
 US069-EVK User Guide

48V Mobility Solution

1. What is the US069-EVK?
The US069-EVK 48V mobility solution is a proof of concept (POC) that has all the electrical building
blocks of a higher voltage (36V-48V) power train system. The solution consists of 4 boards. One
motherboard that has the MCU (RX23T) used as the main controller for the system. The RX23T is
responsible for setting up and monitoring the battery front end (BFE) (ISL94216), monitoring and
controlling the chargers (ISL81801 & P9415) and driving the inverter board that drives the motor. The
inverter board mates with the motherboard to make the motor control block. This is the 2nd board for the
solution. The 3rd board of the solution is a 60W wireless power receiver that uses two 30W P9415
receivers connected in parallel. The board with transmitter sources 60W continuous power to the input of
the charger. The wireless power board is an optional feature to the solution. The 4th board, which is
optional, enables Bluetooth connectivity to the solution. A RX23W Bluetooth MCU target board
communicates with the motherboard by way of an I2C port. The RX23W communicates with a client (a
phone or tablet) to control and to receive updates from the system. The mobile app is provided and is
coded for Android systems. The figure below is the block diagram for the system described.

Battery
Monitor
ISL94216

RX23T

BMS and Control Board (Motherboard)

Motor Control and Inverter Board

Wireless Receiver Board
(Optional)

Wireless
Transmitter

P9247A
Wireless
Receiver

P9415

MOSFET

MOSFET

Line In

Buck-Boost
ISL81801

DC/DC
converter

Gate driver
3x HIP2211

Op-Amp
Current Sensor

3x ISL28191

MOSFET
bank

LDO
ISL80410

12 V
48 V

Op-Amp
ISL28214

Op-Amp
ISL28214

Multiplexer
ISL84051

Battery
Pack

3.3 V

Hall
Sensors

3.3 V
Motor
control
sensors

BLE control board (Optional)

3.3 V

Throttle

Cellphone connectivity to E-scooter via BLE for
 Throttle control
 Battery Status
 GPS connection
 Save history of routes

USB
MCU

RX23W UART to
USB Debug USB

MCU / MPU

Analog

Power
Vdd

PWM

SI2C

12-bit
ADC

IRQ

I2C

GPIOGPIO

Vreg

GPIO

48 V

Vdd

I2C

UART

USB

BLE5.
0

I2CVdd

3

MOSFET

MOSFET

MCU

Figure 1-1: US069 System Block Diagram System Flow

SST US069 User Guide

 Renesas Electronics America Page 2

April 04, 2021

2. Table of Contents
1. What is the US069 POC? .. 1

3. Objective ... 7

4. The Boards .. 8

5. What is needed to begin? .. 9

6. Setting up the programming environment... 10

6.1. Debugging Environment Shortcut Keys and Useful tips .. 13

6.2. Debugger Hardware Setup.. 14

6.3. Quick Start Up .. 14

7. System Code Organization.. 16

8. System Overview .. 17

8.1. RESET State ... 18

8.2. POWER UP State. .. 18

8.3. SYSTEM UPDATE .. 18

8.4. CHARGER ... 18

8.5. MOTOR DRIVE .. 19

8.6. SYSTEM SHUTDOWN .. 19

8.7. LOW POWER State ... 19

9. The States in Relation to Hardware and Software .. 20

9.1. Reset State .. 20

9.2. Power UP state ... 24

9.2.1. Sys_init() ... 24

9.2.2. Sys_check() ... 27

Bfe_setup() .. 27

Chg_init() .. 28

Wlp_connect_init() ... 28

Chg_wired_charger_check() ... 28

Wlp_wireless_charger_check() ... 29

Auxi_check() ... 30

9.2.3. Before the while loop .. 30

9.3. Endless While Loop ... 30

9.3.1. Sys_update() ... 30

9.3.2. Sys_Charging() ... 31

SST US069 User Guide

 Renesas Electronics America Page 3

April 04, 2021

When the system is actively charging. .. 31

When the system is not charging .. 32

Chg_wired_charger_connect() .. 32

Wlp_wireless_charger_connect() .. 35

9.4. Motor Drive .. 36

9.4.1. POWER INVERTER .. 36

Motor2BfeConnect() ... 36

9.4.2. MOTOR CHECK ... 38

Motor_trigger_detect() .. 38

9.4.3. MOTOR RUN .. 38

Sys_discharging() ... 38

10. Connecting and Tuning the Motor .. 40

10.1. Inverter board Testing. ... 40

10.2. Hall Sensors .. 41

Powering the Inverter Board to determine the Hall Sensor Order. ... 41

10.3. Determining the Motor Parameters. ... 42

10.3.1. Phase Connection Order and Phase Determination ... 42

10.3.2. Motor Pole Pairs .. 44

10.3.3. Motor Resistance ... 45

10.3.4. Motor Inductance .. 45

10.4. Connecting the Motor Parameters to the System Code .. 45

10.4.1. Motor parameters configurations .. 46

10.4.2. Motor and Control Loop Limitations .. 46

Parameters: .. 46

10.4.3. Motor Control Limits .. 47

Parameters: .. 47

10.4.4. Hall Controls and Limits ... 47

Parameters: .. 47

10.5. Testing the motor .. 47

10.6. Tuning the motor (PI Loop) ... 48

11. Changing the Hardware .. 50

11.1. BFE (ISL94216) ... 50

11.2. Charger ... 51

SST US069 User Guide

 Renesas Electronics America Page 4

April 04, 2021

11.3. Wireless Charger .. 51

11.4. Motor .. 51

12. Bluetooth Connection (RX23W) .. 52

12.1. Initialization .. 53

12.2. I2C Execution .. 54

12.3. BLE Execution ... 54

12.4. Mobile App ... 54

13. Appendix A .. 55

14. Appendix B BLE Operation Guide .. 60

14.1. 1.1. Setup .. 60

14.2. 1.2. How to Use .. 61

15. Appendix C: Motherboard (RX23T) System Routines .. 63

15.1. System .. 64

System Hardware Initialization Routine ... 64

System Variable Initialization Routine ... 64

System Module Initialization Routine .. 64

System Initialization Routine .. 64

System Check Routine .. 65

System Update .. 65

System Charging ... 65

System Fault Process .. 66

System Low Power Mode ... 66

System Normal Mode ... 66

15.2. Auxillary ... 67

Auxillary Initialization .. 67

Auxillary Hardware Start .. 67

Auxillary Enable ... 67

Auxillary Disable .. 67

Auxillary Check .. 68

Auxillary Receive Data ... 68

Auxillary Send Data .. 69

15.3. BFE ... 69

Initial routine ... 71

SST US069 User Guide

 Renesas Electronics America Page 5

April 04, 2021

Operation routine .. 73

Get measurement and status routine ... 78

Communicating routine... 78

Calculation routine .. 79

Routine only for debug ... 82

15.4. Wired Charger .. 84

Charger Initialization .. 84

PWM Output Start .. 84

PWM Output Stop ... 84

Multiplexer Input Switch .. 85

A/D and IRQ1 Switch ... 85

IRQ1 Detection Type Set and IRQ1 Start ... 86

Measure MCU VCC ... 86

Measure VIN ... 86

Measure VOUT ... 87

Measure IIN .. 87

Measure IOUT .. 87

Set VOUT ... 87

Set IOUT ... 88

Wired Charger Check.. 88

Wired Charger Connect .. 88

Charger Shut Down ... 88

Wired Charger Register Update .. 89

Wired Charger Charging Procedure .. 89

15.5. Wireless Charger .. 89

Wireless Charger Check.. 89

Wireless Charger Monitor ... 89

Wireless Charger Connect .. 90

Read P9415 ... 90

Set P9415 .. 90

Wireless Charger Protection ... 91

Wireless Charger Register Update .. 91

Wireless Charger Charging Procedure .. 91

SST US069 User Guide

 Renesas Electronics America Page 6

April 04, 2021

15.6. Motor .. 91

Pre-charge motor ... 91

Initialize motor .. 92

Check motor status .. 92

Execute reset event for motor ... 92

Control motor running .. 93

16. Appendix D: RX23W System Routines and Application Guide .. 93

16.1. API Functions ... 93

16.2. RX23W (Bluetooth) Code .. 96

16.2.1. Initialization .. 96

16.2.2. Execution of Switch Interrupt (Debugging Only) ... 97

16.2.3. Execution of I2C Interrupt ... 97

16.2.4. Execution of BLE Write Request Interrupt (Packet from Smart Phone) 98

16.3. System Operation Guide ... 98

16.3.1. Setup .. 98

16.3.2. How to Use .. 99

16.4. Reference Documents ... 100

SST US069 User Guide

 Renesas Electronics America Page 7

April 04, 2021

3. Objective
This solution is a starting platform that provides the user with hardware and preconfigured software to
begin developing the end solution whether it be a scooter or an HVAC solution. The code is modularized
like the hardware to be able to add and subtract features with relative ease. The code provided is
preconfigured to spin a motor using a resistive throttle. The table below is the starting configuration for
US069.

PARAMETER SPECIFICATION/ CONFIGURATION
BATTERY PACK 14 – Cell 48V
WIRED CHARGER 12V-65V input / 2A Continuous*; 10A for fast

charging;
*Use Fan or Heat sink for higher charging current

WIRELESS CHARGER 20V Input / 1A @60V output
MOTOR CONTROL Powers 1600W BLDC with Hall Sensors
RX23T TO RX23W COMMUNICATIONS I2C
WIRELESS CLIENT APPLICATION Android Application

Table 1 US069 Starting Hardware and Software Configuration

The US069 supports other hardware configurations. These configurations and the changes needed are
discussed within this document.

 This document discusses the solution in terms of a system, hardware, and software. Controls in the
software are explained by actions or responses in the hardware and how it impacts the overall system.

Hover over and click over title and pages to maneuver around the document.

What should US069 be used for?
US069 is to be used as a starting platform for users to develop their end use case. The user should
experiment and utilize the base code and routines to control the end application. This solution works with
the Renesas RX family of microcontrollers with e2 Studio (Eclipse) IDE.

What is US069 NOT!
The US069 is not a turnkey solution to production. The solution does not cover all errors cases. The user
needs to take ownership of the hardware and software to determine which error cases need coverage.

SST US069 User Guide

 Renesas Electronics America Page 8

April 04, 2021

4. The Boards

Figure 4-1: Motherboard (BFE, Charger, And MCU)

Figure 4-2: Inverter Board (Motor Control)

SST US069 User Guide

 Renesas Electronics America Page 9

April 04, 2021

Figure 4-3: Wireless Power Board

Figure 4-4: RX23W Target Board (Bluetooth)

5. What is needed to begin?
E2 Emulator – https://www.renesas.com/us/en/software-tool/e2-emulator-programming-function for
debugging the motherboard and programming the MCU.

Mini-USB cable to debug the RX23W target board

Download e2 Studios for RX - https://www.renesas.com/us/en/software-tool/e-studio This is the
programming and debugging environment for both RX23T and RX23W.

A power supply that can source 3.3V ~100mA

Table 2 are wired connections needed for the system to operate.

SST US069 User Guide

 Renesas Electronics America Page 10

April 04, 2021

WIRED CONNECTIONS RECOMMENDATION
MC_PACK+ TO PACK_+, MC_PACK- TO PACK-
(INVERTER BOARD TO MOTHER BOARD)

Low Gauge Wire

WP TO CHR
(WIRELESS POWER TO MOTHER BOARD)

Wire that can pass 3A

WIRE AND CONNECTOR FOR WIRED CHARGER
INPUT

Wire that can pass the charge current to
the charger.

WIRE AND CONNECTOR FOR BATT+BFE AND
BATT-BFE

 XT60 connector
Low gauge wire

WIRE AND CONNECTOR FOR 2BATTBFE
CELL 14 CONNECTS TO PIN 15 (2BATTBFE)
CELL0 CONNECTS TO PIN 1 (2BATTBFE)

https://www.jst-
mfg.com/product/detail_e.php?series=199
Or a standard 0.1in pitch header
If using wire 1A max

WIRE THAT CONNECTS THE I2C OF THE RX23W
TO THE TO_RX23W_PMOD CONNECTOR

General sized wire is good

Table 2: Hardware connections and components required

6. Setting up the programming environment
 Install e2 Studio in the windows PC. A free time-based evaluation license is provided for a first time
install.

Download the latest motherboard source code from www.renesas.com.

Import the archived project (File Open Project from File System) to the workspace. A dialog box
appears Figure 6-1.

Figure 6-1: Dialog box to import an archive project

SST US069 User Guide

 Renesas Electronics America Page 11

April 04, 2021

After importing, the project is shown in the Project Explorer tab in the main window. Right-click on the
active project in Project Explorer, choose Properties. In the window, select C/C++ Build Settings.
Choose the Toolchain tab. Choose the correct Toolchain compiler (CCRX version xx.xx). Press Apply.
See Figure 6-2.

Figure 6-2: Setting the compiler (toolchain)

Then click on the Tool Settings tab. Select Converter Output. Check the Output hex file box. Then
choose Intel Hex Format File for output file type. (Figure 6-3)

SST US069 User Guide

 Renesas Electronics America Page 12

April 04, 2021

Figure 6-3: Set the format of the compiled code

In the left-most column of the window, choose C/C++ General Indexer. The top 5 boxes starting with
Enable Project Specific Settings should be checked. Press Apply and Close. (Figure 6-4)

Figure 6-4: Setting up the indexer

SST US069 User Guide

 Renesas Electronics America Page 13

April 04, 2021

Under the Run menu, choose Debug Configurations. Select the .x file under the Renesas GDB Hardware
Debugging. Select the Debugger tab followed by the connection settings. Under the Power drop down, the
Power Target from The Emulator should read a NO setting. The Target device is the R5F523T5. The
Debug Hardware is E1 (RX) or E2. Apply and Close window. (Figure 6-5)

Figure 6-5: Setup the debug environment

Under the Project menu in the main e2 Studios window, choose Clean. This does a clean build.

 The sequence of actions described above quickly enables the debug environment. More details are found
in Renesas Application notes that exist outside the document.

6.1. Debugging Environment Shortcut Keys and Useful tips

SHORTCUT KEYS ACTION
SELECT A LINE THEN CTRL +R The code will run to line without requiring a break

point.
F6 Step Over a Routine
F5 Step Into a Routine
F8 Run Code or Run to next breakpoint
F11 Start Debugger
SELECT A VARIABLE OR ROUTINE THEN
F3

Goes to the definition

ALT+LEFT To back out of a routine
CTRL + H THEN FILE SEARCH TAB Find all the instances where a routine or phrase is

called. Displayed in console window. Double
click the result to go the location.

Table 3: e2 Studio Shortcut Keys for Debugging

SST US069 User Guide

 Renesas Electronics America Page 14

April 04, 2021

6.2. Debugger Hardware Setup

With BFE, Charger, and MCU (motherboard) disconnected from the battery, connect the inverter board to
the motherboard. Using a low gauge wire connect PACK- to MC_PACK- and PACK+ to MC_PACK+.

Connect 2BAT2BFE header to the battery pack. The header connects the individual cells of the pack to
the monitoring and balancing circuitry of the ISL94216. Next, connect BAT+_BFE and BAT-_BFE to
the positive and negative connection of the packs. This connection powers the BFE and allows large
currents to flow to and from the pack.

Without communication with the MCU, the BFE’s strong regulator will turn ON for 5s before the device
places itself into LOW POWER mode. After which, the device periodically turns on for 20ms every 2s to
make some system voltage measurements. The strong regulator is activated when the measurements are
occurring. The mode is observed by probing the VDDBFE signal. The VDDBFE (the regulator that
powers the RX23T) rises to 3.3V while measurements are being made. While the chip is in LOW
POWER mode the regulation voltage reduces to around 2V. If there is too much of a load on the
regulator, the pulse is not observed, and the measurements are not made.

Connect the emulator to a computer and the 14-pin header to the E1_EMRX header on the motherboard.

A 3.3V power supply is required to connect to the VDDBFE signal with the initial connection between
the battery and the BFE present. Connect the battery first, then make the connection between VDDBFE
and the external 3.3V. The system grounds are located at test points DGNDBFE and PACK-BFE.

An unpowered emulator results in a heavy load to the 3.3V power supply.

The 3.3V power supply can be removed after the RESET state has been executed in code (see Reset State
pg.20).

6.3. Quick Start Up

 A Battery Emulator (resistor divider; MCB_PS3_Z) board has been provided to simulate the battery.
The board allows for execution of the code through sys_update(). Connect the emulator board (red) to the
motherboard as shown in Figure 6-6.

SST US069 User Guide

 Renesas Electronics America Page 15

April 04, 2021

Figure 6-6: Battery Emulator Board Connection to the Motherboard.

The board is connected 180degrees from the motherboard component side. Connect the emulator board
such that pin 17 and pin 1 are open. See Figure 6-7. Connect the positive terminal of the power supply to
J11 of the emulator board and BATT+BFE of the motherboard. Connect the negative terminal of the
power supply to J12 of the emulator board and BATT-BFE of the motherboard.

Figure 6-7: Top Side Motherboard Connected to Emulator Board.

Program the supply from 48V to 58.8V. Connect a 3.3V voltage source to the VDDBFE and DGNDBFE
test points on the motherboard. Power the supplies and launch the debug environment.

SST US069 User Guide

 Renesas Electronics America Page 16

April 04, 2021

7. System Code Organization
 The code and hardware are largely modularized. The high-level structure of the code is shown in Figure
7-1

Figure 7-1: US069: High Level code structure

 The code mostly follows the structure in the illustration above. The blue, orange and purple bubbles are
folders that contain header (.h) and program (.c) files supporting the folder description.

FOLDER DESCRIPTION OF FUNCTION CALLS
AUXILIARY The detection and the I2C communication

between the motherboard and the Bluetooth
device.

BFE The routines to control and read from the
ISL94216

CHARGER The routines that detect the wired charger and
control the ISL81801 charger

MOTOR Routines that control and monitor the motor
WLP Routines that control and detect the wireless

power receiver
HARDWARE Low-level code used to set up and read from the

ADC of the MCU
SMC_GEN Low level code for MCU peripheral setup

Table 4: A Brief Description of Each coding folder

SST US069 User Guide

 Renesas Electronics America Page 17

April 04, 2021

The code in the low-level folders is accessible throughout the project. The arrows that indicate the
interaction between modules are largely true. There are routines called that directly access the modules
that arrows do not show in the illustration.

The profile header files are used to configure each module to the end application. Within these files, there
are thresholds setting and characterization parameters that determine the behavior of the module within
the system.

US069_48V_Power_train_xxx.c is where the program begins. It is the top level of the code.

8. System Overview

System
Update

Charger

Motor Drive

POWER UP

No Throttle OR
System Discharge Is OFF

RESET

System
Is Charging

SHUTDOWN

LOW POWER

SW1 Button Pushed Or
Battery Pack Connection

Catastrophic
BFE or MCU

Error

Charger
Connected

Too Many
Zero Current

IPACK
Readings

Figure 8-1: High-Level System Flow

The system is coded for a scooter use case or an application with a throttle and a motor.

SST US069 User Guide

 Renesas Electronics America Page 18

April 04, 2021

8.1. RESET State

The RESET state is entered when either the battery pack completes the connection to the electronics or
the battery front end (BFE) (ISL94216) is reset or the MCU (RX23T) is reset. The BFE is reset by

pressing the SW1 button or sending a soft reset via a serial communication or by asserting the 𝑅𝐸𝑆𝐸𝑇
GPIO pin that connects to the BFE. The MCU is reset by pressing the SW1RX button.

 After the MCU either resets the BFE or the battery connection is reestablished the MCU configures the
BFE regulator to strong. This configuration allows the sourcing of regulation currents larger than 80mA.
The BFE strong regulator powers the MCU and the BFE. The regulation voltage is 3.3V.

The MCU begins the boot process when the BFEs regulation voltage rises above 2.7V.

8.2. POWER UP State.

The POWER UP state configures the MCU peripherals to a ready state. This state performs checks to test
the health of the system while initializing the system.

At the entrance to the state, the MCU sends the BFE a soft reset to clear past BFE configurations. The
BFE is then configured with the strong regulator always on. The strong regulator, which powers the
MCU, is always enabled for all BFE modes including RESET and LOW POWER.

The state then initializes the global system variables, the BFE IC and the charger circuitry. The system
checks the presence of the charger (wireless and wired) connections and the RX23W Bluetooth module.
Status checks are made with each module.

8.3. SYSTEM UPDATE

The SYSTEM UPDATE state is called within a continuous loop that is the main loop for the system. The
state measures and updates all system variables that are defined as part of the system register map. If the
RX23W is present, a serial packet with updated system values is sent to the device.

Any errors while updating will transition the state to LOW POWER or SHUTDOWN.

8.4. CHARGER

 The CHARGER state follows the SYSTEM UPDATE. The state monitors the charging ports and the
charging status of the battery. It detects the connection of a charger to the system. The state prioritizes
wired over wireless charging. The state detects and connects the charger while utilizing the autonomous
charging features of the BFE.

While charging the battery, any faults that may occur or maintenance with the charger are serviced. The
removal of a charger, or a battery full status from the BFE, or a charger error results in the charging
circuit turning off and being reinitialized.

SST US069 User Guide

 Renesas Electronics America Page 19

April 04, 2021

8.5. MOTOR DRIVE

 The MOTOR DRIVE state is enabled when the g_sys_data.Sys_control.Bit.SystemONOFF = 1. The
variable is either hard coded or set by Bluetooth communication from the mobile device (client) to the
RX23W (server). During a system update, the RX23W communicates to the RX23T to change the bit
state. The state energizes the motor inverter with the connection of the battery pack via the discharge FET
of the BFE.

After connecting the inverter to the battery pack, the BFE is set to continuous scan mode where the IC
periodically measures battery pack and system measurements. Any measurements that exceeds the testing
threshold stops the scan. Voltage checks are made at each side of the discharge FET to validate the
connection.

After initializing the motor setup, the system enters a continuous loop that exits when a flag
(gExitMotorLoop) is set to TRUE or if the motor variable (g_sys_data.Sys_Status.Bit.MCPresent) state is
set to NOT PRESENT. A throttle reading below the minimum voltage threshold sets the
gExitMotorLoop flag to TRUE. The low throttle voltage results in the exit of the motor loop.

8.6. SYSTEM SHUTDOWN

The SYSTEM SHUTDOWN state is entered from the SYSTEM UPDATE state. The state is entered from
any catastrophic faults from either the BFE or communications between the RX23T and the RX23W. A
fault places the system in SHUTDOWN status. This is the lowest powered state of the system.

Reconnecting the battery pack and pressing the SW1 button exits the state to RESET state.

8.7. LOW POWER State

The LOW POWER state occurs when there have been too many successive no current IPACK readings
by the BFE. The state is entered from the SYSTEM UPDATE state. The BFE FETs are turned off and the
IC is placed in the LOW POWER mode. The MCU is also placed in a LOW POWER state.

The system exits the state when a charger is connected to the system.

SST US069 User Guide

 Renesas Electronics America Page 20

April 04, 2021

9. The States in Relation to Hardware and Software
This section describes each state in more detail. Each state’s description references key variables and
routines used in the software to control the hardware.

9.1. Reset State

The sys_startup() in the US069_48V_Power_train_xxx.c file calls the RESET state. The routine is called
from the main routine of the system. The MCU hardware is initialized followed by the activation of the
SPI port.

A soft reset is sent to the BFE via a SPI command. This command initializes the register and state
machines of the ISL94216. After a small wait, the strong regulator of the BFE is enabled full time from a
SPI command. The strong regulator is able to source currents >80mA. For this application, the weak
regulator (sourcing currents of ~1mA) is not applicable.

The weak/ strong regulator output can be read between test points VDDBFE and DGNDBFE or PACK-
BFE). PACK-BFE is the ground for the system.

It is safe to have a 3.3V power supply connected to this regulator. It may be needed to start up the debug
process (pg.10). Prior to stepping into the startup routine, the current is roughly 2mA to 4mA sourcing
from the 3.3V supply connected to the regulator.

After turning ON the strong regulator and confirming the command has been received, the external power
supply should be disconnected from the board. The regulator should be able to sustain the load. The
regulator sourcing current can be measured from the BFE.

Table 5 lists the default RX23T pin setting after a reboot of the MCU. The MCU pins are configured
with the system configurator (US069_48V_Power_train_xxx.sfg) and through text commands. Look in the
Hardware folder for the ADC configuration and the smc_gen folder for other MCU resources.

SST US069 User Guide

 Renesas Electronics America Page 21

April 04, 2021

MCU
PIN

Name
Net Name Pin Pin Config Sub

Block Default Description Notes

P00 WP_INT 2
Input
(INT)

(NEDG)

Wireless
Power 1 Interrupt from

Wireless Power Block IRQ02

P91 N_EN1 32

Output
(N_EN1)
(Open
Drain)

Wireless
Power 1 Enable P9415 (1) See

truth table
Truth Table in

WP block

P92 N_EN2 31

Output
(N_EN2)
(Open
Drain)

Wireless
Power 1 Enable P9415 (2) See

truth table
Truth Table in

WP block

PB2 SDA0 24

I/O
(SDA)
(Open
Drain)

Wireless
Power 1 I2C Comm pin

PB1 SCL0 25

Output
(SCL)

(Open
Drain)

Wireless
Power 1 I2C Comm pin

MCU
PIN

Name
Net Name Pin Pin Config Sub

Block Default Description Notes

PB3 CHR_PG 23 Input Charger 1 Power Good

PB7 CHR_EN 17 Output
Push Pull Charger 0 Enables the charger

(ISL81801)

P11 CHR_AO 61 Input
Analog Charger

The analog input from
the mux within the

charger
An016/IRQ01

PA4 Ch_A_A0 64 Output
Push Pull Charger 0 Address 0 of the

analog mux

PA5 Ch_A_A1 65 Output
Push Pull Charger 0 Address 1 of the

analog mux

PB0 CHR_VO 26 Output
PWM Charger 1

(3.3V)

The pin is PWM’d to
control the charger’s

output voltage

PA3 CHR_IO 27 Output
PWM Charger 1

(3.3V)

The pin is PWM’d to
control the charger’s

current clamp

SST US069 User Guide

 Renesas Electronics America Page 22

April 04, 2021

PD6 WL_CNTRL 13 Output
Push Pull Charger 0

Controls connection
from Charger to
Wireless Output

PD7 W_CNTRL 12 Output
Push Pull Charger 0

Controls connection
from Charger to Wired

Output

MCU
PIN

Name
Net Name Pin Pin Config Sub

Block Default Description Notes

P30 N_CS 45 Output
Push Pull

Battery
Front
End

1 SPI PORT Chip Select

P22 MISOA 48 Input
SPI

Battery
Front
End

 SPI PORT Master In
Slave Out

P23 MOSIA 47 Output
SPI

Battery
Front
End

0 SPI PORT Master Out
Slave In

P24 SCLA 46 Output
SPI

Battery
Front
End

0 SPI PORT Serial Clock

PB4 N_ALRT 21 Input
INT

Battery
Front
End

1

Alert pin for BFE
configure as IRQ3; may

configure as POE in
Future

P31 N_WK 43
Output
(Open
Drain)

Battery
Front
End

HI-Z Wake the 94216 up
also used for charging

P32 N_RST 41
Output
(Open
Drain)

Battery
Front
End

HI-Z Reset the 94216;

P33 FETSOFF 40
Output
(Open
Drain)

Battery
Front
End

HI-Z
Automatically turns off
Power FETs when pin

is asserted HI

This overrides
the IC decision
making for the

FETs

P02 PRE_CHR 1
Output
(Open
Drain)

Battery
Front
End

HI-Z

Charges the motor
control Cap prior to Lo

impedance DFET
turning ON

Only turn on
max 200ms.

50ohm res will
burn.

MCU
PIN

Name
Net Name Pin Pin Config Sub

Block Default Description Notes

SST US069 User Guide

 Renesas Electronics America Page 23

April 04, 2021

P01 N_CS1 4 Output
Push Pull

TOP
Rx23W 1 SPI PORT Chip Select

for Motor Control

PE2 NMI/Motor
Stop 11 Input

TOP
Rx23W/
MOTOR
Control

1

Setup to stop the
motor in a control

way. Touch to GND
exit motor loop

Non Maskable
INT

PB6 SSDA5 18

I/O
(SDA)
(Open
Drain)

TOP
Rx23W 1

SDA pin for I2C comms
to the Rx23W. The

Rx23T is configured as
a master

PB5 SSCL5 19

Output
(SCL)

(Open
Drain)

TOP
Rx23W 1

SCL pin for I2C comms
to the Rx23W. The

Rx23T is configured as
a master

VCC V3P3 10,20,42 Input TOP
Rx23W 0V Digital power from BFE

VSS AGND 8,22,44,60 Input TOP
Rx23W 0V Board ground

MCU
PIN

Name
Net Name Pin Pin Config Sub

Block Default Description Notes

P71 U_HI 38 Output
MTIOC3B

Motor
Control Hi-Z Motor Control

MTIOC3B Timer

P74 U_LO 35 Output
MTIOC3D

Motor
Control Hi-Z Motor Control

MTIOC3D Timer

P72 V_HI 37 Output
MTIOC4A

Motor
Control Hi-Z Motor Control

MTIOC4A Timer

P74 V_LO 34 Output
MTIOC4C

Motor
Control Hi-Z Motor Control

MTIOC4C Timer

P73 W_HI 36 Output
MTIOC4B

Motor
Control Hi-Z Motor Control

MTIOC4B Timer

P76 W_LO 33 Output
MTIOC4D

Motor
Control Hi-Z Motor Control

MTIOC4D Timer

P40 IU_AO 56 Input
AN000

Motor
Control

 Analog Input Current
Sense for U (AN000)

P41 IV_AO 55 Input
AN001

Motor
Control

 Analog Input Current
Sense for V (AN001)

P42 IW_AO 54 Input
AN002

Motor
Control

 Analog Input Current
Sense for W (AN002)

P43 Vpk_AO 53 Input
AN003

Motor
Control

 Analog Input Vpack
sense (AN003)

SST US069 User Guide

 Renesas Electronics America Page 24

April 04, 2021

P44 VU_AO 52 Input
AN004

Motor
Control

 Analog Input U voltage
sense (AN004)

P45 VV_AO 51 Input
AN005

Motor
Control

 Analog Input V voltage
sense (AN005)

P46 VW_AO 50 Input
AN006

Motor
Control

 Analog Input W
voltage sense (AN006)

P47 THERM
MTR 49 Input

AN007
Motor
Control

Analog Input

Thermistor voltage
sense for motor

(AN007)

P10 V
THROTTLE 62 Input

AN017
Motor
Control

Analog Input Throttle

voltage for motor
(AN017)

AVCC0 MCU_VCC 57 Output Motor
Control 0V

Analog Power option
to deliver power to the

MC block

P93 HU_IRQ 30 Input
IRQ0

Motor
Control 0 Hall Sensor Signal

From U; IRQ0

P94 HV_IRQ 29 Input
IRQ1

Motor
Control 0 Hall Sensor Signal

From V; IRQ1

PA2 HW_IRQ 28 Input
IRQ4

Motor
Control 0 Hall Sensor Signal

From W; IRQ4

P70 POE 39
Input
Open
Drain

Motor
Control 1

POE; Over Current &
braking detect. The
motor is killed with

excessive current and
when either the front
brake or rear brake is

pressed

 Table 5: Default MCU pin settings for the RX23T

9.2. Power UP state

The routines sys_init() and sys_check() in the US069_48V_Power_train_xxx.c file defines the POWER
UP state.

9.2.1. Sys_init()

Sys_init() initializes the system variables (sys_var_init()), the hardware (sys_hardware_init()) and the
modules(sys_modules_init()). The system variables that are the default states when starting the program.
The g_sys_data variables are part of a large structure (sys_data_t) that contains most of the variables in
the System Register Map (pg.). The sys_hardware_init() configures the MCU features such as interrupts,
ADCs and communication ports to the MCU default state. Sys_modules_init() writes the settings which
include the IC’s operational modes and thresholds for the IS94216.

SST US069 User Guide

 Renesas Electronics America Page 25

April 04, 2021

The default settings are located in ISL94216.h. The bfe_init() is the routine that write setting to the IC.
The Table 6 and Table 7 are the default settings for the ISL94216. More details for about registers
settings are found in the ISL94216 datasheet on the Renesas website.

94216
Register

Hex
Setting in Hex Notes

0x01 0x00
0x02 0xE0
0x03 0xC2
0x04 0xFC
0x05 0xFF
0x90 0xD1
0x0E 0x8C
0x11 0xC0
0x12 0x30
0x1B 0x51
0x1F 0xCC Disable Comm TO for debug
0x24 0x5C Do a scan before turning on Cpmp
0x25 0xEF
0x28 0x80 ~504ms CBON
0x29 0xC0 ~48ms CBOFF
0x2E 0x2B LP time=8192loop; scan Delay = 256ms
0x83 0x00
0x84 0x00
0x85 0x3F make 0x1E to see Busy Bit (Debug)
0x86 0xD7
0x87 0xF0
0x88 0x00
0x89 0x00

SST US069 User Guide

 Renesas Electronics America Page 26

April 04, 2021

Table 6 The Default Register Settings for the ISL94216

BFE Var ISL94216.h
System Var BFE Threshold

OV VCELL_OV_INIT 4.2

UV VCELL_UV_INIT 2.5

DVOV VCELL_MAX_DELTA 0.5

Vcell Ave VCELL_AVE 1

Vcell Flt dly VCELL_FAULT_DELAY 2

Dut 0/1 DUT_0_1_TEMP_INIT -20C

DOT 0/1 DOT_0_1_TEMP_INIT 55C

CUT 0/1 CUT_0_1_TEMP_INIT 0C

COT 0/1 COT_0_1_TEMP_INIT 40C

Etaux Dly ETAUX_FAULT_DELAY 3

IOTW IOTW_INIT 65C

IOTF IOTF_INIT 85C

VBAT OV VBAT_OV_INIT 59.5

VBAT UV VBAT_UV_INIT 33.6

Other FLt Dly OTHER_FAULT_DELAY 1

DSC Dlt DSC_DELAY_INIT 1ms

DOC DOC_INIT -300mV (60A)

DOC Dly DOC_DELAY_INIT 3 (0x20)

COC COC_INIT 15mV (3A)

COC Dly COC_DELAY_INIT 8 (0x7)

Ipack Ave IPACK_AVE_INIT 1

dCb min CB_MIN_DELTA_INIT 50mV

CbMAx CB_MAX_INIT 4.23

CbMin CB_MIN_INIT 3V

VEOC V_EOC_INIT 4.18V

IEOC I_EOC_INIT 325u (65mA)

IREG (Norm)OC IREG_NORM_OC_INIT 165mV (50mA)

IREG (LP) OC IREG_NORM_OC_INIT 165mV (50mA)
Table 7 Default Threshold Setting for The ISL94216

SST US069 User Guide

 Renesas Electronics America Page 27

April 04, 2021

For more details about the ISL94216 (BFE) functions and settings, visit the datasheet at
https://www.renesas.com.

9.2.2. Sys_check()

The sys_check() routine checks for the presence of the peripherals that can connect to the motherboard
and does a status check of the motherboard.

Bfe_setup()
The bfe_setup(enableFaultHandle) does an initial scan of the battery pack, current and temperature. If the
variable enableFaultHanldle is TRUE, a fault measured by the BFE will place the device into system
shutdown. Prior to moving to system shutdown, all system variables are updated.

After a single scan is complete, the fault and status registers of the BFE (bfeReadAllFaultsHelper()) are
reported to the Renesas Virtual Console (Renesas View Debug Renesas Virtual Console). These bit
values quickly report the health of the system. The Table 8 are the bit definition for the fault and status
bit of the BFE. The table is for reference. The datasheet should be referenced for true accuracy.

Table 8: Fault and Status bit definition of the ISL94216 (BFE)

Open wire faults (OWF) are common errors that occur while debugging. See registers 0x68 and 0x69 to
determine which pin could have the open wire. If OW xT1 or OW xT2 are set, check if the thermistors are
connected to THERM1BFE or THERM2BFE. If the BFE is connected to a power supply and resistor
divider (cell emulator) and the voltage is too low, the UVF bit will set.

The setup routine updates all system registers measurement values after the single scan. The
bfe_update_monitor_data() resides in debug.c. It converts the bfe measurement data to float values.
Making it easier to understand the status of the system. The g_debug_data structure is where the float
measurements are stored.

 If there are no faults after setup, the charge pump is instructed to turn ON. This places the BFE in a state
to turn on the CFET and DFET at will.

SST US069 User Guide

 Renesas Electronics America Page 28

April 04, 2021

 Chg_init()
The chg_init() routine uses the MCU GPIO pins to place the state of the charger in a non-active safe state.
The net names in Table 5 are similar to the control names used to set GPIO pins. As an example,
CHG_W_CNTRL control pin equals W_CNTRL in the table.

The W_CNTRL and WL_CNTRL control the PMOS ON state via and NPN resistor as shown in Figure
9-1. The charger’s regulation voltage and current are controlled by PWM pin that makes a cheap DAC
when connected to a low pass filter. See Figure 9-3. The pin’s PWM frequency is reset, and the pins’
functions stop in this routine.

Figure 9-1: Control Circuitry That Selects Which Input Connects to the Charger

Wlp_connect_init()
The wlp_connect_init() routine re-initializes the wireless power port and connections to a safe and known
state. Each P9415’s enable pin is set to a high impedance state (1) to allow for the RX23T to read the
pin’s status in detecting if the P9415 is present. If the wireless transmitter and receiver are mated, the 5V
regulator within the P9415 powers up and pulls up on the WLP_NENx pins (P91 and P92). When both
pins read back a high (1), a connection from the wireless power receiver to MCU can proceed.
CHG_WL_CNTRL is a control pin that connects the wireless power output (~20V) to the charger circuit
through a PMOS. A low (0) setting turns off the NPN that connects to the PMOS gate. The result is a
PMOS that is OFF. See Figure 9-1. All pins' names are similar to the net names in Table 5.

Chg_wired_charger_check()
The chg_wired_charger_check() routine reads the voltage at the wired charger input port (CHR_WIRED;
Figure 9-1) to determine if a charger is connected to the port.

SST US069 User Guide

 Renesas Electronics America Page 29

April 04, 2021

The code internally checks the voltage. The MCU, using the AN16 (P11) pin, reads the WIRE_AO
(Figure 9-1) voltage by switching the multiplexer’s input to it. If the voltage is greater than 10V, then the
line present bit is set to PRESENT. A comparison is made to check if the wrong voltage charger is
connected to the port. This sets the WPF (Table 12Table 12: System Variables) bit to high (1). The check
closes out the routine by changing the pin to an interrupt and configuring the multiplexer to the original
position.

Wlp_wireless_charger_check()
The system gives precedence to wired over wireless charging. The wlp_wireless_charge_check() is
executed when the LineInPresent (wired charging) system variable (Table 12) is set to NOT_PRESENT.

The routine checks that status of the wireless receivers enable pins (WLP_NEN1 and WLP_NEN2) by
placing the pins in a high impedance state and reading the digital pin back. If both pins read back a high
(1), the output voltage of each P9415 is read by way of the I2C port. Each chip’s voltage reading is
compared to a range of output voltages defined in Wlp.h. The voltage comparison is to check if the
correct version of the P9415 is soldered to the board. A failed comparison sets the WLPF_VOUT system
variable to 1.

With the enable signals set to high (1), each P9415 output is not connected to the charger board. See
Figure 9-2.

Figure 9-2: Interface Circuitry Between Wireless Power Receiver and Motherboard.

A current reading is made from each chip and compared to the max and min current threshold defined in
Wlp.h. By default, there should be no current present. If the current exceeds the limits, systems variables
are set with codes. Otherwise, the WLPPresent system variable is set to 1.

SST US069 User Guide

 Renesas Electronics America Page 30

April 04, 2021

Auxi_check()
 The Auxi_check() routine checks for the presence of the RX23W running the US069 code. The RX23W
sets up the I2C port as a slave to the RX23T master. The slave address for the RX23W is 0xE2/3 (8-bits).

The code check of the RX23T PE2 pin is high (1). If the pin is low, this indicates an error from the
RX23W. The AUXF system variable (Table 12Table 12: System Variables) is set to 1. The PE2 is set up
as an input. The pin also serves to stop the motor and exit the motor routine.

If the RX23W is ok, the RX23T sends a 12-byte read command to the RX23W. The communication
between the two MCUs has a Cyclical Redundancy Check (CRC) with every transaction. The CRC
equation is compliant with CRC-CITT16 X25 protocol. If the slave address does not NAK and the CRC
check passes and the data byte read back (byte 0) is 0x45, the RX23W is PRESENT. The system variable
AuxPresent is set to PRESENT.

The code then waits for the RX23W (server) to connect to the client (Bluetooth device). The code
monitors the first nibble of data byte 0 for each readback. If the value is something other than 0x5, then
RX23W is connected to a client. Otherwise, the code stalls at this point.

9.2.3. Before the while loop

Before entering the endless while loop, global variables are defined. The gCounter is a generic unused
counter used in experiments. The gExitMotorLoop is initiated to TRUE. The variable is toggled when the
speed request from the throttle is below a set speed. The motor is stopped, and the motor code is exited.
The system updates and checks are made.

 The SystemOnOff system variable (Table 12) is initiated to OFF (0). With this setting, the motor is not
allowed to run. If motor operation is required without the RX23W connected, set this variable to 1. If the
RX23W is connected, the variable is set by pressing the power button on the mobile application (client).
The client sends the status change to the server (RX23W). The RX23W changes this variable through an
I2C transaction.

9.3. Endless While Loop

The endless while loop (while(1)) is the main function for the system. This is where system status is
updated, charger port status is checked, and the motor is run. There are five routines (sys_update(),
sys_charging(), motor2BfeConnect(), motor_trigger_detect() and sys_discharging()) that perform these
tasks.

9.3.1. Sys_update()

The sys_update() routine updates system variables and scans the status of the battery pack.

The system can be in an IDLE state where there nothing the system is not charging or discharging. A BFE
single system scan(bfe_single_scan_start()) is performed to monitor and update the battery pack status.
Once the system scan is complete (BFE Busy bit is 0), the BFE fault and status bits are updated, the
measurements are read back and the open cell voltage (OCV) fuel gauge is updated. The
bfe_update_monitor() is used to monitor the floating values of the BFE measurements.

SST US069 User Guide

 Renesas Electronics America Page 31

April 04, 2021

If either the charger or the motor is PRESENT (system variables MCPresent,, LineInPresent,
WirelessPresent (Table 12)), the BFE continues to scan the battery and system parameters. After the scan
is finished (BFE Busy bit = 0), the BFE variables and measurements are updated.

The code then finishes the system variables update then sends a 202-byte packet (200 data bytes and 2
bytes for CRC) to the RX23W, provided the RX23W is present (AuxPresent). Otherwise, the system
checks for a connection to the RX23W (aux_check()). The data bytes sent are the system variables.
Following an RX23T send command, the RX23T reads 12 bytes back. The 12 bytes are a way for the
RX2W to communicate with the RX23T. Data byte 0 bit 7 of the readback is the SystemONOFF (Table
12) variable. The RX23W changes this bit to disable/enable the motor.

Any BFE faults detected while updating are binned out and system variables are updated with a series of
compares.

9.3.2. Sys_Charging()

The sys_charging() routine does a port status update. The code services the port if allowed. Charging is
not allowed while the motor is operational. If either charger flag is PRESENT while charging is not
allowed, the charger that is present is programmed to shut down.

When the system is actively charging.
When charging is allowed and either charger is PRESENT, the system checks if the ISL94216’s VEOC
(voltage end-of-charge) status bit or if the Battery Full status bit (BATT_FULL) is set. A set VEOC bit
indicates at least one cell measured a voltage close to battery full voltage. A set bit changes the BFE’s
charging state from monitoring a cell voltage to comparing a pack current below a set threshold (IEOC).
The IEOC threshold is the end-of-current charge threshold or the tapper charge threshold. Once the pack
current measures below this threshold, the BATT_FULL bit is set. Charging is complete.

If VEOC is set, the charger output voltage changes from a regulation voltage of CHG_VOUT_BULK to
CHG_VOUT_ABSORPTION. These variables are defined in charger.h. When charging with VEOC set
to low (0), the charger is in constant current mode (CC). The charging current can be as high as 10A.
The current passes through a diode (D10) reducing the charging voltage to the pack. When the charger is
off, the output impedance to the charger is low to ground. With CFET OFF and no blocking diode,
current flows from the battery through the CFET body diode to the charger. The diode is present to
prevent discharging. The bulk regulation value is above the final battery charge voltage to allow for full
current charging for longer. Once VEOC is set, the charge regulation voltage is reduced to the final pack
voltage.

Once charging is complete (BATT_FUL is set), the charger is disabled, and the system is placed in a safe
state.

An additional check is made when the system is wirelessly charging. The system measures each P9415
for sourcing current and output voltage. This is to check the health of the wireless receiver. If the receiver
and transmitter are misaligned or sourcing too much current, the readings will exceed the voltage and
current limits defined in wlp.h. Any errors will shut down the charger system.

SST US069 User Guide

 Renesas Electronics America Page 32

April 04, 2021

When the system is not charging
When the system is not charging, the routine does a chg_wired_charger check() (See pg.28) to determine
if a line has been connected since last check. If a connection has been made, the inverter is turned OFF by
way of turning DFET off and disabling interrupts. The charger is initialized (chg_init() pg.28), and the
code proceeds to connect the charger to the battery (chg_wired_charger_connect() pg.32).

Wired charging takes precedence over wireless charging. The INT pin for each P9415 is OR’d and

connected to IRQ2 (P00) of the MCU. Upon wireless transmission (P9247) to the receiver (P9415), the

receiver powers up resulting in that interrupt INT pin rising. The positive edge interrupts the RX23T.

The RX23T services the interrupt with the r_Config_ICU_irq2_interrupt()
(smc_genConfig_ICU_user.c) routine by setting the global variable (g_wlp_IntPresent) to 1.

The g_wlp_IntPresent is used to determine if a charger has been recently connected. If so, then the
wireless charger is initialized (see wlp_connect_init() pg. 28) and a check is made
(wlp_wireless_charger_check() page29) . If the wireless charge is present (system variable WLPresent),
the discharge path is disconnected and the process of connecting the wireless receiver to the battery for
charging, begins (wlp_wireless_charger_connect() pg. 35).

Once either charger status has been connected and confirmed (system variables LineInPresent or
WirelessPresent) the motor functions are disabled (system variable DischargingAllowed is set to
NOT_ALLOWED).

Any faults with the charger will shut down the charger.

 Chg_wired_charger_connect()
The chg_wired_charger_connect() configures and connects the charger (ISL81801) to the battery. The
code measures the internal reference that determines the full range and step size of the MCU ADC. The
system is placed in a safe state by turning OFF any power FETs between the battery and charger or motor.
The input P channel MOSFETs (Figure 9-1) that connects the charger to the wired or wireless ports is
disconnected by setting the control signals (~W_CNTRL and ~WL_CNTRL) to 0. This turns OFF the
NPN allowing the gate to source voltage to equal 0.

The PMOS that connects the wired connection to the charge is enabled (~W_CNTRL =1). System
variables are updated and the BFE performs a signal scan to determine the unloaded pack voltage and the
status of the battery pack.

Programming the charger output voltage and current.
The charger’s regulation voltage is programmed to a few hundredths of the measured unloaded pack
voltage. When CFET (Charge FET) is turned ON, there is less of a transient between the system. The
regulation voltage and current are controlled by the pulse width modulated (PWM) pins from the MCU.
See Figure 9-3.

SST US069 User Guide

 Renesas Electronics America Page 33

April 04, 2021

Figure 9-3: Connections to the Charger that are Reinitialized at Charger Initialization

At a high level, the Vo_Cntrl establishes a stable voltage at the R12BBC and C16BBC node (Vcntrl), to
margin the regulator to the correct output voltage. VO_CNTRL is modulated by the MCU (PB0). The
relationship between the charging voltage and the control voltage is expressed in Equation 1. The naming
convention of the variable are similar to the names on the schematic. As an example, R23chg is the same
resistor as R23BBC in the schematic and CHG_R23 macro variable in charger.h. The
chg_control_vout(Vout) routine calculates and sets the PWM duty cycle such that the correct control
voltage is set for the requested Vout voltage.

Vout1 Vcntrl 0.8 R23chg
0.8

R15chg

0.8 Vcntrl
R14chg

Vcntrl Vout
Vout R15chg R14chg 0.8 R14chg R23chg R15chg R23chg 0.8 R15chg

R15chg R23chg

Equation 1: The mathematical relationship between control voltage and charge regulation
voltage

Equation 1 can be used to configure the charger hardware for a specific range of voltages. The macro
variable values need to be updated when hardware changes are made. This ensures proper operation. A
0% duty cycle does not equate to 0V for the control voltage. The lowest voltage setting for the control
voltage is roughly 0.6V.

The regulation current is controlled by modulating the IO_CNTRL pin of the MCU (PA3). From the
PWM signal, a voltage is established at the R10BBC/ C18BBC node (Figure 9-3) (Control Current). The
voltage sets the clamping current to the battery, enabling a constant current charging.

SST US069 User Guide

 Renesas Electronics America Page 34

April 04, 2021

Iclamp IOcntrl
1.2 R18chg R16chg R16chg IOcntrl 20 u() R18chg

R18chg R34chg 200 u() R16chg

IOcntrl Iclamp
1.2 R16chg R18chg R16chg R18chg Iclamp R34chg 200 u() 20 u()

R16chg

Equation 2: The mathematical relationship between control current and clamping current.

Equation 2 is the relationship between the control current (IOcntrl) and the clamp current. The resistors
referenced in the equation are the resistors shown in the schematic and defined in charger.h. The labels
are not exact matches to the mentioned documentation.

Prior to enabling the charger, the charger output current is programmed. The clamp current is
programmed to a low value for safety, and the regulation voltage is programmed to be around the
unloaded pack voltage. This limits the transients when the charger is connected to the battery.

The output voltage is checked to make sure the voltage is within range of the requested output voltage.
Otherwise, a fault is set (WPF = 1). The Power Good pin of the controller is checked to ensure proper
charger operation.

The power FET lock is removed, and the charger is connected to the battery (CFET ON). The charger
regulator is ramped in steps to the charging voltage (CHG_VOUT_BULK). The value is defined in
charger.h. This charging voltage is not the final charging voltage as explained in “When the system is
actively charging.31. With each voltage iteration, the pack voltage and current are written to the Renesas
Debug console. The battery pack fault and status bits are reported as well.

Next, the clamp current is incremented insteps to the final charging current. The variables
CHG_START_CLAMP_I and CHG_END_CLAMP_I are the starting and ending current clamps. These
variables are defined in charger.h. The precision of the controller’s current clamp is low. With each
clamp increment, the set clamp current is compared to the desired sourcing current of the charger
(CHG_IPACK_WIRED). If the measured current by the BFE is greater than the desired current, the
incremental loop is exited. With each current iteration, the pack diagnostics can be written to the Renesas
display console.

The charger’s input voltage is monitored with each current increment. It is possible to source more
current than the wired power supply can source. If the wired power supply voltage is measured 15%
below the unloaded supply, the charger connection fails and the system variable WPF is set. The charger
is shut down outside the routine.

The bfe_cb_status() routine sets the BFE to autonomous cell balancing and charging routine. The routine
is passed the threshold settings for the charger over current (COC) BFE check. The BFE is then set up for
continuous scan mode.

SST US069 User Guide

 Renesas Electronics America Page 35

April 04, 2021

A final safety check is made to ensure the battery and the charger are connected to each other. The
voltage at the charger is measured (CHG+_S on the schematic) and compared to the pack voltage. If the
difference is greater than 2V, the wired power fault bit is set (WPF). There is a blocking diode between
the charger and the battery which results in a voltage drop, hence the threshold 2V.

If there is no issue with the comparison, the system variable LineInPresent is set to PRESENT and the
system enters charging mode.

Wlp_wireless_charger_connect()
The wlp_wireless_charger_connect() configures the charger and BFE for wireless charging. The flow of
the routine parallels the chg_wire_charger_connect() (pg. 32). Use this routine’s write up as a reference.

The routine places the charger and the system in a safe state by turning off any connections between
receiver, battery and charger. The receiver voltage is measured from each P9415 and compared to a
voltage range (WLP_VOUT_MAX and WLP_VOUT_MIN) defined in Wlp.h. The nominal output
voltage of the receiver is 20V. The comparison checks for receiver to transmitter alignment.

The battery pack voltage is measured. The charger and clamp are programmed to a safe current clamp
value (CHG_START_CLAMP_I_WL), which is defined in charger.h, and the voltage is programmed to
approximate the pack voltage. The charger is enabled, and the Power Good pin is checked. If the pin is
low, the system variable WLPF is set and the charger shuts down outside the routine.

The charger is connected to the battery by turning CFET on. The charging voltage is ramped to the
CHG_VOUT_BULK. With each step, the output voltage and sourcing current of each P9415 is written to
the Renesas console.

At the end of stepping the charging voltage, each P9415 is checked for output voltage, sourcing current
and the sum of current sourcing. This is done in wlp_protection_check(). If any check fails, the system
variable WLPF is set and the charger disconnects and shuts down.

If there are no issues, the current clamp is stepped from CHG_START_CLAMP_I_WL to
CHG_END_CLAMP_I_WL (defined in charger.h). With each current step, the P9415 output voltage and
current are reported. Each P9415 is checked for sourcing excessive current, and the receiving system is
checked for sourcing too much current. If any of the cases occur, the loop is exited. The thresholds are
defined in Wlp.h.

The receivers are checked one additional time for output voltage and sourcing current. If no problems are
reported, the BFE is set up for autonomous cell balancing and charging and continuous scan mode is
initiated.

As in the wired charging connect routine, a check is made on the connection between charger and battery.
The system variable WirelessPresent is set to PRESET if everything passes.

SST US069 User Guide

 Renesas Electronics America Page 36

April 04, 2021

9.4. Motor Drive

The Motor Drive routines consists of three routines motor2BfeConnect(), motor_trigger_detect(), and
sys_discharging(). The motor algorithm that rotates the motor and monitors for errors uses the RX23T
120-degree conducting control of permanent magnetic synchronous motor using hall sensors code
provided by Renesas. The code and documentation are provided on the RX23T -RX24T CPU Card
landing page.

 This section discussed the integration between the system and the motor control code. Some motor
control algorithms and key variables are discussed within the section. For in depth detail of the motor
control code, visit www.renesas.com.

Motor
Check

From Sys Flow
(Charger)

Power
Inverter

Throttle Voltage
Too Low Or

System is Set
To OFF

Exit
Loop

Motor
Is Running Motor

Run

Figure 9-4: Motor Control Flow

9.4.1. POWER INVERTER

Motor2BfeConnect()
The POWER INVERTER state is a state within the MOTOR DRIVE state that electrically connects the
motor to the battery pack by way of powering the Inverter / Motor Control board. The Inverter board is
powered by the BFE turning ON the discharge FET (DFET), connecting the battery pack to the inverter.
The motor2BfeConnect() routine executes the POWER INVERTER state.

SST US069 User Guide

 Renesas Electronics America Page 37

April 04, 2021

 The state checks the status of the system and the BFE prior to connecting the power. The MCU sets the
BFE FETSOFF pin to low. This removes the safeguard that prevents the power FETs of the BFE from
turning ON. A pre-charge circuit is enabled for 200ms that charges the motor control caps in a linear
manner. See Figure 9-5.

Motor control capacitors are large in value and are used to stabilize the line voltage in events of
instantaneous current demand or electrical kickback from the motor. Charging these large capacitors from
an uncharged state results in a large inrush current sourced by the battery. A lithium battery has very low
impedance and delivers nearly unlimited current instantaneously. The speed and magnitude of the current
can result in unwanted transients due to inductive charging. The transients can electrically overstress the
components within the signal path.

Figure 9-5: BFE Pre-charge Cap Circuit

The MCU sets PRE_CHR (MCU pin P02) to 0V. This turns ON the PMOS (Q18BFE) that connects the
inverter and battery pack via current limiting resistors (R43BFE and R29BFE). After 200ms has expired,
the motor control caps are significantly charged to allow for the BFE to turn ON the DFET.

In this state, the DFET can only turn ON and power the inverter board if the system is not actively
charging, A single scan is performed and the BFE variables are updated. The system checks if DFET is
already ON. If not, it turns on DFET by unlocking the FET safeguard, followed by a cap pre-charge and
turning on the FETs. The motor_precharge() routine pre-charges the Inverter board capacitors. DO NOT
SINGLE STEP THROUGH THE ROUTINE. The bfe_DFET_ON_OFF(on_off) routine turn DFET
ON and OFF. DO NOT SINGLE STEP THROUGH THE ROUTINE. Run these two routines together
up till the bfe_read_all_register() routine.

SST US069 User Guide

 Renesas Electronics America Page 38

April 04, 2021

9.4.2. MOTOR CHECK

Motor_trigger_detect()
 The motor_trigger_detect() routine runs the MOTOR_CHECK state. The MOTOR_CHECK state runs
the routine motor_check(), which checks the connection between the battery pack and inverter supply
voltage. A pack measurement is made by the BFE and compared to the pack measurement made by the
RX23T (P43 of the MCU) through a resistor divider. If the two measurements are within 20% of each
other, the motor present bit (g_sys_data.Sys_Status.Bit.MCPresent) is set to PRESENT. The BFE is then
placed into continuous SCAN mode.

A NON_PRESENT bit setting disables the discharge path and the BFE is placed in IDLE mode.

The voltage at the battery pack is compared to the voltage that is supplied to the inverter (motor control)
board(P43). The comparison is only made if a start_up request has been set (motor_startup_request) and
discharged is allowed. The check ensures there is a low impedance connection between battery and
inverter.

9.4.3. MOTOR RUN

Sys_discharging()
The sys_discharging() routine is a wrapper function that runs the motor. This routine interfaces the
system to the RX23T 120-degree conducting control of permanent magnetic synchronous motor using
hall sensors code through the motor_run() routine. The routine runs continuously, provided that the exit
motor loop (gExitMotorLoop) flag is set to FALSE and the motor is PRESENT (MCPresent). The exit
motor loop flag is set to TRUE when a motor stop is requested. The power to the inverter is disconnected
(DFET is OFF) when exiting the routine.

There are three profiles the motor is programmed to run. Throttle Control controls the speed of the motor
based on the voltage reading from the throttle. If the requested speed by way of a voltage reading is lower
than the minimum throttle speed (MIN_SPEED_THROTTLE_RPM_P), the motor will not start. Above
the threshold, the motor will spin at the requested speed.

The Single Speed setting programs the motor to turn at the requested speed set by the variable SpeedRpm.
The Step Speed Up and Down setting programs the motor to spin at a set speed for a period of time, then
sets the motor speed to 0. The next step turns the motor from 0 to a higher rpm for a period of time. The
stepping continues until the max speed is reached (maxSpeed), then the speed lowers with each step until
the start speed is reached. This setting is useful for tuning the motor.

To stop the motor in a controlled way, touch pin 2 of the RX23W_PMOD header (motherboard) to
ground. The motor will stop as a result of this. The ground pin connection asserts the pin PE2
(AUX_NMI) of the MCU to ground. Within the While loop the pin is checked in each iteration. A low pin
reading executes the Stop Motor command. It is safe to place a breakpoint after the command has been
executed.

SST US069 User Guide

 Renesas Electronics America Page 39

April 04, 2021

Motor_run()
The motor_run() routine drives the motor based on a requested speed, either from a throttle measurement
or a programmed speed. The motor_run() routine first determines the state of the motor. A motor state of
INACTIVE with a motor start command requested, re-initializes the motor and variables, then tries to
rotate the motor. A stop or reset command stops the motor. The routine updates the desired speed of the
motor when the motor is in ACTIVE state without a stop command. The motor_run() routine executes
with every iteration of the while loop. Motor status and controls are updated, except for timer and
hardware interrupts. In this operation the system is checked to make sure the halls signals are sequencing
in the correct order and in a timely way and the inverter voltage and leg currents are within range. Any
errors measured result in resetting the motor and the state, followed by a motor start command. Table 9
contains useful variables to monitor while operating the motor.

WATCH VARIABLES OF
INTEREST

DESCRIPTION

ST_G.F4_VDC_AD Inverter voltage at MC_PACK
ST_G.F4_IU_AD U leg current
ST_G.F4_IV_AD V leg current
ST_G.F4_IW_AD V leg current
ST_G.U2_RUN_MODE What mode is the motor in [INIT -0, BOOT--1; DRIVE--2

(closed loop)]
ST_G.U2_ERROR_STATUS Reports errors detected in mtr_carrier_interrupt
ST_G.F4_SPEED_RAD Measured speed in radians; radsrpm = 9.55/(number of pole

pairs)

Table 9: Useful Variables to Monitor While Running the Motor

DO NOT PAUSE THE MOTOR CODE WHILE RUNNING THE MOTOR. Doing so can damage
the hardware and potentially ignite the motor or battery pack. Safe places to stop the code while running
the motor are in motor error if statements, after a motor_run stop request or whenever the motor has been
re-initialized or reset prior to starting.

ERROR DESCRIPTION ERROR CODE
NO ERROR 0x00
OVER VOLTAGE (INVERTER) 0x02
OVER SPEED 0x04
HALL TIMEOUT 0x08
HALL PATTERN ERROR 0x20
UNDER VOLTAGE (INVERTER) 0x80
OVER CURRENT U 0xA1
OVER CURRENT V 0xA2
OVER CURRENT W 0xA4
ALL 3 PHASES OVER CURRENT 0xA7

Table 10 Error Modes for The Motor

Table 10 are the error codes for the st_g.u2_error_status variable. When watching the variable, set the
variable to real time refresh.

SST US069 User Guide

 Renesas Electronics America Page 40

April 04, 2021

When debugging the motor run code, there are some routines of interest.

 Mtr_speed_calc(mtr_st_hall_120 * st_m)
The routine calculates the speed of the motor in radians. It uses the last 6 hall interrupt timer readings to
determine the motor speed. The routine is located in mtr_spm_hall_120.c.

Mtr_1ms_interrupt ()
A timer-based interrupt that does the transition between initiate motor start, boot state (open loop) and
drive state (closed PI loop). The boot state waits for the motor to reach a minimum speed before
transitioning to a close loop system (drive state). The routine sets the duty cycle and reference voltage
based on speed and voltage of the system. The routine is located in mtr_interrupt.c.

Mtr_carrier_interrupt()
The routine compares the motor readings to the respective limits. The motor is checked for inverter
over/under voltage, phase(s) over current, over speed and hall timeout errors. DO NOT SET A
BREAKPOINT IN THIS ROUTINE. Printf statements do not work within the routine. The printf
command is a slow statement to execute. Do a real time watch on the variable in Table 9 or store the
variable(s) of interest in memory (pointer or array) and print the value while outside the motor_run()
routine.

For more information with the motor code, refer to the RX23T 120-degree conducting control of
permanent magnetic synchronous motor using hall sensors code documentation on the Renesas web site.

10. Connecting and Tuning the Motor
The code provided with the solution drives a y-rotated brushless motor with hall sensors. This section
should be used as a guideline for connecting the electronics to the motor.

For motors that do not have the U, V, W or A, B, C wires labels, a quick test to determine the phase
sequence to connect each wire to a three-resistor bridge is shown below.

10.1. Inverter board Testing.

Prior to mating the Inverter to the MCU, Charger, BFE board for the first time, power the inverter board
with an independent supply. Apply 16V or greater between MC_Pack+ and MC_Pack-. Monitor the
supply current to the inverter board. The current sourced by the power supply should not exceed a couple
mA.

Measure the regulated voltage connected to the FET driver circuit (TP7MC). A reading within 20% of
12V is expected.

Measure the regulation voltage that connects to the current sense and Hall circuitry (TP6MC). The
measured voltage should be within 20% of the nominal regulation voltage. The nominal regulation
voltage is 5V. The hall sensor operating voltage determines the regulation voltage for the board.

3.3V can also be programmed by changing the feedback resistor divider circuit of the LDO. Please look at
the notes in the schematic for changing other resistor values if the system is running off 3.3V.

SST US069 User Guide

 Renesas Electronics America Page 41

April 04, 2021

The current sense circuit is bidirectional. The output current of the current sense should measure roughly
1.65V or half the ADC measurement range. This is the zero-current voltage. The analog measurement
range for RX23T is 0V to 3.3V. The ADC measurement is 12 bits.

10.2. Hall Sensors

Most hall sensors are powered to 5V. The hall output is an open drain requiring a pull up. Each hall
sensor phase is pulled to a 3.3V by way of a low pass filter. The 3.3V pull up makes the signal
compatible to the RX23T logic range. The Rx23T is powered at 3.3V.

Figure 10-1 Hall Sensor Connection to the RX23t

 Design Note:
At motor startup, the instantaneous current drawn by the motor may result in errant pulses being coupled
to the hall signal lines. It is important to filter the hall signal to the MCU appropriately such that the slew
rate of the signal is maintained while suppressing any electrical noise. Be mindful of the VIL and VIH
levels of the MCU.

Powering the Inverter Board to determine the Hall Sensor Order.
Read through “Setting up the programming environment” (pg.10) if this is the first time running the
debug environment. The Inverter board requires 16V or more for proper operation.

The Inverter/Motor Control board is powered by the battery pack from the motherboard. Stop the code
(software break point) after the motor2BfeConnect() routine to power the inverter board without trying to
drive a motor.

Connect the hall sensor wires to the hall header (HALL_HDRMC) located at the edge the Inverter board
(Figure 10-2).

SST US069 User Guide

 Renesas Electronics America Page 42

April 04, 2021

 Figure 10-2 Hall Header on the Inverter Board

When the Inverter board is powered, probe the voltage at HU, HV or HW (TP11MC, TP12MC and
TP13MC). The output of the halls should be between 1 and 6. HU, HV and HW can never equal each
other. Record the starting value of the hall signals. Assume the starting position of the hall is 6 (HU =0,
HV=1, HW =1). Arrange the hall signal connections to sequence the hall signal in the following order
6231546 when rotating the motor clockwise. The rotation direction is from the perspective
of looking into the motor shaft that connects to the motor. This ensures the hall connection to the board is
correct.

Note:
Use an oscilloscope for easier viewing. Some motors do not have smooth transitions between cogs,
resulting in fast transition of halls reading that may lead to visually missing a signal transition. There
should never be a reading of 0 or 7.

10.3. Determining the Motor Parameters.

Motors bought from a distributor or a third-party vendor often do not have detailed specifications
describing the electrical parameters or the number of poles pairs. This section discusses a series of
experiments to determine the motor’s mechanical and electrical parameters

10.3.1. Phase Connection Order and Phase Determination

For motors that do not have the U, V, W or A, B, C wires labels, a test to determine the phase sequence is
to connect each wire to a three-resistor bridge. As shown in the image below.

MOTOR
SHAFT

Figure 10-3: A three-resistor bridge connection to determine phase order

SST US069 User Guide

 Renesas Electronics America Page 43

April 04, 2021

Prior to rotating the motor, connect differential probes to each motor wire and reference the probe to the
center of the resistor bridge. Connect the shaft of the motor to a power tool or some equipment that can
rotate the shaft clockwise while looking into the motor shaft. Rotate the motor shaft at a relatively
constant speed.

While spinning the motor, monitor the measured signals on the oscilloscope. Each phase connection
should have a sine wave like response, as shown.

The oscilloscope screen capture in the Figure 10-4 shows the measured response from the motor when it
is driven by the inverter. The screen capture can be used to visualize the response from the motor when
the inverter is not driving the motor.

Performing this experiment yields the sequence of the motor connection. Powering the hall sensors while
spinning the motor yields the specific phase for each motor wire.

Figure 10-4: Signals from an inverter driven hall sensor motor

 In the picture above and from top to bottom, the signal definition are as follows; C6(Blue) – phase
voltage U (A), C7(Pink) – phase voltage V (B), C8(Green) – phase voltage W (C), C2(Cyan) – Hall
Sensor U, C3(Red) – Hall Sensor V , C4(Yellow) – Hall Sensor W and C5(orange) – Current
measurement of (1A/10mV) phase W. The white line is a drawn trace that represents the back EMF of U
phase.

1 2 34 5 6

SST US069 User Guide

 Renesas Electronics America Page 44

April 04, 2021

The white line is roughly the signal shape from each phase while spinning the motor without the inverter.
To determine the order of the motor wires (A, B, C), arbitrarily choose the motor wire and look for the
negative slope zero crossing (label 1 in the figure). At the same instance of time, look for a rising slope
zero crossing at the other two wires. This is the next phase the inverter would drive. The third wire is
roughly at a signal peak at the same instance. When the second phase negative slope zero crossing occurs,
the third phase positive slope zero crossing occurs (label 2 in the figure).

Once the U, V, and W hall signals are known (pg.41), the specific phase of each wire is determined by
spinning the motor while monitoring the phase voltage and hall signals. The rising edge of each phase hall
signal occurs when the phase voltage is roughly at its positive peak. Labels 4 through 6 show the
transition for each hall signal.

Design Note:
The physical placement of the hall sensor to the motor may not be equidistant. It is possible that one hall
signal is present for a longer time than another.

The hall signals shown above are noisy. Noisy hall signals may lead to drive signals being applied when
they are not desired. The signal path should use hardware and software filtering. When measuring these
signals, make sure the probes are properly grounded.

10.3.2. Motor Pole Pairs

There are several methods of determining the number of poles pairs a motor has. Assume the same setup
was used to determine phase order and phase assignment.

Spin the motor at a set speed or measure the speed the motor is spinning with a tachometer. Capture an
oscilloscope screen shot of the hall signals.

Measure the frequency of a halls signal. The frequency of all the hall signals should be roughly the same.
The mathematical relationship between hall frequency and the number of pole pairs is shown below

𝐹 =
𝑁 ∗

𝑁 /

2 ∗ 𝜋
2

Equation 10-1: The relationship between Hall Frequency, Poles and Speed.

Nrad/s is the speed of the motor in radians per second.

Npoles is the number of pole pairs of the motor.

FHall is the frequency of the hall signal.

The motor speed is either known or measured by a tachometer. The frequency of the hall is measured.
Solve for the number of pole pairs. The value should be a whole number. Round if necessary.

SST US069 User Guide

 Renesas Electronics America Page 45

April 04, 2021

10.3.3. Motor Resistance

 The motor resistances can be measured by using an ohm meter and measuring the resistance between the
phases.

Figure 10-5: The Motor Resistance is Found by Measuring the Resistance between Phases

 Measure the resistance between phases A and B, A and C and finally B and C. The value of each
measurement should be roughly the same. If the values are significantly different, this could signify that
the motor is not a Y-rotate motor.

𝑅 =
𝑅 + 𝑅 + 𝑅

3 ∗ 2

Equation 10-2: Motor Winding Resistance

RWinding is the average wind resistance.

Rph1 to ph2 is the resistance measurement between phases.

10.3.4. Motor Inductance

Performing the same experiment using an LCR meter instead of a resistance meter, the inductance of each
motor winding is solved by using equation below.

𝐿 =
𝐿 + 𝐿 + 𝐿

3 ∗ 2

Equation 10-3: Motor Winding Resistance

LWinding is the average winding inductance.

Lph1 to ph2 is the inductance measurement between phases.

10.4. Connecting the Motor Parameters to the System Code

After all the motor parameters and phase locations are known, connect the hall sensor and phase wires to
the inverter. MAKE SURE THE POWER IS DISCONNECTED. Phase A of the motor connects to
UMC of the inverter. Phase B connects to VMC of the inverter. Phase C connects to WMC of the
inverter.

SST US069 User Guide

 Renesas Electronics America Page 46

April 04, 2021

10.4.1. Motor parameters configurations

Figure 10-6: Motor Parameters Definition

The motorProfile.h header located in the includes folder of Motor section (See Error! Reference source
not found.). The file extracts the important parameter and thresholds from the underlying code to define
the motor that is connected. Either create a switch or change the values for each parameter to describe the
motor connected.

The scooter motor is an induction motor. The Q inductance value is the same as D inductance value.

10.4.2. Motor and Control Loop Limitations

Parameters:
CP_START_REF_V_P is the starting voltage to initiate motor movement. Set a starting voltage between
1.5V and 1.9V and increase the voltage until the motor starts to move. Monitor all phases and hall signal
when testing.

CP_MAX_SPEED_RPM_P is the maximum speed (RPMs) the motor can be driven to.

CP_MIN_SPEED_RPM_P is the speed the motor turns while the system is open looped and in either in
BOOT or INIT states. While in BOOT state, if the hall speed readings equal or are greater than this value
the state changes to DRIVE. The DRIVE state closes the system and uses a PI control routine to correct
the system error (mtr_feedback.c).

 CP_LIM_SPEED_CHANGE_P is how quickly the close loop system responds to a change in speed.

CP_SPEED_PI_KP_P is the proportional coefficient for the PI control system. Set value to 0.002 and
increase. Increasing the parameter value overdamps the motor response.

CP_SPEED_PI_KI_P is the integration coefficient for the PI control system. Set the value to 0.00001
and increase. Increasing the parameter quickens the motors response to a change in speed step. Increasing
the value too much may result in an underdamped condition or an oscillation within the control system.

SST US069 User Guide

 Renesas Electronics America Page 47

April 04, 2021

MAX_THROTTLE_V_P is the max voltage from the throttle. This parameter is used in Throttle Control
mode.

MIN_THROTTLE_V_P is the min voltage from the throttle. This parameter is used in Throttle Control
mode.

MIN_SPEED_THROTTLE_RPM_P is the minimum motor speed when the MCU throttle reading is
above this value. A voltage reading below the threshold stops the motor. This parameter is used in
Throttle Control mode.

10.4.3. Motor Control Limits

Parameters:
MTR_OVERCURRENT_LIMIT_P is the maximum current limit measured at each leg. Each leg’s
current is compared to this value.

MTR_OVERVOLTAGE_LIMIT_P is the maximum voltage limit measured for the supply of the
inverter.

MTR_UNDERVOLTAGE_LIMIT_P is the minimum voltage limit measured for the supply of the
inverter.

10.4.4. Hall Controls and Limits

Parameters:
MTR_SPEED_LIMIT_RPM_P is the speed limit measured from the hall signals. The speed limit
should be equal to the forced speed limit (CP_MAX_SPEED_RPM_P). Increase the value if errant hall
pulses result in errant speed values. Look for errant hall pulses at motor startup. If there is rocking of the
motor at start up, this could lead to a bad speed reading.

MTR_SPEED_PI_I_LIMIT_V_P is the maximum voltage the PI loop can request. This value should
equal the maximum voltage of the pack.

MTR_MAX_DRIVE_V_P is the maximum voltage the system can command.

MTR_MIN_DRIVE_V_P is the minimum command voltage. The value is typically a couple tenths of a
volt higher than the starting voltage (CP_START_REF_V_P). Some motors may contain a high startup
voltage and a lower voltage to maintain momentum.

MTR_ROTATION_P is the rotation of the shaft from the perspective of looking into the shaft. An
MTR_CW is a clockwise rotation. An MTR_CCW is a counterclockwise rotation.

10.5. Testing the motor

Before testing the motor, change the value of the SystemONOFF variable to 1. This allows the motor to
discharge without a Bluetooth connection. Change the gMotorSpinProfile within sys_discharging() to
SINGLE_SPEED. Change the SpeedRpm variable to the desired speed. In motorProfile.h, change the
CP_START_REF_P value to 1.9 to start. Compile the program.

SST US069 User Guide

 Renesas Electronics America Page 48

April 04, 2021

With an oscilloscope, measure the phase voltage and halls signal for each leg. Measuring a phase current
is a bonus.

Without a charger or Bluetooth module connected, step to the motor_run() within the sys_discharging()
routine.

Note the hall starting location. Set the scope to Single Sequence and capture the first pulse transition sent
from the inverter to the motor. Using the inverter signal shown in Figure 10-4 pg.43 of a motor rotating
clockwise as a reference, determine if the PWM pulses are being applied to the correct phase of the
motor. If the starting hall signal is 110b (W=1, V=1, U=0), the PWM signal should be on the U(A) phase.

In the figure, locate label 2. Locate hall signal 110b to the left of label 2. The system changes which
PWM is pulsed when a hall signal transitions negative. At approximately 20ms, the hall transitions from
110b to 010b. At this time, the U(A) phase is being driven.

If the PWM is not being applied to the correct phase, change the connections and repeat the experiment. If
certain that the motor connections to the inverter are accurate and the motor is not moving (Hall Time Out
sst_g.u2_error_status() = 0x08), change CP_START_REF_P by a few tenths. Continue raising the
voltage until the motor turns. Do not raise the value too much; the system could be damaged.

NOTE:
DO NOT set breakpoints within the motor control routine after the motor has executed a motor start
command. Doing so could damage the hardware and motor. It may even start a fire. To monitor the
motor parameters in real time, see Mtr_carrier_interrupt() (pg.40).

10.6. Tuning the motor (PI Loop)

For this section, the motor should be spinning at a set speed. In the sys_discharge() routine, change mode
to STEP_SPEED_UP_DOWN. The mode accelerates the motor for a stop to a set speed. For each speed
step, the speed step increases by a stepSpeed until the maxSpeed is reached. Once the maxSpeed step has
been performed, the speed step is decreased by a stepSpeed. This continues until the speed is below the
startSpeed.

After setting the variables and compiling, launch the real time chart from the Renesas Views menu
[Renesas View Debug Real-time Chart]. A graphical window appears.

SST US069 User Guide

 Renesas Electronics America Page 49

April 04, 2021

Figure 10-7: Add Series to the Real-time Chart.

Within the chart, right-click and choose new series. The measure speed variable is st_g.f4_ref_speed_rad.
Change the output units to rpm by multiplying the variable by 9.55/number of pole pairs. Add another
series equal to SpeedRpm. This is the requested speed of the motor.

To increase the responsiveness of the motor, increase the value of CP_SPEED_PI_KP_P (proportional
gain) first then CP_SPEED_PI_KI_P (integral gain). The CP_LIMIT_SPEED_CHANGE_P is the
responsiveness of the motor once it receives a change in speed request.

Figure 10-8: Changing Control Loop Parameters Changes the Responsiveness of the Motor

SST US069 User Guide

 Renesas Electronics America Page 50

April 04, 2021

Figure 10-8 shows at the response of the motor from a single step response. The old data points are on
the right side of the graph and the newest measurements are on the left.

NOTE:
The chart clears itself upon terminating the debug session. To capture the graph, pause the code while the
motor is stopped or place a breakpoint after the motor stop command.

11. Changing the Hardware

11.1. BFE (ISL94216)

The BFE can support battery packs less than the 14 cells. There are a series of Do Not Place resistor
footprints that have been added to the board to support packs from 7 cells (See Figure 11-1).

For every cell that is reduced from 14 cells, populate the cell balancing and Vcell resistor closest to vcell
8 (VC8). A 13-cell pack would populate R9BFE (CB10) and R2BFE (VC10) with 0ohm resistors. A 12-
cell pack would populate the 13-cell resistor and R33 (CB7) and R32 (VC7).

Table 11 are the hardware changes need for system less than 14 cells. With the hardware changes,
software changes are needed for threshold limits and cell counts. Threshold limits and count are found in
the BfeProfile.h. The register value for the variable NUM_OF_CELLS is defined in Table 11. The
NUM_OF_CELLS value for 14 cells is 0xFE7F.

NUMBER
OF
CELLS

RESISTOR TO
POPULATE

CB RESISTOR
TO REMOVE

CONNECT VC8
TO 2BATBFE
PINS

NUM OF
CELLS VAL

13 R9BFE, R2BFE R66BFE 8 to 9 0xFC7F
12 13 cell res + R33, R32 R66BFE 7 to 8 0xFC3F
11 12 cell res + R21BFE, R19BFE R64BFE 7 to 8 0xF83F
10 11 cell res + R35, R31 R64BFE 6 to 7 or 6 to 8 0xF81F
09 10 cell res + R37, R36 R42BFE 6 to 7 or 6 to 8 0xF01F
08 09 cell res + R39, R30 R42BFE 5 to 6 or 5 to 8 0xF00F
07 08 cell res + R34, R41 R40BFE 5 to 6 or 5 to 8 0xE00F

Table 11: BFE System Configuration for Cells Less than 14.

SST US069 User Guide

 Renesas Electronics America Page 51

April 04, 2021

 Figure 11-1: USE DNP Resistors to reduce the cell count of the pack

11.2. Charger

For charger regulation current and the voltage configurability, see section “Programming the charger
output voltage and current.” (pg.32). The chargerProfile.h has the thresholds of the battery pack to be
charged. Change regulation voltage and current to suit the pack to charge. Any component value changes
made in hardware should be reflected in the charger.h header file. The charger.h also has the component
values for the attenuator (WIRE_AO).

11.3. Wireless Charger

 The wlpProfile.h head is the file that stores the thresholds specific to the wireless charger. All other
profiles charging profiles (regulation voltage and charging current) are stored in chargerProfile.h.

11.4. Motor

See “Connecting the Motor Parameters to the System Code” (pg.45) to change the MotorProfile.h
thresholds and parameters for a specific motor. In addition to connecting the motor, the regulation voltage
that powers the hall sensors and throttle are configurable.

The V_LDO regulator is variable (Figure 11-2). The default configuration for the V_LDO regulator is
5.0V. A 3.3V V_LDO output requires R66MCMCMC to change to 118kΩ. Changing the regulator value
to 3.3V requires R47MC to be removed from C54MC and the MC_THROTTLE_ATTN
(control_parameter.h) to equal 1.

SST US069 User Guide

 Renesas Electronics America Page 52

April 04, 2021

Figure 11-2: Inverter Board Regulator

 The change in regulator voltage changes the center voltage of the bidirectional current sense amplifiers
(U10MC, U11MC, U12MC). These amplifiers combined with the ADCs inside the MCU measure the leg
current. The max current should be within the measurement range of the ADC (0V to 3.3V).

For a regulator voltage of 3.3V, change R46MC, R49MC and R51MC to 20kΩ.

The hardware OCP requires changes for the 3.3V operation. Change R70MC to 8.87kΩ and R74MC to
9.53kΩ to equal the threshold levels for 5V.

12. Bluetooth Connection (RX23W)
The US069 uses the RX23W Target Board (RTK5RX23W0C00000BJ) for connection between the
mobile app and the system. More information is found on the RX23W Bluetooth system in Appendix C
on page 93 of this document.

The operational guide that sets up the RX23W target boards is provided in “Appendix B BLE Operation
Guide” pg.60.

The device composition for this project is shown in Figure 12-1.

A Host Board (RX23T), which behaves as an I2C Master, is connected to the RX23W, which acts as an
I2C Slave. The RX23W connects to a Smart Phone via BLE, where the RX23W behaves as the client
(master) and the Smart Phone acts as the server (slave). The Smart Phone is an Android or iOS device.
The RX23W can be optionally connected to a Serial Emulator via USB connection to a Host PC.

SST US069 User Guide

 Renesas Electronics America Page 53

April 04, 2021

Figure 12-1: Bluetooth System makeup

12.1. Initialization

When the device is powered on, the MCU will initialize and enable the LED, the I2C module, and the
BLE module. The LED is used to indicate data sent from the mobile app. The I2C module sets the slave
address of the RX23W (0x71) and sets up two I2C buffers. The first is a receive buffer with a size of 202
bytes, and the other is a send buffer with a size of 12 bytes. Then, it enables I2C communication and
prepares for slave transfer/reception. A transmission request from the master will now trigger an interrupt
linked to an I2C callback function which handles I2C transmissions.

The BLE module initializes all the common protocol stack elements, such as the host stack, the Generic
Attribute Profile (GATT) database, the GATT server/client, and the custom service, the System Data
Transmission service. GATT describes how data is transferred between peripheral and host devices,
which are defined as servers and clients. Servers hold attribute lookup data and service definitions in a
database, and the client sends requests to this server. Services break data up into logic entries called
characteristics that can be individually accessed. The BLE module also initializes the optional Command
Line Interface that can be accessed via a Serial Emulator to show BLE events such as advertising and
connection.

After initialization, the BLE module is ready, and the device is set to an idle state where it waits for I2C
transmissions and BLE events to process.

SST US069 User Guide

 Renesas Electronics America Page 54

April 04, 2021

12.2. I2C Execution

When an I2C transmission is sent from the Scooter host device (master) with the correct slave address, the
RX23W device recognizes the start of a transmission and throws an interrupt. The interrupt handler
function handles incoming I2C communications by checking to see if the transmission was completed or
timed out. If the transmission is completed successfully (with no NACK or timeout), a Cyclic
Redundancy Check (CRC) is performed on the receive buffer, which is an error-detecting code, to ensure
that the contents are correct. A CRC-16 check appends 2 check bytes to the buffer, and these bytes are
checked at the end of every I2C transmission to confirm that no noise was present in the transmission.

In this system, the Scooter host device makes an I2C write and then a read approximately every second to
send its system data and check for input from the mobile app. After data is sent to or received from the
host device, the RX23W resets the parameters for the send and receive buffers to their initial state to
prepare for the next transmission (this does not delete the buffer contents, but they will be overwritten by
the next transmission) and performs a CRC-16 check on the receive buffer. When data is received from
the Smart Phone via BLE, the device places the contents into the I2C send buffer and appends CRC-16
check bytes to the send buffer to be read by the Scooter host device.

12.3. BLE Execution

When an I2C transmission is completed successfully, the contents of the receive buffer are split into a
static buffer, which is a buffer for static data such as device IDs and firmware versions, and a continuous
data buffer, which includes battery voltage, scooter motor speed, etc. The System Data Transmission
service takes the 7-byte static buffer and 120-byte continuous data buffer and encodes them into BLE
packets to be sent to the Smart Phone via a Notify operation, which is a write operation that does not
require acknowledgement from the client. When data is received via BLE from the Smart Phone, the data
packet is decoded and CRC-16 check bytes are appended to the contents, which are placed in the I2C send
buffer to be read by the I2C master.

12.4. Mobile App

A custom mobile app was developed specifically for this project to interpret and output the data received
by the RX23W, as well as input data to the RX23W. Screenshots of the mobile app can be seen in Figure
12-2. In its default state, the app is idle, but when the ‘Connect’ button is pressed, the device will begin
scanning for Bluetooth devices, and initiate a connection if the Device Name (which was set to
‘SCOOTER’) and Bluetooth address matches with the RX23W. The RX23W then begins to send data to
the app, which is handled by the app and used to update the display. Voltage and current data are
constantly updated, and the app indicates if the device is Idle, Charging, or Discharging. Battery level
data can also be seen at the bottom of the Connect tab, showing in green if the battery level is in a range
up to 25%, 50%, 75%, and 100% (full charge). There is a separate Register tab which allows the user to
view individual register data as well.

If the user presses the ‘Powered Off’ button, the phone will send data to the RX23W to indicate a power
ON state, which is decoded and forwarded via I2C to the host device to be interpreted. This allows the
user to engage the throttle and control the motor.

SST US069 User Guide

 Renesas Electronics America Page 55

April 04, 2021

Figure 12-2: BLE Mobile App

13. Appendix A
Attached is the list of System variables for the project. These variables are actively updated and reside in
the RX23T. These variables are pushed to the RX23W when the device is connected.

Struct Variable Sub-Member Type Description Default
Value

Sys_Device_ID uint8_t Device ID for the system 0x23

Sys_Firmware uint8_t System firmware version 0x00

Sys_Fault Sys_fault_t 0x00

 WLPF uint8_t 1 = Wireless Power Fault
detected

 WPF uint8_t 1 = Wired Power Fault
detected

 CHGF uint8_t 1 = Charger Fault detected

 BFEF uint8_t 1 = BFE (ISL94216) Fault
detected

SST US069 User Guide

 Renesas Electronics America Page 56

April 04, 2021

 MTRF uint8_t 1 = Motor Fault detected

 AUXF uint8_t 1 = Auxiliary Fault detected

Sys_ErrorCodeLowByte Sys_error_code
_low_t

 0x00

 WPF_VIN uint8_t 1 = Wired Power input voltage
is out of range

 CHGF_PG uint8_t 1 = PG level of the ISL81801
is incorrect

 CHGF_VOUT uint8_t 1 = Charger output voltage is
out of range of target

 CHGF_II_IO uint8_t 1 = Output current is greater
than 0.5A when CFET is off

 WLPF_DEVICE uint8_t 1 = P9415 LDO output current
is incorrect

 WLPF_VOUT uint8_t 1 = P9415 output voltage is
out of range

 WLPF_BFE uint8_t 1 = Battery pack voltage is
lower than 35V

 WLPF_PROTECTION uint8_t 1 = Wireless Power check
failed and was protected

Sys_ErrorCodeHighByte uint8_t Not used in current version N/A

Sys_Status Sys_status_t 0x30

 WirelessPresent uint8_t 1 = Wireless Power was
confirmed to be connected

 LineInPresent uint8_t 1 = Wired Power was
confirmed to be connected

 ChargingAllowed uint8_t 1 = Charging the device is
allowed

 DischargingAllowed uint8_t 1 = Discharging (running the
motor) is allowed

 MCPresent uint8_t 1 = Motor was confirmed to be
connected

 AuxPresent uint8_t 1 = RX23W device was
confirmed to be connected

 DFETstatus uint8_t 1 = Discharge FET is enabled

 CFETstatus uint8_t 1 = Charge FET is enabled

Sys_OCVFuelGauge OCVFuelGauge_t 0x00

 Percent_100 uint8_t 1 = Minimum battery cell
value is at 100% (full)

 Percent_100to75 uint8_t 1 = Minimum battery cell
value is between 75 and 100%

SST US069 User Guide

 Renesas Electronics America Page 57

April 04, 2021

 Percent_75to50 uint8_t 1 = Minimum battery cell
value is between 50 and 75%

 Percent_50to25 uint8_t 1 = Minimum battery cell
value is between 25 and 50%

 Percent_25to0 uint8_t 1 = Minimum battery cell
value is between 0 and 25%

Sys_control Sys_control_t 0x00

 SystemONOFF uint8_t 1 = Motor is enabled by
Bluetooth app

 ResetSys2Default uint8_t Not used in current version N/A

 ClearAllFaults uint8_t Not used in current version N/A

 BFEScanMode uint8_t Not used in current version N/A

 DFTONorOFF uint8_t Not used in current version N/A

 CFETONorOFF uint8_t Not used in current version N/A

Bfe_OWStatus uint16_t Reg 0x68
Not used in current version

N/A

Bfe_Temp uint16_t Measures maximum
temperature (Etaux1 or
Etaux0)

0x0000

Bfe_VcellMax uint16_t Maximum cell voltage across
cells

0x0000

Bfe_VcellMin uint16_t Minimum cell voltage across
cells

0x0000

Bfe_MCellnum uint16_t Maximum and minimum
number of cells

0x0000

Bfe_Vcell1 uint16_t Reg 0x30
Measures voltage of cell 1

0x0000

Bfe_Vcell2 uint16_t Reg 0x32
Measures voltage of cell 2

0x0000

Bfe_Vcell3 uint16_t Reg 0x34
Measures voltage of cell 3

0x0000

Bfe_Vcell4 uint16_t Reg 0x36
Measures voltage of cell 4

0x0000

Bfe_Vcell5 uint16_t Reg 0x38
Measures voltage of cell 5

0x0000

Bfe_Vcell6 uint16_t Reg 0x3A
Measures voltage of cell 6

0x0000

Bfe_Vcell7 uint16_t Reg 0x3C
Measures voltage of cell 7

0x0000

Bfe_Vcell8 uint16_t Reg 0x3E
Measures voltage of cell 8

0x0000

SST US069 User Guide

 Renesas Electronics America Page 58

April 04, 2021

Bfe_Vcell9 uint16_t Reg 0x40
Measures voltage of cell 9

0x0000

Bfe_Vcell10 uint16_t Reg 0x42
Measures voltage of cell 10

0x0000

Bfe_Vcell11 uint16_t Reg 0x44
Measures voltage of cell 11

0x0000

Bfe_Vcell12 uint16_t Reg 0x46
Measures voltage of cell 12

0x0000

Bfe_Vcell13 uint16_t Reg 0x48
Measures voltage of cell 13

0x0000

Bfe_Vcell14 uint16_t Reg 0x4A
Measures voltage of cell 14

0x0000

Bfe_Vcell15 uint16_t Reg 0x4C
Measures voltage of cell 15

0x0000

Bfe_Vcell16 uint16_t Reg 0x4E
Measures voltage of cell 16

0x0000

Bfe_DeltaVcell uint16_t Reg 0x50
Difference between maximum
and minimum cell voltages

0x0000

Bfe_Vpack uint16_t Reg 0x5C
Measures total battery pack
voltage

0x0000

Bfe_Timer unsigned long Reg 0x54
Measures time stamps for
current measurements

0x0000

Bfe_Ipack uint16_t Reg 0x52
Measures the current across
the sense resistor

0x0000

Bfe_Ireg uint16_t Reg 0x61
Measures reference voltage
across the sense resistor
between EMITTER and VDD

0x0000

Bfe_Etaux0 uint16_t Reg 0x58
External temperature monitor
for battery pack

0x0000

Bfe_Etaux1 uint16_t Reg 0x5A
External temperature monitor
for battery pack

0x0000

Bfe_InternalTemp uint8_t Reg 0x5E
Reports internal temperature
of the ISL94216

0x0000

Bfe_VTEMP uint8_t Reg 0x5F
Reference voltage for Etaux
pins to monitor battery pack
temperature

0x0000

Bfe_VCC uint8_t Reg 0x60
Internal measurement of VCC
pin voltage

0x0000

SST US069 User Guide

 Renesas Electronics America Page 59

April 04, 2021

Bfe_0to25Threshold uint16_t Threshold voltage to indicate
charge level of battery pack
(for 0-25% charge)

0xACE1

Bfe_25to50Threshold uint16_t Threshold voltage to indicate
charge level of battery pack
(for 25-50% charge)

0xBDE0

Bfe_50to75Threshold uint16_t Threshold voltage to indicate
charge level of battery pack
(for 50-75% charge)

0xD1CA

Bfe_75to100Threshold uint16_t Threshold voltage to indicate
charge level of battery pack
(for 75-100% charge)

0xE5B5

Wlp_ChipID uint16_t Reg 0x00
Chip ID for the wireless power
device

0x9415

Wlp_HardwareID uint8_t Reg 0x02
Hardware ID for the wireless
power device

0x0000

Wlp_CustomerID uint8_t Reg 0x04
Customer ID

0x0000

Wlp_StatusRegister_A uint16_t Reg 0x2C
Status of LDO, OTP, OVP,
OCP, etc.

0x0000

Wlp_StatusRegister_B uint16_t Reg 0x2D
Status of ID and device
authentication, etc.

0x0000

Wlp_InterruptRegister_A uint16_t Reg 0x30
Notifies of interrupts for LDO,
OTP, OVP, OCP, etc.

0x0000

Wlp_InterruptRegister_B uint16_t Reg 0x31
Notifies of interrupts for ID
and device authentication, etc.

0x0000

Wlp_InterruptRegister uint16_t Not used in current version N/A

Wlp_IntEnRegister uint16_t Reg 0x34
Enables/disables the above
interrupt registers

0x0000

Wlp_ReadVout uint16_t Reg 0x3C
12-bit ADC reading of main
LDO Vout value

0x0000

Wlp_ReadIout uint16_t Reg 0x44
Current reading of Iout

0x0000

Wlp_ReadTemperature uint16_t Reg 0x46
Temperature reading of the die
in 12-bit ADC value

0x0000

Wlp_RxFlag uint16_t Not used in current version N/A

Chg_info Chg_info_t 0x00

SST US069 User Guide

 Renesas Electronics America Page 60

April 04, 2021

 LineInPresent uint8_t Confirms that RX23W
auxiliary device is connected

0x00

 WLPPresent uint8_t Confirms that P9415 wireless
power device is connected

0x00

 WL_Cntrl uint8_t Enables/disables the wireless
power device

0x00

 W_Cntrl uint8_t Enables/disables the wired
power input

0x00

 AnalogMux uint8_t Not used in current version N/A

Chg_Vin uint16_t Voltage reading for the
charger voltage input ADC

0x0000

Chg_Vout uint16_t Voltage reading for the
charger voltage output ADC

0x0000

Chg_Iin uint16_t Current reading for the charger
current input ADC

0x0000

Chg_Iout uint16_t Current reading for the charger
current output ADC

0x0000

Mtr_throttle uint16_t Not used in current version N/A

Mtr_speed uint16_t Not used in current version N/A

Mtr_rotate_speed uint16_t Not used in current version N/A

Mtr_temp uint16_t Not used in current version N/A

Table 12: System Variables

14. Appendix B BLE Operation Guide
This section is a step-by-step guide on how to set up and run the project, as well as how to set up the
phone app for communication. This section assumes that you have a Target Board for RX23W, Smart
Phone, 2 micro-USB cables and have installed e2 studio.

The phone app described in this example will be the Renesas GATTBrowser app. Refer to the
GATTBrowser Application Note in Section 3 for more details.

14.1. 1.1. Setup

For a detailed guide on how to use e2 studio and install projects onto the Target Board for RX23W, refer
to RX Family QE for BLE[RX] R_BLE Script sample and dedicated program Application Notes in
Section 3.

 Open e2 studio, and import and compile the project
 There are 2 DIP switches (ESW1) on the RX23W board which are currently switched OFF. Turn

Switch 2 to ON to enable debugging/program loading
 There are 2 micro-USB connectors on the RX23W board which can both be used to power the

board

SST US069 User Guide

 Renesas Electronics America Page 61

April 04, 2021

 Connect a micro-USB cable between the Host PC and the ECN1 connector (for connecting to the
on-board emulator (E2 J-link Lite)), and select Debug in e2 studio to load the program onto the
board

 The RX23W board can now be disconnected from the Host PC (or used to power the board) and
Switch 2 can be turned OFF so that the program runs automatically when powered on

o Alternatively, the program can be run from e2 studio in Debug mode
 The program will start automatically, but pressing the RESET button at any time will reset the

device and restart the program
 (Optional) Connect a micro-USB cable between the Host PC and the CN5 connector to allow for

serial connection and open a serial emulator (terminal) such as Tera Term to view Bluetooth
events

o The terminal must be configured according to Section 2.8.6 of the RX23W Group BLE
Module Firmware Integration Technology Application Note

 This concludes the setup. Once the program has been loaded, power the board with a micro-USB,
launch a terminal (optional) and open the GATTBrowser app on the Smart Phone to begin

14.2. 1.2. How to Use

 When power is supplied to the RX23W board, it begins Bluetooth advertising automatically
 Select ‘Scan’ from the GATTBrowser app to view all of the Bluetooth devices in range that are

advertising
 The RX23W board is advertised as ‘SCOOTER’, with the Bluetooth address

‘74:90:50:FF:FF:FF’
 Select the ‘SCOOTER’ device from GATTBrowser by tapping the ‘play’ button
 Once connected, the services are discovered and UUIDs for the available services can be seen.
 There are 3 custom characteristics which can be selected by their UUIDs at the bottom:

o The first one (35ada…) contains continuous data (which would be battery, motor speed,
etc.) which can be notified to the app from the RX23W board

o The second (68e…) contains static data (device ID, firmware, etc.) which can be also sent
to the app from the RX23W board

o The third (5f5…) allows you to write data to the board with hex values such as ’00 01 03
05’ and read those values back

 Select the second service, tap the button to turn notifications on, and press the switch (SW1) on
the RX23W board to send static data

o Alternatively, data can be sent via I2C from a Host Device if it is written to the device
 Press the back button on the Smart Phone and select the first service, turn notifications on and

press the switch on the RX23W board again. Confirm that it is also sending continuous data that
is being incremented every second (only the first 20 bytes can be viewed)

o Alternatively, data can be sent via I2C from a Host Device if it is written to the device
 Pressing the switch repeatedly will turn the timer off and on again
 Press the back button on the Smart Phone and select the third service. If a value of 80 is written in

the first byte of the third service, LED1 on the RX23W board will turn on. Sending any other
value will turn the LED off

SST US069 User Guide

 Renesas Electronics America Page 62

April 04, 2021

 To reset the program, disconnect the device from the Smart Phone and press the RESET switch
on the RX23W board, or terminate the program in e2 studio and select Debug again

For the custom mobile app, refer to the Mobile App section for an overview of features and how to use
the app with the complete setup. The switches on the RX23W are not needed, as the system will
automatically begin to send data once connected.

In e2 studio, all of the data that is sent and received via I2C/BLE, as well as error and control messages,
are printed to the Renesas Virtual Debug Console and can be viewed if the device is being run by the on-
board debugger.

SST US069 User Guide

 Renesas Electronics America Page 63

April 04, 2021

15. Appendix C: Motherboard (RX23T) System Routines
The folder and file configurations of the project programs are given below.

Project scr folder Sub Folder Sub Folder Files Description
src of
US069_48V_Power
_train_for_Scooter

Auxiliary Auxi.c Communication source file with
RX23W

Auxi.h Communication header file with
RX23W

BFE ISL94216.c BFE related routine
ISL94216.h Header file of BFE module

Charger charger.c Source file of charger related
functions

charger.h Header file of charger module
Hardware Config_

S12AD0
Config_S12AD0_
chg.c

Source file of 12-bit A/D converter
for charger module

Config_S12AD0_
chg.h

Header file of 12-bit A/D converter
for charger module

Config_ICU Config_ICU_chg.
c

Source file of interrupt controller
for charger module

Config_ICU_chg.
h

Header file of interrupt controller
for charger module

Motor inc motor.h Header file of motor control
--other h files are
omitted--

Header file of internal c files of
motor control

-- motor.c Top file of motor control, includes
motor initialization setting, motor
check, motor start/stop etc.

-- --other c files are
omitted--

Internal c files of motor control

smc_gen --omitted MCU peripherals settings by FIT
System system.c System process source file

including system initialization,
system check, system fault process
etc

system.h Definition for system and variable
for system

Wlp Wlp.c Source file of wireless charger
related functions

Wlp.h Header file of wireless charger
module

-- US069_48V_Pow
er_train_for_Sco
oter.c

main routine file

-- debug.c For debugging use

SST US069 User Guide

 Renesas Electronics America Page 64

April 04, 2021

15.1. System

System Hardware Initialization Routine
sys_hardware_init()
Outline System hardware initialization
Declaration void sys_hardware_init(void)
Description Initialize all the hardware that charger and BFE used and start them
Call Function R_Systeminit_user()

bfe_hw_start()
Auxi_hw_start()

Argument None

Return Value None

System Variable Initialization Routine
sys_var_init ()
Outline System variable initialization
Declaration void sys_var_init(void)
Description Initialize all the global variables
Call Function None
Argument None

Return Value None

System Module Initialization Routine
sys_modules_init ()
Outline System initialization
Declaration void sys_modules_init (void)
Description System initialization charger module,BFE module and auxillary (RX23W) module
Call Function bfe_init ()

chg_init ()
Auxi_init()

Argument None

Return Value None

System Initialization Routine
sys_init()
Outline System initialization
Declaration void sys_init(void)
Description System initialization which include hardware initialization, variable initialization and

modules initialization
Call Function sys_hardware_init ()

sys_var_init ()
sys_modules_init()

Argument None

Return Value None

SST US069 User Guide

 Renesas Electronics America Page 65

April 04, 2021

System Check Routine
sys_check()
Outline System check
Declaration void sys_check(void)
Description System check wireless charger, wired charger and Auxillary (RX23W) to confirm they

are present or not.
Call Function bfe_setup()

bfe_charge_pump_on()
wlp_wireless_charger_check()
chg_wired_charger_check()
auxi_check()

Argument None

Return Value None

System Update
sys_update()
Outline System update data
Declaration void sys_update(void)
Description System update data for charger, BFE
Call Function chg_reg_update()

wlp_reg_update()
bfe_update_bfe_variables()
Auxi_send_data()

Argument None

Return Value None

System Charging
sys_charging()
Outline System charge procedure
Declaration void sys_charging(void)
Description System execute charging operation
Call Function chg_charger_shut_down()

chg_charging_procedure()
wlp_wireless_charger_monitor()
wlp_charging_procedure()
chg_wired_charger_connect()
wlp_wireless_charger_connect()

Argument None

Return Value None

SST US069 User Guide

 Renesas Electronics America Page 66

April 04, 2021

System Fault Process
sys_FaultProcess()
Outline System fault process
Declaration void sys_FaultProcess(void)
Description System fault process which is called by ISL94216.c
Call Function bfe_single_scan_start()

bfe_update_bfe_variables()
bfe_update_bfe_variables()

Argument None

Return Value None

System Low Power Mode
sys_LowPowerEnter()
Outline System low power mode
Declaration void sys_LowPower_Enter(void)
Description System, BFE, Rx23W are all enter to low power mode
Call Function None
Argument None

Return Value None

System Normal Mode
sys_LowPowerExit()
Outline System normal mode
Declaration void sys_LowPowerExit(void)
Description System exit low power mode enter to normal mode
Call Function bfe_cfet_on_off()

bfe_single_scan_start()
bfe_update_bfe_variables()
Auxi_enable()
Auxi_send_data()

Argument None

Return Value None

SST US069 User Guide

 Renesas Electronics America Page 67

April 04, 2021

15.2. Auxillary

Auxillary Initialization
Auxi_init ()
Outline Auxillary initialization
Declaration void Auxi_init (void)
Description Initialize control pin to connect to RX23W
Call Function None
Argument None

Return Value None

Auxillary Hardware Start
Auxi_hw_start ()
Outline Auxillary hardware start
Declaration void Auxi_hw_start (void)
Description Start hardware to connect to RX23W
Call Function R_Config_SCI5_Start()
Argument None

Return Value None

Auxillary Enable
Auxi_enable ()
Outline Auxillary enabled
Declaration void Auxi_enable (void)
Description Set N_CS1 to “0” to enable RX23w communication
Call Function None
Argument None

Return Value None

Auxillary Disable
Auxi_disable ()
Outline Auxillary disabled
Declaration void Auxi_disable (void)
Description Set N_CS1 to “1” to disable RX23w communication
Call Function None
Argument None

Return Value None

SST US069 User Guide

 Renesas Electronics America Page 68

April 04, 2021

Auxillary Check
Auxi_check ()
Outline Auxillary check
Declaration void Auxi_check (void)
Description Check RX23W is present or not
Call Function Auxi_Write()
Argument None

Return Value None

Auxillary Receive Data
Auxi_receive_data ()
Outline Receive data from RX23W
Declaration void Auxi_receive_data (void)
Description Receive data from RX23W
Call Function Auxi_read()
Argument None

Return Value None

SST US069 User Guide

 Renesas Electronics America Page 69

April 04, 2021

Auxillary Send Data
Auxi_send_data ()
Outline Send system variables to RW23W
Declaration void Auxi_send_data (void)
Description Send data to RX23W
Call Function Auxi_write()
Argument None

Return Value None

15.3. BFE

SST US069 User Guide

 Renesas Electronics America Page 70

April 04, 2021

Routine Name Sub Routine and
Function Included

Description

bfe_init() Reset BFE Module Power down RESET pin of 94216 for 300ms, then
release RESET pin for 100ms.

Get System Information of
chip, store part ID and
product revision to system
variable (sys_data_t)

Implement first communication with 94216 using
global operation register read command.

bfe_set_reg_threshold() Set threshold to voltage, current and temperature
limit register.

bfe_set_reg_init() Initial other registers except threshold setting
registers.

crc_fault_get() Check if there is any CRC error in communication.

bfe_setup() Unmask (0) the charge
pump not ready mask bit

Read out the value in Other Faults Mask(0x85)
register and set the CPMP NRDY MASK to 0, then
write it back to 0x85 register.

bfe_clear_all_faults() Clear all faults through setting Clear Faults and
Status bit in VCELL Operation register(0x02) to 1.

bfe_single_scan_start() Start a single scan

bfe_read_all_faults_status() Read all Faults and Status (0x63 to 0x69)

bfe_fault_handle() Call faults handling routine

bfe_cb_setup() bfe_insert_fetsoff() Assert FETSOFF to low to allow the power FETs to
turn on.

bfe_cal_cur_vol()
bfe_vol_cnt()
bfe_write_reg_value()

Change COC Threshold to 2.2A.

bfe_read_reg_one_value()
bfe_write_reg_value()

Set CB_EN, AUTO_CB and CB_CHRG, IEOC EN
and CB EOC to 1.

bfe_update_bf
e_variables()

Check if the chip is not
busy.

Read busy bit in Global Operation register(0x01) to
confirm current status of chip

bfe_read_all_faults_status()
bfe_read_all_measurement
()

If the chip is not busy, read out all faults and status
register’s value, and all measured value stored in
related registers.

bfe_read_c_dfet_status() Update the current status of CFET and DFET.

bfe_vmax_vin_get() Get maximal and minimal Vcell while recording its
position. Then update the g_sys_data variable.

bfe_max_etaux_get() Get the register value corresponding to the higher
temperature in two Etaux. Then update the
g_sys_data variable.

bfe_battery_level_get() Get current battery level: 0%~25%, 25%~50%,
50%~75%, 75%~100%

SST US069 User Guide

 Renesas Electronics America Page 71

April 04, 2021

Initial routine
bfe_init()
Outline Initial BFE module
Declaration uint8_t bfe_init()
Description Reset chip, confirm connection by reading system information. Set register’s

threshold, and set register initialization value
Call Function bfe_read_reg_one_value()

bfe_set_reg_threshold()

bfe_set_reg_init()

crc_fault_get()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_set_reg_threshold()
Outline Set threshold value to chip’s register
Declaration uint8_t bfe_set_reg_threshold()
Description Implement threshold setting to related registers.
Call Function bfe_write_reg_value()

bfe_vol_cnt_integer()

bfe_cal_res_deg()

bfe_cal_vol_res_simple()

bfe_cal_vol_deg()

bfe_read_reg_one_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_set_reg_init()
Outline Set initial value to chip’s register
Declaration uint8_t bfe_set_reg_init()
Description Implement initial setting to related registers.
Call Function bfe_write_reg_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

SST US069 User Guide

 Renesas Electronics America Page 72

April 04, 2021

Initial value setting table:

94216 Register Addr Setting in Hex Note
0x01 0x00
0x02 0xE0
0x03 0xC2
0x04 0xFC
0x05 0xFF
0x09 0x51
0x0E 0x8C
0x11 0xC0
0x12 0x30
0x1B 0x52 Set LP REG for strong regulator

0x1F 0xCC
Disable Comm TO for debug
(bit1)

0x24 0x5C
0x25 0x2F
0x28 0x80 ~512ms CBON
0x29 0x0C ~48ms CBOFF
0x2E 0x2B
0x83 0x00
0x84 0x00
0x85 0x3F
0x86 0xD7
0x87 0xF0
0x88 0x00
0x89 0x00

bfe_setup()
Outline BFE setup routine
Declaration uint8_t bfe_setup()
Description Clean all faults, trigger a single scan, handle faults.
Call Function bfe_read_reg_one_value()

bfe_write_reg_value()

bfe_clear_all_faults()

bfe_single_scan_start()

bfe_read_all_faults_status()

bfe_fault_handle()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

SST US069 User Guide

 Renesas Electronics America Page 73

April 04, 2021

bfe_cb_setup()
Outline Set up BFE cell balancing function
Declaration void bfe_cb_setup()
Description Assert FETSOFF, change COC threshold and set cell balancing register.
Call Function bfe_insert_fetsoff()

bfe_cal_cur_vol()

bfe_vol_cnt()

bfe_read_reg_one_value()

bfe_write_reg_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

Operation routine
bfe_insert_fetsoff()
Outline Control FETSOFF pin
Declaration void bfe_insert_fetsoff(bool low_high)
Description Control GPIO1 pin.
Call Function None

Argument bool low_high Level output to GPIO1 pin

Return Value None

bfe_insert_wakeup()
Outline Wake up chip from ship or low power to idle mode
Declaration void bfe_insert_wakeup(bool low_high)
Description Pull down WAKEUP pin for changing mode from ship or low power to idle.
Call Function None

Argument bool low_high Level output to WAKEUP pin

Return Value None

bfe_clear_all_faults()
Outline Clear faults and status
Declaration uint8_t bfe_clear_all_faults()
Description Set Vcell operation register(0x02) to clear faults and status.
Call Function bfe_read_reg_one_value()

bfe_write_reg_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

SST US069 User Guide

 Renesas Electronics America Page 74

April 04, 2021

bfe_single_scan_start()
Outline Start a single scan
Declaration void bfe_single_scan_start()
Description Set SYS Scan SEL and SYS Scan Trigger to start a single scan.
Call Function bfe_read_reg_one_value()

bfe_write_reg_value()

bfe_change_mode()

Argument None

Return Value None

bfe_continue_scan_start()
Outline Start a continuous scan procedure
Declaration void bfe_continue_scan_start()
Description Set SYS Scan SEL and SYS Scan Trigger to start a continuous scan.
Call Function bfe_read_reg_one_value()

bfe_write_reg_value()

Argument None

Return Value None

bfe_scan_start()
Outline Trigger a system scan
Declaration void bfe_scan_start()
Description Start scan with its original mode(single or continue).
Call Function bfe_read_reg_one_value()

bfe_write_reg_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_scan_finish()
Outline Check if the scan completed.
Declaration void bfe_scan_finish()
Description Check BUSY bit in Global Operation register and confirm if the scan completed.
Call Function bfe_read_reg_one_value()

Argument None

Return Value bool Scan finished(0), Scan is going on(1)

SST US069 User Guide

 Renesas Electronics America Page 75

April 04, 2021

bfe_charge_pump_on()
Outline Enable the charge pump
Declaration void bfe_charge_pump_on()
Description Enable the charge pump, which provides a biasing voltage to CB16. Wait for charge

pump not ready bit cleared.
Call Function bfe_read_reg_one_value()

bfe_write_reg_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_cfet_on_off()
Outline Turn on or off CFET
Declaration uint8_t bfe_cfet_on_off()
Description Because CFET and DFET cannot be opened simultaneously, before turning on

CFET, turn off DFET first.
Call Function bfe_read_reg_one_value()

bfe_write_reg_value()

bfe_read_c_dfet_status()

Argument bool on_off Turn on or off CFET

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_dfet_on_off()
Outline Turn on or off DFET
Declaration uint8_t bfe_dfet_on_off()
Description Because CFET and DFET cannot be opened simultaneously, before turning on

DFET, turn off CFET first.
Call Function bfe_read_reg_one_value()

bfe_write_reg_value()

bfe_read_c_dfet_status()

Argument bool on_off Turn on or off CFET

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_read_c_dfet_status()
Outline Read current CFET and DFET gate’s status
Declaration uint8_t bfe_read_c_dfet_status()
Description Read out the current C/DFET gate’s status and update related status bit in

g_sys_data variable.
Call Function bfe_read_reg_one_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

SST US069 User Guide

 Renesas Electronics America Page 76

April 04, 2021

bfe_change_mode()
Outline Mode change routine
Declaration void bfe_fault_handle()
Description Change to a specified mode by modifying Scan Operation register(0x2E).
Call Function bfe_read_reg_one_value()

bfe_write_reg_value()

Argument uint8_t cur_mode Mode needs to be changed to

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_fault_handle()
Outline BFE fault handling routine
Declaration void bfe_fault_handle()
Description Using different handling process according to different fault.
Call Function clear_fault_bit()

bfe_dfet_on_off()

bfe_change_mode()

Argument None

Return Value None

bfe_update_bfe_variables()
Outline Update the current faults and status, register value after measurement, while

updating g_sys_data variable.
Declaration uint8_t bfe_update_bfe_variables()
Description If BUSY bit in Global Operation register is 0 which means measurement completed,

read out all faults and status and register value used for storing measured voltage,
current and temperature. After related maximum and minimum are calculated,
update g_sys_data variable.

Call Function bfe_read_reg_one_value()

bfe_read_all_faults_status()

bfe_read_all_measurement()

bfe_read_c_dfet_status()

bfe_vmax_vin_get()

bfe_max_etaux_get()

bfe_battery_level_get()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_cb_auto()
Outline Enable auto cell balancing or not
Declaration uint8_t bfe_cb_auto(bool on_off)
Description Turn on or off auto cell balancing function.
Call Function bfe_read_reg_one_value()

bfe_write_reg_value()

Argument bool on_off Auto cell balancing turn on or off

Return Value uint8_t status MD_OK(0), MD_ERROR

SST US069 User Guide

 Renesas Electronics America Page 77

April 04, 2021

bfe_cb_enable_disable()
Outline Enable cell balancing function or not
Declaration uint8_t bfe_cb_enable_disable(bool on_off)
Description Enable or disable cell balancing function.
Call Function bfe_read_reg_one_value()

bfe_write_reg_value()

Argument bool on_off Cell balancing turn on or off

Return Value uint8_t status MD_OK(0), MD_ERROR

clear_fault_bit()
Outline Clear fault bit routine
Declaration uint8_t clear_fault_bit(uint8_t addr, uint8_t fault_bit)
Description Clear a specified fault bit.
Call Function bfe_read_reg_one_value()

bfe_write_reg_value()

Argument uint8_t address

uint8_t fault_bit

The address of the fault bit

Fault bit

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_aux_open_wire_test()
Outline Etaux open-wire test routine
Declaration uint8_t bfe_aux_open_wire_test()
Description Connect internal switch of Sow which pull up xTx pin to VCC (through RETAUX) to

test if open-wire occurs.
Call Function bfe_read_reg_one_value()

bfe_write_reg_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR_XT_OPEN_W

Note: This routine is not called in this project which means there is no Etaux open-wire function
in this application. Please confirm if this is necessary for this application.

SST US069 User Guide

 Renesas Electronics America Page 78

April 04, 2021

Get measurement and status routine
crc_fault_get()
Outline Read CRC Fault from chip
Declaration bool crc_fault_get()
Description Read out CRCF from Other Faults register(0x65).
Call Function bfe_read_reg_one_value()

Argument None

Return Value bool status No fault(0), Has fault(1)

bfe_read_all_faults_status()
Outline Read out all faults and status value
Declaration uint8_t bfe_read_all_faults_status()
Description All faults and status(0x63~0x69) are read out.
Call Function bfe_read_reg_multi_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

Communicating routine
bfe_read_reg_one_value()
Outline Read one value from one register
Declaration uint8_t bfe_read_reg_one_value(uint8_t addr, uint8_t* rcv_data)
Description Read one register’s value from a specified address.
Call Function bfe_crc_calculate()

bfe_spi_read()

Argument uint8_t addr Register’s address

uint8_t * rcv_data The address of the reception buffer

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_read_reg_multi_value()
Outline Read multiple register value by command
Declaration uint8_t bfe_read_reg_multi_value(uint8_t cmd, uint8_t* rcv_data,

uint8_t rcv_num)
Description Read multiple register’s value by different command.
Call Function bfe_crc_calculate()

bfe_spi_read()

Argument uint8_t cmd

uint8_t* rcv_data

Sequential read command code

The address of the reception buffer

uint8_t rcv_num Number needs to be read out

Return Value uint8_t status MD_OK(0), MD_ERROR

SST US069 User Guide

 Renesas Electronics America Page 79

April 04, 2021

bfe_spi_read()
Outline Read data from register using SPI
Declaration uint8_t bfe_spi_read(uint32_t* const snd_buf, uint16_t const length,

uint32_t* const rcv_buf)
Description Implement the timing of reading one value from a specified register.
Call Function R_Config_RSPI0_Send_Receive()

R_BSP_SoftwareDelay()

Argument uint32_t* const snd_buf the address of sending buffer

uint16_t const length the number of bytes needs to be sent

uint32_t* const rcv_buf the address of the reception buffer

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_write_reg_value()
Outline Write one value to one register
Declaration uint8_t bfe_write_reg_value(uint8_t addr, uint8_t* rcv_data)
Description Write one value to a specified register.
Call Function bfe_crc_calculate()

bfe_spi_write()

Argument uint8_t addr Register’s address

uint8_t snd_data Register’s value

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_spi_write()
Outline Read data from register using SPI
Declaration uint8_t bfe_spi_write(uint32_t* const snd_buf, uint16_t const length,

uint32_t* const rcv_buf)
Description Implement the timing of writing one value to a specified register.
Call Function R_Config_RSPI0_Send_Receive()

R_BSP_SoftwareDelay()

Argument uint32_t* const snd_buf the address of sending buffer

uint16_t const length the number of bytes needs to be written

uint32_t* const rcv_buf the address of the reception buffer

Return Value uint8_t status MD_OK(0), MD_ERROR

Calculation routine
bfe_vol_cnt()
Outline Calculate register’s value from voltage
Declaration uint8_t bfe_vol_cnt(float init, double offset, double step)
Description Calculated integer value from a specified voltage, offset, and step.
Call Function None

Argument float init Voltage

double offset The fixed offset or minimum value

double step Step voltage for one counter

Return Value uint8_t Calculated register’s value

SST US069 User Guide

 Renesas Electronics America Page 80

April 04, 2021

bfe_cnt_vol()
Outline Calculate voltage according to register’s value
Declaration float bfe_cnt_vol(uint16_t reg_val, double step)
Description Calculated voltage from register’s value and step.
Call Function None

Argument uint16_t reg_val Register’s value

double step Step voltage for one counter

Return Value float Calculated voltage

bfe_cal_deg_res()
Outline Calculate resistor from temperature
Declaration double bfe_cal_deg_res(double cur_deg)
Description Calculated resistor from external NTC's Degree Celsius.
Call Function None

Argument double cur_deg Degree celsius

Return Value double Calculated resistor’s value

bfe_cal_res_vol()
Outline Calculate voltage from resistor
Declaration double bfe_cal_res_vol(double cal_res)
Description Calculate voltage from resistor value of external NTC.
Call Function None

Argument double cal_res Resistance value

Return Value double Calculated voltage

bfe_cal_int_deg_cnt()
Outline Calculate register’s value from internal temperature
Declaration uint8_t bfe_cal_int_deg_cnt(double deg_val)
Description Calculate register’s value from Degree Celsius of internal NTC resistor.
Call Function None

Argument double deg_val Degree Celsius

Return Value uint8_t Calculated register value

bfe_cal_int_cnt_deg()
Outline Calculate internal temperature from register’s value
Declaration float bfe_cal_int_cnt_deg(uint8_t reg_val)
Description Calculate degree celsius of internal NTC resistor from register's value.
Call Function None

Argument uint8_t reg_val Register’s value

Return Value float Calculated degree Celsius

SST US069 User Guide

 Renesas Electronics America Page 81

April 04, 2021

bfe_cal_ext_cnt_deg()
Outline Calculate external NTC’s temperature from register’s value
Declaration float bfe_cal_int_cnt_deg(uint8_t reg_val)
Description Calculate external NTC's Degree Celsius from register's reading value.
Call Function None

Argument uint16_t reg_val Register’s value

Return Value float Calculated external NTC’s degree Celsius

bfe_cal_cur_vol()
Outline Calculate voltage from current
Declaration double bfe_cal_cur_vol(double cal_res)
Description Calculate voltage from current.
Call Function None

Argument float cur_val

float res_val

current value

resistance value

Return Value double Calculated voltage

bfe_vmax_vin_get()
Outline Get maximum and minimum in 16 Vcell
Declaration void bfe_vmax_vin_get()
Description Compare all Vcell, get the maximum and minimum, and store in g_sys_data.
Call Function None

Argument None

Return Value None

bfe_max_etaux_get()
Outline Get the register value corresponding to the higher temperature in two Etaux
Declaration void bfe_max_etaux_get()
Description Compare Etaux0 and Etaux1, get the maximal(temperature maximum), then store in

g_sys_data varialbe.
Call Function None

Argument None

Return Value None

bfe_battery_level_get()
Outline Get current battery power of 16 cells
Declaration void bfe_battery_level_get()
Description Get current battery power of 16 cells, display its position in g_sys_data variable.
Call Function None

Argument None

Return Value None

SST US069 User Guide

 Renesas Electronics America Page 82

April 04, 2021

bfe_ipack_current_get()
Outline Calculate Ipack from counter in register
Declaration float bfe_ipack_current_get()
Description According to Ipack count in g_sys_data variable, calculates actual current of Ipack.
Call Function None

Argument None

Return Value float Calculated Ipack value

Routine only for debug
bfe_read_all_register()
Outline Read out all register value
Declaration uint8_t bfe_read_all_register()
Description All register(0x00~0x89) will be read out.
Call Function bfe_read_reg_multi_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_read_ow_status()
Outline Read out 16 Vcell open-wire status
Declaration uint8_t bfe_read_ow_status()
Description Get responsible for reading out open-wire status of 16 Vcell(0x68~0x69).
Call Function bfe_read_reg_one_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_read_all_vcell_vol()
Outline Read out Vcell voltage and Vcell max delta voltage
Declaration uint8_t bfe_read_all_vcell_vol()
Description Get responsible for reading out 16 Vcell and Vcell max delta voltage (0x31~0x51).
Call Function bfe_read_reg_multi_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_read_vpack_value()
Outline Read out VBAT1 voltage
Declaration uint8_t bfe_read_vpack_value()
Description Get responsible for reading out VBAT1 voltage(0x5C~0x5D).
Call Function bfe_read_reg_one_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

SST US069 User Guide

 Renesas Electronics America Page 83

April 04, 2021

bfe_read_ipack_value()
Outline Read out Ipack voltage and Ipack Timer
Declaration uint8_t bfe_read_ipack_value()
Description Get responsible for reading out Ipack voltage(0x52~0x53) and Ipack

Timer(0x54~0x57).
Call Function bfe_read_reg_multi_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_read_other_value()
Outline Read out other voltage
Declaration uint8_t bfe_read_other_value()
Description Get responsible for reading out other voltage(0x58~0x62) which includes ETAUX0/1,

BVAT1, Internal Temperature, VTEMP, Vcc and Ireg voltage.
Call Function bfe_read_reg_multi_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_read_ireg_value()
Outline Read out Ireg voltage
Declaration uint8_t bfe_read_ireg_value()
Description Get responsible for reading out Ireg voltage(0x61~0x62).
Call Function bfe_read_reg_one_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_read_itemp_value()
Outline Read out Internal Temperature and VTEMP Voltage
Declaration uint8_t bfe_read_itemp_value()
Description Get responsible for reading out internal temperature(0x5E) and VTEMP

voltage(0x5F).
Call Function bfe_read_reg_one_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

bfe_read_all_measurement()
Outline Read out all register value
Declaration uint8_t bfe_read_all_measurement()
Description Get responsible for reading out all measurement result(0x30~0x62) registers.
Call Function bfe_read_reg_multi_value()

Argument None

Return Value uint8_t status MD_OK(0), MD_ERROR

SST US069 User Guide

 Renesas Electronics America Page 84

April 04, 2021

15.4. Wired Charger

Charger Initialization
chg_init()
Outline Charger initialization
Declaration void chg_init(void)
Description Initialize the charger related ports.
Called Function chg_wired_charger_check()

chg_charger_shut_down()

sys_module_init()

Argument None

Return Value None

PWM Output Start
chg_pwm_start()
Outline Start PWM output
Declaration void chg_pwm_start(void)
Description Start PWM output
Called Function chg_wired_charger_connect()

wlp_wireless_charger_connect()

Argument None

Return Value None

PWM Output Stop
chg_pwm_stop()
Outline Stop PWM output
Declaration void chg_pwm_stop(void)
Description Stop PWM output
Called Function chg_init()

Argument None

Return Value None

SST US069 User Guide

 Renesas Electronics America Page 85

April 04, 2021

Multiplexer Input Switch
chg_mux_in_switch()
Outline Switch analog inputs
Declaration void chg_mux_in_switch(chg_mux_switch_t addr_ai)
Description Switch analog inputs to measure wired voltage, charger output voltage, input current

or output current.
Called Function chg_wired_charger_check()

chg_wired_charger_connect()

chg_reg_update()

wlp_wireless_charger_connect()

wlp_protection_check()

Argument addr_ai CHG_IN_CHRGPLUS

CHG_IN_II_SENSE

CHG_IN_IO_SENSE

CHG_IN_WIRED_AO

Return Value None

A/D and IRQ1 Switch
chg_mux_out_switch()
Outline Switch P11 functions
Declaration void chg_mux_out_switch(chg_mux_switch_t pin_function)
Description Select P11 as A/D analog input port or IRQ1 detection port, or select internal

reference for A/D conversion.
Called Function chg_wired_charger_check()

chg_wired_charger_connect()

chg_charger_shut_down()

chg_reg_update()

chg_charging_procedure()

wlp_wireless_charger_connect()

wlp_protection_check()

Argument pin_function CHG_OUT_AN016

CHG_OUT_IRQ1

CHG_INTERNAL

Return Value None

SST US069 User Guide

 Renesas Electronics America Page 86

April 04, 2021

IRQ1 Detection Type Set and IRQ1 Start
chg_irq1_detection_type_set()
Outline Set IRQ1 detection type and start IRQ1
Declaration void chg_irq1_detection_type_set(chg_irq_detection_type_t type)
Description Select falling edge or rising edge as IRQ1 detection type, and start IRQ1
Called Function chg_wired_charger_check()

chg_charger_shut_down()

r_Config_ICU_irq1_interrupt()

Argument type CHG_IRQ_EDGE_FALLING

CHG_IRQ_EDGE_RISING

Return Value None

Measure MCU VCC
chg_internal_measure()
Outline Measure VCC of MCU
Declaration void chg_internal_measure(void)
Description Measure VCC voltage by A/D internal reference
Called Function chg_wired_charger_check()

chg_wired_charger_connect()

chg_reg_update()

chg_charging_procedure()

wlp_wireless_charger_connect()

wlp_protection_check()

Argument None

Return Value None

Measure VIN
chg_sense_vin()
Outline Measure VIN
Declaration void chg_sense_vin (float *vin)
Description Measure VIN through AN016
Called Function chg_wired_charger_check()

chg_wired_charger_connect()

chg_reg_update()

Argument *vin Store the voltage value of VIN

Return Value None

SST US069 User Guide

 Renesas Electronics America Page 87

April 04, 2021

Measure VOUT
chg_sense_vout()
Outline Measure VOUT
Declaration void chg_sense_vout (float *vout)
Description Measure VOUT through AN016
Called Function chg_wired_charger_check()

chg_wired_charger_connect()

chg_reg_update()

Argument *vout Store the voltage value of VOUT

Return Value None

Measure IIN
chg_sense_iin ()
Outline Measure IIN
Declaration void chg_sense_iin (float *iin)
Description Measure IIN through AN016
Called Function chg_wired_charger_check()

chg_wired_charger_connect()

chg_reg_update()

Argument *iin Store the current value of IIN

Return Value None

Measure IOUT
chg_sense_iout()
Outline Measure IOUT
Declaration void chg_sense_iout (float *iout)
Description Measure IOUT by AN016
Called Function chg_wired_charger_check()

chg_wired_charger_connect()

chg_reg_update()

Argument *iout Store the current value of IOUT

Return Value None

Set VOUT
chg_control_vout()
Outline Set VOUT
Declaration void chg_control_vout (float vout)
Description Control VOUT by PWM
Called Function chg_wired_charger_connect()

chg_charging_procedure()

wlp_wireless_charger_connect()

Argument vout VOUT set value

Return Value None

SST US069 User Guide

 Renesas Electronics America Page 88

April 04, 2021

Set IOUT
chg_control_iout()
Outline Set IOUT
Declaration void chg_control_iout (float iout)
Description Control IOUT by PWM
Called Function chg_wired_charger_connect()

wlp_wireless_charger_connect()

Argument iout IOUT set value

Return Value None

Wired Charger Check
chg_wired_charger_check()
Outline Wired charger check
Declaration void chg_wired_charger_check(void)
Description Check whether the wired power is plugged in after reset
Called Function sys_check()

Argument None

Return Value None

Wired Charger Connect
chg_wired_charger_connect()
Outline Wired charger connect routine
Declaration void chg_wired_charger_connect(void)
Description Control ISL81801 and turn on CFET to charge the battery pack
Called Function sys_charging

Argument None

Return Value None

Charger Shut Down
chg_charger_shut_down()
Outline Charger shut down routine
Declaration void chg_charger_shut_down(void)
Description Turn off CFET and clear charger status flag.
Called Function chg_charging_procedure()

sys_charging()

wlp_charging_procedure()

Argument None

Return Value None

SST US069 User Guide

 Renesas Electronics America Page 89

April 04, 2021

Wired Charger Register Update
chg_reg_update()
Outline Update the wired charger register for RX23W
Declaration void chg_reg_update(void)
Description Update VIN, VOUT, IIN, and IOUT of the charger
Called Function sys_update()

Argument None

Return Value None

Wired Charger Charging Procedure
chg_charging_procedure()
Outline Wired charger charging procedure
Declaration void chg_charging_procedure(void)
Description When VEOC is set, change regulation voltage from 59.4V to 58.8V.

When BATFULL is set, shut down charging process.
Called Function sys_charging()

Argument None

Return Value None

15.5. Wireless Charger

Wireless Charger Check
wlp_wireless_charger_check()
Outline Wireless charger check
Declaration void wlp_wireless_charger_check (void)
Description Check whether the wireless is present after reset.
Called Function sys_check()

Argument None

Return Value None

Wireless Charger Monitor
wlp_wireless_charger_monitor()
Outline Wireless charger monitor
Declaration void wlp_wireless_charger_monitor (void)
Description Monitor whether the wireless power transmitter is removed.
Called Function sys_charging()

Argument None

Return Value None

SST US069 User Guide

 Renesas Electronics America Page 90

April 04, 2021

Wireless Charger Connect
wlp_wireless_charger_connect()
Outline Wireless charger connect routine
Declaration void wlp_wireless_charger_connect (void)
Description Set the P9415-R, control ISL81801 and turn on CFET to charge the battery.
Called Function sys_charging()

Argument None

Return Value None

Read P9415
wlp_read_p9415()
Outline Read P9415
Declaration void wlp_read_p9415(uint8 _t device_addr, uint16_t reg, uint32_t

bytes_num, unsigned int * reg_val)
Description Communicate with P9415 to get the register values by IIC.
Called Function wlp_protection_check()

wlp_reg_update()

wlp_wireless_charger_connect()

Argument device_addr WLP_P9415_A_ADDR

WLP_P9415_B_ADDR

 reg P9415 registers address

 bytes_num Transmit data length

 *reg_val Store the received register data

Return Value None

Set P9415
wlp_set_p9415()
Outline Set P9415
Declaration void wlp_set_p9415(uint8 _t device_addr, uint16_t reg, uint32_t

bytes_num, uint32_t reg_val)
Description Communicate with P9415 to set register value by IIC.
Called Function wlp_wireless_charger_connect()

Argument device_addr WLP_P9415_A_ADDR

WLP_P9415_B_ADDR

 reg P9415 registers address

 bytes_num Transmit data length

 reg_val Register set data

Return Value None

SST US069 User Guide

 Renesas Electronics America Page 91

April 04, 2021

Wireless Charger Protection
wlp_protection_check ()
Outline Check wireless charger protection signals
Declaration sys_err_code_t wlp_protection_check (void)
Description If any protection is triggered, WLPF_PROTECTION is returned.
Called Function sys_charging()

wlp_wireless_charger_connect()

Argument None

Return Value SUCCESS

WLPF_PROTECTION

Wireless Charger Register Update
wlp_reg_update()
Outline Update the wireless charger registers for RX/23W
Declaration void wlp_reg_update (void)
Description Update the chip ID, hardware ID, customer ID, status register, interrupt status

register, VOUT register, IOUT register, and temperature register.
Called Function sys_update()

Argument None

Return Value None

Wireless Charger Charging Procedure
wlp_charging_procedure()
Outline Wireless charger charging procedure
Declaration void wlp_charging_procedure (void)
Description Measure battery pack voltage, and battery charging current. If the voltage is fully

charged (the voltage is close to 59.4V, within +/-1%, the current is lower than 0.1A),
shut down the charging process.

Called Function sys_charging()

Argument None

Return Value None

15.6. Motor

Pre-charge motor
motor_precharge ()
Outline Pre-charge the load capacitor of motor for not more than 200ms
Declaration void motor_precharge (void)
Description Pre-charge the load capacitor of motor for no more than 200ms before turning on

DFET of BFE.
Called Function None

Argument None

Return Value None

SST US069 User Guide

 Renesas Electronics America Page 92

April 04, 2021

Initialize motor
motor_init ()
Outline Initialize motor
Declaration void motor_init (void)
Description Initialize peripherals for motor operation, variables, set initial sequence, execute

reset event of motor, and set variables for board_ui mode.
Called Function R_MTR_InitHardware()

software_init()
R_MTR_InitSequence()
R_MTR_ExecEvent()
R_MTR_AutoSetVariables()

Argument None

Return Value None

Check motor status
motor_check ()
Outline Check motor status by reading inverter bus voltage and phase voltage
Declaration void motor_check (void)
Description Check whether Vpk is more than 80% of battery voltage, and phase voltages are

close to 0V before motor running
Called Function R_MTR_get_vpk_AO ()

bfe_cnt_vol ()
R_MTR_check_phase_V ()

Argument None

Return Value None

Execute reset event for motor
motor_reset ()
Outline Execute reset event for motor
Declaration void motor_reset (void)
Description Execute reset event for motor when motor error occurs.
Called Function R_MTR_ExecEvent()

Argument None

Return Value None

SST US069 User Guide

 Renesas Electronics America Page 93

April 04, 2021

Control motor running
motor_run ()
Outline Control motor running
Declaration void motor_run(void)
Description Control motor running, includes motor conducting control with hall sensor, speed

adjust according to the throttle input, stop running according to the brake input by
POE function.

Called Function R_MTR_GetStatus()
R_MTR_ExecEvent()
get_throttle()
R_MTR_Limit_abs()
R_MTR_SetSpeed()

Argument None

Return Value None

16. Appendix D: RX23W System Routines and Application Guide

16.1. API Functions

Table 1 below lists the public API functions that were used in this project and a description of their usage.

Item Contents

R_RIIC_Open() The function initializes the RIIC FIT module. This function must
be called before calling any other API functions

R_RIIC_SlaveTransfer() Performs I2C slave transmission and reception. Changes the
transmit and receive patterns according to the parameters

R_RIIC_Close() This function completes the RIIC communication and releases the
RIIC used.

R_GPIO_PinDirectionSet() This function sets a given GPIO port to be either an input or an
output, such as for LED pins

R_GPIO_PinWrite() This function writes a logical HIGH or LOW signal to a given port

R_IRQ_Open() This function initializes an interrupt channel, giving a callback
function to be processed on an interrupt, such as a switch press

R_BSP_RegisterProtectDisable() Removes write protection from a given register so that its contents
can be altered

R_BSP_RegisterProtectEnable() Re-enables write protection for a given register

R_CMT_CreatePeriodic() Creates a periodic timer which will throw an interrupt after the
amount of time specified and execute the callback function given

R_CMT_Stop() Stops the timer specified

SST US069 User Guide

 Renesas Electronics America Page 94

April 04, 2021

app_main() The main function for the BLE module, which initializes the stack
and other application library elements, and then processes BLE
events

R_BLE_Open() Enables the BLE protocol stack, and must be called once before the
BLE stack is used

ble_app_init() Initializes all of the common protocol stack elements, such as the
host stack, the GATT database, the GATT server/client, and the
System Data Transmission server. Other user-required APIs can be
called from this function

R_BLE_CLI_Init() Initializes the Command Line Interface so that BLE events can be
processed and sent to the command line

R_BLE_CLI_RegisterCmds() This function takes command line parameters and enables them to
be called in the command line

R_BLE_CMD_SetResetCb() Sets the reset callback for the BLE protocol stack

R_BLE_CLI_Process() Takes input from the console and processes it one character at a
time to run user commands

R_BLE_Execute() Handles all tasks queued in the BLE protocol stack internal task
queue and should be called repeatedly in the main loop

R_BLE_Close() Closes the BLE protocol stack when BLE functionality is no longer
required. This function should not be reached during operation

R_BLE_STDS_NotifySd() Sends the data in the static data buffer via BLE Notify

R_BLE_STDS_NotifyCd() Sends the data in the continuous data buffer via BLE Notify

Table 13 Public API Functions

Table 2 below lists the user-defined functions at the application level that typically make use of the above
functions.

Item Contents

Auxi_crc_calculate() This function takes an input buffer and data length and calculates the
CRC-16 check bytes for that buffer and returns the result, used to
append CRC-16 bytes to a buffer or confirm CRC errors for a given
buffer

BLE_crc_calculate() Same as the function above, but applied to incoming BLE data, which
is passed to the I2C send buffer

board_init() This function initializes the LED GPIO and switch IRQ, registering a
callback function to be processed on an interrupt

buf_init() This is an optional function for initializing dummy static and
continuous data in the I2C buffers to be sent via Bluetooth that can be
used for debugging

SST US069 User Guide

 Renesas Electronics America Page 95

April 04, 2021

i2c_init() This function sets the I2C parameters to be used such as send/receive
buffer name and size, channel number, and callback function, as well as
calculating and appending CRC-16 check bytes to the initial send
buffer

i2c_open() This function is called before every new I2C transmission to enable I2C
communication and prepare for slave reception/transfer

i2c_run() This function handles incoming I2C communications by checking to see
if/when the transmission was completed or timed out, prints the buffer
contents, and then closes, resets, and re-opens I2C communications

i2c_close() Closes the I2C communications after a transfer has been completed

i2c_reset() Resets the receive and send buffers to their initial state, performs a
CRC-16 check on the receive buffer, and then initiates BLE
transmission

ble_notify() Sets the contents of the receive buffer to the static/continuous buffers
and then calls the BLE Notify functions
(R_BLE_STDS_NotifySd()/R_BLE_STDS_NotifyCd()) to send the 2
buffers as BLE data packets (static buffer is only sent once)

callbackSlave() This function is the interrupt callback for I2C, it simply calls the
i2c_run() function

timer_cb() If the switch was pressed instead of using I2C transmissions, a 1-second
timer is used to initiate BLE transmission, and this timer callback will
call the BLE Notify function and send dummy continuous data

irq_cb() This callback function responds to a switch press. On first press, it
sends static data only, every subsequent press will either initiate or stop
the timer that will increment and send dummy continuous data

main() This is the main user function, it will initialize the board and I2C, and
then call app_main(), which runs the BLE module

sdts_cb() The custom BLE service is called Standard Data Transmission Service,
and this function is the callback for the service. This callback function
will check for a write request event, which occurs when the phone
sends data to the device. The packet received is decoded and placed in
the send buffer with CRC-16 check bytes appended to be sent via I2C to
the host device. If the power ON button was pressed on the mobile app,
the RX23W board’s LED will light up, or turn off if the button was
pressed to turn it OFF

encode_st_ble_stds_cd_t() This function will encode the contents of the continuous data buffer 1
byte at a time into a BLE packet to be sent to the phone (this function is
automatically generated but the contents are user-defined)

encode_st_ble_stds_sd_t() This function will encode the contents of the static data buffer 1 byte at
a time into a BLE packet to be sent to the phone (this function is
automatically generated but the contents are user-defined)

SST US069 User Guide

 Renesas Electronics America Page 96

April 04, 2021

decode_st_ble_stds_fbc_t() This function will decode the BLE packet received from the mobile app
1 byte at a time so that the device can interpret the received data (this
function is automatically generated but the contents are user-defined)

Table 14 User-defined API Functions

For the complete list of I2C and BLE public API functions, refer to the documents in Section 3.

16.2. RX23W (Bluetooth) Code

In this section, an overview of the flow of code execution will be given with reference to the 2 main
source files – the app_main.c file and the user application file.

16.2.1. Initialization

 Execution begins in the main() function of the user application file, where board_init() is called to
initialize the LED and switch

 The buf_init() function has been commented out as it is used for bypassing I2C transmissions, but
this function will initialize the continuous and static data buffers with dummy data and print their
contents to be sent via BLE when the switch is pressed

 The i2c_init() function is then called to initialize the parameters for I2C transmission and set up
the send/receive buffers and callback function. CRC-16 check bytes are also calculated and
appended to the end of the send buffer slaveSend using auxi_crc_calculate()

 The i2c_init() function ends by calling i2c_open(), which enables I2C communication and
prepares for a slave transfer/reception. A transmission request from the master will now trigger an
interrupt and call the function callbackSlave(), which handles I2C transmissions

 The main() function then calls app_main(), which is the beginning of the BLE source file

 At the beginning of app_main(), the R_BLE_Open() function is called to initialize the BLE
module

 The ble_app_init() function is called afterwards, which initializes all of the common protocol
stack elements, such as the host stack (R_BLE_ABS_Init()), the GATT database
(R_BLE_GATTS_SetDbInst()), the GATT server/client
(R_BLE_SERVS_Init()/R_BLE_SERVC_Init()), and the custom service that was created by the
user, the System Data Transmission server (R_BLE_STDS_Init())

 After this initialization, the Command Line is initialized with R_BLE_CLI_Init(), a set of
commands are registered for the Command Line to recognize with R_BLE_CLI_
RegisterCmds(), and sets the BLE reset callback with R_BLE_CMD_SetResetCb()

 The initialization is now finished, and the program enters an idle state where it is waiting for an
interrupt from a switch or I2C, or for a Bluetooth command/event to process using
R_BLE_CLI_Process() and R_BLE_Execute()

 Events which are processed and printed on the Command Line include events such as scanning
for a device, connection to a device, and disconnecting

SST US069 User Guide

 Renesas Electronics America Page 97

April 04, 2021

16.2.2. Execution of Switch Interrupt (Debugging Only)

 This section assumes that buf_init() was enabled to create dummy data (although it is not
required) and that a Smart Phone was paired with the device

 When the RX23W board switch (SW1) is pressed, the code enters and executes irq_cb()

 If this is the first time the switch was pressed, the counter variable will be 0, and the code will call
R_BLE_SDTS_NotifySd() to send the contents of the static data buffer via BLE Notify to the
Smart Phone and increment the counter

 On the second switch press, the callback function will create a periodic timer which throws an
interrupt every second and enters timer_cb()

 When a second has passed and timer_cb() is called, the data in the continuous data buffer is
incremented and R_BLE_STDS_NotifyCd() to send the continuous data buffer contents via BLE

 If the switch is pressed again, irq_cb() will use R_CMT_Stop() to stop the timer that causes the
continuous data to be incremented and sent to the Smart Phone

 Subsequent switch presses will restart and stop the timer

16.2.3. Execution of I2C Interrupt

 This section assumes that a Smart Phone was paired with the device and that the Host Device (I2C
Master) is connected to the device

 When an I2C transmission is sent from the master with the correct slave address, the device
recognizes the start of a transmission and throws an interrupt

 The interrupt causes the code to enter callbackSlave(), which simply calls i2c_run() to handle the
transaction

 The i2c_run() function handles incoming I2C communications by checking to see if/when the
transmission was completed or timed out

 If the transaction was not completed and there was not a NACK, but the transaction did not time
out, the function returns and no action is taken (error state)

 If the transaction was not completed and there was not a NACK, but the transaction timed out, the
code prints a timeout message, as well as the contents of the receive buffer, and then closes,
resets, and re-opens I2C communications (timeout error)

 If the transaction is completed successfully, the code prints the contents of the receive buffer, and
then closes, resets, and re-opens I2C communications

 When I2C communication is closed, the i2c_close() function is called, which waits for a transfer
to finish and then stops I2C communications

 After I2C communication is closed, the i2c_reset() function is called, which resets the parameters
for the receive and send buffers to their initial state to prepare for the next transmission (this does
not delete the buffer contents, but they will be overwritten by the next transmission), performs a
CRC-16 check on the receive buffer, and then initiates BLE transmission using ble_notify()

 BLE transmission will still occur even if the CRC-16 check fails, but the code prints out a
message to indicate success or failure so that the user is aware of a potential error, noise, or lack
of CRC-16 check from the Host Device

SST US069 User Guide

 Renesas Electronics America Page 98

April 04, 2021

 When ble_notify() is called, the function will check to see if the device has been written to
correctly at least once by checking the contents of the I2C receive buffer and comparing them to a
known, non-default value (the R_RIIC_SlaveTransfer() function is used for both read and write
transmissions)

 If a write transmission has occurred, the I2C receive buffer has its contents split into static and
continuous data buffers and sent via BLE Notify. The static data buffer will only be sent once
(because these values do not change) using R_BLE_SDTS_NotifySd()

 The continuous data buffer contents are sent every time using R_BLE_SDTS_NotifyCd()
 The Notify functions include an encode function which must be set by the user to tell the device

how to encode BLE packets. In this project, all packets are created by encoding the buffer
contents 1 byte at a time

 When ble_notify() has completed, I2C communications are re-enabled using i2c_open() and the
device returns to an idle state

16.2.4. Execution of BLE Write Request Interrupt (Packet from Smart
Phone)

 This section assumes that a Smart Phone was paired with the device

 When data is received via BLE from the Smart Phone, the code enters the stds_cb() callback
function that checks to see if a write request was made (which is always true)

 The data packet is decoded and CRC-16 check bytes are appended to the contents, which are
placed in the I2C send buffer to be read by the I2C master

 If the ‘power ON’ byte was set (i.e. the button was pressed in the mobile app), this function will
also turn on an LED on the RX23W board to indicate this status. The LED can be turned off and
on again by this byte being cleared and set

16.3. System Operation Guide

This section is a step-by-step guide on how to set up and run the project, as well as how to set up the
phone app for communication. This section assumes that you have a Target Board for RX23W, Smart
Phone, 2 micro-USB cables and have installed e2 studio.

The phone app described in this example will be the Renesas GATTBrowser app. Refer to the
GATTBrowser Application Note in Section 3 for more details.

16.3.1. Setup

For a detailed guide on how to use e2 studio and install projects onto the Target Board for RX23W, refer
to RX Family QE for BLE[RX] R_BLE Script sample and dedicated program Application Notes in
Section 3.

 Open e2 studio, and import and compile the project

 There are 2 DIP switches (ESW1) on the RX23W board which are currently switched OFF. Turn
Switch 2 to ON to enable debugging/program loading

SST US069 User Guide

 Renesas Electronics America Page 99

April 04, 2021

 There are 2 micro-USB connectors on the RX23W board which can both be used to power the
board

 Connect a micro-USB cable between the Host PC and the ECN1 connector (for connecting to the
on-board emulator (E2 J-link Lite)), and select Debug in e2 studio to load the program onto the
board

 The RX23W board can now be disconnected from the Host PC (or used to power the board) and
Switch 2 can be turned OFF so that the program runs automatically when powered on

o Alternatively, the program can be run from e2 studio in Debug mode
 The program will start automatically, but pressing the RESET button at any time will reset the

device and restart the program

 (Optional) Connect a micro-USB cable between the Host PC and the CN5 connector to allow for
serial connection and open a serial emulator (terminal) such as Tera Term to view Bluetooth
events

o The terminal must be configured according to Section 2.8.6 of the RX23W Group BLE
Module Firmware Integration Technology Application Note

 This concludes the setup. Once the program has been loaded, power the board with a micro-USB,
launch a terminal (optional) and open the GATTBrowser app on the Smart Phone to begin

16.3.2. How to Use

 When power is supplied to the RX23W board, it begins Bluetooth advertising automatically

 Select ‘Scan’ from the GATTBrowser app to view all of the Bluetooth devices in range that are
advertising

 The RX23W board is advertised as ‘SCOOTER’, with the Bluetooth address
‘74:90:50:FF:FF:FF’

 Select the ‘SCOOTER’ device from GATTBrowser by tapping the ‘play’ button

 Once connected, the services are discovered and UUIDs for the available services can be seen.

 There are 3 custom characteristics which can be selected by their UUIDs at the bottom:
o The first one (35ada…) contains continuous data (which would be battery, motor speed,

etc.) which can be notified to the app from the RX23W board
o The second (68e…) contains static data (device ID, firmware, etc.) which can be also sent

to the app from the RX23W board
o The third (5f5…) allows you to write data to the board with hex values such as ’00 01 03

05’ and read those values back
 Select the second service, tap the button to turn notifications on, and press the switch (SW1) on

the RX23W board to send static data
o Alternatively, data can be sent via I2C from a Host Device if it is written to the device

 Press the back button on the Smart Phone and select the first service, turn notifications on and
press the switch on the RX23W board again. Confirm that it is also sending continuous data that
is being incremented every second (only the first 20 bytes can be viewed)

o Alternatively, data can be sent via I2C from a Host Device if it is written to the device

 Pressing the switch repeatedly will turn the timer off and on again

SST US069 User Guide

 Renesas Electronics America Page 100

April 04, 2021

 Press the back button on the Smart Phone and select the third service. If a value of 80 is written in
the first byte of the third service, LED1 on the RX23W board will turn on. Sending any other
value will turn the LED off

 To reset the program, disconnect the device from the Smart Phone and press the RESET switch
on the RX23W board, or terminate the program in e2 studio and select Debug again

In e2 studio, all of the data that is sent and received via I2C/BLE, as well as error and control messages,
are printed to the Renesas Virtual Debug Console and can be viewed if the device is being run by the on-
board debugger.

16.4. Reference Documents

Document Name Document No.

Bluetooth® Low Energy Protocol Stack

Bluetooth Low Energy Protocol Stack Basic Package User's Manual R01UW0205EJ0101

RX23W Group Bluetooth Low Energy Profile Developer's Guide Application Note R01AN4553EJ0100

RX23W Group BLE Module Firmware Integration Technology Application Note R01AN4860EJ0200

RX Family QE for BLE[RX] R_BLE Script sample and dedicated program
Application Notes

R01AN4872EJ0100

GATTBrowser for Android Application Note R01AN3802EJ0101

RX23W

RX23W Group User’s Manual: Hardware R01UH0823EJ0100

Target Board for RX23W

Target Board for RX23W User's Manual R20UT4634EJ0102

I2C Bus Interface

RX Family I2C Bus Interface (RIIC) Module Using Firmware Integration
Technology

R01AN1692EJ0246

Table 15: Useful Resources for Programming the RX23W

