RENESAS

-
»
@
ﬁ\.
»
<
)
S
-
O

Renesas Flexible Software Package
(FSP) v0.8.0

User’'s Manual

Renesas RA Family

All information contained in these materials, including products and
product specifications, represents information on the product at the
time of publication and is subject to change by Renesas Electronics
Corp. without notice. Please review the latest information published
by Renesas Electronics Corp. through various means, including the

Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics Revision 0.81 Nov.08.19
WWWw.renesas.com

Table of Contents

Chapter 1 Introductiono 6
L OVEIVIEW .« . .ttt e e e e e e 6
1.2 Howto Read this Manual e e e e 6
1.3 Documentation Standard e 6

Chapter 2 Starting DeVelopMeNt 8
2.1 Starting Development INtrodUCHION oot e 8

2.1.1 Getting Started with the 2 studio ISDE and FSP | . | ittt e e 8
2.2e2studio ISDE USer GUIAE oo e e e e e e e e s 9
221 Whatis €2 Studio ISDE? | | | e e e e 9
2.2.2e2studio ISDE PrereqUISIteS | L e e e 11
22210btainingan RAMCU KIt e e 11
2222PCReqUIreMeNtS | e e e 11
2.2.2.3 Installing e2 studio, platform installer and the FSP package | | | 11
2224 ChoosingaToolchain 11
2.2 2B LICeNSINg L e 12
2.2 3 Whatis @ PrOJeCt? | | e 12
2,24 Creating @ PrOBCt | L L . L. e e e 13
2241 Creatinga New Project e e e e 14
2.24.2 Selecting a Board and Toolchain 15
2243 Selecting a Project Template e 16
2.2.5Configuring @ ProjeCt | e e 17
2251 Configuring the BSP with the ISDE | e 18
2252 Configuring Clocks e e e 19
2253 Configuring Pins e e 19
2254 Configuring INITUPES L e 22
2255 Viewing BventLinks e 23
2.2.6 Adding Threads and Drivers | | e e e 24
2.2.6.1 Adding and Configuring HAL DIIVETs e e 25
2.2.6.2 Adding Drivers to a Thread and Configuring the Drivers 26
22283 Configuring Threads e e e e 29
2.2.7 Reviewing and Adding COMPONENES | |, ittt ittt et et e e e e 30
2.2.8 Writing the Application | . . . L . . . L 30
2281 Coding Features e e e e 30
2.2.82 RTOS-independent Applications e 36
2283RTOS Applications e e 37
2.2.9 Debugging the Project e e 38
2.2.10 Modifying Toolchain SEtiings i e 39
2.2.11 Importing an Existing Project into €2 studio ISDE |, | | i e e 40
2.3 Tutorial: Your First RA MCU Project - BlinKy e e e e e e e 44
2.3 L TUtonal BINKY |, L e e e 44
2.3.2What Does BIINKY DO | . L . L e e 44
2.3 3 PIBIBgUISIEES | . L . e e e e 44
2.3.4 Create a New Project for BIiNKy | . ., e e e 44
2.3.4.1 Details about the Blinky Configuration e 47
2.3.4.2 Configuring the Blinky Clocks | e e e 47
2.3.4.3 Configuring the Blinky PIns e 47
2.3.4.4 Configuring the Parameters for Blinky COMpPONents . 47
2345 Whereis main()? e e e 47
23.4.6Blinky Example Code | e 47
2.3.5Build the Blinky Project e 48

2.3.6 Debug the BIINKy ProjeCt | | e e 48

2.3.8.1Debug prerequIsites e e e e e e e 49
23,82 DebUg SteDS | L e e e 49
2.3.6.3 Details about the Debug Process | e e 50
2.3.7Runthe BIINKY PrOjeCt | . L . L . . . 51
2.4 Tutorial: Using HAL Drivers - Programming the WDTttt e e e i e e 51
2.4, L ApPIICatioN WD T | L e e e e 51
2.4.2 Creating a WDT Application Using the RAMCU FSP and ISDE |\ ot s, 51
2421 Using the FSP and the e2 studio ISDE L 51
2.422The WDT Application e 51
24.23WDT Application flow e e 52

2.4.3 Creating the Project with the ISDE | | e 52
2.4.4 Configuring the Project with the ISDE | | | e e e e e 55
24 L B P TaD e e 56
2442 Clocks Tab L e e e e 56
24 B PINS Tab e e 57
2444 Stacks Tab e e 57
2445 Components Tab e e e 59
2.45WDT Generated Project Files | e e 60
245 1WDT hal_datah 61
245 2WDT hal_data.c e 62
245 3WDT MaiNC L e e 63
245 4WDT hal_entry.c e e e 64

2.4.6 Building and Testing the Project 66
Chapter 3 FSP ArChiteCtUIe . . .ttt 69
3.1 FSP ArchiteCture OVEIVIEW . . . o ot i i e e e et e e e e e e e e 69
B L L CO0 LS | L L e e e 69

B L 2 DOXY BN | L L L e e e e e e e e 69

3. L3 Weak SymboIS | | . L e e e e 69
3.L4Memory AlIOCALION | L L L L e e e 69

B L S RSP TOIMS | L e 69
B.2FSP MOUIES o e e 71
BB FSP StaCKS . . .t e 72
BAFSP INtEIfaCeS o o e 72
3.4.1 FSP Interface ENUMErations | | i e e e e 73
3.4.2 FSP Interface Callback FUNCHONS | | e 73
3.4.3 FSP Interface Data SIUCIUIES | | | et e e e e e 75
3.4.3.1 FSP Interface Configuration Structure e 75
3.43.2FSPInterface APISITUCIUIE e e 76
3.43.3 FSP Interface Instance Structure e e e e 79

B O RSP INStANCES i it e e e e e e 79
3.5.1 FSP Instance Control SUCIUIE | o e e e e e 80
3.5.2FSP Interface EXtENSIONS | e 80
3.5.2.1 FSP Extended Configuration Structure e e e 80

3. 5. 3 FSP INstance APl | | L e e 81
B.6FSP APIStandards e 81
3.6.1FSP FUNCHON NamMES | | . e e e e 81
3.6.2 Use of constin APL parameters | ,ttt ettt e e 81
3.6.3 FSP Version Information | | e e e 81
3.7 FSP Build Time Configurations i e e e e e e e e 82
BB FSP File StrUCIUNE o e e e e e 83
3.9FSP Architecture in PractiCe i 83
3.9.1FSP Connecting Layers | 83
3.9.2 Using FSP Modules inan Application e 84
3.9.2.1 Create a Module Instance in the RA Configuration ToOl . 84

3.9.2.2 Use the Instance APl in the Application | 84

= 1 90
4.1.1CommON Ermor COUBS |, ittt it e e e e e e e 90
4.1.2 MCU Board SUPPOrt PACKAGE ., it it i et et e e e e e e 101

AL 2 L RAZAL e e 108
AL 22 RAAM L e 111
AL 23 RABM L e 114
AL 2 A RABMZ e 117
AL 25 RABME 120
AL3BSP IO @CCESS | i ittt e e e 123

A 2 MOAUIBS . . o o 134
4.2.1 High-Speed Analog Comparator (_acmphs) ., it e e 139
4.2.2 Low-Power Analog Comparator (r_acmplp) e e e e 140
4.2.3 Analog to Digital Converter (r_adC)ttt e e e e e e 142
4.2.4 Asynchronous General Purpose TImer (1_agt)ttt it it et e e e 143
4.2.5 Clock Frequency Accuracy Measurement CIircuit (f_CaC)t it it it it et et et e e 145
4.2.6 Clock Generation CIrcUIt (T_CC) vt it i e et e e e e et e e e e e e 146
4.2.7 Cyclic Redundancy Check (CRC) Calculator (T_CIC)\ttt it et et et et e e 148
4.2.8 Capacitive Touch Sensing Unit (T_CISU)t it et et e e e e e e 150

4.2.9 Digital to Analog Converter (I_AaC)ttt it i e e 151

4.2.10 Direct Memory Access Controller (r_dmac) it 152
4.2.11 Data Operation CircUit (T_dOC)\ttt e e e e e e e 155
4.2.12 DIAVE 2D PortInterface (1_drw) e e 156
4.2.13 Data Transfer Controller (r_atC) ittt e 157
4.2.14 Event Link Controller (1_elC) e e e e 162
4.2 0 Ethermet (1 ether) | . e e 164
4.2.16 Ethernet PHY (r_ether_phy) | . . . e e 167
4.2.17 High-Performance Flash Driver (r_flash_hp) i e e 170
4.2.18 Low-Power Flash Driver (r_flash_Ip) e 172
4.2.19 Graphics LCD Controller (r_glcdC) i e 174

4.2.20 General PWM TIMET (1_gPt) ot e e e e 176

4.2.21 Interrupt Controller Unit (r_iCU) e 178
4.2.2212C Master on lIC (r_iic_master) e e 179
4.2.2312C Slave on IC (r_iiC_SIave) e 181

4.2.241/0 Ports (1_I0POM) . . L L L e e e e 182

4.2.25 Independent Watchdog Timer (r_iwdt) |, e 184
4.2.26 JPEG COUEC (I_JPBU) . . v . v v ot it e e e e e e e e e e e e 185
4,227 Key INtermupt (1_KiNt) L e e e 188
4.2.28 Low Power Modes (1_Ipm) | e e 189
4.2.29 Low Voltage Detection (1_IVd) e e e e 190
4.2.30 Realtime Clock (1_rC) . . L . . e e e e e 191
4.2.31 Serial Communications Interface (SCI) 12C (r_SCi_i2C) it e i e e 193
4.2.32 Serial Communications Interface (SCI) SPI (r_sci_spi) et e 195
4.2.33 Serial Communications Interface (SCI) UART (r_SCi_Uart)\ ot e e e e s, 196
4.2.34 SD/IMMC Host Interface (r_sdhi) e e 198

4.2.35 Serial Peripheral Interface (1_Spi) 199

4.2.36 Serial Sound Interface (F_SSi)ttt e e 201
4.2.37 Universal Serial Bus (r_usb_basiC) 202
4.2.38 Host Mass Storage Class Driver (r_usb_hmsc) e 208

4.2.39 Universal Serial Bus Peripheral Communication Device Class (r_usb_pcdc) @ v it 213
4.2.40 Watchdog Timer (r_wdt)
4.2.41 SEGGER emWin Port (rm_emwin_port)
4.2.42 FreeRTOS Plus FAT (rm_freertos_plus_fat) i e e e 222
4.2.43 Amazon FreeRTOS Port (rm_freertos_port) 224

4.2.44 Crypto Middleware (rm_psa_cCrypto) ittt sttt e ettt e e e e e e 243

4.2.45 Capacitive Touch Middleware (rm_touch) i e e e e e 258
A 3 NI ACES e 259
4.3. 1 ADC INterface | | e e e e 262
432 CAC INtEIfaCE | | L . . e e e 281
433 CGCINterface | | . . e e 290
4.3.4 Comparator Interface | e e e 303
435 CRCINerfaCe | | . . . e e 312
436 CTSUINterface e e 317
437 DACINtEIfaCE | | L . L e 330
4.3.8Display Interface | | e e e 335
43.9DOC INtErfaCe | | e 353
4.3 10 ELC INterface | e e e e e 358
4.3 1L Ethernet INterface | | e e e 363
4.3.12 Ethernet PHY INterface . | e e 372
4313 External IRQ Interface . |, e e e 378
4314 Flash Interface | e e e e 384
43.1512C Master Interface L e e e 400
4316 12C Slave Interface e e 408
4307 128 Interface L e e 415
431810 PortInterface | e e 427
43.19JPEG Codec Interface . ., e e 441
4.3.20 Key Matrix Interface e e e e 453
4.3.21 Low Power Modes Interface | e 459
4.3.22 Low Voltage Detection Interface e e e e 473
4.3 23 RTC INBITACE | i e e e e e e e e 483
4.3.24 SDIMMC INterfaCe | | . L . . i e e e e 494
4.3.25 SPIINterface | | e e e e 510
4.3.26 Timer Interface |, e e e e e 521
4.3.27 Transfer Interface | e e 533
43.2BUART INterface | e e 545
4320 USB INterface | e 555
4330 USBHMSC Interface e e 580
43.3LUSBPCDCINterface ., e 584
4332 WDT INterface | e e e 585

Flexible Software Package User’s Manual

Introduction

Chapter 1 Introduction

1.1 Overview

This manual describes how to use the Renesas Flexible Software Package (FSP) for writing
applications for the RA microcontroller series.

1.2 How to Read this Manual

For help getting started with the FSP, see:
e Starting Development
To learn about the FSP architecture and about board and chip-level support included in the FSP, see:

e FSP Architecture
e MCU Board Support Package

For user guides describing the FSP modules, see:
e Modules
For shared interface APl documentation, see:

e |nterfaces

1.3 Documentation Standard

Each module user guide outlines the following:

e Features: A bullet list of high level features provided by the module.

e Configuration: A description of module specific configurations available in the configuration
tool.

e Usage Notes: Module specific documentation and limitations.

e Examples: Example code provided to help the user get started.

¢ APl Reference: Usage notes for each APl in the module, including the function prototype and
hyperlinks to the interface documentation for parameter definitions.

Interface documentation includes typed enumerations and structures-including a structure of
function pointers that defines the API-that are shared by all modules that implement the interface.

Introduction to FSP

Purpose

The Renesas Flexible Software Package (FSP) is an optimized software package designed to provide
easy to use, scalable, high quality software for embedded system design. The primary goal is to

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 6 / 601
Nov.08.19

Flexible Software Package User’s Manual

Introduction > Documentation Standard

provide lightweight, efficient drivers that meet common use cases in embedded systems.
Quality

FSP code quality is enforced by peer reviews, automated requirements-based testing, and
automated static analysis.

Ease of Use

The FSP provides uniform and intuitive APIs that are well documented. Each module is supported
with detailed user documentation including example code.

Scalability

FSP modules can be used on any MCU in the RA family, provided the MCU has any peripherals
required by the module.

FSP modules also have build time configurations that can be used to optimize the size of the module
for the feature set required by the application.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 7 /601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development

Chapter 2 Starting Development

2.1 Starting Development Introduction

The Renesas Flexible Software Package (FSP) provides a host of efficiency enhancing tools for
developing projects targeting the Renesas RA series of MCU devices. The e studio Integrated
System Development Environment (ISDE) provides a familiar development cockpit from which the
key steps of project creation, module selection and configuration, code development, code
generation, and debugging are all managed. FSP runs within e? studio and enables the module
selection, configuration, and code generation steps. FSP uses a Graphical User Interface (GUI) to
simplify the selection, configuration, code generation and code development of high level modules
and their associated Application Program Interfaces (APIs) to dramatically accelerate the
development process.

The wealth of resources available to learn about and use e? studio and FSP can be overwhelming on
first inspection, so the following section provides a Getting Started Guide with a list of the most
important first steps. Following these highly recommended first 10 steps will bring you up to speed
on the development environment in record time. Even experienced developers can benefit from the
use of this guide, to learn the terminology that might be unfamiliar or different from previous
environments.

2.1.1 Getting Started with the e2 studio ISDE and FSP

This section describes how to use the Renesas e? Integrated Solutions Development Environment
(ISDE) to develop applications with the Renesas Flexible Software Package (FSP). Here is the
recommended sequence for quickly Getting Started with using e?> when developing with the RA MCU
Family:

1. Read over the section What is e2 studio ISDE?, up to but not including e2 studio ISDE
Prerequisites. This will provide a description of the various windows and views to use e? to
create a project, add modules and threads, configure module properties, add code, and
debug a project. It also describes how to use key coding 'accelerators' like Developer Assist
(to drag and drop parameter populated API function calls right into your code), a context
aware Autocomplete (to easily find and select from suggested enumerations, functions,
types, and many other coding elements), and many other similar productivity enhancers.

2. Read over the FSP Architecture sections FSP Architecture, FSP Modules and FSP Stacks.
These provide the basic background on how FSP modules and stacks are used to construct
your application. Understanding their definitions and the theory behind how they combine
will make it easier to develop with FSP.

3. Read over a few "Module User Guide" sections to see how to use API function calls,
structures, enumerations, types and callbacks. These user guides provide the information
you will use to implement your project code. (Much of the details are provided with
Developer Assistance, covered in step 5, below.

4. If you don't have a kit. you can order one using the link included in the e2 studio ISDE
Prerequisites section. Then, if you haven't yet downloaded and installed e? studio and FSP,
use the link included in the e2 studio ISDE Prerequisites section to download the tools. Then
you can build and debug a simple project to prove out you installation, tool flow, and the
kit. The simple "Blinky" project, that blinks an LED on and off, is located in the Tutorial: Your
First RA MCU Project - Blinky section. Follow the instructions for importing and running this

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 8 /601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Starting Development Introduction > Getting Started with the e2 studio ISDE and FSP

project. It will use some of the key steps for managing projects within e? and is a good way
to learn the basics.

5. Once you have successfully run Blinky you have a good starting point for using FSP for more
complex projects. The Watchdog Timer hands-on lab, available in the Tutorial: Using HAL
Drivers - Programming the WDT section, shows how to create a project from scratch and
use FSP API functions, and demonstrates the use of some of the coding efficiency tools like
Developer Assistance and Autocomplete. Run through this lab to establish a good starting
point for developing custom projects.

6. The balance of the FSP Architecture sections, those not called out in step 2 above, contain
additional reference material that may be helpful in the future. Scan them over so you know
what they contain, in case you need them.

7. The balance of the e? ISDE User Guide, starting with the What is a Project? section up to
Writing the Application section, provides a detailed description of each of the key steps,
windows, and entries used to create, manage, configure, build and debug a project. Most of
this will be familiar after doing the Blinky and WDT exercises from steps 4 and 5 above.
Skim over these references so you know to come back to them when questions come up.
Make sure you have a good grasp of what each of the configuration tabs are used for since
that is where the bulk of the project preparation work takes place prior to writing code.

8. Read over the Writing the Application section to get a short introduction to the steps used
when creating application code with FSP. It covers both RTOS-independent and RTOS-
dependent applications. The Tutorial: Using HAL Drivers - Programming the WDT section is
a good introduction to the key steps for an RTOS-independent application. Make sure you
have run through it at least once before doing a custom project.

9. Scan the Debugging the Project section to see the steps required to download and start a
debug session.

10. Explore the additional material available on the following web pages and bookmark the
resources that look most valuable to you:
a. RA Landing Page: https://www.renesas.com/ra
b. FSP Landing Page: https://www.renesas.com/fsp

2.2 e2 studio ISDE User Guide

2.2.1 What is e2 studio ISDE?

The Renesas e’ studio ISDE, or Integrated Solution Development Environment, is a development tool
encompassing code development, build, and debug. The ISDE is based on the open-source Eclipse
IDE and the associated C/C++ Development Tooling (CDT).

When developing for RA MCUs, the ISDE hosts the Renesas Flexible Software Package (FSP). FSP
provides a wide range of time saving tools to simplify the selection, configuration, and management
of modules and threads, to easily implement complex applications. The time saving tools available in
e? studio and FSP include the following:

e A Graphical User Interface (GUI) (see Adding Threads and Drivers) with numerous wizards
for configuring and auto-generating code

¢ A context sensitive Autocomplete (see Tutorial: Using HAL Drivers - Programming the WDT)
feature that provides intelligent options for completing a programming element

e A Developer Assistance) tool for selection of and drag and drop placement of API functions

directly in application code

A Smart Manual provides driver and device documentation in the form of tooltips right in

the code

An Edit Hover feature to show detailed descriptions of code elements while editing

* A Welcome Window with links to example projects, application notes and a variety of other
self-help support resources

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 9/ 601
Nov.08.19

https://www.renesas.com/ra
https://www.renesas.com/fsp

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > What is e2 studio ISDE?

¢ An Information Icon, from each module, is provided in the graphic configuration viewer that
links to specific design resources, including code 'cheat sheets' that provide useful starting
points for common application implementations.

e’ studio

v7.6.0

ph.setup.ui (BUILT.ON

|
Figure 1: e2 studio Splash Screen

The e? studio ISDE organizes project work based on Perspectives, Views, Windows, Panes, and Pages
(sometimes called Tabs). Windows are a section of the ISDE GUI that presents information on a key
topic. Windows often use tabs to select sub-topics. For example, an editor window might have a tab
available for each open file, so it is easy to switch back and forth between them. A window Pane is a
section of a window. Within a window, multiple Panes can be opened and viewed simultaneously, as
opposed to a tabbed window, where only individual content is displayed. A memory-display Window,
for example, might have multiple Panes that allow the data to be displayed in different formats,
simultaneously. A Perspective is a collection of Views and Windows typical for a specific stage of
development. The default perspectives are a C/C++ Perspective, an FSP Configuration Perspective
and a Debug Perspective. These provide specific Views, Windows, Tabs, and Panes tailored for the
common tasks needed during the specific development stage. These three default perspectives are
each illustrated in the below screen shots, along with graphic indicators helpful in identifying
example Views, Windows, Tabs and Panes.

File Edit Navigste Search Project RenesasViews Run Window Help

o |®-& -5 [S][%] 8][4 pebug ~ || 0 Blinky Debug (1) vir| A S A e

s ECKH— <Synergy Configuration> | {%% RA Configuration Quick Access
=9 ﬁé“: [Blinkyl RA Configuration 53 = 2 (& paciose 12 S ee|m - - o)

4 Project Explorer 52
&
BlEle - Summary ‘ :
v 722 Blinky Generate Project Content| | 7 1 1 0 o e o |+
[Includes 7
Bra Project Summary Ao [P e e s | e | e | s rssgpsmon| o | o
(2 ra_gen Renesas < |pucz | ot [Fes0 | rags [o7 | paco || | rogz | s [pesz | <
(5 sre Board: Custom User Board (Any Device)
(= racfg Device: R7FASM1AD2CLY ol il sl Bl
& script Toolchain: GCC ARM Embeddad & |vec | peo | poos | puss [Puss (| poco [pree | pocs | paas [resz |2
El Blinky Debug (1).launch Toolchain Version: 8.3.1.20190703 Project Configuration
i configurationaml ' Ve ! vet | vss | pece | pect [eco | pacz [| prce |[xcm ficou
v FSP Version: 0.8.0 Editor
2 R7TFABMIAD2CL.pincfg & [pues | pecs | pio7 || pss [oo || pece | poce | e |marvete
Developer Assistance
@ P Selected software components o | paos { pans | pacs | eaoo 45 s ooy | eoas | esos | oo |
Custom Board Support Files v0.8.0 7 |z | s | vss | poas flvmee |7 oce | oo | et eso
0 Port v0.8.0 o ey ey o o -
. Board Support Package Common Files v0.8.0 PERR— = "
Project Arm CMSIS Version 5 - Core (M) v5.5.1)
Explorer Board support package for RTFASM1AD2CLY v08.0 N RIFABM1/00d) - T00LGA (Top View)
View Connaction status:
o= [J¥éarring
ok
Youl[l3 % ﬁ - Package
Support I\ = View
Summary| BSP | Clocks| Pins| Interrupts | Event Links | Stacks| Compenents

Figure 2: Default Perspective

R11UMO0137EU0081 Revision 0.81 RENESANS Page 10/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > What is e2 studio ISDE?

In addition to managing project development, selecting modules, configuring them and simplifying
code development, e? studio also hosts the engine for automatically generating code based on
module selections and configurations. The engine continually checks for dependencies and
automatically adds any needed lower level modules to the module stack. It also identifies any lower
level modules that require configuration (for example, an interrupt that needs to have a priority
assigned). It also provides a guide for selecting between multiple choices or options to make it easy
to complete a fully functional module stack.

The Generate Project Content function takes the selected and configured modules and automatically
generates the complete and correct configuration code. The code is added to the folders visible in
the Project Explorer window in e? studio. The configuration.xml file in the project folder holds all
the configuration settings generated by the ISDE. This file can be opened in the GUI-based
configuration editor to make further edits and changes. Once a project has been generated, you can
go back and reconfigure any of the modules and settings if required using this editor.

]

& -

=

15 Project Explorer 23
~ 1% MyProject [Debug]
3 Binaries
5l Includes
= ra
2 ra_gen
8 src
= Debug
= ra_cfg

= script
4k configurationaml

=| MyProject Debug,jlink
= R7FAGM3AH3CFC.pincfg
=/ ra_cfgixt

= RABM3-EK.pincfg

(7) Developer Assistance

Figure 3: Project Explorer Window showing generated folders and configuration.xml file

2.2.2 e2 studio ISDE Prerequisites
2.2.2.1 Obtaining an RA MCU Kit

To develop applications with FSP, start with one of the Renesas RA MCU Evaluation Kits. The Renesas
RA MCU Evaluation Kits are designed to seamlessly integrate with the e? studio ISDE.

Ordering information, Quick Start Guides, User Manuals, and other related documents for all RA MCU
Evaluation Kits are available at https://www.renesas.com/ra.

2.2.2.2 PC Requirements
The following are the minimum PC requirements to use the e? studio ISDE:

e Windows 10 with Intel i5 or i7, or AMD A10-7850K or FX

e Memory: 8-GB DDR3 or DDR4 DRAM (16-GB DDR4/2400-MHz RAM is preferred)

e Minimum 250-GB hard disk
2.2.2.3 Installing e2 studio, platform installer and the FSP package
Detailed installation instructions for the e? studio ISDE and the FSP are available on the Renesas
website https://www.renesas.com/fsp. Review the release notes for e? studio to ensure that the e?
studio version supports the selected FSP version. The starting version of the installer includes all

features of the RA MCUs.

2.2.2.4 Choosing a Toolchain

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 11 /601
Nov.08.19

https://www.renesas.com/ra
https://www.renesas.com/fsp

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > e2 studio ISDE Prerequisites > Choosing a Toolchain

The e? studio ISDE can work with several toolchains and toolchain versions such as the GNU ARM
compiler, AC6. A version of the GNU ARM compiler is included in the e? studio installer and has been
verified to run with the FSP version.

2.2.2.5 Licensing

FSP licensing includes full source code, limited to Renesas hardware only.

2.2.3 What is a Project?

In e? studio, all FSP applications are organized in RA MCU projects. Setting up an RA MCU project
involves:

1. Creating a Project
2. Configuring a Project

These steps are described in detail in the next two sections. When you have existing projects
already, after you launch e® studio and select a workspace, all projects previously saved in the
selected workspace are loaded and displayed in the Project Explorer window. Each project has an
associated configuration file named configuration.xml, which is located in the project's root directory.

15 Project Explorer £3]

& -

=S
~ 1% MyProject [Debug]

3 Binaries

5l Includes

= ra

2 ra_gen

8 src

= Debug

= ra_cfg

= script
507 configuration.xml

= MyProject Debug,jlink

=/ R7FABM3AH3CFC pincfg
=/ ra_cfgixt

= RABM3-EK.pincfg

(7) Developer Assistance

Figure 4: e2 studio Project Configuration file

Double-click on the configuration.xml file to open the RA MCU Project Editor. To edit the project
configuration, make sure that the RA Configuration perspective is selected in the upper right hand
corner of the e? studio window. Once selected, you can use the editor to view or modify the
configuration settings associated with this project.

£ | B8 C/C++ {5 RA Configuration

Figure 5: e2 studio RA Configuration Perspective

Note
Whenever the RA project configuration (that is, the configuration.xml file) is saved, a verbose RA Project Report
file (ra_cfg.txt) with all the project settings is generated. The format allows differencesto be easily viewed using a
text comparison tool. The generated file is located in the project root directory.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 12/ 601

Nov.08.19

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > What is a Project?

User’s Manual

[Project Explorer 33

= (a5

BG|le -

w =5 MyProject [Debug]

g;b Binaries
[Includes
@ ra
(2 ra_gen
(B src
(= Debug
(= ra_cfg
= script
{5 configurationxml
= MyProject Debug.jlink
TFABMIAH3CFC.pincfg

o] ==

|=| RAGM3-EK.pincfg
(?) Developer Assistance

=| ra_cfg.txt B2

B

6

RA Configuration

<

Board "EK-RAGM3™
R7FAGM3AHICFC

part_number: R7FAGM3AH3CFC
rom_size bytes: 2897152

ram_size bytes: 65536@

data_flash_size_bytes:
package_style: LQFP
package_pins: 176

RABM3
series: g

RAGM3 Family

OFS@ register settings:
OFS@ register settings:
OFS@ register settings:
OFS@ register settings:
OFS@ register settings:
OF5@ register settings:
OF5@ register settings:
OF5@ register settings:
OFS@ register settings:
OFS@ register settings:
OF5@ register settings:

65536

Independent WDT:
Independent WDT:
Independent WDT:
Independent WDT:
Independent WDT:
Independent WDT:
Independent WDT:

Start Mod
Timeout P
Dedicated
Window En
Window 5t
Reset Int
Stop Cont

WDT: Start Mode Select: St

DT: Timeout Period: 16334
DT: Clock Frequency Divis

WDT: Window End Position:

Figure 6: RA Project Report

The RA Project Editor has a number of tabs. The configuration steps and options for individual tabs
are discussed in the following sections.

Note

Which tabs are available with the RA Project Editor depends on the e” studio version.

{8k [MyProject] RA Configuration 52

Summary

Project Summary

Board: EK-RABGM3

Device: R7FABM3AH3ICFC
Toolchain: GCC ARM Embedded
Toolchain Version: = -2 &=Z%

FSP Version: LI |

Selected software components

RAGM3-EK Board Support Files
Simple application that blinks an LED. No RTOS included
Arm CMSIS Version 5 - Core (M)
/O Port

Board Support Package Common Files

Board support package for RTFAGM3AH3ICFC

LR i

LI} S

ool

1Summary BSP | Clocks | Pins | Interrupts | Event Links Staclcs'ComponentsI

= |

Generate Project Content

RENESAS

Figure 7: RA Project Summary tabs

A

e Click on the YouTube icon to visit the Renesas FSP playlist on YouTube
e Click on the Support icon to visit RA support pages at Renesas.com
¢ Click on the user manual (owl) icon to open the RA software package User's Manual

2.2.4 Creating a Project

During project creation, you specify the type of project, give it a project name and location, and
configure the project settings for version, target board, whether an RTOS is included, the toolchain
version, and the beginning template. This section includes easy-to-follow step-by-step instructions
for all of the project creation tasks. Once you have created the project, you can move to configuring
the project hardware (clocks, pins, interrupts) and the parameters of all the modules that are part of

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 13/601

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Creating a Project

your application.
2.2.4.1 Creating a New Project
For RA MCU applications, generate a new project using the following steps:

1. Click on File > New > RA C/C++ Project.

B Workspace - &¥ studio
File Edit Mavigate Search Project RenesasVWiews Run Window Help

New Alt+Shift+N > = RA C/C++ Project

Open File... % Project...
() Open Projects from File System... % Eample.
Close Ctrl+W % Other.. Ctri+N

Figure 8: New RA MCU Project

Then click on the type of template for the type of project you are creating.

Mew RA C/C++ Project ul X

Templates for New RA C/C++ Project

Renesas RA C Executable Project
C/C++ == A C Brecutable Project for Renesas RA.

Renesas RA C Library Project
=== A C Library Project for Renesas RA.

Renesas RA C Project Using RA Librar
) 9 ¥
F== Creates o C application project which uses an existing RA library project

Renesas RA C++ Executable Project
FE A C++ Executable Project for Renesas RA.

enesas ++ LiDrar roj
R RA C++ Library Project
== A C++ Library Project for Renesas RA.

Renesas RA C++ Project Using RA Librar
] 9 Y
FSZ Creates o C++ applicatior. project which uses an existing RA library project

@' < Back Mext > Einish Cancel

Figure 9: New Project Templates

2. Select a project name and location.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 14/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Creating a Project > Creating a New Project

ﬁ e stucio - Project Configuratior (RA C Executable Project) [m] *
e2 studio - Project Configuration (RA C Executable Project) —
Specify the new project details.
Praject Toolchains
Projectname | MyProject GCC ARM Embedded
Use default location
D:\FSPAFSP_Workspace\MyProject Browse.
default
@ < Back Next » Finish Cancel

Figure 10: RA MCU Project Generator (Screen 1)

3. Click Next.
2.2.4.2 Selecting a Board and Toolchain
In the Project Configuration window select the hardware and software environment:

1. Select the FSP version.
2. Select the Board for your application. You can select an existing RA MCU Evaluation Kit or
select Custom User Board for any of the RA MCU devices with your own BSP definition.

3. Select the Device. The Device is automatically populated based on the Board selection.
Only change the Device when using the Custom User Board (Any Device) board
selection.

. To add threads, select RTOS, or No RTOS if an RTOS is not being used.

. The Toolchain selection defaults to GCC ARM Embedded.

. Select the Toolchain version. This should default to the installed toolchain version.

. Select the Debugger. The J-Link ARM Debugger is preselected.

<o u b

8. Click Next.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 15/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Creating a Project > Selecting a Board and Toolchain

B8 <2 studio - Praject Configuration (RA € Executable Project) m] X

e2 studio - Project Configuration (RA C Executable Project)
Select the board support that you require,

Device Selection

FSP version: | 0.8.0-rc.0 Eoard Dctalty

et TR

Device: R7FABM3IAH3ICFC

RTOS: No RTOS &0
Select Tools Available Tools
Toolchain: GCC ARM Embedded ~ GCC ARM Embedded
Toolchain version: | 8.3.1.20190703 ~ 831 2019070

7.3.1.20180622

Debugger: J-Link ARM s 7.2.1.20170904
4.9.3.20150529

w Debuggers
J-Link ARM

w Smart Manual
10 Registers Supported
Software Manual Supported

@ Help < Back MNext > Finish Cancel

Figure 11: RA MCU Project Generator (Screen 2)

Click on the Help icon (?) for user guides, RA contents, and other documents.

2.2.4.3 Selecting a Project Template

In the next window, select a project template from the list of available templates. By default, this
screen shows the templates that are included in your current RA MCU pack. Once you have selected
the appropriate template, click Finish.

Note
If you want to devel op your own application, select the basic template for your board, Bare Metal - Minimal.

e studio - Project Configuration (RA C Executable Project) O X

e2 studio - Project Configuration (RA C Executable Project)
Select the type of project you wish to create.

Project Template Selection

O] 4. Bare Metal - Blinky

Bare metal FSP project that includes BSP and will blink LEDs if available. This project will
initialize clocks, pins, stacks, and the C runtime environment.

[Renesas.RA0.8.0-rc.0.pack]
® (} Bare Metal - Minimal

Bare metal FSP project that includes BSP. This project will initialize clocks, pins, stacks, and
the C runtime environment.

[Renesas.RA.0.8.0-rc.0.pack]

Code Generation Settings
Use RA Code Formatter

':?’\,‘ MNext > Finish Cancel
Figure 12: RA MCU Project Generator (Screen 3)

When the project is created, the ISDE displays a summary of the current project configuration in the

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 16 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Creating a Project > Selecting a Project Template

RA MCU Project Editor.

{8 [MyProject] RA Configuration 33)

Summar
y Generate Project Content

Project Summary

RENESAS ~
Board: EK-RAGM3
Device: R7FABM3AH3CFC
Toolchain: GCC ARM Embedded
Toolchain Version: = -0 &=%
FSP Version: =1

Selected software components

RABM3-EK Board Support Files Tt 1

Simple application that blinks an LED. No RTOS included. =Huaz

Arm CMSIS Version 5 - Core (M) .

/O Port LI) S

Board Support Package Common Files Pl " s o
Board support package for RTFABM3AH3CFC ol

lSummary BSP | Clocks Pins | Interrupts | Event Links | Stacks Cumpunentsl

Figure 13: RA MCU Project Editor and available editor tabs

On the bottom of the RA MCU Project Editor view, you can find the tabs for configuring multiple
aspects of your project:

e With the BSP tab, you can change board specific parameters from the initial project
selection.

e With the Clocks tab, you can configure the MCU clock settings for your project.

e With the Pins tab, you can configure the electrical characteristics and functions of each
port pin.

e With the Stacks tab, you can add FSP modules for non-RTOS applications and configure the
modules. For each module selected in this tab, the Properties window provides access to
the configuration parameters, interrupt priorities, and pin selections.

* With the Interrupt tab, you can add new user events/interrupts.

e With the Event Links tab, you can configure events used by the Event Link Controller.

e The Components tab provides an overview of the selected modules. You can also add
drivers for specific FSP releases and application sample code here.

The functions and use of each of these tabs is explained in detail in the next section.
2.2.5 Configuring a Project

Each of the configurable elements in an FSP project can be edited using the appropriate tab in the
configuration editor window. Importantly, the initial configuration of the MCU after reset and before
any user code is executed is set by the configuration settings in the BSP, Clocks and Pins tabs.
When you select a project template during project creation, the ISDE configures default values that
are appropriate for the associated board. You can change those default values as needed. The
following sections detail the process of configuring each of the project elements for each of the
associated tabs.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 17 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Configuring a Project

18} [MyProject] RA Configuration 53 !

Summar
y Generate Project Content

Project Summary
RENESAS ~
Board: EK-RAGM3
Device: R7FABM3AH3CFC
Toolchain: GCC ARM Embedded
Toolchain Version: = -0 &=%
FSP Version: =1

Selected software components

RABM3-EK Board Support Files Tt 1
Simple application that blinks an LED. No RTOS included. =Huaz
Arm CMSIS Version 5 - Core (M) .

/O Port LI) S
Board Support Package Common Files Pl " s
Board support package for RTFABM3AH3CFC ol

1Summary BSP | Clocks Pins | Interrupts | Event Links | Stacks Compunentsl

Figure 14: RA MCU Project Editor and available editor tabs

2.2.5.1 Configuring the BSP with the ISDE

The BSP tab shows the currently selected board (if any) and device. The Properties view is located in
the lower left of the Project Configurations view as shown below.

Note
If the Properties view is not visible, click Window > Show View > Properties in the top menu bar.

EK-RAGM3
Settings Property Value
~ R7FAGM3AH3CFC
part_number RTFABM3IAH3ICFC
rom_size_bytes 2097152
ram_size_bytes 655360
data_flash_size_bytes 65336
package_style LOFP
package_pins 176
~ RAEM3
series 6

~ RABM3 Family
OFS0 register settings
OF51 register settings

MPU
~ RA Common
Main stack size (bytes) 0400
Heap size (bytes) - A minimum of 4K 0
MCU Vee (mV) 3300
Parameter checking Disabled
Assert Failures Return FSP_ERR_ASSERTION
Error Log Mo Error Log
ID Code Mode Unlocked (Ignore ID}
ID Code (32 Hex Characters) ~ FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Soft Reset Disabled
PFS Protect Enabled
Main Oscillator Wait Time 32768 us
Main Oscillator Clock Source Crystal or Resonator
Subclock Populated Populated

Figure 15: ISDE BSP tab

The Properties view shows the configurable options available for the BSP. These can be changed
as required. The BSP is the FSP layer above the MCU hardware. The ISDE checks the entry fields to
flag invalid entries. For example, only valid numeric values can be entered for the stack size.

When you click the Generate Project Content button, the BSP configuration contents are written
to ra_cfg/fsp_cfg/bsp/bsp_cfg.h

R11UMO0137EU0081 Revision 0.81 RENESANS Page 18/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring the BSP with the ISDE

This file is created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
clicked.

2.2.5.2 Configuring Clocks

The Clocks tab presents a graphical view of the MCU's clock tree, allowing the various clock dividers
and sources to be modified. If a clock setting is invalid, the offending clock value is highlighted in
red. It is still possible to generate code with this setting, but correct operation cannot be guaranteed.
In the figure below, the USB clock HOCO has been changed so the resulting clock frequency is 24
MHz instead of the required 48 MHz. This parameter is colored red.

{5 *IMyProject] RA Configuration 53

Clocks Configuration

PLL Sre: XTAL v > pCLKA Div /2 < —{ pcLia 120mH:z

PLL Div /2 t - > PCLKE Div /4 w —{pcLi somtz

PLL Mul xZO.i(’) v > pCLIC Div /4 N
[USBMCLK 24MHz | | [P 240MH;L ! Clock Sre: PLL « <= PCLKD Div /2 v—s{pakp oM
HOCO 20MHz v SDCLKout On —{ spcLkout 120MHz

"= FCLK Div /4 ~ —)| FCLK 60MHz
CLKOUT Disabled ~ —= CLKOUT Div /1 ~ —)| CLKOUT 0Hz

Summary | BSP Pins | Interrupts | Event Links Stacks Components

Figure 16: ISDE Clocks tab

When you click the Generate Project Content button, the clock configuration contents are written
to: ra_gen/bsp_clock _cfg.h

This file will be created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
clicked.

2.2.5.3 Configuring Pins

The Pins tab provides flexible configuration of the MCU's pins. As many pins are able to provide
multiple functions, they can be configured on a peripheral basis. For example, selecting a serial
channel via the SCI peripheral offers multiple options for the location of the receive and transmit pins
for that module and channel. Once a pin is configured, it is shown as green in the Package view.

Note
If the Package view window is not open in the ISDE, select Window > Show View > Pin Configurator > Package
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 19/ 601

Nov.08.19

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Pins

User’s Manual

from the top menu bar to open it.

The Pins tab simplifies the configuration of large packages with highly multiplexed pins by
highlighting errors and presenting the options for each pin or for each peripheral. If you selected a
project template for a specific board such as the RA6M3, some peripherals connected on the board

are preselected.

8% *[MyProject] RA Configuration 2

Pins Configuration

Select pin configuration

RAGM3-EK.pincfg

Pin Selection
Hpeﬁ\tertaxt & | B

v« Connectivity:5Cl A
sCio
sCi
sCI2

v SCI3
5Cl4
SCIs
SCIE

v SCI7
sCia
sCIg

i CannactnineSl Y

<

Summary | BSP | & Clocks Interrupts | Event Links | Stacks | Compeonents

<

Generate data:

Pin Configuration

Module name:

Usage:
Pin Group Selection:
Operation Mode:

Input/Qutput

£

=

g_bsp_pin_cfg

scI7

When using Simple 12C mode, ensure port ¢
open drain.

When switching between 12C and other mo
_Conly ~

Asynchronous UART ~

v 613

v (PRl

- |[%; Pin Conflicts 52

Figure 17: Pins Configuration

&1 Package 32

The pin configurator includes a built-in conflict checker, so if the same pin is allocated to another
peripheral or I/O function the pin will be shown as red in the package view and also with white cross
in a red square in the Pin Selection pane and Pin Configuration pane in the main Pins tab. The
Pin Conflicts view provides a list of conflicts, so conflicts can be quickly identified and fixed.

In the example shown below, port P611 is already used by the CAC, and the attempt to connect this
port to the Serial Communications Interface (SCI) results in a dangling connection error. To fix this

error, select another port from the pin drop-down list or disable the CAC in the Pin Selection pane
on the left side of the tab.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 20/ 601

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Pins

{8} *[MyProject] RA Configuration 52 -

Pins Configuration
g Generate Project Content

Select pin configuration Pins Tutorial & ~ &),

RABM3-EK.pincfg » Generate data: | g_bsp_pin_cfg
Pin Selection Pin Configuration
type filker text i | H
~ B Connectivity:5CI ~ Operation Mode: Simple 5P| v &
5CI0
scn Input/Qutput
5CI2
R TXD_MOSE: ¥ | P613 > C“>:
SCI4 RAD_MISO: v |P614 ¥ =
5CI5 |
s SCK: v |PB12 > =d
B scr €S TS 55 mERel T ed
5CI8 i .
scio L None
v Connectivity:SPI MNone V’
Connecti
v <

e sl

Summary |BSP | & Clocks | @ Pins| Interrupts | Event Links | Stacks | Components |

Figure 18: ISDE Pin configurator

The pin configurator also shows a package view and the selected electrical or functional
characteristics of each pin.

&1 Package 3 ‘._ﬂvlﬁv@vl:'ﬁl
Connection Status
Drive Capacity

§HEEEEE
v
0aag q Mode

Output Type
Pull Up

RIFAGM3AwaFC
176LOFP

[Top View)

Figure 19: ISDE Pin configurator package view

When you click the Generate Project Content button, the pin configuration contents are written
to: ra_gen\bsp_pin_cfg.h

This file will be created if it does not already exist.

Warning

Do not edit this file as it is overwritten whenever the Generate Project Content button is
clicked.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 21/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Pins

To make it easy to share pinning information for your project, the ISDE exports your pin
configuration settings to a csv format and copies the csv file to ra_gen/<MCU package>.csv.

2.2.5.4 Configuring Interrupts

You can use the Properties view in the Stacks tab to enable interrupts by setting the interrupt
priority. Select the driver in the Stacks pane to view and edit its properties.

{é} *[MyProject] RA Configuration &3 =0

Stacks Configuration
g Generate Project Content

Threads 4| Mew Thread] HAL/Common Stacks 4] Mew Stack > | Remove
v ¢ HAL/Common = = ’ ~
4 g_ioport /0 Port Driver on r_ioport & g_lupurt (o] Fur:t 42 g_ellc ELC Driver on 4 g_uart) UART Driver on r_sci_uart
river on r_icpo r_elc
4 g_elc ELC Driver on r_elc A e
4 g_uart0 UART Driver on r_sci_uart @ @ @
ry
I I
4 g_transferl Transfer 4 g_transfer! Transfer
Objects &) New Object » Driver on r_dtc 1 Driver on r_dtc 0
@ @
v
Summary | BSP | Clocks | Pins | Interrupts | Stacks| Components
% Pin Conflicts 4 MCU Package [Console | [Properties 52 P |

g_uart0 UART Driver on r_sci_uart

Mag

B e BlE0 Tignerl eyl

Settings
Receive Interrupt Priority Priority 2
Transmit Data Empty Interrupt Priority Priority 2
Transmit End Interrupt Priority Priority 2
Error Interrupt Priority Priority 2
Figure 20: Configuring Interrupt on the Stacks tab
Interrupts

In the Interrupt tab, the user can bypass a peripheral interrupt and have user-defined ISRs for the
peripheral interrupt. This can be done by adding a new event with the user define tab (New User
Event).

8 *[MyProject] RA Configuration % ==

Interrupts Configuration
P g Generate Project Content

User Events 4| New User Event > |5
Event ISR
Allocations
Interrupt Event ISR
(1] SCI0 RXI (Receive data full) sci_uart_rxi_isr
1 SCI0 TXI (Transmit data empty) sci_uart_t_isr
2. SCID TEI (Transmit end) sci_uart_tei_isr
3 SCI0 ERI (Receive error) sci_uart_eri_isr

Summary:BSP:C\ucks PmsStacks Cumponents:
Figure 21: Configuring interrupt in Interrupt Tab

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 22 /601

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Interrupts

User’s Manual

& *[MyProject] RA Configuration 33 brc > |Package 33
. . EDMAC >
Interrupts Configuration Genel Iore g
EPTPC >
User Events 1.| 4] New User Eve | Fcu »
Event ISR CLEDE ?
GPT >
ICU >
l[e >
IOPORT >
IWDT >
Allocations JPEG >
Interrupt Boert N SCI0 RX| (Receive data full) 3. sCi0
0 SCI0 X (Receive data full) SCID TXI (Transmit data empty) sci
1 SCID TXI (Transmit data empty) SCI0 TEI (Transmit end) SCI2
2 SCID TEI (Transmit end) SCID ERI (Receive error) SCI3
3 SCID ERI (Receive error) SCI0 AM (Address match event) sCl4
SCI0 RX| OR ERI (Receive data full/Receive) SCI5
Sﬁmmary ES‘P C“Io(‘k;‘f‘liins'Intarrupts.Staéks.;“Componentif. QsPI > sCle
) RTC > scr
= SCE > scie
2. 5Cl By sCig
SDHIMMC >

Figure 22

Enter the name of ISR for new user event.

B New User Event

Enter the name of the ISR for the new user event:

1] -

: Adding user-defined event

| user_defined__sci_uart_pa_i srl

Figure 23: User-defined event ISR

48k *[MyProject] RA Configuration 53

Interrupts Configuration

User Events

=

Generate Project Content

4] Mew User Event > 5

Event

SCI0 RXI (Receive data full)

ISR

user_defined_sci_uart_rxi_isr

Allocations
Interrupt Event ISR
D SCID RXl (Receive data full) user_defined_sci_uart_nxi_isr I
1 SCI0 TXI (Transmit data empty) sci_uart_txi_isr
2 SCID TEI (Transmit end) sci_uart_tei_isr
3 SCID ERI (Receive error) sci_uart_eri_isr

:‘:ummary;éS’P ;C\oéls jli\ns Interrupts | Stacks| tbmponer;ts'

Figure 24: Using a user-defined event

2.2.5.5 Viewing Event Links

The Event Links tab can be used to view the Event Link Controller events. The events are sorted by

peripheral to make it easy to find and verify them.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 23 /601

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Viewing Event Links

9% [Blinky] RA Configuration §3 = 0
0

Event Links Configuration ;
Generate Project Content

Allocations

Peripheral Function Event

i A)} No allocation
GPT (B) No allocation

GPT (C) Mo allocation
GPT (D) No allocation
GPT (E) No allocation
GPT (F) No allocation
GPT (G) No allocation
GPT (H) No allocation
ADC12A0 No allocation
ADC12B0 No allocation
ADC12A1 No allocation

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

Figure 25: Viewing Event Links

2.2.6 Adding Threads and Drivers

Every FreeRTOS-based RA Project includes at least one RTOS Thread and a stack of FSP modules
running in that thread. The Stacks tab is a graphical user interface which helps you to add the right
modules to a thread and configure the properties of both the threads and the modules associated
with each thread. Once you have configured the thread, the ISDE automatically generates the code
reflecting your configuration choices.

For any driver, or, more generally, any module that you add to a thread, the ISDE automatically
resolves all dependencies with other modules and creates the appropriate stack. This stack is
displayed in the Stacks pane, which the ISDE populates with the selected modules and module
options for the selected thread.

The default view of the Stacks tab includes a Common Thread called HAL/Common. This thread
includes the driver for 1/O control (IOPORT). The default stack is shown in the HAL/Common Stacks
pane. The default modules added to the HAL/Common driver are special in that the FSP only requires
a single instance of each, which the ISDE then includes in every user-defined thread by default.

In applications that do not use an RTOS or run outside of the RTOS, the HAL/Common thread
becomes the default location where you can add additional drivers to your application.

For a detailed description on how to add and configure modules and stacks, see the following
sections:

e Adding and Configuring HAL Drivers
e Adding Drivers to a Thread and Configuring the Drivers

Once you have added a module either to HAL/Common or to a new thread, you can access the
driver's configuration options in the Properties view. If you added thread objects, you can access
the objects configuration options in the Properties view in the same way.

You can find details about how to configure threads here: Configuring Threads

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 24 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers

Note
Driver and module selections and configuration options are defined in the FSP pack and can therefore change
when the FSP version changes.

2.2.6.1 Adding and Configuring HAL Drivers

For applications that run outside or without the RTOS, you can add additional HAL drivers to your
application using the HAL/Common thread. To add drivers, follow these steps:

1. Click on the HAL/Common icon in the Stacks pane. The Modules pane changes to
HAL/Common Stacks.

{E} *[MyProject] RA Configuration 1 s
Click here to add P>
Stacks Configuration new module

Generate Project Content

Threads d) Re = |HAL/Common Stacks B NewStack> & Exten e

v g HAL/Common
47 g ioport /0 Port Driver on r_joport
1 g_widt) Watchdog Driver on r_wdt
4% g cge0d CGC Driver onr_cge

47 g ioport /0 Port & g wdtD Watchdog 4% g cge0 CGC Driver on
Driver on r_ioport Driver on r_wdt r_cge

Objects

Summary.BSP Clocks | Pins | Interrupts EventLinksComponents_

Figure 26: ISDE Project configurator - Adding drivers

2. Click New Stack to see a drop-down list of HAL level drivers available in the FSP.

3. Select a driver from the menu New Stack > Driver.

{8 *[MyProject] RA Configuration 53 = O ff]Package 2

Stacks Configuration
9 Generate Project Content

Threads [HAL/Common Stacks 4] New Stack >
Amazon FreeRTOS

~ g HAL/Common

4o P
42 g_ioport |/0 Port Driver on r_ioport # g_ioport /0 Port Arm
Driver on r_ioport

-

v v s e v

Driver Analog >
Middleware CapTouch »
SEGGER Connectivity iy
& Search... Graphics >
Input >
Monitoring »
Network »
Power ?
Storage »
Objects System >
& RTC Driver on r_rtc Tirmers »
@ Timer Driver on r_agt Transfer 3
& Timer Driver on r_gpt B
Summary |BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components
Figure 27: Select a driver
R11UM0137EU0081 Revision 0.81 RENESAS Page 25 / 601

Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding and Configuring HAL Drivers

4. Select the driver module in the HAL/Common Modules pane and configure the driver
properties in the Properties view.

The ISDE adds the following files when you click the Generate Project Content button:
e The selected driver module and its files to the ra/fsp directory

e The main() function and configuration structures and header files for your application as
shown in the table below.

File Contents Overwritten by Generate
Project Content?

ra_gen/main.c Contains main() calling Yes
generated and user code. When
called, the BSP already has
Initialized the MCU.

ra_gen/hal_data.c Configuration structures for HAL | Yes
Driver only modules.

ra_gen/hal_data.h Header file for HAL driver only | Yes
modules.

src/hal_entry.c User entry point for HAL Driver |No

only code. Add your code here.

The configuration header files for all included modules are created or overwritten in this folder:
ra_cfg/fsp_cfg

2.2.6.2 Adding Drivers to a Thread and Configuring the Drivers
For an application that uses the RTOS, you can add one or more threads, and for each thread at least
one module that runs in the thread. You can select modules from the Driver dropdown menu. To add

modules to a thread, follow these steps:

1. In the Threads pane, click New Thread to add a Thread.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 26 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

48 *[Blinky] RA Configuration £3 al e -0

Stacks Configuration

Threads | & Mew Thread | 3] Remove [=] Mew Thread Stacks 4] New Stack> =

v g‘si‘ HAL/Common f @k Add RA stacks to the selected thread by using the 'Mew Stack »' toolbar button (above), or

42 g ioport 1O Port Driver on r_ioport /
2 Mew Thread

Generate Project Content

¥' by pasting here from the clipboard.

Objects 4| New Object >

Summary | BSP | Clocks | Pins | Interrupts | Stacks| Components

I#] Problems =) Tasks [E) Console | [T Properties 2% |3 Call Hierarchy @ Smart Browser Memory Usage

New Thread
- Property Value
Scting: » Common
w Thread

Symbol new threadd Enter the name of your thread
MName [New Thread | here example: My Thread
Stack size (bytes) 1024
Priority 1

<

Figure 28: Adding a new RTOS Thread on the Stacks tab

2. In the Properties view, click on the Name and Symbol entries and enter a distinctive
name and symbol for the new thread.

Note
The ISDE updates the name of the thread stacks pane to My Thread Stacks.

3. In the My Thread Stacks pane, click on New Stack to see a list of modules and drivers.
HAL-level drivers can be added here.

8% *[MyProject] RA Configuration 2 = O §&lPackage 2

Stacks Configuration
g Generate Project Content

Threads 42 New Thread #| Remove [] Mew Thread Stacks 4] New Stack
Amazon FreeRTOS >
v & ;F{';L*’Cummorn i "‘-‘ Adbd RA s:ackshto tI;a sel:;tadl.thbreaddby using the 'T Arm >) —
" I‘\Jejjr\;f:a:h(] Port Driver on r_ioport LW or by pasting here from the clipboard. Drees 5 e 3
M CapTouch »
& 12C Master Driver on r_iic_master Connectivity »
@ 12C Slave Driver on r_iic_slave Graphics ¥
& 125 Driver on r_ssi Input »
“ SP| Driver on r_spi Monitoring »
Objects ‘a Mew Object » @ UART Driver on r_sci_uart Power »
Storage >
System »
Timers »
Transfer >

Summary | BSP | Clocks | Pins | Interrupts | Stacks| Components

Figure 29: Adding Modules and Drivers to a thread

4. Select a module or driver from the list.

5. Click on the added driver and configure the driver as required by the application by
updating the configuration parameters in the Properties view. To see the selected module
or driver and be able to edit its properties, make sure the Thread containing the driver is

R11UMO0137EU0081 Revision 0.81 RENESANS Page 27 / 601
Nov.08.19

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

User’s Manual

highlighted in the Threads pane.

48 [MyProject] RA Configuration I3

Stacks Configuration

Threads &) NewThread 4] Remove [5] 9.wdt0 Watchdog Driver on r_wdt Stacks) New Stack >

v & HAL/Common

47 g_ioport /O Port Driver on r_ioport
w i New Thread

4 g_wdt) Watchdog Driver on r_wdt @

4 g wdtD Watchdog
Driver on r_wdt

Objects 4| Mew Object > :
i]

Summary | BSP | Clocks | Pins Interrupts | Stacks| Components

["’m Pin Conflicts & Console | [T Properties 3

g_wdt0 Watchdog Driver on r_wdt

Settings Property Yalue
Common
v Module g_wdt) Watchdog Driv
MName g_wdt0
Timeout 16,384 Cycles
Clock Division Ratio PCLK/8192
‘Window Start Position 100% (Window Position Not Specified)
‘Window End Position 0% (Window Position Not Specified)
Reset Control Reset Qutput
Stop Control WDT Count Disabled in Low Power Mode
MMI Callhack NI

=]

Generate Project Content

i Remove

Figure 30: Configuring Module or Driver properties

6. If needed, add another thread by clicking New Thread in the Threads pane.

When you press the Generate Project Content button for the example above, the ISDE creates the

files as shown in the following table:

File Contents Overwritten by Generate

Project Content?

ra_gen/main.c Contains main() calling Yes
generated and user code. When
called the BSP will have
initialized the MCU.

ra_gen/my_thread.c Generated thread "my_thread" |Yes
and configuration structures for
modules added to this thread.

ra_gen/my_thread.h Header file for thread Yes
"my_thread"

ra_gen/hal _data.c Configuration structures for HAL | Yes
Driver only modules.

ra_gen/hal_data.h Header file for HAL Driver only |Yes
modules.

src/hal_entry.c User entry point for HAL Driver | No
only code. Add your code here.

src/my_thread_entry.c User entry point for thread No
"my_thread". Add your code
here.

R11UMO0137EU0081 Revision 0.81 RLENESAS Page 28 / 601

Nov.08.19

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

User’s Manual

The configuration header files for all included modules and drivers are created or overwritten in the

following folders: ra_cfg/fsp_cfg/<header files>

2.2.6.3 Configuring Threads

If the application uses the FreeRTOS, the Stacks tab can be used to simplify the creation of

FreeRTOS threads, semaphores, mutexes, and event flags.

The components of each thread can be configured from the Properties view as shown below.

New Thread

Settings Property Value
v Common
General
Hooks
Stats
Memory Allocation
Co-routines
Timers
Optienal Functions

v Thread
Symbol new_thread
Mame Mew Thread
Stack size (bytes) 1024
Priority L

Figure 31: New Thread Properties

The Properties view contains settings common for all Threads (Common) and settings for this

particular thread (Thread).

For this thread instance, the thread's name and properties (such as priority level or stack size) can
be easily configured. The ISDE checks that the entries in the property field are valid. For example,
the ISDE ensures that the field Priority, which requires an integer value, only contains numeric

values between 0 and 9.

To add FreeRTOS resources to a Thread, select a thread and click on New Object in the Thread
Objects pane. The pane takes on the name of the selected thread, in this case My Thread Objects.

48% *[Blinky] RA Configuration &2 | [£] hal_entry.c

Stacks Configuration

Threads & New Thread | Remove [5] Mew Thread Stacks 4] New Stack >

v & HAL/Common

4% g_ioport /0 Port Driver on r_iopol
v i New Thread

45 g_timerD Timer Driver on r_gpt @

4 g_timerD Timer Driver
onr_gpt

Click to add new Thread

o 5 Objects to New Thread

Objects s
T i tiew Dbicel @ Event Groups

@ g_new_event flagsOEve @& Mutex |
@ g new_queued Queve! @ Queue |

— | @ Semaphore I
Summary | BSP | Clacks | Pins Iﬁmﬁ's{ai‘k‘s‘”wrments
[Properties £
g_new_queue0 Queue
Settings Property Yalue
Name MNew Queue I
Symbol g_new_queued
Item Size (Bytes) 4
Queue Length (items) 20

Figure 32: Configuring Thread Object Properties

=

Generate Project Content

%] Remove

R11UMO0137EU0081 Revision 0.81 RENESAS
Nov.08.19

Page 29/ 601

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Configuring Threads

User’s Manual

Make sure to give each thread object a unique name and symbol by updating the Name and
Symbol entries in the Properties view.

2.2.7 Reviewing and Adding Components

The Components tab enables the individual modules required by the application to be included or
excluded. Modules common to all RA MCU projects are preselected (for example: BSP > BSP >
Board-specific BSP and HAL Drivers > all > r_cgc). All modules that are necessary for the
modules selected in the Stacks tab are included automatically. You can include or exclude

additional modules by ticking the box next to the required component.

{8 [MyProject] RA Configuration 33

Components Configuration

Component

w rabm2

w @ rabm3
[¥] device
[@] device
7| device
] device
| device
device

device
] device
[F] device
| device
7| device
¥ fsp
~ @ty CMSIS
v @ CMSISS
[¥] CoreM
v ¥ Common
v @ all
¥| fsp_commen
v gty HAL Drivers
w @ all
[r_acmplp

Summary |BSP | Clocks Pins.\nterrupts Sta{k

Version

0.6.0
0.6.0
0.6.0
0.6.0
0.6.0
0.6.0
0.6.0
0.6.0
0.6.0
0.6.0
0.6.0
0.6.0

0.6.0

0.6.0

0.6.0

Description

Board support package for RTFAGM3IAHICFC
Board support package for RAGM3

Board support package for RTFAGM3IAF2CBG
Board support package for RFTFAGM3IAFZCLK
Board support package for RTFAGM3IAFICFB

Board support package for RFFAGM3IAF3CFC
Board support package for RTFAGM3IAFICFP

Board support package for RTFABM3AH2CBG
Board support package for RTFAGM3IAH2ZCLK
Board support package for RFTFAGM3IAHICFB
Board support package for RTFAGM3IAH3CFP
Board support package for RAGM3

Arm CMSIS Version 5 - Core (M)

Board Support Package Common Files

Low Power Analog Comparator

Figure 33: Components Tab

Variant

R7FAGM3AH3CFC

R7FAEM3AFZCBG
R7FAGM3AFZCLK
R7FAGM3AF3CFB
R7FAGM3AF3CFC
R7FAGM3AF3CFP
R7FA6M3AHZCBG
R7FAEM3AHZCLK
R7FAGM3AH3CFB
R7FAGM3AHICFP

While the components tab selects modules for a project, you must configure the modules
themselves in the other tabs. clicking the Generate Project Content button copies the .c and .h
files for each component for a Pack file into the following folders:

* ra/fsp/inc/api
 ra/fsp/inc/instances

e ra/fsp/src/bsp

» ra/fsp/src/<Driver_ Name>

The ISDE also creates configuration files in the ra_cfg/fsp_cfg folder with configuration options
included from the remaining Stacks tabs.

2.2.8 Writing the Application

Once you have added Modules and drivers and set their configuration parameters in the Stacks tab,
you can add the application code that calls the Modules and drivers.

Note

To check your configuration, build the project once without errors before adding any of your own application code.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 30/601

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

User’s Manual

2.2.8.1 Coding Features

The ISDE provides several efficiency improving features that help write code. Review these features
prior to digging into the code development step-by-step sections that follow.

Edit Hover

e? studio supports hovers in the textual editor. This function can be enabled or disabled via Window
> Preferences > C/C++ > Editor > Hovers.

BH Preferences

type filter text

Code Style

Core Build Toolchains

Debug

v Editor

Content Assist
Encrypted Files
Folding
Hovers
Mark Occurrences
Save Actions
Scalability
Syntax Coloring
Templates
Typing

File Types

Indexer

Language Mappings

New C/C++ Project Wizard

Property Pages Settings

Renesas

Task Tags

Template Default Values

@ @

Hovers

Expand vertical ruler icons upon hovering [does not affect open editors)
Text Hover key modifier preferences:
Pressed Key Modifier While Hoverin:

Text Hover Name
[/] combined Hover

J Debugger

:l Renesas |O Register Help

:l RenesasCDocHover

|| Problem Description

J Documentation

j Macro Expansion

(V] Source Shift
:l Annotation Description

Pressed key modifier while hovering:‘
Description:

Tries the hovers in the sequence listed below and uses the one which fits best
for the selected element and the current context.

Restore Defaults Apply

Apply and Close

Cancel

Figure 34: Hover preference

To enable hover, check Combined Hover box. To disable it, uncheck this box. By default, it is
enabled. The Hover function allows a user to view detailed information about any identifiers in the
source code by hovering the mouse over an identifier and checking the pop-up.

bsp_leds_t leds;

R_BSP LedsGet(&leds);

/* LED state variable */
ioport_level_t level = IOPORT_LEVEL_HIGH;

A SELR- B AR
4 hal_data.h
& hal_entry(void)

[* Get LED information for this board */

Name: R_BSP_LedsGet

Description:

Prototype: ssp err tR BSP LedsGet (bsp leds t *p leds)

Return information about the LEDs on the current board.

Structure with LED information. p_leds Pointer to structure where LED info is stored.

| 28
fls2 ~—e
63 {

}

level = IOPORT_LEVEL_LOW;

Figure 35: Hover Example

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS Page 31/ 601

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

Welcome Window

The e? studio Welcome window displays useful information and common links to assist in
development. Check out these resources to see what is available. They are updated with each
release, so check back to see what has been added after a new release.

RA_Workspace - Blinky/src/hal_entry.c - € studio - O X
File Edit Source Refactor MNavigate Search Project RenesasViews Run Window Help
5' (@) Welcome 31] fafEH=-~
s
il RENESAS Welcome to e2 studio >
Workbench
Create a new e2 studio C/C++ project Get an overview of the features
Import existing e studio projects from the Go through tutorials

filesystem or archive

Try out the samples
Review the IDE's most fiercely contested ¥ B

preferences

Find out what is new
Open a file from the filesystem

M1 aiways show Welcome at start up

B

Figure 36: Welcome window

Cheat Sheets

Cheat sheets are macro driven illustrations of some common tasks. They show, step-by-step, what
commands and menus are used. These will be populated with more examples on each release.
Cheat Sheets are available from the Help menu.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 32/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

RA_Workspace - Blinky/src/hal_entry.c - € studio - m} X
File Edit Source Refactor Navigate Search Project RenesasViews Run Window Help
Q%] 45 Debug v || £ Blinky Debug v) Welcome
O~ ME DS B L Q@™ 4 i 48 ~ &5l v @ HelpContents
%’ Search
- Show Contextual Help
[Project Explorer 53 = G| & Y = B {8 [Blinky] RA Configuration
e o) .] Show Active Keybindings... Ctrl+Shift
v [Blinky [Debug] A 1 #include))
w1l Includes [2 #include ' Tips and Tricks...
@ ra #include ' & Report Bug or Ephgncement...
(£ ra_gen — 5 void R BSI Cheat Sheets...
v G src 5 -
| hal_entry.c @ * The RA RA Helpdesk
= ra_cfg void _hﬂ_‘ R RenesasRulz Community Forum
(= script

47 Add Renesas Toclchains

B Blinky Debug.launch w Perform Setup Tasks...

48 configurationxml }
-| RVFA6M3AH3CFC.pincfg % Check for Updates
5 ra_cfg.bt v - i _T,h'_l, Spf: (g Install New Software...
< > < Renesas e2 studio feedback
[T] Properties 52 : > : > = B8 [:Q Pin Conflic' §& |AR Embedded Workbench plugin manager...
B 3 B v |Qitems B About e studio
Property Value Descrip!ion o L L}

Figure 37: Cheat Sheets

Developer Assistance

FSP Developer Assistance provides developers with module and Application Programming Interface

(API) reference documentation in e? studio. After configuring the threads and software stacks for an
FSP project with the Configuration Editor, Developer Assistance quickly helps you get started writing
C/C++ application code for the project using the configured stack modules.

1. Expand the project explorer to view Developer Assistance

R11UMO0137EU0081 Revision 0.81 RENESANS Page 33 /601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

[Project Explorer &3 S

v 15 Blinky
m) Includes
& ra

JL
d
q
0
(I

(2 ra_gen
(2 src
= ra_cfg
(= script
2| Blinky Debug.launch
&% configuration.xml
=] R7TFABM3AH3CFC.pincfg
= ra_cfg.bd
) RASM3-EK pincig

v (2) Developer Assistance
v % HAL/Common
& g_ioport /O Port Driver on r_ioport
47 g_elc ELC Driver onr_elc
4 g_adc0 ADC Driver on r_adc

Figure 38: Developer Assistance

2. Expand a stack module to show its APIs

w () Developer Assistance
v gt HAL/Common
42 g_joport |70 Port Driver on r_ioport
47 g_elc ELC Driver on r_elc
w & g_adch ADC Driver on r_adc

~ @ fsp_err t R_ADC_Open(adc_ctrl_t *p_ctrl, ade_cfg_t const *const p_cfg)
| Call R_ADC_Open()

v @ fsp_err t R_ADC ScanCfg(ade_ctrl_t *p_ctrl, adc_channel_cfg_t const *const p_channel_cfg)
|2 Call R_ADC ScanCfg()

v @ fsp_err t R_ADC InfoGet(adc_ctrl_t *p_ctrl, adc_info_t *p_adc_info)
[t Call R_ADC InfoGet()

v @ fsp_err_t R_ADC ScanStart(adc_ctrl_t *p_ctrl)
|23 Call R_ADC ScanStart()

v @ fsp_err_t R_ADC_ScanStop(adc_ctrl_t *p_ctrl}
|23 Call R_ADC_ScanStop()

v @ fsp_err t R_ADC StatusGet{adc_ctrl_t *p_ctrl, ade_status_t *p_status)
|24 Call R_ADC_StatusGet()

~ @ fsp_err t R_ADC_Read(adc_ctrl_t *p_ctrl, adc_channel_t const reg_id, uint16_t *const p_data)
[t3 Call R_ADC_Read()

w @ fon err tRADC Read?2(ade ctrl t*n ctrl ade channel t const rea id uint3? t*const n datal ¥

>

Figure 39: Developer Assistance APIs

3. Dragging and dropping an API from Develop Assistance to a source file helps to write source
code quickly.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 34/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

~ [(7) Developer Assistance
v g HAL/Common
4 g_iopert I/0 Port Driver on r_ioport
48 g_elc ELC Driver on r_elc
v & g_adc0 ADC Driver on r_adc

v @ fsp_em_t R_ADC_Open(adc_ctrl_t *p_ctrl, adc_cfg_t const "const p_cfg)
b= Call R_ADC_Openi)

v @ fsp_em_t R_ADC_ ScanCfg(adc_ctrl_t *p_ctr, adc_channel_cfg_t const *const p_channel_cfg)
b= Call R_ADC_ScanCfg()

v @ fsp_em_t R_ADC InfoGet(adc_ctrl_t *p_ctrl, adc_info_t *p_adc_info)
= Call R_ADC InfoGet()

v @ fsp_em_t R_ADC_ ScanStart(adc_ctrl_t "p_ctrl)
[z Call R_ADC_ScanStart()

v @ fsp_em_t R_ADC_ ScanStop(adc_ctrl_t "p_ctrl)
bz Call R_ADC_ScanStop()

v @ fsp_em_t R_ADC StatusGet(adc_ctrl_t *p_ctrl, adc_status_t *p_status)
= Call R_ADC_StatusGet()

v @ fsp_em_t R_ADC_Read(adc_ctrl_t *p_ctrl, adc_channel_t const reg_id, uint16_t “const p_data)
= Call R_ADC_Read()

~ @ fan err t R ANC Read3?fade ctrl + *n ctrl ade channel t conct rea id uint3? t “conet o datal a2

<

Figure 40: Dragging and Dropping an API in Developer Assistance

Information Icon

Information icons are available on each module in the thread stack. Clicking on these icons opens a
module folder on GitHub that contains additional information on the module. An example information
Icon is shown below:

47 g_ioport 1/0 Port

\ Driver on r_ioport
D

Figure 41: Information icon

Smart Manual

Smart Manual is the view that displays information (register information/search results by keyword)
extracted from the hardware user's manual. Smart Manual provides search capability of hardware
manual information (register information search and keyword search result) and provides a view
displaying result.

You can open Smart Manual view by selecting the menu: Renesas Views > Solution Toolkit >
Smart Manual. Register search and Keyword search are both available by selecting the appropriate
tab.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 35/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

(%3 Pin Conflicts I} Smart Manual i3 S @ v = 8

Register Search Keyword Search

port v|I Go]Device:RA6M

No search results available.

<

Figure 42: Smart Manual

2.2.8.2 RTOS-independent Applications

To write application code:

1. Add all drivers and modules in the Stacks tab and resolve all dependencies flagged by the
ISDE such as missing interrupts or drivers.

2. Configure the drivers in the Properties view.

3. In the Project Configuration view, click the Generate Project Content button.

4. In the Project Explorer view, double-click on the src/hal_entry.c file to edit the source file.

]
£

[y Project Explorer 3 = =
-
~

125 Blinky
T FSP_project
w 15 MyProject [Debug]

#éb.

[Includes
Era
(= ra_gen
v B src
[€ hal_entry.c
(= Debug
(= ra_cfg
(= script
=| A2A1-TBB.pincfg

Binaries

Note

All configuration structures necessary for the driver to be called in the application are initialized in
ra_gen/hal_data.c.
Warning

Do not modify the files in the directory ra_gen. These files are overwritten every
time you push the Generate Project Content button.

5. Add your application code here:

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 36 / 601
Nov.08.19

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > Writing the Application > RTOS-independent Applications

User’s Manual

6. Build the project without errors by clicking on Project > Build Project.

[€] hal_entry.c 52 | §5% [MyProject] RA Configuration

B

R S I ST

Figure 43: Adding user code to hal_entry.c

#include "hal Hata.h”
#include "bsp_pin_cfg.h"
#include "r_ioport.h"

void R_BSP_WarmStart(bsp warm start ever
@ * The RA Configuration tool generates n

wvoid hal_entry({void)
{

£¥ : add your own code here */
} \

Add your own code here

The following tutorial shows how execute the steps above and add application code: Tutorial: Using
HAL Drivers - Programming the WDT.

The WDT example is a HAL level application which does not use an RTOS. The user guides for each

module also include basic application code that you can add to hal_entry.c.

2.2.8.3 RTOS Applications

To write RTOS-aware application code using FreeRTOS, follow these steps:

1. Add a thread using the Stacks tab.

w N

. Provide a unique name for the thread in the Properties view for this thread.
. Configure all drivers and resources for this thread and resolve all dependencies flagged by

the ISDE such as missing interrupts or drivers.

~N o Ul b~

. Configure the thread objects.
. Provide unique names for each thread object in the Properties view for each object.
. Add more threads if needed and repeat steps 1 to 5.
. In the RA Project Editor, click the Generate Project Content button.

8. In the Project Explorer view, double-click on the src/my_thread_1_entry.c file to edit the

source file.

[Project Explorer 532

= 8

E S ¥
=

v 1:5 RA_RTOS_Application [Debug] A

<

Figure 44: ISDE generated files for an RTOS application

[Includes
Era
v 8 ra_gen
[.g] blinky_thread.c
blinky_thread.h
bsp_clock_cfg.h
bsp_pin_cfg.h
[€] common_data.c
comrmon_data.h
lg] hal_data.c
hal_data.h
] main.c
1€ my_thread_1.c
rmy_thread_1.h
€] pin_data.c
|.g] vector_data.c
vector_data.h
2] ABM3-PK.csv
v B src

lg] blinky_thread_entry.c
lg] hal_entry.c
l.g] my_thread_1_entry.c

(= ra_cfg

(= script

= ABM3-PK.pincfg

& configurationxml

=| RTFABM3AH3CFC.pincfg

>

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 37 /601

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Writing the Application > RTOS Applications

Note
All configuration structures necessary for the driver to be called in the application are initialized in

ra_gen/my thread_1.c and my thread 2.c

Warning
Do not modify the files in the directory ra_gen. These files are overwritten every

time you push the Generate Project Content button.

9. Add your application code here:

ﬁh [RA_RTOS_Application] RA Configuration S(s’l \€] my_thread_1_entry.c 3% |

R N f{"‘,‘i“?:’;Z‘git[P.A_RTOs_i\pp|icatwf‘n_-'ccnﬁguratim.xnﬂ |
4 void my_thread_1_entry{void *pvParameters)

{
s);

/ : add your own code here */
while (1)

wTaskDelay (1);
]

[

Figure 45: Adding user code to my_thread_1.entry

10. Repeat steps 1 to 9 for the next thread.
11. Build your project without errors by clicking on Project > Build Project.

2.2.9 Debugging the Project

Once your project builds without errors, you can use the Debugger to download your application to
the board and execute it.

To debug an application follow these steps:

1. On the drop-down list next to the debug icon, select Debug Configurations.

R MY =

[E7] 1 FSP_project Debug
Debug As >
Debug Configurations...

Organize Favorites...

2. In the Debug Configurations view, click on your project listed as MyProject Debug.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 38 /601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Debugging the Project

Debug Configurations X
Create, manage, and run configurations ﬁ\.
X[E - MName: [MyProject Debug |
type filter text [£] Main . %5 Debugger| B» Startup| (] Common 1/ Source

[] C/C++ Application

[] C/C++ Remote Applicatic
EASE Script | MyProject Browse...

[] GDB Hardware Debuggin: || ¢/C++ Application:

[] GDB OpenOCD Debuggin

GDE Simulator Debuggin
Java Applet Variables... Search Project... Browse...
Java Application

R Launch Group

= Launch Group (Deprecate Build Configuration: | Use Active A
Remote Java Application

Project:

[Debug/MyProject.clf

Build (if required) before launching

v [7] Renesas GDB Hardware D (O Enable aute build () Disable aute build
[£¥] MyProject Debug (®) Use workspace settings Configure Workspace Settings...
Renesas Simulater Debug
< >
Revert Appl,
Filter matched 14 of 16 items B2 s
@ Close

3. Connect the board to your PC via either a standalone Segger J-Link debugger or a Segger J-
Link On-Board (included on all RA EKs) and click Debug.

Note
For details on using J-Link and connecting the board to the PC, see the Quick Start Guide included in the RA MCU
Kit.

2.2.10 Modifying Toolchain Settings

There are instances where it may be necessary to make changes to the toolchain being used (for
example, to change optimization level of the compiler or add a library to the linker). Such
modifications can be made from within the ISDE through the menu Project > Properties >
Settings when the project is selected. The following screenshot shows the settings dialog for the
GNU ARM toolchain. This dialog will look slightly different depending upon the toolchain being used.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 39/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Modifying Toolchain Settings

Properties for Blinky m] X
| Settings R =
Resource
A
Builders
~ C/C++ Build Configuration: | Debug [Active] ~ | | Manage Configurations...

Build Variables
Environment
Logging i Tool Settings i3 Toolchain # Build Steps Build Artifact [m Binary Parsers @3 Error Parsers
Settings
Tool Chain Editer @ Target Processor ARM family cortex-m4d ~
C/C++ General (2 Optimization
MCu (B Warnings
Project References (2 Debugging Instruction set Thumb (-mthumb) o
Renesas QF w83 GNUARM Cross Assembler
Run/Debug Settings (£2 Preprocessor
Task Repository (22 Includes Endianness Toolchain default ~
Task Tags (2 Warnings
Validation (£ Miscellaneous
~ 83 GNUARM Cross C Compiler FPU Type fpvd-sp-d16 2
(£2 Preprocessor
(22 Includes
(£ Optimization Generic (-mepu=generic)
2 Warnings
g MiscaHagneous Toolchain default
w83 GNUARM Cross C Linker
(2 General
(% Libraries Toolchain default

Architecture Toolchain default &

[Thumb interwork (-mthumb-interwork)

Float ABI FP instructions (hard) ~

Unaligned access | Toolchain default ~

Toolchain default

(£ Miscellaneous
w83 GNUARM Cross Create Flash Image

(2 General Small (-mcmodel=small)
.. KT\ CAILADRA e Nuis Cinn . A

Enabled {+simd)

@
Figure 46: ISDE Project toolchain settings

The scope for the settings is project scope which means that the settings are valid only for the
project being modified.

The settings for the linker which control the location of the various memory sections are contained in
a script file specific for the device being used. This script file is included in the project when it is
created and is found in the script folder (for example, /script/aém3.Id).

2.2.11 Importing an Existing Project into e2 studio ISDE

1. Start by opening e? studio.
2. Open an existing Workspace to import the project and skip to step d. If the workspace
doesn't exist, proceed with the following steps:

a. At the end of e? studio startup, you will see the Workspace Launcher Dialog box as
shown in the following figure.

B8 Eclipse Launcher *

Select a directory as workspace

& studio uses the workspace directory to store its preferences and development artifacts.

WLt -\ Users\ < user_name\e2studio\workspace] ~ Browse...

[] Use this as the default and do not ask again

» Recent Workspaces

Figure 47: Workspace Launcher dialog

R11UMO0137EU0081 Revision 0.81 RENESANS Page 40 / 601
Nov.08.19

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Importing an Existing Project into e2 studio ISDE

b. Enter a new workspace name in the Workspace Launcher Dialog as shown in the
following figure. e? studio creates a new workspace with this name.

E Eclipse Launcher

*
Select a directory as workspace

& studio uses the workspace directory to store its preferences and development artifacts,

IR ET N Users\ <username > \e2studiol\new workspace] Browse...

[] Use this as the default and de not ask again

b Recent Workspaces

Cancel
Figure 48: Workspace Launcher dialog - Select Workspace

c. Click Launch.

d. When the workspace is opened, you may see the Welcome Window. Click on the

Workbench arrow button to proceed past the Welcome Screen as seen in the
following figure.

RENESAS Welcome to e2 studio (=)

Workbench

Figure 49: Workbench arrow button

3. You are now in the workspace that you want to import the project into. Click the File menu
in the menu bar, as shown in the following figure.

File Edit Source Refactdr Mavigate ° e Menu Bar
@J @ .,E. e Tool Bar

G- @@ it G

Figure 50: Menu and tool bar

4. Click Import on the File menu or in the menu bar, as shown in the following figure.

R11UMO0137EUO0081 Revision 0.81

RLENESAS Page 41/ 601
Nov.08.19

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > Importing an Existing Project into e2 studio ISDE

User’s Manual

File Edit Source Refactor Navigate

New
Open File...

(3 Open Projects from File System...

Close
Close All

Save
Save As...
Save All
Revert
Move...
Rename...
Refresh

Convert Line Delimiters To

Print...

B

7 Import.
Export...

Properties

Search Project Renesa

1 Web Browser [tool-support.renesas.c...]

Switch Workspace
Restart
Exit

Alt+Shift+N »

Ctrl+W

Ctrl+ Shift+ W

Ctrl+5

Ctrl+Shift+5

Ctrl+P

Alt+Enter

Figure 51: File drop-down menu

5. In the Import dialog box, as shown in the following figure, choose the General option, then
Existing Projects into Workspace, to import the project into the current workspace.

Existing Projects into Workspace" option selected"

6. Click Next.

7. To import the project, use either Select archive file or Select root directory.

a. Click Select archive file as shown in the following figure.

ﬁ Import

Select

Create new projects from an archive file or directory.

Select an import wizard:

type filter text

v = General

I Archive File
&) CMSIS Pack
&) CMSIS Pack
- Existing Projects into Workspace
(= File System
[T Preferences
() Projects from Folder or Archive

=% Rename & Import Existing C/C++ Project into Workspace

oy

< Back Next >

E

Cancel

Figure 52: Project Import dialog with

R11UMO0137EUO0081 Revision 0.81

Nov.08.19

RLENESAS

Page 42 /601

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Importing an Existing Project into e2 studio ISDE

B import O x
Import Projects o
Select a directory to search for existing Eclipse projects, / A,'
(0 Select root directo ny Browse..
I@ Select archive file: I | | ~ |I Browse... I
Projects:
Select All
Deselect All
Refresh
Options

Search for nested projects
Copy projects into workspace

[[] Hide projects that already exist in the workspace

Working sets

[JAdd project to working sets Mew...
Sele

=

@ < Back et Finish Cance)

Figure 53: Import Existing Project dialog 1 - Select archive file

b. Click Select root directory as shown in the following figure.

B8 import m] X
Import Projects ¥ *\
Select a directory to search for existing Eclipse projects. / ‘
I@ Select root directory: I‘ ‘ ~ |I Browse... |
() Select archive file: Browse...
Projects:
Select All
Deselect All
Refresh
Options

[[15earch for nested projects
Copy projects into workspace
[[IHide projects that already exist in the workspace

Working sets

[[] Add project to working sets New...
Selec

@ < Back Mo > e T

Figure 54: Import Existing Project dialog 1 - Select root directory

. Click Browse.

. For Select archive file, browse to the folder where the zip file for the project you want to
import is located. For Select root directory, browse to the project folder that you want to
import.

10. Select the file for import. In our example, it is CAN_HAL MG_AP.zip or CAN_HAL MG _AP.

O 00

R11UMO0137EU0081 Revision 0.81 RENESANS Page 43 /601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Importing an Existing Project into e2 studio ISDE

11. Click Open.

12. Select the project to import from the list of Projects, as shown in the following figure.

Projects:

CAN_HAL_MG_AP (CAN_HAL_MG_AP/)
Figure 55: Import Existing Project dialog 2

13. Click Finish to import the project.

2.3 Tutorial: Your First RA MCU Project - Blinky

2.3.1 Tutorial Blinky

The goal of this tutorial is to quickly get acquainted with the Flexible Platform by moving through the
steps of creating a simple application using e studio and running that application on an RA MCU
board.

2.3.2 What Does Blinky Do?

The application used in this tutorial is Blinky, traditionally the first program run in a new embedded
development environment.

Blinky is the "Hello World" of microcontrollers. If the LED blinks you know that:

e The toolchain is setup correctly and builds a working executable image for your chip.

e The debugger has installed with working drivers and is properly connected to the board.
e The board is powered up and its jumper and switch settings are probably correct.

e The microcontroller is alive, the clocks are running, and the memory is initialized.

The Blinky example application used in this tutorial is designed to run the same way on all boards
offered by Renesas that hold the RA microcontroller. The code in Blinky is completely board
independent. It does the work by calling into the BSP (board support package) for the particular
board it is running on. This works because:

e Every board has at least one LED connected to a GPIO pin.

e That one LED is always labeled LED1 on the silk screen.

e Every BSP supports an API that returns a list of LEDs on a board, and their port and pin
assignments.

2.3.3 Prerequisites

To follow this tutorial, you need:
e Windows based PC
 e? studio

e Flexible Software Package
e An RA MCU board kit

2.3.4 Create a New Project for Blinky

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 44 / 601
Nov.08.19

Flexible Software Package

Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky

User’s Manual

The creation and configuration of an RA MCU project is the first step in the creation of an application.
The base RA MCU pack includes a pre-written Blinky example application that is simple and works on

all Renesas RA MCU boards.

Follow these steps to create an RA MCU project:

1. In e? studio ISDE, click File > New > RA Project and select Renesas RA C Executable

Project.

2. Assign a name to this new project. Blinky is a good name to use for this tutorial.

3. Click Next. The Project Configuration window shows your selection.

H 2 studio - Project Configuration (RA C Executable Project) m]

e2 studio - Project Configuration (RA C Executable Project)
Specify the new project details.

Project Toolchains

Project name | Blinky GCC ARM Embedded

Use default location

D:\FSPAFSP_Workspace\Blinky

=
=]
i

default

':?)' <Back | Mext > Finish Cancel

Figure 56: e2 studio ISDE Project Configuration window (part 1)

4. Select the board support package by selecting the name of your board from the Device

Selection drop-down list and click Next.

R11UMO0137EU0081 Revision 0.81 RENESAS
Nov.08.19

Page 45/ 601

Flexible Software Package

Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky

User’s Manual

e studio - Project Configuration (RA C Executable Project) O X

e2 studio - Project Configuration (RA C Executable Project) p—
Select the board support that you require.

Device Selection

FSP version: |0.8.0-rc.0 Fosid Detalk

Board: ~

Device: RYFABM3IAHICFC

RTOS: No RTOS ~
Select Tools Available Tools
Toolchain: GCC ARM Embedded ~ GCC ARM Embedded
Toolchain version: | 8.3.1.20190703 ~ ol

7.3.1.20180622

Debugger: J-Link ARM ~ 7.2.1.20170904
4.9.3.20150529

v Debuggers
J-Link ARM

~ Smart Manual
10 Registers Supported
Software Manual Supported

(?) < Back Next > Finish Cancel

Figure 57: e2 studio ISDE Project Configuration window (part 2)

5. Select the Blinky template for your board and click Finish.

E e2 studio - Project Configuration (RA C Executable Project] m] X

22 studio - Project Configuration (RA C Executable Project) —
Select the type of project you wish to create.

Project Template Selection

@ .. Bare Metal - Blinky

Bare metal FSP project that includes BSP and will blink LEDs if available. This project will
initialize clocks, pins, stacks, and the C runtime environment.

[Renesas.RA.0.8.0-re.0.pack]

O (;} Bare Metal - Minimal

Bare metal FSP project that includes BSP. This project will initialize clocks, pins, stacks,
and the C runtime environment.

[Renesas.RA0.8.0-rc.0.pack]

Code Generation Settings
Use RA Code Formatter

@ < Back Next> Cancel
Figure 58: e2 studio ISDE Project Configuration window (part 3)

Once the project has been created, the name of the project will show up in the Project
Explorer window of the ISDE. Now click the Generate Project Content button in the top
right corner of the Project Configuration window to generate your board specific files.

R11UMO0137EU0081 Revision 0.81 RENESAS

Nov.08.19

Page 46 / 601

Flexible Software Package User’s Manual

Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky

{8% [Blinky] RA Configuration 52 S =
SUmmary Generate Project Content

Project Summary) A

RENESAS

Board: EK-RAGM3

Device: R7FABM3AH3CFC

Toolchain: GCC ARM Embedded

Toolchain Version: 8.3.1.20190703

FSP Version: 0.8.0-rc.0

Selected software components L¥

Figure 59: e2 studio ISDE Project Configuration tab

Your new project is now created, configured, and ready to build.

2.3.4.1 Details about the Blinky Configuration

The Generate Project Content button creates configuration header files, copies source files from
templates, and generally configures the project based on the state of the Project Configuration
screen.

For example, if you check a box next to a module in the Components tab and click the Generate
Project Content button, all the files necessary for the inclusion of that module into the project will
be copied or created. If that same check box is then unchecked those files will be deleted.

2.3.4.2 Configuring the Blinky Clocks

By selecting the Blinky template, the clocks are configured by the ISDE for the Blinky application.
The ISDE clock configuration tab (see Configuring Clocks) shows the Blinky clock configuration. The
Blinky clock configuration is stored in the BSP clock configuration file (see BSP Clock Configuration).
2.3.4.3 Configuring the Blinky Pins

By selecting the Blinky template, the GPIO pins used to toggle the LED1 are configured by the ISDE
for the Blinky application. The ISDE pin configuration tab shows the pin configuration for the Blinky
application (see Configuring Pins). The Blinky pin configuration is stored in the BSP configuration file
(see BSP Pin Configuration).

2.3.4.4 Configuring the Parameters for Blinky Components

The Blinky project automatically selects the following HAL components in the ISDE Component:

e r_ioport

To see the configuration parameters for any of the components, check the Properties tab in the
HAL window for the respective driver (see Adding and Configuring HAL Drivers).

2.3.4.5 Where is main()?
The main function is located in < project >/ra_gen/main.c. It is one of the files that are generated
during the project creation stage and only contains a call to hal_entry(). For more information on

generated files, see Adding and Configuring HAL Drivers.

2.3.4.6 Blinky Example Code

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 47 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky > Blinky Example Code

The blinky application is stored in the hal_entry.c file. This file is generated by the ISDE when you
select the Blinky Project template and is located in the project's src/ folder.

The application performs the following steps:
1. Get the LED information for the selected board by bsp_leds_t structure.
2. Define the output level HIGH for the GPIO pins controlling the LEDs for the selected board.
3. Get the selected system clock speed and scale down the clock, so the LED toggling can be
observed.
4. Toggle the LED by writing to the GPIO pin with R_BSP_PinWrite((bsp_io_port_pin_t) pin,
pin_level);
2.3.5 Build the Blinky Project
Highlight the new project in the Project Explorer window by clicking on it and build it.
There are three ways to build a project:
a. Click on Project in the menu bar and select Build Project.

b. Click on the hammer icon.

c. Right-click on the project and select Build Project.

R s Views Run Window

B workspace - & studio

File Edit Navigate Searc

a. Project->Build Project

b. Click hammer icon

¢. Right click->Build Project

Figure 60: e2 studio ISDE Project Explorer window

Once the build is complete a message is displayed in the build Console window that displays the
final image file name and section sizes in that image.

2 = [Console &2
COT Build Console [Blinky]

"Finished building: ../ra/board/raém3_ek/board_leds.c’
"Finished building: ../ra/board/raém3_ek/board_init.c’

*Finished building: ../ra/board/raém3_ek/board_gspi.c’

'Building target: Blinky.elf'
"Invoking: GNU ARM Cross C Linker'
arm-none-eabi-gcc @"Blinky.elf.in"
"Finished building target: Blinky.elf'

"Invoking: GNU ARM Cross Create Flash Image'
arm-none-eabi-objcopy -0 srec "Blinky.elf™ "Blinky.srec™
"Invoking: GNU ARM Cross Print Size'
arm-none-eabi-size --format=berkeley "Blinky.elf"

text data bss dec hex filename

4248 8 1152 5488 1518 Blinky.elf
"Finished building: Blinky.srec'
"Finished building: Blinky.siz'

11:5@:45 Build Finished. @ errors, @ warnings. (took 19s.268ms)

Figure 61: e2 studio ISDE Project Build console

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 48 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Your First RA MCU Project - Blinky > Debug the Blinky Project

2.3.6 Debug the Blinky Project

2.3.6.1 Debug prerequisites
To debug the project on a board, you need

e The board to be connected to the ISDE
e The debugger to be configured to talk to the board
e The application to be programmed to the microcontroller

Applications run from the internal flash of your microcontroller. To run or debug the application, the
application must first be programmed to the microcontroller's flash. There are two ways to do this:

e |JTAG debugger
¢ Built-in boot-loader via UART or USB

Some boards have an on-board JTAG debugger and others require an external JTAG debugger
connected to a header on the board.

Refer to your board's user manual to learn how to connect the JTAG debugger to your ISDE.
2.3.6.2 Debug steps
To debug the Blinky application, follow these steps:

1. Configure the debugger for your project by clicking Run > Debugger Configurations ...

Run | Window Help

B Tracex >

B Tracealyzer >

@, Run Ctrl+F11

&, Debug F11
Run History >
Run As >
Run Configurations...
Debug History >
Debug As >
Debug Cenfigurations... I

Q, External Tools >

Figure 62: e2 studio ISDE Debug icon

or by selecting the drop-down menu next to the bug icon and selecting Debugger
Configurations ...

e Qi

Debug As >
Debug Configurations...

Organize Favorites.

Figure 63: e2 studio ISDE Debugger Configurations selection option

2. Select your debugger configuration in the window. If it is not visible then it must be created

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 49 / 601
Nov.08.19

Flexible Software Package

Starting Development > Tutorial: Your First RA MCU Project - Blinky > Debug the Blinky Project > Debug steps

User’s Manual

by clicking the New icon in the top left corner of the window. Once selected, the Debug

Configuration window displays the Debug configuration for your Blinky project.

E Debug Cenfigurations X

Create, manage, and run configurations

S XR|[B 3~ | Name: [Blinky Debug |

type filter text B Main ﬁDahugge? i Startup | B Source| [} Common

[T] C/C++ Application

[E] C/C++ Remote Applicz

= EASE Script | Blinky Browse...

[€] GDB Hardware Debugg || | ¢/ Application:

c | GDB OpenOCD Debuge =

g GDB S\:’w\ator Debuggg- | DEDug/Blinky:clt
Java Applet Variables... Search Project... Browse...
Java Application

 Launch Group

@ Launch Group (Deprec: Build Configuration: | Use Active bl
Remote Java Applicatio

Project:

Build (if required) before launching

« [E¥ Renesas GDB Hardware () Enable auto build () Disable auto build
Blinky Debug (®) Use workspace settings Configure Workspace Settings...
[c7] Renesas Simulator Debt
< >
Revert Appl
Filter matched 14 of 16 items < PEN
@ Close

Figure 64: e2 studio ISDE Debugger Configurations window with Blinky project

3. Click Debug to begin debugging the application.

4. Extracting RA Debug.

Progress Information m] X

Configuring GDB

2.3.6.3 Details about the Debug Process

In debug mode, the ISDE executes the following tasks:

1. Downloading the application image to the microcontroller and programming the image to

the internal flash memory.
. Setting a breakpoint at main().
. Setting the stack pointer register to the stack.
. Loading the program counter register with the address of the reset vector.
. Displaying the startup code where the program counter points to.

b wWwN

R11UMO0137EU0081 Revision 0.81 RENESANS Page 50 / 601

Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Your First RA MCU Project - Blinky > Debug the Blinky Project > Details about the Debug Process

Program Counter

{8% [Blinky] RA Configgfation L€l hal_entry.c Lg startup.c 2

@ * MCU starts executing here out of re
void Reset Handler (void)

20800al3 |]

/* Initialize system using BSP. */
@Bdala SystemInit();

/* Call user application. */
6 BeBBBale main();

while (1)
1

Figure 65: e2 studio ISDE Debugger memory window

2.3.7 Run the Blinky Project

While in Debug mode, click Run > Resume or click on the Play icon twice.

L U

Figure 66: e2 studio ISDE Debugger Play icon

The LEDs on the board marked LED1, LED2, and LED3 should now be blinking.

2.4 Tutorial: Using HAL Drivers - Programming the WDT

2.4.1 Application WDT

This application uses the WDT Interface implemented by the WDT HAL Driver WDT. This document
describes how to use the ISDE and FSP to create an application for the RA MCU Watchdog Timer
(WDT) peripheral. This application makes use of the following FSP modules:

e MCU Board Support Package
e Watchdog Timer (r_wdt)
e |/O Ports (r_ioport)

2.4.2 Creating a WDT Application Using the RA MCU FSP and ISDE

2.4.2.1 Using the FSP and the e2 studio ISDE

The Flexible Software Package (FSP) from Renesas provides a complete driver library for developing
RA MCU applications. The FSP provides Hardware Abstraction Layer (HAL) drivers, Board Support
Package (BSP) drivers for the developer to use to create applications. The FSP is integrated into the

Renesas e? studio Integrated Solution Development Environment (ISDE) based on eclipse providing
build (editor, compiler and linker) and debug phases with an extended GNU Debug (GDB) interface.

2.4.2.2 The WDT Application

The flowchart for the WDT application is shown below.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 51/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating a WDT Application Using the RA MCU FSP and ISDE > The WDT Application

BSP initialises
docks, pins etc

2 Initialise WDT

Loop Count =30

4 Turnonred LED and delay Lot

Turn off red LED and delay

Tickle WDT

Turn ongreenLEDamtdelay P

Il

Turn off green LED and delay

Figure 67: WDT Application flow diagram

2.4.2.3 WDT Application flow
These are the main parts of the WDT application:

1. main() calls hal_entry(). The function hal_entry() is created by the FSP with a placeholder for
user code. The code for the WDT will be added to this function.

2. Initialize the WDT, but do not start it.

3. Start the WDT by refreshing it.

4. The red LED is flashed 30 times and refreshes the watchdog each time the LED state is
changed.

5. Flash the green LED but DO NOT refresh the watchdog. After the timeout period of the
watchdog the device will reset which can be observed by the flashing red LED again as the
sequence repeats.

2.4.3 Creating the Project with the ISDE

R11UMO0137EUO0081 Revision 0.81 .QEN ESANANAS Page 52/ 601
Nov.08.19

Flexible Software Package

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with the ISDE

User’s Manual

Start the ISDE and choose a workspace folder in the Workspace Launcher. Configure a new RA MCU

project as follows.

1. Select File > New > RA C/C++ Project. Then select the template for the project.

FSP_workspace 1 - & studio

Eile Edit MNavigate Search Project RenesasViews Run Window Help

Alt+Shift+N » | = RA C/C++ Project

New
Open File... ™ Project...
() Open Projects from File System... % Eample..
Close Chrl+W 9 Other..
E MNew RA C/C++ Project

Templates for New RA C/C++ Project

C—

C/C++

Ctrl+N

Renesas RA C Executable Project
FEEN A C Executable Project for Renesas RA.

Renesas RA C Library Project
y Proj
FEEZ= A C Library Project for Renesos RA.

Renesas RA C Project Using RA Library
FE= Creates a C application project which uses an
existing RA library project

Renesas RA C++ Executable Project
FEEN A C++ Executable Project for Renesas RA.

Renesas RA C+ -+ Library Project
y Proj
FEZ= A C++ Library Project for Renesas RA.

<

ey
@

< Back Mext > Einish

Cancel

Figure 68: Creating a new project

2. In the ISDE Project Configuration (RA Project) window enter a project name, for
example, WDT_Application. In addition select the toolchain. If you want to choose new
locations for the project unselect Use default location. Click Next.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 53 /601

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with the ISDE

e studic - Project Configuration (RA C Executable Project) O *

e2 studio - Project Configuration (RA C Executable Project)
Specify the new project details,

Project Toolchains

Project name | WDT_Application| GCC ARM Embedded

Use default location
DAFSPAFSP_Warkspace\WOT_Application Browse

default

< Back Next » Einish Cancel

Figure 69: Project configuration (part 1)

3. This application runs on the RA6M3 board. So, for the Board select EK-RA6M3.

This will automatically populate the Device drop-down with the correct device used on this

board. Select the Toolchain version. Select J-Link ARM as the Debugger. Click Next to
configure the project.

22 studio - Project Configuration (RA C Executable Project)
Select the board support that you require.

Device Selection

FSP version: |0.8.0-rc.0 FomdDetat
Board: EK-RAGM3 ~
Device: RYFABM3IAHICFC
RTOS: No RTOS ~
Select Tools Available Tools
Toolchain: GCC ARM Embedded ~ GCCARM Embedded
7
Toolchain version: | 8.3.1.20190703 S PO
7.3.1.20180622
Debugger: J-Link ARM ~ 7.2.1.20170904
4.9.3.20150529
w Debuggers
J-Link ARM
~ Smart Manual
10 Registers Supported
Software Manual Supported
pr
@ < Back Dext > Finish Cancel

Figure 70: Project configuration (part 2)

R11UMO0137EU0081 Revision 0.81 RENESANS Page 54 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with the ISDE

The project template is now selected. As no RTOS is required select Bare Metal - Blinky.

ﬁ e studio - Project Configuration (RA C Executable Project) m] X

e2 studio - Project Configuration (RA C Executable Project) —
Select the type of project you wish to create.

Project Template Selection

O] .. Bare Metal - Blinky

f-} Bare metal FSP project that includes BSP and will blink LEDs if available. This
project will initialize clocks, pins, stacks, and the C runtime environment.

[Renesas.RA0.8.0-rc.0.pack]

®[.. Bare Metal - Minimal

©
) Bare metal FSP project that includes B5P. This project will initialize clocks, pins,
stacks, and the C runtime environment.

[Renesas.RA.0.8.0-rc.0.pack]

Code Generation Settings
Use RA Code Formatter

@ < Back

Next > T
Figure 71: Project configuration (part 3)

4. Click Finish.

The ISDE creates the project and opens the Project Explorer and Project Configuration
Settings views with the Summary page showing a summary of the project configuration.

2.4.4 Configuring the Project with the ISDE

The e? studio ISDE simplifies and accelerates the project configuration process by providing a GUI
interface for selecting the options to configure the project.

The ISDE offers a selection of perspectives presenting different windows to the user depending on
the operation in progress. The default perspectives are C/C++, RA Configuration and Debug. The
perspective can be changed by selecting a new one from the buttons at the top right of the ISDE.

‘ R C/Ce+ 4% RA Configuration 1 -

Figure 72: Selecting a perspective

The C/C++ perspective provides a layout selected for code editing. The RA Configuration
perspective provides elements for configuring a RA MCU project, and the Debug perspective
provides a view suited for debugging.

1. In order to configure the project settings ensure the RA Configuration perspective is
selected.

2. Ensure the Project Configuration [WDT Application] is open. It is already open if the
Summary information is visible. To open the Project Configuration now or at any time make
sure the RA Configuration perspective is selected and double-click on the
configuration.xml file in the Project Explorer pane on the right side of the ISDE.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 55/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE

[Project Explorer 332 =
BE|e ~
v =% WDT_Application [Debug]
[Includes
v @ ra
2= arm
= board
= fsp
(2 ra_gen
(# src
(= ra_cfg
L cript
TFABMIAH3CFC.pincfg
=| RAGM3-EK.pincfg
= WDT_Application Debug.launch
(7) Developer Assistance

Figure 73: RA MCU Project Configuration Settings

At the base of the Project Configuration view there are several tabs for configuring the project. A
project may require changes to some or all of these tabs. The tabs are shown below.

485 [WDT_Application] RA Configuration 52 =
Sumimany Generate Project Content

Project Summary i A

RENESAS

Board: EK-RABM3

Device: R7FAGM3AH3CFC

Toolchain: GCC ARM Embedded

Toolchain Version; =7 °"1°0V "I+

FSP Version: HL R |

Selected software components

RAGM3-EK Board Support Files CRET S |
Arm CMSIS Version 5 - Core (M) (L |

110 Port .

Board Support Package Common Files .-

Board support package for RTFAGM3AH3CFC & i _H

Youl[T®

Summary | BSP | Clocks| Pins Interrupts| Event Links| Stacks | Components

Figure 74: Project Configuration Tabs

2.4.4.1 BSP Tab

The BSP tab allows the Board Support Package (BSP) options to be modified from their defaults. For
this particular WDT project no changes are required. However, if you want to use the WDT in auto-
start mode, you can configure the settings of the OFS0 (Option Function Select Register 0) register in
the BSP tab. See the RA Hardware User's Manual for details on the WDT autostart mode.

2.4.4.2 Clocks Tab
The Clocks tab presents a graphical view of the clock tree of the device. The drop-down boxes in the

GUI enables configuration of the various clocks. The WDT uses PCLCKB. The default output frequency
for this clock is 60 MHz. Ensure this clock is outputting this value.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 56 / 601
Nov.08.19

Flexible Software Package

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Clocks Tab

User’s Manual

2.4.4.3 Pins Tab

£8% [WDT_Application] RA Configuration] &2

Clocks Configuration

XTAL 24MHz |-
PLL Src: XTAL ~
PLL Div /2 t v
PLL Mul x20.0 v
[usBMCLE 240z | | [P ZADMH;L |/ Clock Src: PLL
HOCO 20MHz v

LOCO 32768Hz
MOCO 8MHz
SUBCLK 32768Hz

CLKOUT Disabled

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

 ICLK Div /2 v
[PCLKA Div /2 - @

fl» PCLKE Div /4 v |
| PCLKC Div /4 v
4= PCLKD Div /2 -
SDCLKout On v
b+l BCLK Div sz v
s
1 UCLK Div /5 v
\s! FCLK Div /4 v
 —/ CLKOUT Div /1 v @

Figure 75: Clock configuration

The Pins tab provides a graphical tool for configuring the functionality of the pins of the device. For
the WDT project no pin configuration is required. Although the project uses two LEDs connected to
pins on the device, these pins are pre-configured as output GPIO pins by the BSP.

2.4.4.4 Stacks Tab

You can add any driver to the project using the Stacks tab. The HAL driver IO port pins are added
automatically by the ISDE when the project is configured. The WDT application uses no RTOS
Resources, so you only need to add the HAL WDT driver.

{8} (WDT_Application] RA Configuration 53

Stacks Configuration

Threads = HAL/Common Stacks

v g HAL/Common

4a o
& g_iopert |/O Port Driver on r_icport € g_ieport /O Port

Driver on r_ioport

Objects

.Summary BSP Clncks.Pins.\nterrupts Event Links | Stacks Cnmpﬂner}ts.

0
0

Generate Project Content

&) New Stack »

Figure 76: Stacks tab

1. Click on the HAL/Common Panel in the Threads Window as indicated in the figure above.

R11UMO0137EUO0081 Revision
Nov.08.19

0.81 RLENESAS

Page 57 /601

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Stacks Tab

The Stacks Panel becomes a HAL/Common Stacks panel and is populated with the
modules preselected by the ISDE.

2. Click on New Stack to find a pop-up window with the available HAL level drivers.
3. Select WATCHDOG Driver on r_wdt.

{8} [WDT_Application] RA Configuration 53 = (= &1 Package &2

Stacks Configuration
9 Generate Project Content

Threads = HAL/Common Stacks =
ST Amazon FreeRTOS

~ g HAL/Commen Arm

>
& g mport /O Part Biiver.onopor i g}:szro:nlif;oor:t Driver z Analog r>_
Middleware > CapTouch >
SEGGER > Connectivity >
&7 Search.. Graphics >
Input >
@ CRC Driveronr_crc Monitoring >
3 Clock Accuracy Circuit Driver on r_cac Metwork ¥
& Data Operation Circuit Driver on r_doc Power >
@ Watchdog Driver on r_iwdt Storage >
LLERE o+ Watchdog Driver on r_wdt System 3
Timers >
Transfer >
Summary |BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components <

Figure 77: Module Selection

The selected HAL WDT driver is added to the HAL/Common Stacks Panel and the Property
Window shows all configuration options for the selected module. The Property tab for the WDT
should be visible at the bottom left of the screen. If it is not visible, check that the RA
Configuration perspective is selected.

533 [WDT_Application] RA Configuration 3 = H

Stacks Configuration
9 Generate Project Content

Threads I i 52 Rernove [HAL/Common Stacks 4] New Stack > == E < » 1] Remove

v g HAL/Common
42 g_ioport 10 Port Driver on r_ioport
& g_wdtD Watchdog Driver on r_wdt

48 g_ioport /0 Port 4 g wdt) Watchdog
Driver on r_ioport Driver on r_wdt

Objects Thijec &
‘ |
Summary ESb:Clﬂ{ki:l.’iﬁs.Int-arrupt-s.Evant Links | Stacks Cumpnnents:

B{J Pin Conflicts % MCU Package El Console

g_wdt0 Watchdog Driver on r_wdt

2 Se&ings Property Value
Biinag Common
Parameter Checking Default (BSP)
Register Start NMI Support Disabled
~ Module g_wdt) Watchdog Driver on r_wdt
Name g_wdtD
Timeout 16,384 Cycles
Clock Division Ratio PCLK/8192
‘Window Start Position 100% (Window Position Not Specified)
Window End Position 0% (Window Position Not Specified)
Reset Control Reset Output
Stop Control WOT Count Disabled in Low Power Mode

Figure 78: Module Properties

All parameters can be left with their default values.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 58 / 601
Nov.08.19

Flexible Software Package

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Stacks Tab

User’s Manual

[34 Pin Conflicts =# MCU Package [Z) Console | [T Properties 7 | 4% Debug

g wdt0 Watchdog Driver on r wdt

Settings Property Value

w Common
Parameter Checking Default (BSP)
Register Start NM| Support Disabled

v Module g_wdtd Watchdog Driver on r_wdt
Mame g_wdth
Timeout 16,384 Cycles
Clock Division Ratio PCLK/81532
Window Start Position 100% (Window Position Mot Specified)
Window End Position 0% [(Window Position Not Specified)
Reset Control Reset Qutput
Stop Control 'WOT Count Disabled in Low Power Mode
NMI Callback NULL

Figure 79: g wdt WATCHDOG Driver on WDT properties

With PCLKB running at 60 MHz the WDT will reset the device 2.23 seconds after the last refresh.

WDT clock

Cycle time

60 MHz / 8192 = 7.32 kHz

1/7.324 kHz = 136.53 us

Timeout = 136.53 us x 16384 = 2.23 seconds

Save the Project Configuration file and click the Generate Project Content button in the top
right corner of the Project Configuration pane.

o

Generate Project Content

Figure 80: Generate Project Content button

The ISDE generates the project files.

2.4.4.5 Components Tab

The components tab is included for reference to see which modules are included in the project.
Modules are selected automatically in the Components view after they are added in the Stacks Tab.

For the WDT project ensure that the following modules are selected:

1. HAL_Drivers -> r_ioport
2. HAL Drivers -> r_wdt

R11UMO0137EUO0081 Revision 0.81

Nov.08.19

RLENESAS

Page 59/ 601

Flexible Software Package

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Components Tab

User’s Manual

Components Configuration

Component

| riic_master

r_iic_slave

r_sci_uart
r_sdhi

r_spi

r_ssi
r_usb_basic
r_usb_pcde
rowdt

| rm_freertos_plus_tcp

[[] rm_psa_crypto

Version
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
080
0.8.0-rc.0

Description

12C Master Interface

12C Slave Interface

1/0 Port

Independent Watchdog Timer

JPEG Codec

Key Input

Low Power Modes

Low Yoltage Detection

Real Time Clock

Secure Cryptography Engine on RAZ
Secure Cryptography Engine on RA4
Secure Cryptography Engine on RAG
SCII12C Master Interface

Serial Peripheral Interface on Serial Communic..
SCI UART

SD/MMC Host Interface

Serial Peripheral Interface

Serial Sound Interface

Universal Serial Bus Basic

Universal Serial Bus Peripheral Communication...
Watchdog Timer

r_ether to FreeRTOS Plus TCP IP Wrapper
PSA mbedCrypto

Summary | BSP Clu:ks.Pms.lnterrupts.Event Links | Stacks Compenents

Figure 81: Component Selection

Note

Variant

The list of modules displayed in the Components tab depends on the installed FSP version.

2.4.5 WDT Generated Project Files

Clicking the Generate Project Content button performs the following tasks.

e r_wdt folder and WDT driver contents created at:

ra/fsp/src

e r_wdt_api.h created in:
ra/fsp/inc/api

e r_wdt.h created in:

ra/fsp/inc/instance

The above files are the standard files for the WDT HAL module. They contain no specific project
contents. They are the driver files for the WDT. Further information on the contents of these files can
be found in the documentation for the WDT HAL module.

Configuration information for the WDT HAL module in the WDT project is found in:

ra_cfg/fsp_cfg/r_wdt_cfg.h

The above file's contents are based upon the Common settings in the g_wdt WATCHDOG Driver

on WDT Properties pane.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 60 /601

Flexible Software Package

User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files

[%3 Pin Conflicts =# MCU Package (=) Console | [T Properties 37 | 4 Debug
g_wdt0 Watchdog Driver on r_wdt

Property
~ Common

Settings

Parameter Checking
Register Start NMI Support
~ Madule g_wdtd Watchdog Driver on r_wdt
Name
Timeout
Clock Division Ratio
Window Start Position
Window End Positicn
Reset Control
Stop Control
MMI Callback

Warning

e 483 [WDT_Application] RA Configuration | [B] r.wdt.cfgh 32

" il | generated configuration header file - do not edit */
Default (85P) 2 #ifndef R_WDT_CFG_H_
Disabled 3 #define R_WDT_CFG_H_

4 #define WDT_CFG_PARAM_CHECKING_ENABLE (BSP_CFG_PARAM CHECKING_ENABLE)

g wdtd 5 #define WDT_CFG_REGISTER_START_NMI_SUPPORTED ((0))
= 6 #endif /* R_WDT_CFG_H_ */
16,384 Cycles g _WDT_CFG_H_
PCLK/8192

100% (Window Position Not Specified)
0% (Window Position Not Specified)
Reset Qutput

WDT Count Disabled in Low Power Mode
MULL

Figure 82: r_wdt_cfg.h contents

Do not edit any of these files as they are recreated every time the Generate Project Content
button is clicked and so any changes will be overwritten.

The r_ioport folder is not created at ra/fsp/src as this module is required by the BSP and so already
exists. It is included in the WDT project in order to include the correct header file in
ra_gen/hal_data.c-see later in this document for further details. For the same reason the other
IOPORT header files- ra/fsp/inc/api/r_ioport_api.handra/fsp/inc/instances/r_ioport.h-are not created as

they already exist.

In addition to generating the HAL driver files for the WDT and IOPORT files the ISDE also generates
files containing configuration data for the WDT and a file where user code can safely be added.

These files are shown below.

2.4.5.1 WDT hal_data.h

5 Project Explorer 13
~ 1% WDT_Application [Debug]
3 Binaries
5l Includes
= ra
w [ra_gen
[B] bsp_clock_cfg.h
[B] bsp_pin_cfg.h
i_éj common_data.c
|£] commen_data.h
Ej hal_data.c
[H] hal_data.h
] main.c
[pin_data.c
Ej vector_data.c
m vector_data.h
E24) RABM3-EK.csv
28 src
= Debug
= ra_cfg
= script
4k configuration.xml
=| R7TFABM3AH3CFC.pincfg
=/ ra_cfg.txt
= RABM3-EK.pincfg
= WDT_Application Debug.launch
(7) Developer Assistance

Figure 83: WDT project files

The contents of hal_data.h are shown below.

/* generated HAL header file -
#i fndef HAL_DATA H_

do not edit */

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS Page 61/ 601

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_data.h

hal _data.h contains the header files required by the ISDE generated project. In addition this file
includes external references to the g_wdt instance structure which contains pointers to the
configuration, control, api structures used for WDT HAL driver.

Warning
This file is regenerated each time Generate Project Content is clicked and must not be
edited.

2.4.5.2 WDT hal_data.c

The contents of hal_data.c are shown below.

R11UMO0137EU0081 Revision 0.81 Page 62 /601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_data.c

const wdt_cfg_t g wdtO_cfg =

{
.ti nmeout = WDT_TI MEOUT 16384,
.clock division = WDT_CLOCK DI VI SI ON 8192,
. Wi ndow st art = WDT_W NDOW START 100,
. Wi ndow_end = WDT_W NDOW END_0,
.reset _control = WDT_RESET CONTROL_RESET,
.stop_control = WDT_STOP_CONTROL_ENABLE,
. p_cal | back = NULL,

}i

[* Instance structure to use this nodule. */

const wdt _instance t g wdtO =

{.p_ctrl = & wdtO ctrl, .p_cfg = & wdtO _cfg, .p_api = &_wdt_on_wdt};
void g _hal _init (void)

{

g_common_init();

hal_data.c contains g_wdt ctrl which is the control structure for this instance of the WDT HAL driver.
This structure should not be initialized as this is done by the driver when it is opened.

The contents of g wdt _cfg are populated in this file using the g_ wdt WATCHDOG Driver on WDT
Properties pane in the ISDE Project Configuration HAL tab. If the contents of this structure do
not reflect the settings made in the ISDE, ensure the Project Configuration settings are saved in
the ISDE before clicking the Generate Project Content button.

Warning
This file is regenerated each time Generate Project Content is clicked and so should not be
edited.

2.4.5.3 WDT main.c

Contains main() called by the BSP start-up code. main() calls hal_entry() which contains user
developed code (see next file). Here are the contents of main.c.
/* generated main source file - do not edit*/
#i ncl ude "hal data. h"
int main (void)
{
hal _entry();

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 63 /601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT main.c

return O;

Warning
This file is regenerated each time Generate Project Content is clicked and so should not be
edited.

2.4.5.4 WDT hal_entry.c

This file contains the function hal_entry() called from main(). User developed code should be placed
in this file and function.

For the WDT project edit the contents of this file to contain the code below. This code implements
the flowchart in overview section of this document.

#i ncl ude "hal _data.h"

#i ncl ude "bsp_pin_cfg.h"

#i nclude "r _ioport.h"

#defi ne RED LED NO OF FLASHES 30

#define RED LED PIN BSP_| O PORT_01_PI N 00

#def i ne GREEN_LED _PI N BSP_| O PORT_04_PI N 00

#defi ne RED_LED DELAY_COUNT 1500000

#define GRN_LED DELAY_ COUNT 1200000

volatile uint32 t delay counter;

volatile uintl16_t | oop_counter;

void R BSP WarnfStart (bsp_warm start _event t event);
/* gl obal variable to access board LEDs */

extern bsp leds t g bsp_ | eds;

/**

*******************************/

voi d hal _entry (void) ({

/* Open the WDT */

R WDT_Open(&g_wdtO0_ctrl, & wdtO cfg);

[* Start the WDT by refreshing it */

R WDOT Refresh(&g wdtO _ctrl);

/* Flash the red LED and tickle the WDT for a few seconds */

for (loop_counter = 0; |oop_counter < RED LED NO OF FLASHES; | oop_counter ++)
{

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 64 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_entry.c

R11UMO0137EU0081 Revision 0.81 Page 65/601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_entry.c

/* Do nothing. */
}

}

[Rk ko Kk kK ko ko Kk kK ko Kok Kok kK ko Kok Kok kK ko Kok Kok R ko ko Kok kR ko Kok kR ko Kok Kk kK ko Kk Kk
Kk ko Kk kK kK K kK K kK Kk Kk Kk Kk Kk K
void R BSP_WarnStart (bsp_warm start_event _t event)
{
i f (BSP_WARM START_POST_C == event)
{
/* Cruntime environnent and system cl ocks are setup. */
/* Configure pins. */
R | OPORT_Open(&g_ioport_ctrl, &y bsp pin_cfg);
}

The WDT HAL driver is called through the interface g wdt_on_wdt defined in r wdt.h. The WDT
HAL driver is opened through the open API call using the instance defined in r_wdt_api.h:

/* Open the WDT */
R WDOT_Open(&g_wdtO_ctrl, & wdtO _cfg);

The first passed parameter is the pointer to the control structure g_wdt_ctrl instantiated
inhal_data.c. The second parameter is the pointer to the configuration data g_wdt_cfg instantiated in
the same hal_data.c file.

The WDT is started and refreshed through the API call:

[* Start the WDT by refreshing it */
R WDOT Refresh(&g wdtO ctrl);

Again the first (and only in this case) parameter passed to this API is the pointer to the control
structure of this instance of the driver.

2.4.6 Building and Testing the Project

Build the project in the ISDE Build > Build Project. The project should build without errors.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 66 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Building and Testing the Project

To debug the project

1. Connect the JLink debugger between the target board and host PC. Apply power to the
board.

2. In the Project Explorer pane on the right side of the ISDE right-click on the WDT project
WDT_Application and select Debug As > Debug Configurations.

3. Under Renesas GDB Hardware Debugging select WDT_Application Debug as shown

below.
Create, manage, and run configurations ﬁv
o =
S R|[B - Mame: |WDT_Apphcat|Un Debug |
type filter text El Main 35 Debugger‘ = Startup| s Source| [] Common
@ C/C++ Application) Piaieer
[c] C/C++ Remote Application
=’ EASE Script ‘ WOT_Application Browse...
[c] GDB Hardware Debugging C/C++ Application:
[£] GDB Open0OCD Debugging "
= Debug\WDT_Application.elf
[GDB Simulator Debugging (RHBS0) | DebughWET_Applicstion.«
Java Applet Variables... Search Project... Browse...
Java Application Build {if required) before launching
g Launch Group
= Launch Group (Deprecated) Build Configuration: | Select Automatically ¥
Remote Java Application i .
« [Renesas GDB Hardware Debugging () Enable auto build () Disable auto build
f * WOT_Application Debug [local] (®) Use workspace settings Configure Workspace Settings...

[£7 Renesas Simulator Debugging (RX, RLTS)

Filter matched 14 of 16 items

5
(‘3/.

Figure 84: Debug configuration

4. Click the Debug button. Click Yes to the debug perspective if asked.

Progress Information m] X

‘."_0I Extracting RA Debug
o

|
Configuring GDB

5. The code should run the Reset Handler() function.

6. Resume execution via Run > Resume. Execution will stop in main() at the call to
hal_entry().

7. Resume execution again.

The red LED should start flashing. After 30 flashes the green LED will start flashing and the red LED
will stop flashing.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 67 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Building and Testing the Project

While the green LED is flashing the WDT will underflow and reset the device resulting in the red LED
to flash again as the sequence repeats. However, this sequence does not occur when using the
debugger because the WDT does not run when connected to the debugger.

1. Stop the debugger in the ISDE via Run > Terminate.
2. Click the reset button on the target board. The LEDs begin flashing.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 68 / 601
Nov.08.19

Flexible Software Package

FSP Architecture

User’s Manual

Chapter 3 FSP Architecture

3.1 FSP Architecture Overview

This guide describes the Renesas Flexible Software Package (FSP) architecture and how to use the
FSP Application Programming Interface (API).

3.1.1 C99 Use

The FSP uses the ISO/IEC 9899:1999 (C99) C programming language standard. Specific features
introduced in C99 that are used include standard integer types (stdint.h), booleans (stdbool.h),
designated initializers, and the ability to intermingle declarations and code.

3.1.2 Doxygen

Doxygen is the default documentation tool used by FSP. You can find Doxygen comments throughout

the FSP source.

3.1.3 Weak Symbols

Weak symbols are used occasionally in the FSP. They are used to ensure that a project builds even
when the user has not defined an optional function.

3.1.4 Memory Allocation

Dynamic memory allocation through use of the malloc() and free() functions are not used in FSP
modules; all memory required by FSP modules is allocated in the application and passed to the
module in a pointer. Exceptions are considered only for ports of 3rd party code that require dynamic

memory.

3.1.5 FSP Terms

Term

Description

Reference

BSP

Short for Board Support
Package. In the FSP the BSP
provides just enough
foundation to allow other FSP
modules to work together
without issue.

MCU Board Support Package

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 69 /601

Flexible Software Package

FSP Architecture > FSP Architecture Overview > FSP Terms

User’s Manual

Module

Modules can be peripheral
drivers, purely software, or
anything in between. Each
module consists of a folder with
source code, documentation,
and anything else that the
customer needs to use the code
effectively. Modules are
independent units, but they
may depend on other modules.
Applications can be built by
combining multiple modules to
provide the user with the
features they need.

FSP Modules

Driver

A driver is a specific kind of
module that directly modifies
registers on the MCU.

Interface

An interface contains API
definitions that can be shared
by modules with similar
features. Interfaces are
definitions only and do not add
to code size.

FSP Interfaces

Stacks

The FSP architecture is
designed such that modules
work together to form a stack.
A stack consists of a top level
module and all its
dependencies.

FSP Stacks

Module Instance

Single and independent
instantiation of a module. An
application may require two
GPT timers. Each of these
timers is a module instance of
the r_gpt module.

Application

Code that is owned and
maintained by the user.
Application code may be based
on sample application code
provided by Renesas, but it is
the responsibility of the user to
maintain as necessary.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 70/ 601

Flexible Software Package User’s Manual

FSP Architecture > FSP Architecture Overview > FSP Terms

Callback Function This term refers to a function -
that is called when an event
occurs. As an example, suppose
the user would like to be
notified every second based on
the RTC. As part of the RTC
configuration, a callback
function can be supplied that
will be jumped to during each
RTC interrupt. When a single
callback services multiple
events, the arguments contain
the triggering event. Callback
functions for interrupts should
be kept short and handled
carefully because when they
are called the MCU is still inside
of an interrupt, delaying any
pending interrupts.

3.2 FSP Modules

Modules are the core building block of FSP. Modules can do many different things, but all modules
share the basic concept of providing functionality upwards and requiring functionality from below.

[Not supported by viewer]

[Not supported by viewer]

Figure 85: Modules

The amount of functionality provided by a module is determined based on functional use cases.
Common functionality required by multiple modules is often placed into a self-contained submodule
so it can be reused. Code size, speed and complexity are also considered when defining a module.

The simplest FSP application consists of one module with the Board Support Package (BSP) and the
user application on top.

[Not supported by viewer]

Figure 86: Module with application

R11UMO0137EU0081 Revision 0.81 RENESANS Page 71 /601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Modules

The Board Support Package (BSP) is the foundation for FSP modules, providing functionality to
determine the MCU used as well as configuring clocks, interrupts and pins. For the sake of clarity,
the BSP will be omitted from further diagrams.

3.3 FSP Stacks

When modules are layered atop one another, an FSP stack is formed. The stacking process is
performed by matching what one module provides with what another module requires. For example,
the SPI module (Serial Peripheral Interface (r_spi)) requires a module that provides the transfer
interface (Transfer Interface) to send or receive data without a CPU interrupt. The transfer interface
requirement can be fulfilled by the DTC driver module (Data Transfer Controller (r_dtc)).

Through this methodology the same code can be shared by several modules simultaneously. The

example below illustrates how the same DTC module can be used with SPI (Serial Peripheral
Interface (r_spi)), UART (Serial Communications Interface (SCI) UART (r_sci_uart)) and SDHI (SD/MMC

Host Interface (r_sdhi)).

[Not supported by viewer] [Not supported by viewer] [Met supported by viewer]
[Net supported by viewer] [Not supportgd by viewer] [Not supported by viewer

[Not supportef by viewer]

Figure 87: Stacks -- Shared DTC Module

The ability to stack modules ensures the flexibility of the architecture as a whole. If multiple
modules include the same functionality issues arise when application features must work across
different user designs. To ensure that modules are reusable, any dependent modules must be
capable of being swapped out for other modules that provide the same features. The FSP
architecture provides this flexibility to swap modules in and out through the use of FSP interfaces.

3.4 FSP Interfaces

At the architecture level, interfaces are the way that modules provide common features. This
commonality allows modules that adhere to the same interface to be used interchangeably.
Interfaces can be thought of as a contract between two modules - the modules agree to work
together using the information that was established in the contract.

On RA hardware there is occasionally an overlap of features between different peripherals. For
example, 12C communications can be achieved through use of the IIC peripheral or the SCI
peripheral. However, there is a difference in the level of features provided by both peripherals; in 12C
mode the SCI peripheral will only support a subset of the capabilities of the fully-featured IIC.

Interfaces aim to provide support for the common features that most users would expect. This
means that some of the advanced features of a peripheral (such as 1IC) might not be available in the
interface. In most cases these features are still available through interface extensions.

R11UMO0137EUO0081 Revision 0.81 .IENESAS Page 72/ 601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Interfaces

In FSP design, interfaces are defined in header files. All interface header files are located in the folder
ra/fsp/inc/api and end with *_api.h. Interface extensions are defined in header files in the folder
ra/fsp/inc/instances. The following sections detail what makes up an interface.

3.4.1 FSP Interface Enumerations

Whenever possible, interfaces use typed enumerations for function parameters and structure
members.

typedef enum e_i 2c_nmst er _addr _node

{
| 2C_MASTER ADDR MODE_7BIT = 1, /11< Use 7-bit addressing node

| 2C_MASTER _ADDR_MODE_10BI T = 2, /1] < Use 10-bit addressi ng node

} i2c_naster_addr_node t;

Enumerations remove uncertainty when deciding what values are available for a parameter. FSP
enumeration options follow a strict naming convention where the name of the type is prefixed on the
available options. Combining the naming convention with the autocomplete feature available in e?
studio (Ctrl + Space) provides the benefits of rapid coding while maintaining high readability.

3.4.2 FSP Interface Callback Functions

Callback functions allow modules to asynchronously alert the user application when an event has
occurred, such as when a byte has been received over a UART channel or an IRQ pin is toggled. FSP
driver modules define and handle the interrupt service routines for RA MCU peripherals to ensure
any required hardware procedures are implemented. The interrupt service routines in FSP modules
then call the user-defined callbacks to allow the application to respond.

Callback functions must be defined in the user application. They always return void and take a
structure for their one parameter. The structure is defined in the interface for the module and is
named <interface>_callback_args_t. The contents of the structure may vary depending on the
interface, but two members are common: event and p_context.

The event member is an enumeration defined in the interface used by the application to determine
why the callback was called. Using the UART example, the callback could be triggered for many
different reasons, including when a byte is received, all bytes have been transmitted, or a framing
error has occurred. The event member allows the application to determine which of these three
events has occurred and handle it appropriately.

The p_context member is used for providing user-specified data to the callback function. In many
cases a callback function is shared between multiple channels or module instances; when the
callback occurs, the code handling the callback needs context information so that it can determine
which module instance the callback is for. For example, if the callback wanted to make a FSP API call
in the callback, then at a minimum the callback will need a reference to the relevant control
structure. To make this easy, the user can provide a pointer to the control structure as the
p_context. When the callback occurs, the control structure is passed in the p_context element of the
callback structure.

Callback functions are called from within an interrupt service routine. For this reason callback
functions should be kept as short as possible so they do not affect the real time performance of the

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 73 /601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Interfaces > FSP Interface Callback Functions

user's system. An example skeleton function for the flash interface callback is shown below.

R11UMO0137EU0081 Revision 0.81 Page 74/ 601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Interfaces > FSP Interface Callback Functions

br eak;
}
case FLASH EVENT ERR CMD LOCKED:
{
/* Handl e error. */
br eak;
}
case FLASH EVENT ERR FAI LURE:
{
/* Handl e error. */
br eak;
}
case FLASH EVENT ERR ONE BIT:
{
/* Handl e error. */
br eak;
}
}
¥

When a module is not directly used in the user application (that is, it is not the top layer of the
stack), its callback function will be handled by the module above. For example, if a module requires
a UART interface module the upper layer module will control and use the UART's callback function. In
this case the user would not need to create a callback function for the UART module in their
application code.

3.4.3 FSP Interface Data Structures

At a minimum, all FSP interfaces include three data structures: a configuration structure, an API
structure, and an instance structure.

3.4.3.1 FSP Interface Configuration Structure

The configuration structure is used for the initial configuration of a module during the
<MODULE>_Open() call. The structure consists of members such as channel number, bitrate, and
operating mode.

The configuration structure is used purely as an input into the module. It may be stored and
referenced by the module, so the configuration structure and anything it references must persist as
long as the module is open.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 75/ 601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface Configuration Structure

The configuration structure is allocated for each module instance in files generated by the RA
configuration tool.

When FSP stacks are used, it is also important to understand that configuration structures only have
members that apply to the current interface. If multiple layers in the same stack define the same
configuration parameters then it becomes difficult to know where to modify the option. For example,
the baud rate for a UART is only defined in the UART module instance. Any modules that use the
UART interface rely on the baud rate being provided in the UART module instance and do not offer it
in their own configuration structures.

3.4.3.2 FSP Interface API Structure

All interfaces include an API structure which contains function pointers for all the supported interface
functions. An example structure for the Digital to Analog Converter (r_dac) is shown below.

typedef struct st _dac_api

{

/[** Initial configuration.

* @ar |nplenmented as

* - R_DAC_Open()

* - R_DAC8_Open()

>

* @aranfin] p_ctrl Pointer to control block. Mist be declared by user. Elenents
set here.

* @araniin] p_cfg Pointer to configuration structure. Al elenents of this
structure nust be set by user.

*/

fsp err t (* open)(dac ctrl t * p ctrl, dac_cfg t const * const p cfqg);

/[** Close the D/ A Converter.

* @ar |nplenmented as

* - R DAC d ose()

* - R_DAC8_C ose()

*

* @araniin] p_ctrl Control block set in dac_api t::open call for this tiner.

*/

fsp_err_t (* close)(dac_ctrl_t * p_ctrl);

/** Wite sanple value to the D/ A Converter.

* @ar |nplenented as

* . R DAC Wite()

* . R DACB_Wite()

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 76 / 601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface API Structure

R11UMO0137EU0081 Revision 0.81 Page 77 /601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface API Structure

* @aranfout] p_info Collection of information for this DAC
*/
fsp_err_t (* infoGet)(dac_info_ t * const p_info);

} dac_api t;

The API structure is what allows for modules to easily be swapped in and out for other modules that

are instances of the same interface. Let's look at an example application using the DAC interface
above.

RA MCUs have an internal DAC peripheral. If the DAC API structure in the DAC interface is not used
the application can make calls directly into the module. In the example below the application is
making calls to the R_DAC_Write() function which is provided in the r_dac module.

Figure 88: DAC Write example

Now let's assume that the user needs more DAC channels than are available on the MCU and
decides to add an external DAC module named dac_external using I12C for communications. The
application must now distinguish between the two modules, adding complexity and further
dependencies to the application.

[Not suppgried by viewer]

Figure 89: DAC Write with two write modules

The use of interfaces and the API structure allows for the use of an abstracted DAC. This means that
no extra logic is needed if the user's dac_external module implements the FSP DAC interface, so the
application no longer depends upon hard-coded module function names. Instead the application now
depends on the DAC interface APl which can be implemented by any number of modules.

R11UMO0137EUO0081 Revision 0.81 .IEN ESANANAS Page 78 /601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface API Structure

[Not supported by viewer]

Figure 90: DAC Interface

3.4.3.3 FSP Interface Instance Structure

Every FSP interface also has an instance structure. The instance structure encapsulates everything
required to use the module:

* A pointer to the instance API structure (FSP Instance API)
* A pointer to the configuration structure
* A pointer to the control structure

The instance structure is not required at the application layer. It is used to connect modules to their
dependencies (other than the BSP).

Instance structures have a standardized name of <interface>_instance_t. An example from the
Transfer Interface is shown below.

typedef struct st_transfer_instance

{
transfer_ctrl t * p ctrl; ///< Pointer to the control structure for this
i nst ance
transfer_cfg_t const * p_cfg; /1] < Pointer to the configuration structure

for this instance
transfer_api _t const * p_api; /1< Pointer to the APl structure for this
i nstance

} transfer_instance t;

Note that when an instance structure variable is declared, the API is the only thing that is instance
specific, not module instance specific. This is because all module instances of the same module
share the same underlying module source code. If SPI is being used on SCI channels 0 and 2 then
both module instances use the same APl while the configuration and control structures are typically
different.

3.5 FSP Instances

While interfaces dictate the features that are provided, instances actually implement those features.
Each instance is tied to a specific interface. Instances use the enumerations, data structures, and API

R11UMO0137EU0081 Revision 0.81 RENESANS Page 79 / 601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Instances

prototypes from the interface. This allows an application that uses an interface to swap out the
instance when needed.

On RA MCUs some peripherals are used to implement multiple interfaces. In the example below the
IIC and SPI peripherals map to only one interface each while the SCI peripheral implements three
interfaces.

Figure 91: Instances

In FSP design, instances consist of the interface extension and API defined in the instance header
file located in the folder ra/fsp/inc/instances and the module source ra/fsp/src/<module>.

3.5.1 FSP Instance Control Structure

The control structure is used as a unique identifier for the module instance and contains memory
required by the module. Elements in the control structure are owned by the module and must not be
modified by the application. The user allocates storage for a control structure, often as a global
variable, then sends a pointer to it into the <MODULE>_Open() call for a module. At this point, the
module initializes the structure as needed. The user must then send in a pointer to the control
structure for all subsequent module calls.

3.5.2 FSP Interface Extensions

In some cases, instances require more information than is provided in the interface. This situation
can occur in the following cases:

* An instance offers extra features that are not common to most instances of the interface.
An example of this is the start source selection of the GPT (General PWM Timer (r_gpt)). The
GPT can be configured to start based on hardware events such as a falling edge on a trigger
pin. This feature is not common to all timers, so it is included in the GPT instance.

e An interface must be very generic out of necessity. As an interface becomes more generic,
the number of possible instances increases. An example of an interface that must be
generic is a block media interface that abstracts functions required by a file system.
Possible instances include SD card, SPI Flash, SDRAM, USB, and many more.

The p_extend member provides this extension function.

Use of interface extensions is not always necessary. Some instances do not offer an extension since
all functionality is provided in the interface. In these cases the p_extend member can be set to NULL.
The documentation for each instance indicates whether an interface extension is available and
whether it is mandatory or optional.

3.5.2.1 FSP Extended Configuration Structure

When extended configuration is required it can be supplied through the p_extend parameter of the
interface configuration structure.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 80/ 601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Instances > FSP Interface Extensions > FSP Extended Configuration Structure

The extended configuration structure is part of the instance, but it is also still considered to be part
of the configuration structure. All usage notes about the configuration structure described in FSP
Interface Configuration Structure apply to the extended configuration structure as well.

The extended configuration structure and all typed structures and enumerations required to define it
make up the interface extension.

3.5.3 FSP Instance API

Each instance includes a constant global variable tying the interface API functions to the functions
provided by the module. The name of this structure is standardized as
g_<interface>_on_<instance>. Examples include g_spi_on_spi, g_transfer_on_dtc, and
g_adc_on_adc. This structure is available to be used through an extern in the instance header file
(r_spi.h, r_dtc.h, and r_adc.h respectively).

3.6 FSP API Standards

3.6.1 FSP Function Names

FSP functions start with the uppercase module name (<MODULE>). All modules have
<MODULE=>_Open() and <MODULE>_Close() functions. The <MODULE>_Open() function must be
called before any of the other functions. The only exception is the <MODULE>_VersionGet() function
which is not dependent upon any user provided information.

Other functions that will commonly be found are <MODULE>_Read(), <MODULE>_Write(),
<MODULE>_InfoGet(), and <MODULE>_StatusGet(). The <MODULE>_StatusGet() function provides
a status that could change asynchronously, while <MODULE>_InfoGet() provides information that
cannot change after open or can only be updated by API calls. Example function names include:

e R SPI_Read(), R_SPI_Write(), R_SPI_WriteRead()
SDHI_StatusGet()
RTC_CalendarAlarmSet(), R_RTC_CalendarAlarmGet()
FLASH_HP_AccessWindowSet(), R_FLASH HP_AccessWindowClear()

R_
R_
R_
° R_

3.6.2 Use of const in APl parameters

The const qualifier is used with APl parameters whenever possible. An example case is shown below.

fsp err t R FLASH HP Open(flash ctrl _t * const p_api_ctrl, flash cfg t const * const

p_cfg);

In this example, flash_cfg_t is a structure of configuration parameters for the r_flash_hp module. The
parameter p_cfg is a pointer to this structure. The first const qualifier on p_cfg ensures the
flash_cfg_t structure cannot be modified by R_ FLASH HP_Open(). This allows the structure to be
allocated as a const variable and stored in ROM instead of RAM.

The const qualifier after the pointer star for both p_ctrl and p_cfg ensures the FSP function does not
modify the input pointer addresses. While not fool-proof by any means this does provide some extra
checking inside the FSP code to ensure that arguments that should not be altered are treated as
such.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 81 /601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP API Standards > FSP Version Information

3.6.3 FSP Version Information

All instances supply a <MODULE>_VersionGet() function which fills in a structure of type
fsp_version_t. This structure is made up of two version numbers: one for the interface (the API) and
one for the underlying instance that is currently being used.

typedef union st_fsp_version
{
[** Version id */
uint32 t version_id,

/** Code version paraneters */

struct

{
uint8 t code version_m nor; /1< Code m nor version
uint8 t code version_ngjor; /1l < Code maj or version
uint8 t api_version_m nor; /1/< APl m nor version
uint8 t api _version_nmjor; /1/< APl major version

I

} fsp_version_t;

The API version ideally never changes, and only rarely if it does. A change to the APl may require
users to go back and modify their code. The code version (the version of the current instance) may
be updated more frequently due to bug fixes, enhancements, and additional features. Changes to
the code version typically do not require changes to user code.

3.7 FSP Build Time Configurations

All modules have a build-time configuration header file. Most configuration options are supplied at
run time, though options that are rarely used or apply to all instances of a module may be moved to
build time. The advantage of using a build-time configuration option is to potentially reduce code
size reduction by removing an unused feature.

All modules have a build time option to enable or disable parameter checking for the module. FSP
modules check function arguments for validity when possible, though this feature is disabled by
default to reduce code size. Enabling it can help catch parameter errors during development and
debugging. By default, each module's parameter checking configuration inherits the BSP parameter
checking setting (set on the BSP tab of the RA configuration tool). Leaving each module's parameter
checking configuration set to Default (BSP) allows parameter checking to be enabled or disabled
globally in all FSP code through the parameter checking setting on the BSP tab.

If an error condition can reasonably be avoided it is only checked in a section of code that can be
disabled by disabling parameter checking. Most Flex APIs can only return FSP_SUCCESS if parameter
checking is disabled. An example of an error that cannot be reasonably avoided is the "bus busy"
error that occurs when another master is using an 12C bus. This type of error can be returned even if

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 82/ 601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Build Time Configurations

parameter checking is disabled.

3.8 FSP File Structure

The high-level file structure of an FSP project is shown below.

ra_gen
ra
+---fsp
+---inc
| +---api
| \---instances
\---src
+- - - bsp
\---r_nodul e
ra_cfg
+---fsp cfg
+---bsp

+---driver

Directly underneath the base ra folder the folders are split into the source and include folders.
Include folders are kept separate from the source for easy browsing and easy setup of include paths.

The ra_gen folder contains code generated by the RA configuration tool. This includes global
variables for the control structure and configuration structure for each module.

The ra_cfg folder is where configuration header files are stored for each module. See FSP Build Time
Configurations for information on what is provided in these header files.

3.9 FSP Architecture in Practice

3.9.1 FSP Connecting Layers

FSP modules are meant to be both reusable and stackable. It is important to remember that modules
are not dependent upon other modules, but upon other interfaces. The user is then free to fulfill the
interface using the instance that best fits their needs.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 83 /601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Architecture in Practice > FSP Connecting Layers

Figure 92: Connecting layers

In the image above interface Y is a dependency of interface X and has its own dependency on
interface Z. Interface X only has a dependency on interface Y. Interface X has no knowledge of
interface Z. This is a requirement for ensuring that layers can easily be swapped out.

3.9.2 Using FSP Modules in an Application

The typical use of an FSP module involves generating required module data then using the APl in the
application.

3.9.2.1 Create a Module Instance in the RA Configuration Tool

The RA configuration tool in the Renesas e? studio IDE provides a graphical user interface for setting
the parameters of the interface and instance configuration structures. e? studio also automatically
includes those structures (once they are configured in the GUI) in application-specific header files
that can be included in application code.

The RA configuration tool allocates storage for the control structures, all required configuration
structures, and the instance structure in generated files in the ra_gen folder. Use the e? studio
Properties view to set the values for the members of the configuration structures as needed. Refer
to the Configuration section of the module usage notes for documentation about the configuration
options.

If the interface has a callback function option then the application must declare and define the
function. The return value is always of type void and the parameter to the function is a typed
structure of name <interface>_callback args t. Once the function has been defined, assign its name
to the p_callback member of the configuration structure. Callback function names can be assigned
through the e? studio Properties window for the selected module.

3.9.2.2 Use the Instance API in the Application
Call the module's <MODULE>_Open() function. Pass pointers to the generated control structure and
configuration structure. The names of these structures are based on the 'Name' field provided in the

RA configuration tool. The control structure is <Name>_ctrl and the configuration structure is
<Name>_cfg. An example <MODULE>_Open() call for an r_rtc module instance named g_clock is:

R RTC Open(&g _clock ctrl, &g _clock cfg);

Note
Each layer in the FSP Sack is responsible for calling the API functions of its dependencies. This meansthat users

R11UMO0137EU0081 Revision 0.81 RENESANS Page 84/ 601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Architecture in Practice > Using FSP Modules in an Application > Use the Instance API in the Application

are only responsible for calling the API functions at the layer at which they are interfacing. Using the example
above of a SPI module with a DTC dependency, the application uses only SPI APIs. The application starts by
calling R_SPI_Open(). Internally, the SPI module opensthe DTC. It locates R_DTC_Open() by accessing the
dependent transfer interface function pointers from the pointers DTC instances (spi_cfg_t::p_transfer_tx and
spi_cfg_t::p_transfer_rx) to open the DTC.

Refer to the module usage notes for example code to help get started with any particular module.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 85/ 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference

Chapter 4 APl Reference

This section includes the FSP APl Reference for the Module and Interface level functions.

VBSP Common code shared by FSP drivers
Common Error Codes

V¥YMCU Board Support Package The BSP is responsible for getting the MCU from
reset to the user's application. Before reaching
the user's application, the BSP sets up the
stacks, heap, clocks, interrupts, C runtime
environment, and stack monitor

RA2A1

RA4M1

RA6M1

RA6M?2

RA6M3

BSP 1/O access This module provides basic read/write access to
port pins

V¥Modules Modules are the smallest unit of software
available in the FSP. Each module implements
one interface

High-Speed Analog Comparator (r_acmphs) This module implements the Comparator
Interface using the high-speed analog
comparator

Low-Power Analog Comparator (r_acmplp) Driver for the ACMPLP peripheral on RA MCUs.
This module implements the Comparator
Interface

Analog to Digital Converter (r_adc) Driver for the ADC12, ADC14, and ADC16
peripherals on RA MCUs. This module
implements the ADC Interface

Asynchronous General Purpose Timer (r_agt) Driver for the AGT peripheral on RA MCUs. This

module implements the Timer Interface

Clock Frequency Accuracy Measurement Circuit Driver for the CAC peripheral on RA MCUs. This

(r_cac) module implements the CAC Interface

Clock Generation Circuit (r_cgc) Driver for the CGC peripheral on RA MCUs. This
module implements the CGC Interface

Cyclic Redundancy Check (CRC) Calculator Driver for the CRC peripheral on RA MCUs. This

(r_crc) module implements the CRC Interface

Capacitive Touch Sensing Unit (r_ctsu) This HAL driver supports the Capacitive Touch

Sensing Unit (CTSU). It implements the CTSU

R11UMO0137EU0081 Revision 0.81 RENESANS Page 86 / 601
Nov.08.19

Flexible Software Package

API Reference

User’s Manual

Digital to Analog Converter (r_dac)

Direct Memory Access Controller (r_dmac)

Data Operation Circuit (r_doc)

D/AVE 2D Port Interface (r_drw)

Data Transfer Controller (r_dtc)

Event Link Controller (r_elc)

Ethernet (r_ether)

Ethernet PHY (r_ether_phy)

High-Performance Flash Driver (r_flash_hp)

Low-Power Flash Driver (r_flash_Ip)

Graphics LCD Controller (r_glcdc)

General PWM Timer (r_gpt)

Interrupt Controller Unit (r_icu)

I2C Master on IIC (r_iic_master)

I12C Slave on IIC (r_iic_slave)

I/O Ports (r_ioport)

Independent Watchdog Timer (r_iwdt)

JPEG Codec (r_jpeg)

Interface

Driver for the DAC12 peripheral on RA MCUs.
This module implements the DAC Interface

Driver for the DMAC peripheral on RA MCUs. This
module implements the Transfer Interface

Driver for the DOC peripheral on RA MCUs. This
module implements the DOC Interface

Driver for the DRW peripheral on RA MCUs. This
module is a port of D/AVE 2D

Driver for the DTC peripheral on RA MCUs. This
module implements the Transfer Interface

Driver for the ELC peripheral on RA MCUs. This
module implements the ELC Interface

Driver for the Ethernet peripheral on RA MCUs.
This module implements the Ethernet Interface

The Ethernet PHY module (r_ether_phy) provides
an API for standard Ethernet PHY
communications applications and uses the
ETHERC peripherals. It implements the Ethernet
PHY Interface

Driver for the flash memory on RA high-
performance MCUs. This module implements the
Flash Interface

Driver for the flash memory on RA low-power
MCUs. This module implements the Flash
Interface

Driver for the GLCDC peripheral on RA MCUs.
This module implements the Display Interface

Driver for the GPT32 and GPT16 peripherals on
RA MCUs. This module implements the Timer
Interface

Driver for the ICU peripheral on RA MCUs. This
module implements the External IRQ Interface

Driver for the IIC peripheral on RA MCUs. This
module implements the 12C Master Interface

Driver for the IIC peripheral on RA MCUs. This
module implements the I12C Slave Interface

Driver for the I/O Ports peripheral on RA MCUs.
This module implements the I/O Port Interface

Driver for the IWDT peripheral on RA MCUs. This
module implements the WDT Interface

Driver for the JPEG peripheral on RA MCUs. This
module implements the JPEG Codec Interface

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 87 /601

Flexible Software Package

API Reference

User’s Manual

Key Interrupt (r_kint)

Low Power Modes (r_Ipm)

Low Voltage Detection (r_Ivd)

Realtime Clock (r_rtc)

Serial Communications Interface (SCI) 12C
(r_sci i2c)

Serial Communications Interface (SCI) SPI
(r_sci_spi)

Serial Communications Interface (SCI) UART
(r_sci_uart)

SD/MMC Host Interface (r_sdhi)

Serial Peripheral Interface (r_spi)

Serial Sound Interface (r_ssi)

Universal Serial Bus (r_usb_basic)

Host Mass Storage Class Driver (r_usb_hmsc)

Universal Serial Bus Peripheral Communication

Device Class (r_usb_pcdc)

Watchdog Timer (r_wdt)

SEGGER emWin Port (rm_emwin_port)
FreeRTOS Plus FAT (rm_freertos_plus_fat)

Amazon FreeRTOS Port (rm_freertos_port)

Crypto Middleware (rm_psa_crypto)

Capacitive Touch Middleware (rm_touch)

Driver for the KINT peripheral on RA MCUs. This
module implements the Key Matrix Interface

Driver for the LPM peripheral on RA MCUs. This
module implements the Low Power Modes
Interface

Driver for the LVD peripheral on RA MCUs. This
module implements the Low Voltage Detection
Interface

Driver for the RTC peripheral on RA MCUs. This
module implements the RTC Interface

Driver for the SCI peripheral on RA MCUs. This
module implements the 12C Master Interface

Driver for the SCI peripheral on RA MCUs. This
module implements the SPI Interface

Driver for the SCI peripheral on RA MCUs. This
module implements the UART Interface

Driver for the SD/MMC Host Interface (SDHI)
peripheral on RA MCUs. This module implements
the SD/MMC Interface

Driver for the SPI peripheral on RA MCUs. This
module implements the SPI Interface

Driver for the SSIE peripheral on RA MCUs. This
module implements the 12S Interface

The USB module (r_usb_basic) provides an API to
perform H / W control of USB communication. It
implements the USB Interface

The USB module (r_usb_hmsc) provides an API to
perform hardware control of USB
communications. It implements the USB
Interface

This module is USB Peripheral Communication
Device Class Driver (PCDC).

This module works in combination with
(r_usb_basic module)

Driver for the WDT peripheral on RA MCUs. This
module implements the WDT Interface

SEGGER emWin port for RA MCUs

Middleware for the Fat File System control on RA
MCUs

Amazon FreeRTOS port for RA MCUs

Hardware acceleration for the mbedCrypto
implementation of the ARM PSA Crypto API

This module supports the Capacitive Touch
Sensing Unit (CTSU). It implements the Touch

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 88 /601

Flexible Software Package

API Reference

User’s Manual

Vinterfaces

ADC Interface
CAC Interface

CGC Interface
Comparator Interface
CRC Interface

CTSU Interface

DAC Interface

Display Interface
DOC Interface

ELC Interface
Ethernet Interface
Ethernet PHY Interface
External IRQ Interface
Flash Interface

I2C Master Interface
I12C Slave Interface
12S Interface

I/O Port Interface

JPEG Codec Interface

Key Matrix Interface

Low Power Modes Interface

Low Voltage Detection Interface
RTC Interface

SD/MMC Interface

SPI Interface
Timer Interface

Transfer Interface

Middleware Interface

The FSP interfaces provide APIs for common

functionality. They can be implemented by one

or more modules. Modules can use other
modules as dependencies using this interface
layer

Interface for A/D Converters

Interface for clock frequency accuracy
measurements

Interface for clock generation
Interface for comparators
Interface for cyclic redundancy checking

Interface for Capacitive Touch Sensing Unit
(CTSU) functions

Interface for D/A converters

Interface for LCD panel displays

Interface for the Data Operation Circuit
Interface for the Event Link Controller
Interface for Ethernet functions

Interface for Ethernet phy functions
Interface for detecting external interrupts
Interface for the Flash Memory

Interface for 12C master communication
Interface for I12C slave communication

Interface for 12S audio communication

Interface for accessing 1/O ports and configuring

I/0 functionality

Interface for JPEG functions

Interface for key matrix functions
Interface for accessing low power modes
Interface for Low Voltage Detection
Interface for accessing the Realtime Clock

Interface for accessing SD, eMMC, and SDIO
devices

Interface for SPI communications
Interface for timer functions

Interface for data transfer functions

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 89/601

Flexible Software Package User’s Manual

API Reference

UART Interface Interface for UART communications

USB Interface Interface for USB functions

USB HMSC Interface Interface for USB HMSC functions

USB PCDC Interface Interface for USB PCDC functions

WDT Interface Interface for watch dog timer functions

Touch Middleware Interface Interface for Touch Middleware functions
4.1 BSP

Detailed Description
Common code shared by FSP drivers.

Modules

Common Error Codes

MCU Board Support Package

The BSP is responsible for getting the MCU from reset to the user's
application. Before reaching the user's application, the BSP sets up
the stacks, heap, clocks, interrupts, C runtime environment, and
stack monitor.

BSP I/O access

This module provides basic read/write access to port pins.

4.1.1 Common Error Codes
BSP

Detailed Description

All FSP modules share these common error codes.

Data Structures

union fsp_version_t

struct fsp _version_t. unnamed _

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 90 / 601
Nov.08.19

Flexible Software Package

API Reference > BSP > Common Error Codes

User’s Manual

Macros

#define FSP_PARAMETER_NOT_USED(p)

#define FSP_CPP_HEADER
#define FSP_HEADER

Enumerations

enum fsp_err_t

Data Structure Documentation

¢ fsp_version_t

union fsp_version_t
Common version structure

Data Fields
uint32_t version_id Version id
struct fsp_version_t __unnamed__ Code version parameters
¢ fsp_version_t. _unnamed__
struct fsp_version_t. _unnamed__
Code version parameters

Data Fields
uint8 t code_version_minor Code minor version.
uint8_t code_version_major Code major version.
uint8_t api_version_minor APl minor version.
uint8 t api_version_major APl major version.

Macro Definition Documentation

& FSP_PARAMETER_NOT_USED

#define FSP_PARAMETER_NOT _USED (p)

This macro is used to suppress compiler messages about a parameter not being used in a function.
The nice thing about using this implementation is that it does not take any extra RAM or ROM.

R11UMO0137EU0081 Revision 0.81 RENESAS

Nov.08.19

Page 91/601

Flexible Software Package

API Reference > BSP > Common Error Codes

User’s Manual

¢ FSP_CPP_HEADER

#define FSP_CPP_HEADER

Determine if a C++ compiler is being used. If so, ensure that standard C is used to process the API

information.

¢ FSP_HEADER

#define FSP_HEADER

FSP Header and Footer definitions

Enumeration Type Documentation

¢ fsp_err_t

enum fsp_err_t

Common error codes

Enumerator

FSP_ERR_ASSERTION

A critical assertion has failed.

FSP_ERR_INVALID_POINTER

Pointer points to invalid memory location.

FSP_ERR_INVALID_ARGUMENT

Invalid input parameter.

FSP_ERR_INVALID_CHANNEL

Selected channel does not exist.

FSP_ERR_INVALID_MODE

Unsupported or incorrect mode.

FSP_ERR_UNSUPPORTED

Selected mode not supported by this API.

FSP_ERR_NOT OPEN

Requested channel is not configured or API not
open.

FSP_ERR_IN_USE

Channel/peripheral is running/busy.

FSP_ERR_OUT_OF_MEMORY

Allocate more memory in the driver's cfg.h.

FSP_ERR_HW_LOCKED

Hardware is locked.

FSP_ERR_IRQ_BSP_DISABLED

IRQ not enabled in BSP.

FSP_ERR_OVERFLOW

Hardware overflow.

FSP_ERR_UNDERFLOW

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS Page 92 / 601

Flexible Software Package

API Reference > BSP > Common Error Codes

User’s Manual

Hardware underflow.

FSP_ERR_ALREADY OPEN

Requested channel is already open in a
different configuration.

FSP_ERR_APPROXIMATION

Could not set value to exact result.

FSP_ERR_CLAMPED

Value had to be limited for some reason.

FSP_ERR_INVALID_RATE

Selected rate could not be met.

FSP_ERR_ABORTED An operation was aborted.

FSP_ERR_NOT_ENABLED Requested operation is not enabled.

FSP_ERR_TIMEOUT Timeout error.

FSP_ERR_INVALID_BLOCKS Invalid number of blocks supplied.

FSP_ERR_INVALID_ADDRESS Invalid address supplied.

FSP_ERR_INVALID_SIZE Invalid size/length supplied for operation.

FSP_ERR_WRITE_FAILED Write operation failed.

FSP_ERR_ERASE_FAILED Erase operation failed.

FSP_ERR_INVALID_CALL Invalid function call is made.

FSP_ERR_INVALID_HW_CONDITION Detected hardware is in invalid condition.

FSP_ERR_INVALID_FACTORY_FLASH Factory flash is not available on this MCU.

FSP_ERR_INVALID_STATE API or command not valid in the current state.

FSP_ERR_NOT_ERASED Erase verification failed.

FSP_ERR_SECTOR_RELEASE_FAILED Sector release failed.

FSP_ERR_INTERNAL Internal error.

Start of RTOS only error codes

FSP_ERR_WAIT_ABORTED Wait.

FSP_ERR_FRAMING Framing error occurs.

Start of UART specific

FSP_ERR_BREAK_DETECT

Break signal detects.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 93 /601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > BSP > Common Error Codes

FSP_ERR_PARITY Parity error occurs.

FSP_ERR_RXBUF_OVERFLOW Receive queue overflow.

FSP_ERR_QUEUE_UNAVAILABLE Can't open s/w queue.

FSP_ERR_INSUFFICIENT_SPACE Not enough space in transmission circular

buffer.

FSP_ERR_INSUFFICIENT_DATA Not enough data in receive circular buffer.

FSP_ERR_TRANSFER_ABORTED The data transfer was aborted.

Start of SPI specific

FSP_ERR_MODE_FAULT Mode fault error.

FSP_ERR_READ_OVERFLOW Read overflow.

FSP_ERR_SPI_PARITY Parity error.

FSP_ERR_OVERRUN Overrun error.

FSP_ERR_CLOCK_INACTIVE Inactive clock specified as system clock.

Start of CGC Specific

FSP_ERR_CLOCK_ACTIVE Active clock source cannot be modified without
stopping first.

FSP_ERR_NOT_STABILIZED Clock has not stabilized after its been turned
on/off.

FSP_ERR_PLL_SRC_INACTIVE PLL initialization attempted when PLL source is
turned off.

FSP_ERR_OSC_STOP_DET_ENABLED lllegal attempt to stop LOCO when Oscillation
stop is enabled.

FSP_ERR_OSC_STOP_DETECTED The Oscillation stop detection status flag is
set.

FSP_ERR_OSC_STOP_CLOCK_ACTIVE Attempt to clear Oscillation Stop Detect Status

with PLL/MAIN_OSC active.

FSP_ERR_CLKOUT_EXCEEDED Output on target output clock pin exceeds
maximum supported limit.
FSP_ERR_USB_MODULE_ENABLED USB clock configure request with USB Module
enabled.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 94 / 601

Nov.08.19

Flexible Software Package

API Reference > BSP > Common Error Codes

User’s Manual

FSP_ERR_HARDWARE_TIMEOUT

A register read or write timed out.

FSP_ERR_LOW_VOLTAGE_MODE

Invalid clock setting attempted in low voltage
mode.

FSP_ERR_PE_FAILURE

Unable to enter Programming mode.

Start of FLASH Specific

FSP_ERR_CMD_LOCKED

Peripheral in command locked state.

FSP_ERR_FCLK

FCLK must be >= 4 MHz.

FSP_ERR_INVALID_LINKED ADDRESS

Function or data are linked at an invalid region
of memory.

FSP_ERR_BLANK_CHECK_FAILED

Blank check operation failed.

FSP_ERR_INVALID_CAC_REF_CLOCK

Measured clock rate < reference clock rate.

Start of CAC Specific

FSP_ERR_CLOCK_GENERATION

Clock cannot be specified as system clock.

Start of GLCD Specific

FSP_ERR_INVALID_TIMING_SETTING

Invalid timing parameter.

FSP_ERR_INVALID_LAYER SETTING

Invalid layer parameter.

FSP_ERR_INVALID_ALIGNMENT

Invalid memory alignment found.

FSP_ERR_INVALID_GAMMA_SETTING

Invalid gamma correction parameter.

FSP_ERR_INVALID_LAYER_FORMAT

Invalid color format in layer.

FSP_ERR_INVALID_UPDATE_TIMING

Invalid timing for register update.

FSP_ERR_INVALID_CLUT ACCESS

Invalid access to CLUT entry.

FSP_ERR_INVALID_FADE_SETTING

Invalid fade-in/fade-out setting.

FSP_ERR_INVALID_BRIGHTNESS_SETTING

Invalid gamma correction parameter.

FSP_ERR JPEG_ERR

JPEG error.
Start of JPEG Specific

FSP_ERR _JPEG_SOI_NOT_DETECTED

SOl not detected until EOl detected.

FSP_ERR_JPEG_SOF1_TO_SOFF _DETECTED

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 95/ 601

Flexible Software Package User’s Manual

API Reference > BSP > Common Error Codes

SOF1 to SOFF detected.

FSP_ERR_JPEG_UNSUPPORTED_PIXEL_FORMAT Unprovided pixel format detected.

FSP_ERR_JPEG_SOF_ACCURACY_ERROR SOF accuracy error: other than 8 detected.

FSP_ERR_JPEG_DQT_ACCURACY_ERROR DQT accuracy error: other than 0 detected.

FSP_ERR_JPEG_COMPONENT_ERROR1 Component errorl: the number of SOFO header

components detected is other t