

RL78 Family

Renesas Flash Driver RL78 Type 01

User’s Manual

RENESAS Microcontrollers

RL78/G2x

U
ser's M

anual

All information contained in these materials, including products and product specifications, represents
information on the product at the time of publication and is subject to change by Renesas Electronics
Corp. without notice. Please review the latest information published by Renesas Electronics Corp.
through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

www.renesas.com
Rev.1.20 Aug 2023

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.
(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered trademarks
are the property of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit
Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products
covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must

be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate.

When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices

must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work

benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare

hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register

settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the

states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product

that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which

resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-

up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow

the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in

the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a

reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an

external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and

VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is

fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The

characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of

internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating

margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for

the given product.

How to Use This Manual
• Readers

This manual is intended for engineers who wish to develop application systems using the RL78/G2x
microcontroller.

• Purpose

This manual is intended to give users an understanding of the methods for using the Renesas Flash Driver
(RFD) RL78 Type 01 to reprogram the flash memory in the RL78/G2x microcontroller.

• Organization

This manual is separated into the following sections.
1. Overview
2. System Configuration
3. API Functions of RFD RL78 Type 01
4. Flash Memory Sequencer Operation
5. Sample Programs
6. Creating a Sample Project for RFD RL78 Type 01

• How to Read this Manual

It is assumed that the readers of this manual have general knowledge in the fields of electrical engineering,
logic circuits, microcontrollers, C language, and assemblers.
To understand the hardware functions of the RL78/G2x:
 Refer to the User's Manual of the target RL78/G2x device.

• Conventions

 Data significance: Higher digits on the left and lower digits on the right
 Active low representations: ××× (overscore over pin and signal name)
 Note: Footnote for item marked with Note in the text
 Caution: Information requiring particular attention
 Remark: Supplementary information
 Numeric representation:

Binary: ×××× or ××××B
Decimal: ××××
Hexadecimal: ××××H or 0x××××

 Prefixes indicating power of 2 (address space and memory capacity):
K (kilo) 210 = 1024
M (mega) 220 = 10242

• Related Documents
The related documents indicated in this publication may include preliminary versions. However, preliminary
versions are not marked as such.

No Document Title Document Number
1 RL78/G23 User’s Manual Hardware R01UH0896EJ

2 RL78/G22 User’s Manual Hardware R01UH0978EJ

3 RL78/G24 User’s Manual Hardware R01UH0961EJ

4 E1/E20/E2 Emulator, E2 Emulator Lite Additional Document for
User’s Manual (Notes on Connection of RL78)

R20UT1994EJ

5 Renesas Flash Driver and EEPROM Emulation Software
Target MCU List for RL78 - General-Purpose

R20UT5228EJ

Table of Contents

1. Overview .. 11
1.1 Outline ... 11

1.1.1 Purpose ... 11
1.2 Contents .. 11
1.3 Features .. 12
1.4 Operating Environment ... 13
1.5 Points for Caution.. 14
1.6 C Compiler Definitions .. 15

2. System Configuration ... 18
2.1 File Structure ... 18

2.1.1 Folder Structure .. 18
2.1.2 List of Files .. 19

2.2 Resources of RL78/G2x ... 21
2.2.1 Memory Map ... 21
2.2.2 The Allocation of Blocks .. 22
2.2.3 List of Registers Related to Flash Memory Sequencer Control ... 23
2.2.4 Flash Operation Mode .. 24

2.3 Resources Used in RFD RL78 Type 01 ... 25
2.3.1 Sections Used in RFD RL78 Type 01 ... 25
2.3.2 Code Size and Stack Size which API Functions Use ... 27

3. API Functions of RFD RL78 Type 01 ... 28
3.1 List of API Functions of RFD RL78 Type 01 .. 28

3.1.1 API Functions Used in Common for Flash Memory Control .. 28
3.1.2 API Functions for Code Flash Memory Control .. 29
3.1.3 API Functions for Data Flash Memory Control ... 29
3.1.4 API Functions for Extra Area Control ... 30
3.1.5 Hook Functions ... 30

3.2 Data Type Definitions .. 31
3.2.1 Data Types .. 31
3.2.2 Global Variables .. 32
3.2.3 Enumerations .. 33
3.2.4 Macro Definitions .. 35

3.3 Specifications of API Functions .. 46
3.3.1 Specifications of API Functions Used in Common for Flash Memory Control 47
3.3.2 Specifications of API Functions for Code Flash Memory Control .. 69
3.3.3 Specifications of API Functions for Data Flash Memory Control ... 72
3.3.4 Specifications of API Functions for Extra Area Control .. 75
3.3.5 Specifications of Hook Functions .. 85

4. Flash Memory Sequencer Operation ... 87
4.1 Setting of Flash Memory Control Mode .. 87

4.1.1 Procedure for Executing Specific Sequence .. 87
4.1.2 Procedure for Transition to the Code Flash Memory Programming Mode 89
4.1.3 Procedure for Transition to the Data Flash Memory Programming Mode 89
4.1.4 Procedure for Transition to the Non-programmable Mode ... 89

4.2 Clearing the Registers for Flash Memory Sequencer Control ... 90
4.3 Specifying the Operating Frequency of the Flash Memory Sequencer ... 91
4.4 Flash Memory Sequencer Commands ... 92

4.4.1 Overview ... 92

4.4.2 Code/Data Flash Memory Area Sequencer Commands .. 93
4.4.3 Extra Area Sequencer Commands ... 98
4.4.4 Procedures for Judging the End of Command Execution in the Flash Memory Sequencer 103
4.4.5 Procedure for Forcibly Terminating Command Execution in the Code/Data Flash Memory Area
Sequencer ... 104

4.5 Boot Swap Function .. 105
4.5.1 Overview ... 105
4.5.2 Operation of the Boot Swap Function ... 105
4.5.3 Execution of the Boot Swap Function ... 106

4.6 Flash Shield Window Function ... 108
4.6.1 Overview ... 108
4.6.2 Operation of the Flash Shield Window Function .. 108
4.6.3 Execution of the Flash Shield Window Function .. 109

4.7 Interrupts in Code Flash Memory Programming Mode .. 111
4.7.1 Overview ... 111
4.7.2 Operation when Interrupt Branch Destinations are Changed .. 111
4.7.3 Procedures for Changing the Interrupt Branch Destinations .. 113

4.8 Examples of Command Execution for Reprogramming of Flash Areas .. 114
4.8.1 Example of Command Execution for Reprogramming of the Code Flash Area 114
4.8.2 Example of Command Execution for Reprogramming of the Data Flash Area 115
4.8.3 Example of Command Execution for Reprogramming of the Extra Area 116

5. Sample Programs .. 117
5.1 File Structure ... 117

5.1.1 Folder Structure .. 117
5.1.2 List of Files .. 118

5.2 Data Type Definitions .. 120
5.2.1 Enumerations .. 120

5.3 Sample Program Functions .. 121
5.3.1 Sample Program for Controlling the Reprogramming of the Code Flash Memory 122
5.3.2 Sample Program for Controlling the Reprogramming of the Data Flash Memory 127
5.3.3 Sample Program for Controlling the Reprogramming of the Extra Area .. 132
5.3.4 Sample Program Used in Common for Controlling the Flash Memory .. 135

5.4 Specifications of Sample Program Functions ... 137
5.4.1 Sample Program Functions for Controlling the Reprogramming of the Code Flash Memory 137
5.4.2 Sample Program Functions for Controlling the Reprogramming of the Data Flash Memory 139
5.4.3 Sample Program Functions for Controlling the Reprogramming of the Extra Area 141
5.4.4 Sample Program Functions Used in Common ... 143

5.5 Precautions in Case of Using Sample Program ... 145

6. Creating a Sample Project for RFD RL78 Type 01 .. 146
6.1 Creating a Project in the Case of Using a CC-RL Compiler ... 146

6.1.1 Example of Creating a Sample Project ... 147
6.1.2 Example of Registration of Target Folders and Target Files .. 150
6.1.3 Build Tool Settings .. 155
6.1.4 Debug Tool Settings ... 167

6.2 Creating a Project in the Case of Using IAR Compiler ... 169
6.2.1 Example of Creating a Sample Project ... 170
6.2.2 Example of Registration of Target Folders and Target Files .. 172
6.2.3 Integrated Development Environment(IDE) Settings ... 176
6.2.4 Linker Configuration File(.icf) Settings .. 180
6.2.5 On-chip Debug Settings .. 183

6.3 Creating a Project in the Case of Using LLVM Compiler ... 184

6.3.1 Example of Creating a Sample Project ... 184
6.3.2 Example of Registration of Target Folders and Target Files .. 188
6.3.3 Build Tool Settings .. 193
6.3.4 Option Bytes Settings ... 197
6.3.5 Setting of Connection with Target Board .. 198
6.3.6 Caution .. 199

6.4 Configurations Modify Procedure for Changing Device ... 200
6.4.1 CC-RL Compiler Environment Settings .. 203
6.4.2 IAR Compiler Environment Settings ... 207
6.4.3 LLVM Compiler Environment Settings .. 212
6.4.4 Modification of Sample Programs

(Common to CC-RL Compiler, IAR Compiler and LLVM Compiler) .. 215

7. Revision History ... 216
7.1 Major Modifications in this Revision .. 216

Abbreviations
Abbreviation Description

RFD Renesas flash driver

API Application program interface

BGO
Background operation
Instructions in the code flash memory can be executed during reprogramming of the data flash
memory.

FSW
Flash shield window
This is a function for disabling programming and erasure of the specified window range or the
flash areas outside the specified window range during self-programming.

RAM
Random access memory
Randomly accessible volatile memory. It is memory for holding values that are to be changed
during program execution.

ROM
Read-only memory
Non-volatile memory. It is memory whose contents cannot be changed. The code flash memory
may be called ROM.

Terminology
Terminology Description

Code flash memory Flash memory for storing application code and constant data.
Note that this memory may be abbreviated as "CF" in this document.

Data flash memory Flash memory for storing data.
Note that this memory may be abbreviated as "DF" in this document.

Extra area Generic name of the configuration setting area, security setting area, block
protection area, and boot swap setting area.

Flash memory sequencer The RL78 microcontroller has a dedicated circuit for controlling the flash memory.
This circuit is called the flash memory sequencer in this document. The flash
memory sequencer consists of the code/data flash memory area sequencer,
which reprograms the code flash area or data flash area, and the extra area
sequencer, which reprograms the extra area.

Flash memory control mode The flash memory sequencer has the following modes, which indicate the
programming enabled or disabled state.

 Code flash memory programming mode
 Data flash memory programming mode
 Non-programmable mode

Code flash memory
programming mode

The code flash memory (and extra area) can be reprogrammed in this mode.

Data flash memory
programming mode

The data flash memory can be reprogrammed in this mode.

Non-programmable mode The flash memory (and extra area) cannot be reprogrammed in this mode.

Self-programming A method of reprogramming the flash memory by executing a user program
instead of using an external flash memory programming tool.

Serial programming A method of reprogramming the flash memory using an external flash memory
programming tool.

Boot area Logical area started from 00000H including the reset vector, and the size is
different by each device.

- Products with the boot area of "00000H-03FFFH (16 KB) : RL78/G23, G24.
- A products with the boot area of “00000H-01FFFH (8 KB) : RL78/G22.

Boot clusters 0 and 1 A boot cluster is 16-Kbyte or 8-Kbyte group of blocks and either boot cluster 0 or 1
is allocated to the boot area.
Physical area name:
- RL78/G23, G24
Boot cluster 0: 00000H to 03FFFH (logical addresses at shipment)
Boot cluster 1: 04000H to 07FFFH (logical addresses at shipment)

- RL78/G22
Boot cluster 0: 00000H to 01FFFH (logical addresses at shipment)
Boot cluster 1: 02000H to 03FFFH (logical addresses at shipment)

Boot swap Boot clusters 0 and 1 are swapped.

RFD RL78 Type 01 1. Overview

R20UT4830EJ0120 Rev.1.20 Page 11 of 218
Aug.28.23

1. Overview

1.1 Outline

Renesas Flash Driver RL78 Type 01 (hereafter called RFD RL78 Type 01) is software for reprogramming the
flash memory in the RL78/G2x.

1.1.1 Purpose

The purpose of this document is to give the information about RFD RL78 Type 01.

1.2 Contents

The API functions of RFD RL78 Type 01 are called from the user program to reprogram the code flash
memory or data flash memory.

The RFD RL78 Type 01 package includes the following.

• This user's manual.
• Source code files of RFD RL78 Type 01 for controlling the data flash memory and code flash memory

incorporated in the RL78/G2x.
• Sample programs for erasing and reprogramming the data flash memory, code flash memory, and extra

area.

RFD RL78 Type 01 1. Overview

R20UT4830EJ0120 Rev.1.20 Page 12 of 218
Aug.28.23

1.3 Features

RFD RL78 Type 01 reprograms the flash memory according to the specified flow of command processing for
the flash memory control circuit. Each API function of RFD RL78 Type 01 consists of a single sub-function or
two or more sub-functions, and the necessary processing is implemented by combinations of individual sub-
functions and user processing. Such a configuration is adopted so as to flexibly handle processing
dependent on the user application, such as, timeout processing in which the timeout value varies with the
conditions of user application program execution.

Figure 1-1 shows the flash memory control by the user application using the API functions of RFD RL78
Type 01.

RFD RL78 Type 01 provides sample programs of the processing that is implemented by combinations of two
or more API functions and user programs. Refer to the sample programs when embedding the flash memory
control processing in the user application.

Figure 1-1 Flash Memory Control Using API Functions of RFD RL78 Type 01

Flash memory hardware

User program

User application

(RFD RL78 Type 01 API functions are called.)

RFD RL78 Type 01 API functions

(Flash memory sequencer is controlled.)

Flash memory sequencer

(Hardware for controlling the flash memory)

Data flash memory Code flash memory Extra area

RFD RL78 Type 01 1. Overview

R20UT4830EJ0120 Rev.1.20 Page 13 of 218
Aug.28.23

1.4 Operating Environment

• Host Computer
The operation of RFD RL78 Type 01 does not depend on the host computer but the appropriate
environment for the C compiler package, debugger and emulator must be prepared. (RFD RL78 Type 01
was developed and tested on Windows10 Enterprise.)

• C Compiler Package

Table 1-1 shows the target C compiler packages for RFD RL78 Type 01.

Table 1-1 The Target C Compiler Packages for RFD RL78 Type 01

Compiler IDE (Integrated Development
Environment)

Manufacturer Version

CC-RL CS+ or e2 studio Renesas Electronics V1.10 or later

IAR IAR Embedded WorkbenchⓇ for
Renesas RL78 IAR SystemsⓇ V4.21 or later

LLVM e2 studio (Open Source Software) V10.0.0.202306
or later

Note. Integrated development environment and compiler must support the target device.

• Emulator
Table 1-2 shows the emulator on which the operation of RFD RL78 Type 01 was confirmed.

Table 1-2 Emulator on which RFD RL78 Type 01 Operation was Confirmed

Emulator Manufacturer

E2 emulator Lite Renesas Electronics

• Target MCU
RL78/G23, RL78/G22, RL78/G24

• Renesas Flash Driver(RFD) RL78 Type 01
Table 1-3 shows the Renesas Flash Driver(RFD) RL78 Type 01 supported by this manual.

Table 1-3 The RFD RL78 Type 01 Supported by This Manual

Package Manufacturer Package Version

RFD RL78 Type 01 Renesas Electronics Ver 1.20

RFD RL78 Type 01 1. Overview

R20UT4830EJ0120 Rev.1.20 Page 14 of 218
Aug.28.23

1.5 Points for Caution

(1) Reprogramming of the code flash memory or extra area
Place the reprogramming code in RAM when reprogramming the code flash memory or extra area.

(2) Precondition for control of the data flash area
Be sure to set the DFLEN bit (bit 0) of the data flash control register (DFLCTL) to 1 (enable access to the
data flash area) before controlling the data flash area.

(3) Program execution during reprogramming of the flash memory
Self-programming in the RL78/G2x uses the flash memory sequencer to control the reprogramming of the
flash memory. In the following flash memory control modes in which the flash memory can be
reprogrammed, the CPU cannot read data from the target flash memory.

• In the code flash memory programming mode, the CPU cannot read data from the code flash memory.
The API functions of RFD RL78 Type 01 and the user program to be executed in the code flash memory
programming mode should be copied from ROM to RAM in advance and executed and referenced in
RAM.

• In the data flash memory programming mode, the CPU cannot read data from the data flash memory.
The data to be read in the data flash memory programming mode should be copied from the data flash
memory to RAM in advance and referenced in RAM.

(4) The precautions in the case of debugging self-programming with an on-chip debugger
In the case which debugs self-programming with an on-chip debugger, because 128 bytes of area is used
from the top address of RAM when a debugger is executed, it is necessary to vacate this area.
Additionally, in case CS+ or e2 studio is used as the development environment, the debugger settings
need to be configured to use flash self-programming

• Example settings for CS+:
On the project, select “Connect Settings” tab from “RL78 E2 [Lite] (Debug Tool)”, and set “Yes” to “Flash” -
“Using the flash self programming”.

• Example settings for e2 studio:
On the project, select “Property” - “Run/Debug Settings”, and edit the target “HardwareDebug” setting.
On the displayed screen, select “Debugger” tab - “Connection Settings” tab, and set “Yes” to “Flash” -
“Program uses flash self programming”.

RFD RL78 Type 01 1. Overview

R20UT4830EJ0120 Rev.1.20 Page 15 of 218
Aug.28.23

1.6 C Compiler Definitions

The definitions of the target compiler written in the header file (r_rfd_compiler.h) for RFD RL78 Type 01 are
shown below.

The definitions differ between compilers. The "r_rfd_compiler.h" file is used to identify the current compiler
and the definitions for the target compiler are used.

• Definition of CC-RL compiler :
"__CCRL__" is defined.
#define COMPILER_CC (1)

• Definition of IAR compiler V4 :
"__IAR_SYSTEMS_ICC__" is defined.
#define COMPILER_IAR (2)

• Definition of LLVM compiler:
"__llvm__" is defined.
#define COMPILER_LLVM (3)

RFD RL78 Type 01 1. Overview

R20UT4830EJ0120 Rev.1.20 Page 16 of 218
Aug.28.23

<Descriptions in the r_rfd_compiler.h file>

/* Compiler definition */

#define COMPILER_CC (1)

#define COMPILER_IAR (2)

#define COMPILER_LLVM (3)

#if defined (__llvm__)

 #define COMPILER COMPILER_LLVM

#elif defined (__IAR_SYSTEMS_ICC__)

 #define COMPILER COMPILER_IAR

#elif defined (__CCRL__)

 #define COMPILER COMPILER_CC

#else

 /* Unknown compiler error */

 #error "Non-supported compiler."

#endif

/* Compiler dependent definition */

#if (COMPILER_CC == COMPILER)

 #define R_RFD_FAR_FUNC __far

 #define R_RFD_NO_OPERATION __nop

 #define R_RFD_DISABLE_INTERRUPT __DI

 #define R_RFD_ENABLE_INTERRUPT __EI

 #define R_RFD_GET_PSW_IE_STATE __get_psw

 #define R_RFD_IS_PSW_IE_ENABLE(u08_psw_ie_state) (0u != ((u08_psw_ie_state) & 0x80u))

#elif (COMPILER_IAR == COMPILER)

 #define R_RFD_FAR_FUNC __far_func

 #define R_RFD_NO_OPERATION __no_operation

 #define R_RFD_DISABLE_INTERRUPT __disable_interrupt

 #define R_RFD_ENABLE_INTERRUPT __enable_interrupt

 #define R_RFD_GET_PSW_IE_STATE __get_interrupt_state

 #define R_RFD_IS_PSW_IE_ENABLE(u08_psw_ie_state) (0u != ((u08_psw_ie_state) & 0x80u))

#elif (COMPILER_LLVM == COMPILER)

 #define R_RFD_FAR_FUNC __far

 #define R_RFD_NO_OPERATION __nop

 #define R_RFD_DISABLE_INTERRUPT __DI

 #define R_RFD_ENABLE_INTERRUPT __EI

 #define R_RFD_GET_PSW_IE_STATE (uint8_t)__builtin_rl78_pswie

 #define R_RFD_IS_PSW_IE_ENABLE(u08_psw_ie_state) (0u != (u08_psw_ie_state))

#else

 /* Unknown compiler error */

 #error "Non-supported compiler."

#endif

RFD RL78 Type 01 1. Overview

R20UT4830EJ0120 Rev.1.20 Page 17 of 218
Aug.28.23

• C Compiler Options

The contents of the C compiler option setup which normal operation can be checking are shown below.

- [CC-RL(CS+)]

Major compile options:

-cpu=S3 -g -g_line -lang=c99

- [IAR(Embedded Workbench)]

Major compile options:

--core s3 --calling_convention v2 --code_model far --data_model near -e -Ol --no_cse --no_unroll
--no_inline --no_code_motion --no_tbaa --no_cross_call --no_scheduling --no_clustering --debug

- [LLVM (e2 studio)]

Major compile options:

-Og -ffunction-sections -fdata-sections -fdiagnostics-parseable-fixits -Wunused -Wuninitialized -Wall

-Wmissing-declarations -Wconversion -Wpointer-arith -Wshadow -Waggregate-return -g -mcpu=s3

RFD RL78 Type 01 2. System Configuration

R20UT4830EJ0120 Rev.1.20 Page 18 of 218
Aug.28.23

2. System Configuration

2.1 File Structure

2.1.1 Folder Structure

Figure 2-1 shows the folder structure of RFD RL78 Type 01.

Figure 2-1 Folder Structure of RFD RL78 Type 01

Sample programs

RFD RL78 Type 01
include files

RFD RL78 Type 01
source program files

RFD RL78 Type 01
user-own files

: Folders of this product

RFD RL78 Type 01 2. System Configuration

R20UT4830EJ0120 Rev.1.20 Page 19 of 218
Aug.28.23

2.1.2 List of Files

2.1.2.1 List of Source Files

Table 2-1 shows the program source files in the “source\common\” folder.

Table 2-1 Program Source Files in the “source\common\” Folder

No. Source File Name Description
1 r_rfd_common_api.c This file contains the API functions for settings used in

common for flash memory control.

2 r_rfd_common_control_api.c This file contains the API functions for command control
used in common for flash memory control.

3 r_rfd_common_get_api.c This file contains the API functions for information
acquisition used in common for flash memory control.

4 r_rfd_common_extension_api.c This file contains the API functions for extended facilities
used in common for flash memory control.

Table 2-2 shows the program source file in the “source\codeflash\” folder.

Table 2-2 Program Source File in the “source\codeflash\” Folder

No. Source File Name Description
1 r_rfd_code_flash_api.c This file contains the API functions for code flash

memory control.

Table 2-3 shows the program source file in the “source\dataflash\” folder.

Table 2-3 Program Source File in the “source\dataflash\” Folder

No. Source File Name Description
1 r_rfd_data_flash_api.c This file contains the API functions for data flash memory

control.

Table 2-4 shows the program source files in the “source\extraarea\” folder.

Table 2-4 Program Source File in the “source\extraarea\” Folder

No. Source File Name Description

1 r_rfd_extra_area_api.c This file contains the API functions for extra area control.

2 r_rfd_extra_area_security_api.c This file contains the API functions for the security
facilities for the extra area.

Table 2-5 shows the program source file in the “userown\” folder.

Table 2-5 Program Source File in the “userown\” Folder

No. Source File Name Description

1 r_rfd_common_userown.c This file contains the hook functions for user processing
to be performed in RFD RL78 Type 01.

RFD RL78 Type 01 2. System Configuration

R20UT4830EJ0120 Rev.1.20 Page 20 of 218
Aug.28.23

2.1.2.2 Header File List of Header Files

Table 2-6 shows the program header files in the “include\rfd” folder.

Table 2-6 Program Header Files in the “include\rfd” Folder

No. Header File Name Description
1 r_rfd.h Common header file.

This file needs to be included when RFD RL78 Type 01 is
used.

2 r_rfd_compiler.h This file describes the definitions that differ between
compilers used in RFD RL78 Type 01.

3 r_rfd_memmap.h This file defines macros to describe section used in RFD
RL78 Type 01.

4 r_rfd_device.h This file defines the hardware-specific macros used in
RFD RL78 Type 01.

5 r_rfd_types.h This file defines the types of variables used in RFD RL78
Type 01.

6 r_typedefs.h This file defines the types of data used in RFD RL78
Type 01.

Table 2-7 shows the program header files in the “include\” folder.

Table 2-7 Program Header Files in the “include\” Folder

No. Header File Name Description
1 r_rfd_common_api.h This file defines the prototype declarations of the API

functions for setting used in common for flash memory
control.

2 r_rfd_code_flash_api.h This file defines the prototype declarations of the API
functions for code flash memory control.

3 r_rfd_common_control_api.h This file defines the prototype declarations of the API
functions for command control used in common for flash
memory control.

4 r_rfd_common_get_api.h This file defines the prototype declarations of the API
functions for information acquisition used in common for
flash memory control.

5 r_rfd_common_extension_api.h This file defines the prototype declarations of the API
functions for extended facilities used in common for flash
memory control.

6 r_rfd_common_userown.h This file defines the prototype declarations of the hook
functions for user processing to be performed in RFD
RL78 Type 01.

7 r_rfd_data_flash_api.h This file defines the prototype declarations of the API
functions for data flash memory control.

8 r_rfd_extra_area_api.h This file defines the prototype declarations of the API
functions for extra area control.

9 r_rfd_extra_area_security_api.h This file defines the prototype declarations of the API
functions for the security facilities for the extra area.

RFD RL78 Type 01 2. System Configuration

R20UT4830EJ0120 Rev.1.20 Page 21 of 218
Aug.28.23

2.2 Resources of RL78/G2x

2.2.1 Memory Map

Table 2-8 shows the memory map (code flash memory (CF: 1 block = 2Kbyte), data flash memory (DF:
1block = 256byte), and RAM) of the RL78/G23, G22, G24.

Table 2-8 Memory Map (ROM, Data Flash, and RAM)

RL78 Part Number Code Flash Memory: CF RAM

G23 R7F100GxF (x=A,B,C,E,F,G,J,L) 96KB (00000H-17FFFH) 12KB (FCF00H-FFEFFH)

R7F100GxG (x=A,B,C,E,F,G,J,L,M,P) 128KB (00000H-1FFFFH) 16KB (FBF00H-FFEFFH)

R7F100GxH (x= A,B,C,E,F,G,J,L,M,P) 192KB (00000H-2FFFFH) 20KB (FAF00H-FFEFFH)

R7F100GxJ (x=A,B,C,E,F,G,J,L,M,P,S) 256KB (00000H-3FFFFH) 24KB (F9F00H-FFEFFH)

R7F100GxK (x=F,G,J,L,M,P,S) 384KB (00000H-5FFFFH) 32KB (F7F00H-FFEFFH)

R7F100GxL (x=F,G,J,L,M,P,S) 512KB (00000H-7FFFFH) 48KB (F3F00H-FFEFFH)

R7F100GxN (x=F,G,J,L,M,P,S) 768KB (00000H-BFFFFH) 48KB (F3F00H-FFEFFH)

Data Flash Memory: DF 8KB(F1000H-F2FFFH) All RL78/G23 devices

G22 R7F102GxC (x = 4,6,7,8,A,B,C,E,F,G) 32KB (00000H-07FFFH) 4KB (FEF00H-FFEFFH)

R7F102GxE (x = 4,6,7,8,A,B,C,E,F,G) 64KB (00000H-0FFFFH) 4KB (FEF00H-FFEFFH)

Data Flash Memory: DF 2KB(F1000H-F17FFH) All RL78/G22 devices

G24 R7F101GxE (x = 6,7,8,A,B,E,F,G,J,L) 64KB (00000H-0FFFFH) 12KB (FCF00H-FFEFFH)

R7F101GxG (x = 6,7,8,A,B,E,F,G,J,L) 128KB (00000H-1FFFFH) 12KB (FCF00H-FFEFFH)

Data Flash Memory: DF 4KB(F1000H-F1FFFH) All RL78/G24 devices

RFD RL78 Type 01 2. System Configuration

R20UT4830EJ0120 Rev.1.20 Page 22 of 218
Aug.28.23

2.2.2 The Allocation of Blocks

Figure 2-2 and Figure 2-3 shows the allocation of blocks in code flash memory (CF) and data flash memory
(DF) for G23. Refer to the user's manual of a target device for allocation of blocks for other devices.

R7F100GxN (Code flash memory: 768 Kbytes) R7F100GxF (Code flash memory: 96 Kbytes)

BFFFFH CF: Block 17FH

(2 Kbytes)

BF800H

BF7FFH CF: Block 17EH

(2 Kbytes)

BF000H

BEFFFH CF: Block 17DH

(2 Kbytes)

BE800H 17FFFH CF: Block 02FH

(2 Kbytes) BE7FFH

|

 17800H

 177FFH |

01000H 01000H

00FFFH CF: Block 001H

(2 Kbytes)

 00FFFH CF: Block 001H

(2 Kbytes)

00800H 00800H

007FFH CF: Block 000H

(2 Kbytes)

 007FFH CF: Block 000H

(2 Kbytes)

00000H 00000H

Figure 2-2 Blocks in the Code Flash Memory

All RL78/G23 devices (Data flash memory: 8 Kbytes)

F2FFFH DF: Block 01FH

(256 bytes) F2F00H

 |

F1200H

F11FFH DF: Block 001H

(256 bytes) F1100H

F10FFH DF: Block 000H

(256 bytes) F1000H

Figure 2-3 Blocks in the Data Flash Memory

RFD RL78 Type 01 2. System Configuration

R20UT4830EJ0120 Rev.1.20 Page 23 of 218
Aug.28.23

2.2.3 List of Registers Related to Flash Memory Sequencer Control

Table 2-9 shows the registers in the RL78/G2x used by RFD RL78 Type 01.

Table 2-9 Registers in the RL78/G2x Used by RFD RL78 Type 01

Base
Address

Offset Register Name Size Function Name and Note

F0000H 90H DFLCTL 1 byte Data flash control register

B0H FLSEC 2 bytes Flash security flag monitor register

B2H FLFSWS 2 bytes Flash FSW monitor register S

B4H FLFSWE 2 bytes Flash FSW monitor register E

B6H FSSET 1 byte Flash memory sequencer initial setting register

B7H FSSE 1 byte Flash extra area sequencer control register

C0H PFCMD 1 byte Flash protect command register

C1H PFS 1 byte Flash status register

FFH VECTCTRL 1 byte Interrupt vector jump enable register

F0200H C0H FLPMC 1 byte Flash programming mode control register

 C1H FLARS 1 byte Flash area select register

 C2H FLAPL 2 bytes Flash address pointer register L

 C4H FLAPH 1 byte Flash address pointer register H

 C5H FSSQ 1 byte Flash memory sequencer control register

 C6H FLSEDL 2 bytes Flash end address pointer register L

 C8H FLSEDH 1 byte Flash end address pointer register H

 C9H FLRST 1 byte Flash registers initialization register

 CAH FSASTL 1 byte Flash memory sequencer status register L

 CBH FSASTH 1 byte Flash memory sequencer status register H

 CCH FLWL 2 bytes Flash write buffer register L

 CEH FLWH 2 bytes Flash write buffer register H

F0400H 80H FLSIVC0 2 bytes Interrupt vector change register 0

 82H FLSIVC1 2 bytes Interrupt vector change register 1

RFD RL78 Type 01 2. System Configuration

R20UT4830EJ0120 Rev.1.20 Page 24 of 218
Aug.28.23

2.2.4 Flash Operation Mode

(1) The range of operating frequency in each flash operation mode of RL78/G23

Table 2-10 shows the range of operating frequency in each flash operation mode of RL78/G23.

Table 2-10 Operating Frequency Ranges for Individual Flash Operation Modes and Power Supply
Voltages

Power Supply Voltage (VDD) Flash Operation Mode Operating Frequency

1.8 V ≤ VDD ≤ 5.5 V HS (high-speed main) mode 1 MHz to 32 MHz

 LS (low-speed main) mode 1 MHz to 24 MHz

1.6 V ≤ VDD < 1.8 V HS (high-speed main) mode 1 MHz to 2 MHz

 LS (low-speed main) mode 1 MHz to 2 MHz

Note: The flash memory cannot be reprogrammed in the LP (low-power main) mode.

(2) The range of operating frequency in each flash operation mode of RL78/G22

Table 2-11 shows the range of operating frequency in each flash operation mode of RL78/G22.

Table 2-11 Operating Frequency Ranges for Individual Flash Operation Modes and Power Supply
Voltages

Power Supply Voltage (VDD) Flash Operation Mode Operating Frequency

1.8 V ≤ VDD ≤ 5.5 V HS (high-speed main) mode 1 MHz to 32 MHz

 LS (low-speed main) mode 1 MHz to 24 MHz

Note: The flash memory cannot be reprogrammed in the LP (low-power main) mode.

(3) The range of operating frequency in each flash operation mode of RL78/G24

Table 2-12 shows the range of operating frequency in each flash operation mode of RL78/G24.

Table 2-12 Operating Frequency Ranges for Individual Flash Operation Modes and Power Supply
Voltages

Power Supply Voltage (VDD) Flash Operation Mode Operating Frequency

2.4 V ≤ VDD ≤ 5.5 V
HS (high-speed main) mode
(with prefetching on)

48 MHz

1.8 V ≤ VDD ≤ 5.5 V
HS (high-speed main) mode
(with prefetching off)

1 MHz to 32 MHz

 LS (low-speed main) mode 1 MHz to 24 MHz

Note: The flash memory cannot be reprogrammed in the LP (low-power main) mode.
It is necessary to enable a prefetch buffer peculiar to RL78/G24 in the mode of "HS (high-speed main) mode
(with prefetching on)."

RFD RL78 Type 01 2. System Configuration

R20UT4830EJ0120 Rev.1.20 Page 25 of 218
Aug.28.23

2.3 Resources Used in RFD RL78 Type 01

2.3.1 Sections Used in RFD RL78 Type 01

2.3.1.1 Sections Used for Reprogramming of the Code Flash Memory

The CPU cannot read from the code flash memory in the “code flash memory programming mode” used for
reprogramming of the code flash memory. The sections allocated as program areas should be copied from
ROM to RAM in advance and programs should be executed in RAM. The initial values for the initialized
global variable section (RFD_DATA) allocated to RAM should be copied from ROM to RAM in advance
according to the directions of the target compiler.

Table 2-13 shows the sections used for reprogramming of the code flash memory and allocations of the
sections.

Table 2-13 Sections Used for Reprogramming of the Code Flash Memory

Section Name Description Allocation

RFD_CMN Program section of API functions used in common for flash
memory control

RAM

RFD_CF Program section of API functions for code flash memory control RAM

RFD_DATA Data section for initialized global variables RAM

SMP_CMN Program section of sample functions used in common for flash
memory control

RAM

SMP_CF Program section of sample functions for code flash memory
control

RAM

2.3.1.2 Sections Used for Reprogramming of the Data Flash Memory

The initial values for the initialized global variable section (RFD_DATA) allocated to RAM should be copied
from ROM to RAM in advance according to the directions of the target compiler.

Table 2-14 shows the sections used for reprogramming of the data flash memory and allocations of the
sections.

Table 2-14 Sections Used for Reprogramming of the Data Flash Memory

Section Name Description Allocation

RFD_CMN Program section of API functions used in common for flash
memory control

ROM

RFD_DF Program section of API functions for data flash memory control ROM

RFD_DATA Data section for initialized global variables RAM

SMP_CMN Program section of sample functions used in common for flash
memory control

ROM

SMP_DF Program section of sample functions for data flash memory
control

ROM

RFD RL78 Type 01 2. System Configuration

R20UT4830EJ0120 Rev.1.20 Page 26 of 218
Aug.28.23

2.3.1.3 Sections Used for Reprogramming of the Extra Area

The CPU cannot read from the code flash memory in the “code flash memory programming mode” used for
reprogramming of the extra flash memory. The sections allocated as program areas should be copied from
ROM to RAM in advance and programs should be executed in RAM. The initial values for the initialized
global variable section (RFD_DATA) allocated to RAM should be copied from ROM to RAM in advance
according to the directions of the target compiler.

Table 2-15 shows the sections used for reprogramming of the extra area and allocations of the sections.

Table 2-15 Sections Used for Reprogramming of the Extra Area

Section Name Description Allocation

RFD_CMN Program section of API functions used in common for flash
memory control

RAM

RFD_EX Program section of API functions for extra area control RAM

RFD_DATA Data section for initialized global variables RAM

SMP_CMN Program section of sample functions used in common for flash
memory control

RAM

SMP_EX Program section of sample functions for extra area control RAM

RFD RL78 Type 01 2. System Configuration

R20UT4830EJ0120 Rev.1.20 Page 27 of 218
Aug.28.23

2.3.2 Code Size and Stack Size which API Functions Use

Table 2-16 shows code size and stack size which API functions for RFD RL78 Type 01 use.

Table 2-16 Code Size and Stack Size which API Functions for RFD RL78 Type 01 Use

API Name
Code Size(Bytes) Stack Size(Bytes)

CC-RL IAR LLVM CC-RL IAR LLVM

R_RFD_Init
(for G23 : CATEGORY01) 22 27 21 4 4 4
(for G24 : CATEGORY02) 36 41 39 4 4 4

R_RFD_SetDataFlashAccessMode 12 14 20 4 4 4

R_RFD_ChangeInterruptVector 46 61 65 12 14 12

R_RFD_RestoreInterruptVector 31 44 42 8 10 8

R_RFD_SetFlashMemoryMode 112 112 119 14 14 14

R_RFD_CheckFlashMemoryMode 30 37 47 4 4 4

R_RFD_CheckCFDFSeqEndStep1 13 24 16 4 6 4

R_RFD_CheckExtraSeqEndStep1 13 24 23 4 6 4

R_RFD_CheckCFDFSeqEndStep2 8 19 11 4 6 4

R_RFD_CheckExtraSeqEndStep2 6 19 9 4 6 4

R_RFD_GetSeqErrorStatus 8 8 11 4 4 4

R_RFD_ClearSeqRegister 11 10 14 4 4 4

R_RFD_ForceStopSeq 6 5 5 4 4 4

R_RFD_ForceReset 2 2 2 4 4 4

R_RFD_SetBootAreaImmediately 16 21 19 4 4 4

R_RFD_GetSecurityAndBootFlags 6 6 9 4 4 6

R_RFD_GetFSW 46 77 58 10 12 10

r_rfd_wait_count 19 19 19 6 6 6

R_RFD_EraseCodeFlashReq 34 43 48 4 4 4

R_RFD_WriteCodeFlashReq 28 58 67 4 6 6

R_RFD_BlankCheckCodeFlashReq 34 43 48 4 4 4

R_RFD_EraseDataFlashReq 26 41 45 4 4 4

R_RFD_WriteDataFlashReq 20 27 31 4 6 6

R_RFD_BlankCheckDataFlashReq 26 41 45 4 4 4

R_RFD_SetExtraEraseProtectReq 26 31 37 4 4 4

R_RFD_SetExtraWriteProtectReq 26 31 37 4 4 4

R_RFD_SetExtraBootAreaProtectReq 26 31 37 4 4 4

R_RFD_SetExtraBootAreaReq 52 82 37 4 6 4

R_RFD_SetExtraFSWProtectReq 29 38 39 4 4 4

R_RFD_SetExtraFSWReq 39 43 47 6 4 8

R_RFD_SetExtraSoftwareReadProtectAreaReq 39 43 47 6 4 8

R_RFD_HOOK_EnterCriticalSection 9 9 11 4 4 4

R_RFD_HOOK_ExitCriticalSection 11 10 9 4 4 4

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 28 of 218
Aug.28.23

3. API Functions of RFD RL78 Type 01

3.1 List of API Functions of RFD RL78 Type 01

3.1.1 API Functions Used in Common for Flash Memory Control

Table 3-1 shows the API functions used in common for flash memory control in RFD RL78 Type 01.

Table 3-1 API Functions Used in Common for Flash Memory Control in RFD RL78 Type 01

 API Name Overview

1 R_RFD_Init Sets the frequency specified by the parameter in the flash
memory sequencer and initializes RFD RL78 Type 01.

2 R_RFD_SetDataFlashAccessMode Enables or disables access to the data flash memory according
to the parameter setting.

3 R_RFD_ChangeInterruptVector Changes the branch destination address for all interrupts to the
RAM address specified by the parameter.

4 R_RFD_RestoreInterruptVector Changes the branch destination address for interrupts that was
changed to a RAM address back to the normal interrupt vector
addresses.

5 R_RFD_SetFlashMemoryMode Places the flash memory sequencer in the flash memory control
mode specified by the parameter and then sets the specified
CPU operating frequency in the flash memory sequencer.

6 R_RFD_CheckFlashMemoryMode Checks if the flash memory sequencer is in the mode specified
by the parameter.

7 R_RFD_CheckCFDFSeqEndStep1 Checks if the operation of the activated code/data flash memory
area sequencer has been completed.

8 R_RFD_CheckExtraSeqEndStep1 Checks if the operation of the activated extra area sequencer
has been completed.

9 R_RFD_CheckCFDFSeqEndStep2 Checks if the command operation has been completed after the
flash memory sequencer control register is cleared.

10 R_RFD_CheckExtraSeqEndStep2 Checks if the command operation has been completed after the
flash extra area sequencer control register is cleared.

11 R_RFD_GetSeqErrorStatus Acquires the information on errors that occurred during
command execution in the code/data flash memory area
sequencer or extra area sequencer.

12 R_RFD_ClearSeqRegister Clears the registers for controlling the code/data flash memory
area sequencer and extra area sequencer

13 R_RFD_ForceStopSeq Forcibly stops the operation of the code/data flash memory area
sequencer.

14 R_RFD_ForceReset Generates an internal reset of the CPU.

15 R_RFD_SetBootAreaImmediately Allocates the boot cluster specified by the parameter to the boot
area immediately.

16 R_RFD_GetSecurityAndBootFlags Acquires the information on the security flags (protection flags)
and boot area switching flag.

17 R_RFD_GetFSW Acquires the range of the flash shield window, the flash shield
window mode, and the protection flag value.

18 r_rfd_wait_count Executes a software loop to wait for the time specified by the
parameter (time count in units of 1 μs).

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 29 of 218
Aug.28.23

3.1.2 API Functions for Code Flash Memory Control

Table 3-2 shows the API functions for code flash memory control in RFD RL78 Type 01.

Table 3-2 API Functions for Code Flash Memory Control in RFD RL78 Type 01

 API Name Overview

1 R_RFD_EraseCodeFlashReq Activates the code/data flash memory area sequencer and
begins the erasure of the code flash memory (one block).

2 R_RFD_WriteCodeFlashReq Activates the code/data flash memory area sequencer and
begins the programming of the code flash memory (4 bytes).

3 R_RFD_BlankCheckCodeFlashReq Activates the code/data flash memory area sequencer and
begins the blank check of the code flash memory (one block).

3.1.3 API Functions for Data Flash Memory Control

Table 3-3 shows the API functions for data flash memory control in RFD RL78 Type 01.

Table 3-3 API Functions for Data Flash Memory Control in RFD RL78 Type 01

 API Name Overview

1 R_RFD_EraseDataFlashReq Activates the code/data flash memory area sequencer and
begins the erasure of the data flash memory (one block).

2 R_RFD_WriteDataFlashReq Activates the code/data flash memory area sequencer and
begins the programming of the data flash memory (1 byte).

3 R_RFD_BlankCheckDataFlashReq Activates the code/data flash memory area sequencer and
begins the blank check of the data flash memory (one block).

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 30 of 218
Aug.28.23

3.1.4 API Functions for Extra Area Control

Table 3-4 shows the API functions for extra area control in RFD RL78 Type 01.

Table 3-4 API Functions for Extra Area Control in RFD RL78 Type 01

 API Name Overview

1 R_RFD_SetExtraEraseProtectReq Activates the extra area sequencer and begins the setting of the
block erase-prohibited flag.

2 R_RFD_SetExtraWriteProtectReq Activates the extra area sequencer and begins the setting of the
write-prohibited flag.

3 R_RFD_SetExtraBootAreaProtectReq Activates the extra area sequencer and begins the setting of the
boot area rewrite-prohibited flag.

4 R_RFD_SetExtraBootAreaReq Activates the extra area sequencer and begins the setting of the
boot area switching flag.

5 R_RFD_SetExtraFSWProtectReq Activates the extra area sequencer and begins the setting of the
flag for protection against flash shield window modification.

6 R_RFD_SetExtraFSWReq Activates the extra area sequencer and begins the setting of the
range and mode of the flash shield window specified by the
parameters.

7 R_RFD_SetExtraSoftwareReadProtect
AreaReq

Activates the extra area sequencer and begins the setting of the
flash read protection.

3.1.5 Hook Functions

Table 3-5 shows the hook functions in RFD RL78 Type 01.

Table 3-5 Hook Functions in RFD RL78 Type 01

 API Name Overview

1 R_RFD_HOOK_EnterCriticalSection Executes the instruction for disabling interrupts.

2 R_RFD_HOOK_ExitCriticalSection Executes the instruction for enabling interrupts.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 31 of 218
Aug.28.23

3.2 Data Type Definitions

3.2.1 Data Types

Table 3-6 shows the data type definitions in RFD RL78 Type 01.

Table 3-6 Data Type Definitions in RFD RL78 Type 01

Macro Value Type Description

int8_t signed char 1-byte signed integer

uint8_t unsigned char 1-byte unsigned integer

int16_t signed short 2-byte signed integer

uint16_t unsigned short 2-byte unsigned integer

int32_t signed long 4-byte signed integer

uint32_t unsigned long 4-byte unsigned integer

rBool_t unsigned char Boolean value (false = 0, true = 1)

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 32 of 218
Aug.28.23

3.2.2 Global Variables

The following shows the global variables used in RFD RL78 Type 01.

(1) g_u08_change_interrupt_vector_flag

Type/Name uint8_t g_u08_change_interrupt_vector_flag

Default value 0x00 (R_RFD_VALUE_U08_INIT_VARIABLE)

Description Execution flag for the R_RFD_ChangeInterruptVector function

 R_RFD_VALUE_U08_SET_FWEDIS_FLAG_ON: 0x55u
 R_RFD_VALUE_U08_SET_FWEDIS_FLAG_OFF: 0x00u

Definition file r_rfd_common_api.c

(2) g_u08_cpu_frequency

Type/Name uint8_t g_u08_cpu_frequency

Default value 0x00 (R_RFD_VALUE_U08_INIT_VARIABLE)

Description CPU operating frequency(RL78/G23, G22: 1 MHz to 32 MHz, RL78/G24: 1 MHz to 48 MHz)

 Value of (CPU operating frequency – 1):
 RL78/G23, G22: 0x00u to 0x1Fu (0 to 31), RL78/G24: 0x00u to 0x2Fu (0 to 47)

Definition file r_rfd_common_api.c

(3) g_u08_fset_cpu_frequency

Type/Name uint8_t g_u08_fset_cpu_frequency

Default value 0x00 (R_RFD_VALUE_U08_INIT_VARIABLE)
Description Value to be set to FSET bit of FSSET register.

- 1~32(MHz) : Value of (CPU operating frequency – 1) [0x00u-0x1Fu(0-31)]
 (Targets : All devices)

- 48(MHz) : [0x27(39)] (Target : RL78/G24)

Definition file r_rfd_common_api.c

(4) sg_u08_psw_ie_state

Type/Name static uint8_t sg_u08_psw_ie_state

Default value 0x00 (R_RFD_VALUE_U08_INIT_VARIABLE)

Description Variable for saving or restoring the state of the interrupt enable flag (IE) in PSW
 Interrupts are disabled: 0x00u
 interrupts are enabled: 0x80u

Definition file r_rfd_common_userown.c

Note: The user needs to implement the processing for copying the initial values to be assigned to the initialized global

variables from the Data section in ROM to RAM.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 33 of 218
Aug.28.23

3.2.3 Enumerations

• e_rfd_flash_memory_mode (enumerated-type variable name: e_rfd_flash_memory_mode_t)
Flash memory control mode

Symbol Name Value Description

R_RFD_ENUM_FLASH_MODE_UNPROGRAMMABLE 0x00 Non-programmable mode

R_RFD_ENUM_FLASH_MODE_CODE_PROGRAMMING 0x01 Code flash memory programming
mode

R_RFD_ENUM_FLASH_MODE_DATA_PROGRAMMING 0x02 Data flash memory programming
mode

• e_rfd_df_access (enumerated-type variable name: e_rfd_df_access_t)
Data flash memory access control

Symbol Name Value Description

R_RFD_ENUM_DF_ACCESS_DISABLE 0x00 Access to the data flash memory is disabled.

R_RFD_ENUM_DF_ACCESS_ENABLE 0x01 Access to the data flash memory is enabled.

• e_rfd_boot_cluster (enumerated-type variable name: e_rfd_boot_cluster_t)
Boot cluster number

Symbol Name Value Description

R_RFD_ENUM_BOOT_CLUSTER_1 0x00 Boot cluster 1

R_RFD_ENUM_BOOT_CLUSTER_0 0x01 Boot cluster 0

• e_rfd_fsw_mode (enumerated-type variable name: e_rfd_fsw_mode_t)
Flash shield window mode

Symbol Name Value Description

R_RFD_ENUM_FSW_MODE_INSIDE 0x00 Inside shield mode

R_RFD_ENUM_FSW_MODE_OUTSIDE 0x01 Outside shield mode

• e_rfd_protect (enumerated-type variable name: e_rfd_protect_t)
Protection enable or disable

Symbol Name Value Description

R_RFD_ENUM_PROTECT_ON 0x00 Protection is enabled.

R_RFD_ENUM_PROTECT_OFF 0x01 Protection is disabled.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 34 of 218
Aug.28.23

• e_rfd_ret (enumerated-type variable name: e_rfd_ret_t)
Return values

Symbol Name Value Description

R_RFD_ENUM_RET_STS_OK 0x00 Normal end

R_RFD_ENUM_RET_STS_BUSY 0x01 Busy

R_RFD_ENUM_RET_ERR_PARAMETER 0x10 Parameter error

R_RFD_ENUM_RET_ERR_MODE_MISMATCHED 0x11 Mode mismatch error

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 35 of 218
Aug.28.23

3.2.4 Macro Definitions

3.2.4.1 Macro Definitions for Setting the Global Data of RFD

• Macro definitions for masking to obtain 16-bit and 8-bit data
The data bits exceeding the specified size are masked by ANDing with 0.

Symbol Name Value Description

R_RFD_VALUE_U08_MASK1_8BIT 0xFFu 8-bit mask value

R_RFD_VALUE_U16_MASK1_16BIT 0xFFFFu 16-bit mask value

• Macro definitions for shifting data by 16 bits and 8 bits
A 32-bit value is shifted by 16 bits or 8 bits, and a 16-bit value is shifted by 8 bits.

Symbol Name Value Description

R_RFD_VALUE_U08_SHIFT_8BIT 8u Value for 8-bit shifting

R_RFD_VALUE_U08_SHIFT_16BIT 16u Value for 16-bit shifting

• Macro definitions for the g_u08_change_interrupt_vector_flag global data
Whether the interrupt branch destination is specified by the vector table in ROM or the specified address
in RAM is used is defined.

Symbol Name Value Description

R_RFD_VALUE_U08_SET_FWEDIS_FLAG_ON 0x55u The R_RFD_ChangeInterruptVector function
has been executed.
Execution after an interrupt branch to the
specified address in RAM.

R_RFD_VALUE_U08_SET_FWEDIS_FLAG_OFF 0x00u The R_RFD_ChangeInterruptVector function
has not been executed.
Execution after an interrupt branch to the
address specified by the vector table in ROM.

• Macro definitions for Initial value settings
Defines the initial value of the global variable.

Symbol Name Value Description

R_RFD_VALUE_U08_INIT_VARIABLE 0x00u Initial value of the global variable

R_RFD_VALUE_U08_INIT_FLAG 0x00u Initial value of the flag

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 36 of 218
Aug.28.23

3.2.4.2 Macro Definitions for Setting the Registers and Extra Area in the RL78/G2x

• Macro definitions for DFLCTL (data flash control register)
Whether to enable or disable access to the data flash memory is specified.
Target register definition: R_RFD_REG_U08_DFLCTL
(Target bit [DFLEN]: R_RFD_REG_U01_DFLCTL_DFLEN)

Symbol Name Value Description

R_RFD_VALUE_U01_
DFLEN_DATA_FLASH_ACCESS_DISABLE

0u Access to the data flash memory is disabled.

R_RFD_VALUE_U01_
DFLEN_DATA_FLASH_ACCESS_ENABLE

1u Access to the data flash memory is enabled.

• Macro definitions for FLARS (flash area select register)
The target area of access is specified.
Target register definition: R_RFD_REG_U08_FLARS

Symbol Name Value Description

R_RFD_VALUE_U08_FLARS_USER_AREA 0x00u The user area is specified.

R_RFD_VALUE_U08_FLARS_EXTRA_AREA 0x01u The extra area is specified.

• Macro definitions 1 for FSSQ (flash memory sequencer control register)
The commands to be executed in the activated flash memory sequencer are defined.
[Bit 7] SQST: Bit for starting or stopping the sequencer.

The sequencer starts operation when SQST = 1.
[Bits 2 to 0] SQMD2 to SQMD0: Command for the flash memory sequencer
Target register definition: R_RFD_REG_U08_FSSQ

Symbol Name Value Description

R_RFD_VALUE_U08_FSSQ_WRITE 0x81u Write command for the flash memory

R_RFD_VALUE_U08_FSSQ_BLANKCHECK_CF 0x83u Blank check command for the code flash
memory

R_RFD_VALUE_U08_FSSQ_BLANKCHECK_DF 0x8Bu Blank check command for the data flash
memory

R_RFD_VALUE_U08_FSSQ_ERASE 0x84u Erase command for the flash memory

R_RFD_VALUE_U08_FSSQ_CLEAR 0x00u Value for clearing the settings for operation of
the flash memory sequencer

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 37 of 218
Aug.28.23

• Macro definition 2 for FSSQ (flash memory sequencer control register)
The value of the bit for forcibly stopping the flash memory sequencer is defined.
[Bit 6] FSSTP: Bit for forcibly stopping the sequencer.

The sequencer is forcibly stopped when FSSTP = 1.
Target register definition: R_RFD_REG_U01_FSSQ_FSSTP

Symbol Name Value Description

R_RFD_VALUE_U01_FSSQ_FSSTP_ON 1u Value for forcibly stopping the flash memory
sequencer

• Macro definitions for FSSE (flash extra area sequencer control register)
The commands to be executed in the activated extra area sequencer are defined.
[Bit 7] ESQST: Bit for starting or stopping the sequencer.

The sequencer starts operation when ESQST = 1.
[Bits 3 to 0] ESQMD3 to ESQMD0: Command for the extra area sequencer
Target register definition: R_RFD_REG_U08_FSSE

Symbol Name Value Description

R_RFD_VALUE_U08_FSSE_FSW 0x81u Command for setting the flash shield window
function

R_RFD_VALUE_U08_FSSE_SOFTWARE_READ 0x86u Command for setting the flash read protection

R_RFD_VALUE_U08_FSSE_SECURITY_FLAG 0x87u Command for setting the security flag

R_RFD_VALUE_U08_FSSE_CLEAR 0x00u Value for clearing the settings for operation of
the extra area sequencer

• Macro definition for PFCMD (flash protect command register)
The fixed value to be written to the register that is used to write-protect specific registers is defined.
Target register definition: R_RFD_REG_U08_PFCMD

Symbol Name Value Description

R_RFD_VALUE_U08_
PFCMD_SPECIFIC_SEQUENCE_WRITE

0xA5u Value for releasing protection in the specific
sequence for the flash memory sequencer

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 38 of 218
Aug.28.23

• Macro definitions for FLPMC (flash programming mode control register)
The values used to control the transition between the flash memory programming mode and the non-
programmable mode are defined.
[Bit 4] EEEMD: Bit for specifying the data flash memory control mode.

The data flash memory programming mode is entered when EEEMD = 1.
[Bit 3] FWEDIS: Bit for enabling or disabling the erasure or programming of the code flash memory by

software. FWEDIS should be set to 0 to erase or program the code flash memory.
[Bit 1] FLSPM: Bit for specifying the code flash memory control mode.

The code flash memory programming mode is entered when FLSPM = 1.
Target register definition: R_RFD_REG_U08_FLPMC

Symbol Name Value Description

R_RFD_VALUE_U08_FLPMC_MODE_
UNPROGRAMMABLE_FWEDIS_ENABLE

0x00u The flash memory sequencer is in the non-
programmable mode. Execution after an
interrupt branch to RAM.
[The R_RFD_ChangeInterruptVector function
has been executed.]

R_RFD_VALUE_U08_FLPMC_MODE_
UNPROGRAMMABLE_FWEDIS_DISABLE

0x08u The flash memory sequencer is in the non-
programmable mode. Execution after an
interrupt branch to the address specified by
the vector table in ROM.
[The R_RFD_ChangeInterruptVector function
has not been executed.]

R_RFD_VALUE_U08_FLPMC_MODE_
CODE_FLASH_PROGRAMMING

0x02u Code flash memory programming mode

R_RFD_VALUE_U08_FLPMC_MODE_
DATA_FLASH_PROGRAMMING

0x10u Data flash memory programming mode

R_RFD_VALUE_U08_MASK0_FLPMC_FWEDIS 0xF7u Mask value for checking the FWEDIS bit

• Macro definitions for FSASTH (flash memory sequencer status register: upper 8 bits)
The end state of the flash memory sequencer (extra area sequencer or code/data flash memory area
sequencer) is defined.
[Bit 7] ESQEND: End state of the extra area sequencer. ESQEND = 1 indicates that the sequencer has

completed operation. This bit is cleared when the ESQST bit is cleared.
[Bit 6] SQEND: End state of the code/data flash memory area sequencer. SQEND = 1 indicates that the

sequencer has completed operation. This bit is cleared when the SQST bit is cleared.
Target register definition: R_RFD_REG_U08_FSASTH

Symbol Name Value Description

R_RFD_VALUE_U08_MASK1_FSASTH_SQEND 0x40u Value to be compared with the end state of
the code/data flash memory area sequencer

R_RFD_VALUE_U08_MASK1_FSASTH_ESQEND 0x80u Value to be compared with the end state of
the extra area sequencer

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 39 of 218
Aug.28.23

• Macro definition for FSASTL (flash memory sequencer status register: lower 8 bits)
The value of the error status mask when the operation of the flash memory sequencer (extra area
sequencer or code/data flash memory area sequencer) is finished is defined.
[Bit 5] ESEQER: Error status of the extra area sequencer. ESEQER = 1 indicates a sequencer error.
[Bit 4] SEQER: Error status of the code/data flash memory area sequencer. SEQER = 1 indicates a

sequencer error.
[Bit 3] BLER: Error status of the blank check command. BLER = 1 indicates a blank error.
[Bit 1] WRER: Error status of the write command. WRER = 1 indicates a write error.
[Bit 0] ERER: Error status of the block erase command. ERER = 1 indicates an erasure error.
Target register definition: R_RFD_REG_U08_FSASTL

Symbol Name Value Description

R_RFD_VALUE_U08_
MASK1_FSASTL_ERROR_FLAG

0x3Fu Value of the error status mask when the operation of
the flash memory sequencer (extra area sequencer
or code/data flash memory area sequencer) is
finished.

• Macro definitions 1 for FSSET (flash memory sequencer initial setting register)
The boot swap setting bit, temporary boot swap setting bit, or other setting bits are masked by ANDing
with 0.
[Bit 7] TMSPMD: Boot swap setting. When TMSPMD = 0, boot swap is executed according to the

information in the extra area. When TMSPMD = 1, boot swap is executed according to
the TMBTSEL bit setting.

[Bit 6] TMBTSEL: Temporary boot swap setting. When TMBTSEL = 0, boot cluster 0 is selected as the
boot area. When TMBTSEL = 1, boot cluster 1 is selected as the boot area.

Target register definition: R_RFD_REG_U08_FSSET

Symbol Name Value Description

R_RFD_VALUE_U08_MASK0_
FSSET_TMSPMD_AND_TMBTSEL

0x3Fu The boot swap setting and temporary boot
swap setting are masked.

R_RFD_VALUE_U08_MASK1_
FSSET_TMSPMD_AND_TMBTSEL

0xC0u The bits other than the boot swap setting or
temporary boot swap setting are masked.

R_RFD_VALUE_U08_MASK1_FSSET_TMSPMD 0x80u The bits other than the boot swap setting are
masked.

R_RFD_VALUE_U08_
FSSET_BOOT_CLUSTER_0

0x80u Value for specifying boot cluster 0 for
temporary boot swap.

R_RFD_VALUE_U08_
FSSET_BOOT_CLUSTER_1

0xC0u Value for specifying boot cluster 1 for
temporary boot swap.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 40 of 218
Aug.28.23

• Macro definitions 2 for FSSET (flash memory sequencer initial setting register)
The range of operating frequencies of the flash memory sequencer and the correction value (-1) for
conversion of the FSSET register setting are defined.
[Bits 4 to 0] FSET4 to FSET0: In the case of 1 MHz - 32 MHz, the value of (operating frequency – 1)

should be specified in these bits. (Example: For 32 MHz, specify 32 – 1 =
31 (11111b).)

Target register definition: R_RFD_REG_U08_FSSET

Symbol Name Value Description

R_RFD_VALUE_U08_FREQUENCY_LOWER_LIMIT 1u Lowest allowable operating frequency (1
MHz)

R_RFD_VALUE_U08_FREQUENCY_UPPER_LIMIT 32u Highest allowable operating frequency
(32 MHz)

R_RFD_VALUE_U08_FREQUENCY_ADJUST 1u Correction value (-1) for conversion of
the FSSET register setting

R_RFD_VALUE_U08_FREQUENCY_ADDITION 48u Input operating frequency (48 MHz)
(Only 48-MHz setting about RL78/G24.)

R_RFD_VALUE_U08_FREQUENCY_FSET_ADDITION 39u The set value for FSSET
(Only 48MHz setting about RL78/G24.)

• Macro definitions for VECTCTRL (Interrupt address control register)
The register values for selecting whether to branch to the vector address in ROM or the specified address
in RAM after the occurrence of an interrupt during self-programming are specified.
Target register definition: R_RFD_REG_U08_VECTCTRL

Symbol Name Value Description

R_RFD_VALUE_U08_VECTCTRL_OFF 0x00u Register value for branching to the vector
address in ROM corresponding to each
interrupt

R_RFD_VALUE_U08_VECTCTRL_ON 0x01u Register value for branching to a user-specified
single address in RAM after any interrupt

• Macro definitions for FLRST (flash registers initialization register)
The values for specifying the initialization of the registers for the flash memory sequencer (extra area
sequencer or code/data flash memory area sequencer) are defined.
[Bit 0] FLRST: When FLRST = 1, the registers for the flash memory sequencer (extra area sequencer or

code/data flash memory area sequencer) are initialized.
Target register definition: R_RFD_REG_U08_FLRST

Symbol Name Value Description

R_RFD_VALUE_U08_FLRST_ON 0x01u Value for initializing the sequencer registers

R_RFD_VALUE_U08_FLRST_OFF 0x00u Value for not initializing the sequencer
registers

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 41 of 218
Aug.28.23

• Macro definitions for FLFSWS and FLFSWE (flash FSW monitor registers START and END)
The mask values used to acquire or make the FSW settings are defined.
FLFSWE [bit 15] FSWC: The target area of FSW is specified. FSWC = 0 specifies the inside of the

specified range and FSWC = 1 specifies the outside of the specified range.
FLFSWE [bits 8 to 0]: The end block number + 1 of FSW is specified.
FLFSWS [bit 15] FSPR: Modification of the FSW settings is disabled. FSPR = 0 disables modification.
FLFSWS [bits 8 to 0]: The FSW start block number is specified.
Target register definitions: R_RFD_REG_U16_FLFSWE and R_RFD_REG_U16_FLFSWS

(1) Mask values for acquiring FSW settings

Symbol Name Value Description

R_RFD_VALUE_U16_MASK1_FLFSW_BLOCK_NUMBER 0x01FFu Mask value for acquiring the block
number setting

R_RFD_VALUE_U16_MASK1_FLFSWE_FSWC 0x8000u Mask value for acquiring the FSW
target area setting (FSWC)

R_RFD_VALUE_U16_MASK1_FLFSWS_FSPR 0x8000u Mask value for acquiring the
modification disabling setting
(FSPR)

(2) Mask value for making FSW settings

Symbol Name Value Description

R_RFD_VALUE_U16_MASK0_FSW_PROTECT_FLAG 0x7FFFu Mask value for setting the FSW
protection

R_RFD_VALUE_U16_MASK0_FSW_CONTROL_FLAG 0x7FFFu Mask value for setting the FSW
mode

R_RFD_VALUE_U16_MASK1_FSW_EXCEPT_BLOCK_INFO 0xFE00u Mask value for setting the FSW
block

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 42 of 218
Aug.28.23

• Macro definitions for FLAPH, FLAPL, FLSEDH, and FLSEDL (flash address pointer registers HIGH and
LOW)

(1) The start and end addresses of erasure and blank check (1 block = 256 bytes) for the data flash memory
are defined.
FLAPH [bits 3 to 0]: FLAP19 to FLAP16 specify the upper bits of the start address of a data flash memory

area. This value is fixed to 0x0F.
FLAPL [bits 15 to 0]: FLAP15 to FLAP0 specify the lower bits of the start address of a data flash memory

area.
FLSEDH [bits 3 to 0]: EWA19 to EWA16 specify the upper bits of the end address of a data flash memory

area. This value is fixed to 0x0F.
FLSEDL [bits 15 to 0]: EWA15 to EWA0 specify the lower bits of the end address of a data flash memory

area.
Target register definitions: R_RFD_REG_U08_FLAPH, R_RFD_REG_U16_FLAPL,
R_RFD_REG_U08_FLSEDH, and R_RFD_REG_U16_FLSEDL

Symbol Name Value Description

R_RFD_VALUE_U16_
DATA_FLASH_ADDR_LOW

0x1000u
Value for the lower bits of the start address of
a data flash area (16 bits)

R_RFD_VALUE_U08_
DATA_FLASH_ADDR_HIGH

0x0Fu
Value for the upper bits of the start address
of a data flash area (8 bits)

R_RFD_VALUE_U16_
DATA_FLASH_BLOCK_ADDR_END

0x00FFu
Value for the lower bits of the end address of
a data flash block (16 bits)

R_RFD_VALUE_U08_
DATA_FLASH_SHIFT_LOW_ADDR 8u

Value for shifting the lower address bits to
calculate the offset of a data flash area from
the block number

(2) The start and end addresses of erasure and blank check (1 block = 2-Kbyte) for the code flash memory
are defined.
FLAPH [bits 3 to 0]: FLAP19 to FLAP16 specify the upper bits of the start address of a code flash

memory area.
FLAPL [bits 15 to 0]: FLAP15 to FLAP0 specify the lower bits of the start address of a code flash memory

area.
FLSEDH [bits 3 to 0]: EWA19 to EWA16 specify the upper bits of the end address of a code flash

memory area.
FLSEDL [bits 15 to 0]: EWA15 to EWA0 specify the lower bits of the end address of a code flash memory

area.
Target register definitions: R_RFD_REG_U08_FLAPH, R_RFD_REG_U16_FLAPL,
R_RFD_REG_U08_FLSEDH, and R_RFD_REG_U16_FLSEDL

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 43 of 218
Aug.28.23

Symbol Name Value Description

R_RFD_VALUE_U16_
CODE_FLASH_BLOCK_ADDR_LOW

0x001Fu
Mask value for the lower bits of the start
address of a code flash block (16 bits)

R_RFD_VALUE_U16_
CODE_FLASH_BLOCK_ADDR_HIGH 0x01E0u

Mask value for the upper bits of the start
address of a code flash block (16 bits; only
the lower 8 bits after shifting are used)

R_RFD_VALUE_U16_
CODE_FLASH_BLOCK_ADDR_END

0x07FCu
Lower address in 2-Kbyte units of the end of
a code flash block (16 bits)

R_RFD_VALUE_U08_
CODE_FLASH_SHIFT_LOW_ADDR 11u

Value for shifting the lower address bits to
calculate the offset of a code flash area
from the block number

R_RFD_VALUE_U08_
CODE_FLASH_SHIFT_HIGH_ADDR 5u

Value for shifting the upper address bits to
calculate the offset of a code flash area
from the block number

Example: Block number = 471 → 0x01D7

R_RFD_VALUE_U16_CODE_FLASH_BLOCK_ADDR_LOW:
0x0017 → 0xB800 (shifted to the left by 11 bits)

R_RFD_VALUE_U16_CODE_FLASH_BLOCK_ADDR_HIGH:
0x01C0 → 0x000E (shifted to the right by 5 bits)

Block start address = 0x000E_B800

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 44 of 218
Aug.28.23

• Macro definitions for FLSEC (flash security flag monitor register)
The mask values for extra area settings and security monitoring are defined.
[Bit 12] WRPR: Write-prohibited flag. WRPR = 0 disables programming.
[Bit 10] SEPR: Block erase-prohibited flag. SEPR = 0 disables block erasure.
[Bit 9] BTPR: Flag for controlling the protection against reprogramming of the boot block cluster. BTPR =

0 disables reprogramming of the boot block cluster.
[Bit 8] BTFLG: Boot area switching flag.
BTFLG = 0: Boot cluster 1 is used as the boot area.
BTFLG = 1: Boot cluster 0 is used as the boot area.
Target register definitions: R_RFD_REG_U16_FLWH, R_RFD_REG_U16_FLWL, and
R_RFD_REG_U16_FLSEC

Symbol Name Value Description

R_RFD_VALUE_U16_MASK0_ERASE_PROTECT_FLAG 0xFBFFu Mask value for setting the block
erasure protection

R_RFD_VALUE_U16_MASK0_WRITE_PROTECT_FLAG 0xEFFFu Mask value for setting the write
protection

R_RFD_VALUE_U16_MASK0_
BOOT_CLUSTER_PROTECT_FLAG

0xFDFFu
Mask value for setting the
protection against reprogramming
of the boot block cluster

R_RFD_VALUE_U16_MASK0_BOOT_FLAG 0xFEFFu Mask value for switching and
monitoring the boot area flag

R_RFD_VALUE_U16_MASK1_BOOT_FLAG 0x0100u Mask value for switching and
monitoring the boot area flag

• Macro definitions for setting the flash read protection
The mask values for extra area settings are defined.
The extra area for setting flash read protection:
[Bit 31] SWPR: Modification of the flash read protection settings is disabled. SWPR = 0 disables

modification.
[Bits 24 to 16]: End number of the blocks for the flash read protection.
[Bits 8 to 0]: Start number of the blocks for the flash read protection.
Target register definition: None (extra area settings only)

Symbol Name Value Description

R_RFD_VALUE_U16_MASK0_
SW_READ_PROTECT_FLAG

0x7FFFu
Mask value for setting flash read protection.

R_RFD_VALUE_U16_MASK1_
SW_READ_EXCEPT_BLOCK_INFO

0xFE00u
Mask value for setting the blocks for flash
read protection.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 45 of 218
Aug.28.23

3.2.4.3 Macro for RFD RL78 Type01 for user definition

• Macro for the flash memory control system classification
Symbol Name Description

R_RFD_MCU_FLASH_T01_CATEGORY01 This macro needs to be defined when
RL78/G23 or G22 is used.

R_RFD_MCU_FLASH_T01_CATEGORY02 This macro needs to be defined when
RL78/G24 is used.

Note: Be sure to define macro using this compile option. If this macro is not defined, a compile error
occurs. Refer to "6.1.3.2 The setting of user definition macro (CC-RL)”, “6.2.3.2 The setting of user
definition macro (IAR)” or "6.3.3.2 The Setting of User Definition Macro (LLVM)”.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 46 of 218
Aug.28.23

3.3 Specifications of API Functions

This section describes the detailed specifications of the API functions of Renesas Flash Driver (RFD) RL78
Type 01.

There are some prerequisites for using the API functions of RFD RL78 Type 01 to reprogram the flash
memory. If the prerequisites are not satisfied, execution of the API functions may result in indeterminate
operation.

Prerequisites:

• Execute the R_RFD_Init() function once before starting the use of RFD functions.
• The high-speed on-chip oscillator must be active while self-programming is in progress. Execute API

functions of RFD RL78 Type 01 only while the high-speed on-chip oscillator is active.
• To control the data flash memory, execute API functions of RFD RL78 Type 01 while access to the data

flash memory is enabled. For the method of enabling access to the data flash memory, refer to the user's
manual of the target RL78 microcontroller.

The following shows the format for describing the specifications of API functions.

Description format:

Information:

Syntax Syntax for calling this function from a C-language program

Reentrancy Reentrant or Non-reentrant

Parameters
(IN)

Input parameters for this
function

Parameter [Value, range, meaning of the
parameter, etc.]

Parameters
(IN/OUT)

Input/output parameters for this
function

Parameter [Value, range, meaning of the
parameter, etc.]

Parameters
(OUT)

Output parameters for this
function

Parameter [Value, range, meaning of the
parameter, etc.]

Return Value Type of the return value from
this function
(Enumerated type, pointer type,
etc.)

Enumerator (constant value) of the return value:
Value
[Meaning of the constant: Detailed description]

 Enumerator (constant value) of the return value:
Value
[Meaning of the constant: Detailed description]

Description Overview of function

Preconditions Overview of preconditions

Remarks Special notes on this function

Details of Specifications:

The operation of this function is described.

Note:

Conditions of usage or restrictions on this function are described.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 47 of 218
Aug.28.23

3.3.1 Specifications of API Functions Used in Common for Flash Memory Control

This section describes the API functions used in common for flash memory control in RFD RL78 Type 01.

3.3.1.1 R_RFD_Init

Information:

Syntax R_RFD_FAR_FUNC e_rfd_ret_t R_RFD_Init (unit8_t i_u08_cpu_frequency);

Reentrancy Non-reentrant

Parameters
(IN)

unit8_t i_u08_cpu_frequency CPU operating frequency
 [1 to 32 (MHz)] (Target: All devices)
[48 (MHz)] (Target: RL78/G24)

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_rfd_ret_t R_RFD_ENUM_RET_STS_OK: 0x00
[Normal end: The frequency is within the allowable
range.]

 R_RFD_ENUM_RET_ERR_PARAMETER: 0x10
[Parameter error: The frequency is outside the
allowable range.]

Description Sets the frequency specified by the parameter in the flash memory sequencer and
initializes RFD RL78 Type 01.

Preconditions Execute this function in the non-programmable mode while the high-speed on-chip
oscillator is active.

Remarks Execute this function once before starting the use of RFD functions.

Details of Specifications:

• The execution flag (g_u08_change_interrupt_vector_flag) for R_RFD_ChangeInterruptVector() is
initialized to 0x00 (not executed).

• Whether the value of the parameter (CPU operating frequency) is within the range from 1 MHz to 32 MHz
is checked. When the value is within the range from 1 MHz to 32 MHz, the value of (specified CPU
operating frequency – 1) is set in the variable g_u08_cpu_frequency.
And, set (g_u08_cpu_frequency) to the value (g_u08_fset_cpu_frequency) for inputting into FSSET
register.R_RFD_MCU_FLASH_T01_CATEGORY02 is defined by the case besides the range of 1~32
(MHz) for RL78/G24. R_RFD_MCU_FLASH_T01_CATEGORY02 is defined by the case besides the
range of 1~32 (MHz) RL78/G24. When an argument (CPU operating frequency) is 48 (MHz),"CPU
operating frequency-1 is set to (g_u08_cpu_frequency),
R_RFD_VALUE_U08_FREQUENCY_FSET_ADDITION (39u) is set to (g_u08_fset_cpu_frequency).

Notes:

• The high-speed on-chip oscillator needs to be kept active while self-programming is in progress. Execute
this function while the high-speed on-chip oscillator is active.
* RFD RL78 Type 01 does not activate or check the high-speed on-chip oscillator.

• For the parameter (i_u08_cpu_frequency), specify the integer obtained by rounding up the fraction of the
CPU operating frequency that is actually used in the microcontroller.
(Example: When the CPU operates at 4.5 MHz, specify 5 in this initialization function.)
When the CPU operates at a frequency lower than 4 MHz, a value of 1 MHz, 2 MHz, or 3 MHz can be
used but a non-integer value such as 1.5 MHz cannot be used.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 48 of 218
Aug.28.23

The frequency specified in the parameter (i_u08_cpu_frequency) should be the actual frequency at which
the CPU operates during flash memory reprogramming; it is not necessarily that the frequency of the
high-speed on-chip oscillator should be specified.
 If the specified frequency differs from the actual CPU operating frequency, the subsequent operation

is indeterminate. In this case, even if flash memory reprogramming is completed, the written data
value and data retention period may not be guaranteed.

* For the range of the CPU operating frequency, refer to the user's manual of the target RL78
microcontroller.

• If this function is executed while the sequencer is not in the non-programmable mode, the subsequent
operation is indeterminate.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 49 of 218
Aug.28.23

3.3.1.2 R_RFD_SetDataFlashAccessMode

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_SetDataFlashAccessMode
(e_rfd_df_access_t i_e_df_access);

Reentrancy Non-reentrant

Parameters e_rfd_df_access_t Control of access to the data flash memory

(IN) i_e_df_access R_RFD_ENUM_DF_ACCESS_ENABLE: 0x01
[Access to the data flash memory is enabled.]
R_RFD_ENUM_DF_ACCESS_DISABLE: 0x00
[Access to the data flash memory is disabled.]

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Enables or disables access to the data flash memory according to the parameter
setting.

Preconditions Execute this function in the non-programmable mode.

Remarks

Details of Specifications:

• When the parameter (i_e_df_access) is set to R_RFD_ENUM_DF_ACCESS_DISABLE, the DFLEN bit
(bit 0 of DFLCTL) is set to 0 (R_RFD_VALUE_U01_DFLEN_DATA_FLASH_ACCESS_DISABLE) to
disable access to the data flash memory.

• When the parameter (i_e_df_access) is set to R_RFD_ENUM_DF_ACCESS_ENABLE, the DFLEN bit
(bit 0 of DFLCTL) is set to 1 (R_RFD_VALUE_U01_DFLEN_DATA_FLASH_ACCESS_ENABLE) to
enable access to the data flash memory.

Notes:

• If the value specified by the parameter (i_e_df_access) is neither
R_RFD_ENUM_DF_ACCESS_DISABLE nor R_RFD_ENUM_DF_ACCESS_ENABLE, the DFLEN bit (bit
0 of DFLCTL) is set to 0 (R_RFD_VALUE_U01_DFLEN_DATA_FLASH_ACCESS_DISABLE) to disable
access to the data flash memory.

• If this function is executed while the sequencer is not in the non-programmable mode, the subsequent
operation is indeterminate.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 50 of 218
Aug.28.23

3.3.1.3 R_RFD_ChangeInterruptVector

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_ChangeInterruptVector
(uint32_t i_u32_interrupt_vector_addr);

Reentrancy Non-reentrant

Parameters
(IN)

uint32_t
i_u32_interrupt_vector_addr

Destination address of interrupt branch
[RAM address]

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Changes the branch destination address for all interrupts to the RAM address
specified by the parameter.

Preconditions Execute this function in the non-programmable mode.

Remarks 

Details of Specifications:

• The hook function R_RFD_HOOK_EnterCriticalSection() is called to save the current interrupt disabled
(DI) or enabled (EI) state and disable interrupts.

• The branch destination address for all interrupts is changed to the RAM address specified by the
parameter (i_u32_interrupt_vector_addr).
 The specific sequence is executed to set the FWEDIS bit (bit 3) of the FLPMC register to 0 (FLPMC =

0x00).
 The value of the parameter (i_u32_interrupt_vector_addr) is set in the interrupt vector change

registers (FLSIVC0 and FLSIVC1).
 The interrupt address control register is appropriately set up so that execution branches to the

specified RAM address (VECTCTRL = 0x01 [R_RFD_VALUE_U08_VECTCTRL_ON]).
• The hook function R_RFD_HOOK_ExitCriticalSection() is called to restore the interrupt disabled (DI) or

enabled (EI) state.
• The execution flag (g_u08_change_interrupt_vector_flag) of this function is modified to indicate the

executed state (R_RFD_VALUE_U08_SET_FWEDIS_FLAG_ON: 0x55).

Notes:

• If the value specified by the parameter (i_u32_interrupt_vector_addr) is not a RAM address, the
subsequent operation is indeterminate.

• When this function is executed, interrupts need to be disabled in the period between the calls of the hook
functions R_RFD_HOOK_EnterCriticalSection() and R_RFD_HOOK_ExitCriticalSection(). If interrupts are
enabled and an interrupt occurs in this period, the subsequent operation is indeterminate.

• If this function is executed while the sequencer is not in the non-programmable mode, the subsequent
operation is indeterminate.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 51 of 218
Aug.28.23

• - Example of defining a interrupt function to be placed on the RAM
• The argument of the R_RFD_ChangeInterruptVector function is the address of the interrupt function

placed on the RAM. Also, when the R_RFD_ChangeInterruptVector function is used, the destination of all
interrupt function is changed to the specified address on the RAM. After the
R_RFD_ChangeInterruptVector function is executed, all interrupts will branch to the RAM address
specified by this function, instead of to the address specified in the interrupt vector table, even if an
interrupt occurs. Therefore, if there are multiple interrupt sources and different processing is desired for
each, it is necessary to identify the interrupt sources within the interrupt function.

• The interrupt factor can be determined by referring to the interrupt request flag when an interrupt occurs
on the RAM. However, the interrupt request flag is not cleared automatically, so the interrupt request flag
should be cleared (set to 0) after determination.

• Here are examples of prototype declarations, function definitions, and function calls for each compiler for
interrupt function to be placed on the RAM.

• CC-RL compiler
Prototype: #pragma interrupt Xxxxx;

 __far void Xxxxx(void);
 Function definition: __far void Xxxxx(void){}
 Function call: R_RFD_ChangeInterruptVector((uint32_t)((void (__far *)(void)) Xxxxx));

• IAR compiler

Prototype: __interrupt void Xxxxx(void);
Function definition: __interrupt void Xxxxx(void){}
Function call (V4.21 or later): R_RFD_ChangeInterruptVector((uint32_t)((__far unsigned char *) &Xxxxx));

(V5.10 or later): R_RFD_ChangeInterruptVector((uint32_t)((void (__far_func *)(void)) Xxxxx));

Note: By placing interrupt function on the RAM, the following “warning” will be output, but it has
been confirmed that there is no problem with these. In addition, the “warning” can be
suppressed by selecting “C/C++Compiler-Extra Options” from the IAR Embedded
Workbench project options and setting “--diag_suppress=Ta030,Be006” in the “Command
line options” input field, but it is recommended that this be set when development is
complete, as other “warnings” may not be output.

 Examples of “warning”:

[Ta030]: Note that this function's segment ‘SMP_CF’ must be placed in near code memory.
[Be006]: possible conflict for segment/section “SMP_CF”.

• LLVM compiler

Prototype: __far void Xxxxx(void) __attribute__ ((interrupt));
Function definition: __far void Xxxxx(void){}
Function call: R_RFD_ChangeInterruptVector((uint32_t)((void (__far *)(void)) Xxxxx));

Note: “Xxxxx” is the name of the interrupt function.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 52 of 218
Aug.28.23

3.3.1.4 R_RFD_RestoreInterruptVector

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_RestoreInterruptVector (void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Changes the branch destination address for interrupts that was changed to a RAM
address back to the normal interrupt vector addresses.

Preconditions Execute this function in the non-programmable mode.

Remarks 

Details of Specifications:

• The hook function R_RFD_HOOK_EnterCriticalSection() is called to save the current interrupt disabled
(DI) or enabled (EI) state and disable interrupts.

• The branch destination address for interrupts that was changed to a RAM address by the
R_RFD_ChangeInterruptVector() function is changed back to the original locations  that is, the
addresses specified by the interrupt table in ROM.
 The specific sequence is executed to set the FWEDIS bit (bit 3) of the FLPMC register to 1 (FLPMC =

0x08).
 The interrupt address control register is appropriately set up so that execution branches to the

addresses specified by the interrupt vector table in ROM (VECTCTRL = 0x00
[R_RFD_VALUE_U08_VECTCTRL_OFF]).

• The hook function R_RFD_HOOK_ExitCriticalSection() is called to restore the interrupt disabled (DI) or
enabled (EI) state.

• The execution flag (g_u08_change_interrupt_vector_flag) of this function is modified to indicate the
unexecuted state (R_RFD_VALUE_U08_SET_FWEDIS_FLAG_OFF: 0x00).

Notes:

• When this function is executed, interrupts need to be disabled in the period between the calls of the hook
functions R_RFD_HOOK_EnterCriticalSection() and R_RFD_HOOK_ExitCriticalSection(). If interrupts are
enabled and an interrupt occurs in this period, the subsequent operation is indeterminate.

• If this function is executed while the sequencer is not in the non-programmable mode, the subsequent
operation is indeterminate.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 53 of 218
Aug.28.23

3.3.1.5 R_RFD_SetFlashMemoryMode

Information:

Syntax R_RFD_FAR_FUNC e_rfd_ret_t R_RFD_SetFlashMemoryMode
(e_rfd_flash_memory_mode_t i_e_flash_mode);

Reentrancy Non-reentrant

Parameters e_rfd_flash_memory_mode_t Flash memory control mode

(IN) i_e_flash_mode R_RFD_ENUM_FLASH_MODE_UNPROGRAMMABLE:
0x00
[Non-programmable mode]
R_RFD_ENUM_FLASH_MODE_DATA_PROGRAMMING:
0x02
[Data flash memory programming mode]
R_RFD_ENUM_FLASH_MODE_CODE_PROGRAMMING:
0x01
[Code flash memory programming mode]

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_rfd_ret_t R_RFD_ENUM_RET_STS_OK: 0x00 [Normal end]

 R_RFD_ENUM_RET_ERR_MODE_MISMATCHED: 0x11
[Mode mismatch error]
(The flash memory sequencer is not placed in the specified
mode.)

Description Places the flash memory sequencer in the flash memory control mode specified by the
parameter and then sets the specified CPU operating frequency in the flash memory
sequencer.

Preconditions Execute this function while command execution is not in progress in the code/data flash
memory area sequencer or extra area sequencer.

Remarks 

Details of Specifications:

• The hook function R_RFD_HOOK_EnterCriticalSection() is called to save the current interrupt disabled
(DI) or enabled (EI) state and disable interrupts.

• The FLPMC register is set up according to the value of the parameter (i_e_flash_mode) to place the flash
memory sequencer in the specified flash memory control mode.

• Before a transition to the specified mode, a wait time (tMS) is inserted. For the wait time (tMS), refer to
the hardware manual of the target RL78 microcontroller.

• The hook function R_RFD_HOOK_ExitCriticalSection() is called to restore the interrupt disabled (DI) or
enabled (EI) state.

• The “g_u08_fset_cpu_frequency” specified by the R_RFD_Init function is set in the FSSET register.

Notes:

• When this function is executed, interrupts need to be disabled in the period between the calls of the hook
functions R_RFD_HOOK_EnterCriticalSection() and R_RFD_HOOK_ExitCriticalSection(). If interrupts are
enabled and an interrupt occurs in this period, the subsequent operation is indeterminate.

• When the non-programmable mode (R_RFD_ENUM_FLASH_MODE_UNPROGRAMMABLE) is specified
by the parameter, the FLPMC register is set up according to the value of the execution flag
(g_u08_change_interrupt_vector_flag) of the R_RFD_ChangeInterruptVector() function as follows.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 54 of 218
Aug.28.23

 Execution flag of R_RFD_ChangeInterruptVector() = 0x00 (not executed)
FLPMC = 0x08 (FWEDIS (bit 3 of FLPMC) = 1)
(Execution after an interrupt branch according to the interrupt vector table in ROM.)

 Execution flag of R_RFD_ChangeInterruptVector() = 0x55 (executed)
FLPMC = 0x00 (FWEDIS (bit 3 of FLPMC) = 0)
(Execution after an interrupt branch to the specified address in RAM.)

• If the value specified by the parameter is not a flash memory control mode value, the operation is same
as that for the non-programmable mode.

• If this function is executed before the R_RFD_Init function, the reprogrammed data are not guaranteed
even after the reprogramming processing by the RFD is completed. To use RFD RL78 Type 01, be sure
to execute the R_RFD_Init() function once before starting the use of RFD functions.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 55 of 218
Aug.28.23

3.3.1.6 R_RFD_CheckFlashMemoryMode

Information:

Syntax R_RFD_FAR_FUNC e_rfd_ret_t R_RFD_CheckFlashMemoryMode
(e_rfd_flash_memory_mode_t i_e_flash_mode);

Reentrancy Non-reentrant

Parameters e_rfd_flash_memory_mode_t Flash memory control mode

(IN) i_e_flash_mode R_RFD_ENUM_FLASH_MODE_UNPROGRAMMABLE:
0x00
 [Non-programmable mode]
R_RFD_ENUM_FLASH_MODE_DATA_PROGRAMMING:
0x02
[Data flash memory programming mode]
R_RFD_ENUM_FLASH_MODE_CODE_PROGRAMMING:
0x01
[Code flash memory programming mode]

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_rfd_ret_t R_RFD_ENUM_RET_STS_OK: 0x00 [Normal end]

 R_RFD_ENUM_RET_ERR_MODE_MISMATCHED: 0x11
[Mode mismatch error]

Description Checks if the flash memory sequencer is in the mode specified by the parameter.

Preconditions Execute this function while command execution is not in progress in the code/data flash
memory area sequencer or extra area sequencer.

Remarks 

Details of Specifications:

• The value of the FLPMC register is read to check if it matches the register value for the mode specified by
the parameter (i_e_flash_mode).
 Non-programmable mode: 0x08 (FWEDIS (bit 3 of FLPMC) = 1) or 0x00 (FWEDIS (bit 3 of FLPMC) =

0)
 Code flash memory programming mode: 0x02 (FLSPM (bit 1 of FLPMC) = 1)
 Data flash memory programming mode: 0x10 (EEEMD (bit 4 of FLPMC) = 1)

Notes:

• If the control mode of the flash memory sequencer was specified by a function other than
R_RFD_SetFlashMemoryMode(), this function may not be executed correctly.

• If this function is executed during command execution in the code/data flash memory area sequencer or
the extra area sequencer, the subsequent operation is indeterminate.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 56 of 218
Aug.28.23

3.3.1.7 R_RFD_CheckCFDFSeqEndStep1

Information:

Syntax R_RFD_FAR_FUNC e_rfd_ret_t R_RFD_CheckCFDFSeqEndStep1 (void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_rfd_ret_t R_RFD_ENUM_RET_STS_OK: 0x00 [Normal end]

 R_RFD_ENUM_RET_STS_BUSY: 0x01
[Sequencer command execution is in progress.]

Description Checks if the operation of the activated code/data flash memory area sequencer has
been completed.

Preconditions Execute this command after starting the command for activating the code/data flash
memory area sequencer.

Remarks Execute this function again if R_RFD_STS_BUSY is returned.
After confirming that R_RFD_ENUM_RET_STS_OK has been returned from this
function, execute the R_RFD_CheckCFDFSeqEndStep2() function.

Details of Specifications:

• Whether the operation of the activated code/data flash memory area sequencer has been completed
(SQEND (bit 6 of FSASTH) = 1) is checked.

• When the operation of the code/data flash memory area sequencer has been completed, the flash
memory sequencer control register is cleared (FSSQ = 0x00) and R_RFD_ENUM_RET_STS_OK is
returned.
If the operation has not been completed, R_RFD_ENUM_RET_STS_BUSY is returned.

Notes:

• Execute this function again if R_RFD_STS_BUSY is returned.
• If execution of this function is attempted before the command for activating the code/data flash memory

area sequencer is started, this function is not executed correctly.
• After confirming that R_RFD_ENUM_RET_STS_OK has been returned from this function, execute the

R_RFD_CheckCFDFSeqEndStep2() function.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 57 of 218
Aug.28.23

3.3.1.8 R_RFD_CheckExtraSeqEndStep1

Information:

Syntax R_RFD_FAR_FUNC e_rfd_ret_t R_RFD_CheckExtraSeqEndStep1 (void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_rfd_ret_t R_RFD_ENUM_RET_STS_OK: 0x00 [Normal end]

R_RFD_ENUM_RET_STS_BUSY: 0x01
[Sequencer command execution is in progress.]

Description Checks if the operation of the activated extra area sequencer has been completed.

Preconditions Execute this command after starting the command for activating the extra area
sequencer.

Remarks Execute this function again if R_RFD_STS_BUSY is returned.
After confirming that R_RFD_ENUM_RET_STS_OK has been returned from this
function, execute the R_RFD_CheckExtraSeqEndStep2() function.

Details of Specifications:

• Whether the operation of the activated extra area sequencer has been completed (ESQEND (bit 7 of
FSASTH) = 1) is checked.

• When the operation of the extra area sequencer has been completed, the flash extra area sequencer
control register is cleared (FSSE = 0x00) and R_RFD_ENUM_RET_STS_OK is returned.
If the operation has not been completed, R_RFD_ENUM_RET_STS_BUSY is returned.

Notes:

• Execute this function again if R_RFD_STS_BUSY is returned.
• If execution of this function is attempted before the command for activating the extra area sequencer is

started, this function is not executed correctly.
• After confirming that R_RFD_ENUM_RET_STS_OK has been returned from this function, execute the

R_RFD_CheckExtraSeqEndStep2() function.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 58 of 218
Aug.28.23

3.3.1.9 R_RFD_CheckCFDFSeqEndStep2

Information:

Syntax R_RFD_FAR_FUNC e_rfd_ret_t R_RFD_CheckCFDFSeqEndStep2 (void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_rfd_ret_t R_RFD_ENUM_RET_STS_OK: 0x00
[Normal end: Sequencer operation has been
completed.]

 R_RFD_ENUM_RET_STS_BUSY: 0x01
[Sequencer operation is in progress.]

Description Checks if the command operation has been completed after the flash memory
sequencer control register is cleared.

Preconditions Execute this function after confirming that R_RFD_ENUM_RET_STS_OK has been
returned from the R_RFD_CheckCFDFSeqEndStep1() function.

Remarks Execute this function again if R_RFD_STS_BUSY is returned.

Details of Specifications:

• Whether the command operation in the code/data flash memory area sequencer has been completed
(SQEND (bit 6 of FSASTH) = 0) is checked after the flash memory sequencer control register is cleared
(FSSQ = 0x00).

• When the command execution in the code/data flash memory area sequencer has been completed,
R_RFD_ENUM_RET_STS_OK is returned.
If the operation has not been completed, R_RFD_ENUM_RET_STS_BUSY is returned.

Notes:

• Execute this function again if R_RFD_STS_BUSY is returned.
• If execution of this function is attempted before R_RFD_ENUM_RET_STS_OK has been confirmed by

the R_RFD_CheckCFDFSeqEndStep1() function, this function is not executed correctly.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 59 of 218
Aug.28.23

3.3.1.10 R_RFD_CheckExtraSeqEndStep2

Information:

Syntax R_RFD_FAR_FUNC e_rfd_ret_t R_RFD_CheckExtraSeqEndStep2 (void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_rfd_ret_t R_RFD_ENUM_RET_STS_OK: 0x00
[Normal end: Sequencer operation has been
completed.]

 R_RFD_ENUM_RET_STS_BUSY: 0x01
[Sequencer operation is in progress.]

Description Checks if the command operation has been completed after the flash extra area
sequencer control register is cleared.

Preconditions Execute this function after checking that R_RFD_ENUM_RET_STS_OK has been
returned from the R_RFD_CheckExtraSeqEndStep1() function.

Remarks Execute this function again if R_RFD_STS_BUSY is returned.

Details of Specifications:

• Whether all command execution in the extra area sequencer has been completed (ESQEND (bit 7 of
FSASTH) = 0) is checked after the flash extra area sequencer control register is cleared (FSSE = 0x00).

• When the command operation in the extra area sequencer has been completed,
R_RFD_ENUM_RET_STS_OK is returned.
If the operation has not been completed, R_RFD_ENUM_RET_STS_BUSY is returned.

Notes:

• Execute this function again if R_RFD_STS_BUSY is returned.
• If execution of this function is attempted before R_RFD_ENUM_RET_STS_OK has not been confirmed

by the R_RFD_CheckExtraSeqEndStep1() function, this function is not executed correctly.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 60 of 218
Aug.28.23

3.3.1.11 R_RFD_GetSeqErrorStatus

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_GetSeqErrorStatus
(uint8_t __near * onp_u08_error_status);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

uint8_t __near *
onp_u08_error_status

Pointer to the variable for storing the information on
errors

Return Value N/A

Description Acquires the information on errors that occurred during command execution in the
code/data flash memory area sequencer or extra area sequencer.

Preconditions Execute this function while command execution is not in progress in the code/data
flash memory area sequencer or extra area sequencer.

Remarks 

Details of Specifications:

• The FSASTL register (8 bits) is read and the value of bits 5 to 0 is stored in the variable pointed to by the
parameter (onp_u08_error_status).
Note: Bits 7 to 6 are set to a fixed value of 0.
Error information to be acquired (five bits of the FSASTL register: bits 5 to 3, 1, and 0):
 Bit 5: Extra area sequencer error
 Bit 4: Code/data flash memory area sequencer error
 Bit 3: Blank check command error
 Bit 2: (0) Reserved
 Bit 1: Write command error
 Bit 0: Erase command error

Note:

• Correct values may not be acquired if this function is executed while command execution is in progress in
the code/data flash memory area sequencer or extra area sequencer.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 61 of 218
Aug.28.23

3.3.1.12 R_RFD_ClearSeqRegister

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_ClearSeqRegister (void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Clears the registers for controlling the code/data flash memory area sequencer and
extra area sequencer.

Preconditions Use this function in the code flash memory programming mode or data flash memory
programming mode.
Use this function while command execution is not in progress in the code/data flash
memory area sequencer or extra area sequencer.

Remarks Execute this function after execution of the R_RFD_CheckCFDFSeqEndStep2() or
R_RFD_CheckExtraSeqEndStep2() function.

Details of Specifications:

• The flash registers initialization register (FLRST) is set to 0x01 and then cleared to 0x00 to clear the
following registers.
 Target registers for controlling the code/data flash memory area sequencer or extra area sequencer:

FLAPH, FLAPL, FLSEDH, FLSEDL, FLWH, FLWL, FLARS, FSSQ, and FSSE

Notes:

• This function does not clear the information on errors generated during command execution in the flash
memory sequencer (the information in the FSASTL register).

• If this function is executed while operation is in progress in the code/data flash memory area sequencer
or extra area sequencer, the subsequent operation is indeterminate.

• If this function is executed while the sequencer is not in the code flash memory programming mode or
data flash memory programming mode, the subsequent operation is indeterminate.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 62 of 218
Aug.28.23

3.3.1.13 R_RFD_ForceStopSeq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_ForceStopSeq (void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Forcibly stops the operation of the code/data flash memory area sequencer.

Preconditions Use this function after starting the command for activating the code/data flash memory
area sequencer (while command execution is in progress or the sequencer is
operating).
Use this function before the R_RFD_CheckCFDFSeqEndStep1() function returns
R_RFD_ENUM_RET_STS_OK (before the sequencer operation is completed).

Remarks Execute the R_RFD_CheckCFDFSeqEndStep1() function after this function.

Details of Specifications:

• While the code/data flash memory area sequencer is executing the blank check command or erase
command, the FSSTP bit (bit 6) of the FSSQ register is set to 1 to forcibly stop the code/data flash
memory area sequencer.

Notes:

• Use this function only when forced stop of command execution is necessary in an emergency situation.
• Execute this function only while the code/data flash memory area sequencer is executing the blank check

command or erase command.
• When this function is executed during execution of the erase command, the target area should be erased

again.
• Do not execute this function while the code/data flash memory area sequencer is executing a command

other than the blank check or erase command or while the extra area sequencer is operating. Otherwise,
the subsequent operation is indeterminate. (If this function is executed during the write command
execution, undefined data are written.)

• This function cannot be used while the command execution state is undetermined.
• The command that has been forcibly stopped by this function may generate an error. In this case, do not

refer to the error flags because the command execution may have not been completed.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 63 of 218
Aug.28.23

3.3.1.14 R_RFD_ForceReset

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_ForceReset (void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Generates an internal reset of the CPU.

Preconditions

Remarks

Details of Specifications:

• The illegal instruction code (0xFF) is intentionally executed to generate an internal reset of the CPU.

Notes:

• As an internal reset is generated in the CPU, the code after this function is not executed.
• For the internal reset by the instruction code 0xFF (illegal instruction), refer to the user's manual of the

target RL78 microcontroller.
• A reset is not generated by this function during emulation by an on-chip debugging emulator.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 64 of 218
Aug.28.23

3.3.1.15 R_RFD_SetBootAreaImmediately

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_SetBootAreaImmediately
(e_rfd_boot_cluster_t i_e_boot_cluster);

Reentrancy Non-reentrant

Parameters
(IN)

e_rfd_boot_cluster_t
i_e_boot_cluster

Boot cluster number

 R_RFD_ENUM_BOOT_CLUSTER_0: 0x01
[Boot cluster 0]
R_RFD_ENUM_BOOT_CLUSTER_1: 0x00
[Boot cluster 1]

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Allocates the boot cluster specified by the parameter to the boot area immediately.

Preconditions Use this function in the code flash memory programming mode or data flash memory
programming mode.
Use this function while command execution is not in progress in the code/data flash
memory area sequencer or extra area sequencer.

Remarks

Details of Specifications:

• The value indicating the boot cluster number specified through the parameter (i_e_boot_cluster) by the
user is set in the TMBTSEL bit (bit 6) of the FSSET register and a value of 1 is set in the TMSPMD bit (bit
7); the specified boot cluster is immediately allocated to the boot area.
 When R_RFD_ENUM_BOOT_CLUSTER_0 is specified by the parameter (i_e_boot_cluster):

The value of "R_RFD_VALUE_U08_FSSET_BOOT_CLUSTER_0 (0x80u) |
(g_u08_fset_cpu_frequency) is set in the FSSET register.

 When R_RFD_ENUM_BOOT_CLUSTER_1 is specified by the parameter (i_e_boot_cluster):
The value of "R_RFD_VALUE_U08_FSSET_BOOT_CLUSTER_1 (0xC0u) |
(g_u08_fset_cpu_frequency) is set in the FSSET register.

Notes:

• If an unallowable value is specified by the parameter (i_e_boot_cluster), boot cluster 0 is allocated to the
boot area.

• The boot cluster that is not selected as the boot area is allocated to the area immediately following the
boot area.

• If a CPU reset is applied, the cluster selected by the boot area switching flag (BTFLG: bit 0) of the FLSEC
register is allocated to the boot area regardless of the setting by this function.

• If this function is executed while command execution is in progress in the code/data flash memory area
sequencer or extra area sequencer, the subsequent operation is indeterminate.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 65 of 218
Aug.28.23

3.3.1.16 R_RFD_GetSecurityAndBootFlags

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_GetSecurityAndBootFlags
(uint16_t __near * onp_u16_security_and_boot_flags);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

uint16_t __near *
onp_u16_security_and_boot_flags

Pointer to the variable for storing the
information on security flags (protection
flags) and boot area switching flag

Return Value N/A

Description Acquires the information on the security flags (protection flags) and boot area
switching flag.

Preconditions Use this function while command execution is not in progress in the code/data flash
memory area sequencer or extra area sequencer.

Remarks 

Details of Specifications:

• The value of the FLSEC register (16 bits) that shows the information on the security flags (protection
flags) and boot area switching flag is read and stored in the variable pointed to by the parameter
(onp_u16_security_and_boot_flags).

Notes:

• Security flag and boot area switching flag information to be acquired (bits 15 to 0 of the FLSEC register):
 Bits 15 to 13: 
 Bit 12 (WRPR): Write-prohibited flag
 Bit 11: 
 Bit 10 (SEPR): Block erase-prohibited flag
 Bit 9 (BTPR): Boot area rewrite-prohibited flag
 Bit 8 (BTFLG): Boot area switching flag
 Bits 7 to 4: 
 Bit 3 (SWPR): flash read protection flag
 Bit 2: 
 Bit 1: 
 Bit 0: 
For the information on the BTFLG bit (bit 8) acquired by this function, note that a value of 0 indicates boot
cluster 1 and a value of 1 indicates boot cluster 0.

• Correct values may not be acquired if this function is executed while command execution is in progress in
the code/data flash memory area sequencer or extra area sequencer.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 66 of 218
Aug.28.23

3.3.1.17 R_RFD_GetFSW

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_GetFSW
(uint16_t __near * onp_u16_start_block_number,
uint16_t __near * onp_u16_end_block_number,
e_rfd_fsw_mode_t __near * onp_e_fsw_mode,
e_rfd_protect_t __near * onp_e_protect_flag);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

uint16_t __near *
onp_u16_start_block_number

Pointer to the variable for storing the start block
number

 uint16_t __near *
onp_u16_end_block_number

Pointer to the variable for storing the end block
number +1

 e_rfd_fsw_mode_t *
onp_e_fsw_mode

Pointer to the variable for storing the information
on the flash shield window mode

 e_rfd_protect_t *
onp_e_protect_flag

Pointer to the variable for storing the information
on the protection flag

Return Value N/A

Description Acquires the range of the flash shield window, the flash shield window mode, and the
protection flag value.

Preconditions Use this function while command execution is not in progress in the code/data flash
memory area sequencer or extra area sequencer.

Remarks 

Details of Specifications:

• The values of the FLFSWS register (16 bits) and FLFSWE register (16 bits) that indicate the start block
and end blocks + 1 of the flash shield window, flash shield window mode, and protection flag are read
and stored in the variables pointed to by the corresponding parameters.
 Values (output) of the variables pointed to by the parameters:

*onp_u16_start_block_number: Start block
(Setting in bits 8 to 0 of FLFSWS. Bits 15 to 9 are masked with 0.)
*onp_u16_end_block_number: End block + 1
(Setting in bits 8 to 0 of FLFSWE. Bits 15 to 9 are masked with 0.)
*onp_e_fsw_mode: Output value indicating the flash shield window mode
(Bit 15 (FSWC) of FLFSWE)
1: R_RFD_ENUM_FSW_MODE_OUTSIDE (Outside shield mode)
0: R_RFD_ENUM_FSW_MODE_INSIDE (Inside shield mode)
*onp_e_protect_flag: Output value indicating the protection flag
(Bit 15 (FSPR) of FLFSWS)
1: R_RFD_ENUM_PROTECT_OFF (Shield window protection is disabled.)
0: R_RFD_ENUM_PROTECT_ON (Shield window protection is enabled.)

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 67 of 218
Aug.28.23

Notes:

• If this function is executed in the initial state of the device, onp_u16_start_block_number = 511 and
onp_u16_end_block_number = 511 are acquired.

• Correct values may not be acquired if this function is executed while command execution is in progress in
the code/data flash memory area sequencer or extra area sequencer.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 68 of 218
Aug.28.23

3.3.1.18 r_rfd_wait_count

Information:

Syntax R_RFD_FAR_FUNC void r_rfd_wait_count(uint8_t i_u08_count);

Reentrancy Non-reentrant

Parameters
(IN)

uint8_t
i_u08_count

Wait time (Time count in units of 1 μs: A value
from 1 to 255 can be specified.)

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Executes a software loop to wait for the time specified by the parameter (time count in
units of 1 μs).

Preconditions 

Remarks 

Details of Specifications:

• A value of 1 is added to the g_u08_cpu_frequency value (CPU operating frequency – 1) to obtain the
CPU operating frequency.

• The number of software loop repetitions for the specified wait time (time count in units of 1 μs) is
calculated and the software loops are executed.
Number of software loop repetitions for the specified wait time (time count in units of 1 μs)

= ((frequency [MHz]]) × (specified count [μs]) / (loop execution cycles: 8 [cycles])) + 1
Example: Frequency value = 32 [MHz] and time count = 10 [μs]

Number of software loop repetitions for the wait time (time count in units of 1 μs)
= (32 [MHz] × 10 [μs] / 8 [cycles]) + 1
(1 is added so that the result after rounding does not become smaller than the wait time.)
= 41 [repetitions]
Execution time of this function = 1/32 [MHz] × 8 [cycles] × 41 [repetitions] = 10.25 [μs]

Note:

• The range of wait time is from 1 μs to 255 μs, which does not include the overhead of the processing
other than the loop processing.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 69 of 218
Aug.28.23

3.3.2 Specifications of API Functions for Code Flash Memory Control

This section describes the API functions for code flash memory control in RFD RL78 Type 01.

3.3.2.1 R_RFD_EraseCodeFlashReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_EraseCodeFlashReq (uint16_t
i_u16_block_number);

Reentrancy Non-reentrant

Parameters
(IN)

uint16_t
i_u16_block_number

Target block number for erasure [0 to 511]
Example: For RL78/G23, 0 to 383 (768 Kbytes max.)

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the code/data flash memory area sequencer and begins the erasure of the
code flash memory (one block).

Preconditions Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash memory area sequencer or extra
area sequencer.

Remarks Execute the R_RFD_CheckCFDFSeqEndStep1() function after this function.

Details of Specifications:

• The code/data flash memory area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_USER_AREA: 0x00 (EXA (bit 0) = 0)

• The code/data flash memory area sequencer is activated and the address of one block (2 Kbytes) to be
erased in the code flash memory is set in the sequencer.
 The start address and end address of the target block (2 Kbytes) in the code flash memory are

calculated from the block number for erasure specified by the parameter (i_u16_block_number) and
set in the FLAPL and FLAPH registers and the FLSEDL and FLSEDH registers, respectively.

• R_RFD_VALUE_U08_FSSQ_ERASE = 0x84 is set in the FSSQ register to start the erasure.
(SQST (bit 7) = 1, SQMD (bits 2 to 0) = 4 (0b100), and the other bits are set to 0.)

Notes:

• The lower 9 bits of the 16-bit parameter (i_u16_block_number) are used; the upper 7 bits are not used.
The target block number must not exceed the number of blocks in the code flash memory implemented in
the device. If the specified number is outside the allowable range, the subsequent operation is
indeterminate.

• If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

• If this function is executed while command execution is in progress in the code/data flash memory area
sequencer or extra area sequencer, the subsequent operation is indeterminate.

• The size of the code flash memory is different for each device. About the maximum block number which
can be used, refer to the user's manual of the target RL78 microcontroller.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 70 of 218
Aug.28.23

3.3.2.2 R_RFD_WriteCodeFlashReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_WriteCodeFlashReq
(uint32_t i_u32_start_addr,
uint8_t __near * inp_u08_write_data);

Reentrancy Non-reentrant

Parameters
(IN)

uint32_t
i_u32_start_addr

Target start address for programming (4-byte
boundary)
[Address in the code flash area]

 uint8_t __near *
inp_u08_write_data

Pointer to the variable that stores write data
[Size of the write data pointed to is 4 bytes]

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the code/data flash memory area sequencer and begins the programming of
the code flash memory (4 bytes).

Preconditions Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash memory area sequencer or extra
area sequencer.

Remarks Execute the R_RFD_CheckCFDFSeqEndStep1() function after this function.

Details of Specifications:

• The code/data flash memory area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_USER_AREA: 0x00 (EXA (bit 0) = 0)

• The code/data flash memory area sequencer is activated, and the programming start address in the code
flash memory and the write data (4 bytes) are set in the sequencer.
 The target start address in the code flash memory specified by the parameter i_u32_start_addr is set

in the FLAPL and FLAPH registers.
 The 4-byte value in the variable (data to be written to the code flash memory) pointed to by the

parameter inp_u08_write_data is set in the FLWL and FLWH registers.
• R_RFD_VALUE_U08_FSSQ_WRITE = 0x81 is set in the FSSQ register to start programming.

(SQST (bit 7) = 1, SQMD (bits 2 to 0) = 1 (0b001), and the other bits are set to 0.)

Notes:

• The lower 24 bits of the 32-bit parameter i_u32_start_addr are used with the upper 8 bits masked with
0x00. The start address must be a 4-byte boundary address within the space of the code flash memory
implemented in the device. If the specified address is outside the allowable space or is not a 4-byte
boundary address, the subsequent operation is indeterminate.

• The parameter inp_u08_write_data is a pointer to the 8-bit input data. To repeat the function processing
with this pointer updated, note that the pointer needs to be updated in units of 4 bytes (in units of
programming of the code flash memory).

• If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

• If this function is executed while command execution is in progress in the code/data flash memory area
sequencer or extra area sequencer, the subsequent operation is indeterminate.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 71 of 218
Aug.28.23

3.3.2.3 R_RFD_BlankCheckCodeFlashReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_BlankCheckCodeFlashReq
(uint16_t i_u16_block_number);

Reentrancy Non-reentrant

Parameters
(IN)

uint16_t
i_u16_block_number

Target block number for blank check [0 to 511]
Example: For RL78/G23, 0 to 383 (768 Kbytes max.)

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the code/data flash memory area sequencer and begins the blank check of
the code flash memory (one block).

Preconditions Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash memory area sequencer or extra
area sequencer.

Remarks Execute the R_RFD_CheckCFDFSeqEndStep1() function after this function.

Details of Specifications:

• The code/data flash memory area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_USER_AREA: 0x00 (EXA (bit 0) = 0)

• The code/data flash memory area sequencer is activated and the address of one block (2 Kbytes) to be
checked for blanks in the code flash memory is set in the sequencer.
 The start address and end address of the target block (2048 bytes) in the code flash memory are

calculated from the block number for blank check specified by the parameter (i_u16_block_number)
and set in the FLAPL and FLAPH registers and the FLSEDL and FLSEDH registers, respectively.

• R_RFD_VALUE_U08_FSSQ_BLANKCHECK_CF = 0x83 is set in the FSSQ register to start the blank
check. (SQST (bit 7) = 1, MDCH (bit 3) = 0, SQMD (bits 2 to 0) = 3 (0b011), and the other bits are set to
0.)

Notes:

• The lower 9 bits of the 16-bit parameter (i_u16_block_number) are used; the upper 7 bits are not used.
The target block number must not exceed the number of blocks in the code flash memory implemented in
the device. If the specified number is outside the allowable range, the subsequent operation is
indeterminate.

• If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

• If this function is executed while command execution is in progress in the code/data flash memory area
sequencer or extra area sequencer, the subsequent operation is indeterminate.

• The size of the code flash memory is different for each device. About the maximum block number which
can be used, refer to the user's manual of the target RL78 microcontroller.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 72 of 218
Aug.28.23

3.3.3 Specifications of API Functions for Data Flash Memory Control

This section describes the API functions for data flash memory control in RFD RL78 Type 01.

3.3.3.1 R_RFD_EraseDataFlashReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_EraseDataFlashReq (uint8_t i_u08_block_number);

Reentrancy Non-reentrant

Parameters
(IN)

uint8_t
i_u08_block_number

Target block number for erasure [0 to 63]
 Example: For RL78/G23, 0 to 31 (8 Kbytes max.)

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the code/data flash memory area sequencer and begins the erasure of the
data flash memory (one block).

Preconditions Use this function while access to the data flash memory is enabled (DFLEN = 1).
Use this function in the data flash memory programming mode while command
execution is not in progress in the code/data flash memory area sequencer or extra
area sequencer.

Remarks Execute the R_RFD_CheckCFDFSeqEndStep1() function after this function.

Details of Specifications:

• The code/data flash memory area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_USER_AREA: 0x00 (EXA (bit 0) = 0)

• The code/data flash memory area sequencer is activated and the address of one block (256 bytes) to be
erased in the data flash memory is set in the sequencer.
 The start address and end address of the target block (256 bytes) in the data flash memory are

calculated from the block number for erasure specified by the parameter (i_u08_block_number) and
set in the FLAPL and FLAPH registers and the FLSEDL and FLSEDH registers, respectively.

• R_RFD_VALUE_U08_FSSQ_ERASE = 0x84 is set in the FSSQ register to start the erasure.
(SQST (bit 7) = 1, SQMD (bits 2 to 0) = 4 (0b100), and the other bits are set to 0.)

Notes:

• The target block number must not exceed the number of blocks in the data flash memory implemented in
the device. If the specified number is outside the allowable range, the subsequent operation is
indeterminate.

• If this function is executed while access to the data flash memory is disabled, the subsequent operation is
indeterminate.

• If this function is executed while the sequencer is not in the data flash memory programming mode, the
subsequent operation is indeterminate.

• If this function is executed while command execution is in progress in the code/data flash memory area
sequencer or extra area sequencer, the subsequent operation is indeterminate.

• The size of the data flash memory is different for each device. About the maximum block number which
can be used, refer to the user's manual of the target RL78 microcontroller.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 73 of 218
Aug.28.23

3.3.3.2 R_RFD_WriteDataFlashReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_WriteDataFlashReq
(uint32_t i_u32_start_addr,
uint8_t __near * inp_u08_write_data);

Reentrancy Non-reentrant

Parameters
(IN)

uint32_t
i_u32_start_addr

Target start address for programming
[Address in the data flash area]

 uint8_t __near *
inp_u08_write_data

Pointer to the variable that stores write data
[Size of the write data pointed to is 1 byte]

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the code/data flash memory area sequencer and begins the programming of
the data flash memory (1 byte).

Preconditions Use this function while access to the data flash memory is enabled (DFLEN = 1).
Use this function in the data flash memory programming mode while command
execution is not in progress in the code/data flash memory area sequencer or extra
area sequencer.

Remarks Execute the R_RFD_CheckCFDFSeqEndStep1() function after this function.

Details of Specifications:

• The code/data flash memory area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_USER_AREA: 0x00 (EXA (bit 0) = 0)

• The code/data flash memory area sequencer is activated, and the programming start address in the data
flash memory and the write data (1 byte) are set in the sequencer.
 The target start address in the data flash memory specified by the parameter i_u32_start_addr is set

in the FLAPL and FLAPH registers.
 The 1-byte value in the variable (data to be written to the data flash memory) pointed to by the

parameter inp_u08_write_data is set in the lower 8 bits of the FLWL register.
• R_RFD_VALUE_U08_FSSQ_WRITE = 0x81 is set in the FSSQ register to start programming.

(SQST (bit 7) = 1, SQMD (bits 2 to 0) = 1 (0b001), and the other bits are set to 0.)

Notes:

• The lower 24 bits of the 32-bit parameter i_u32_start_addr are used with the upper 8 bits masked with
0x00. The start address must be within the space of the data flash memory implemented in the device. If
the specified address is outside the allowable space, the subsequent operation is indeterminate.

• If this function is executed while access to the data flash memory is disabled, the subsequent operation is
indeterminate.

• If this function is executed while the sequencer is not in the data flash memory programming mode, the
subsequent operation is indeterminate.

• If this function is executed while command execution is in progress in the code/data flash memory area
sequencer or extra area sequencer, the subsequent operation is indeterminate.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 74 of 218
Aug.28.23

3.3.3.3 R_RFD_BlankCheckDataFlashReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_BlankCheckDataFlashReq
(uint8_t i_u08_block_number);

Reentrancy Non-reentrant

Parameters
(IN)

uint8_t
i_u08_block_number

Target block number for blank check [0 to 63]
 Example: For RL78/G23, 0 to 31 (8 Kbytes max.)

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the code/data flash memory area sequencer and begins the blank check of
the data flash memory (one block).

Preconditions Use this function while access to the data flash memory is enabled (DFLEN = 1).
Use this function in the data flash memory programming mode while command
execution is not in progress in the code/data flash memory area sequencer or extra
area sequencer.

Remarks Execute the R_RFD_CheckCFDFSeqEndStep1() function after this function.

Details of Specifications:

• The code/data flash memory area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_USER_AREA: 0x00 (EXA (bit 0) = 0)

• The code/data flash memory area sequencer is activated and the address of one block (256 bytes) to be
checked for blanks in the data flash memory is set in the sequencer.
 The start address and end address of the target block (256 bytes) in the data flash memory are

calculated from the block number for blank check specified by the parameter (i_u08_block_number)
and set in the FLAPL and FLAPH registers and the FLSEDL and FLSEDH registers, respectively.

• R_RFD_VALUE_U08_FSSQ_BLANKCHECK_DF = 0x8B is set in the FSSQ register to start the blank
check. (SQST (bit 7) = 1, MDCH (bit 3) = 1, SQMD (bits 2 to 0) = 3 (0b011), and the other bits are set to
0.)

Notes:

• The target block number must not exceed the number of blocks in the data flash memory implemented in
the device. If the specified number is outside the allowable range, the subsequent operation is
indeterminate.

• If this function is executed while access to the data flash memory is disabled, the subsequent operation is
indeterminate.

• If this function is executed while the sequencer is not in the data flash memory programming mode, the
subsequent operation is indeterminate.

• If this function is executed while command execution is in progress in the code/data flash memory area
sequencer or extra area sequencer, the subsequent operation is indeterminate.

• The size of the data flash memory is different for each device. About the maximum block number which
can be used, refer to the user's manual of the target RL78 microcontroller.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 75 of 218
Aug.28.23

3.3.4 Specifications of API Functions for Extra Area Control

This section describes the API functions for extra area control in RFD RL78 Type 01.

3.3.4.1 R_RFD_SetExtraEraseProtectReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_SetExtraEraseProtectReq (void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the extra area sequencer and begins the setting of the block erase-
prohibited flag.

Preconditions Use this function while access to the data flash memory is enabled (DFLEN = 1).
Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash memory area sequencer or extra
area sequencer.

Remarks Execute the R_RFD_CheckExtraSeqEndStep1() function after this function.

Details of Specifications:

• The extra area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_EXTRA_AREA: 0x01 (EXA (bit 0) = 1)

• The extra area sequencer is activated and the setting of the block erase-prohibited flag is started.
 The FLSEC register is read and this value is set in the FLWL register with the current value of the

BTFLG bit (bit 8) retained and the SEPR bit (bit 10) cleared to 0 (block erasure is disabled). 0xFFFF
is set in the FLWH registers.

• R_RFD_VALUE_U08_FSSE_SECURITY_FLAG = 0x87 is set in the FSSE register to start the setting of
the flag.
(ESQST (bit 7) = 1, ESQMD (bits 2 to 0) = 7 (0b111), and the other bits are set to 0.)

Notes:

• If this function is executed while access to the data flash memory is disabled, the subsequent operation is
indeterminate.

• If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

• If this function is executed while command execution is in progress in the code/data flash memory area
sequencer or extra area sequencer, the subsequent operation is indeterminate.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 76 of 218
Aug.28.23

3.3.4.2 R_RFD_SetExtraWriteProtectReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_SetExtraWriteProtectReq (void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the extra area sequencer and begins the setting of the write-prohibited flag.

Preconditions Use this function while access to the data flash memory is enabled (DFLEN = 1).
Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash memory area sequencer or extra
area sequencer.

Remarks Execute the R_RFD_CheckExtraSeqEndStep1() function after this function.

Details of Specifications:

• The extra area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_EXTRA_AREA: 0x01 (EXA (bit 0) = 1)

• The extra area sequencer is activated and the setting of the write-prohibited flag is started.
 The FLSEC register is read and this value is set in the FLWL register with the current value of the

BTFLG bit (bit 8) retained and the WRPR bit (bit 12) cleared to 0 (programming is disabled). 0xFFFF
is set in the FLWH registers.

• R_RFD_VALUE_U08_FSSE_SECURITY_FLAG = 0x87 is set in the FSSE register to start the setting of
the flag.
(ESQST (bit 7) = 1, ESQMD (bits 2 to 0) = 7 (0b111), and the other bits are set to 0.)

Notes:

• If this function is executed while access to the data flash memory is disabled, the subsequent operation is
indeterminate.

• If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

• If this function is executed while command execution is in progress in the code/data flash memory area
sequencer or extra area sequencer, the subsequent operation is indeterminate.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 77 of 218
Aug.28.23

3.3.4.3 R_RFD_SetExtraBootAreaProtectReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_SetExtraBootAreaProtectReq (void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the extra area sequencer and begins the setting of the boot area rewrite-
prohibited flag.

Preconditions Use this function while access to the data flash memory is enabled (DFLEN = 1).
Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash memory area sequencer or extra
area sequencer.

Remarks Execute the R_RFD_CheckExtraSeqEndStep1() function after this function.

Details of Specifications:

• The extra area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_EXTRA_AREA: 0x01 (EXA (bit 0) = 1)

• The extra area sequencer is activated and the setting of the boot area rewrite-prohibited flag is started.
 The FLSEC register is read and this value is set in the FLWL register with the current value of the

BTFLG bit (bit 8) retained and the BTPR bit (bit 9) cleared to 0 (programming is disabled). 0xFFFF is
set in the FLWH registers.

• R_RFD_VALUE_U08_FSSE_SECURITY_FLAG = 0x87 is set in the FSSE register to start the setting of
the flag.
(ESQST (bit 7) = 1, ESQMD (bits 2 to 0) = 7 (0b111), and the other bits are set to 0.)

Notes:

• If this function is executed while access to the data flash memory is disabled, the subsequent operation is
indeterminate.

• If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

• If this function is executed while command execution is in progress in the code/data flash memory area
sequencer or extra area sequencer, the subsequent operation is indeterminate.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 78 of 218
Aug.28.23

3.3.4.4 R_RFD_SetExtraBootAreaReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_SetExtraBootAreaReq
(e_rfd_boot_cluster_t i_e_boot_cluster);

Reentrancy Non-reentrant

Parameters e_rfd_boot_cluster_t Boot cluster number

(IN) i_e_boot_cluster R_RFD_ENUM_BOOT_CLUSTER_0: 0x01
[Boot cluster 0]
R_RFD_ENUM_BOOT_CLUSTER_1: 0x00
[Boot cluster 1]

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the extra area sequencer and begins the setting of the boot area switching
flag.

Preconditions Use this function while access to the data flash memory is enabled (DFLEN = 1).
Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash memory area sequencer or extra
area sequencer.

Remarks Execute the R_RFD_CheckExtraSeqEndStep1() function after this function.

Details of Specifications:

• This function specifies that the boot swap is executed only after a reset instead of immediately after the
setting of the BTFLG.
 The FSSET and FLSEC registers are read.
 Only when the TMSPMD bit (bit 7) of the FSSET register is 0, the TMSPMD bit is set to 1 and the

boot cluster selected by the BTFLG bit (bit 8) of the FLSEC register is reflected in the TMBTSEL bit
(bit 6) of the FSSET register.

TMSPMD = 0: Boot swap is executed according to the information in the extra area (BTFLG).
 1: Boot swap is executed according to the TMBTSEL setting.
BTFLG = 0: Boot cluster 1 is used as the boot area.
 1: Boot cluster 0 is used as the boot area.
TMBTSEL = 0: Boot cluster 0 is used as the boot area.
 1: Boot cluster 1 is used as the boot area.

• The extra area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_EXTRA_AREA: 0x01 (EXA (bit 0) = 1)

• The extra area sequencer is activated and the setting of the boot area switching flag is started.
The value shown below is set in the FLWL register, in which the boot cluster selected by the parameter
(i_e_boot_cluster) is set in the bit that corresponds to the BTFLG bit (bit 8) of the FLSEC register, and
R_RFD_VALUE_U08_MASK1_16BIT (0xFFFF) is set in the FLWH register.
 When R_RFD_ENUM_BOOT_CLUSTER_1 is specified:

R_RFD_VALUE_U16_MASK0_BOOT_FLAG (0xFEFF) is set in the FLWL register.
 When R_RFD_ENUM_BOOT_CLUSTER_0 is specified:

R_RFD_VALUE_U08_MASK1_16BIT (0xFFFF) is set in the FLWL register.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 79 of 218
Aug.28.23

• R_RFD_VALUE_U08_FSSE_SECURITY_FLAG = 0x87 is set in the FSSE register to start the setting of
the flag.
(ESQST (bit 7) = 1, ESQMD (bits 2 to 0) = 7 (0b111), and the other bits are set to 0.)

Notes:

• The parameter (i_e_boot_cluster) must be a correct value (enumerated type: e_rfd_boot_cluster_t). If the
value specified for this parameter is neither R_RFD_ENUM_BOOT_CLUSTER_0 nor
R_RFD_ENUM_BOOT_CLUSTER_1, R_RFD_ENUM_BOOT_CLUSTER_0 is used.
Boot cluster that is selected as the boot area:

RL78/G23,G24 is allocated to addresses 00000H to 03FFFH (boot area).
RL78/G22 is allocated to addresses 00000H to 01FFFH (boot area).

Boot cluster that is not selected as the boot area:
RL78/G23,G24 is allocated to addresses 04000H to 07FFFH (the area immediately following the boot
area).
RL78/G22 is allocated to addresses 02000H to 03FFFH (the area immediately following the boot area).

• If this function is executed while access to the data flash memory is disabled, the subsequent operation is
indeterminate.

• If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

• If this function is executed while command execution is in progress in the code/data flash memory area
sequencer or extra area sequencer, the subsequent operation is indeterminate.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 80 of 218
Aug.28.23

3.3.4.5 R_RFD_SetExtraFSWProtectReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_SetExtraFSWProtectReq (void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the extra area sequencer and begins the setting of the flag for protection
against flash shield window modification.

Preconditions Use this function while access to the data flash memory is enabled (DFLEN = 1).
Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash memory area sequencer or extra
area sequencer.

Remarks Execute the R_RFD_CheckExtraSeqEndStep1() function after this function.

Details of Specifications:

• The extra area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_EXTRA_AREA: 0x01 (EXA (bit 0) = 1)

• The extra area sequencer is activated and the setting of the flag for protection against flash shield
window modification.
 The FLFSWS register is read and this value is set in the FLWL register with the reserved bits (bits 14

to 9) set to 1 and the FSPR bit (bit 15) set to 0 (modification is disabled).
 The FLFSWE register is read and this value is set in the FLWH register with the reserved bits (bits 14

to 9) set to 1.
• R_RFD_VALUE_U08_FSSE_FSW = 0x81 is set in the FSSE register to start the setting of the flag.

(ESQST (bit 7) = 1, ESQMD (bits 2 to 0) = 1 (0b001), and the other bits are set to 0.)

Notes:

• If this function is executed while access to the data flash memory is disabled, the subsequent operation is
indeterminate.

• If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

• If this function is executed while command execution is in progress in the code/data flash memory area
sequencer or extra area sequencer, the subsequent operation is indeterminate.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 81 of 218
Aug.28.23

3.3.4.6 R_RFD_SetExtraFSWReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_SetExtraFSWReq
(uint16_t i_u16_start_block_number,
uint16_t i_u16_end_block_number,
e_rfd_fsw_mode_t i_e_fsw_mode);

Reentrancy Non-reentrant

Parameters
(IN)

uint16_t
i_u16_start_block_number

Start block number
Example: For RL78/G23, 0 to 383 (768 Kbytes
max.)

 uint16_t
i_u16_end_block_number

End block number + 1
Example: For RL78/G23, 1 to 384 (768 Kbytes
max.)

 e_rfd_fsw_mode_t Flash shield window mode

 i_e_fsw_mode R_RFD_ENUM_FSW_MODE_INSIDE: 0x00
 [Inside shield mode]
R_RFD_ENUM_FSW_MODE_OUTSIDE: 0x01
 [Outside shield mode]

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the extra area sequencer and begins the setting of the range and mode of
the flash shield window specified by the parameters.

Preconditions Use this function while access to the data flash memory is enabled (DFLEN = 1).
Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash memory area sequencer or extra
area sequencer.

Remarks Execute the R_RFD_CheckExtraSeqEndStep1() function after this function.

Details of Specifications:

• The extra area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_EXTRA_AREA: 0x01 (EXA (bit 0) = 1)

• The extra area sequencer is activated, and the setting of the start block number and the end block
number + 1 of the flash shield window and the flash shield window mode is started.
 The block number specified by the parameter i_u16_start_block_number, which corresponds to the

FSWS (flash shield window start block address) register, is set in the FLWL register. Bits 15 to 9 (the
bits other than the block address bits) are set to 1.

 The block number specified by the parameter i_u16_end_block_number, which corresponds to the
FSWE (flash shield window end block address) register, is set in the FLWH register. Bits 15 to 9 (the
bits other than the block address bits) are set to 1. Only when R_RFD_ENUM_FSW_MODE_INSIDE
(inside shield mode: 0x00) is specified by the parameter i_e_fsw_mode, bit 15, which corresponds to
the FSWC bit, is set to 0.

• R_RFD_VALUE_U08_FSSE_FSW = 0x81 is set in the FSSE register to start the setting.
(ESQST (bit 7) = 1, ESQMD (bits 2 to 0) = 1 (0b001), and the other bits are set to 0.)

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 82 of 218
Aug.28.23

Notes:

• Bits 8 to 0 of a 16-bit parameter are used as the block number to be set (the maximum number is 511);
bits 15 to 9 are not used.

• Specify the parameters so that the condition i_u16_start_block_number < i_u16_end_block_number is
satisfied.

• For the parameter i_u16_end_block_number, specify the end block number + 1 of the desired window
range.
Examples:
 To shield four blocks from block 12 to block 15 (inside shield mode):

i_u16_start_block_number = 12, i_u16_end_block_number = 16, and
i_e_fsw_mode = R_RFD_ENUM_FSW_MODE_INSIDE (0x00)

 To shield the areas outside the four blocks from block 12 to block 15 (outside shield mode):
i_u16_start_block_number = 12, i_u16_end_block_number = 16, and
i_e_fsw_mode = R_RFD_ENUM_FSW_MODE_OUTSIDE (0x01)

• If the value specified for the parameter i_e_fsw_mode is neither R_RFD_ENUM_FSW_MODE_INSIDE
nor R_RFD_ENUM_FSW_MODE_OUTSIDE, the outside shield mode
(R_RFD_ENUM_FSW_MODE_OUTSIDE) is used.

• Execute this function only while modification of the flash shield window is enabled by the protection flag
(FSPR = 1). If this function is executed while modification is disabled by the flag (FSPR = 0), an extra
area sequencer error (bit 0 of FSASTL) will occur and the flash shield window settings will not be
changed to the values specified by the parameters.

• If this function is executed while access to the data flash memory is disabled, the subsequent operation is
indeterminate.

• If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

• If this function is executed while command execution is in progress in the code/data flash memory area
sequencer or extra area sequencer, the subsequent operation is indeterminate.

• The size of the code flash memory is different for each device. About the maximum block number which
can be used, refer to the user's manual of the target RL78 microcontroller.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 83 of 218
Aug.28.23

3.3.4.7 R_RFD_SetExtraSoftwareReadProtectAreaReq

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_SetExtraSoftwareReadProtectAreaReq
(uint16_t i_u16_start_block_number,
uint16_t i_u16_end_block_number,
e_rfd_protect_t i_e_protect_flag);

Reentrancy Non-reentrant

Parameters
(IN)

uint16_t
i_u16_start_block_number

Start block number [0 to 511]
Example: For RL78/G23, 0 to 383 (768 Kbytes
max.)

 uint16_t
i_u16_end_block_number

End block number [0 to 511]
Example: For RL78/G23, 0 to 383 (768 Kbytes
max.)

 e_rfd_protect_t Protection flag enable or disable

 i_e_protect_flag R_RFD_ENUM_PROTECT_OFF: 0x01
[Modification is enabled.]
R_RFD_ENUM_PROTECT_ON: 0x00
[Modification is disabled.]

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Activates the extra area sequencer and begins the setting of the flash read protection.

Preconditions Use this function while access to the data flash memory is enabled (DFLEN = 1).
Use this function in the code flash memory programming mode while command
execution is not in progress in the code/data flash memory area sequencer or extra
area sequencer.

Remarks Execute the R_RFD_CheckExtraSeqEndStep1() function after this function.

Details of Specifications:

• The extra area is selected as the target area of reprogramming.
FLARS register = R_RFD_VALUE_U08_FLARS_EXTRA_AREA: 0x01 (EXA (bit 0) = 1)

• The extra area sequencer is activated and the setting of the start and end block numbers of the area to
be protected and the enabled or disabled protection flag value is started.
 The block number specified by the parameter i_u16_start_block_number, which corresponds to the

LOWAddr (start block address for the flash read protection) register, is set in the FLWL register. Bits
15 to 9 (the bits other than the block address bits) are set to 1.

 The block number specified by the parameter i_u16_end_block_number, which corresponds to the
UPAddr (end block address for the flash read protection) register, is set in the FLWH register. Bits 15
to 9 (the bits other than the block address bits) are set to 1. Only when
R_RFD_ENUM_PROTECT_ON (modification is disabled: 0x00) is specified by the parameter
i_e_protect_flag, bit 15, which corresponds to the SWPR bit, is set to 0.

• R_RFD_VALUE_U08_FSSE_SOFTWARE_READ = 0x86 is set in the FSSE register to start the setting.
(ESQST (bit 7) = 1, ESQMD (bits 2 to 0) = 6 (0b110), and the other bits are set to 0.)

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 84 of 218
Aug.28.23

Notes:

• Bits 8 to 0 of a 16-bit parameter are used as the block number to be set (the maximum number is 511);
bits 15 to 9 are not used.

• Specify the parameters so that the condition i_u16_start_block_number ≤ i_u16_end_block_number is
satisfied.

• For the parameter i_u16_end_block_number (end block number), specify the end block number of the
flash read protection. (Unlike the flash shield window, this setting is not the end block number + 1.)
Example:
 To specify four blocks from block 12 to block 15:

i_u16_start_block_number = 12 and i_u16_end_block_number = 15
• If the value specified for the parameter i_e_protect_flag is neither R_RFD_ENUM_PROTECT_OFF nor

R_RFD_ENUM_PROTECT_ON, R_RFD_ENUM_PROTECT_OFF (modification is enabled) is used.
• Execute this function only while the reading by the flash protection flag is enabled (SWPR = 1). If this

function is executed while the reading by the flash protection flag is disabled (SWPR = 0), an extra area
sequencer error (bit 5 of FSASTL) will occur, and the protection settings will not be changed to the values
specified by the parameters.

• If this function is executed while access to the data flash memory is disabled, the subsequent operation is
indeterminate.

• If this function is executed while the sequencer is not in the code flash memory programming mode, the
subsequent operation is indeterminate.

• If this function is executed while command execution is in progress in the code/data flash memory area
sequencer or extra area sequencer, the subsequent operation is indeterminate.

• The size of the code flash memory is different for each device. About the maximum block number which
can be used, refer to the user's manual of the target RL78 microcontroller.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 85 of 218
Aug.28.23

3.3.5 Specifications of Hook Functions

This section describes the hook functions of RFD RL78 Type 01.

3.3.5.1 R_RFD_HOOK_EnterCriticalSection

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_HOOK_EnterCriticalSection (void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Executes the instruction for disabling interrupts.

Preconditions Execute this function before the processing that should be executed with interrupts
disabled.

Remarks 

Details of Specifications:

• The interrupt disabled or enabled state is acquired and saved in the variable sg_u08_psw_ie_state that is
prepared to store the value of the interrupt enable flag (IE) of the PSW.

• The macro instruction for disabling interrupts (R_RFD_DISABLE_INTERRUPT) is executed.

Note:

• Execute this function before the processing that should be executed with interrupts disabled (critical
section), and execute the R_RFD_HOOK_ExitCriticalSection function after the critical section ends.

RFD RL78 Type 01 3. API Functions of RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 86 of 218
Aug.28.23

3.3.5.2 R_RFD_HOOK_ExitCriticalSection

Information:

Syntax R_RFD_FAR_FUNC void R_RFD_HOOK_ExitCriticalSection_ (void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Executes the instruction for enabling interrupts.

Preconditions Execute this function to enable interrupts after the processing executed with interrupts
disabled.

Remarks 

Details of Specifications:

• According to the value of the variable sg_u08_psw_ie_state, which saves the interrupt enable flag (IE) of
the PSW, the macro instruction for enabling interrupts is executed.
Value of sg_u08_psw_ie_state:
 0x00 (bit 7 = 0: interrupts are disabled): Nothing is done.
 0x80 (bit 7 = 1: interrupts are enabled): The macro instruction for enabling interrupts

(R_RFD_ENABLE_INTERRUPT) is executed and the interrupt enabled state (EI) is restored.

Note:

• Execute this function after the R_RFD_HOOK_EnterCriticalSection is executed and the processing
executed with interrupts disabled (critical section) ends.

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 87 of 218
Aug.28.23

4. Flash Memory Sequencer Operation

4.1 Setting of Flash Memory Control Mode

The flash memory control mode can be changed to the code or data flash memory reprogrammable mode by
executing the specific sequence of the flash memory sequencer.

 Code flash memory (and extra area) reprogrammable state:
Code flash memory programming mode

 Data flash memory reprogrammable state:
Data flash memory programming mode

 Flash memory (and extra area) unprogrammable state:
Non-programmable mode

Target function of this operation: R_RFD_SetFlashMemoryMode

Note: To control the data flash area, the DFLEN bit (bit 0) of the data flash control register (DFLCTL)
must be set to 1 (access to the data flash memory must be enabled) in advance.

4.1.1 Procedure for Executing Specific Sequence

The flash programming mode control register (FLPMC) can only be written to by the following specific
sequence and the flash memory sequencer can be placed in a desired mode.

Procedure Specific Sequence (Program Processing)
Step 1 Write a specific value (= 0xA5) to the PFCMD register.

Step 2 Write the value for the desired mode setting to the FLPMC register.

Step 3 Write the inverted value of the desired mode setting to the FLPMC
register.

Step 4 Write the value for the desired mode setting to the FLPMC register.

• The specific sequence can only be executed while the FLRST bit (bit 0) of the FLRST register is 0 and
the flash memory sequencer is stopped.

• If writing to other memory spaces or registers is attempted between steps 1 to 4 in the specific sequence,
the FLPMC register is not written to. In this case, a protection error occurs and the status flag (FPRERR
(bit 0)) of the flash status register (PFS) is set to 1. The FPRERR bit is cleared when a reset is applied or
the next time the specific sequence is started.

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 88 of 218
Aug.28.23

PFCMD register (After reset: Undefined value):

7 6 5 4 3 2 1 0

REG7 REG6 REG5 REG4 REG3 REG2 REG1 REG0

W W W W W W W W

 The flash protect command register (PFCMD) is a write-only register and an undefined value is
always read from this register.

FLPMC register (After reset: 0x08):

7 6 5 4 3 2 1 0

0 0 0 EEEMD FWEDIS 0 FLSPM 0

R/W R/W R R/W R/W R R/W R

PFS register (After reset: 0x00):

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 FPRERR

R R R R R R R R

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 89 of 218
Aug.28.23

4.1.2 Procedure for Transition to the Code Flash Memory Programming Mode

4.1.3 Procedure for Transition to the Data Flash Memory Programming Mode

4.1.4 Procedure for Transition to the Non-programmable Mode

Data can be read from the target flash memory after the wait time (tMS) has passed since the end of the
procedure for a transition from the code flash memory programming mode or data flash memory
programming mode to the non-programmable mode (tMS = 10 μs (mode setup time)).

(1) When the interrupt vector addresses have not been changed to a RAM address
The following shows the transition procedure when the R_RFD_ChangeInterruptVector function has not
been executed or when the R_RFD_RestoreInterruptVector function has been executed to change the
interrupt branch destinations to the addresses indicated by the interrupt vector table in ROM (initial state).

Step 5: After the wait time (tMS) has passed, data can be read from the target flash memory.

(2) When the interrupt vector addresses have been changed to a RAM address
The following shows the transition procedure when the R_RFD_ChangeInterruptVector() has been
executed to change the interrupt branch destinations to a specified address in RAM.

Step 5: After the wait time (tMS) has passed, data can be read from the target flash memory.

Step 1: PFCMD register = 0xA5
Step 2: FLPMC register = 0x02
Step 3: FLPMC register = 0xFD
Step 4: FLPMC register = 0x02

Step 1: PFCMD register = 0xA5
Step 2: FLPMC register = 0x10
Step 3: FLPMC register = 0xEF
Step 4: FLPMC register = 0x10

Step 1: PFCMD register = 0xA5
Step 2: FLPMC register = 0x08
Step 3: FLPMC register = 0xF7
Step 4: FLPMC register = 0x08

Step 1: PFCMD register = 0xA5
Step 2: FLPMC register = 0x00
Step 3: FLPMC register = 0xFF
Step 4: FLPMC register = 0x00

• Steps 2 and 4
FLPMC register setting (0x02)
EEEMD (bit 4) = 0, FWEDIS (bit 3) = 0,
FLSPM (bit 1) = 1

• Step 3
Inverted value or FLPMC register setting (0xFD)

• Steps 2 and 4
FLPMC register setting (0x10)
EEEMD (bit 4) = 1, FWEDIS (bit 3) = 0,
FLSPM (bit 1) = 0

• Step 3
Inverted value or FLPMC register setting (0xEF)

• Steps 2 and 4
FLPMC register setting (0x08)
EEEMD (bit 4) = 0, FWEDIS (bit 3) = 1,
FLSPM (bit 1) = 0

• Step 3
Inverted value or FLPMC register setting (0xF7)

• Steps 2 and 4
FLPMC register setting (0x00)
EEEMD (bit 4) = 0, FWEDIS (bit 3) = 0,
FLSPM (bit 1) = 0

• Step 3
Inverted value or FLPMC register setting (0xFF)

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 90 of 218
Aug.28.23

4.2 Clearing the Registers for Flash Memory Sequencer Control

The registers shown below can be cleared by setting the FLRST bit of the flash registers initialization register
(FLRST) to 1.

Target registers to be initialized: FLAPH, FLAPL, FLSEDH, FLSEDL, FLWH, FLWL, FLARS, FSSQ, and
FSSE

Target function of this operation: R_RFD_ClearSeqRegister

Operation Procedure:

• Set the FLRST bit to 1. (Write 0x01 to the FLRST register.)
• Wait for at least one cycle (by using a NOP instruction, etc.).
• Clear the FLRST bit to 0. (Write 0x00 to the FLRST register.)

Note: The FLRST bit can only be modified while both the SQST bit of the FSSQ register and the ESQST bit
of the FSSE register are 0 (the flash memory sequencer is stopped). With other settings, the FLRST
bit cannot be modified (the writing to this bit is ignored).

FLRST register (After reset: 0x00):

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 FLRST

R R R R R R R R/W

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 91 of 218
Aug.28.23

4.3 Specifying the Operating Frequency of the Flash Memory Sequencer

The value (g_u08_fset_cpu_frequency) for FSSET register specified by the R_RFD_Init function is set in the
FSET bits (bits 4 o 0) of the flash memory sequencer initial setting register (FSSET).

Specify the integer value obtained by rounding up the fraction part of the CPU operating frequency.
(Example: When the CPU operating frequency is 4.5 MHz, specify 5 in the initialization function.)

When the CPU operating frequency is lower than 4 MHz, a frequency of 1 MHz, 2 MHz, or 3 MHz can be
specified. A non-integer frequency such as 1.5 MHz cannot be used.

Target functions of this operation: R_RFD_Init and R_RFD_SetFlashMemoryMode

Operation Procedure:

• Change the flash memory control mode to the code flash memory programming mode or data flash
memory programming mode. For the procedures for transitions between modes, see section 4.1.1,
Procedure for Executing Specific Sequence, section 4.1.2, Procedure for Transition to the Code Flash
Memory Programming Mode, and section 4.1.3, Procedure for Transition to the Data Flash Memory
Programming Mode.

• Read the flash memory sequencer initial setting register (FSSET) and write the read value to the FSSET
register with the values of the TMSPMD bit (bit 7) and TMBTSEL bit (bit 6) retained, bit 5 set to 0, and the
bits corresponding to FSET (bits 4 to 0) set to the value of (g_u08_fset_cpu_frequency).

Note: The FSET bits (bits 4 to 0) of the FSSET register can be written to in the code flash memory
programming mode or data flash memory programming mode. In other modes, the FSET bits cannot
be modified (the writing to the bits is ignored).
Before operating (such as reprogramming) the code flash memory, data flash memory, or extra area
by using the flash memory sequencer, specify the CPU operating frequency in the FSET bits of the
FSSET register.
Note that the reprogramming operation is indeterminate and written data are not guaranteed if
reprogramming is attempted before the CPU operating frequency is specified correctly. (Even if
expected data are read from the flash memory immediately after reprogramming, the data retention
period cannot be guaranteed.)

FSSET register (After reset: 0x00):

7 6 5 4 3 2 1 0

TMSPMD TMBTSEL 0 FSET4 FSET3 FSET2 FSET1 FSET0

R/W R/W R R/W R/W R/W R/W R/W

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 92 of 218
Aug.28.23

4.4 Flash Memory Sequencer Commands

4.4.1 Overview

The flash memory sequencer in the RL78/G2x consists of the code/data flash memory area sequencer,
which reprograms the code flash area or data flash area, and the extra area sequencer, which reprograms
the extra area. To reprogram individual areas, the commands for the respective sequencers need to be
executed. Before using the flash memory sequencer commands, please read and understand the
descriptions in (3) Program execution during reprogramming of the flash memory in section 1.5, Points for
Caution.

4.4.1.1 Selection of the Area to be Reprogrammed

The area to be reprogrammed needs to be selected by the EXA bit (bit 0) of the flash area select register
(FLARS); select the user area to reprogram the code/data flash memory area or select the extra area to
reprogram the extra area. The EXA bit cannot be modified while the FLRST bit (bit 0) of the FLRST register
is 1.

FLARS register (After reset: 0x00):

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 EXA

R R R R R R R R/W
EXA = 0 (after reset): User area is selected.
EXA = 1: Extra area is selected.

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 93 of 218
Aug.28.23

4.4.2 Code/Data Flash Memory Area Sequencer Commands

Dedicated commands for the code/data flash memory area sequencer are used to reprogram the code flash
area or data flash area. To issue a command, specify the desired command number in the SQMD2 to
SQMD0 bits (bits 2 to 0) of the flash memory sequencer control register (FSSQ) and set the SQST bit (bit 7)
to 1.

FSSQ register (After reset: 0x00):

7 6 5 4 3 2 1 0

SQST FSSTP 0 0 MDCH SQMD2 SQMD1 SQMD0

R/W R/W R/W R/W R/W R/W R/W R/W

Table 4-1 shows the dedicated commands for the code/data flash memory area sequencer.

Table 4-1 Dedicated Commands for the Code/Data Flash Memory Area Sequencer

SQMD2 to
SQMD0

MDCH
Setting

Function of Dedicated Command

Description

1H CF: 0
DF: 0

Write

The data specified in the FLWH and FLWL registers are written to the flash
memory address specified by the FLAPH and FLAPL registers.

• Code flash memory programming (1 word (4 bytes)):
Specify data in the FLWH and FLWL registers.

• Data flash memory programming (1 byte):
Specify data in the FLW7 to FLW0 bits (bits 7 to 0) of the FLWL register.

3H CF: 0
DF: 1

Blank check

Blank check is performed in the area between the address specified by the
FLAPH and FLAPL registers and the address specified by the FLSEDH and
FLSEDL registers. The value to be set in the MDCH bit (bit 3) of the FSSQ
register differs depending on the target flash memory to be checked. For the
code flash memory, set the MDCH bit (bit 3) to 0. For the data flash memory,
set to 1.

4H CF: 0
DF: 0

Block erase

Data are erased from the blocks between the start address specified by the
FLAPH and FLAPL registers and the end address specified by the FLSEDH
and FLSEDL registers.

Others  Setting prohibited
Note: CF: Code flash memory access

DF: Data flash memory access

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 94 of 218
Aug.28.23

• FLAPH and FLAPL registers (flash address pointer registers)
FLAPH register (After reset: 0x00):

7 6 5 4 3 2 1 0

0 0 0 0 FLAP 19 FLAP 18 FLAP 17 FLAP 16

R R R R R/W R/W R/W R/W

FLAPL register (After reset: 0x0000):

15 14 13 12 11 10 9 8

FLAP 15 FLAP 14 FLAP 13 FLAP 12 FLAP 11 FLAP 10 FLAP 9 FLAP 8

R/W R/W R/W R/W R/W R/W R/W R/W

7 6 5 4 3 2 1 0

FLAP 7 FLAP 6 FLAP 5 FLAP 4 FLAP 3 FLAP 2 FLAP 1 FLAP 0

R/W R/W R/W R/W R/W R/W R/W R/W

• FLWH and FLWL registers (flash write buffer registers)
FLWH register (After reset: 0x0000):

15 14 13 12 11 10 9 8

FLW 31 FLW 30 FLW 29 FLW 28 FLW 27 FLW 26 FLW 25 FLW 24

R/W R/W R/W R/W R/W R/W R/W R/W

7 6 5 4 3 2 1 0

FLW 23 FLW 22 FLW 21 FLW 20 FLW 19 FLW 18 FLW 17 FLW 16

R/W R/W R/W R/W R/W R/W R/W R/W

FLWL register (After reset: 0x0000):

15 14 13 12 11 10 9 8

FLW 15 FLW 14 FLW 13 FLW 12 FLW 11 FLW 10 FLW 9 FLW 8

R/W R/W R/W R/W R/W R/W R/W R/W

7 6 5 4 3 2 1 0

FLW 7 FLW 6 FLW 5 FLW 4 FLW 3 FLW 2 FLW 1 FLW 0

R/W R/W R/W R/W R/W R/W R/W R/W

Note that the bits used in the FLWH and FLWL registers differ depending on the command to be executed.

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 95 of 218
Aug.28.23

• FLSEDH and FLSEDL registers (flash end address pointer registers)
FLSEDH register (After reset: 0x00):

7 6 5 4 3 2 1 0

0 0 0 0 EWA 19 EWA 18 EWA 17 EWA 16

R R R R R/W R/W R/W R/W

FLSEDL register (After reset: 0x0000):

15 14 13 12 11 10 9 8

EWA 15 EWA 14 EWA 13 EWA 12 EWA 11 EWA 10 EWA 9 EWA 8

R/W R/W R/W R/W R/W R/W R/W R/W

7 6 5 4 3 2 1 0

EWA 7 EWA 6 EWA 5 EWA 4 EWA 3 EWA 2 EWA 1 EWA 0

R/W R/W R/W R/W R/W R/W R/W R/W

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 96 of 218
Aug.28.23

4.4.2.1 Reprogramming the Code Flash Area

To reprogram the code flash area, change the flash memory control mode to the code flash memory
programming mode and then execute commands for the code/data flash memory area sequencer. Before
executing a command, the necessary address and data for the command should be specified in the
respective registers.

Units of erasure and writing for reprogramming of the code flash area:

 Block erase unit: 2 Kbytes
 Write unit: 1 word (4 bytes)

Target functions of this operation: R_RFD_EraseCodeFlashReq, R_RFD_WriteCodeFlashReq, and
R_RFD_BlankCheckCodeFlashReq

Operation Procedure:

Block erase, write, and blank check commands for the code flash memory can be used.

• Change the control mode to the code flash memory programming mode. For the mode transition
procedure, see section 4.1.1, Procedure for Executing Specific Sequence, and section 4.1.2, Procedure
for Transition to the Code Flash Memory Programming Mode.

• Set the FLARS register to 0x00 (EXA (bit 0) = 0): Select the user area.
• Specify the necessary data in the respective registers before executing a command.
(1) Block erase

FLAPH and FLAPL registers: Start block address of the code flash memory (Example: 0x002000)
FLSEDH and FLSEDL registers: End block address of the code flash memory (Example: 0x0027FF)

(2) Write: This command is executed in units of one word (4 bytes); specify a multiple of 4 as an address 

that is, set bits 1 and 0 to 0.
FLAPH and FLAPL registers: Start address of the target flash memory area (Example: 0x002000)
FLSEDH and FLSEDL registers: Set to all 0s or specify nothing. (Example: 0x000000)
FLWH and FLWL registers: Specify the data to be written (1 word (4 bytes)).

(3) Blank check: This command is executed in units of one word (4 bytes); specify a multiple of 4 as an

address  that is, set bits 1 and 0 to 0.
FLAPH and FLAPL registers: Start address of the target flash memory area (Example: 0x002000)
FLSEDH and FLSEDL registers: End address of the target flash memory area (Example: 0x0027FF)

Note: To perform blank check only in a 1-word (4-byte) area, set FLAPH = FLSEDH and FLAPL = FLSEDL.

• Specify the desired command number in the SQMD2 to SQMD0 bits (bits 2 to 0) of the FSSQ register
and set the SQST bit (bit 7) to 1.
Block erase: 0x84 Write: 0x81 Blank check: 0x83

• Wait until command execution is completed in the code/data flash memory area sequencer. For the
procedure for waiting for the completion of command execution, see section 4.4.4.1, Procedure for
Judging the End of Command Execution in the Code/Data Flash Memory Area Sequencer.

• Processing after command execution
To continue command processing:
The same command or a different code flash area reprogramming command can be executed with the
data in the registers modified while the sequencer is placed in the code flash memory programming
mode.
To complete command processing:
Place the sequencer in the non-programmable mode. For the mode transition procedure, see section
4.1.1, Procedure for Executing Specific Sequence, and section 4.1.4, Procedure for Transition to the Non-
programmable Mode.

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 97 of 218
Aug.28.23

4.4.2.2 Reprogramming the Data Flash Area

To reprogram the data flash area, change the flash memory control mode to the data flash memory
programming mode and then execute commands for the code/data flash memory area sequencer. Before
executing a command, the necessary address and data for the command should be specified in the
respective registers.

Units of erasure and writing for reprogramming of the data flash area:

 Block erase unit: 256 bytes
 Write unit: 1 byte

Target functions of this operation: R_RFD_EraseDataFlashReq, R_RFD_WriteDataFlashReq, and
R_RFD_BlankCheckDataFlashReq

Operation Procedure:

Block erase, write, and blank check commands for the data flash memory can be used.

• Change the control mode to the data flash memory programming mode. For the mode transition
procedure, see section 4.1.1, Procedure for Executing Specific Sequence, and section 4.1.3, Procedure
for Transition to the Data Flash Memory Programming Mode.

• Set the FLARS register to 0x00 (EXA (bit 0) = 0): Select the user area.
• Specify the necessary data in the respective registers before executing a command.

(1) Block erase
FLAPH and FLAPL registers: Start block address of the data flash memory (Example: 0x0F1100)
FLSEDH and FLSEDL registers: End block address of the data flash memory (Example: 0x0F11FF)

(2) Write: 1 byte

FLAPH and FLAPL registers: Start address of the target flash memory area (Example: 0x0F1101)
FLSEDH and FLSEDL registers: Set to all 0s or specify nothing. (Example: 0x000000)
FLWH and FLWL registers: Specify the data to be written (0x00000000 to 0x000000FF).
Only the FLW7 to FLW0 bits (bits 7 to 0) are valid.

(3) Blank check:

FLAPH and FLAPL registers: Start address of the target flash memory area (Example: 0x0F1100)
FLSEDH and FLSEDL registers: End address of the target flash memory area (Example: 0x0F11FF)

Note: To perform blank check only in a 1-byte area, set FLAPH = FLSEDH and FLAPL = FLSEDL.

• Specify the desired command number in the SQMD2 to SQMD0 bits (bits 2 to 0) of the FSSQ register
and set the SQST bit (bit 7) to 1.
Block erase: 0x84 Write: 0x81 Blank check: 0x8B (MDCH (bit 3) = 1: Only for DF)

• Wait until command execution is completed in the code/data flash memory area sequencer. For the
procedure for waiting for the completion of command execution, see section 4.4.4.1, Procedure for
Judging the End of Command Execution in the Code/Data Flash Memory Area Sequencer.

• Processing after command execution
To continue command processing:
The same command or a different data flash area reprogramming command can be executed with the
data in the registers modified while the sequencer is placed in the data flash memory programming
mode.

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 98 of 218
Aug.28.23

To complete command processing:
Place the sequencer in the non-programmable mode. For the mode transition procedure, see section
4.1.1, Procedure for Executing Specific Sequence, and section 4.1.4, Procedure for Transition to the Non-
programmable Mode.

4.4.3 Extra Area Sequencer Commands

Dedicated commands for the extra area sequencer are used to reprogram the extra area. To issue a
command, specify the desired command number in the ESQMD3 to ESQMD0 bits (bits 3 to 0) of the flash
extra area sequencer control register (FSSE) and set the ESQST bit (bit 7) to 1.

FSSE register (After reset: 0x00):

7 6 5 4 3 2 1 0

ESQST 0 0 0 ESQMD3 ESQMD2 ESQMD1 ESQMD0

R/W R R R R/W R/W R/W R/W

Table 4-2 shows the dedicated commands for the extra area sequencer.

Table 4-2 Dedicated Commands for the Extra Area Sequencer

ESQMD3
to

ESQMD0

Function of Dedicated Command
Description

1H Extra area write (programming of FSW-related data)

The data specified in the FLWH and FLWL registers are written to the extra flash
area. The FSW range, FSW mode control, and FSW protection flag are set up. While
the FSW protection flag is set (FSPR = 0), this command cannot be executed. If this
command is attempted while the protection flag is set, a sequencer error will occur
(ESEQER =1 in the FSASTL register).

6H Extra area write (programming of the setting of the flash read protection)

The data specified in the FLWH and FLWL registers are written to the extra flash
area. The flash read protection are set up. While the protection flag is set (SWPR =
0), this command cannot be executed. If this command is attempted while the
protection flag is set, a sequencer error will occur (ESEQER =1 in the FSASTL
register).

7H Extra area write (programming of the security flags and the boot area switching flag)

The data specified in the FLWH and FLWL registers are written to the extra flash
area. The security flags and the boot area switching flag are set up. For the security
flags, only the disabling setting can be specified. While the boot area protection is
specified (BTPR = 0), the boot area switching flag cannot be modified.

Others Setting prohibited

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 99 of 218
Aug.28.23

4.4.3.1 Reprogramming the Extra Area

To reprogram the extra area, change the flash memory control mode to the code flash memory programming
mode and then execute commands for the extra area sequencer. Before executing a command, the
necessary data for the command should be specified in the respective registers.

Unit of writing for reprogramming of the extra area:

 Write unit: 1 word (4 bytes)

Note: The erase command is not provided and therefore the unit of erasing is not shown.

Target functions of this operation: R_RFD_SetExtraEraseProtectReq, R_RFD_SetExtraWriteProtectReq,
R_RFD_SetExtraBootAreaProtectReq, R_RFD_SetExtraBootAreaReq, R_RFD_SetExtraFSWProtectReq,
R_RFD_SetExtraFSWReq, and R_RFD_SetExtraSoftwareReadProtectAreaReq

Operation Procedure:

The data write command for the extra area can be used.

• Change the control mode to the code flash memory programming mode. For the mode transition
procedure, see section 4.1.1, Procedure for Executing Specific Sequence, and section 4.1.2, Procedure
for Transition to the Code Flash Memory Programming Mode.

• Set the FLARS register to 0x01 (EXA (bit 0) = 1): Select the extra area.
• Specify 1-word (4-byte) data in the FLWH and FLWL registers before executing a command. The

individual bits (FLW31 to FLW0) of the FLWH and FLWL registers correspond to EX bits 31 to 0 of the
target extra area data.

FLWH register (After reset: 0x0000):

15 14 13 12 11 10 9 8

FLW 31 FLW 30 FLW 29 FLW 28 FLW 27 FLW 26 FLW 25 FLW 24

7 6 5 4 3 2 1 0

FLW 23 FLW 22 FLW 21 FLW 20 FLW 19 FLW 18 FLW 17 FLW 16

FLWL register (After reset: 0x0000):

15 14 13 12 11 10 9 8

FLW 15 FLW 14 FLW 13 FLW 12 FLW 11 FLW 10 FLW 9 FLW 8

7 6 5 4 3 2 1 0

FLW 7 FLW 6 FLW 5 FLW 4 FLW 3 FLW 2 FLW 1 FLW 0

Note that the bits used in the FLWH and FLWL registers differ depending on the command to be executed.

• Specify the area to be programmed through the command. Specify the desired command number in the
SQMD3 to SQMD0 (bits 3 to 0) bits of the FSSE register and set the ESQST bit (bit 7) to 1.

(1) Programming of the FSW-related data: 0x81
(2) Programming of the setting of the flash read protection area and flag: 0x86
(3) Programming of the security flags and the boot area switching flag: 0x87

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 100 of 218
Aug.28.23

• Wait until command execution is completed in the extra area sequencer. For the procedure for waiting for
the completion of command execution, see section 4.4.4.2, Procedure for Judging the End of Command
Execution in the Extra Area Sequencer.

• Processing after command execution
To continue command processing:
The same command or a different extra area reprogramming command can be executed with the data in
the registers modified while the sequencer is placed in the code flash memory programming mode.
To complete command processing:
Place the sequencer in the non-programmable mode. For the mode transition procedure, see section
4.1.1, Procedure for Executing Specific Sequence, and section 4.1.4, Procedure for Transition to the Non-
programmable Mode.

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 101 of 218
Aug.28.23

4.4.3.2 Data Settings for Extra Area Sequencer Commands

The extra area is programmed in units of 1 word (4 bytes) including the data not to be modified. Specify the
extra area data (EX bits 31 to 0) for the target command in the FLW31 to FLW0 bits of the FLWH and FLWL
registers as shown below and then execute the command.

(1) Programming of the FSW-related data
Specify the following extra area data (EX bits 31 to 0) in the FLW31 to FLW0 bits of the FLWH and FLWL
registers.

EX bit 31 EX bit 30 EX bit 29 EX bit 28 EX bit 27 EX bit 26 EX bit 25 EX bit 24

FSWC       FSWE8

EX bit 23 EX bit 22 EX bit 21 EX bit 20 EX bit 19 EX bit 18 EX bit 17 EX bit 16

FSWE7 FSWE6 FSWE5 FSWE4 FSWE3 FSWE2 FSWE1 FSWE0

EX bit 15 EX bit 14 EX bit 13 EX bit 12 EX bit 11 EX bit 10 EX bit 9 EX bit 8

FSPR       FSWS8

EX bit 7 EX bit 6 EX bit 5 EX bit 4 EX bit 3 EX bit 2 EX bit 1 EX bit 0

FSWS7 FSWS6 FSWS5 FSWS4 FSWS3 FSWS2 FSWS1 FSWS0

 FSWE8 to FSWE0 (bits 24 to 16): Specify the value of (end block) + 1 of the window range.
 FSWC (bit 31): Specify the FSW mode control.

FSWC = 0: The inside of the window range is shielded.
 1 (setting at shipment): The outside of the window range is shielded.

 FSWS8 to FSWS0 (bits 8 to 0): Specify the start block of the window range.
 FSPR (bit 15): Specify the FSW write protection.

FSPR = 0: Reprogramming of the FSW settings is disabled.
 1 (setting at shipment): Reprogramming of the FSW settings is enabled.

(2) Programming of the setting of the flash read protection.

Specify the following extra area data (EX bits 31 to 0) in the FLW31 to FLW0 bits of the FLWH and FLWL
registers.

EX bit 31 EX bit 30 EX bit 29 EX bit 28 EX bit 27 EX bit 26 EX bit 25 EX bit 24

SWPR       UPAddr8

EX bit 23 EX bit 22 EX bit 21 EX bit 20 EX bit 19 EX bit 18 EX bit 17 EX bit 16

UPAddr7 UPAddr6 UPAddr5 UPAddr4 UPAddr3 UPAddr2 UPAddr1 UPAddr0

EX bit 15 EX bit 14 EX bit 13 EX bit 12 EX bit 11 EX bit 10 EX bit 9 EX bit 8

       LOWAddr8

EX bit 7 EX bit 6 EX bit 5 EX bit 4 EX bit 3 EX bit 2 EX bit 1 EX bit 0

LOWAddr7 LOWAddr6 LOWAddr5 LOWAddr4 LOWAddr3 LOWAddr2 LOWAddr1 LOWAddr0

 UPAddr8 to UPAddr0 (bits 24 to 16): Specify the end block of the flash read protection.
 LOWAddr8 to LOWAddr0 (bits 8 to 0): Specify the start block of the flash read protection.
 SWPR (bit 31): Specify the write protection for the setting of the flash read protection is disabled.

SWPR = 0: Modification of the read- prohibited area setting is disabled.
 1 (setting at shipment): Modification of the read- prohibited area setting is enabled.

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 102 of 218
Aug.28.23

(3) Programming of the security flags and the boot area switching flag
Specify the following extra area data (EX bits 31 to 0) in the FLW31 to FLW0 bits of the FLWH and FLWL
registers.

EX bit 31 EX bit 30 EX bit 29 EX bit 28 EX bit 27 EX bit 26 EX bit 25 EX bit 24

1 1 1 1 1 1 1 1

EX bit 23 EX bit 22 EX bit 21 EX bit 20 EX bit 19 EX bit 18 EX bit 17 EX bit 16

1 1 1 1 1 1 1 1

EX bit 15 EX bit 14 EX bit 13 EX bit 12 EX bit 11 EX bit 10 EX bit 9 EX bit 8

1 1 1 WRPR 1 SEPR BTPR BTFLG

EX bit 7 EX bit 6 EX bit 5 EX bit 4 EX bit 3 EX bit 2 EX bit 1 EX bit 0

1 1 1 1 1 1 1 1

 WRPR (bit 12): Specify the write protection in the serial programming mode.
WRPR = 0: Programming in the serial programming mode is disabled.
 1 (setting at shipment): Programming in the serial programming mode is enabled.

 SEPR (bit 10): Specify the block erasure protection in the serial programming mode.
SEPR = 0: Block erasure in the serial programming mode is disabled.
 1 (setting at shipment): Block erasure in the serial programming mode is enabled.

 BTPR (bit 9): Specify the protection against reprogramming of the boot area in the serial or self-
programming mode.

BTPR = 0: Reprogramming of the boot area is disabled.
 1 (setting at shipment): Reprogramming of the boot area is enabled.

 BTFLG (bit 8): Control the boot cluster to be allocated to the boot area when TMSPMD = 0 (boot
swap is executed according to the setting of the boot area switching flag (BTFLG) in the extra area).

BTFLG = 0: Boot cluster 1 is used as the boot area.
 1 (setting at shipment): Boot cluster 0 is used as the boot area.

Notes: 1. When modifying the BTFLG flag, set the other bits to 1.
 2. When modifying a security flag other than the BTFLG flag to 0 (disabled), set the other bits

to 1 except for the BTFLG flag (set to the read value).
 3. After the WRPR flag is set to 0 (disabled), it can be set to 1 (enabled) only when the erase

chip command is executed in the serial programming mode
 * While any of the following protections is set (operation is disabled), the erase chip

command cannot be executed in the serial programming mode.
 • SEPR = 0 (Protection against block erasure)
 • BTPR = 0 (Protection against reprogramming of the boot area)
 • IFPR = 0 (Protection against connection of a programmer or OCD)

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 103 of 218
Aug.28.23

4.4.4 Procedures for Judging the End of Command Execution in the Flash Memory Sequencer

To terminate command execution in the flash memory sequencer started in the RL78/G2x, a specific
procedure for judging the end of command execution should be used.

Read the ESQEND bit (bit 7) or SQEND bit (bit 6) of the FSASTH register and confirm that it is set to 1 to
judge the end of command execution in the code/data flash memory area sequencer or extra area
sequencer. After this judgement, read the error bits (BLER (bit 3), WRER (bit 1), and ERER (bit 0)) of the
FSASTL register to check whether an error has occurred in the execution of the respective commands.

FSASTH register (After reset: 0x00 / 0x04):

7 6 5 4 3 2 1 0

ESQEND SQEND 0 0 0 x 0 0

R R R R R R R R

FSASTL register (After reset: 0x00 / 0x80):

7 6 5 4 3 2 1 0

MBTSEL MOPEN ESEQER SEQER BLER 0 WRER ERER

R R R R R R R R

Note: The boot flag monitor bit (MBTSEL (bit 7)) holds the inverted value of the boot area switching flag (BTFLG (bit
8)) in the extra area.

4.4.4.1 Procedure for Judging the End of Command Execution in the Code/Data Flash Memory Area
Sequencer

Judgment Procedure:

(1) After starting the execution of a command in the code/data flash memory area, wait until the SQEND bit
(bit 6) of the FSASTH register is automatically set.

(2) After confirming that the SQEND bit (bit 6) has been set, clear the SQST bit (bit 7) of the FSSQ register.
(3) Wait until the SQEND bit (bit 6) of the FSASTH register is automatically cleared; the procedure ends

when the bit is cleared.

4.4.4.2 Procedure for Judging the End of Command Execution in the Extra Area Sequencer

Judgment Procedure:

(1) After starting the execution of a command in the extra area sequencer, wait until the ESQEND bit (bit 7)
of the FSASTH register is automatically set.

(2) After confirming that the ESQEND bit (bit 7) has been set, clear the ESQST bit (bit 7) of the FSSE
register.

(3) Wait until the ESQEND bit (bit 7) of the FSASTH register is automatically cleared; the procedure ends
when the bit is cleared.

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 104 of 218
Aug.28.23

4.4.5 Procedure for Forcibly Terminating Command Execution in the Code/Data Flash Memory
Area Sequencer

Command execution in the code/data flash memory area sequencer can be forcibly terminated if an
emergency stop is necessary.

Note: Command execution in the extra area sequencer cannot be forcibly terminated.

Procedure of Forced Termination:

(1) Set the FSSTP bit (bit 6) of the FSSQ register to 1 between the start of command execution (step (1) in
section 4.4.4.1, Procedure for Judging the End of Command Execution in the Code/Data Flash Memory
Area Sequencer) and the clearing of the SQST bit (bit 7) of the FSSQ register (step (2)); the command
execution started in the code/data flash memory area sequencer is forcibly stopped.

(2) Check that the SQEND bit (bit 6) of the FSASTH register has been set and then clear the SQST bit (bit 7)
and FSSTP bit (bit 6) of the FSSQ register.

(3) Wait until the SQEND bit (bit 6) of the FSASTH register is automatically cleared; the procedure ends
when the bit is cleared.

FSSQ register (After reset: 0x00):

7 6 5 4 3 2 1 0

SQST FSSTP 0 0 MDCH SQMD2 SQMD1 SQMD 0

R/W R/W R/W R/W R/W R/W R/W R/W

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 105 of 218
Aug.28.23

4.5 Boot Swap Function

4.5.1 Overview

If reprogramming fails due to a temporary power failure or a reset from an external source while the boot
area), which stores the vector table data, basic functions of programs, and boot program for self-
programming, is being reprogrammed, the data in the boot area are damaged; the user program cannot be
restarted or reprogrammed even by a reset applied after that. The boot swap function is provided to avoid
this situation.

4.5.2 Operation of the Boot Swap Function

The boot swap function replaces boot cluster 0, which is the boot area, with boot cluster 1, which is the
target area of boot swap. Before starting the reprogramming processing, write a new boot program to boot
cluster 1. Swap boot cluster 1. Even if a temporary power failure occurs during reprogramming of the boot
area after this swap, booting by the next reset is done in boot cluster 1, which stores the new boot program,
and the user program can be executed correctly.

Boot area Logical area started from 00000H including the reset vector, and the size is
different by each device.
- Products with the boot area of "00000H-03FFFH (16 KB) : RL78/G23, G24.
- A products with the boot area of "00000H-01FFFH (8 KB) : RL78/G22.

Boot clusters 0 and 1 A boot cluster is 16-Kbyte or 8-Kbyte group of blocks and either boot cluster 0
or 1 is allocated to the boot area.
Physical area name:
- RL78/G23, G24
Boot cluster 0: 00000H to 03FFFH (logical addresses at shipment)
Boot cluster 1: 04000H to 07FFFH (logical addresses at shipment)

- RL78/G22
Boot cluster 0: 00000H to 01FFFH (logical addresses at shipment)
Boot cluster 1: 02000H to 03FFFH (logical addresses at shipment)

Note: The logical addresses of boot cluster 0 and boot cluster 1 are switched after boot swap.
The TMSPMD bit (bit 7) and TMBTSEL bit (bit 6) of the FSSET register can only be modified while BTPR = 1
and the flash memory sequencer is in the code flash memory programming mode or data flash memory
programming mode. In other cases, the TMSPMD and TMBTSEL bits cannot be manipulated (writing to these
bits is ignored).

The operation of the boot swap function is controlled by the boot area switching flag (BTFLG) in the extra
area or the TMBTSEL bit (bit 6) of the flash memory sequencer initial setting register (FSSET) depending on
the setting of the TMSPMD bit (bit 7) of the FSSET register.

 When the TMSPMD bit (bit 7) is 0 (after a reset), the boot area is determined according to the setting
of the BTFLG in the extra area.

BTFLG = 0: Boot cluster 1 is used as the boot area.
 1 (setting at shipment): Boot cluster 0 is used as the boot area.

 When the TMSPMD bit (bit 7) is 1, the boot area is determined according to the setting of the
TMBTSEL bit (bit 6) in the FSSET register.

TMBTSEL = 0 (after a reset): Boot cluster 0 is used as the boot area.
 1: Boot cluster 1 is used as the boot area.

FSSET register (After reset: 0x00):

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 106 of 218
Aug.28.23

7 6 5 4 3 2 1 0

TMSPMD TMBTSEL 0 FSET4 FSET3 FSET2 FSET1 FSET0

R/W R/W R R/W R/W R/W R/W R/W

4.5.3 Execution of the Boot Swap Function

The boot swap function can be executed in two ways: immediate execution and execution after a reset.

Note: When writing to the FSSET register to manipulate the TMSPMD bit or TMBTSEL bit, do not
modify the value of the FSET4 to FSET0 bits (CPU operating frequency) of the register. Before
writing to the FSSET register, be sure to read the register, and then write to it without
changing the value of the FSET4 to FSET0 bits.
If an incorrect CPU operating frequency is set in the FSSET register, the operation of the flash
memory sequencer is indeterminate and the reprogrammed values in the flash memory are not
guaranteed.

4.5.3.1 Immediate Execution of Boot Swap

The specified boot cluster is immediately allocated to the boot area (boot swap is performed immediately).

Note: When BTPR = 0, the TMSPMD bit cannot be modified and boot swap is not executed.

Target function of this operation: R_RFD_SetBootAreaImmediately

Operation Procedures:

(1) When the TMSPMD bit = 0 (boot swap according to BTFLG):
• Read the MBTSEL bit of the FSAST register and set the value in the TMBTSEL bit of the FSSET register.

a) When the TMBTSEL bit = 1:
 Set the TMSPMD bit to 1 (boot swap according to TMBTSEL) and the TMBTSEL bit to 0. Boot swap

is executed immediately.
b) When the TMBTSEL bit = 0:
 Set the TMSPMD bit to 1 (boot swap according to TMBTSEL) and the TMBTSEL bit to 1. Boot swap

is executed immediately.

(2) When the TMSPMD bit = 1 (boot swap according to TMBTSEL) and the TMBTSEL bit = 1:
• Set the TMBTSEL bit to 0. Boot swap is executed immediately.

(3) When the TMSPMD bit = 1 (boot swap according to TMBTSEL) and the TMBTSEL bit = 0:
• Set the TMBTSEL bit to 1. Boot swap is executed immediately.

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 107 of 218
Aug.28.23

4.5.3.2 Boot Swap Execution after a Reset

Boot swap is not executed immediately after the BTFLG is written to but executed after a reset.

Note: When BTPR = 0, neither the TMSPMD bit can be modified nor the BTFLG can be set by
programming of the extra area. Therefore, boot swap is not executed.

Target function of this operation: R_RFD_SetExtraBootAreaReq

Operation Procedures:

(1) When the TMSPMD bit = 0 (boot swap according to BTFLG):
• Read the BTFLG bit of the FLSEC register.

a) When the BTFLG bit = 0 in the FLSEC register:
 Set the TMSPMD bit to 1 (boot swap according to TMBTSEL) and the TMBTSEL bit to 1.
 Write to the BTFLG bit in the extra area. (Specify the boot cluster to be used as the boot area.

ESQMD = 0x7 in the FSSE register)
 Boot swap is executed after the reset operation and execution branches to the reset vector address

in the specified boot cluster.
b) When the BTFLG bit = 1 in the FLSEC register:
 Set the TMSPMD bit to 1 (boot swap according to TMBTSEL) and the TMBTSEL bit to 0.
 Write to the BTFLG bit in the extra area. (Specify the boot cluster to be used as the boot area.

ESQMD = 0x7 in the FSSE register)
 Boot swap is executed after the reset operation and execution branches to the reset vector address

in the specified boot cluster.

(2) When the TMSPMD bit = 1 (boot swap according to TMBTSEL):
• Write to the BTFLG bit in the extra area. (Specify the boot cluster to be used as the boot area. ESQMD =

0x7 in the FSSE register)
• Boot swap is executed after the reset operation and execution branches to the reset vector address in the

specified boot cluster.

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 108 of 218
Aug.28.23

4.6 Flash Shield Window Function

4.6.1 Overview

The flash shield window (FSW) function is provided as one of the security functions for self-programming. It
disables programming and erasure of areas other than the specified window range only during self-
programming. The window range for the FSW function is specified by the start block and the end block + 1.

4.6.2 Operation of the Flash Shield Window Function

The conventional FSW function of the RL78 microcontrollers can only specify the areas outside the window
as the flash memory shield areas. The FSW function in the RL78/G2x provides new facilities: the control of
the flash shield window mode, which selects either the outside or inside of the window as the flash memory
shield areas, and the protection against flash shield window modification, which disables modification of
FSW settings.

The operation of the FSW function is determined by the settings in the flash FSW monitor registers
(FLFSWE and FLFSWS), which reflect the FSW information written to the extra area. To modify the FSW
settings, use the extra area sequencer to write the setting values to the extra area for FSW settings.

FLFSWE register (the value in the corresponding extra area is reflected in this register after a reset or
when the extra area is programmed):

15 14 13 12 11 10 9 8

FSWC 0 0 0 0 0 0 FSWE8

R R R R R R R R
7 6 5 4 3 2 1 0

FSWE7 FSWE6 FSWE5 FSWE4 FSWE3 FSWE2 FSWE1 FSWE0

R R R R R R R R

FLFSWS register (the value in the corresponding extra area is reflected in this register after a reset or
when the extra area is programmed):

15 14 13 12 11 10 9 8

FSPR 0 0 0 0 0 0 FSWS8

R R R R R R R R
7 6 5 4 3 2 1 0

FSWS7 FSWS6 FSWS5 FSWS4 FSWS3 FSWS2 FSWS1 FSWS0

R R R R R R R R

 FSWE (bits 8 to 0) of the FLFSWE register: Specify the end block number + 1 of the window range.
 FSWC (bit 15) of the FLFSWE register: Control the FSW mode.

FSWC = 0: The inside of the window range is specified as the shield area.
 1 (setting at shipment): The outside of the window range is specified as the shield area.

 FSWS (bits 8 to 0) of the FLFSWS register: Specify the start block number of the window range.
 FSPR (bit 15) of the FLFSWS register: Enable or disable modification of FSW settings.

FSPR = 0: Modification of FSW settings is disabled.
 1 (setting at shipment): Modification of FSW settings is enabled.

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 109 of 218
Aug.28.23

4.6.3 Execution of the Flash Shield Window Function

4.6.3.1 Control of the Flash Shield Window Mode

The flash shield window (FSW) mode can be switched between the outside shield mode (FSWC = 1) which
shields the outside of the window range, and the inside shield mode (FSWC = 0) which shields the inside of
the window range.

Target function of this operation: R_RFD_SetExtraFSWReq

Operation Procedure:

• Write to the FSWE, FSWC, and FSWS bits in the extra area. (ESQMD = 0x1 in the FSSE register)
FSWE: End block number +1 of the FSW window range.
FSWC: Control of the FSW mode
FSWC = 1 (setting at shipment): Outside shield mode

0: Inside shield mode
FSWS: Start block of the FSW window range.

Note: Set the FSPR bit and reserved bits (bits 14 to 9) to 1. The FSW settings cannot be modified while
FSPR = 0. When the FSWS and FSWE bits are set to the same value, reprogramming is enabled in
the entire area of the code flash memory regardless of the FSWC setting.

FSPR: Protection against FSW modification

(1) Outside shield mode (FSWC = 1)
Example: Target device = R7F100GLG, start block = 03H, end block+1 = 06H

 Self-programming
 1FFFFH Block 3FH (2 Kbytes)

 Block 3EH (2 Kbytes)
 Flash memory shield area ×: Not
 | reprogrammable

 Block 06H (2 Kbytes)

 03000H
Flash memory 02FFFH Block 05H (2 Kbytes)

End block

area
 Window range Block 04H (2 Kbytes) : Reprogrammable
 (reprogrammable area)

 Block 03H (2 Kbytes)
Start block

 01800H
 017FFH Block 02H (2 Kbytes)

 Flash memory shield area Block 01H (2 Kbytes) ×: Not
 reprogrammable
 Block 00H (2 Kbytes)
 00000H

Figure 4-1 Example of FSW Settings (Outside Shield Mode)

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 110 of 218
Aug.28.23

(2) Inside shield mode (FSWC = 0)
Example: Target device = R7F100GLG, start block = 03H, end block+1 = 06H

 Self-programming
 1FFFFH Block 3FH (2 Kbytes)

 Block 3EH (2 Kbytes)

 Reprogrammable area : Reprogrammable
 |

 Block 06H (2 Kbytes)

 03000H
Flash memory 02FFFH Block 05H (2 Kbytes)

End block

area
 Window range Block 04H (2 Kbytes) ×: Not

 (flash memory shield area) reprogrammable
 Block 03H (2 Kbytes)

Start block

 01800H
 017FFH Block 02H (2 Kbytes)

 Reprogrammable area Block 01H (2 Kbytes) : Reprogrammable

 Block 00H (2 Kbytes)
 00000H

Figure 4-2 Example of FSW Settings (Inside Shield Mode)

4.6.3.2 Protection against Flash Shield Window (FSW) Modification

Modification of the settings of the flash shield window range and FSW mode can be prohibited (FSPR = 0).

Target function of this operation: R_RFD_SetExtraFSWProtectReq

Operation Procedure:

• Write 0 to the FSPR bit in the extra area. (ESQMD = 0x1 in the FSSE register)

Note: When writing to the FSPR bit, set the FSWS, FSWE, and FSWC bits of the extra area to the same
value as those of the flash FSW monitor registers (FLFSWE and FLFSWS) and set the reserved bits
(bits 14 to 9) to 1.

How to Release the Protection against FSW Modification:

After the protection against FSW modification is set, it cannot be released during self-programming. It can
only be released by the erase chip command in the serial programming mode.

Note: While any of the following protections is set, the erase chip command cannot be executed in the
serial programming mode.
• SEPR = 0 (Protection against block erasure)
• BTPR = 0 (Protection against reprogramming of boot cluster 0)
• IFPR = 0 (Protection against connection of a programmer or OCD)

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 111 of 218
Aug.28.23

4.7 Interrupts in Code Flash Memory Programming Mode

4.7.1 Overview

When an interrupt occurs in the RL78, the interrupt vector table in ROM is referenced and execution
branches to the interrupt processing code at the ROM address pointed to by the corresponding interrupt
vector. As an interrupt vector is a 16-bit address, execution can branch within a maximum of 64-Kbyte ROM
area. However, ROM cannot be referenced in the code flash memory programming mode, in which the code
flash memory and extra area can be reprogrammed, and therefore interrupt processing cannot be executed
in this mode.

In the RL78/G2x, the branch destinations of all interrupts can be changed to the specified address in RAM.
Even when ROM cannot be referenced, interrupt processing can be executed in RAM without using the
interrupt vector table or interrupt processing code in ROM.

4.7.2 Operation when Interrupt Branch Destinations are Changed

The interrupt vector change registers (FLSIVC1 and FLSIVC0) and interrupt address control register
(VECTCTRL) are used to change the branch destinations of all interrupts to an address in RAM. After these
registers are set up, the interrupt processing in RAM can be executed without reference to the interrupt
vector table in ROM if an interrupt occurs in the code flash memory programming mode.

The FLSIVC1 and FLSIVC0 registers specify the branch destination address of all interrupts generated
during reprogramming of the code flash memory or extra area. Specify the lower 16 bits of the address in
FLSIVC0 and the upper 4 bits in FLSIVC1.

FLPMC register (After reset: 0x08):

7 6 5 4 3 2 1 0

0 0 0 EEEMD FWEDIS 0 FLSPM 0

R/W R/W R R/W R/W R R/W R

 While the FWEDIS bit (bit 3) of the FLPMC register is 0, set the VECTCTRL register to 0x01, and
execution after any interrupt generated during self-programming branches to the user-specified RAM
address stored in the FLSIVC1 and FLSIVC0 registers.

FLSIVC1 register (After reset: 0x000F (fixed value)):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

FLSIVC0 register (After reset: 0x0000): Specify the lower 16 bits of RAM address 0x000Fxxxx.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 112 of 218
Aug.28.23

VECTCTRL register (After reset: 0x00):

7 6 5 4 3 2 1 0

       VECTCTRL

       R/W

 VECTCTRL bit (bit 0) of the VECTCTRL register: Control whether to branch to RAM after an interrupt
occurs during self-programming.

• When VECTCTRL (bit 0) = 0 (value after reset) or FWEDIS (bit 3) = 1 (value after reset) in the
FLPMC register:
Execution branches to the address pointed to by the vector table in ROM corresponding to the
generated interrupt.

• When VECTCTRL (bit 0) = 1 (FWEDIS (bit 3) = 0 in the FLPMC register):
Execution after any interrupt branches to the user-specified RAM address stored in the FLSIVC1
and FLSIVC0 registers.

Notes: 1. The user should check the interrupt flags to identify the source of the generated interrupt after the

above registers are set up. Therefore, the interrupt flags are not automatically cleared; the user
should clear them after identifying the interrupt source.

 2. The interrupt branch destinations cannot be changed to a ROM address (can only be changed
within the address range of 0FxxxxH).

 3. The interrupt branch destination changed by the above registers is only valid during self-
programming.

 4. While manipulating these registers to change the interrupt branch destinations to RAM, be sure to
disable interrupts.

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 113 of 218
Aug.28.23

4.7.3 Procedures for Changing the Interrupt Branch Destinations

To execute the interrupt processing in RAM, the FLSIVC1 and FLSIVC0 registers and bit 0 of the
VECTCTRL register should be modified while the FWEDIS bit (bit 3) of the flash programming mode control
register (FLPMC) is 0. Execute the specific sequence of the flash memory sequencer to manipulate the
FWEDIS bit (bit 3) of the FLPMC register and set up the FLSIVC1 and FLSIVC0 registers and bit 0 of the
VECTCTRL register so that the interrupt branch destinations are changed to a RAM address.

Note: The FLPMC register can only be written to by executing the specific sequence described in section
4.1.1, Procedure for Executing Specific Sequence.

(1) Changing the interrupt branch destinations to a RAM address
The following shows the procedure for changing the branch destinations of all interrupts to the specified
RAM address.
Target function of this operation: R_RFD_ChangeInterruptVector

Operation Procedure:

• Save the current interrupt enabled or disabled setting and then disable interrupts.
• Execute the specific sequence to set the FWEDIS bit (bit 3) of the FLPMC register to 0.

• Specify a RAM address in the FLSIVC1 and FLSIVC0 registers.
• Set the VECTCTRL register to 0x01 so that execution after an interrupt branch to the specified address in

RAM.
• Restore the saved interrupt enabled or disabled setting.

Notes: 1. Keep FWEDIS (bit 3) = 0 while manipulating the registers to specify the interrupt processing in
RAM.

 2. Do not allocate the interrupt branch destination to the saddr space (FFE20H to FFEFFH).
 3. When executing instructions in a RAM area and enabling generation of a RAM parity error reset

(RPERDIS = 0), be sure to initialize the RAM area to be used + 10 bytes.

(2) Changing the interrupt branch destination from the RAM address back to the interrupt vector addresses in
ROM
The following shows the procedure for changing the interrupt branch destination back to the addresses
pointed to by the interrupt vector table in ROM (initial state).
Target function of this operation: R_RFD_RestoreInterruptVector

Operation Procedure:

• Save the current interrupt enabled or disabled setting and then disable interrupts.
• Execute the specific sequence to set the FWEDIS bit (bit 3) of the FLPMC register to 1.

• Set the VECTCTRL register to 0x00 so that execution after interrupts branches to the addresses pointed
to by the interrupt vector table in ROM.

• Restore the saved interrupt enabled or disabled setting.

Step 1: PFCMD register = 0xA5
Step 2: FLPMC register = 0x00
Step 3: FLPMC register = 0xFF
Step 4: FLPMC register = 0x00

Step 1: PFCMD register = 0xA5
Step 2: FLPMC register = 0x08
Step 3: FLPMC register = 0xF7
Step 4: FLPMC register = 0x08

• Steps 2 and 4
FLPMC register setting (0x00)
EEEMD (bit 4) = 0, FWEDIS (bit 3) = 0,
FLSPM (bit 1) = 0

• Step 3
Inverted value or FLPMC register setting (0xFF)

• Steps 2 and 4
FLPMC register setting (0x08)
EEEMD (bit 4) = 0, FWEDIS (bit 3) = 1,
FLSPM (bit 1) = 0

• Step 3
Inverted value or FLPMC register setting (0xF7)

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 114 of 218
Aug.28.23

4.8 Examples of Command Execution for Reprogramming of Flash Areas

4.8.1 Example of Command Execution for Reprogramming of the Code Flash Area

Figure 4-3 shows a flowchart of command execution for reprogramming of the code flash area.

Figure 4-3 Flowchart of Command Execution for Reprogramming of the Code Flash Area

• Copy the reprogramming
processing code to RAM.
• Jump to RAM.

• (Change the interrupt branch
destinations.)

 Execute this processing only when changing the interrupt branch
destinations to RAM:
• 4.7.3, Procedures for Changing the Interrupt Branch
Destinations

• Place the sequencer in the code
flash memory programming mode.

 • 4.1.2, Procedure for Transition to the Code Flash Memory
Programming Mode
• 4.3, Specifying the Operating Frequency of the Flash Memory
Sequencer

• Execute a command in the
code/data flash memory area
sequencer.

 • 4.4.2.1, Reprogramming the Code Flash Area

• Wait until the end of command
execution in the code/data flash
memory area sequencer.

 • 4.4.4.1, Procedure for Judging the End of Command Execution
in the Code/Data Flash Memory Area Sequencer

Continue command execution?

Yes No

• Place the sequencer in the non-
programmable mode.

 • 4.1.4, Procedure for Transition to the Non-programmable Mode

• Jump to ROM.

Start

To the user
processing

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 115 of 218
Aug.28.23

4.8.2 Example of Command Execution for Reprogramming of the Data Flash Area

Figure 4-4 shows a flowchart of command execution for reprogramming of the data flash area.

Figure 4-4 Flowchart of Command Execution for Reprogramming of the Data Flash Area

• Set the DFLEN bit to 1 to enable
access to the data flash memory.

• Place the sequencer in the data
flash memory programming mode.

 • 4.1.3, Procedure for Transition to the Data Flash Memory
Programming Mode
• 4.3, Specifying the Operating Frequency of the Flash Memory
Sequencer

• Execute a command in the
code/data flash memory area
sequencer.

 • 4.4.2.2, Reprogramming the Data Flash Area

• Wait until the end of command
execution in the code/data flash
memory area sequencer.

 • 4.4.4.1, Procedure for Judging the End of Command Execution
in the Code/Data Flash Memory Area Sequencer

Continue command execution?

Yes No

• Place the sequencer in the non-
programmable mode.

 • 4.1.4, Procedure for Transition to the Non-programmable Mode

Start

To the user
processing

RFD RL78 Type 01 4. Flash Memory Sequencer Operation

R20UT4830EJ0120 Rev.1.20 Page 116 of 218
Aug.28.23

4.8.3 Example of Command Execution for Reprogramming of the Extra Area

Figure 4-5 shows a flowchart of command execution for reprogramming of the extra area.

Figure 4-5 Flowchart of Command Execution for Reprogramming of the Extra Area

• Place the sequencer in the code
flash memory programming mode.

 • 4.1.2, Procedure for Transition to the Code Flash Memory Programming
Mode
• 4.3, Specifying the Operating Frequency of the Flash Memory Sequencer

• Execute a command in the extra
area sequencer.

 • 4.4.3.1, Reprogramming the Extra Area

• Wait until the end of command
execution in the extra area
sequencer.

 • 4.4.4.2, Procedure for Judging the End of Command Execution in the
Extra Area Sequencer

Continue command execution?

Yes No

• Place the sequencer in the non-
programmable mode.

 • 4.1.4, Procedure for Transition to the Non-programmable Mode

Start

To the user
processing

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 117 of 218
Aug.28.23

5. Sample Programs

This section describes the sample programs provided together with RFD RL78 Type 01. This chapter is
explained in the sample program example for RL78/G23. When using a device other than RL78/G23, read
G23 to the target device.

5.1 File Structure

5.1.1 Folder Structure

・Read the folder name ("RL78_G23") of the sample of RL78/G23 as the folder name of a target device.
The folder name in the case of using RL78/G24: "RL78_G24"

Figure 5-1 shows the structure of sample program folders.

Figure 5-1 Structure of Sample Program Folders

Sample programs

RFD RL78 Type 01
include files

RFD RL78 Type 01
source program files

RFD RL78 Type 01
user-own files

: Folders of sample programs

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 118 of 218
Aug.28.23

5.1.2 List of Files

5.1.2.1 List of Source Files

Table 5-1 shows the program source file in the “sample\common\source\common\” folder.

Table 5-1 Program Source File in the “sample\common\source\common\” Folder

No. Source File Name Description
1 sample_control_common.c This file contains the functions used in common for

controlling the flash memory.

Table 5-2 shows the program source file in the “sample\common\source\dataflash\” folder.

Table 5-2 Program Source File in the “sample\common\source\dataflash\” Folder

No. Source File Name Description
1 sample_control_data_flash.c This file contains the functions for controlling the data

flash memory.

Table 5-3 shows the program source file in the “sample\common\source\codeflash\” folder.

Table 5-3 Program Source File in the “sample\common\source\codeflash\” Folder

No. Source File Name Description

1 sample_control_code_flash.c This file contains the functions for controlling the code
flash memory.

Table 5-4 shows the program source file in the “sample\common\source\extra_fsw\” folder.

Table 5-4 Program Source File in the “sample\common\source\extra_fsw\” Folder

No. Source File Name Description

1 sample_control_extra_fsw.c This file contains the functions for controlling the FSW in
the extra area.

Table 5-5 shows the program source files of the main processing for controlling the code flash memory (CF),
data flash memory (DF), and FSW in the extra area (EX_FSW) in the “sample\RL78_G23” folder.

 Main processing for controlling the code flash memory (CF):
“sample\RL78_G23\CF\[compiler name]\source\” folder

 Main processing for controlling the data flash memory (DF):
“sample\RL78_G23\DF\[compiler name]\source\” folder

 Main processing for controlling the FSW in the extra area (EX_FSW):
“sample\RL78_G23\EX_FSW\[compiler name]\source\” folder

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 119 of 218
Aug.28.23

Table 5-5 Program Source Files of the Main Processing

No. Source File Name Description

1 main.c (for code flash) Sample file of the main processing functions for
controlling the code flash memory

2 main.c (for data flash) Sample file of the main processing functions for
controlling the data flash memory

3 main.c (for FSW control in extra
area)

Sample file of the main processing functions for
controlling the extra area (FSW function)

5.1.2.2 List of Header Files

Table 5-6 shows the program header files in the “sample\common\include\” folder.

Table 5-6 Program Header Files in the “sample\common\include\” Folder

No. Header File Name Description

1 sample_control_common.h This file defines the prototype declarations of the sample
functions used in common for controlling the flash
memory.

2 sample_control_data_flash.h This file defines the prototype declarations of the sample
functions for controlling the data flash memory.

3 sample_control_code_flash.h This file defines the prototype declarations of the sample
functions for controlling the code flash memory.

4 sample_control_extra_fsw.h This file defines the prototype declarations of the sample
functions for controlling the FSW in the extra area.

5 sample_defines.h This file defines the macros of the sample functions for
controlling the flash memory.

6 sample_memmap.h This file defines the macros that describes the sections
used by the sample program that controls the flash
memory.

7 sample_types.h This file defines the enumerated-type return values for
the sample programs.

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 120 of 218
Aug.28.23

5.2 Data Type Definitions

5.2.1 Enumerations

 e_sample_ret (enumerated-type variable name: e_sample_ret_t)
Table 5-7 shows the results (normal end or error) of execution in the flash memory sequencer and the
status after execution.

Table 5-7 Results (Normal End or Error) of Execution in the Flash Memory Sequencer and Status

after Execution

Symbol Name Value Description

SAMPLE_ENUM_RET_STS_OK 0x00u Status (Normal end)

SAMPLE_ENUM_RET_ERR_PARAMETER 0x10u Parameter error

SAMPLE_ENUM_RET_ERR_CONFIGURATION 0x11u Configuration error

SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED 0x12u Mode mismatch error

SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA 0x13u Written data comparison error

SAMPLE_ENUM_RET_ERR_CFDF_SEQUENCER 0x20u Code/data flash memory area
sequencer error

SAMPLE_ENUM_RET_ERR_EXTRA_SEQUENCER 0x21u Extra area sequencer error

SAMPLE_ENUM_RET_ERR_ACT_ERASE 0x22u Erase operation error

SAMPLE_ENUM_RET_ERR_ACT_WRITE 0x23u Write operation error

SAMPLE_ENUM_RET_ERR_ACT_BLANKCHECK 0x24u Blank check operation error

SAMPLE_ENUM_RET_ERR_CMD_ERASE 0x30u Erase command error

SAMPLE_ENUM_RET_ERR_CMD_WRITE 0x31u Write command error

SAMPLE_ENUM_RET_ERR_CMD_BLANKCHECK 0x32u Blank check command error

SAMPLE_ENUM_RET_ERR_CMD_SET_EXTRA_AREA 0x33u Extra area command setting error

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 121 of 218
Aug.28.23

5.3 Sample Program Functions

Table 5-8 shows the sample program functions.

Table 5-8 List of Sample Program Functions

 API Function Name Outline

1 main (for code flash) Executes the main processing of the sample program for
controlling the reprogramming of the code flash memory.

2 Sample_CodeFlashControl Executes the processing for reprogramming the code flash
memory.

3 main (for data flash) Executes the main processing of the sample program for
controlling the reprogramming of the data flash memory.

4 Sample_DataFlashControl Executes the processing for reprogramming the data flash
memory.

5 main (for FSW control in extra
area)

Executes the main processing of the sample program for
controlling the reprogramming of the extra area (FSW function
settings).

6 Sample_ExtraFSWControl Executes the processing for reprogramming the extra area (FSW
function settings).

7 Sample_CheckCFDFSeqEnd Waits for the completion of command execution in the code/data
flash memory area sequencer.

8 Sample_CheckExtraSeqEnd Waits for the completion of command execution in the extra area
sequencer.

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 122 of 218
Aug.28.23

5.3.1 Sample Program for Controlling the Reprogramming of the Code Flash Memory

The sample program for controlling the reprogramming of the code flash memory in RFD RL78 Type 01
erases block 14 (00007000H) in the code flash area and writes 16-word (64-byte) data from the beginning of
the block.

Note: In the code flash memory programming mode, the programs in the code flash memory cannot
be executed. Copy the Sample_CodeFlashControl function and the processing to be executed
and data to be referenced within the function to RAM in advance, and execute and reference
them in RAM.

Operating conditions(Example of the sample program for RL78/G23):

• CPU operating frequency: 32 MHz (The high-speed on-chip oscillator clock is used for the main system
clock.)

• Code flash memory address for erasure and programming: 00007000H
• Block number for erasure: 000EH
• Size of write data: 16 words (64 bytes)

Figure 5-2 shows a flowchart of the main processing of the sample program for controlling the code flash
memory reprogramming in RFD RL78 Type 01.

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 123 of 218
Aug.28.23

5.3.1.1 main Function

Figure 5-2 Flowchart of the Main Processing of the Sample Program for Controlling Code Flash
Memory Reprogramming

• Set the write data in the buffer.

Is HOCO activated?

Yes No

• Return value ← Configuration
error

 • Initializes RFD RL78 Type 01 (specifies the operating
 frequency).

Is the frequency
within the range?

 • CPU operating frequency range of the RL78/G23:
1 MHz to 32 MHz
• Within range: Returns "normal end" (0x00).
Out of range: Returns "parameter error" (0x10).

Yes No

• Return value ← Parameter error

 • Processing for controlling the code flash memory

reprogramming
• Return value ← Value returned from the function

main

Return

Sample_
CodeFlashControl

R_RFD_Init

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 124 of 218
Aug.28.23

5.3.1.2 Sample_CodeFlashControl Function

• The sequencer is placed in the code flash memory programming mode and the blank check and block
erasure are executed.

Figure 5-3 Flowchart of Sample Processing for Controlling Code Flash Memory Reprogramming
(1/3)

• Initialize the return value
(STS_OK).
• Initialize the error flag (= False).
• Set the reprogramming address
in the variable.

• Specifies the code flash memory programming mode.

• Correctly placed in the mode: 0x00
Mismatch with the specified mode: 0x11

Yes No

• Error flag ← True
• Return value ← Mode mismatch

Error flag = False?

No Yes
 • Blank check processing

Blank check error?

Yes No
 • Erasure processing

Yes No

• Error flag ← True
• Return value ← Erase error

Sample_
CodeFlashControl

Sample_
CheckCFDFSeqEnd

Sample_
CheckCFDFSeqEnd

1

 • Error flag ← True
 • Return value ← Blank check error

Normal end?

Yes
No

R_RFD_
SetFlashMemoryMode

R_RFD_
BlankCheckCodeFlashReq

R_RFD_
EraseCodeFlashReq

Normal end?

Normal end?

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 125 of 218
Aug.28.23

• Programming is executed.

Figure 5-4 Flowchart of Sample Processing for Controlling Code Flash Memory Reprogramming
(2/3)

Error flag = False?

No Yes

• Initialize the programming
address.
• Initialize the counter (= 0).

 • Programming processing

Counter value < Length?

Yes No
 • Processing for controlling the code flash memory
 reprogramming

Normal end?

Yes No

• Increment the programming
address (+4).
• Increment the counter (+4).

• Error flag ← True
• Return value ← Write error

1

R_RFD_
WriteCodeFlashReq

Sample_
CheckCFDFSeqEnd

2

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 126 of 218
Aug.28.23

• The sequencer in placed in the non-programmable mode and the verification check is executed through
reading by the CPU.

Figure 5-5 Flowchart of Sample Processing for Controlling Code Flash Memory Reprogramming
(3/3)

 • Specifies the non-programmable mode.

Normal end?
 • Correctly placed in the mode: 0x00

Mismatch with the specified mode: 0x11
Yes No

• Error flag ← True
• Return value ← Mode mismatch

Error flag = False?

No Yes

• Initialize the counter (= 0).

 • Verification check through reading by the CPU

Counter value < Length?

Yes No

• Read the written data.

Read data match?

Yes No

• Increment the read address (+1).
• Increment the counter (+1).

• Error flag ← True
• Return value
← Data comparison error

R_RFD_
SetFlashMemoryMode

2

Return

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 127 of 218
Aug.28.23

5.3.2 Sample Program for Controlling the Reprogramming of the Data Flash Memory

The sample program for controlling the reprogramming of the data flash memory in RFD RL78 Type 01
erases block 0 (000F1000H) in the data flash area and writes 64-byte data from the beginning of the block.

Note: In the data flash memory programming mode, the data in the data flash memory cannot be
referenced. Copy the Sample_DataFlashControl function and the data to be referenced within
the function to RAM in advance, and reference them in RAM.

Operating conditions(Example of the sample program for RL78/G23):

• CPU operating frequency: 32 MHz (The high-speed on-chip oscillator clock is used for the main system
clock.)

• Data flash memory address for erasure and programming: 000F1000H
• Block number for erasure: 0000H
• Size of write data: 64 bytes

Figure 5-6 shows a flowchart of the main processing of the sample program for controlling the data flash
memory reprogramming in RFD RL78 Type 01.

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 128 of 218
Aug.28.23

5.3.2.1 main Function

Figure 5-6 Flowchart of the Main Processing of the Sample Program for Controlling
Data Flash Memory Reprogramming

• Set the write data in the buffer.

Is HOCO activated?

Yes No

• Return value ← Parameter error

 • Initializes RFD RL78 Type 01 (specifies the operating
 frequency).

Is the frequency
within the range?

 • CPU operating frequency range of the RL78/G23: 1 MHz to 32 MHz
• Within range: Returns "normal end" (0x00).
Out of range: Returns "parameter error" (0x10).

Yes No

• Return value ← Parameter error

 • Processing for controlling the data flash memory reprogramming

• Return value ← Value returned from the function

main

Return

R_RFD_Init

Sample_
DataFlashControl

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 129 of 218
Aug.28.23

5.3.2.2 Sample_DataFlashControl Function

• The sequencer is placed in the data flash memory programming mode and the blank check and block
erasure are performed.

Figure 5-7 Flowchart of Sample Processing for Controlling Data Flash Memory Reprogramming
(1/3)

• Initialize the return value
(STS_OK).
• Initialize the error flag (= False).
• Set the reprogramming address
in the variable.

 • Sets the DFLEN bit (bit 0) to 1 (enables access to the data flash

memory).

• Specifies the data flash memory programming mode.

Normal end?
• Correctly placed in the mode: 0x00
Mismatch with the specified mode: 0x11

Yes No
• Error flag ← True
• Return value ← Mode mismatch

Error flag = False?

No Yes
 • Blank check processing

Blank check error?

No Yes
 • Erasure processing

Normal end?

Yes No
• Error flag ← True
• Return value ← Erase error

Sample_
DataFlashControl

Sample_
CheckCFDFSeqEnd

Sample_
CheckCFDFSeqEnd

1

R_RFD_
SetDataFlashAccessMode

 • Error flag ← True
 • Return value ← Blank check error

Normal end?

Yes

R_RFD_
EraseDataFlashReq

R_RFD_
BlankCheckDataFlashReq

R_RFD_
SetFlashMemoryMode

No

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 130 of 218
Aug.28.23

• Programming is executed.

Figure 5-8 Flowchart of Sample Processing for Controlling Data Flash Memory Reprogramming
(2/3)

Error flag = False?

No Yes
• Initialize the programming
address.
• Initialize the counter (= 0).

 • Programming processing

Counter value < Length?

Yes No
 • Processing for controlling the data flash memory
 reprogramming

Normal end?

Yes No
• Increment the programming
address (+1).
• Increment the counter (+1).

• Error flag ← True
• Return value ← Write error

1

R_RFD_
WriteDataFlashReq

Sample_
CheckCFDFSeqEnd

2

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 131 of 218
Aug.28.23

• The sequencer is placed in the non-programmable mode and the verification check is executed through
reading by the CPU.

Figure 5-9 Flowchart of Sample Processing for Controlling Data Flash Memory Reprogramming
(3/3)

 • Specifies the non-programmable mode.

Normal end?

 • Correctly placed in the mode: 0x00
Mismatch with the specified mode: 0x11

Yes No

• Error flag ← True
• Return value ← Mode mismatch

Error flag = False?

No Yes

• Initialize the counter (= 0). • Verification check through reading by the CPU

Counter value < Length?

Yes No

• Read the written data.

Read data match?

Yes No

• Increment the read address (+1).
• Increment the counter (+1).

• Error flag ← True
• Return value ←
← Data comparison error

 • Sets the DFLEN bit (bit 0) to 0 (disables access to the data

flash memory).

R_RFD_
SetFlashMemoryMode

Return

2

R_RFD_
SetDataFlashAccessMode

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 132 of 218
Aug.28.23

5.3.3 Sample Program for Controlling the Reprogramming of the Extra Area

The sample program for controlling the reprogramming of the extra area in RFD RL78 Type 01 reprograms
the 4-byte (32-bit) area used to control the flash shield window (FSW).

• FSWS (start block) = 0, FSWE (end block + 1) = 64
(Enables reprogramming of the entire area of the code flash memory.)

• FSWC (FSW mode control) = 1 (outside shield mode)

Note: In the code flash memory programming mode for reprograming the extra area, the programs
in the code flash memory cannot be executed. Copy the Sample_ExtraFSWControl function
and the processing to be executed and data to be referenced within the function to RAM in
advance, and execute and reference them in RAM.

Operating conditions(Example of the sample program for RL78/G23):

• CPU operating frequency: 32 MHz (The high-speed on-chip oscillator clock is used for the main system
clock.)

• Area for programming: Extra area (FSW-related data)
• Size of write data: 4 bytes

Figure 5-10 shows a flowchart of the main processing of the sample program for controlling the extra area
reprogramming in RFD RL78 Type 01.

5.3.3.1 main Function

Figure 5-10 Flowchart of the Main Processing of the Sample Program for Controlling Extra Area
(FSW) Reprogramming

Is HOCO activated?

Yes No

• Return value ← Configuration
error

 • Initializes RFD RL78 Type 01 (specifies the operating frequency).

Is the frequency
within the range?

 • CPU operating frequency range of the RL78/G23: 1 MHz to 32 MHz
• Within range: Returns "normal end" (0x00).
Out of range: Returns "parameter error" (0x10).

Yes No

• Return value ← Parameter error

 • Processing for controlling the extra area reprogramming

• Return value ← Value returned from the function

main

Return

R_RFD_Init

Sample_
ExtraFSWControl

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 133 of 218
Aug.28.23

5.3.3.2 Sample_ExtraFSWControl Function

• The sequencer is placed in the code flash memory programming mode and the FSW setting processing
is performed.

Figure 5-11 Flowchart of Sample Processing for Controlling Extra Area (FSW) Reprogramming (1/2)

• Initialize the return value
(STS_OK).
• Initialize the error flag (= False).
• Set the reprogramming address
in the variable.

• Specifies the code flash memory programming mode.

Normal end?
• Correctly placed in the mode: 0x00
Mismatch with the specified mode: 0x11

Yes No

• Error flag ← True
• Return value ← Mode mismatch

Error flag = False?

No Yes
 • Flash shield window (FSW) setting processing

Normal end?

Yes No

• Error flag ← True
• Return value
← Extra area command setting
error

Sample_
ExtraFSWControl

Sample_
CheckExtraSeqEnd

R_RFD_
SetExtraFSWReq

R_RFD_
SetFlashMemoryMode

1

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 134 of 218
Aug.28.23

• The sequencer is placed in the non-programmable mode and the FSW settings are read to check that the
read settings match the expected values.

Figure 5-12 Flowchart of Sample Processing for Controlling Extra Area (FSW) Reprogramming (2/2)

 • Specifies the non-programmable mode.

Normal end?

 • Correctly placed in the mode: 0x00
Mismatch with the specified mode: 0x11

Yes No

• Error flag ← True
• Return value ← Mode mismatch

Error flag = False?

No Yes
 • Read the start block and the end block+1 of the FSW, the

FSW mode, and the setting of protection against FSW
modification.

Expected FSW setting?

No Yes

• Error flag ← True
• Return value
← Data comparison error

R_RFD_
SetFlashMemoryMode

1

Return

R_RFD_GetFSW

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 135 of 218
Aug.28.23

5.3.4 Sample Program Used in Common for Controlling the Flash Memory

5.3.4.1 Sample_CheckCFDFSeqEnd Function

• The end of the operation of the activated code/data flash memory area sequencer is confirmed and the
execution result is returned.

Yes

Yes

Figure 5-13 Flowchart of Sample_CheckCFDFSeqEnd Function

• Initialize the return value
(STS_OK).

Is the sequencer busy?

 No

Is the sequencer busy?

 No

Sequencer error?

 Yes

R_RFD_
ClearSeqRegister

R_RFD_Check
CFDFSeqEndStep1

Sample_Check
CFDFSeqEnd

R_RFD_Check
CFDFSeqEndStep2

R_RFD
GetSeqErrorStatus

Return value ←
ERR_CFDF_SEQUENCER

Erase error?

Return value ← ERR_ACT_ERASE

Write error?

Blank check error?

Return

Return value ← ERR_ACT_WRITE

Return value ←
ERR_ACT_BLANKCHECK

Return value ← STS_OK

Yes

Yes

Yes

No

No

No

No

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 136 of 218
Aug.28.23

5.3.4.2 Sample_CheckExtraSeqEnd Function

• The end of the operation of the activated extra area sequencer is confirmed and the execution result is
returned.

Yes

Yes

Figure 5-14 Flowchart of Sample_CheckExtraSeqEnd Function

• Initialize the return value
(STS_OK).

Is the sequencer busy?

 No

Is the sequencer busy?

 No

Sequencer error?

 Yes

R_RFD_
ClearSeqRegister

R_RFD_Check
ExtraSeqEndStep1

Sample_Check
ExtraSeqEnd

R_RFD_Check
ExtraSeqEndStep2

R_RFD
GetSeqErrorStatus

Return value ←
ERR_Extra_SEQUENCER

Erase error?

Return value ← ERR_ACT_ERASE

 Write error?

Blank check error?

Return

Return value ← ERR_ACT_WRITE

Return value ←
ERR_ACT_BLANKCHECK

Return value ← STS_OK

Yes

Yes

Yes

No

No

No

No

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 137 of 218
Aug.28.23

5.4 Specifications of Sample Program Functions

This section describes the specifications of the functions in the sample programs for RFD RL78 Type 01.

The sample programs for RFD RL78 Type 01 are examples of basic processing for reprogramming the code
flash area, data flash area, and extra area. The functions in the sample programs can be used as reference
for developing an application program that reprograms these areas.

Please be sure to thoroughly check the operation of the developed application program.

5.4.1 Sample Program Functions for Controlling the Reprogramming of the Code Flash Memory

5.4.1.1 main

Information:

Syntax int main(void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_sample_ret_t SAMPLE_ENUM_RET_STS_OK: 0x00
[Normal end]
SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED: 0x12
[Mode mismatch error]
SAMPLE_ENUM_RET_ERR_CMD_ERASE: 0x30
[Erase command error]
SAMPLE_ENUM_RET_ERR_CMD_BLANKCHECK: 0x32
[Blank check command error]
SAMPLE_ENUM_RET_ERR_CMD_WRITE: 0x31
[Write command error]
SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA: 0x13
[Written data comparison error]
SAMPLE_ENUM_RET_ERR_PARAMETER: 0x10
[Parameter error]
SAMPLE_ENUM_RET_ERR_CONFIGURATION: 0x11
[Configuration error]

Description Executes the main processing of the sample program for controlling the
reprogramming of the code flash memory.

Preconditions Execute this function in the non-programmable mode while the high-speed on-chip
oscillator is active.

Remarks 

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 138 of 218
Aug.28.23

5.4.1.2 Sample_CodeFlashControl

Information:

Syntax R_RFD_FAR_FUNC e_sample_ret_t Sample_CodeFlashControl
(uint32_t i_u32_start_addrr,
uint16_t i_u16_write_data_length,
uint8_t __near * inp_u08_write_data);

Reentrancy Non-reentrant

Parameters
(IN)

uint32_t
i_u32_start_addr

Start address of the area to be reprogrammed

uint16_t
i_u16_write_data_length

Size of the reprogram data

uint8_t __near *
inp_u08_write_data

Pointer to the reprogram data buffer

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_sample_ret_t SAMPLE_ENUM_RET_STS_OK: 0x00
[Normal end]
SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED: 0x12
[Mode mismatch error]
SAMPLE_ENUM_RET_ERR_CMD_ERASE: 0x30
[Erase command error]
SAMPLE_ENUM_RET_ERR_CMD_BLANKCHECK: 0x32
[Blank check command error]
SAMPLE_ENUM_RET_ERR_CMD_WRITE: 0x31
[Write command error]
SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA: 0x13
[Written data comparison error]

Description Executes the processing for reprogramming the code flash memory.
 The blank check, erase, and write commands are executed in the code flash memory
programming mode.
 The written data are read in the non-programmable mode to check that the data have
been written correctly.

Preconditions Execute this function in the non-programmable mode while the high-speed on-chip
oscillator is active.

Remarks 

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 139 of 218
Aug.28.23

5.4.2 Sample Program Functions for Controlling the Reprogramming of the Data Flash Memory

5.4.2.1 main

Information:

Syntax int main(void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_sample_ret_t SAMPLE_ENUM_RET_STS_OK: 0x00
[Normal end]
SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED:
0x12 [Mode mismatch error]
SAMPLE_ENUM_RET_ERR_CMD_ERASE: 0x30
[Erase command error]
SAMPLE_ENUM_RET_ERR_CMD_BLANKCHECK: 0x32
[Blank check command error]
SAMPLE_ENUM_RET_ERR_CMD_WRITE: 0x31
[Write command error]
SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA:
0x13 [Written data comparison error]
SAMPLE_ENUM_RET_ERR_PARAMETER: 0x10
[Parameter error]
SAMPLE_ENUM_RET_ERR_CONFIGURATION: 0x11
[Configuration error]

Description Executes the main processing of the sample program for controlling the
reprogramming of the data flash memory.

Preconditions Execute this function in the non-programmable mode while the high-speed on-chip
oscillator is active.

Remarks 

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 140 of 218
Aug.28.23

5.4.2.2 Sample_DataFlashControl

Information:

Syntax R_RFD_FAR_FUNC e_sample_ret_t Sample_DataFlashControl
(uint32_t i_u32_start_addrr,
uint16_t i_u16_write_data_length,
uint8_t __near * inp_u08_write_data);

Reentrancy Non-reentrant

Parameters
(IN)

uint32_t i_u32_start_addr Start address of the area to be reprogrammed

uint16_t
i_u16_write_data_length

Size of the reprogram data

uint8_t __near *
inp_u08_write_data

Pointer to the reprogram data buffer

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_sample_ret_t SAMPLE_ENUM_RET_STS_OK: 0x00
[Normal end]
SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED:
0x12 [Mode mismatch error]
SAMPLE_ENUM_RET_ERR_CMD_ERASE: 0x30
[Erase command error]
SAMPLE_ENUM_RET_ERR_CMD_BLANKCHECK:
0x32
[Blank check command error]
SAMPLE_ENUM_RET_ERR_CMD_WRITE: 0x31
[Write command error]
SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA:
0x13 [Written data comparison error]

Description Executes the processing for reprogramming the data flash memory.
 The blank check, erase, and write commands are executed in the data flash memory
programming mode.
 The written data are read in the non-programmable mode to check that the data have
been written correctly.

Preconditions Execute this function in the non-programmable mode while the high-speed on-chip
oscillator is active.
Enable access to the data flash memory at the beginning of this function, and disable it
after the reprogramming of the data flash memory is completed.

Remarks 

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 141 of 218
Aug.28.23

5.4.3 Sample Program Functions for Controlling the Reprogramming of the Extra Area

5.4.3.1 main

Information:

Syntax int main(void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_sample_ret_t SAMPLE_ENUM_RET_STS_OK: 0x00
[Normal end]
SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED: 0x12
[Mode mismatch error]
SAMPLE_ENUM_RET_ERR_CMD_SET_EXTRA_AREA:
0x33 [Extra area command setting error]
SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA:
0x13 [Written data comparison error]
SAMPLE_ENUM_RET_ERR_PARAMETER: 0x10
[Parameter error]
SAMPLE_ENUM_RET_ERR_CONFIGURATION: 0x11
[Configuration error]

Description Executes the main processing of the sample program for controlling the
reprogramming of the extra area (FSW function settings).

Preconditions Execute this function in the non-programmable mode while the high-speed on-chip
oscillator is active.

Remarks 

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 142 of 218
Aug.28.23

5.4.3.2 Sample_ExtraFSWControl

Information:

Syntax R_RFD_FAR_FUNC e_sample_ret_t Sample_ExtraFSWControl
(uint16_t i_u16_start_block_number,
uint16_t i_u16_end_block_number,
e_rfd_fsw_mode_t i_e_fsw_mode);

Reentrancy Non-reentrant

Parameters
(IN)

uint16_t
i_u16_start_block_numberr

Start block number
Example: For RL78/G23, 0 to 383 (768 Kbytes max.)

uint16_t
i_u16_end_block_number

End block number + 1
Example: For RL78/G23, 1 to 384 (768 Kbytes max.)

e_rfd_fsw_mode_t
i_e_fsw_mode

Flash shield window mode

R_RFD_ENUM_FSW_MODE_INSIDE: 0x00
 [Inside shield mode]
R_RFD_ENUM_FSW_MODE_OUTSIDE: 0x01
 [Outside shield mode]

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_sample_ret_t SAMPLE_ENUM_RET_STS_OK: 0x00
[Normal end]
SAMPLE_ENUM_RET_ERR_MODE_MISMATCHED:
0x12 [Mode mismatch error]
SAMPLE_ENUM_RET_ERR_CMD_SET_EXTRA_AREA:
0x33 [Extra area command setting error]
SAMPLE_ENUM_RET_ERR_CHECK_WRITE_DATA:
0x13 [Written data comparison error]

Description Executes the processing for reprogramming the extra area (FSW function settings).
 The write command for the extra area (FSW-related data programming command) is
executed in the code flash memory programming mode.
 The on-chip registers corresponding to the written data are read in the non-programmable
mode to check that the data have been written correctly.

Preconditions Execute this function in the non-programmable mode while the high-speed on-chip oscillator
is active.

Remarks 

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 143 of 218
Aug.28.23

5.4.4 Sample Program Functions Used in Common

5.4.4.1 Sample_CheckCFDFSeqEnd

Information:

Syntax R_RFD_FAR_FUNC e_sample_ret_t Sample_CheckCFDFSeqEnd(void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_sample_ret_t SAMPLE_ENUM_RET_STS_OK: 0x00
[Normal end]
SAMPLE_ENUM_RET_ERR_CFDF_SEQUENCER: 0x20
 [Code/data flash memory area sequencer error]
SAMPLE_ENUM_RET_ERR_ACT_ERASE: 0x22
[Erase operation error]
SAMPLE_ENUM_RET_ERR_ACT_WRITE: 0x23
[Write operation error]
SAMPLE_ENUM_RET_ERR_ACT_BLANKCHECK: 0x24
[Blank check operation error]

Description Waits for the completion of command execution in the code/data flash memory area
sequencer.

Preconditions Use this function in the code flash memory programming mode or data flash memory
programming mode while the high-speed on-chip oscillator is active.
When reprogramming the data flash memory, use this function while access to the
data flash memory is enabled (DFLEN = 1).

Remarks 

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 144 of 218
Aug.28.23

5.4.4.2 Sample_CheckExtraSeqEnd

Information:

Syntax R_RFD_FAR_FUNC e_sample_ret_t Sample_CheckExtraSeqEnd(void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_sample_ret_t SAMPLE_ENUM_RET_STS_OK: 0x00
[Normal end]
SAMPLE_ENUM_RET_ERR_EXTRA_SEQUENCER:
0x21
 [Extra area sequencer error]
SAMPLE_ENUM_RET_ERR_ACT_ERASE: 0x22
[Erase operation error]
SAMPLE_ENUM_RET_ERR_ACT_WRITE: 0x23
[Write operation error]
SAMPLE_ENUM_RET_ERR_ACT_BLANKCHECK: 0x24
[Blank check operation error]

Description Waits for the completion of command execution in the extra area sequencer.

Preconditions Execute this function in the code flash memory programming mode while the high-speed
on-chip oscillator is active.

Remarks 

RFD RL78 Type 01 5. Sample Programs

R20UT4830EJ0120 Rev.1.20 Page 145 of 218
Aug.28.23

5.5 Precautions in Case of Using Sample Program

- The precautions in the case of using RL78/G24.

Only the case which sets an option byte(000C2H/040C2H) to 0xF0 and uses the clock frequency of CPU at
24 MHz is necessary for the following countermeasures. Modify into the comments or delete so that a part of
sample program for RL78/G24 may not compile.

If a red character part is compiled, prefetch buffer will become valid and will operate at 48 MHz.

Target folder:
\RFDRL78T01\sample\RL78_G24\[Area name]\[Compiler name]\source\

Target file:
CC-RL and LLVM: hdwinit.c
IAR: low_level_init.c

The following red character parts are the examples which modified the source code to the comment.

/* Start HOCO. It must be started before flash control. */
HIOSTOP = 0u;

/* Check CPU frequency in the user option byte (0x000C2). */
/* 0xF0 : HS mode 48 MHz */
//if (0xF0u == (*(volatile unsigned char __far *)0x000C2u))
//{
// /* Set CPU frequency 48 MHz (Enables the prefetch buffer). */
// HOCODIV = 0x00u;
// PFBE = 1u;
// FIHSEL = 1u;
//
// /* Confirm the switching status flag. */
// while (1u == FIHST)
// {
// /* No operation */
// }
//}
//else
//{
// /* No operation */
//}

/* Disable RAM parity error reset. */
RPERDIS = 1u;

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 146 of 218
Aug.28.23

6. Creating a Sample Project for RFD RL78 Type 01

RFD RL78Type 01 includes sample programs for a code flash memory area and a data flash memory area
to program. The compilers which can be used by RFD RL78 Type 01 are a CC-RL compiler ,an IAR compiler
and a LLVM compiler. Users can create a sample project using the Integrated Development
Environment(IDE) corresponding to each compiler.

The target sample programs differ in each device. This section is explained in the sample program example
for RL78/G23. If you are using another device on the RL78/G23, change the G23 description to the target
device. Section address settings must be changed by referring to the user's manual for the target device. In
addition, Because the flash memory control scheme varies depending on the target device, the classification
macro must be configured in the Integrated Development Environment (IDE). The setting method is
described in "6.1.3.2 The setting of user definition macro" (CC-RL), "6.2.3.2 The setting of user definition
macro" (IAR) or "6.3.3.2 The Setting of User Definition Macro” (LLVM).
If the RL78/G22 is used, the RL78/G23 sample program is available.

Note : The target Integrated Development Environment(IDE) and the compiler are premised on
using the version for RL78/G2x. Be sure to use them, after confirming that RL78/G2x are
target products.

6.1 Creating a Project in the Case of Using a CC-RL Compiler

CS+ or e2 studio can be used for a RENESAS CC-RL compiler as an IDE. RFD RL78 Type 01 is registered
and built in the project created by the IDE. An example of creating a sample project in case each IDE is used
is shown. Because to understand a CC-RL compiler and each IDE, it is necessary to refer to the user's
manual of each tool product.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 147 of 218
Aug.28.23

6.1.1 Example of Creating a Sample Project

(1) An example of creating a sample project which used CS+ (IDE)
・The CS+ starts and from the [Project] menu, select [Create New Project...], the “Create Project” window

will open.
- Select the product of ”RL78/G23 (ROM: 128Kbytes)” - “R7F100GLGxFB(64pin)” as [Using
microcontroller].

- Select "Application(CC-RL)" as [Kind of project].
- [Project name] is temporarily set to "RFDRL78T01_PJ01".
- When you click the [Create] button, the new project is created.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 148 of 218
Aug.28.23

(2) An example of creating a sample project which used e2 studio (IDE)
・The e2 studio starts and from the [File] menu, select [New] – [C/C++ Project], the “Templates for New

C/C++ Project” window will open.

・Select [Renesas CC-RL C Executable Project] displayed after selection in [Renesas RL78], and press
"next" button.

・Input "project name" on “New Renesas CC-RL Executable Project" window, and press "next" button.

[Project name] is temporarily set to "RFDRL78T01_PJ01".

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 149 of 218
Aug.28.23

・Select the [Target Device] of [Device Settings], and select ”RL78 - G23” - “R7F100GLGxFB”.
・It is a premise that E2 Lite is selected as a debugging tool and on-chip debugging is executed. Put a check

mark to "Create Hardware Debug Configuration" by [Configurations]. And select "E2 Lite(RL78)”.
・Press "Finish" button.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 150 of 218
Aug.28.23

6.1.2 Example of Registration of Target Folders and Target Files

Using RFD RL78Type 01, when programming each area [(1) code flash memory, (2) data flash memory, (3)
extra area], the example which registers necessary files is shown. Each folder of a RFD RL78Type 01
source-program file is "include", "source", "userown", and "sample". The target file in each folder is selected
and registered by the area programmed.
As other registration methods, after all the folders of "include", "source", "userown", and "sample" are
registered, unnecessary files and folders can be removed using the function of "Remove from Project"(CS+)
or [Resource Configuration] – [Exclude from Build] (e2 studio).

The registration tree screen of RFD (CS+) The registration tree screen of RFD (e2 studio)

・Registration of the latest I/O header file(iodefine.h) outputted to target products by IDE
"iodefine.h" is an I/O header file which CS+ or e2 studio outputs to target products. Replacing instead of
"iodefine.h" included in RFD RL78 Type 01 is recommended. Registration of target folders and target files
is implemented. Then, a user replaces "iodefine.h" which IDE outputted with "iodefine.h" included in RFD
RL78 Type 01.

The folder to which an I/O header file (iodefine.h) is outputted by IDE :
- CS+ : [Project name] Folder
- e2 studio : [Project name]/generate Folder

The folder with which a user replaces the "iodefine.h" file :
- The case of code flash programming : ”\[Project name]\sample\RL78_G23\CF\CCRL\include”
- The case of data flash programming : ”\[Project name]\sample\RL78_G23\DF\CCRL\include”
- The case of extra area(FSW) programming :

”\[Project name]\sample\RL78_G23\EX_FSW\CCRL\include”

・Exclusion of the file automatically added by the function of IDE.
There are files added automatically in the created project. The same file as these exists also in the
"sample" folder of RFD RL78 Type 01. Therefore, using the function of IDE, Select those files from tree
and excludes from a project.
- CS+ : Click the right mouse button for the file of tree. And exclude target file using "Remove from Project"
function. Targets are "cstart.asm, hdwinit.asm, stkinit.asm, main.c, and iodefine.h" in [project name]
folder.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 151 of 218
Aug.28.23

- e2 studio : Clicks the right mouse button for the file of tree. And On the [Settings] screen displayed by the
"property", put a check mark to [Exclude resource from build] and exclude a target file (target folder).
(Exclusion of a folder is also possible)
Target files are cstart.asm, hdwinit.asm, iodefine.h, and stkinit.asm in a [project name] / generate folder.
And [project name] .c ("RFDRL78T01_PJ01.c") in a [project name]/src folder is a target.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 152 of 218
Aug.28.23

(1) Registration of the folders and files of the target in the case of reprogramming code flash memory
The folders ("include", "source", "userown", "sample") and source program file which are included in RFD
RL78 Type 01 to register are shown below.

in the “include” folder in the “userown” folder

in the “sample” folder

in the “source” folder

Transpose to "iodefine.h" outputted
by CS+ or e2 studio.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 153 of 218
Aug.28.23

(2) Registration of the folders and files of the target in the case of reprogramming data flash memory
The folders ("include", "source", "userown", "sample") and source program file which are included in RFD
RL78 Type 01 to register are shown below.

in the “include” folder in the “userown” folder

in the “sample” folder

in the “source” folder

Transpose to "iodefine.h" outputted
by CS+ or e2 studio.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 154 of 218
Aug.28.23

(3) Registration of the folders and files of the target in the case of reprogramming extra area (FSW setting)
The folders ("include", "source", "userown", "sample") and source program file which are included in RFD
RL78 Type 01 to register are shown below.

in the “include” folder in the “userown” folder

in the “sample” folder

in the “source” folder

Transpose to "iodefine.h" outputted
by CS+ or e2 studio.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 155 of 218
Aug.28.23

6.1.3 Build Tool Settings

Set IDE setting necessary in order to build RFD RL78 Type 01 using a CC-RL compiler.
CS+ : Click the right mouse button for the “CC-RL(Build tool)” in a tree, and select "Property". And set each
setting of the build tool in the displayed window.
e2 studio : Click the right mouse button for the project(”RFDRL78T01_PJ01“) in a tree, and select "Property".
And set each setting of the build tool in the displayed window.

6.1.3.1 Include Path Settings

・Setting of the include path on CS+ inputs path in “Common Options” tab. (Change by a target area)
- Input the Include directory path in the “Path Edit” window displayed by selection of [Frequently Used
Options(for Compile)] - [Additional include paths].

(1) Code flash memory reprogramming
include\rfd
include
sample\RL78_G23\CF\CCRL\include
sample\common\include

(2) Data flash memory reprogramming
include\rfd
include
sample\RL78_G23\DF\CCRL\include
sample\common\include

(3) Extra area(FSW) reprogramming
include\rfd
include
sample\RL78_G23\EX_FSW\CCRL\include
sample\common\include

・Setting of the include path on e2 studio inputs path in “Properties” window. (Change by a target area)
- Input the Include directory path in the window displayed by selection of ”C/C++” build [Setting] -
“Compiler” [Source].

(1) Code flash memory reprogramming
${ProjDirPath}\src\include\rfd
${ProjDirPath}\src\include
${ProjDirPath}\src\sample\RL78_G23\CF\CCRL\include
${ProjDirPath}\src\sample\common\include

(2) Data flash memory reprogramming
${ProjDirPath}\src\include\rfd
${ProjDirPath}\src\include
${ProjDirPath}\src\sample\RL78_G23\DF\CCRL\include
${ProjDirPath}\src\sample\common\include

(3) Extra area(FSW) reprogramming
${ProjDirPath}\src\include\rfd
${ProjDirPath}\src\include
${ProjDirPath}\src\sample\RL78_G23\EX_FSW\CCRL\include
${ProjDirPath}\src\sample\common\include

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 156 of 218
Aug.28.23

6.1.3.2 The setting of user definition macro

・On CS+, the macro for flash memory control system classification is defined in "Common Options" tab.
- Define the following macro in the “Text Edit” window displayed by selection of [Frequently Used
Options(for Compile)] - [Macro definition]. Definition macro differs by each device to be used.

Macros defined when using RL78/G23, RL78/G22:
R_RFD_MCU_FLASH_T01_CATEGORY01

Macros defined when using RL78/G24:

R_RFD_MCU_FLASH_T01_CATEGORY02

・On e2 studio, the macro for flash memory control system classification is defined in "Properties" window.
- Define the following macro in the “Macro Definition (-D)” displayed by selection of [C/C++ Build” [Settings]] -
Compiler” [Source]. Definition macro differs by each device to be used.

Macros defined when using RL78/G23, RL78/G22:
R_RFD_MCU_FLASH_T01_CATEGORY01

Macros defined when using RL78/G24:

R_RFD_MCU_FLASH_T01_CATEGORY02

Note : A compile error will be outputted if macro is not defined.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 157 of 218
Aug.28.23

6.1.3.3 Device Item Settings

・Setting of the device Items on CS+ inputs in the “Link Options” tab. (Common in each area)
- Setting the [Device] items
Select "Yes (-OCDBG)" in [Set enable/disable on-chip debug by link option].
Note : The example of a setting on condition of on-chip debugging execution.

Input the "85" into [Option byte values for OCD]. (Example of permission of operation for on-chip
debugging)
Note : Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes",

and "On-chip debug option byte" on the user's manual of a target device. And describe the
set value used with user application.

Select " Yes(Specify address range)(-OCDBG_MONITOR=<Address range>)" in [Set debug monitor
area]. Set "1FE00-1FFFF" to [Range of debug monitor area]. [The example for RL78/G23]
Note : The user needs to input the range of the area which the debugger uses with reference to

description of the user's manual for a target device. And please refer to “Memory Spaces
Allocated for Use by the Monitor Program for Debugging” in “Allocation of Memory
Spaces to User Resources” on a user's manual.

Select " Yes(-USER_OPT_BYTE)" in [Set user option byte].
Set ”6EFFE8” to [User option byte value]. (WDT stop, LVD reset mode, HS mode /32MHz [The example
for RL78/G23])
Note : Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes",

and "User option bytes" on the user's manual of a target device. And describe the set
value used with user application.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 158 of 218
Aug.28.23

・Setting of the device Items on e2 studio inputs in the “Properties” window. (Common in each area)
- Select ”C/C++ Build” [Setting] - “Linker” [Device]. And set device items on the displayed screen.
Put in a check mark to [Secure memory area of OCD monitor(-debug_monitor)] in the screen.
Note : The example of a setting on condition of on-chip debugging execution.

Set "1FE00-1FFFF" to [Memory area(-debug_monitor=<start address>-<end address>)]. [The example
for RL78/G23]
Note : The user needs to input the range of the area which the debugger uses with reference to

description of the user's manual for a target device. And please refer to “Memory Spaces
Allocated for Use by the Monitor Program for Debugging” in “Allocation of Memory
Spaces to User Resources” on a user's manual.

Put a check mark to [Set user option byte(-user_opt_byte)].
Set ”6EFFE8” to [User option byte value(-user_opt_byte=<value>)]. (WDT stop, LVD reset mode, HS
mode /32MHz [The example for RL78/G23])
Note : Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes",

and "User option bytes" on the user's manual of a target device. And describe the set
value used with user application.

Put a check mark to [Set enable /disable on-chip debug by link option(-ocdbg)].
Note : The example of a setting on condition of on-chip debugging execution.

Input the "85" into [On-chip debug control value(-ocdbg=<value>)]. (Example of permission of operation
for on-chip debugging)
Note : Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes",

and "On-chip debug option byte" on the user's manual of a target device. And describe the
set value used with user application.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 159 of 218
Aug.28.23

6.1.3.4 Section Item Settings

・Setting of the section Items on CS+ inputs in the “Link Options” tab. (Common in each area)
- Setting the [Section] items
Set "No" to [Layout sections automatically]. And sections come to be displayed on [Section start address].
Press the " " button of the right-hand side which sections are displaying, and a "Section settings"
screen is displayed.

・Setting of the section Items on e2 studio inputs in the “Properties” window.(Common in each area)
- Select ”C/C++ Build” [Setting] - “Linker” [Section]. And set section items on the displayed screen.
Remove a check mark to [Layout sections automatically(-auto_section_layout)]. Press the " " button
of the right-hand side which sections are displaying, and a "Section viewer" screen is displayed.

“セクション設定”画面設定

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 160 of 218
Aug.28.23

・Section setting operation for CS+ and e2 studio
Set "0x03000" to a top address.
Add the sections defined by "#pragma section" in RFD RL78 Type 01 to the program area (code flash
memory) and the RAM area. Refer to "2.3.1 Sections in case of using RFD RL78 Type 01" for the
details of each section.
Note : In this description, it is a premise to select a medium model as Memory Model of Compile

Options. (It is the same as the "auto select" in R7F100GLG) The section names of each
program on "#pragma section" of CC-RL are set to "section name +_f" with a "__far"
attribute. The section names copied to RAM from ROM are "section name +_fR" with a
"__far" attribute. Copy processing of the sections from ROM to RAM is executed in a
cstart.asm file. Refer to the user's manual of CC-RL for the section name of each program
when a "small model" is selected.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 161 of 218
Aug.28.23

(1)The addition of the sections for code flash memory reprogramming
・The addition of the sections for code flash memory reprogramming on CS+

Add sections necessary for code flash memory reprogramming on a "Section Settings" screen.

Add to the program area : RFD_DATA_n, RFD_CMN_f, RFD_CF_f, SMP_CMN_f, SMP_CF_f
Add to the RAM area : .stack_bss, RFD_DATA_nR, RFD_CMN_fR, RFD_CF_fR, SMP_CMN_fR,

SMP_CF_fR

Be sure to return [Layout sections automatically] to "Yes", after pressing the "OK" button.

Press the right-hand side " " button by [ROM to RAM mapped section], display the "Text Edit" screen,
and add the section for copying to RAM from ROM.

Additional
sections

RFD_DATA_n

RFD_CMN_f

RFD_CF_f

SMP_CMN_f

SMP_CF_f

.stack_bss

RFD_DATA_nR

RFD_CMN_fR

RFD_CF_fR

SMP_CMN_fR

SMP_CF_fR

ROM to RAM mapped
 section (-rom)

.data=.dataR

.sdata=.sdataR

RFD_DATA_n=RFD_DATA_nR

RFD_CMN_f=RFD_CMN_fR

RFD_CF_f=RFD_CF_fR

SMP_CMN_f=SMP_CMN_fR
SMP_CF_f=SMP_CF_fR

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 162 of 218
Aug.28.23

・The addition of the sections for code flash memory reprogramming on e2 studio
Add sections necessary for code flash memory reprogramming on a "Section Viewer".

Add to the program area : RFD_DATA_n, RFD_CMN_f, RFD_CF_f, SMP_CMN_f, SMP_CF_f
Add to the RAM area :.stack_bss, RFD_DATA_nR, RFD_CMN_fR, RFD_CF_fR, SMP_CMN_fR,

SMP_CF_fR

Be sure to put a check mark to [Layout sections automatically (-auto_section_layout)], after pressing the
"OK" button.

Select ”C/C++ Build” [Setting] - “Linker” [Output], display the "ROM to RAM mapped section (-rom)"
screen, and add the section for copying to RAM from ROM.

Additional
sections

RFD_DATA_n

RFD_CMN_f

RFD_CF_f

SMP_CMN_f

SMP_CF_f

.stack_bss

RFD_DATA_nR

RFD_CMN_fR

RFD_CF_fR

SMP_CMN_fR

SMP_CF_fR

ROM to RAM mapped
 section (-rom)

.data=.dataR

.sdata=.sdataR

RFD_DATA_n=RFD_DATA_nR

RFD_CMN_f=RFD_CMN_fR

RFD_CF_f=RFD_CF_fR

SMP_CMN_f=SMP_CMN_fR

SMP_CF_f=SMP_CF_fR

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 163 of 218
Aug.28.23

(2) The addition of the sections for data flash memory reprogramming
・The addition of the sections for data flash memory reprogramming on CS+

Add sections necessary for data flash memory reprogramming on a "section settings" screen.

Add to the program area : RFD_DATA_n, RFD_CMN_f, RFD_DF_f, SMP_CMN_f, SMP_DF_f
Add to the RAM area :.stack_bss, RFD_DATA_nR

Be sure to return [Layout sections automatically] to "Yes", after pressing the "OK" button.

Press the right-hand side " " button by [ROM to RAM mapped section], display the "Text Edit" screen,
and add the section for copying to RAM from ROM.

Additional
sections

RFD_DATA_n

RFD_CMN_f

RFD_DF_f

SMP_CMN_f

SMP_DF_f

.stack_bss

RFD_DATA_nR

ROM to RAM mapped
 section (-rom)

.data=.dataR

.sdata=.sdataR

RFD_DATA_n=RFD_DATA_nR

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 164 of 218
Aug.28.23

・The addition of the sections for data flash memory reprogramming on e2 studio
Add sections necessary for data flash memory reprogramming on a "Section Viewer".

Add to the program area : RFD_DATA_n, RFD_CMN_f, RFD_DF_f, SMP_CMN_f, SMP_DF_f
Add to the RAM area :.stack_bss, RFD_DATA_nR

Be sure to put a check mark to [Layout sections automatically (-auto_section_layout)], after pressing the
"OK" button.

Select ”C/C++ Build” [Setting] - “Linker” [Output], display the "ROM to RAM mapped section (-rom)"
screen, and add the section for copying to RAM from ROM.

Additional
sections

RFD_DATA_n

RFD_CMN_f

RFD_DF_f

SMP_CMN_f

SMP_DF_f

.stack_bss

RFD_DATA_nR

ROM to RAM mapped
 section (-rom)

.data=.dataR

.sdata=.sdataR

RFD_DATA_n=RFD_DATA_nR

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 165 of 218
Aug.28.23

(3)The addition of the sections for extra area(FSW) reprogramming
・The addition of the sections for extra area(FSW) reprogramming on CS+

Add sections necessary for extra area(FSW) reprogramming on a "section settings" screen.

Add to the program area : RFD_DATA_n, RFD_CMN_f, RFD_EX_f, SMP_CMN_f, SMP_EX_f
Add to the RAM area :.stack_bss, RFD_DATA_nR, RFD_CMN_fR, RFD_EX_fR, SMP_CMN_fR,

SMP_EX_fR

Be sure to return [Layout sections automatically] to "Yes", after pressing the "OK" button.

Press the right-hand side " " button by [ROM to RAM mapped section], display the "Text Edit" screen,
and add the section for copying to RAM from ROM.

Additional
sections

RFD_DATA_n

RFD_CMN_f

RFD_EX_f

SMP_CMN_f

SMP_EX_f

.stack_bss

RFD_DATA_nR

RFD_CMN_fR

RFD_EX_fR

SMP_CMN_fR

SMP_EX_fR

ROM to RAM mapped
 section (-rom)

.data=.dataR

.sdata=.sdataR

RFD_DATA_n=RFD_DATA_nR

RFD_CMN_f=RFD_CMN_fR

RFD_EX_f=RFD_EX_fR

SMP_CMN_f=SMP_CMN_fR

SMP_EX_f=SMP_EX_fR

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 166 of 218
Aug.28.23

・The addition of the sections for extra area(FSW) reprogramming on e2 studio
Add sections necessary for extra area(FSW) reprogramming on a "Section Viewer".

Add to the program area : RFD_DATA_n, RFD_CMN_f, RFD_EX_f, SMP_CMN_f, SMP_EX_f
Add to the RAM area :.stack_bss, RFD_DATA_nR, RFD_CMN_fR, RFD_EX_fR, SMP_CMN_fR,

SMP_EX_fR

Be sure to put a check mark to [Layout sections automatically (-auto_section_layout)], after pressing the
"OK" button.

Select ”C/C++ Build” [Setting] - “Linker” [Output], display the "ROM to RAM mapped section (-rom)"
screen, and add the section for copying to RAM from ROM.

Additional
sections

RFD_DATA_n

RFD_CMN_f

RFD_EX_f

SMP_CMN_f

SMP_EX_f

.stack_bss

RFD_DATA_nR

RFD_CMN_fR

RFD_EX_fR

SMP_CMN_fR

SMP_EX_fR

ROM to RAM mapped
 section (-rom)

.data=.dataR

.sdata=.sdataR

RFD_DATA_n=RFD_DATA_nR

RFD_CMN_f=RFD_CMN_fR

RFD_EX_f=RFD_EX_fR

SMP_CMN_f=SMP_CMN_fR

SMP_EX_f=SMP_EX_fR

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 167 of 218
Aug.28.23

6.1.4 Debug Tool Settings

This section describes the contents of connection setting on a target board necessary in order to execute on-
chip debugging. As a debugging tool, it is a premise that E2 Lite is selected. Refer to the user's manual for
each IDE for the details of other debugging tool setting.

On CS+, right-click a mouse by "RL78 simulator (Debug Tool)" [initial setting] of a tree. And select the "RL78
E2 Lite" by "Using Debug Tool" displayed there. After selecting, right-click the mouse again, select
"Properties" and the "Properties of RL78 E2 Lite" screen will be displayed. And a "RL78 E2 Lite Property"
screen is displayed, and select each tab, and perform debugging tool setting.

On e2 studio, right-click a mouse in the target project of a tree. Selection of [Debug As] - [Debug
Configurations…] will display the "Debug Configurations" screen. On the tree of a screen, select the target
project ("RFDRL78T01_PJ01 HardwareDebug") of [Renesas GDB Hardware Debugging]. And the displayed
"Debugger" tab performs debugging tool setting.

Note: The power is already supplied to the target board, or when power supply capacity is
insufficient, the emulator including E2 Lite may be unable to supply power to a target
board. Be sure to refer to "the user's manual and Additional Document for User's Manual
(Notes on Connection of RL78)" for the emulator for target devices, and use an emulator.

6.1.4.1 Setting of Connection with Target Board

・On CS+, set up the connection with target board(via E2 Lite) with "Connect Settings" tab. (Common in
each area)
- [Connection with Target Board] item
In order to let power supply(Supply voltage : 3.3V) from E2 Lite to a target board, it is necessary to set
"Yes" to [Power target from the emulator (MAX 200mA)].

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 168 of 218
Aug.28.23

・On e2 studio, set up the connection with target board(via E2 Lite) with "Connection Settings" tab.
(Common in each area)
- [Connection with Target Board] item
In order to let power supply(Supply Voltage : 3.3V) from E2 Lite to a target board, it is necessary to set
"Yes" to [Power Target From The Emulator (MAX 200mA)].

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 169 of 218
Aug.28.23

6.2 Creating a Project in the Case of Using IAR Compiler

IAR Embedded Workbench can be used for a IAR compiler as an IDE. RFD RL78 Type 01 is registered and
built in the project created by the IDE. An example of creating a sample project in case each IDE is used is
shown. Because to understand a IAR compiler and each IDE, it is necessary to refer to the user's manual of
each tool product.

IAR Systems, IAR Embedded Workbench, C-SPY, IAR, and the logotype of IAR Systems are
trademarks or registered trademarks owned by IAR Systems AB.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 170 of 218
Aug.28.23

6.2.1 Example of Creating a Sample Project

(1) An example of creating a sample project which used IAR Embedded Workbench (IDE)
・The IAR Embedded Workbench starts and from the [Project] menu, select [Create New Project...], the

“Create Project” window will open.
- Select the "C" as [project template].
- When you click the [OK] button, the “Save As” window will open.

- Create "RFDRL78T01_PJ01" folder temporarily, and move into a folder.
- The Project File name is temporarily set to "RFDRL78T01_PJ01".

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 171 of 218
Aug.28.23

(2) Selection of a target device
・On IAR Embedded Workbench, I click the right mouse button of the project ("RFDRL78T01_PJ01 -

Debug") in a tree. When an "option" is selected, the "Options for node [Project name]" window is
displayed.

- Input setting in the [General Option] - [Target] tab of "Option for node [Project name]" window.
- Press " "button of [Device]. And Select "RL78 - G23" - "RL78 - R7F100GLG". Select "Far" as [code
model] and select "Near" as [data model].

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 172 of 218
Aug.28.23

6.2.2 Example of Registration of Target Folders and Target Files

Using RFD RL78 Type 01, when programming each area [(1) code flash memory, (2) data flash memory, (3)
extra area], the example which registers necessary files is shown. Each folder of a RFD RL78 Type 01
source-program file is "include", "source", "userown", and "sample". The target file in each folder is selected
and registered by the area programmed.

Instead of registering a folder by IAR Embedded Workbench, select [Add Group] of the [Project] menu, and
add a group. The example into which I add the group of the same structure as the folder for RFD RL78 Type
01, and files are registered is shown. (Registering without making a group is also possible.)
The example which added the group of each area [(1)Code flash memory, (2)Data flash memory, and
(3)Extra area] is shown. (The group name which changes with areas is shown by " ".)

(1)Code flash memory (2)Data flash memory (3)Extra area

・Exclusion of the file automatically added by the function of IDE.
There are files added automatically in the created project. The same file as these exists also in the
"sample" folder of RFD RL78 Type 01. Therefore, using the function of IDE, Select those files from tree
and excludes from a project.
- IAR Embedded Workbench : Clicks the right mouse button for the file of tree. And exclude the target
"main.c" file by "Remove" function.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 173 of 218
Aug.28.23

(1) Registration of the groups and files of the target in the case of reprogramming code flash memory
The groups ("include", "source", "userown", "sample") and source program file which are included in RFD
RL78 Type 01 to register are shown below.

in the “include” group in the “sample” group

in the “source” group

in the “userown” group

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 174 of 218
Aug.28.23

(2) Registration of the groups and files of the target in the case of reprogramming data flash memory
The groups ("include", "source", "userown", "sample") and source program file which are included in RFD
RL78 Type 01 to register are shown below.

in the “include” group in the “sample” group

in the “source” group

in the “userown” group

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 175 of 218
Aug.28.23

(3) Registration of the groups and files of the target in the case of reprogramming extra area (FSW setting)
The groups ("include", "source", "userown", "sample") and source program file which are included in RFD
RL78 Type 01 to register are shown below.

in the “include” group in the “sample” group

in the “source” group

in the “userown” group

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 176 of 218
Aug.28.23

6.2.3 Integrated Development Environment(IDE) Settings

Set IDE setting necessary in order to build RFD RL78 Type 01 using an IAR compiler.
IAR Embedded Workbench : Click the right mouse button for the project(”RFDRL78T01_PJ01“) in a tree, and
select "Options". And set each setting of the “Category” in the displayed window.

6.2.3.1 Include Path Settings

・Setting of the include path on IAR Embedded Workbench selects "C/C++ Compiler" of "Category", and
inputs path in "Preprocessor" tab. (Change by a target area)
- Input the Include directory path in the ”Edit include Directories” window displayed by selection of
[Additional include directories: (one per line)].

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 177 of 218
Aug.28.23

- The example of folder path setting.
It is the example which placed each folder(”include”, ”source”, ”userown”, ”sample”) of the source
program file of RFD RL78 Type 01 on “C:\Users\xxxxxxxx\Documents\IAR_Project\".

(1) Code flash memory reprogramming
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T01_PJ01\sample\RL78_G23\CF\IAR\include
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T01_PJ01\sample\common\include
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T01_PJ01\include
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T01_PJ01\include\rfd

(2) Data flash memory reprogramming
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T01_PJ01\sample\RL78_G23\DF\IAR\include
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T01_PJ01\sample\common\include
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T01_PJ01\include
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T01_PJ01\include\rfd

(3) Extra area(FSW) reprogramming
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T01_PJ01\sample\RL78_G23\EX_FSW\IAR\incl
ude
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T01_PJ01\sample\common\include
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T01_PJ01\include
C:\Users\xxxxxxxx\Documents\IAR_Project\RFDRL78T01_PJ01\include\rfd

Note : About the path setting of include directories.
When the project is copied in the case appointed by the absolute path, the setup is needed
again. It is possible to appoint a relative path ($PROJ_DIR$) so that it can be used, even if
it copies the project.
Refer to each reference manual of IAR Embedded Workbench about how to appoint the
relative path.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 178 of 218
Aug.28.23

6.2.3.2 The setting of user definition macro

・On IAR Embedded Workbench, the macro for flash memory control system classification is defined in
"Preprocessor" tab.
- Define the following macro in the column of [Defined symbols: (one per line)]. Definition macro differs by
each device to be used.

Macros defined when using RL78/G23, RL78/G22:

R_RFD_MCU_FLASH_T01_CATEGORY01

Macros defined when using RL78/G24:

R_RFD_MCU_FLASH_T01_CATEGORY02

Note : A compile error will be outputted if macro is not defined.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 179 of 218
Aug.28.23

6.2.3.3 Debugger Settings

・Select ”E2 Lite/E2 On-Board” from [Driver] of [Debugger] – [Setup] tab on the assumption that on-chip
debugging is implemented.

Note : Refer to each reference manual of IAR Embedded Workbench about the other items to be
set.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 180 of 218
Aug.28.23

6.2.4 Linker Configuration File(.icf) Settings

On IAR Embedded Workbench, Linker configuration file (*. icf) describes link setting executed by building.
Select "Options" by the click right mouse button of project with tree. Select [Linker] by "Category" in the
displayed window, And put a check mark to "Override default" of the [Config] tab. Select Linker configuration
file (*. icf) in the "Open" window of ” ” button. Select the "sample_linker_file_(area name).icf" file prepared
for RFD RL78 Type 01. Linker configuration file (*. icf) for every reprogramming area is as follows.

- For code flash memory reprogramming : sample_linker_file_CF.icf (\sample\RL78_G23\CF\IAR\source\)
- For data flash memory reprogramming : sample_linker_file_DF.icf (\sample\RL78_G23\DF\IAR\source\)
- For Extra area(FSW) : sample_linker_file_EX_FSW.icf (\sample\RL78_G23\EX_FSW\IAR\source\)

Note : Refer to each reference manual of IAR Embedded Workbench about the descriptive
content of Linker configuration file, and the details of the description method.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 181 of 218
Aug.28.23

6.2.4.1 Section Settings

The outline of the section added to Linker configuration file (*. icf) currently prepared by RFD RL78 Type 01
is explained.

Note : Refer to each reference manual of IAR Embedded Workbench about the section setting
method and the detail of functions for Linker configuration file.

・The setting outline of the section item described to Linker configuration file (*. icf) of RFD RL78 Type 01.
(1) The addition of the sections for code flash memory reprogramming

Add the initial value of each section of RFD_DATA, RFD_CMN, RFD_CF, SMP_CMN, and SMP_CF to
ROM area (ROM_far). It is necessary to copy them to the section of RAM area (RAM_near, RAM_code).

- The additional section of the ROM_far area (The data and the program for copying to RAM area):
RFD_DATA_init, RFD_CMN_init, RFD_CF_init, SMP_CMN_init, SMP_CF_init

- The additional section of RAM_near area (Data copied from ROM area):
RFD_DATA

- The additional section of RAM_code area (program copied from ROM area):
RFD_CMN, RFD_CF, SMP_CMN, SMP_CF

(2) The addition of the sections for data flash memory reprogramming
Add the initial value of each section of RFD_DATA, RFD_CMN, RFD_DF, SMP_CMN, and SMP_DF to
ROM area (ROM_far). It is necessary to copy RFD_DATA to the section of RAM area (RAM_near).

- The additional section of the ROM_far area (The program and The data for copying to RAM area to be
placed in ROM area):
RFD_DATA_init, RFD_CMN, RFD_DF, SMP_CMN, SMP_DF

- The additional section of RAM_near area (Data copied from ROM area):
RFD_DATA

(3) The addition of the sections for extra area(FSW) reprogramming
Add the initial value of each section of RFD_DATA, RFD_CMN, RFD_EX, SMP_CMN, and SMP_EX to
ROM area (ROM_far). It is necessary to copy them to the section of RAM area (RAM_near, RAM_code).

- The additional section of the ROM_far area (The data and the program for copying to RAM area):
RFD_DATA_init, RFD_CMN_init, RFD_EX_init, SMP_CMN_init, SMP_EX_init

- The additional section of RAM_near area (Data copied from ROM area):
RFD_DATA

- The additional section of RAM_code area (program copied from ROM area):
RFD_CMN, RFD_EX, SMP_CMN, SMP_EX

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 182 of 218
Aug.28.23

6.2.4.2 Option Bytes Settings

The Option bytes definition of RL78 is described in Linker configuration file (*. icf) of IAR Embedded
Workbench attachment or the sample_linker_file_(area name).icf file prepared for RFD RL78 Type 01. The
Option Bytes value for RFD RL78 Type 01 is described by the "option_byte.c" file.

Note : Refer to each reference manual of IAR Embedded Workbench about the option bytes
setting method for Linker configuration file.

The example of an Option Bytes definition of Linker configuration file for RFD RL78 Type 01 (*. icf).

The example of description of the Option Bytes value in a "option_byte.c" file.

- Description of user option byte value:

The value of User option byte (000C0H-000C2H) in "option_byte.c" file is "0x6EFFE8".
(WDT stop, LVD reset mode, HS mode /32MHz [The example for RL78/G23])

The value of on-chip debug option byte(000C3H/040C3H [The example for RL78/G23]) in
"option_byte.c" file is ”0x85”.
(The example of enable on-chip debug operation)

Note : Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes",
and "On-chip debug option byte" by the user's manual of a target device. And describe the
set value used with user application.

define block OPT_BYTE with size = 4 { R_OPT_BYTE,
 ro section .option_byte,
 ro section OPTBYTE };

 |
place at address mem:0x000C0 { block OPT_BYTE };

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 183 of 218
Aug.28.23

6.2.5 On-chip Debug Settings

After executing building of a target project, connect E2 Lite, select [Download and Debug] from [Project]
menu, and start debugging.

6.2.5.1 Example of How to deal with Connection Errors

Explain the common examples of how to deal with an error which happened by connection in on-chip run
debug. This is the case when an ID code mismatch or power failure occurs.

Note : In cases where a target cannot be connected by other causes, please confirm each
reference manual from [Help] of IAR Embedded Workbench.

When selecting [Download and Debug] and starting debugging, an "E2 Lite hardware setting" screen may be
displayed. The cause may be ID code mismatch or power setting error.

- In the case of the ID code mismatch:
"Cannot verify the ID code." etc. may be displayed as a message. In this case, put a check mark to
"Erase flash before next ID check" of the [ID code] in an "E2 Lite Hardware Setup" window, and
continue. And the flash memory is erased, and debugger may be connected.

- In the case of power setting error:
Initial setting of "Power supply" is "Target". When supplying power supply from E2 Lite, select "3V" by
the pull-down menu for "Power supply".

Caution: Be sure not to set "3V"(supply power from E2 Lite) , when the power is supplied to the
target.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 184 of 218
Aug.28.23

6.3 Creating a Project in the Case of Using LLVM Compiler

e2 studio can be used for a LLVM compiler as an IDE. RFD RL78 Type 01 is registered and built in the
project created by the IDE. An example of creating a sample project in case IDE is used is shown. Because
to understand a LLVM compiler and IDE, it is necessary to refer to the user's manual of each tool product.

6.3.1 Example of Creating a Sample Project

An example of creating a sample project which used e2 studio (IDE)
・The e2 studio starts and from the [File] menu, select [New] – [C/C++ Project], the “Templates for New

C/C++ Project” window will open.

・Select [LLVM for Renesas RL78 C/C++ Executable Project] displayed after selection in [Renesas RL78],
and press "Next" button.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 185 of 218
Aug.28.23

・Input "Project name" on “New LLVM for Renesas RL78 Executable Project" window, and press "Next"
button. [Project name] is temporarily set to "RFDRL78T01_PJ01".

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 186 of 218
Aug.28.23

・Select the [Target Device] of [Device Settings], and select ”RL78 - G23” - “RL78 - G23 64pin” -
“R7F100GLGxFB”.
・It is a premise that E2 Lite is selected as a debugging tool and on-chip debugging is executed. Put a check

mark to "Create Hardware Debug Configuration" by [Configurations]. And select "E2 Lite(RL78)”.
・Press "Next" button.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 187 of 218
Aug.28.23

・Uncheck the “Use Smart Configurator”.
・Press [Finish] button.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 188 of 218
Aug.28.23

6.3.2 Example of Registration of Target Folders and Target Files

Using RFD RL78Type 01, when programming each area [(1) code flash memory, (2) data flash memory, (3)
extra area], the example which registers necessary files is shown. Each folder of a RFD RL78Type 01
source-program file is "include", "source", "userown", and "sample". The target file in each folder is selected
and registered by the area programmed.
As other registration methods, after all the folders of "include", "source", "userown", and "sample" are
registered, unnecessary files and folders can be removed using the function of [Resource Configuration] –
[Exclude from Build].

The registration tree screen of RFD (e2 studio)

Note : Register the “generate” folder output by e2 studio as necessary.

・Registration of the latest I/O header file outputted to target products by e2 studio
“iodefine.h” and “iodefine_ext.h” are an I/O header file which e2 studio outputs to target products. Replacing
instead of “iodefine.h” and “iodefine_ext.h” included in RFD RL78 Type 01 is recommended. Registration of
target folders and target files are implemented. Then, a user replaces “iodefine.h” and “iodefine_ext.h” which
e2 studio outputted with “iodefine.h” and “iodefine_ext.h” included in RFD RL78 Type 01.

・Registration of the vector table file outputted to target products by e2 studio
“interrupt_handlers.h”, “inthandler.c” and “vects.c” are files that contain vector tables that e2 studio outputs
for the target product. Since it depends on the product, please replace “interrupt_handlers.h”,
“inthandler.c”, and “vects.c” included in RFD RL78 Type 01.
When these are replaced, change the option byte values in the “vects.c” file. Refer to “6.3.4 Option Bytes
Settings” for details on setting option byte values.

The folder to which “iodefine.h”, “iodefine_ext.h”, “interrupt_handlers.h”, “inthandler.c” and “vects.c” files are
outputted by e2 studio:

- [Project name]/generate folder

The folder with which a user replaces “iodefine.h”, “iodefine_ext.h” and “interrupt_handlers.h” files:
- The case of code flash programming : “\[Project name]\sample\RL78_G23\CF\LLVM\include”
- The case of data flash programming : “\[Project name]\sample\RL78_G23\DF\LLVM\include”
- The case of extra area (FSW) programming :

“\[Project name]\sample\RL78_G23\EX_FSW\LLVM\include”

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 189 of 218
Aug.28.23

The folder with which a user replaces the “inthandler.c” and “vects.c” files:
- The case of code flash programming : “\[Project name]\sample\RL78_G23\CF\LLVM\source”
- The case of data flash programming : “\[Project name]\sample\RL78_G23\DF\LLVM\source”
- The case of extra area (FSW) programming :

“\[Project name]\sample\RL78_G23\EX_FSW\LLVM\source”

・Exclusion of the file automatically added by the function of e2 studio.
There are files added automatically in the created project. The same files as these exists also in the
“sample” folder of RFD RL78 Type 01. Therefore, using the function of e2 studio, Select those files from
tree and excludes from a project.
- e2 studio : Clicks the right mouse button for the file of tree. And On the [Settings] screen displayed by the
“property”, put a check mark to [Exclude resource from build] and exclude a target file (target folder).
(Exclusion of a folder is also possible)
“hwinit.c”, “linker_script.ld”, “start.S” and “typedefine.h” in the [project name]/generate folder, and [project
name].c (in this case “RFDRL78T01_PJ01.c”) in the [project name]/src folder are not used in RFD RL78
Type 01. Therefore, exclude those from the project.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 190 of 218
Aug.28.23

(1) Registration of the folders and files of the target in the case of reprogramming code flash memory
The folders (“include”, “source”, “userown”, “sample”) and source program file which are included in RFD
RL78 Type 01 to register are shown below.

in the “include” folder in the “userown” folder

in the “sample” folder

in the “source” folder

 Transpose to “iodefine.h”, “iodefine_ext.h”,

“interrupt_handlers.h”, “inthandler.c” and “vects.c”

outputted by e2 studio.

* “vects.c” should change the option byte value.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 191 of 218
Aug.28.23

(2) Registration of the folders and files of the target in the case of reprogramming data flash memory
The folders (“include”, “source”, “userown”, “sample”) and source program file which are included in RFD
RL78 Type 01 to register are shown below.

in the “include” folder in the “userown” folder

in the “sample” folder

in the “source” folder

 Transpose to “iodefine.h”, “iodefine_ext.h”,

“interrupt_handlers.h”, “inthandler.c” and “vects.c”

outputted by e2 studio.

* “vects.c” should change the option byte value.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 192 of 218
Aug.28.23

(3) Registration of the folders and files of the target in the case of reprogramming extra area (FSW setting)
The folders (“include”, “source”, “userown”, “sample”) and source program file which are included in RFD
RL78 Type 01 to register are shown below.

in the “include” folder in the “userown” folder

in the “sample” folder

in the “source” folder

Transpose to “iodefine.h”, “iodefine_ext.h”,

“interrupt_handlers.h”, “inthandler.c” and “vects.c”

outputted by e2 studio.

* “vects.c” should change the option byte value.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 193 of 218
Aug.28.23

6.3.3 Build Tool Settings

Set e2 studio setting necessary in order to build RFD RL78 Type 01 using a LLVM compiler.
Click the right mouse button for the project(“RFDRL78T01_PJ01”) in a tree, and select “Property”. And set
each setting of the build tool in the displayed window.

6.3.3.1 Include Path Settings

・Setting of the include path on e2 studio inputs path in “Properties” window. (Change by a target area)
- Input the Include directory path in the window displayed by selection of “C/C++ Build” [Settings] –
“Compiler” [Includes].

(1) Code flash memory reprogramming

(2) Data flash memory reprogramming

(3) Extra area(FSW) reprogramming

${ProjDirPath}\src\include\rfd
${ProjDirPath}\src\include
${ProjDirPath}\src\sample\RL78_G23\CF\LLVM\include
${ProjDirPath}\src\sample\common\include

${ProjDirPath}\src\include\rfd
${ProjDirPath}\src\include
${ProjDirPath}\src\sample\RL78_G23\DF\LLVM\include
${ProjDirPath}\src\sample\common\include

${ProjDirPath}\src\include\rfd
${ProjDirPath}\src\include
${ProjDirPath}\src\sample\RL78_G23\EX_FSW\LLVM\include
${ProjDirPath}\src\sample\common\include

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 194 of 218
Aug.28.23

6.3.3.2 The Setting of User Definition Macro

• On e2 studio, the macro for flash memory control system classification is defined in “Properties” window.
- Define the following macro in the “Macro Defines (-D)” displayed by selection of “C/C++ Build”
[Settings] – “Compiler” [Includes]. Definition macro differs by each device to be used.

Macros defined when using RL78/G23, or RL78/G22:
R_RFD_MCU_FLASH_T01_CATEGORY01

Macros defined when using RL78/G24:

R_RFD_MCU_FLASH_T01_CATEGORY02

Note : A compile error will be outputted if macro is not defined.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 195 of 218
Aug.28.23

6.3.3.3 Linker Script File (.ld) Settings

On LLVM, linker script file (*.ld) describes link setting executed by building. Click the right mouse button for
the project(”RFDRL78T01_PJ01“) in a tree, and select “Property”. And set each setting of the build tool in
the displayed window. Input the Include linker script file path in the window displayed by selection of
“C/C++ Build” [Settings] – “linker” [Source].
Input the path to the “sample_linker_file_(Area name).ld” file contained in the RFD RL78 Type 01 sample
program.

The linker script file (*.ld) for RFD RL78 Type01 is as follows:

- Code flash memory reprogramming: sample_linker_file_CF.ld (\sample\RL78_G23\CF\LLVM\source\)
- Data flash memory reprogramming: sample_linker_file_DF.ld (\sample\RL78_G23\DF\LLVM\source\)
- Extra area(FSW) reprogramming:

sample_linker_file_EX_FSW.ld (\sample\RL78_G23\EX_FSW\LLVM\source\)

Note : Refer to each reference manual of LLVM about the descriptive content of linker script file,
and the details of the description method.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 196 of 218
Aug.28.23

6.3.3.4 Section Settings

The setting outline of the section item described to linker script file (*.ld) of RFD RL78 Type 01.

(1) The sections for code flash memory reprogramming

- Section of code that is copied from the ROM area to the RAM area:
RFD_CMN, RFD_CF, SMP_CMN, SMP_CF
(RFD_RAM_CODE)

- Section of data that is copied from the ROM area to the RAM area:
RFD_DATA

(2) The sections for data flash memory reprogramming
- The section of code to be placed in the ROM area:

RFD_CMN, RFD_DF, SMP_CMN, SMP_DF
(RFD_ROM_CODE)

- Section of data that is copied from the ROM area to the RAM area:
RFD_DATA

(3) The sections for extra area(FSW) reprogramming
- Section of code that is copied from the ROM area to the RAM area:

RFD_CMN, RFD_EX, SMP_CMN, SMP_EX
(RFD_RAM_CODE)

- Section of data that is copied from the ROM area to the RAM area:
RFD_DATA

Note: When using the LLVM compiler, the compiler may automatically add subsections with different
names when common processing is detected within the same section. Therefore, the following
sections are added to the description in the sample_linker_file_XX.ld (“XX” = “CF”, “DF” or
“EX_FSW”) file.

RFD_XXXX.* and SMP_XXXX.* (“XXXX” = “CF”, “DF”, “EX”, “DATA” or “CMN”)

Examples of subsections that could be added: RFD_CF.outlined-functions (etc.)
Refer to each reference manual of LLVM about the section setting method and the detail of
functions for linker script file.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 197 of 218
Aug.28.23

6.3.4 Option Bytes Settings

“Option Bytes” settings when using the LLVM compiler are set in the “vects.c” file.
Target file name: vects.c

- \[Project name]\src\sample\RL78_G23\[Area name]\LLVM\source\

Description of user option byte value:
In the “vects.c” file provided in the sample program, the option byte value and user option byte value are set
in “Option_Bytes” as follows.

[The example for RL78/G23]
“0x6e, 0xff, 0xe8, 0x85” (WDT stop, LVD reset mode, HS mode /32MHz, Enable on-chip debug operation)

Note : Be sure to confirm the contents of “User option byte” of the chapter of “Option Bytes”, and
“On-chip debug option byte” by the user's manual of a target device. And describe the set
value used with user application.

#include “interrupt_handlers.h”

extern void PowerON_Reset (void);

const unsigned char Option_Bytes[] __attribute__ ((section (“.option_bytes”))) = {
 0x6e, 0xff, 0xe8, 0x85
};

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 198 of 218
Aug.28.23

6.3.5 Setting of Connection with Target Board

This section describes the contents of connection setting on a target board necessary in order to execute on-
chip debugging. As a debugging tool, it is a premise that E2 Lite is selected. Refer to the user's manual for
each IDE for the details of other debugging tool setting.

On e2 studio, right-click a mouse in the target project of a tree. Selection of [Debug As] - [Debug
Configurations…] will display the “Debug Configurations” screen. On the tree of a screen, select the target
project (“RFDRL78T01_PJ01 HardwareDebug”) of [Renesas GDB Hardware Debugging]. And the displayed
“Debugger” tab performs debugging tool setting.

Note: The power is already supplied to the target board, or when power supply capacity is
insufficient, the emulator including E2 Lite may be unable to supply power to a target
board. Be sure to refer to “the user's manual and Additional Document for User's Manual
(Notes on Connection of RL78)” for the emulator for target devices, and use an emulator.

・On e2 studio, set up the connection with target board(via E2 Lite) with “Connection Settings” tab (Common
in each area).
- [Connection with Target Board] item
In order to let power supply(Supply Voltage : 3.3V) from E2 Lite to a target board, it is necessary to set
“Yes” to [Power Target From The Emulator (MAX 200mA)].

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 199 of 218
Aug.28.23

6.3.6 Caution

- About “warning” output when building is executed

The following “warning” may be output by “r_rfd_wait_count” function when the build is executed. This
means that the “i_u08_count” argument is not used in the function and is output. .
The “r_rfd_wait_count” function is written in assembly language, and the argument “i_u08_count” is
passed in the function as a general-purpose register.

Therefore, it is confirmed that there is no problem even if the variable name is not used.

The “warning” can be set to not be output by using the following property of e2 studio, but it is
recommended to set it after the development is completed because other warnings may not be output
either.

- "C/C++ Build" [Settings] - "Warnings" and uncheck "Enable extra warnings (-Wextra)" as indicated.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 200 of 218
Aug.28.23

6.4 Configurations Modify Procedure for Changing Device

When used except the target device by the sample program for RFD RL78 Type01, the sizes of ROM, RAM,
and a data flash memory differ. Therefore, it is necessary to modify setting of a section address, and a part
of sample program. This section explains the change procedures and change parts in the case of being used
except RL78/G23 device.

Target device in a “sample” folder:
- RL78_G23 folder [CATEGORY01]
Target device for the prepared file : RL78/G23(R7F100GLG ROM:128KB, RAM:16KB,DF:8KB)

- RL78_G24 folder [CATEGORY02]
Target device for the prepared file : RL78/G24(R7F101GLG ROM:128KB, RAM:12KB,DF:4KB)

To modify the setting values, refer to “Renesas Flash Driver and EEPROM Emulation Software for RL78
Target MCU List - General-Purpose” (here after “Target MCU List”) and change into the set value which
suited the device used.

If the folder name of the target device group exists in the “sample” folder, use that folder. If the folder name
of the target device group does not exist, the folder of the device with the same “CATEGORY” number
described in the target MCU list is used. A "RL78_G22" sample folder does not exist in the case which uses
RL78/G22. Therefore, use RL78_G23 folder for RL78/G23 of the same “CATEGORY01”.

- The extract of a target MCU list

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 201 of 218
Aug.28.23

 An example of referencing the Target MCU List and an example of where to modify is shown below.

- Example of reference of the Target MCU List

For example, when modifying the setting value indicated by [R-1] (the start address of RAM) as shown in
the following figure. Here, refer to the setting value of the start address [R-1] (RAM Start Address) of RAM
shown in the Target MCU List and set the value of RL78/G22(R7F102GGE).

Example of where to modify the start address of RAM: RL78/G23(R7F100GxG RAM: 16 Kbytes).

Example of setting the start address value of RAM when using RL78/G22 (R7F102GxE RAM: 4 Kbytes).

The value to be set in [R-1] refers to the Target MCU List and sets the start address value of RAM of the
target device. In the column “Target MCU name” of the Target MCU List, search for the row for
R7F102GxE. Next, find the cell in the [R-1] column that intersects the row of R7F102GxE.

- Example of displaying the “Target MCU List”

Since "0xFEF00" applies, the setting value of [R-1] is RL78/G22 (R7F102GGE) value "0xFEF00".

[R-1] →

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 202 of 218
Aug.28.23

- Example of modifying settings

Points that need to be modified from the RL78/G23 (R7F100GLG) settings are listed from “7.3.1”.
Points that need to be modified are indicated with “[R-x] →”. Refer to the Target MCU List to find the
appropriate [R-x] setting for your device. Enter the searched value in [R-x]. (x = 1, 2, 3…)

- Example of modifying section settings (start address of RAM):
(CS+: CC-RL compiler)

Setting for RL78/G23(RAM: 16 Kbytes) Setting for RL78/G22(RAM: 4 Kbytes)
Example: R7F100GLG Example: R7F102GGE

[R-1] →

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 203 of 218
Aug.28.23

6.4.1 CC-RL Compiler Environment Settings

Points of modifies and examples of modifies when using the CC-RL compiler environments (CS+ and e2
studio) are described.

6.4.1.1 Section Settings

Modify the start address of the RAM area in the section settings.
This example shows the change from RL78/G23 (R7F100GxG) to RL78/G22 (R7F102GGE).
Since the RAM size is changed from 16 Kbytes to 4 Kbytes, modify the start address of RAM from
“0xFBF00” to “0xFEF00”.

Note: For the start address of the RAM for each product, refer to “R-1” column in the Target MCU List.

- Example of modifying section settings (start address of RAM) in CS+:

The case of reprogramming the code flash memory.
Setting for RL78/G23(RAM: 16 Kbytes) Setting for RL78/G22(RAM: 4 Kbytes)
Example: R7F100GLG Example: R7F102GGE

Note: Reprogramming for a data flash memory or an extra area as well as reprogramming for a
code flash memory modifies the top address of RAM into "0xFEF00" from "0xFBF00."

[R-1] →

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 204 of 218
Aug.28.23

- Example of modification section settings (start address of RAM) in e2 studio:

The case of reprogramming the code flash memory.
Setting for RL78/G23(RAM: 16 Kbytes) Setting for RL78/G22(RAM: 4 Kbytes)
Example: R7F100GLG Example: R7F102GGE

Note: Reprogramming for a data flash memory or an extra area as well as reprogramming for a
code flash memory modifies the top address of RAM into "0xFEF00" from "0xFBF00."

[R-1] →

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 205 of 218
Aug.28.23

6.4.1.2 Debug Settings

When using a device other than the one targeted by the sample program, the range of the debug monitor
area when using the debugger is different.

- The start of the “debug monitor area” address sets the address obtained by subtracting “511 bytes
(0x1FF)” from the end address of the ROM area. If the end address is “0x1FFFF”, set it to “0x1FE00”.

This example shows the modify from RL78/G23 (R7F100GLG) to RL78/G22 (R7F102GGE).
- Set the debug monitor area range to “0x0FE00 - 0x0FFFF”.

Note: For information on The start address of the “debug monitor area” for each product, refer to “[R-5]”
column in the Target MCU List.

- To set the debug monitor area in CS+, select the [Device] on the “Link Options” tab.
Setting for RL78/G23 (ROM: 128 Kbytes) Example: R7F100GLG

Setting for RL78/G22 (ROM: 64 Kbytes) Example: R7F102GGE

← [R-5]

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 206 of 218
Aug.28.23

- To set the debug monitor area in e2 studio, select the [Device] in the “Linker”.
Setting for RL78/G23 (ROM: 128 Kbytes) Example: R7F100GLG

Setting for RL78/G22 (ROM: 64 Kbytes) Example: R7F102GGE

← [R-5]

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 207 of 218
Aug.28.23

6.4.2 IAR Compiler Environment Settings

Points of modifies and examples of modifies when using the IAR compiler environment (Embedded
Workbench) is described.

6.4.2.1 Setting Up Header Files for Target Device

The “main.c” and “low_level_init.c” provided with RFD RL78 Type 01 includes the header files for the target
device “RL78/G23: R7F100GLG”. When using other RL78/G23 products or RL78/G22 products, the included
header file must be changed to the header file for the device used.

- For RL78/G23(R7F100GLG):
<main.c>

#include "ior7f100glg.h"

<low_level_init.c>
#include "ior7f100glg.h"
#include "ior7f100glg_ext.h"

- Example for RL78/G22 (R7F102GGE):

<main.c>
#include "ior7f102gge.h"

<low_level_init.c>
#include "ior7f102gge.h"
#include "ior7f102gge_ext.h"

Note: For the device type name of the product, refer to “Target MCU name” column in the Target MCU
List.

6.4.2.2 Linker Configuration File Settings

In the sample program “RL78_G23” folder provided by RFD RL78 Type 01, The sections (ROM, RAM, and
Data flash range) for RL78/G23 (R7F100GLG) are set.
When using other RL78/G23 products or RL78/G22 products, modify the contents of the sample linker file
“sample_linker_file_xxx.icf : xxx = CF, DF or EX_FSW” provided for the RL78/G23 of RFD RL78 Type 01,
because the range of the section settings, and “TraceRAM area” and “debug monitor area” when using the
debugger are different.

Target file name: sample_linker_file_xxx.icf (xxx = CF, DF or EX_FSW)

This example shows the modify from RL78/G23 (R7F100GLG) to RL78/G22 (R7F102GGE).
- Modify the ROM area to the range of 64 Kbytes [0x00000 - 0x0FFFF]
- Modify the start address to “0xFEF00” because the RAM area is 4 Kbytes [0x0FEF00 - 0x0FFEFF]
- Modify the end address to “0xF17FF” because the data flash area is 2 Kbytes [0x0F1000 - 0x0F17FF]

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 208 of 218
Aug.28.23

(1) Section Settings

≪sample_linker_file_CF.icf, sample_linker_file_EX_FSW.icf≫

Setting for RL78/G23 (ROM: 128 Kbytes, RAM: 16 Kbytes, DF: 8 Kbytes) Example: R7F100GLG

Notes 1: If the ROM size is larger than 64 KB, the description must be changed as the ROM size

increases. For details, please refer to “Examples of ROM_far”.
 2: Sets the value [R-3] when there is an address value in [R-3] on the Target MCU List. In the

case of “-”, set the value of [R-2].

Setting for RL78/G22 (ROM: 64 Kbytes, RAM: 4 Kbytes, DF: 2 Kbytes) Example: R7F102GGE

define region ROM_near = mem:[from 0x000D8 to 0x0FFFF];

define region ROM_far = mem:[from 0x000D8 to 0x0FFFF] | mem:[from 0x10000 to 0x1FFFF];

define region ROM_huge = mem:[from 0x000D8 to 0x1FFFF];

define region SADDR = mem:[from 0xFFE20 to 0xFFEDF];

define region RAM_near = mem:[from 0xFBF00 to 0xFFE1F];

define region RAM_far = mem:[from 0xFBF00 to 0xFFE1F];

define region RAM_code = mem:[from 0xFBF00 to 0xFFE1F];

define region RAM_huge = mem:[from 0xFBF00 to 0xFFE1F];

define region VECTOR = mem:[from 0x00000 to 0x0007F];

define region CALLT = mem:[from 0x00080 to 0x000BF];

define region EEPROM = mem:[from 0xF1000 to 0xF2FFF];

define region ROM_near = mem:[from 0x000D8 to 0x0FFFF];

define region ROM_far = mem:[from 0x000D8 to 0x0FFFF];

define region ROM_huge = mem:[from 0x000D8 to 0x0FFFF];

define region SADDR = mem:[from 0xFFE20 to 0xFFEDF];

define region RAM_near = mem:[from 0xFEF00 to 0xFFE1F];

define region RAM_far = mem:[from 0xFEF00 to 0xFFE1F];

define region RAM_code = mem:[from 0xFEF00 to 0xFFE1F];

define region RAM_huge = mem:[from 0xFEF00 to 0xFFE1F];

define region VECTOR = mem:[from 0x00000 to 0x0007F];

define region CALLT = mem:[from 0x00080 to 0x000BF];

define region EEPROM = mem:[from 0xF1000 to 0xF17FF];

← [R-1]
← [R-1]
← [R-1]

← [R-4]

← [R-2], [R-3] Note1
← [R-2] or [R-3] Note2

← [R-2]

← [R-1]

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 209 of 218
Aug.28.23

≪sample_linker_file_DF.icf≫

Setting for RL78/G23 (ROM: 128 Kbytes, RAM: 16 Kbytes, DF: 8 Kbytes) Example: R7F100GLG

Notes 1: If the ROM size is larger than 64 KB, the description must be changed as the ROM size

increases. For details, please refer to “Examples of ROM_far”.
 2: Sets the value [R-3] when there is an address value in [R-3] on the Target MCU List. In the

case of “-”, set the value of [R-2].

Setting for RL78/G22 (ROM: 64 Kbytes, RAM: 4 Kbytes, DF: 2 Kbytes) Example: R7F102GGE

define region ROM_near = mem:[from 0x000D8 to 0x0FFFF];

define region ROM_far = mem:[from 0x000D8 to 0x0FFFF] | mem:[from 0x10000 to 0x1FFFF];

define region ROM_huge = mem:[from 0x000D8 to 0x1FFFF];

define region SADDR = mem:[from 0xFFE20 to 0xFFEDF];

define region RAM_near = mem:[from 0xFBF00 to 0xFFE1F];

define region RAM_far = mem:[from 0xFBF00 to 0xFFE1F];

define region RAM_huge = mem:[from 0xFBF00 to 0xFFE1F];

define region VECTOR = mem:[from 0x00000 to 0x0007F];

define region CALLT = mem:[from 0x00080 to 0x000BF];

define region EEPROM = mem:[from 0xF1000 to 0xF2FFF];

define region ROM_near = mem:[from 0x000D8 to 0x0FFFF];

define region ROM_far = mem:[from 0x000D8 to 0x0FFFF];

define region ROM_huge = mem:[from 0x000D8 to 0x0FFFF];

define region SADDR = mem:[from 0xFFE20 to 0xFFEDF];

define region RAM_near = mem:[from 0xFEF00 to 0xFFE1F];

define region RAM_far = mem:[from 0xFEF00 to 0xFFE1F];

define region RAM_huge = mem:[from 0xFEF00 to 0xFFE1F];

define region VECTOR = mem:[from 0x00000 to 0x0007F];

define region CALLT = mem:[from 0x00080 to 0x000BF];

define region EEPROM = mem:[from 0xF1000 to 0xF17FF];

← [R-1]
← [R-1]
← [R-1]

← [R-4]

← [R-2], [R-3] Note1
← [R-2] or [R-3] Note2

← [R-2]

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 210 of 218
Aug.28.23

- Examples of ROM_far
The following is an example of entries in ROM_far for each ROM size. Refer to the row with the same
ROM size as the target device. Colored areas indicate values for [R-2] or [R-3].

When ROM size is 64 KB or less ([R-3] is “-”).

ROM [R-2] Value o mem:[from 0x000D8 to [R-2]];

32KB 0x07FFF mem:[from 0x000D8 to 0x07FFF];

64KB 0x0FFFF mem:[from 0x000D8 to 0x0FFFF];

When ROM size exceeds 64KB ([R-3] is not “-”).

ROM [R-3] Value
mem:[from 0x000D8 to [R-2] | mem:[from 0x10000 to 0x1FFFF] | …Omitted…
| mem:[from 0xX0000 to [R-3]];

96KB 0x17FFF mem:[from 0x000D8 to 0x0FFFF] | mem:[from 0x10000 to 0x17FFF];

128KB 0x1FFFF mem:[from 0x000D8 to 0x0FFFF] | mem:[from 0x10000 to 0x1FFFF];

192KB 0x2FFFF mem:[from 0x000D8 to 0x0FFFF] | mem:[from 0x10000 to 0x1FFFF]
| mem:[from 0x20000 to 0x2FFFF];

256KB 0x3FFFF mem:[from 0x000D8 to 0x0FFFF] | mem:[from 0x10000 to 0x1FFFF]
| mem:[from 0x20000 to 0x2FFFF] | mem:[from 0x30000 to 0x3FFFF];

384KB 0x5FFFF mem:[from 0x000D8 to 0x0FFFF] | mem:[from 0x10000 to 0x1FFFF]
| mem:[from 0x20000 to 0x2FFFF] | mem:[from 0x30000 to 0x3FFFF]
| mem:[from 0x40000 to 0x4FFFF] | mem:[from 0x50000 to 0x5FFFF];

512KB 0x7FFFF mem:[from 0x000D8 to 0x0FFFF] | mem:[from 0x10000 to 0x1FFFF]
| mem:[from 0x20000 to 0x2FFFF] | mem:[from 0x30000 to 0x3FFFF]
| mem:[from 0x40000 to 0x4FFFF] | mem:[from 0x50000 to 0x5FFFF]
| mem:[from 0x60000 to 0x6FFFF] | mem:[from 0x70000 to 0x7FFFF];

768KB 0xBFFFF mem:[from 0x000D8 to 0x0FFFF] | mem:[from 0x10000 to 0x1FFFF]
| mem:[from 0x20000 to 0x2FFFF] | …Omitted…
| mem:[from 0xA0000 to 0xAFFFF] | mem:[from 0xB0000 to 0xBFFFF];

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 211 of 218
Aug.28.23

(2) Debug Settings

- The start of the “debug monitor area” address sets the address obtained by subtracting “511 bytes
(0x1FF)” from the end address of the ROM area. If the end address is “0x1FFFF”, set "0x1FE00".

- The start address of the “TraceRAM area” sets the address obtained by adding “1 Kbyte (0x400)” to the
start address of the RAM area. If the start address is “0xFBF00”, set “0xFC300”.

This example shows a modify from RL78/G23 (R7F100GLG) to RL78/G22 (R7F102GGE).
- Modify the “debug monitor area” range to [from 0x0FE00 size 0x0200]
- Modify the “TraceRAM area” range to [from 0xFF300 size 0x0400]

The point where modifications to the “TraceRAM area” and “Debug Monitor area” when using the debugger
are to be implemented.

Setting for RL78/G23 (ROM: 128 Kbytes, RAM: 16 Kbytes, DF: 8 Kbytes) Example: R7F100GLG

if (isdefinedsymbol(__RESERVE_OCD_ROM))
{
 if (__RESERVE_OCD_ROM == 1)
 {
 reserve region "OCD ROM area" = mem:[from 0x1FE00 size 0x0200];
 }
}
 |
 | Omitted
 |
if (isdefinedsymbol(__RESERVE_OCD_TRACE_RAM))
{
 if (__RESERVE_OCD_TRACE_RAM == 1)
 {
 reserve region "OCD Trace RAM" = mem:[from 0xFC300 size 0x0400];
 }
}

Setting for RL78/G22 (ROM: 64 Kbytes, RAM: 4 Kbytes, DF: 2 Kbytes) Example: R7F102GGE

if (isdefinedsymbol(__RESERVE_OCD_ROM))
{
 if (__RESERVE_OCD_ROM == 1)
 {
 reserve region "OCD ROM area" = mem:[from 0x0FE00 size 0x0200];
 }
}

|
 | Omitted
 |
if (isdefinedsymbol(__RESERVE_OCD_TRACE_RAM))
{
 if (__RESERVE_OCD_TRACE_RAM == 1)
 {
 reserve region "OCD Trace RAM" = mem:[from 0xFF300 size 0x0400];
 }
}

← [R-6]

← [R-5]

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 212 of 218
Aug.28.23

6.4.3 LLVM Compiler Environment Settings

Points of modifies and examples of modifies when using the LLVM compiler environment (e² studio) is
described.

6.4.3.1 Linker Script File Settings

In the sample program “RL78_G23” folder provided by RFD RL78 Type 01, The sections (ROM, RAM, and
Data flash range) for RL78/G23 (R7F100GLG) are set.
When using other RL78/G23 products or RL78/G22 products, modify the contents of the sample linker script
file “sample_linker_file_xxx.ld” (xxx = CF, DF or EX_FSW) provided for the RL78/G23 of RFD RL78 Type 01,
because the range of the section settings, “TraceRAM area” and “debug monitor area (OCDROM)” when
using the debugger are different.

The following shows the modified part in red text. Refer to the “Target MCU List” and modify the setting
values for the target device.

Target file name: sample_linker_file_xxx.ld (xxx = CF, DF or EX_FSW)

This example shows the modify from RL78/G23 (R7F100GLG) to RL78/G22 (R7F102GGE).
- The start address of the OCDROM (debug monitor area) is set to the address obtained by subtracting “511

bytes (0x1FF)” from the end address of the ROM area; if the end address of the ROM area is “0xFFFF”, set
the ORIGIN of the OCDROM to “0xFE00” [R-5].

- The size of the ROM area is the area from “0xD8” to the start address of the OCDROM. If the OCDROM
start address is “0xFE00”, set the ROM LENGTH to “64808”, which is the decimal value obtained by
subtracting “0xD8” from the OCDROM start address “0xFE00”.

- The start address and size of “MIRROR (mirror area)” differs depending on the device. For RL78/G22
(R7F100GGE), set “0xF2000”, the start address of the mirror area, to the ORIGIN of the MIRROR. For the
LENGTH, set “52992”, the decimal value from the start address “0xF2000” to the end address "0xFEEFF"
of the mirror area.
For more information about the “Mirror area”, please refer to the hardware manual of the device.

- Set the start address of the RAM area “0xFEF00” [R-1] to ORIGIN in the RAM area, and set the LENGTH
to “4096”, which is 4 KB in decimal.

- “TRACERAM” area uses an area of 1024 bytes from the address obtained by adding 1024 bytes to the
start address of RAM, so set the ORIGIN to “0xFF300” [R-6]. Also, since the trace function may not be
used or may not be available for some devices, please refer to the hardware manual of the device for
details on the TRACERAM area.
Note: The trace function is not available using RL78/G22. The above is described as a configuration example,

but is commented out so that the target line is not compiled.

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 213 of 218
Aug.28.23

(1) MEMORY setting (common to CF, DF and EX_FSW)
Setting for RL78/G23 (ROM: 128 Kbytes, RAM: 16 Kbytes, DF: 8 Kbytes) Example: R7F100GLG

Setting for RL78/G22 (ROM: 64 Kbytes, RAM: 4 Kbytes, DF: 2 Kbytes) Example: R7F102GGE

Note: The RL78/G22 is not included in compilation because the trace function cannot be used, but only
the value should be modified on devices that support the trace function.

MEMORY
{
VEC : ORIGIN = 0x0, LENGTH = 4
IVEC : ORIGIN = 0x4, LENGTH = 188
CALLT0 : ORIGIN = 0x80, LENGTH = 0x40
OPT : ORIGIN = 0xC0, LENGTH = 4
SEC_ID : ORIGIN = 0xC4, LENGTH = 10
OCDSTAD : ORIGIN = 0xCE, LENGTH = 10
OCDROM : ORIGIN = 0x1FE00, LENGTH = 512
ROM : ORIGIN = 0xD8, LENGTH = 130344
MIRROR : ORIGIN = 0xF3000, LENGTH = 36608
SADDR : ORIGIN = 0xffe20, LENGTH = 0x000a0
RAM : ORIGIN = 0xFBF00, LENGTH = 16384
TRACERAM : ORIGIN = 0xFC300, LENGTH = 1024

}

MEMORY
{
VEC : ORIGIN = 0x0, LENGTH = 4
IVEC : ORIGIN = 0x4, LENGTH = 188
CALLT0 : ORIGIN = 0x80, LENGTH = 0x40
OPT : ORIGIN = 0xC0, LENGTH = 4
SEC_ID : ORIGIN = 0xC4, LENGTH = 10
OCDSTAD : ORIGIN = 0xCE, LENGTH = 10
OCDROM : ORIGIN = 0xFE00, LENGTH = 512
ROM : ORIGIN = 0xD8, LENGTH = 64808
MIRROR : ORIGIN = 0xF2000, LENGTH = 52992
SADDR : ORIGIN = 0xffe20, LENGTH = 0x000a0
RAM : ORIGIN = 0xFEF00, LENGTH = 16384
/* TRACERAM : ORIGIN = 0xFF300, LENGTH = 1024 */

}

← [R-5]

← [R-6]
← [R-1]

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 214 of 218
Aug.28.23

(2) Set the start address of the RAM area
Setting for RL78/G23 (ROM: 128 Kbytes, RAM: 16 Kbytes, DF: 8 Kbytes) Example: R7F100GLG

Setting for RL78/G22 (ROM: 64 Kbytes, RAM: 4 Kbytes, DF: 2 Kbytes) Example: R7F102GGE

.data 0xFBF00 : AT(__mdata)
{

. = ALIGN(2);
PROVIDE (__datastart = .);
__data = .;

 *(.data)
(.data.)
. = ALIGN(2);

 /*INPUT_SECTION_FLAGS(!SHF_EXECINSTR,SHF_WRITE,SHF_ALLOC)
*(*_n)*/

__edata = .;
} >RAM

.data 0xFEF00 : AT(__mdata)
{

. = ALIGN(2);
PROVIDE (__datastart = .);
__data = .;

 *(.data)
(.data.)
. = ALIGN(2);

 /*INPUT_SECTION_FLAGS(!SHF_EXECINSTR,SHF_WRITE,SHF_ALLOC)
*(*_n)*/

__edata = .;
} >RAM

← [R-1]

RFD RL78 Type 01 6. Creating a Sample Project for RFD RL78 Type 01

R20UT4830EJ0120 Rev.1.20 Page 215 of 218
Aug.28.23

6.4.4 Modification of Sample Programs (Common to CC-RL Compiler, IAR Compiler and LLVM
Compiler)

6.4.4.1 Modification of Header File for Extra Area [Range for FSW] Reprogramming Sample Program

The product of RL78/G23 (R7F100GLG) or others which is applicable by the sample program of RFD RL78
Type01 may differ in the number of blocks of a code flash memory. In that case, modify the set value of
[END_BLOCK] of the macro for end block of the range for FSW in "sample_config.h" for Extra areas.
[END_BLOCK] shows the "end block number+1" of the range for FSW ([R-7]). And, in the comment, the end
block number ([R-7]-1) of the range for FSW and the "end block number+1" ([R-7]) of the range for FSW are
shown.

The example modified into RL78/G22 (R7F102GGE) from RL78/G23 (R7F100GLG) is shown.
Target file name: sample_config.h
File path: \sample\RL78_G23\EX_FSW\IAR\include

- Set to END_BLOCK ("end block number+1" of the range for FSW) 32 ([R-7]).
- Set to the "end block number" of the range for FSW in a comment 31 ([R-7]-1). And set to the "end

block number+1" of the range for FSW in a comment 32 ([R-7]).

Setting for RL78/G23 [ROM: 128 Kbytes(64 blocks)] Example: R7F100GLG

/**
 User configurable parameters
**/

/**** CPU frequency (MHz) ****/
/* It must be rounded up digits after the decimal point to form an integer (MHz). */
#define CPU_FREQUENCY (32u)

/**** Block numbers for FSW ****/
/* Start block number for FSW */
#define START_BLOCK (0u)
/* End block number for FSW */
/* It must be the block number points one block past the end of range for FSW. */
/* If the block number 63 is the end of range for FSW, please specify 64. */
#define END_BLOCK (64u)

Setting for RL78/G22 [ROM: 64Kbytes(32 blocks)] Example R7F102GGE
/**
 User configurable parameters
**/

/**** CPU frequency (MHz) ****/
/* It must be rounded up digits after the decimal point to form an integer (MHz). */
#define CPU_FREQUENCY (32u)

/**** Block numbers for FSW ****/
/* Start block number for FSW */
#define START_BLOCK (0u)
/* End block number for FSW */
/* It must be the block number points one block past the end of range for FSW. */
/* If the block number 31 is the end of range for FSW, please specify 32. */
#define END_BLOCK (32u)

← [R-7]-1, [R-7]
← [R-7]

RFD RL78 Type 01 7. Revision History

R20UT4830EJ0120 Rev.1.20 Page 216 of 218
Aug.28.23

7. Revision History

7.1 Major Modifications in this Revision

Rev. Date
Description

Page Summary

1.00 May.20.21  Newly created.

1.01 Dec.28.22  Add support of RL78/G22.

1.10 Apr.28.23  Add support of RL78/G24.

44 Added “3.2.4.3 Macro for RFD RL78 Type01 for user definition”

154 Added ”6.1.3.2 The setting of user definition macro”

176 Added ”6.2.3.2 The setting of user definition macro”

182 Added “6.3 Configurations Modify Procedure for Changing Device”

1.20 Aug.28.23  Add support of LLVM compiler

184 Added “6.3 Creating a Project in the Case of Using LLVM Compiler”

212 Added “6.4.3 LLVM Compiler Environment Settings”

Renesas Flash Driver RL78 Type 01 User's Manual

Publication Date: Rev.1.20 Aug.28.23

Published by: Renesas Electronics Corporation

Renesas Flash Driver
RL78 Type 01

R01UT4830EJ0120

	Cover
	Notice
	General Precautions in the Handling of Microprocessing Unit and Microcontroller UnitProducts
	How to Use This Manual
	Table of Contents
	Abbreviations
	Terminology
	1. Overview
	1.1 Outline
	1.1.1 Purpose

	1.2 Contents
	1.3 Features
	1.4 Operating Environment
	1.5 Points for Caution
	1.6 C Compiler Definitions

	2. System Configuration
	2.1 File Structure
	2.1.1 Folder Structure
	2.1.2 List of Files
	2.1.2.1 List of Source Files
	2.1.2.2 Header File List of Header Files

	2.2 Resources of RL78/G2x
	2.2.1 Memory Map
	2.2.2 The Allocation of Blocks
	2.2.3 List of Registers Related to Flash Memory Sequencer Control
	2.2.4 Flash Operation Mode

	2.3 Resources Used in RFD RL78 Type 01
	2.3.1 Sections Used in RFD RL78 Type 01
	2.3.1.1 Sections Used for Reprogramming of the Code Flash Memory
	2.3.1.2 Sections Used for Reprogramming of the Data Flash Memory
	2.3.1.3 Sections Used for Reprogramming of the Extra Area

	2.3.2 Code Size and Stack Size which API Functions Use

	3. API Functions of RFD RL78 Type 01
	3.1 List of API Functions of RFD RL78 Type 01
	3.1.1 API Functions Used in Common for Flash Memory Control
	3.1.2 API Functions for Code Flash Memory Control
	3.1.3 API Functions for Data Flash Memory Control
	3.1.4 API Functions for Extra Area Control
	3.1.5 Hook Functions

	3.2 Data Type Definitions
	3.2.1 Data Types
	3.2.2 Global Variables
	3.2.3 Enumerations
	3.2.4 Macro Definitions
	3.2.4.1 Macro Definitions for Setting the Global Data of RFD
	3.2.4.2 Macro Definitions for Setting the Registers and Extra Area in the RL78/G2x
	3.2.4.3 Macro for RFD RL78 Type01 for user definition

	3.3 Specifications of API Functions
	3.3.1 Specifications of API Functions Used in Common for Flash Memory Control
	3.3.1.1 R_RFD_Init
	3.3.1.2 R_RFD_SetDataFlashAccessMode
	3.3.1.3 R_RFD_ChangeInterruptVector
	3.3.1.4 R_RFD_RestoreInterruptVector
	3.3.1.5 R_RFD_SetFlashMemoryMode
	3.3.1.6 R_RFD_CheckFlashMemoryMode
	3.3.1.7 R_RFD_CheckCFDFSeqEndStep1
	3.3.1.8 R_RFD_CheckExtraSeqEndStep1
	3.3.1.9 R_RFD_CheckCFDFSeqEndStep2
	3.3.1.10 R_RFD_CheckExtraSeqEndStep2
	3.3.1.11 R_RFD_GetSeqErrorStatus
	3.3.1.12 R_RFD_ClearSeqRegister
	3.3.1.13 R_RFD_ForceStopSeq
	3.3.1.14 R_RFD_ForceReset
	3.3.1.15 R_RFD_SetBootAreaImmediately
	3.3.1.16 R_RFD_GetSecurityAndBootFlags
	3.3.1.17 R_RFD_GetFSW
	3.3.1.18 r_rfd_wait_count

	3.3.2 Specifications of API Functions for Code Flash Memory Control
	3.3.2.1 R_RFD_EraseCodeFlashReq
	3.3.2.2 R_RFD_WriteCodeFlashReq
	3.3.2.3 R_RFD_BlankCheckCodeFlashReq

	3.3.3 Specifications of API Functions for Data Flash Memory Control
	3.3.3.1 R_RFD_EraseDataFlashReq
	3.3.3.2 R_RFD_WriteDataFlashReq
	3.3.3.3 R_RFD_BlankCheckDataFlashReq

	3.3.4 Specifications of API Functions for Extra Area Control
	3.3.4.1 R_RFD_SetExtraEraseProtectReq
	3.3.4.2 R_RFD_SetExtraWriteProtectReq
	3.3.4.3 R_RFD_SetExtraBootAreaProtectReq
	3.3.4.4 R_RFD_SetExtraBootAreaReq
	3.3.4.5 R_RFD_SetExtraFSWProtectReq
	3.3.4.6 R_RFD_SetExtraFSWReq
	3.3.4.7 R_RFD_SetExtraSoftwareReadProtectAreaReq

	3.3.5 Specifications of Hook Functions
	3.3.5.1 R_RFD_HOOK_EnterCriticalSection
	3.3.5.2 R_RFD_HOOK_ExitCriticalSection

	4. Flash Memory Sequencer Operation
	4.1 Setting of Flash Memory Control Mode
	4.1.1 Procedure for Executing Specific Sequence
	4.1.2 Procedure for Transition to the Code Flash Memory Programming Mode
	4.1.3 Procedure for Transition to the Data Flash Memory Programming Mode
	4.1.4 Procedure for Transition to the Non-programmable Mode

	4.2 Clearing the Registers for Flash Memory Sequencer Control
	4.3 Specifying the Operating Frequency of the Flash Memory Sequencer
	4.4 Flash Memory Sequencer Commands
	4.4.1 Overview
	4.4.1.1 Selection of the Area to be Reprogrammed

	4.4.2 Code/Data Flash Memory Area Sequencer Commands
	4.4.2.1 Reprogramming the Code Flash Area
	4.4.2.2 Reprogramming the Data Flash Area

	4.4.3 Extra Area Sequencer Commands
	4.4.3.1 Reprogramming the Extra Area
	4.4.3.2 Data Settings for Extra Area Sequencer Commands

	4.4.4 Procedures for Judging the End of Command Execution in the Flash Memory Sequencer
	4.4.4.1 Procedure for Judging the End of Command Execution in the Code/Data Flash Memory Area Sequencer
	4.4.4.2 Procedure for Judging the End of Command Execution in the Extra Area Sequencer

	4.4.5 Procedure for Forcibly Terminating Command Execution in the Code/Data Flash Memory Area Sequencer

	4.5 Boot Swap Function
	4.5.1 Overview
	4.5.2 Operation of the Boot Swap Function
	4.5.3 Execution of the Boot Swap Function
	4.5.3.1 Immediate Execution of Boot Swap
	4.5.3.2 Boot Swap Execution after a Reset

	4.6 Flash Shield Window Function
	4.6.1 Overview
	4.6.2 Operation of the Flash Shield Window Function
	4.6.3 Execution of the Flash Shield Window Function
	4.6.3.1 Control of the Flash Shield Window Mode
	4.6.3.2 Protection against Flash Shield Window (FSW) Modification

	4.7 Interrupts in Code Flash Memory Programming Mode
	4.7.1 Overview
	4.7.2 Operation when Interrupt Branch Destinations are Changed
	4.7.3 Procedures for Changing the Interrupt Branch Destinations

	4.8 Examples of Command Execution for Reprogramming of Flash Areas
	4.8.1 Example of Command Execution for Reprogramming of the Code Flash Area
	4.8.2 Example of Command Execution for Reprogramming of the Data Flash Area
	4.8.3 Example of Command Execution for Reprogramming of the Extra Area

	5. Sample Programs
	5.1 File Structure
	5.1.1 Folder Structure
	5.1.2 List of Files
	5.1.2.1 List of Source Files
	5.1.2.2 List of Header Files

	5.2 Data Type Definitions
	5.2.1 Enumerations

	5.3 Sample Program Functions
	5.3.1 Sample Program for Controlling the Reprogramming of the Code Flash Memory
	5.3.1.1 main Function
	5.3.1.2 Sample_CodeFlashControl Function

	5.3.2 Sample Program for Controlling the Reprogramming of the Data Flash Memory
	main Function
	5.3.2.2 Sample_DataFlashControl Function

	5.3.3 Sample Program for Controlling the Reprogramming of the Extra Area
	main Function
	5.3.3.2 Sample_ExtraFSWControl Function

	5.3.4 Sample Program Used in Common for Controlling the Flash Memory
	5.3.4.1 Sample_CheckCFDFSeqEnd Function
	5.3.4.2 Sample_CheckExtraSeqEnd Function

	5.4 Specifications of Sample Program Functions
	5.4.1 Sample Program Functions for Controlling the Reprogramming of the Code Flash Memory
	5.4.1.1 main
	5.4.1.2 Sample_CodeFlashControl

	5.4.2 Sample Program Functions for Controlling the Reprogramming of the Data Flash Memory
	5.4.2.1 main
	5.4.2.2 Sample_DataFlashControl

	5.4.3 Sample Program Functions for Controlling the Reprogramming of the Extra Area
	5.4.3.1 main
	5.4.3.2 Sample_ExtraFSWControl

	5.4.4 Sample Program Functions Used in Common
	5.4.4.1 Sample_CheckCFDFSeqEnd
	5.4.4.2 Sample_CheckExtraSeqEnd

	5.5 Precautions in Case of Using Sample Program

	6. Creating a Sample Project for RFD RL78 Type 01
	6.1 Creating a Project in the Case of Using a CC-RL Compiler
	6.1.1 Example of Creating a Sample Project
	6.1.2 Example of Registration of Target Folders and Target Files
	6.1.3 Build Tool Settings
	6.1.3.1 Include Path Settings
	6.1.3.2 The setting of user definition macro
	6.1.3.3 Device Item Settings
	6.1.3.4 Section Item Settings

	6.1.4 Debug Tool Settings
	6.1.4.1 Setting of Connection with Target Board

	6.2 Creating a Project in the Case of Using IAR Compiler
	6.2.1 Example of Creating a Sample Project
	6.2.2 Example of Registration of Target Folders and Target Files
	6.2.3 Integrated Development Environment(IDE) Settings
	6.2.3.1 Include Path Settings
	6.2.3.2 The setting of user definition macro
	6.2.3.3 Debugger Settings

	6.2.4 Linker Configuration File(.icf) Settings
	6.2.4.1 Section Settings
	6.2.4.2 Option Bytes Settings

	6.2.5 On-chip Debug Settings
	6.2.5.1 Example of How to deal with Connection Errors

	6.3 Creating a Project in the Case of Using LLVM Compiler
	6.3.1 Example of Creating a Sample Project
	6.3.2 Example of Registration of Target Folders and Target Files
	6.3.3 Build Tool Settings
	6.3.3.1 Include Path Settings
	6.3.3.2 The Setting of User Definition Macro
	6.3.3.3 Linker Script File (.ld) Settings
	6.3.3.4 Section Settings

	6.3.4 Option Bytes Settings
	6.3.5 Setting of Connection with Target Board
	6.3.6 Caution

	6.4 Configurations Modify Procedure for Changing Device
	6.4.1 CC-RL Compiler Environment Settings
	6.4.1.1 Section Settings
	6.4.1.2 Debug Settings

	6.4.2 IAR Compiler Environment Settings
	6.4.2.1 Setting Up Header Files for Target Device
	6.4.2.2 Linker Configuration File Settings

	6.4.3 LLVM Compiler Environment Settings
	6.4.3.1 Linker Script File Settings

	6.4.4 Modification of Sample Programs (Common to CC-RL Compiler, IAR Compiler and LLVM Compiler)
	6.4.4.1 Modification of Header File for Extra Area [Range for FSW] Reprogramming Sample Program

	7. Revision History
	7.1 Major Modifications in this Revision

	Colophon
	Back Cover

