrOvf — TIMER DMA Overflow Clear, b7, b6 (R/W → W),
modified

 256 5.4.14 rTimer_DMA_PendingClrOvf — TIMER DMA Overflow Clear
(bTimer_DMA_RunnningClrOvf_6 → bTimer_DMA_RunningClrOvf_6), phrase modified

 257 5.5.2 Counter 16 or 32 Bits, Two events can clear the timer: (Timer is enabled after being
reset or disabled → Enable timer after reset or disabled), description modified

 259 5.5.2 Counter 16 or 32 Bits, [Enable] (Restart the timer in increment mode. → Restart timer
increment.), description modified

 260 5.5.3 Interruption (count up from → count up to), description modified

 260 5.5.3 Interruption, Figure 5.5 Timer Interruption (Timer Interrupt rise edge), figure modified

 261 5.5.4 DMA Control, description modified

 — Overall, Section 6 CAN, (record → hold, recorded → held), phrase modified

 263 6.1 Overview, (with record of bit position → with data of bit position), expression modified

 273 6.4.3 rCan_SR — Controller Status Register, bCan_RBS (Full → Not Empty), description
modified

 289 6.4.16 rCan_ACR[n] — Acceptance Code Filter [n] Register (n = 0..3), bCan_ACR
(rCan_AMR0 → rCan_AMR[n]), description modified

 290 6.4.17 rCan_AMR[n] — Acceptance Mask Filter [n] Register (n = 0..3), bCan_AMR
(rCan_ACR0 → rCan_ACR[n]), description modified

 320 6.5.10 Error Handling, Table 6.36 Increment/Decrement of Transmit and Receive Error
Counte (error → error flag, Overload error → Overload flag), phrase modified

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group REVISION HISTORY

R01UH0752EJ0120 Rev.1.20 Page 632 of 637
Dec 29, 2021

 Description

Rev. Date Page Summary

0.95 Oct 19, 2018 337 6.5.16 Difference between CAN Controllers and Reference Philips SJA1000 Devices,
Sleep Mode, description modified

 339 7.1 Overview, description deleted

 358 7.4.1.13 rADC_FORCE — ADC Request, bADC_FORCE_VC, description modified

 365 7.4.1.18 rADC_ACQS — ADC Control Sample and Hold, Function (f → fADC_CLK,
others), expression modified

 376 7.5 Operation, Figure 7.3 ADC Controller Synoptic (delete: iAdcTrig[7:0]), figure modified

 378 7.5.1 Virtual Channel ADC_VC Principle Operation, Figure 7.4 Virtual Channel ADC_VC
Architecture (delete: iAdcTrig_Sync[7:0]), figure modified

 390 7.5.6 Simultaneous Sample and Hold, (ADC_VC1..4 → ADC_VC1..3), description modified

 402 7.5.10.1 Overview on DMA Operation (The source and destination transfer → The source
transfer), caution modified

 407, 409 8.4.1 rLcd_CR1 — Control Register 1, bLcd_PSS, bLcd_LCE, description modified

 410 8.4.2 rLcd_HTR — Horizontal Timing Register (bLcd_HSW → bLcd_PPL, bLcd_HBP →
bLcd_HFP), modified

 423 8.4.13 rLcd_PWMFR_0 — PWM0 Frequency Register, bLcd_PWMFCD_0, description
modified

 424 8.4.14 rLcd_PWMDCR_0 — PWM0 Duty Cycle Register, bLcd_PWMDC_0, description
modified

 427 8.4.17 rLcd_PWMFR_1 — PWM1 Frequency Register, bLcd_PWMFCD_1, description
modified

 428 8.4.18 rLcd_PWMDCR_1 — PWM1 Duty Cycle Register, bLcd_PWMDC_1, description
modified

 435 8.5.1 Main Features Description, description modified

 436 8.5.2 Bandwidth Limitation, description modified

 439 8.5.4 DMA Controller and Memory Interface, description deleted

 439 8.5.5 Frame Buffer Organization, description deleted

 439 8.5.5 Frame Buffer Organization (Between Table 8.29 LCD Frame Buffer Support for
Palette Load to Table 8.34 LCD Frame Buffer Organization, bLcd_PSS = 1 and bLcd_BPP
= 3’b011), table deleted

 441 8.5.7 Pixel Unpack, Figure 8.5 Pixel Unpack, Big Endian Frame Buffer Byte placed in Big
Endian Pixel Byte (Lcd_EPO=1 → Lcd_EPO=x), figure modified

 442, 443 8.5.8 Palette Lookup Table, description modified

 445 8.5.9 Output FIFO and Formatter, Figure 8.8 LCD Output Formatting, bLcd_BPP: 16, 18,
24 (RGB defined in Palette → Frame Buffer Direct), figure modified

 450 8.5.15 Blink Function, Figure 8.10 Blink BL[1:0] Attribute Management (Slow speed blink:
Clock → Clock/4, Fast speed blink: Clock/4 → Clock), figure modified

 451 8.5.16 Limitation, Concerning loading Palette by DMA:, description deleted

 452 9.1 Overview (Up to 64 → 64, othrers), description modified

 454 9.4.1 rSemaphoreLockCPU[m]_[n] — Semaphore Lock CPU[m] Register [n], description
added

 455 9.4.2 rSemaphoreStatusCPU[m]_[n] — Semaphore Status CPU[m] Register [n] (CPU m =
1..4 → With CPU[m] (m = 1..4)), expression modified

 458 9.6 Usage Notes, caution modified

 462 10.1.2 MSEBI Master Address Mapping of CS[n] from CPU (Table 10.2 Address Mapping
of CS[n] from CPU), subsection added

 463 10.1.3 Multiplexed Signal Interface, Table 10.3 Multiplexed Signal Interface (1/2),
MSEBI_CS[n]_N, description modified

 471 10.2.2 Register Map MSEBI Master from DMA, Table 10.11 Register Map MSEBI Master
from DMA (64KB → 32KB), description modified

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group REVISION HISTORY

R01UH0752EJ0120 Rev.1.20 Page 633 of 637
Dec 29, 2021

 Description

Rev. Date Page Summary

0.95 Oct 19, 2018 489 10.3.1.11 rMSEBIM_CONFIG_CS[n]_N — Chip Select Config Register (n = 0..3) (b15: “–”
→ bMSEBIM_MULTI_DLE, b12:bMSEBIM_CS[n]N_ROUTING_CS1_N →
bMSEBIM_CS0N_ROUTING_CS1_N), description modified

 494 10.3.1.12 rMSEBIM_CONFIG — Common Config Register, bMSEBIM_CLKENABLE,
description modified

 524 10.3.4.3 rMSEBIS_ID_CS[n]_N — Slave ID Register (n = 0..3), bMSEBIS_ID (This register
is pooled → This register is read, 0x1234_FED0 → 0x1234_FEDn (n = 0..3)), description
modified

 525 10.4.1.1 AHB Slave Interface, description modified

 525 10.4.1.2 AHB Master Interface (MSEBI Slave only), title modified

 526 10.4.2 Use Case Device Connection, MSEBI(x)_CLK, description modified

 531 10.4.2.5 Three Devices, Mode8/16/32, Asynchronous, Figure 10.6 Three Devices,
Mode8/16/32, Asynchronous, figure modified

 532 10.4.2.6 Three Devices, Mode8/16/32, Mixed Synchronous and Asynchronous, Figure 10.7
Three Devices, Mode8/16/32, Mixed Synchronous and Asynchronous, figure modified

 533 10.4.2.7 One Device, Mode8, Asynchronous, ALE in Parallel Mode, Figure 10.8 One
Device, Mode8, Asynchronous, ALE in Parallel Mode (READY_N → READY), figure
modified

 533 10.4.2.7 Two Devices, Mode8/16, Synchronous, Multi Master (Figure 10.8 Two Devices,
Mode8/16, Synchronous, Multi-Master), subsection deleted

 533 10.4.2.8 Three Devices, Mode8, Synchronous/Asynchronous, Multi Master (Figure 10.9
Three Devices, Mode8, Synchronous/Asynchronous, Multi-Master), subsection deleted

 544 to 574
593 to 594

10.4.4.1 Asynchronous Mode, One ALE, Figure 10.9 MSEBI Timing, Asynchronous Mode,
Write1, NoWait, NoBurst, One ALE (Delete MSEBI(x)_HCLK, Read figure: Changed setup
data and hold data reference to MSEBI(x)_CLK) figure modified
10.4.4.1 to 10.4.4.7, 10.4.6.2 (Figure 10.10..36, Figure 10.51..52) Same as 10.4.4.1
Asynchronous Mode, One ALE, Figure 10.9 MSEBI Timing, Asynchronous Mode, Write1,
NoWait, NoBurst, One ALE

 576 to 579 10.4.5.2 MSEBI Interrupt: End of Block Detection by the Master, For a transfer using DMA
TX[n] FIFO (n = 0..1) (by pooling (on a deported task) → by polling), description modified

 580 10.4.5.3 MSEBI Interrupt: End of Block Detection by the Slave (by pooling (on a deported
task) → by polling), description modified

 585 10.4.6.2 MSEBI Master: Burst Mode, Figure 10.45 MSEBI: Round Robin Priority, figure
modified

 601 10.4.6.3 MSEBI Master: DMA Control, (4), Figure 10.54 MSEBI Case1: Transmit
Watermark Level (Burst Size: 60 → 30), figure modified

 603 10.4.6.3 MSEBI Master: DMA Control, (5) Selecting DEST_MSIZE and Transmit FIFO
Overflow, description modified

 604 10.4.6.3 MSEBI Master: DMA Control, (8) Selecting SRC_MSIZE and Receive FIFO
Underflow, description modified

 615 10.4.7.2 MSEBI Slave: Burst Mode, (2), Figure 10.62 Slave DMA FIFOs for Requests from
Master MSEBI DMA RX FIFOs (Add dotted line for “These data are not used”), figure
modified

 617 10.4.7.2 MSEBI Slave: Burst Mode, (3), Figure 10.63 MSEBI Slave: External DMA Request
(by register → by following bits), figure modified

1.00 Mar 29, 2019 — All sections, spelling, syntax errors and appearances are corrected, and expressions are
modified properly

 31 1.4.1 rUart_DLL — Divisor Latch (Low), bUart_DLL, description modified

 32 1.4.2 rUart_DLH — Divisor Latch (High), bUart_DLH, description modified

 37 to 38 1.4.6 rUart_FCR — FIFO Control Register, description modified

 39 to 40 1.4.7 rUart_LCR — Line Control Register, description modified

 41 1.4.8 rUart_MCR — Modem Control Register, bUart_LB, description modified

 54 1.4.16 rUart_USR — UART Status Register, bUart_BUSY, description modified

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group REVISION HISTORY

R01UH0752EJ0120 Rev.1.20 Page 634 of 637
Dec 29, 2021

 Description

Rev. Date Page Summary

1.00 Mar 29, 2019 57 1.4.19 rUart_SRR — Software Reset Register, description modified

 60 1.4.22 rUart_SFE — Shadow FIFO Enable, bUart_SFE, description modified

 64 1.4.26 rUart_DMASA — DMA Software Acknowledge, bUart_DMASA, description modified

 65 1.4.27 rUart_TO — Time-Out Counter Configuration Register, bUart_TO3, description
modified

 67 1.4.28 rUart_CTRLTO — Time-Out Control Register, bUart_TG, description modified

 69 1.4.29 rUart_STATUSTO — Time-Out Counter Status Register, bUart_TIMEOUTStatus3,
description modified

 75 to 76 1.5.1.1 UART (RS232) Serial Protocol, description modified

 76 1.5.1.1 UART (RS232) Serial Protocol, Figure 1.4 Receiver Serial Data Sample, figure
modified

 76 1.5.1.2 Baud Rate Tolerance to 19200 baud, description added

 78 1.5.1.5 Back to Back Character Stream Transmission, description modified

 82 1.5.1.8 Programmable THRE interrupt, Figure 1.7 Flowchart of Interrupt Generation,
Programmable THRE Interrupt Mode & FIFO Enable, figure modified

 91 to 95 1.5.1.10 Transceiver & Receiver Time-Out for MODBUS Management, description modified

 94 1.5.1.10 Transceiver & Receiver Time-Out for MODBUS Management, Figure 1.15
Receiver & Transceiver Time-Out0..3, Timing Description, figure modified

 96 1.5.1.11 Half-Duplex Mode Management, description modified

 96 1.5.1.11 Half-Duplex Mode Management, Figure 1.17 Transceiver Time-Guard Synoptic,
figure modified

 97 1.5.1.11 Half-Duplex Mode Management, Figure 1.18 Data Enable Auto Generation in
Half-Duplex Mode, figure modified

 100 2.1 Overview, Figure 2.2 SPI Slave Synoptic, figure modified

 109 2.4.1 rSpi_CTRLR0 — Control Register 0, bSpi_SCPH, description modified

 111 2.4.3 rSpi_SSIENR — Enable Register, bSpi_SSIENR, description modified

 113 2.4.5 rSpi_SER — Slave Enable Register, description modified

 116 2.4.7 rSpi_TXFTLR — Transmit FIFO Threshold Level, description modified

 117 2.4.8 rSpi_RXFTLR — Receive FIFO Threshold Level, description modified

 132 2.4.22 rSpi_DR — Data Register, bSpi_DR, description deleted

 154 2.5.11 National Semiconductor Microwire, description deleted

 166 2.6.1.2 Programming Master SPI in National Semiconductor Mode, Figure 2.25 SPI
Controller in Master Mode, National Semiconductor Mode, figure modified

 168 2.6.1.3 Programming Slave SPI in Motorola & Texas Mode, Figure 2.26 SPI Controller in
Slave Mode, Motorola & Texas Mode, figure modified

 174 3.4.1 IC_CON — I2C Control Register, RX_FIFO_FULL_HLD_CTRL, description modified

 183 3.4.9 IC_INTR_STAT — I2C Interrupt Status Register, ALL_BITS, description modified

 184 to 185 3.4.10 IC_INTR_MASK — I2C Interrupt Mask Register, ALL_BITS, description modified

 186 to 188 3.4.11 IC_RAW_INTR_STAT — I2C Raw Interrupt Status Register, description modified

 198 3.4.26 IC_STATUS — I2C Status Register, IC_STATUS_ACTIVITY, description modified

 202 3.4.30 IC_TX_ABRT_SOURCE — I2C Transmit Abort Source Register,
ABRT_USER_ABRT, description modified

 234 4.4.9 rGPIO_intstatus — GPIO Port A Interrupt Status, bGPIO_intstatus, description
modified

 234 4.4.10 rGPIO_raw_intstatus — GPIO Port A Raw Interrupt Status (Premasking),
bGPIO_raw_intstatus, description modified

 247 5.4.3 rTimerCurrentCount_[n] — Current Value of Sub-timer[n] (n = 0..5),
bTimerCurrentCount, description modified

 247 5.4.4 rTimerCurrentCount_[n] — Current Value of Sub-timer[n] (n = 6..7),
bTimerCurrentCount, description modified

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group REVISION HISTORY

R01UH0752EJ0120 Rev.1.20 Page 635 of 637
Dec 29, 2021

 Description

Rev. Date Page Summary

1.00 Mar 29, 2019 339 6.6 Special Notice, description deleted

 340 7.1 Overview, DMA coupling, description modified

 404 7.6 Usage Notes, 7.6.1 Restriction, subsection added

 440 8.5.3 Timing and Control, Figure 8.2 LCD Horizontal Timing, figure modified

 464 10.1.1 Signal Interfaces, Table 10.1 Signal Interface, note added

 483 10.3.1.5 rMSEBIM_ADDRDMA_READ_CS[n]_N — DMA Read Address Register (n =
0..1), bMSEBIM_ADDRDMA_READ_2, description deleted

 527 10.4.1.1 AHB Slave Interface, For MSEBI Master, description added

1.10 Sep 30, 2020 474 10.2.4 Register Map MSEBI Slave from MSEBI, Table 10.13 Register Map MSEBI Slave
from MSEBI, description added

 522 10.3.4.1 rMSEBIS_INT — Slave Interrupt Register, Address, description added

 524 10.3.4.2 rMSEBIS_STATUS — Slave Status Register, Address, description added

 526 10.3.4.3 rMSEBIS_ID_CS[n]_N — Slave ID Register (n = 0..3), Address, description added

 621 10.4.7.4 MSEBI Slave: Register Access by Master, description modified

1.20 Dec 29, 2021 — All sections, spelling, syntax errors and appearances are corrected, and expressions are
modified properly

 22 1.2 Signal Interfaces, UART[m]_RTS_N, description modified

 67, 68 1.4.28 rUart_CTRLTO — Time-Out Control Register, description modified

 69 1.4.29 rUart_STATUSTO — Time-Out Counter Status Register, bUart_DE, description
modified

 90 1.5.1.10 Transceiver & Receiver Time-Out for MODBUS Management, description added

 93 1.5.1.10 Transceiver & Receiver Time-Out for MODBUS Management, (1) Receiver Time-
Out, Figure 1.14 Receiver Time-Out Synoptic, figure modified

 93 1.5.1.10 Transceiver & Receiver Time-Out for MODBUS Management, (1) Receiver Time-
Out, description modified

 95 1.5.1.10 Transceiver & Receiver Time-Out for MODBUS Management, (3) Time-out
counter timing, Figure 1.15 Receiver & Transceiver Time-Out0..3, Timing Description, figure
moved

 95 1.5.1.10 Transceiver & Receiver Time-Out for MODBUS Management, (2) Transceiver
Time-Out, Figure 1.16 Transceiver Time-Out Synoptic, figure modified

 94, 95 1.5.1.10 Transceiver & Receiver Time-Out for MODBUS Management, (2) Transceiver
Time-Out, description modified

 — 1.5.1.11 Half-Duplex Mode Management, subsection deleted

 96 1.5.2 Usage Notes, subsection added

 160 2.6.1 Programming Consideration, CAUTION, description modified

Colophon

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group
User’s Manual: Peripherals

Publication Date: Rev.0.50 Jun 30, 2017
 Rev.1.20 Dec 29, 2021

Published by: Renesas Electronics Corporation

Back Cover

RZ/N1D Group, RZ/N1S Group, RZ/N1L Group

R01UH0752EJ0120

	Cover
	Notice
	General Precautions in the Handling of Microprocessing Unit and MicrocontrollerUnit Products
	How to Use This Manual
	Table of Contents
	Section 1 UART
	1.1 Overview
	1.2 Signal Interfaces
	1.3 Register Map
	1.3.1 Register Map UART 1
	1.3.2 Register Map UART 2
	1.3.3 Register Map UART 3
	1.3.4 Register Map UART 4
	1.3.5 Register Map UART 5
	1.3.6 Register Map UART 6
	1.3.7 Register Map UART 7
	1.3.8 Register Map UART 8

	1.4 Register Description
	1.4.1 rUart_DLL — Divisor Latch (Low)
	1.4.2 rUart_DLH — Divisor Latch (High)
	1.4.3 rUart_IIR — Interrupt Identification Register
	1.4.4 rUart_RBR_THR — Receive Buffer/Transmit Holding Register
	1.4.5 rUart_IER — Interrupt Enable Register
	1.4.6 rUart_FCR — FIFO Control Register
	1.4.7 rUart_LCR — Line Control Register
	1.4.8 rUart_MCR — Modem Control Register
	1.4.9 rUart_LSR — Line Status Register
	1.4.10 rUart_MSR — Modem Status Register
	1.4.11 rUart_SCR — Scratchpad Register
	1.4.12 rUart_SRBR_STHR — Shadow Receive Buffer/Transmit Holding Register
	1.4.13 rUart_FAR — FIFO Access Register
	1.4.14 rUart_TFR — Transmit FIFO Read
	1.4.15 rUart_RFW — Receive FIFO Write
	1.4.16 rUart_USR — UART Status Register
	1.4.17 rUart_TFL — Transmit FIFO Level
	1.4.18 rUart_RFL — Receive FIFO Level
	1.4.19 rUart_SRR — Software Reset Register
	1.4.20 rUart_SRTS — Shadow Request to Send
	1.4.21 rUart_SBCR — Shadow Break Control Register
	1.4.22 rUart_SFE — Shadow FIFO Enable
	1.4.23 rUart_SRT — Shadow RCVR Trigger
	1.4.24 rUart_STET — Shadow TX Empty Trigger
	1.4.25 rUart_HTX — Halt TX
	1.4.26 rUart_DMASA — DMA Software Acknowledge
	1.4.27 rUart_TO — Time-Out Counter Configuration Register
	1.4.28 rUart_CTRLTO — Time-Out Control Register
	1.4.29 rUart_STATUSTO — Time-Out Counter Status Register
	1.4.30 rUart_TDMACR — DMA Control Register in Transmit Mode
	1.4.31 rUart_RDMACR — DMA Control Register in Receive Mode

	1.5 Operation
	1.5.1 Main Function Blocks Description
	1.5.1.1 UART (RS232) Serial Protocol
	1.5.1.2 Baud Rate Tolerance to 19200 baud
	1.5.1.3 FIFO Management
	1.5.1.4 Clock Management
	1.5.1.5 Back to Back Character Stream Transmission
	1.5.1.6 Interrupts
	1.5.1.7 Auto Flow Control
	1.5.1.8 Programmable THRE interrupt
	1.5.1.9 DMA Management (Only UART4, 5, 6, 7, 8)
	1.5.1.10 Transceiver & Receiver Time-Out for MODBUS Management

	1.5.2 Usage Notes

	Section 2 SPI
	2.1 Overview
	2.2 Signal Interfaces
	2.3 Register Map
	2.3.1 Register Map SPI1 (Master)
	2.3.2 Register Map SPI2 (Master)
	2.3.3 Register Map SPI3 (Master)
	2.3.4 Register Map SPI4 (Master)
	2.3.5 Register Map SPI5 (Slave)
	2.3.6 Register Map SPI6 (Slave)

	2.4 Register Description
	2.4.1 rSpi_CTRLR0 — Control Register 0
	2.4.2 rSpi_CTRLR1 — Control Register 1
	2.4.3 rSpi_SSIENR — Enable Register
	2.4.4 rSpi_MWCR — Microwire Control Register
	2.4.5 rSpi_SER — Slave Enable Register
	2.4.6 rSpi_BAUDR — Baud Rate Select
	2.4.7 rSpi_TXFTLR — Transmit FIFO Threshold Level
	2.4.8 rSpi_RXFTLR — Receive FIFO Threshold Level
	2.4.9 rSpi_TXFLR — Transmit FIFO Level Register
	2.4.10 rSpi_RXFLR — Receive FIFO Level Register
	2.4.11 rSpi_SR — Status Register
	2.4.12 rSpi_IMR — Interrupt Mask Register
	2.4.13 rSpi_ISR — Interrupt Status Register
	2.4.14 rSpi_RISR — Raw Interrupt Status Register
	2.4.15 rSpi_TXOICR — Transmit FIFO Overflow Interrupt Clear Register
	2.4.16 rSpi_RXOICR — Receive FIFO Overflow Interrupt Clear Register
	2.4.17 rSpi_RXUICR — Receive FIFO Underflow Interrupt Clear Register
	2.4.18 rSpi_ICR — Interrupt Clear Register
	2.4.19 rSpi_DMACR — DMA Control Register
	2.4.20 rSpi_DMATDLR — DMA Transmit Data Level
	2.4.21 rSpi_DMARDLR — DMA Receive Data Level
	2.4.22 rSpi_DR — Data Register
	2.4.23 rSpi_RX_SAMPLE_DLY — RXD Sample Delay Register
	2.4.24 rSpi_TDMACR — DMA Control Register in Transmit Mode
	2.4.25 rSpi_RDMACR — DMA Control Register in Receive Mode

	2.5 Operation
	2.5.1 General description
	2.5.2 Typical Connection between SPI Master & Slave
	2.5.3 Control Slave Select Line by Hardware or Software Mode
	2.5.4 Programmable Prescaler Clock
	2.5.5 Data Input Sample Delay
	2.5.6 Transmit & Receive FIFO & Control
	2.5.7 Interruption Management
	2.5.8 Transfer Mode
	2.5.8.1 Transmit and Receive Mode
	2.5.8.2 Transmit Only Mode
	2.5.8.3 Receive Only Mode
	2.5.8.4 EEPROM Read Mode

	2.5.9 Motorola Serial Peripheral Interface
	2.5.10 Texas Instruments Synchronous Serial Protocol
	2.5.11 National Semiconductor Microwire
	2.5.12 DMA Control
	2.5.12.1 Overview on DMA Operation
	2.5.12.2 Transmit Watermark Level and Transmit FIFO Underflow
	2.5.12.3 Choosing the Transmit Watermark Level
	2.5.12.4 Selecting DEST_MSIZE and Transmit FIFO Overflow
	2.5.12.5 Receive Watermark Level and Receive FIFO Overflow
	2.5.12.6 Choosing the Receive Watermark Level
	2.5.12.7 Selecting SRC_MSIZE and Receive FIFO Underflow

	2.6 Usage Notes
	2.6.1 Programming Consideration
	2.6.1.1 Programming Master SPI in Motorola & Texas Mode
	2.6.1.2 Programming Master SPI in National Semiconductor Mode
	2.6.1.3 Programming Slave SPI in Motorola & Texas Mode
	2.6.1.4 Programming Slave SPI in National Semiconductor Mode

	Section 3 I2C
	3.1 Overview
	3.2 Signal Interfaces
	3.3 Register Map
	3.3.1 I2C1 Register Map
	3.3.2 I2C2 Register Map

	3.4 Register Description
	3.4.1 IC_CON — I2C Control Register
	3.4.2 IC_TAR — I2C Target Address Register
	3.4.3 IC_SAR — I2C Slave Address Register
	3.4.4 IC_DATA_CMD — I2C Rx/Tx Data Buffer and Command Register
	3.4.5 IC_SS_SCL_HCNT — Standard mode I2C Clock SCL High Count Register
	3.4.6 IC_SS_SCL_LCNT — Standard mode I2C Clock SCL Low Count Register
	3.4.7 IC_FS_SCL_HCNT — Fast mode I2C Clock SCL High Count Register
	3.4.8 IC_FS_SCL_LCNT — Fast mode I2C Clock SCL Low Count Register
	3.4.9 IC_INTR_STAT — I2C Interrupt Status Register
	3.4.10 IC_INTR_MASK — I2C Interrupt Mask Register
	3.4.11 IC_RAW_INTR_STAT — I2C Raw Interrupt Status Register
	3.4.12 IC_RX_TL — I2C Receive FIFO Threshold Register
	3.4.13 IC_TX_TL — I2C Transmit FIFO Threshold Register
	3.4.14 IC_CLR_INTR — Clear Combined and Individual Interrupt Register
	3.4.15 IC_CLR_RX_UNDER — Clear RX_UNDER Interrupt Register
	3.4.16 IC_CLR_RX_OVER — Clear RX_OVER Interrupt Register
	3.4.17 IC_CLR_TX_OVER — Clear TX_OVER Interrupt Register
	3.4.18 IC_CLR_RD_REQ — Clear RD_REQ Interrupt Register
	3.4.19 IC_CLR_TX_ABRT — Clear TX_ABRT Interrupt Register
	3.4.20 IC_CLR_RX_DONE — Clear RX_DONE Interrupt Register
	3.4.21 IC_CLR_ACTIVITY — Clear ACTIVITY Interrupt Register
	3.4.22 IC_CLR_STOP_DET — Clear STOP_DET Interrupt Register
	3.4.23 IC_CLR_START_DET — Clear START_DET Interrupt Register
	3.4.24 IC_CLR_GEN_CALL — Clear GEN_CALL Interrupt Register
	3.4.25 IC_ENABLE — I2C Enable Register
	3.4.26 IC_STATUS — I2C Status Register
	3.4.27 IC_TXFLR — I2C Transmit FIFO Level Register
	3.4.28 IC_RXFLR — I2C Receive FIFO Level Register
	3.4.29 IC_SDA_HOLD — I2C SDA Hold Time Length Register
	3.4.30 IC_TX_ABRT_SOURCE — I2C Transmit Abort Source Register
	3.4.31 IC_SLV_DATA_NACK_ONLY — Generate Slave Data NACK Register
	3.4.32 IC_SDA_SETUP — I2C SDA Setup Register
	3.4.33 IC_ACK_GENERAL_CALL — I2C ACK General Call Register
	3.4.34 IC_ENABLE_STATUS — I2C Enable Status Register
	3.4.35 IC_FS_SPKLEN — I2C Sm, Fm Spike Suppression Limit
	3.4.36 IC_CLR_RESTART_DET — Clear RESTART_DET Interrupt Register
	3.4.37 IC_COMP_PARAM_1 — Component Parameter Register 1

	3.5 Operation Modes
	3.5.1 Slave Mode Operation
	3.5.1.1 Initial Configuration
	3.5.1.2 Slave Transmitter Operation for a Single Byte
	3.5.1.3 Slave Receiver Operation for a Single Byte
	3.5.1.4 Slave Transfer Operation for Bulk Transfer

	3.5.2 Master Mode Operation
	3.5.2.1 Initial Configuration
	3.5.2.2 Dynamic IC_TAR or IC_10BITADDR_MASTER Update
	3.5.2.3 Master Transmit and Master Receive

	3.5.3 Disabling the I2C controller
	3.5.3.1 Procedure

	3.5.4 Aborting the I2C Transfer
	3.5.4.1 Procedure

	3.6 Programming the I2C Controller
	3.6.1 Spike Suppression
	3.6.2 I2C_SCLK Frequency Configuration
	3.6.2.1 Minimum High and Low Counts

	3.6.3 SDA Hold Time
	3.6.3.1 SDA Hold Timings in Receiver
	3.6.3.2 SDA Hold Timings in Transmitter

	Section 4 Basic GPIO
	4.1 Overview
	4.2 Signal Interfaces
	4.3 Register Map
	4.3.1 Register Map BGPIO1
	4.3.2 Register Map BGPIO2
	4.3.3 Register Map BGPIO3

	4.4 Register Description
	4.4.1 rGPIO_swporta_dr — GPIO Port A Data Output Register
	4.4.2 rGPIO_swporta_ddr — GPIO Port A Data Direction Register
	4.4.3 rGPIO_swportb_dr — GPIO Port B Data Output Register
	4.4.4 rGPIO_swportb_ddr — GPIO Port B Data Direction Register
	4.4.5 rGPIO_inten — GPIO Port A Interrupt Enable Register
	4.4.6 rGPIO_intmask — GPIO Port A Interrupt Mask Register
	4.4.7 rGPIO_inttype_level — GPIO Port A Interrupt Level Register
	4.4.8 rGPIO_int_polarity — GPIO Port A Interrupt Polarity Register
	4.4.9 rGPIO_intstatus — GPIO Port A Interrupt Status
	4.4.10 rGPIO_raw_intstatus — GPIO Port A Raw Interrupt Status (Premasking)
	4.4.11 rGPIO_porta_eoi — GPIO Port A Clear Interrupt Register
	4.4.12 rGPIO_ext_porta — GPIO Port A Data Input Register
	4.4.13 rGPIO_ext_portb — GPIO Port B Data Input Register
	4.4.14 rGPIO_ls_sync — GPIO Port A Level-Sensitive Synchronization Enable Register

	4.5 Operation
	4.5.1 Main Functions Blocks Description
	4.5.1.1 Data & Control Flow
	4.5.1.2 Interruption (Only Port A)
	4.5.1.3 Programmable Interrupts Routed on Cortex-A7 and M3
	4.5.1.4 Trigger Synchronous Operation

	4.6 Usage Notes
	4.6.1 Programming Consideration

	Section 5 Timer Block
	5.1 Overview
	5.2 Signal Interfaces
	5.3 Register Map
	5.3.1 TIMER1 Register Map
	5.3.2 TIMER2 Register Map

	5.4 Register Description
	5.4.1 rTimerLoadCount_[n] — Preset Value of Sub-timer[n] (n = 0..5)
	5.4.2 rTimerLoadCount_[n] — Preset Value of Sub-timer[n] (n = 6..7)
	5.4.3 rTimerCurrentCount_[n] — Current Value of Sub-timer[n] (n = 0..5)
	5.4.4 rTimerCurrentCount_[n] — Current Value of Sub-timer[n] (n = 6..7)
	5.4.5 rTimerControl_[n] — Control Mode of Sub-timer[n] (n = 0..7)
	5.4.6 rTimerClearInt_[n] — Clears the Interruption of Sub-timer[n] (n = 0..7)
	5.4.7 rTimerStatusInt0_[n] — Interruption Status before Masking of Sub-timer[n] (n = 0..7)
	5.4.8 rTimerStatusInt1_[n] — Interruption Status after Masking of Sub-timer[n] (n = 0..7)
	5.4.9 rTimerAllClearInt — Clear All Interrupt
	5.4.10 rTimerAllStatusInt0 — All Interrupts Status before Masking
	5.4.11 rTimerAllStatusInt1 — All Interrupts Status after Masking
	5.4.12 rTimer_DMA_Pending — TIMER DMA Requests Status
	5.4.13 rTimer_DMA_PendingOvf — TIMER DMA Overflow Status
	5.4.14 rTimer_DMA_PendingClrOvf — TIMER DMA Overflow Clear

	5.5 Operation
	5.5.1 Prescaler Counter
	5.5.2 Counter 16 or 32 Bits
	5.5.3 Interruption
	5.5.4 DMA Control

	5.6 Usage Notes

	Section 6 CAN
	6.1 Overview
	6.2 Signal Interfaces
	6.3 Register Map
	6.3.1 Register Map (CAN1)
	6.3.2 Register Map (CAN2)

	6.4 Register Description
	6.4.1 rCan_MOD — Configuration Mode Register
	6.4.2 rCan_CMR — Command Register
	6.4.3 rCan_SR — Controller Status Register
	6.4.4 rCan_IR — Interrupt Register
	6.4.5 rCan_IER — Interrupt Event Register
	6.4.6 rCan_BTR0 — Bus Timing Register 0
	6.4.7 rCan_BTR1 — Bus Timing Register 1
	6.4.8 rCan_OCR — Output Control Register
	6.4.9 rCan_ALC — Arbitration Lost Capture Register
	6.4.10 rCan_ECC — Error Code Capture Register
	6.4.11 rCan_EWLR — Error Warning Limit Register
	6.4.12 rCan_RXERR — Receive Error Counter Register
	6.4.13 rCan_TXERR — Transmit Error Counter Register
	6.4.14 rCan_WrTransmitBuffer — Write Transmit Buffer Register
	6.4.15 rCan_RdReceiveBuffer — Read Receive Buffer Register
	6.4.16 rCan_ACR[n] — Acceptance Code Filter [n] Register (n = 0..3)
	6.4.17 rCan_AMR[n] — Acceptance Mask Filter [n] Register (n = 0..3)
	6.4.18 rCan_RMC — Receive Message Counter Register
	6.4.19 rCan_RBSA — Receive Buffer Start Address Register
	6.4.20 rCan_ReceiveFifo — Receive FIFO Register
	6.4.21 rCan_RdTransmitBuffer — Read Transmit Buffer Register
	6.4.22 rCan_SyncTransmitBuffer — Sync Frame Transmit Buffer Register
	6.4.23 rCan_SyncPeriod — Time Window Sync Frame Transmission Register
	6.4.24 rCan_SyncStatusInt — Sync Frame Interrupt Status Register
	6.4.25 rCan_SyncMaskInt — Sync Frame Mask Interrupt Register
	6.4.26 rCan_SyncClearInt — Sync Frame Clear Interrupt Register
	6.4.27 rCan_SyncStatus — Sync Frame Status Configuration Register
	6.4.28 rCan_SyncClearSetRunStop — Sync Frame Generation Register
	6.4.29 rCan_SyncPassiveError — Sync Passive Error Detection Register

	6.5 Operation
	6.5.1 Main Features Description
	6.5.2 Operation Mode
	6.5.3 Transmission
	6.5.4 Reception
	6.5.5 Self Reception
	6.5.6 Sleep Mode
	6.5.7 Acceptance Filtering
	6.5.8 Interrupts Generation
	6.5.8.1 Receive Interrupts
	6.5.8.2 Transmit Interrupts
	6.5.8.3 Error Warning Interrupts
	6.5.8.4 Data Overrun Interrupts
	6.5.8.5 Wakeup Interrupts
	6.5.8.6 Error Passive Interrupts
	6.5.8.7 Arbitration Loss Interrupts
	6.5.8.8 Bus Error Interrupts
	6.5.8.9 Transmit “Sync frame” Interrupts
	6.5.8.10 Transmit Overrun “Sync frame” Interrupts

	6.5.9 Bus Arbitration
	6.5.10 Error Handling
	6.5.11 Transmit Buffer Layout
	6.5.11.1 Descriptor Field of the Transmit Buffer
	6.5.11.2 Frame Format (FF)
	6.5.11.3 Remote Request (RTR)
	6.5.11.4 Data Length Code (DLC)
	6.5.11.5 Identifier (ID)
	6.5.11.6 Data Field

	6.5.12 Receive Buffer Layout
	6.5.13 Bit Period and Bus Timing Parameters
	6.5.14 Reset Mode
	6.5.15 Synchronization Frame
	6.5.15.1 CANopen Synchronous Frame Configuration
	6.5.15.2 CANopen Emission of “Sync Frame”

	6.5.16 Difference between CAN Controllers and Reference Philips SJA1000 Devices

	6.6 Special Notice

	Section 7 ADC Controller and 12bit A/D Converters
	7.1 Overview
	7.1.1 Analog Buffer

	7.2 Signal Interfaces
	7.3 Register Map
	7.3.1 Register Map ADC1
	7.3.2 Register Map ADC2

	7.4 Register Description
	7.4.1 Register Description ADC1
	7.4.1.1 rADC_INTSTATUS0 — Interrupt Status Before Masking
	7.4.1.2 rADC_INTSTATUS1 — Interrupt Status After Masking
	7.4.1.3 rADC_INTCLR — Clear Interrupt
	7.4.1.4 rADC_INTMASK — Mask Interrupt
	7.4.1.5 rADC_INTOVFSTATUS0 — Interrupt Overflow Before Masking
	7.4.1.6 rADC_INTOVFSTATUS1 — Interrupt Overflow After Masking
	7.4.1.7 rADC_INTCLROVF — Clear Interrupt Overflow
	7.4.1.8 rADC_INTOVFMASK — Mask Interrupt Overflow
	7.4.1.9 rADC_PENDING — Start of Operation Pending
	7.4.1.10 rADC_PENDINGOVF — Start of Operation Pending Overflow
	7.4.1.11 rADC_PENDINGCLROVF — Clear Start of Operation Overflow
	7.4.1.12 rADC_CONTROL — ADC Control
	7.4.1.13 rADC_FORCE — ADC Request
	7.4.1.14 rADC_SETFORCE — Set ADC Request
	7.4.1.15 rADC_CLRFORCE — Clear ADC Request
	7.4.1.16 rADC_PRIORITY — ADC Priority Mode
	7.4.1.17 rADC_CONFIG — ADC Configuration
	7.4.1.18 rADC_ACQS — ADC Control Sample and Hold
	7.4.1.19 rADC_MASKLOCK[n] — Mask Data Locked [n] (n = 0..3)
	7.4.1.20 rADC_VC[n] — ADC Control Register for Virtual Channel [n] (n = 0..15)
	7.4.1.21 rADC1_DATA[n] — ADC1 Conversion Data of Virtual Channel [n] (n = 0..15)
	7.4.1.22 rADC1_DATALOCK[n] — ADC1 DataLock[n] Register (n = 0..15)

	7.4.2 Register Description ADC2
	7.4.2.1 rADC2_DATA[n] — ADC2 Conversion Data of Virtual Channel [n] (n = 0..15)
	7.4.2.2 rADC2_DATALOCK[n] — ADC2 DataLock[n] Register (n = 0..15)

	7.5 Operation
	7.5.1 Virtual Channel ADC_VC Principle Operation
	7.5.2 Electric ADC Model and Acquisition Sample
	7.5.3 Trigger Selection and Event Management
	7.5.4 Physical Channel Selection
	7.5.5 ADC Operation Priority
	7.5.6 Simultaneous Sample and Hold
	7.5.7 End of Command (EOC) and Interrupt Operation
	7.5.8 Data Copy in Data Lock Register
	7.5.9 Timing
	7.5.9.1 Basic A/D Conversion on 3 Channels
	7.5.9.2 Sample & Hold following by A/D Conversion on One Channel
	7.5.9.3 Sample & Hold following by A/D Conversion on 3 Channels
	7.5.9.4 Power Down
	7.5.9.5 A/D Conversion Rate

	7.5.10 DMA control
	7.5.10.1 Overview on DMA Operation

	7.6 Usage Notes
	7.6.1 Restriction

	Section 8 LCD Controller
	8.1 Overview
	8.2 Signal Interfaces
	8.3 Register Map
	8.3.1 Coding Palette (Palette Registers) Map

	8.4 Register Description
	8.4.1 rLcd_CR1 — Control Register 1
	8.4.2 rLcd_HTR — Horizontal Timing Register
	8.4.3 rLcd_VTR1 — Vertical1 Timing Register
	8.4.4 rLcd_VTR2 — Vertical2 Timing Register
	8.4.5 rLcd_PCTR — Pixel Clock Timing Register
	8.4.6 rLcd_ISR — Interrupt Status Register Before Masking
	8.4.7 rLcd_IMR — Interrupt Mask Register
	8.4.8 rLcd_IVR — Interrupt Status Register After Masking
	8.4.9 rLcd_ISCR — Interrupt Scan Compare Register
	8.4.10 rLcd_DBAR — DMA Start Base Address of Frame Buffer Memory
	8.4.11 rLcd_DCAR — DMA Current Base Address on Going
	8.4.12 rLcd_DEAR — DMA End Address
	8.4.13 rLcd_PWMFR_0 — PWM0 Frequency Register
	8.4.14 rLcd_PWMDCR_0 — PWM0 Duty Cycle Register
	8.4.15 rLcd_HVTER — Horizontal and Vertical Timing Extension Register
	8.4.16 rLcd_HPPLOR — Horizontal Pixels-Per-Line Override Control
	8.4.17 rLcd_PWMFR_1 — PWM1 Frequency Register
	8.4.18 rLcd_PWMDCR_1 — PWM1 Duty Cycle Register
	8.4.19 rLcd_GPIOR — Blink Control
	8.4.20 rLcd_CIR — Core Identification Register
	8.4.21 Coding Palette (Palette registers) Description
	8.4.21.1 rLcd_PAL_RGB_555 — Coding Palette when RGB 5:5:5 Mode
	8.4.21.2 rLcd_PAL_RGB_565 — Coding Palette when RGB 5:6:5 Mode
	8.4.21.3 rLcd_PAL_BGR_555 — Coding Palette when BGR 5:5:5 Mode
	8.4.21.4 rLcd_PAL_BGR_565 — Coding Palette when BGR 5:6:5 Mode

	8.5 Operation
	8.5.1 Main Features Description
	8.5.2 Bandwidth Limitation
	8.5.3 Timing and Control
	8.5.4 DMA Controller and Memory Interface
	8.5.5 Frame Buffer Organization
	8.5.6 Input FIFO
	8.5.7 Pixel Unpack
	8.5.8 Palette Lookup Table
	8.5.9 Output FIFO and Formatter
	8.5.10 Initializing Configuration Registers
	8.5.11 Interrupts
	8.5.12 Power Sequencing
	8.5.13 Frame Buffer 24 bpp Packed Word
	8.5.14 Pulse Width Modulation
	8.5.15 Blink Function
	8.5.16 Limitation

	Section 9 Semaphore
	9.1 Overview
	9.2 Signal Interfaces
	9.3 Register Map
	9.4 Register Description
	9.4.1 rSemaphoreLockCPU[m]_[n] — Semaphore Lock CPU[m] Register [n]
	9.4.2 rSemaphoreStatusCPU[m]_[n] — Semaphore Status CPU[m] Register [n]

	9.5 Operation
	9.5.1 Semaphore [n] (n = 0..63)
	9.5.2 CPU Identify and Address Decoding

	9.6 Usage Notes

	Section 10 Medium Speed External Bus Interface (MSEBI)
	10.1 Overview
	10.1.1 Signal Interfaces
	10.1.2 MSEBI Master Address Mapping of CS[n] from CPU
	10.1.3 Multiplexed Signal Interface
	10.1.3.1 Mode32 Multiplexer
	10.1.3.2 Mode16 Multiplexer
	10.1.3.3 Mode8 Multiplexer

	10.2 Register Map
	10.2.1 Register Map MSEBI Master from CPU
	10.2.2 Register Map MSEBI Master from DMA
	10.2.3 Register Map MSEBI Slave from CPU
	10.2.4 Register Map MSEBI Slave from MSEBI

	10.3 Register Description
	10.3.1 Register Description MSEBI Master from CPU
	10.3.1.1 rMSEBIM_CYCLESIZE_CS[n]_N — Chip Select CycleSize Register (n = 0..3)
	10.3.1.2 rMSEBIM_SETUPHOLD_CS[n]_N — Chip Select SetupHold Register (n = 0..3)
	10.3.1.3 rMSEBIM_TDMACR_CS[n]_N — DMA Transmit Control and Status Register (n = 0..1)
	10.3.1.4 rMSEBIM_RDMACR_CS[n]_N — DMA Receive Control and Status Register (n = 0..1)
	10.3.1.5 rMSEBIM_ADDRDMA_READ_CS[n]_N — DMA Read Address Register (n = 0..1)
	10.3.1.6 rMSEBIM_ADDRDMA_CURRENTREAD_CS[n]_N — DMA Current Read Address Register (n = 0..1)
	10.3.1.7 rMSEBIM_ADDRDMA_WRITE_CS[n]_N — DMA Write Address Register (n = 0..1)
	10.3.1.8 rMSEBIM_ADDRDMA_CURRENTWRITE_CS[n]_N — DMA Current Write Address Register (n = 0..1)
	10.3.1.9 rMSEBIM_DMATDLR_CS[n]_N — DMA Transmit Data Level Register (n = 0..1)
	10.3.1.10 rMSEBIM_DMARDLR_CS[n]_N — DMA Receive Data Level Register (n = 0..1)
	10.3.1.11 rMSEBIM_CONFIG_CS[n]_N — Chip Select Config Register (n = 0..3)
	10.3.1.12 rMSEBIM_CONFIG — Common Config Register
	10.3.1.13 rMSEBIM_CPU_FIFOREAD_FLUSH — Flush Receive FIFO Register

	10.3.2 Register Description MSEBI Master from DMA
	10.3.2.1 rMSEBIM_DMA_FIFOREAD_CS[n]_N — DMA Receive FIFO (64 KB) (n = 0..1)
	10.3.2.2 rMSEBIM_DMA_FIFOWRITE_CS[n]_N — DMA Transmit FIFO (64 KB) (n = 0..1)

	10.3.3 Register Description MSEBI Slave from CPU
	10.3.3.1 rMSEBIS_CYCLESIZE_CS[n]_N — Chip Select CycleSize Register (n = 0..3)
	10.3.3.2 rMSEBIS_SETUPHOLD_CS[n]_N — Chip Select SetupHold Register (n = 0..3)
	10.3.3.3 rMSEBIS_MMU_ADDR_CS[n]_N — MMU Base Address Register (n = 0..3)
	10.3.3.4 rMSEBIS_MMU_ADDR_MASK_CS[n]_N — MMU Address Mask Register (n = 0..3)
	10.3.3.5 rMSEBIS_DMATX_REQ_CS[n]_N — DMA Transmit Request Register (n = 0..1)
	10.3.3.6 rMSEBIS_DMARX_REQ_CS[n]_N — DMA Receive Request Register (n = 0..1)
	10.3.3.7 rMSEBIS_DMATDLR_CS[n]_N — DMA Transmit Data Level Register (n = 0..1)
	10.3.3.8 rMSEBIS_DMARDLR_CS[n]_N — DMA Receive Data Level Register (n = 0..1)
	10.3.3.9 rMSEBIS_CONFIG_CS[n]_N — Chip Select Config Register (n = 0..3)
	10.3.3.10 rMSEBIS_CONFIG — Common Config Register
	10.3.3.11 rMSEBIS_STATUS_INT0 — Interrupt Status Register
	10.3.3.12 rMSEBIS_STATUS_INT1 — Masked Interrupt Status Register
	10.3.3.13 rMSEBIS_MASK_INT — Interrupt Mask Register
	10.3.3.14 rMSEBIS_CLR_INT — Interrupt Clear Register
	10.3.3.15 rMSEBIS_EOB_ADDR — End Of Block Address Register

	10.3.4 Register Description MSEBI Slave from MSEBI
	10.3.4.1 rMSEBIS_INT — Slave Interrupt Register
	10.3.4.2 rMSEBIS_STATUS — Slave Status Register
	10.3.4.3 rMSEBIS_ID_CS[n]_N — Slave ID Register (n = 0..3)

	10.4 Operation
	10.4.1 AHB Interface
	10.4.1.1 AHB Slave Interface
	10.4.1.2 AHB Master Interface (MSEBI Slave only)

	10.4.2 Use Case Device Connection
	10.4.2.1 One Device, Mode32, Synchronous
	10.4.2.2 One Device, Mode16, Synchronous
	10.4.2.3 One Device, Mode8, Synchronous
	10.4.2.4 Three Devices, Mode8/16/32, Synchronous
	10.4.2.5 Three Devices, Mode8/16/32, Asynchronous
	10.4.2.6 Three Devices, Mode8/16/32, Mixed Synchronous and Asynchronous
	10.4.2.7 One Device, Mode8, Asynchronous, ALE in Parallel Mode

	10.4.3 Main Principle of Phase ADDRESS CONTROL and DATA
	10.4.3.1 Address Latch Phase ALE (ADDRESS)
	10.4.3.2 Control Latch Phase CLE (CONTROL)
	10.4.3.3 Data Phase SETUP + VALID + HOLD (DATA)

	10.4.4 MSEBI Timing
	10.4.4.1 Asynchronous Mode, One ALE
	10.4.4.2 Asynchronous Mode, No ALE MSEBI Master Only
	10.4.4.3 Asynchronous Mode, Two ALE
	10.4.4.4 Synchronous Mode, No Burst, One ALE
	10.4.4.5 Synchronous Mode, No Burst, No ALE
	10.4.4.6 Synchronous Mode, No Burst, Multiple ALE
	10.4.4.7 Synchronous Mode, Burst, One ALE
	10.4.4.8 Synchronous Mode, Burst, No ALE

	10.4.5 MSEBI Interrupt
	10.4.5.1 MSEBI Interrupt: Overview
	10.4.5.2 MSEBI Interrupt: End of Block Detection by the Master
	10.4.5.3 MSEBI Interrupt: End of Block Detection by the Slave

	10.4.6 MSEBI Master Mode
	10.4.6.1 Master Mode Overview
	10.4.6.2 MSEBI Master: Burst Mode
	10.4.6.3 MSEBI Master: DMA Control

	10.4.7 MSEBI Slave Mode
	10.4.7.1 Slave Mode Overview
	10.4.7.2 MSEBI Slave: Burst Mode
	10.4.7.3 MSEBI Slave: Detection of Request Initiator
	10.4.7.4 MSEBI Slave: Register Access by Master
	10.4.7.5 MSEBI Slave: Chip select Configuration Status
	10.4.7.6 MSEBI Slave: Addressing Mode
	10.4.7.7 MSEBI Slave: Write Protect
	10.4.7.8 MSEBI Slave: Configuration Registers & Synchronization

	10.5 Usage Notes

	REVISION HISTORY
	0.50
	0.80
	0.90
	0.95
	1.00
	1.10
	1.20

	Colophon
	Back Cover

