

Data Flash Access
Library
Type T04 (Pico), European Release

16 Bit Single-chip Microcontroller
RL78 Series

Installer: RENESAS_RL78_FDL_T04_xVxx

R01US0055ED0130, Rev. 1.30
Dec 27, 2023

U
ser M

anual

16

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Technology Corp.
website (http://www.renesas.com).

www.renesas.com

R01US0055ED0130 Rev. 1.30 2
User Manual

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor

products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the
design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties
arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents,
copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information
described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import,
export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims
any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse
engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications
for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment;
key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other
Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property
damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.).
Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any
Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas
Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach,
including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics
product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY
SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK,
VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS
ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY
ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL
WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR
HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes
for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges
specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics,
installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas
Electronics products outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have
specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a
high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas
Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the
possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas
Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction
prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software
alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each
Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the
inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in
compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring
as a result of your noncompliance with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or
sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and
regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells
or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

R01US0055ED0130 Rev. 1.30 3
User Manual

Regional Information

Some information contained in this document may vary from country to country. Before using any
Renesas Electronics product in your application, please contact the Renesas Electronics office in your
country to obtain a list of authorized representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for
third-party tools and components, host computers, power plugs, AC supply
voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

Visit

http://www.renesas.com

to get in contact with your regional representatives and distributors.

R01US0055ED0130 Rev. 1.30 4
User Manual

Preface
This manual is intended for users who want to understand the functions of the
concerned libraries.

This manual presents the software manual for the concerned libraries.

This document describes the following sections:

• Architecture

• Implementation and Usage

• API

Additional remark or tip

Item deserving extra attention

Binary: xxxx or xxxB

Decimal: xxxx

Hexadecimal xxxxH or 0x xxxx

representing powers of 2 (address space, memory capacity):

K (kilo): 210 = 1024

M (mega): 220 = 1024² = 1,048,576

G (giga): 230 = 1024³ = 1,073,741,824

X, x = don’t care

Block diagrams do not necessarily show the exact software flow but the
functional structure. Timing diagrams are for functional explanation purposes
only, without any relevance to the real hardware implementation.

Readers

Purpose
Organization

Note
Caution

Numeric notation

Numeric prefixes

Register contents
Diagrams

R01US0055ED0130 Rev. 1.30 5
User Manual

How to Use This Manual

(1) Purpose and Target Readers

This manual is designed to provide the user with an understanding of the library
itself and the functionality provided by the library. It is intended for users
designing applications using libraries provided by Renesas. A basic knowledge of
software systems as well as Renesas microcontrollers is necessary in order to
use this manual. The manual comprises an overview of the library, its
functionality and its structure, how to use it and restrictions in using the library.

Particular attention should be paid to the precautionary notes when using the
manual. These notes occur within the body of the text, at the end of each section,
and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does
not list all revisions. Refer to the text of the manual for details.

(2) List of Abbreviations and Acronyms

Abbreviation Full Form

API Application programming interface
BGO Background operation
Flash Area Area of Flash consists of several coherent Flash Blocks

Code Flash Embedded Flash where the application code or constant
data is stored.

Data Flash Embedded Flash where mainly the data of the EEPROM
emulation are stored.

Data Set Instance of data written to the Flash by the EEPROM
Emulation Library (EEL), identified by the Data Set ID

DS Data Set

Dual Operation

Dual operation is the capability to access flash memory
during reprogramming another flash memory range.
Dual operation is available between Code Flash and
Data Flash.
Between different Code Flash macros dual operation
depends on the device implementatio

ECC Error correction code
EEL EEPROM Emulation Library
EEPROM Electrically erasable programmable read-only memory

EEPROM emulation

In distinction to a real EEPROM the EEPROM emulation
uses some portion of the flash memory to emulate the
EEPROM behavior. To gain a similar behavior some
side parameters have to be taken in account.

FAL Flash Access Library (Flash access layer)
FCL Code Flash Library (Code Flash access layer)

R01US0055ED0130 Rev. 1.30 6
User Manual

Abbreviation Full Form
FDL Data Flash Library (Data Flash access layer)

Firmware
Firmware is a piece of software that is located in a
hidden area of the device, handling the interfacing to the
flash.

Flash
Electrically erasable and programmable nonvolatile
memory. The difference to ROM is, that this type of
memory can be re-programmed several times.

Flash Block A flash block is the smallest erasable unit of the flash
memory.

Flash Macro A certain number of Flash blocks is grouped together in
a Flash macro.

FW Firmware

ID Identifier of a Data Set instance in the Renesas
EEPROM Emulation

NVM
Non volatile memory. All memories that hold the value,
even when the power is cut off. E.g. Flash memory,
EEPROM, MRAM...

PFDL Pico FDL

RAM “Random access memory” - volatile memory with
random access

REE Renesas Electronics Europe GmbH
REL Renesas Electronics Japan
REN Renesas Electronics Corporation

ROM “Read only memory” - nonvolatile memory. The content
of that memory can not be changed.

Segment / Section
Segment of Flash is a part of the flash that might consist
of several blocks. Important is, that this segment can be
protected against manipulation.

Self-Programming
Capability to reprogram the embedded flash without
external programming tool only via control code running
on the microcontroller.

Sequencer Dedicated circuit controlling the flash memory (integral
part of RL78 device with data flash)

Serial programming The onboard programming mode is used to program the
device with an external programmer tool.

SPL Flash Self-programming Library

All trademarks and registered trademarks are the property of their respective
owners.

R01US0055ED0130 Rev. 1.30 7
User Manual

Table of Contents

Chapter 1 Overview .. 8
1.1 Important Terms .. 8
1.2 Basic Workflow .. 9

1.2.1 Library States and Transitions ... 9
1.2.2 Exemplary Flow ... 10

Chapter 2 Programming Environment .. 13
2.1 Hardware Environment ... 13

2.1.1 Initialization .. 14
2.1.2 Blocks ... 15

2.2 Software Environment .. 16
2.2.1 File Structure .. 16
2.2.2 Prohibited RAM Area ... 18
2.2.3 Register Bank ... 19
2.2.4 Stack and Data Buffer ... 19
2.2.5 Data Flash Library ... 19
2.2.6 Program Area ... 20
2.2.7 Using the PFDL on the R5F10266 device .. 20

2.3 Cautions on the Programming Environment .. 21

Chapter 3 Data Flash Library Function ... 23
3.1 Type of Data Flash Library Functions ... 23
3.2 Segments of Data Flash Library Functions ... 23
3.3 Commands ... 23
3.4 Background Operation (BGO) .. 24
3.5 List of Data Types, Return Values, and Return Types 26
3.6 Description of Data Flash Library Functions .. 28

3.6.1 PFDL_Open .. 29
3.6.2 PFDL_Close .. 32
3.6.3 PFDL_Execute.. 34
3.6.4 PFDL_Handler .. 38
3.6.5 PFDL_GetVersionString .. 40

3.7 Description of Data Flash Library Commands .. 42
3.7.1 PFDL_CMD_READ_BYTES ... 42
3.7.2 PFDL_CMD_IVERIFY_BYTES ... 43
3.7.3 PFDL_CMD_BLANKCHECK_BYTES ... 44
3.7.4 PFDL_CMD_WRITE_BYTES ... 45
3.7.5 PFDL_CMD_ERASE_BLOCK .. 46

3.8 Library Timings .. 47
3.8.1 Maximum Function Execution Times .. 47
3.8.2 Command Execution Times ... 47

R01US0055ED0130 Rev. 1.30 8
User Manual

Chapter 1 Overview

A Data Flash Library (FDL) is a software library to perform operations on the data
flash memory on the RL78 microcontroller.

The library described in this manual (RL78 Data Flash Library Type 04) offers a
minimal set of features and aims at very resource critical systems. It is referred to
as Pico FDL (PFDL) throughout this document.

Please use this Data Flash Library user's manual together with the user's manual
of the target RL78 microcontroller.

1.1 Important Terms
The following important terms and definitions are used throughout this manual:

• Data Flash Library (FDL)

Library for data flash memory operations utilizing the features provided by the
RL78 microcontroller family.
The library cannot operate on the code flash memory.

• Flash Self-programming Library (SPL)
Library for code flash memory operation utilizing the features provided by the
RL78 microcontroller.
Operations on the data flash memory cannot be performed.

• EEPROM Emulation Library
Library that provides functions to store data in the built-in flash memory in an
EEPROM-like fashion.

• Block number
Number that identifies a block of the flash memory. It is the unit of erasure
operations in the Data Flash Library Type 04.

• Internal verification
Is used to check if the signal level of the flash memory cell is appropriate
after writing to the flash memory in order to ensure full data retention.

• Sequencer
The RL78 microcontroller features a dedicated circuit for controlling the flash
memory. In this document, this circuit is called "sequencer."

• Background operation (BGO)
State in which rewriting of the flash memory can be done while operating the
user program by letting the sequencer control the flash memory. For a more
detailed description, please refer to "2.1 Hardware Environment" and "3.4
Background Operation (BGO)."

• Status check
Using the sequencer in BGO requires to check the state of the sequencer
(state of control for the flash memory) within the program controlling the flash
memory. In this document, the processing to check the state of the
sequencer is called "status checking."

R01US0055ED0130 Rev. 1.30 9
User Manual

1.2 Basic Workflow
In order to perform rewriting of the data flash memory with the PFDL, the
initialization process for the library needs to be executed first. Afterwards, the
actual accesses to the data flash can be performed by means of dedicated API
functions.

The PFDL provides APIs for the C and assembly language of the CA78K0R, IAR
V1.xx, IAR V2.xx, GNU, CC-RL and LLVM tool chains.

The PFDL for IAR V2.xx tool chain (except linker sample file) can also be used
with the IAR V3.xx or later version tool chains.

1.2.1 Library States and Transitions

During operation, the PFDL passes through several states as illustrated in the
diagram presented in Figure 1-1.

uninitialized/

PFDL_Open()

Reset or Power ON closed

busy (read)

sequencer busy

opened

PFDL_Close()

return
status

PFDL_Execute()

PFDL_Handler()

PFDL_Execute()

(read command only)

return
status

Figure 1-1 State transition diagram of Data Flash Library Type 04

To operate the data flash memory by using the PFDL, the provided functions
need to be executed sequentially. Thereby, the library state can be controlled. A
detailed description of each state is given below:

1. uninitialized/closed
State at Power ON and Reset. In this state, the Pico FDL is disabled. Please
drive the library to this state via PFDL_Close whenever you want to

• execute the Flash Self-programming Library,

• run an EEPROM Emulation Library,

• use a Data Flash Library other than Type 04 (PFDL), or

• utilize a STOP or HALT command.

Please note that the execution of PFDL_Close has to be completed before
any of these listed actions can be taken.

R01US0055ED0130 Rev. 1.30 10
User Manual

2. opened
State in which the PFDL_Open function has been executed from the
uninitialized/closed state and the Data Flash Library is operational.

3. busy (read)
State in which the specified processing is being executed directly by the
library. The control does not return to the user program until the processing is
completed. Please note that the transition to this state is only triggered by the
read command in the PFDL.

4. sequencer busy
State in which the specified processing is being executed with the sequencer.
The PFDL_Execute function is used to trigger various commands to be
executed on the data flash memory and returns to the user program without
waiting for the completion of the sequencer operation. The current status of a
running operation in the sequencer can be checked and driven forward with
the PFDL_Handler function.

1.2.2 Exemplary Flow

Figure 1-2 shows an example of the data flash memory rewriting flow by using
the PFDL. In the following, a more detailed description is given of the illustrated
steps:

<1> Initializing the PFDL
The PFDL_Open function is called to initialize the RAM used for the PFDL and to
enable the library.

<2> Blank checking 1 to 1024 bytes for the specified address
(PFDL_CMD_BLANKCHECK_BYTES command)
The PFDL_Execute function (with the PFDL_CMD_BLANKCHECK_BYTES
command specified) is called to perform blank checking of 1 to 1024 bytes for the
specified address. The processing cannot be executed across blocks.

<3> Erasing the specified block (1 KB) (PFDL_CMD_ERASE_BLOCK command)
The PFDL_Execute function (with the PFDL_CMD_ERASE_BLOCK command
specified) is called to erase the specified block (1 KB).

<4> Writing 1 to 1024-byte data to the specified address
(PFDL_CMD_WRITE_BYTES command)
The PFDL_Execute function (with the PFDL_CMD_WRITE_BYTES command
specified) is called to write 1 to 1024 bytes to the specified address. The
processing cannot be executed across blocks.

<5> Internal verification of 1 to 1024 bytes for the specified address
(PFDL_CMD_IVERIFY_BYTES command)
The PFDL_Execute function (with the PFDL_CMD_IVERIFY_BYTES command
specified) is called to perform internal verification of 1 to 1024 bytes for the
specified address. The processing cannot be executed across blocks.

<6> Reading 1 to 1024 bytes from the specified address (PFDL_CMD_READ_BYTES
command)
The PFDL_Execute function (with the PFDL_CMD_READ_BYTES command
specified) is called to read 1 to 1024 bytes for the specified address. All the
processing of reading is executed within the PFDL_Execute function.

<7> Ending the PFDL operation
The PFDL_Close function is called to end the operation of the PFDL.

<8> Status checking
The PFDL_Handler function is called to perform status checking and drive a
running command. Status checking must be performed until the control to the
data flash memory by the sequencer is finished.

R01US0055ED0130 Rev. 1.30 11
User Manual

PFDL_Open

Begin of Data Flash control

<1>

PFDL_Execute
<2>

(BLANKCHECK command)

Status check

Normal completion

Blank check error

Error

Status check
Error

Busy

PFDL_Handler<8>

Busy

Normal completion

Error

Busy

PFDL_Handler<8>

Busy
Status check

Status check

PFDL_Execute
<3>

(ERASE command)

PFDL_Execute
<4>

(WRITE command)

Status check

Normal completion

Status check
Error

Busy

PFDL_Handler<8>

Busy

PFDL_Execute
<5>

(IVERIFY command)

Status check

Normal completion

Status check
Error

Busy

PFDL_Handler<8>

Busy

PFDL_Execute
<6>

(READ command)

PFDL_Close<7>

End of Data Flash control

Error

Error

Note1

Figure 1-2 Exemplary flow of Data Flash operation using the PFDL

R01US0055ED0130 Rev. 1.30 12
User Manual

Please note that the presented flow is only an example. It is not mandatory to
perform a blankcheck before an erase, if you are sure that you want to erase the
block in any case. The erase command performs an automatic blankcheck.
Please see Section 3.7.5 for details.
For a regular write however, please follow the suggested sequence of
blankcheck/write/iverify in order to ensure full data retention.

A detailed description of all PFDL API functions can be found in Section 3.6,
while all commands that can be triggered via PFDL_Execute are explained in
Section 3.7.

Note 1

R01US0055ED0130 Rev. 1.30 13
User Manual

Chapter 2 Programming Environment

This chapter describes the hardware environment and software environment
required to rewrite the data flash memory using the Data Flash Library Type 04
(PFDL).

2.1 Hardware Environment
The PFDL for the RL78 microcontroller uses the sequencer to control the Data
Flash memory. As the sequencer has the direct control to the data flash memory,
the user program can be operated in parallel to the data flash memory control.
This is called BGO (background operation).

During rewriting of the data flash memory, the data flash memory is blocked for
other accesses. However, the code flash memory can be accessed, so interrupt
processing, the user program, and the PFDL can be allocated in the ROM for
operation as usual.

The access restrictions during data flash operations are depicted in Figure 2-1.

Figure 2-1 Access restrictions during Data Flash operation

Figure 2-2 shows an example of execution of the Data Flash Library function to
perform rewriting of the data flash memory.

After an execution request has been send to the sequencer of the RL78
microcontroller via the PFDL API, the control is immediately returned to the user
program. For the current state and result of the issued FDL command, the status
check function (PFDL_Handler function) must be called repeatedly from the user
program. Please note that there are commands which require a calling
PFDL_Handler to drive the command execution (see Section 3.4 for details). The
actual number of handler calls required to finish a command is not predictable as
it depends on the type of command, the parameters and the time interval
between the calls.

Data flash memory

On-chip RAM

Code flash memory

The user program can operate
as usual with the BGO (back-
ground operation) during data
flash memory control.

×
Reading cannot be
executed during data
flash memory control.

Interrupts can be used as
usual.

R01US0055ED0130 Rev. 1.30 14
User Manual

User program Pico FDL Sequencer

PFDL_Execute

trigger

ongoing

busy

PFDL_Handler

trigger

ongoing

busy

PFDL_Handler

trigger

finish

OK

Segment in which the
Data Flash memory

cannot be referred to

Figure 2-2 Exemplary sequencer control via PFDL

2.1.1 Initialization

Before accessing the Data Flash memory by using the PFDL, the following
settings need to be performed:

1. Starting the high-speed on-chip oscillator
During the usage of the PFDL, keep the high-speed on-chip oscillator running.
When the oscillator is stopped, start the oscillator before using the PFDL.

2. Setting the CPU operating frequencyNote1
In order to perform the timing calculation used in the PFDL, set the CPU
operating frequency during the initialization. A detailed description of the
method that can be used to set the frequency can be found in Section 3.6.1
PFDL_Open.

3. Setting the flash memory programming mode Note2
In order to specify the flash memory programming mode when writing the data
flash memory, select one of the following modes during the initialization.
• Full-speed mode
• Wide voltage mode
A detailed description of the method that can be used to set the flash
memory programming mode can be found in Section 3.6.1 PFDL_Open.

R01US0055ED0130 Rev. 1.30 15
User Manual

The CPU operating frequency is used for the parameters of the timing calculation
within the PFDL. The actual frequency of the processor core is not changed.

For the details of the flash memory programming mode, see the target RL78
microcontroller user's manual.

2.1.2 Blocks

The flash memory of the RL78 microcontroller is divided into 1-KB blocks. In the
Data Flash Library, erasure processing is performed for the data flash memory in
the units of the blocks.

Reading, writing, blank checking or internal verification are performed on byte
granularity and require the specification of start addressNote and size.

Figure 2-3 shows an example of block positions and block numbers of the data
flash memory.

The address value is used when reading/writing data from/to the flash memory.
The address is specified relative to the first element of block 0 of the data flash
memory. Note that the specified address is not an absolute address.

Figure 2-3 Blocks of Data Flash Memory (here: RL78/G12 with 2 KB Data Flash)

F1000H

00000H

F17FFH

1 KB/2 blocks

0000H

0400H

07FFH

Relative addressAbsolute address

Code flash memory

User program
+

Flash data library

Not used

Special function register 2nd SFR

Not used

Data flash memory (2 KB)

Mirror

Internal high-speed RAM

General register

Special function register SFR

Data flash memory
Block 0

Data flash memory
Block 1

F1000H

00000H

F17FFH

1 KB/2 blocks

0000H

0400H

07FFH

Relative addressAbsolute address

Code flash memory

User program
+

Flash data library

Not used

Special function register 2nd SFR

Not used

Data flash memory (2 KB)

Mirror

Internal high-speed RAM

General register

Special function register SFR

Data flash memory
Block 0

Data flash memory
Block 1

Note 1

Note 2

Note

R01US0055ED0130 Rev. 1.30 16
User Manual

2.2 Software Environment
The PFDL is allocated together with the program in the user area, occupying an
area equal to the size of the library. Furthermore, the library itself uses the CPU,
the stack, and a data buffer.

Detailed information about the required software resources is listed in Table 2-1.

Table 2-1 Resource consumptionNote1

 CA78K0R IAR V1.xx IAR V2.xx GNU CC-RL LLVM

Max code size
(program area) 177 bytes 180 bytes 168 bytes 200 bytes 168 bytes 168 bytes

Constants
(program area) - - - - - -

Internal data -Note2 -Note2 -Note2 -Note2 -Note2 -Note2

Max. stack
consumption 46 bytes 46 bytes 40 bytes 50 bytes 40 bytes 40 bytes

All values for resource consumption are based on PFDL version V1.05.

Depending on the used device, the PFDL may use a fraction of the user RAM as
working area. Size and location of this area is strictly device dependent, see
Section 2.2.2 for more details.

2.2.1 File Structure

The actual file structure for the Data Flash Library T04 depends on the utilized
tool chain and is listed separately for CA78K0R, IAR V1.xx, IAR V2.xx, GNU, CC-
RL and LLVM in Table 2-2, Table 2-3, Table 2-4, Table 2-5, Table 2-6 and Table
2-7 respectively.

Please note that assembler header files for GNU and LLVM use the same
extension ‘.h’ as C header files, because the C preprocessor can and should be
used for assembler files in the GNU and LLVM tool chains.

Table 2-2 File structure for CA78K0R tool chain

<root>

Release.txt Library release notes

support.txt Library support information

<root>\CA78K0R_xxx\lib

pfdl.h PFDL interface definition (Compiler)

pfdl_types.h PFDL types definition (Compiler)

pfdl.inc PFDL interface definition (Assembler)

pfdl.lib Pre-compiled library

<root>\CA78K0R_xxx\Sample\C

pfdl_sample_linker_file.dr Sample linker file

Note1
Note2

R01US0055ED0130 Rev. 1.30 17
User Manual

Table 2-3 File structure for IAR V1.xx tool chain

<root>

Release.txt Library release notes

support.txt Library support information

<root>\IAR_1xx\lib

pfdl.h PFDL interface definition (Compiler)

pfdl_types.h PFDL types definition (Compiler)

pfdl.inc PFDL interface definition (Assembler)

pfdl.r87 Pre-compiled library

<root>\IAR_1xx\Sample\C

pfdl_sample_linker_file.xcl Sample linker file

Table 2-4 File structure for IAR V2.xx tool chain

<root>

Release.txt Library release notes

support.txt Library support information

<root>\IAR_2xx\lib

pfdl.h PFDL interface definition (Compiler)

pfdl_types.h PFDL types definition (Compiler)

pfdl.inc PFDL interface definition (Assembler)

pfdl.a Pre-compiled library

<root>\IAR_2xx\Sample\C

pfdl_sample_linker_file.icf Sample linker file

Table 2-5 File structure for GNU tool chain

<root>

Release.txt Library release notes

support.txt Library support information

<root>\GNU_xxxx\lib

pfdl.h PFDL interface definition (Compiler)

pfdl_types.h PFDL types definition (Compiler)

pfdl_asm.h PFDL interface definition (Assembler)

pfdl.a Pre-compiled library

<root>\GNU_xxxx\Sample\C

pfdl_sample_linker_file.ld Sample linker file

R01US0055ED0130 Rev. 1.30 18
User Manual

Table 2-6 File structure for CC-RL tool chain

<root>

Release.txt Library release notes

support.txt Library support information

<root>\CCRL_xxx\lib

pfdl.h PFDL interface definition (Compiler)

pfdl_types.h PFDL types definition (Compiler)

pfdl.inc PFDL interface definition (Assembler)

pfdl.lib Pre-compiled library

<root>\CCRL_xxx\Sample\C

pfdl_sample_linker_file.sub Sample linker file

Table 2-7 File structure for LLVM tool chain

<root>

Release.txt Library release notes

support.txt Library support information

<root>\LLVM_xxxx\lib

pfdl.h PFDL interface definition (Compiler)

pfdl_types.h PFDL types definition (Compiler)

pfdl_asm.h PFDL interface definition (Assembler)

libpfdl.a Pre-compiled library

<root>\LLVM_xxxx\Sample\C

pfdl_sample_linker_file.ld Sample linker file

2.2.2 Prohibited RAM Area

The PFDL may use a fraction of the user RAM as working area, referred as
prohibited RAM area. The size and position of this area is strictly device
dependent (many devices do not even have this area) and vary between the
different RL78 products. For details, please refer to the document "User’s
Manual: Hardware" of your RL78 product.

If a prohibited RAM area is specified for the utilized device, it is not allowed to
access this area while the PFDL is active. Whenever PFDL functions are called,
the data in the prohibited area may be rewritten.

R01US0055ED0130 Rev. 1.30 19
User Manual

2.2.3 Register Bank

The CA78K0R, IAR V1.xx, IAR V2.xx, CC-RL and LLVM releases of the PFDL
use the registers of the currently selected register bank. No implicit register bank
switch is performed by the library.

For the GNU release of the PFDL, it is mandatory that register bank 0 is active on
function entry. No implicit register bank switch is performed by the library. Return
values are placed in register bank 1. For details on GNU calling conventions,
please refer to the GNU documentation for RL78 devices.

A detailed description of the registers used for parameter passing and return
values can be found in Section 3.6 Description of Data Flash Library Functions.

2.2.4 Stack and Data Buffer

The PFDL uses the sequencer to write to the data flash memory, but it uses the
CPU for pre-setting and control. Therefore, the PFDL also utilizes the stack
specified by the user program.

To allocate the stack and data buffer to the user-specified address, the link
directive is used.

• Stack
In addition to the stack used by the user program, the stack space required
for flash functions must be reserved in advance. It has to be ensured that the
stack is allocated so that the RAM used by the user will not be destroyed
during stack processing of the PFDL. The stack may not be allocated in the
short address range from FFE20H to FFEFFH—and also not in the
prohibited RAM area, if it exists in the target device.
For the actual stack space required for the Data Flash Library functions,
please refer to Table 2-1.

• Data buffer
The usage of the data buffer is described in following:
• Work area for internal processing of the PFDL
• RAM area in which data is located that is to be written into the data flash
• RAM area in which data is located that is to be obtained from the data

flash
The data buffer may not be allocated in the short address range from
FFE20H to FFEFFH—and also not in the prohibited RAM area, if it exists in
the target device.

Please note that the allocation and usage of the data buffer falls into the
responsibility of the user. Especially it has to be ensured that the data buffer
is not touched by any other part of the user application while a read or write
command accessing this buffer is still running.

2.2.5 Data Flash Library

Not all Data Flash Library functions are linked. Only the really utilized Data Flash
Library functions are linkedNote.

• Memory allocation of the PFDL
Segments are assigned to the functions and variables used in the PFDL. The
used areas of the PFDL can be mapped to specific locations.
For details, refer to 3.2 Segments of Data Flash Library Functions.

For the CA78K0R and CC-RL assembler, linking can be reduced to a subset of
the Data Flash Library functions by deleting unnecessary functions from the
include file.

Remark

Remark

Note

R01US0055ED0130 Rev. 1.30 20
User Manual

2.2.6 Program Area

This is the area in which the PFDL and the user program using the PFDL are
located.

Utilizing the PFDL for the RL78 microcontroller, the user program can be
operated during rewriting of the Data Flash memory, because the Data Flash
memory is controlled by the sequencer in the background (background
operation).

For details, refer to the sections of Chapter 3 Data Flash Library Function.

2.2.7 Using the PFDL on the R5F10266 device

For the R5F10266 device, RAM is a scarce resource. The device comes with 256
bytes RAM which cannot be used completely by the PFDL. Hence special care
has to be taken for a proper RAM usage by a dedicated linking method.

Due to the limited memory resource—especially for the stack—the usage of
interrupts is prohibited for the R5F10266 device when the PFDL is used.

Table 2-8 shows the usage for the different RAM areas on the R5F10266 device
when using the PFDL.

Table 2-8 RAM usage for R5F10266 when using PFDL

Address
range

Size
(byte) Description Usage and Limitations

0xFFE00 –
0xFFE1F

32 Free area Please allocate your PFDL function
arguments, and data buffers in this area.

0xFFE20 –
0xFFEA1

130 Short-address
area

Do not allocate any PFDL function
argument, data buffer or stack in this
area.

0xFFEA2 –
0xFFEDF

62 Stack allocation
area

Please allocate the stack into this area
when using R5F10266.
Please ensure that the stack does not
exceed this area (including library and
user application, see also Table 2-1).

0xFFEE0 –
0xFFEFF

32 General-purpose
register area

Do not allocate any PFDL function
argument, data buffer or stack in this
area.

Note

R01US0055ED0130 Rev. 1.30 21
User Manual

2.3 Cautions on the Programming Environment
1. Library code must be located completely in the same 64k flash page.

2. The PFDL library initialization by PFDL_Open must be performed before the
execution of PFDL_Close, PFDL_Execute, PFDL_Handler.

3. It is not allowed to read the data flash during a command execution of the
PFDL.

4. It is not possible to modify the Data Flash in parallel to a modification of the
Code Flash.

5. Do not execute the Flash Self-programming Library, EEPROM Emulation
Library, or Data Flash Library other than Type 04 during the execution of the
PFDL. When using the Flash Self-programming Library, EEPROM Emulation
Library, or Data Flash Library other than Type 04, be sure to execute
PFDL_Close to close the PFDL.

6. Do not execute the STOP command mode or HALT command mode during
the execution of the PFDL. If the STOP command or HALT command needs
to be executed, be sure to execute the PFDL_Close function to close the
PFDL.

7. The watchdog timer does not stop during the execution of the PFDL.

8. Do not allocate any PFDL function argument, data buffer or stack used by
the Data Flash Library to an address over 0xFFE20 or in the prohibited RAM
area (if existent for your target device).

9. When using the data transfer controller (DTC) during the execution of the
PFDL, do not allocate the RAM area used by the DTC to an address over
0xFFE20 or in the prohibited RAM area (if existent for your target device).

10. Do not use the RAM area (including the prohibited RAM area) used by the
PFDL until the library is closed.

11. Do not execute a Data Flash Library function within interrupt processing
because the PFDL does not support multiple executions of a Data Flash
Library function.

12. When executing the PFDL within an operating system, do not execute a
Data Flash Library function from multiple tasks, because the PFDL does not
support multiple executions of a Data Flash Library function.

13. Before initiating any operation with the PFDL, the high-speed on-chip
oscillator needs to be started.

14. Note the following regarding the operating frequency of the RL78
microcontroller and the operating frequency value set with the initialization
function (PFDL_Open).

• When a frequency below 4 MHzNote1 is used as the operating frequency
of the RL78 microcontroller, 1 MHz, 2 MHz, or 3 MHz can be used (a
frequency such as 1.5 MHz that is not an integer value cannot be used).
Also, set an integer value such as 1, 2, or 3 as the operating frequency
value set with the initialization function.

• When a frequency over 4 MHzNote1 is used as the operating frequency of
the RL78 microcontroller, a frequency with decimal places can be used.
However, specify a rounded up integer value as the operating frequency
set with the initialization function (PFDL_Open).
Example: For 4.5 MHz, set "5" with the initialization function.

• The operating frequency is not the frequency of the high-speed on-chip
oscillator.

R01US0055ED0130 Rev. 1.30 22
User Manual

15. The PFDL does not perform error checking of the parameters set in the
argument of a Data Flash Library function. Therefore, make sure to set a
correct value to the parameter after checking the specifications of the target
RL78 microcontroller. If parameter checking is required to set a correct
value, perform it in the user program.

16. Please initialize all function arguments (including unused structure elements)
at least once before calling a function. Otherwise, a RAM parity error may
cause a reset of the device. For details, please refer to the document "User's
Manual: Hardware" of your RL78 product.

17. Do not write to a data flash cell that is not erased. It is prohibited to rewrite a
data flash cell without erasing the corresponding data flash block first. The
PFDL does not contain any sanity checks to prevent such a situation. The
user is responsible to ensure the compliance of this rule.

18. The data flash control register (DFLCTL) should not be operated during the
execution of the PFDL. In addition, when the operation of the PFDL is ended,
the DFLCTL is set to access inhibit state by the PFDL_Close function.
If accessing the data flash memory is required even after the operation of the
PFDL is ended, verify the completion of the PFDL_Close function, set the
DFLCTL to the access permit state and perform the setupNote2.

19. After the execution of PFDL_Close, all requested/running commands will be
aborted and cannot be resumed. The user has to take care that all running
commands are finished before calling PFDL_Close.

20. When using an assembler of the CC-RL compiler from Renesas Electronics,
the hexadecimal prefix representation (0x..) cannot be mixed together with
the suffix representation (..H). Specify the representation method by editing
the symbol definition in pfdl.inc to match the user environment.

• pfdl.inc

 ; __PFDL_INC_BASE_NUMBER_SUFFIX .SET 1

When symbol "__PFDL_INC_BASE_NUMBER_SUFFIX " is not defined
(initial state), the prefix representation will be selected.

• pfdl.inc

 __PFDL_INC_BASE_NUMBER_SUFFIX .SET 1

When symbol "__PFDL_INC_BASE_NUMBER_SUFFIX" is defined, the
suffix representation will be selected.

21. Additional cautions on using the PFDL for IAR V2.xx or LLVM

• The version string provided by the flash library includes the information on
the supported compiler. The string indicates that the supported compiler
is CC-RL because the library file for IAR V2.xx and LLVM are identical to
the one for CC-RL.

For the range of the operating frequency, see the target RL78 microcontroller
user’s manual.

For the method of the setup, see the target RL78 microcontroller user’s manual.

Note 1

Note 2

R01US0055ED0130 Rev. 1.30 23
User Manual

Chapter 3 Data Flash Library Function

This chapter describes the details of the Data Flash Library functions.

3.1 Type of Data Flash Library Functions
The PFDL provides the following flash functions as listed in Table 3-1.

Table 3-1 List of Data Flash Library functions

Function name Description

PFDL_Open Initialization of the RAM used by the PFDL, enabling of the
Data Flash

PFDL_Close Ending the operation of the PFDL, disabling of the Data
Flash

PFDL_Execute Triggering and execution of commands on the Data Flash
memory

PFDL_Handler
Checking of the current status of a running Data Flash
operation and driving the command forward
(status check processing)

PFDL_GetVersionString Acquisition of the version information of the PFDL

3.2 Segments of Data Flash Library Functions
The Data Flash Library functions are located in the following segment:

• PFDL_COD: Segment of the Data Flash Library functions.
 It can be allocated to the ROM or RAM.

3.3 Commands
All flash operations are issued in the PFDL via the PFDL_Execute function. The
command specified as argument of PFDL_Execute determines the type of the
flash operation. Table 3-2 lists all available commands. For details on the
execution method, please refer to Section 3.6.3.

Table 3-2 List of commands specified for PFDL_Execute (pfdl_command_t)

Definition Value Command name

PFDL_CMD_READ_BYTES 0x00 Read command

PFDL_CMD_BLANKCHECK_BYTES 0x08 Blank check command

PFDL_CMD_ERASE_BLOCK 0x03 Erasure command

PFDL_CMD_WRITE_BYTES 0x04 Write command

PFDL_CMD_IVERIFY_BYTES 0x06 Internal verification command

R01US0055ED0130 Rev. 1.30 24
User Manual

3.4 Background Operation (BGO)
The Data Flash Library functions can be divided into functions that do not use the
sequencer and functions that use the sequencerNote. For the functions that use
the sequencerNote, background operation (BGO) can be performed.

The following Figure 3-1 and Figure 3-2 show examples of operation of the PFDL
during BGO. Please note that especially for a write command it is mandatory to
call the PFDL_Handler not only to check the command progress, but also to drive
the command.

 Table 3-3 shows a list of the API functions with their relation
to the sequencer control.

Not during the execution of the PFDL_CMD_READ_BYTES command.

PFDL_Execute
function executed

User Library

* Executing PFDL_Handler
before the sequencer
completes writing does not
result in trigger processing.

PFDL_Handler function executed

End of processing

Sequencer in operation
(Writing 1 byte)

PFDL_Handler function closed
(Return value: PFDL_BUSY)

PFDL_Handler function executed

PFDL_Handler function closed
(Return value: PFDL_BUSY)

PFDL_Execute function closed
(Return value: PFDL_BUSY)

Writing trigger

Sequencer in operation
(Writing 1 byte)

Sequencer in operation
(Writing 1 byte)

Writing of all 3 bytes
completed

Writing of 1 byte completed

Writing of 2 bytes completed

PFDL_Handler function executed

PFDL_Handler function closed
(Return value: PFDL_OK)

PFDL_Handler function executed

PFDL_Handler function closed
(Return value: PFDL_BUSY)

Writing trigger

For writing, trigger processing
with the PFDL_Handler is
required for every byte.

PFDL_Execute
function executed

User Library

* Executing PFDL_Handler
before the sequencer
completes writing does not
result in trigger processing.

PFDL_Handler function executed

End of processing

Sequencer in operation
(Writing 1 byte)

PFDL_Handler function closed
(Return value: PFDL_BUSY)

PFDL_Handler function executed

PFDL_Handler function closed
(Return value: PFDL_BUSY)

PFDL_Execute function closed
(Return value: PFDL_BUSY)

Writing trigger

Sequencer in operation
(Writing 1 byte)

Sequencer in operation
(Writing 1 byte)

Writing of all 3 bytes
completed

Writing of 1 byte completed

Writing of 2 bytes completed

PFDL_Handler function executed

PFDL_Handler function closed
(Return value: PFDL_OK)

PFDL_Handler function executed

PFDL_Handler function closed
(Return value: PFDL_BUSY)

Writing trigger

For writing, trigger processing
with the PFDL_Handler is
required for every byte.

Figure 3-1 Background operation example 1 (write: 3 byte)

Note

R01US0055ED0130 Rev. 1.30 25
User Manual

PFDL_Execute function
executed

User Library

PFDL_Handler function executed

End of processing

Sequencer in operation

PFDL_Handler function closed
(Return value: PFDL_BUSY）

PFDL_Handler function executed

PFDL_Handler function closed
(Return value: PFDL_OK）

PFDL_Execute function closed
(Return value: PFDL_BUSY）

The control returns immediately, so
other processing can be executed.
The state must be checked until the
completion.

* Not during the execution of the
PFDL_CMD_READ_BYTES
command.

Figure 3-2 Background operation example 2 (erase, iverify, blankcheck)

 Table 3-3 List of interrupt reception and BGO of Data Flash Library functions

Function name Sequencer control /
BGO function Interrupt reception

PFDL_Open
No

Allowed

PFDL_Close

PFDL_Execute
YesNote

PFDL_Handler

PFDL_GetVersionString No

Not during the execution of the PFDL_CMD_READ_BYTES command.

Note

R01US0055ED0130 Rev. 1.30 26
User Manual

3.5 List of Data Types, Return Values, and Return Types
The data types are listed in Table 3-4. The return types are specified in Table
3-5, while the meaning of each return value is given in Table 3-6.

Table 3-4 List of data types

Definition Data type Description

pfdl_u08 unsigned char 1-byte (8-bit) unsigned integer

pfdl_u16 unsigned int 2-byte (16-bit) unsigned integer

pfdl_u32 unsigned long int 4-byte (32-bit) unsigned integer

pfdl_status_t enumeration type set of 1-byte (8-bit) unsigned integer
constants (see also Table 3-6)

pfdl_command_t enumeration type set of 1-byte (8-bit) unsigned integer
constants Note 1 (see also Table 3-2)

pfdl_request_t structure
structure to specify requests to be
executed on the data flash Note 1 (see
also Table 3-7)

pfdl_descriptor_t structure
structure to specify the configuration for
library initialization Note 2 (see also Table
3-7)

A detailed description can be found in Section 3.6.3 PFDL_Execute.

A detailed description can be found in Section 3.6.1 PFDL_Open.

Table 3-5 List of return types

 Return value

C language Assembly language

CA78K0R
pfdl_status_t C

__far pfdl_u08* DE:BC

IAR V1.xx
pfdl_status_t A

pfdl_u08 __far* A:HL

IAR V2.xx
pfdl_status_t A

pfdl_u08 __far * A:DE

GNU
pfdl_status_t R8 (X on bank 1)

pfdl_u08 __far* R11:R8 (BC:AX on bank 1)

CC-RL
pfdl_status_t A

__far pfdl_u08* A:DE

LLVM
pfdl_status_t A

__far pfdl_u08* A:DE

Note 1
Note 2

R01US0055ED0130 Rev. 1.30 27
User Manual

Table 3-6 List of pfdl_status_t values

Definition Return
value

Description

PFDL_OK 0x00 Normal completion

PFDL_ERR_PROTECTION 0x10 Reserved for future usage

PFDL_ERR_ERASE 0x1A Erasure error
• Erasure of the target area failed.

PFDL_ERR_MARGIN 0x1B Blank check error or Internal verification
error
• The target area is not in the blank

state.
• An error occurred during internal

verification processing of the target
area.

PFDL_ERR_WRITE 0x1C Writing error
• Writing to the target area failed.

PFDL_IDLE 0x30 Idle state
• No command is executed in the

PFDL_Execute function.

PFDL_BUSY 0xFF Execution start of the PFDL_Execute
function command, or in execution
• The command specified in the

PFDL_Execute function is in
execution.

Other than above Other
than
above

Other error
• An abnormal return value. Check

the specified command or resource
allocation again.

R01US0055ED0130 Rev. 1.30 28
User Manual

Table 3-7 List of structures

Structure Member Description

pfdl_request_t

pfdl_u16 index_u16

Target area
• Erasure: block number
• Other: start address of the

target area

pfdl_u08* data_pu08
(near)

Pointer to the data buffer for
acquisition of data to be written or
read. Only used for read/write
commands

pfdl_u16 bytecount_u16

Number of bytes to be transferred
starting from the start byte
specified in index_u16. The byte
count range is from 1 byte to 1024
bytes. Please note, that the
execution of the
read/write/blankcheck/internal
verify command across block
boundaries is not allowed. This
struct member is not required for
the erase command.

pfdl_command_t
 command_enu Command to be executed

pfdl_descriptor_t
pfdl_u08 fx_MHz_u08 The CPU operating frequency

pfdl_u08
wide_voltage_mode_u08

The flash memory programming
mode setting

3.6 Description of Data Flash Library Functions

The flash functions are described in the following format.

Describes the purpose of the function.

Describes the C interfaces and assembler labels required to access the function.

Describes the parameters, return values and register usage of the function.

Describes the conditions that have to be fulfilled before calling the function.

Describes the function details and cautions of this function.

Outline

Interface

Arguments

Precondition

Description

R01US0055ED0130 Rev. 1.30 29
User Manual

3.6.1 PFDL_Open

Initialization of all internal data and activation of the data flash.

C interface for CA78K0R compiler

pfdl_status_t __far PFDL_Open(__near pfdl_descriptor_t*
 descriptor_pstr);

C interface for IAR V1.xx compiler

__far_func pfdl_status_t PFDL_Open(__near pfdl_descriptor_t
 __near* descriptor_pstr);

C interface for IAR V2.xx compiler

__far_func pfdl_status_t PFDL_Open(pfdl_descriptor_t
__near * descriptor_pstr);

C interface for GNU compiler

pfdl_status_t PFDL_Open(pfdl_descriptor_t* descriptor_pstr)
 __attribute__ ((section ("PFDL_COD")));

C interface for CC-RL compiler

pfdl_status_t __far PFDL_Open(__near pfdl_descriptor_t*
 descriptor_pstr);

C interface for LLVM compiler

pfdl_status_t __far PFDL_Open(__near pfdl_descriptor_t*
 descriptor_pstr)
 __attribute__ ((section ("PFDL_COD")));

ASM function label for CA78K0R, IAR V1.xx, IAR V2.xx, GNU, CC-RL and
LLVM assembler

PFDL_Open

Outline
Interface

R01US0055ED0130 Rev. 1.30 30
User Manual

Parameters

Argument Description

descriptor_pstr
address of the descriptor variable located in the RAM, defines the
flash memory programming mode and the CPU operating
frequency

Type
Registers

CA78K0R IAR
V1.xx

IAR
V2.xx GNU CC-RL LLVM

pfdl_descriptor_t*
(near)

AX AX AX stack AX AX

Structures

Structure Member Description

pfdl_descriptor_t
pfdl_u08 fx_MHz_u08 The CPU operating

frequency

pfdl_u08 wide_voltage_mode_u08 The flash memory
programming mode setting

Return value

Type Description

pfdl_status_t

Status of operation,
PFDL_OK (only possible value)

Registers

CA78K0R IAR
V1.xx

IAR
V2.xx GNU CC-RL LLVM

C A A R8
(X bank 1) A A

Destructed registers

Tool chain Destructed registers

CA78K0R AX

IAR V1.xx X

IAR V2.xx X, HL, C

GNU none

CC-RL X, HL, C

LLVM X, HL, C

Arguments

R01US0055ED0130 Rev. 1.30 31
User Manual

The following conditions need to be ensured before using PFDL_Open

• The Flash Self-programming Library, the EEPROM Emulation Library, or any
Data Flash Library other than Type 04 are not running or have been closed.

• The high-speed on-chip oscillator is running.

By calling PFDL_Open, the Data Flash Library is put into operational state and
the data flash of the RL78 device is activated.

PFDL_Open reserves and initializes the prohibited RAM areaNote 1 used for the
PFDL. If a prohibited RAM areaNote 1 exists, do not use it until the PFDL is closed.

For correct operation, the flash memory programming modeNote 2 of the PFDL
needs to be specified in the wide_voltage_mode_u08 structure member of the
argument pfdl_descriptor_t:

• 00H: Full-speed mode

• 01H: Wide voltage mode

Furthermore, the operating frequency of the CPU needs to be set in the
fx_MHz_u08 structure member of the argument pfdl_descriptor_t. This parameter
is used for the calculation of timing data in the PFDLNote 3. For the value of the
operating frequency of the CPU (fx_MHz_u08), note the following:

• When a frequency below 4 MHzNote 4 is used as the operating frequency of
the RL78 microcontroller, only integer frequencies (1 MHz, 2 MHz, or 3 MHz)
can be used. Frequencies with decimal fraction (e.g. 1.5 MHz) are not
supported. The value of fx_MHz_u08 has to match the actual operating
frequency of the device.

• When a frequency over 4 MHzNote 4 is used as the operating frequency of the
RL78 microcontroller, a frequency with decimal fraction can be used.
However, the fx_MHz_u08 parameter for PFDL_Open needs to be set to the
corresponding rounded up integer in this case.
(Example: For 4.5 MHz, set a value of “5” with the initialization function.)

• The operating frequency is not the frequency of the high-speed on-chip
oscillator.

For the prohibited RAM area, refer to the document “User’s Manual: Hardware” of
your target RL78 microcontroller.

For details of the flash memory programming mode, refer to the user’s manual of
the target RL78 microcontroller.

It is a required parameter for timing calculation in the Flash Self-programming
Library. This setting does not change the operating frequency of the RL78
microcontroller.

For the range of the maximum operating frequency, refer to the document “User’s
Manual: Hardware” of your target RL78 microcontroller.

Preconditions

Description

Note 1

Note 2

Note 3

Note 4

R01US0055ED0130 Rev. 1.30 32
User Manual

3.6.2 PFDL_Close

Ends the operation of the Data Flash Library and drives it into closed state.

C interface for CA78K0R compiler

void __far PFDL_Close(void);

C interface for IAR V1.xx compiler

__far_func void PFDL_Close(void);

C interface for IAR V2.xx compiler

__far_func void PFDL_Close(void);

C interface for GNU compiler

void PFDL_Close(void) __attribute__ ((section ("PFDL_COD")));

C interface for CC-RL compiler

void __far PFDL_Close(void);

C interface for LLVM compiler

void __far PFDL_Close(void) __attribute__ ((section ("PFDL_COD")));

ASM function label for CA78K0R, IAR V1.xx, IAR V2.xx, GNU, CC-RL and
LLVM assembler

PFDL_Close

Outline

Interface

R01US0055ED0130 Rev. 1.30 33
User Manual

no parameters, no return value

Destructed registers

Tool chain Destructed registers

CA78K0R none

IAR V1.xx none

IAR V2.xx C

GNU none

CC-RL C

LLVM C

Before the execution of this function, the PFDL_Open function must have been
completed normally.
Furthermore, all running commands have to be finished before calling
PFDL_Close.

The function PFDL_Close ends the operation of the Data Flash Library and
disables the data flash memory. Please call PFDL_Close whenever you want to

• execute the Flash Self-programming Library,

• run an EEPROM Emulation Library,

• use a Data Flash Library other than Type 04, or

• utilize a STOP or HALT command.

Please note that the execution of PFDL_Close has to be completed before any of
these listed actions can be taken.

Arguments

Preconditions

Description

R01US0055ED0130 Rev. 1.30 34
User Manual

3.6.3 PFDL_Execute

Executes control commands on the data flash memory.

C interface for CA78K0R compiler

pfdl_status_t __far PFDL_Execute(__near pfdl_request_t*
 request_pstr);

C interface for IAR V1.xx compiler

__far_func pfdl_status_t PFDL_Execute(__near pfdl_request_t
 __near* request_pstr);

C interface for IAR V2.xx compiler

__far_func pfdl_status_t PFDL_Execute(pfdl_request_t
 __near * request_pstr);

C interface for GNU compiler

pfdl_status_t PFDL_Execute(pfdl_request_t* request_pstr)
 __attribute__ ((section ("PFDL_COD")));

C interface for CC-RL compiler

pfdl_status_t __far PFDL_Execute(__near pfdl_request_t*
 request_pstr);

C interface for LLVM compiler

pfdl_status_t __far PFDL_Execute(__near pfdl_request_t*
 request_pstr)
 __attribute__ ((section ("PFDL_COD")));

ASM function label for CA78K0R, IAR V1.xx, IAR V2.xx, GNU, CC-RL and
LLVM assembler

PFDL_Execute

Outline

Interface

R01US0055ED0130 Rev. 1.30 35
User Manual

Parameters

Argument Description

request_pstr Address of the structure specifying the flash command to be
executed

Type
Registers

CA78K0R IAR
V1.xx

IAR
V2.xx GNU CC-RL LLVM

pfdl_request_t*
(near)

AX AX AX stack AX AX

Structures

Structure Member Description

pfdl_request_t

pfdl_u16 index_u16
Target area
• Erasure: block number
• Other: start addressNote 2 of the

target area

pfdl_u08* data_pu08
(near)

Pointer to the data buffer for
acquisition of data to be written or
readNote1

Only used for read/write commands

pfdl_u16 bytecount_u16

Range of the command specified in
bytesNote1 (starting from the specified
start addressNote 2)

Not required for erase commands

pfdl_command_t
 command_enu Command to be executed

Specify only for commands requiring the target parameter (if not required,
initialize with arbitrary value). The byte count range is from 1 byte to 1024 bytes.
Provide the data buffer size for the number of bytes of the data to be written or
read. Please note that the specified range may not cross block and has to be
specified within one block.

The specified address is the relative address that starts from block 0 of data flash
memory as address 0. This is not the absolute address.

0FFFH

0000H

Relative address

Address to be specified
when using the PFDL

Block 3

Block 2

Block 1

Block 0

Block 3

Block 2

Block 1

Block 0

F1FFFH

F1000H

Absolute address

Figure 3-3 Address specification for commands executed via PFDL_Execute

Arguments

Note 1

Note 2

R01US0055ED0130 Rev. 1.30 36
User Manual

Return value

Type Description

pfdl_status_t

Status of operation, can be PFDL_BUSY or PFDL_OK

Registers

CA78K0R IAR
V1.xx

IAR
V2.xx GNU CC-RL LLVM

C A A R8
(X bank 1) A A

Destructed registers

Before the execution of this function, the PFDL_Open function must be
completed normally.
Furthermore, a running command must be finished (via PFDL_Handler) before it
is allowed to call PFDL_Execute again.
Although it depends on the command which members of the request structure
are necessary for the execution (see Table 3-8), all members of the request
variable must be initialized. If there are any unused members in the request
variable, the user has to set arbitrary values to these members.

The PFDL_Execute function triggers the execution of the specified command on
the data flash memory. The available commands are listed in Table 3-8. Please
note that – except the read command – all commands are propagated to the
sequencer and executed in the background. The final status of the execution
needs to be checked via PFDL_Handler. A more detailed description of each
command can be found in Section 3.7 Description of Data Flash Library
Commands.

Tool chain Destructed registers

CA78K0R AX

IAR V1.xx X

IAR V2.xx X, BC, DE, HL

GNU none

CC-RL X, BC, DE, HL

LLVM X, BC, DE, HL

Preconditions

Description

R01US0055ED0130 Rev. 1.30 37
User Manual

Table 3-8 List of Execution Commands (pfdl_command_t)

Command Value Description

PFDL_CMD_READ_BTES 0x00

Reads the specified number of bytes from the
specified starting addressNote2 in the data flash
memory and places it in the read data input buffer.
The following arguments must be set for execution:

• pfdl_request_t.index_u16:
 Reading start addressNote2

• pfdl_request_t.bytecount_u16:
 Read size

• pfdl_request_t.data_pu08:
 Address of the read data input buffer

PFDL_CMD_BLANKCHECK_BYTES 0x08

Performs blank checking from the specified
beginning addressNote2 of the data flash memory for
the area in the execution range.
The following arguments are usedNote3:

• pfdl_request_t.index_u16:
 Start addressNote2

• pfdl_request_t.bytecount_u16:
 Execution range from the start
 addressNote1

PFDL_CMD_ERASE_BLOCK 0x03

Performs erasure for the block of the specified
number in the data flash memory.
The following arguments are usedNote3:

• pfdl_request_t.index_u16:
 Block number

PFDL_CMD_WRITE_BYTES 0x04

Writes the data placed in the write data input buffer
to the data flash memory at the specified starting
addressNote2 for the specified number of bytes.
The following arguments must be set for execution:

• pfdl_request_t.index_u16:
 Write start addressNote2

• pfdl_request_t.bytecount_u16:
 Write sizeNote1

• pfdl_request_t.data_pu08:
 Address of the write data input buffer

PFDL_CMD_IVERIFY_BYTES 0x06

Performs internal verification starting from the
specified beginning addressNote2 of the data flash
memory for the area in the execution range.
The following arguments are usedNote3:

• pfdl_request_t.index_u16:
 Start addressNote2

• pfdl_request_t.bytecount_u16:
 Execution range from the start
 addressNote1

Cannot be specified across blocks. Specify it within one block.

The specified address is the relative address that starts from block 0 of the data
flash memory as address 0 when writing and reading the memory. Note that the
specified address isn’t an absolute address.

All members of the request variable must be initialized. Unused members in the
request variable can be set to arbitrary values.

Note 1
Note 2

Note 3

R01US0055ED0130 Rev. 1.30 38
User Manual

3.6.4 PFDL_Handler

Checking of the current processing state of a previously issued command and
driving the command forward (especially in case of a write command).

C interface for CA78K0R compiler

pfdl_status_t __far PFDL_Handler(void);

C interface for IAR V1.xx compiler

__far_func pfdl_status_t PFDL_Handler(void);

C interface for IAR V2.xx compiler

__far_func pfdl_status_t PFDL_Handler(void);

C interface for GNU compiler

pfdl_status_t PFDL_Handler(void)
 __attribute__ ((section ("PFDL_COD")));

C interface for CC-RL compiler

pfdl_status_t __far PFDL_Handler(void);

C interface for LLVM compiler

pfdl_status_t __far PFDL_Handler(void)
 __attribute__ ((section ("PFDL_COD")));

ASM function label for CA78K0R, IAR V1.xx, IAR V2.xx, GNU, CC-RL and
LLVM assembler

PFDL_Handler

Parameters

none

Outline

Interface

Arguments

R01US0055ED0130 Rev. 1.30 39
User Manual

Return value

Type Description

pfdl_status_t

Status of operation, can be PFDL_BUSY, PFDL_OK, PFDL_IDLE,
PFDL_ERR_MARGIN, PFDL_ERR_WRITE or PFDL_ERR_ERASE

Registers

CA78K0R IAR
V1.xx

IAR
V2.xx GNU CC-RL LLVM

C A A R8
(X bank 1) A A

Destructed registers

Tool chain Destructed registers

CA78K0R none

IAR V1.xx none

IAR V2.xx C

GNU none

CC-RL C

LLVM C

Before the execution of this function, the PFDL_Open function must be
completed normally.

Checks the control state of the command specified in the PFDL_Execute function
executed beforehand and performs required settings for continuous execution.

While the status is PFDL_BUSY, the running command is not finished yet and
new commands may not be issued. PFDL_OK indicates the successful
completion of a command.

The possible error codes depend on the type of the triggered command. Please
refer to the individual command descriptions in Section 3.7 Description of Data
Flash Library Commands.

Precondition

Description

R01US0055ED0130 Rev. 1.30 40
User Manual

3.6.5 PFDL_GetVersionString

Acquisition of the version information of the PFDL.

C interface for CA78K0R compiler

__far pfdl_u08* __far PFDL_GetVersionString(void);

C interface for IAR V1.xx compiler

__far_func pfdl_u08 __far* PFDL_GetVersionString(void);

C interface for IAR V2.xx compiler

__far_func pfdl_u08 __far * PFDL_GetVersionString(void);

C interface for GNU compiler

pfdl_u08 __far* PFDL_GetVersionString(void)
 __attribute__ ((section ("PFDL_COD")));

C interface for CC-RL compiler

__far pfdl_u08* __far PFDL_GetVersionString(void);

C interface for LLVM compiler

__far pfdl_u08* __far PFDL_GetVersionString(void)
 __attribute__ ((section ("PFDL_COD")));

ASM function label for CA78K0R, IAR V1.xx, IAR V2.xx, GNU, CC-RL and
LLVM assembler

PFDL_GetVersionString

Parameters

none

Outline

Interface

Arguments

R01US0055ED0130 Rev. 1.30 41
User Manual

Return value

Type Description

pfdl_u08* (far)

Beginning address (24 bit) of the area where the version information
of the PFDL is stored as 0-terminated ASCII string.

Registers

CA78K0R IAR
V1.xx

IAR
V2.xx GNU CC-RL LLVM

DE:BC A:HL A:DE
R11..R8
(BC:AX
bank 1)

A:DE A:DE

Destructed registers

none

none

For version control at runtime the developer can use this function to find the
starting character of the library version string (ASCII format).

The version string is a zero-terminated string constant that covers library-specific
information and is based on the following structure: NMMMMTTTCCCCCGVVV..V,
where:

• N : library type specifier (here ‘D’ for FDL)
• MMMM : series name of microcontroller (here ‘RL78’)
• TTT : type number (here ‘T04’)
• CCCCC : compiler information (4 or 5 characters)
• ‘Rxyy’ for CA78K0R compiler version x.yy
• ‘Ixyy’ for IAR V1.xx compiler version x.yy
• ‘Uxxyy’ for GNU compiler version xx.yy
• ‘Lxyyz’ for CC-RL compiler version x.yy.0z

Note: The version string of IAR V2.xx and LLVM indicates that the supported
compiler is CC-RL because the library files for these are identical to the one
for CC-RL.

• G : all memory models (here ‘G’ for general)
• VVV..V : library version
• ‘Vxyy’ for release version x.yy
• ‘Exyyy’ for engineering version x.yyy

Examples:

The version string of the PFDL V1.05 for the CA78K0R compiler version 1.10 is:
"DRL78T04R110GV105"

The version string of the PFDL V1.05 for the IAR V1.xx compiler version 1.20 is:
"DRL78T04I120GV105"

The version string of the PFDL V1.05 for the GNU compiler version 13.01 is:
"DRL78T04U1301GV105"

The version string of the PFDL V1.05 for the CC-RL compiler version 1.23.04 is:
"DRL78T04L1234GV105"

Preconditions

Description

R01US0055ED0130 Rev. 1.30 42
User Manual

3.7 Description of Data Flash Library Commands
The PFDL offers a set of commands that all can be requested by using the
PFDL_Execute function.

All commands operate on virtual addresses (relative address that starts from
block 0 of the data flash memory as address 0) and block numbers.

3.7.1 PFDL_CMD_READ_BYTES

The read command is used to read a number of bytes from data flash. It is the
only command that does not need the sequencer. It is initiated and finished
directly by PFDL_Execute.

Status returned by PFDL_Execute

Status Class Background and Handling

PFDL_OK normal

meaning request was finished regularly

reason no problems during command execution
occurred

remedy nothing

Note

R01US0055ED0130 Rev. 1.30 43
User Manual

3.7.2 PFDL_CMD_IVERIFY_BYTES

The internal verify operation is used to check if all bits (0’s and 1’s) provide full
data retention. Inconsistent and weak data caused by an asynchronous reset
during a write command can be detected using the iverify command on that
specific data range.

The iverify command is initiated by PFDL_Execute and is executed by the
sequencer. After that, PFDL_Handler shall be called to complete the command
and check the PFDL status.

Status returned by PFDL_Execute

Status Class Background and Handling

PFDL_BUSY normal

meaning request is being processed

reason request has been accepted

remedy call PFDL_Handler until status changes

Status returned by PFDL_Handler

Status Class Background and Handling

PFDL_OK normal

meaning request was finished regularly

reason no problems during execution

remedy nothing

PFDL_ERR_MARGIN normal

meaning at least one bit within the specified
area could not be verified

reason
margin for internal verification is
below the value required for full
data retention

remedy
no general remedy, the requester
has to decide how to react based
on application

PFDL_BUSY normal

meaning request is being processed

reason request has been accepted

remedy call PFDL_Handler until status
changes

R01US0055ED0130 Rev. 1.30 44
User Manual

3.7.3 PFDL_CMD_BLANKCHECK_BYTES

The blankcheck command is used to check if all cells in the specified target flash
area are “erased”, e.g. before writing data into it. The user can use the blank-
check command freely as it is a non-destructive flash access.

The blankcheck command is initiated by PFDL_Execute and is executed by the
sequencer. After that, PFDL_Handler shall be called to complete the command
and check the PFDL status.

Status returned by PFDL_Execute

Status Class Background and Handling

PFDL_BUSY normal

meaning request is being processed

reason request has been accepted

remedy call PFDL_Handler until status changes

Status returned by PFDL_Handler

Status Class Background and Handling

PFDL_OK normal

meaning request was finished regularly

reason no problems during execution

remedy nothing

PFDL_ERR_MARGIN light

meaning at least one bit within the specified
area is not blank

reason

for any bit of the checked area, the
margin for an erased cell is below
the value required for full data
retention

remedy
no general remedy, the requester
has to decide how to react based
on the application

PFDL_BUSY normal

meaning request is being processed

reason request has been accepted

remedy call PFDL_Handler until status
changes

R01US0055ED0130 Rev. 1.30 45
User Manual

3.7.4 PFDL_CMD_WRITE_BYTES

The write command is used to write a number of bytes located in the RAM into
the data flash at the location specified by the virtual addresses (relative address
that starts from block 0 of the data flash memory as address 0).

The write command is initiated by PFDL_Execute and is executed by the
sequencer to perform the physical write. After the write command has been
initiated PFDL_Handler shall be called to complete it and to update the library
status.

When a write command is issued, the sequencer generates a write-pulse. In case
of a fail, the write pulse is repeated. During write-pulse repetition the library state
remains busy. In case the write process fails after the maximum internally
specified number of retries, an error is returned by a PFDL_Handler call.

For a regular write, please follow the suggested sequence of

• blankcheck

• write

• iverify

as exemplarily shown in Figure 1-2, in order to ensure full data retention.

Status returned by PFDL_Execute

Status Class Background and Handling

PFDL_BUSY normal

meaning request is being processed

reason request has been accepted

remedy call PFDL_Handler until status changes

Status returned by PFDL_Handler

Status Class Background and Handling

PFDL_OK normal

meaning request was finished regularly

reason no problems during execution

remedy nothing

PFDL_ERR_WRITE heavy

meaning at least one byte could not be
written correctly

reason
for any bit of the written area, the
margin for written data is below the
value required for full data retention

remedy

erase the block and try to write
again (caution: erase operates
block-wise, ensure to safe other
data stored in the block)

PFDL_BUSY normal

meaning request is being processed

reason request has been accepted

remedy call PFDL_Handler until status
changes

Note

R01US0055ED0130 Rev. 1.30 46
User Manual

3.7.5 PFDL_CMD_ERASE_BLOCK

The erase command is used to erase one block of the data flash.

The command is initiated by PFDL_Execute and is executed by the sequencer to
perform the physical erase. After the erase command has been initiated
PFDL_Handler shall be called to complete it and to update the library status.

In order to avoid unnecessary erase cycles, the hardware sequencer is checking
if the addressed block is already blank before starting the actual erase-pulse
generation. After that, the erase-command is initiated and finally a block blank-
check is executed automatically. This is repeated automatically as long the
addressed block is not completely blank. During the complete repetition process
the Data Flash Library remains busy. When the maximum internally specified
number of erase retries is exceeded an error is returned to the requester.

Status returned by PFDL_Execute

Status Class Background and Handling

PFDL_BUSY normal

meaning request is being processed

reason request has been accepted

remedy call PFDL_Handler until status changes

Status returned by PFDL_Handler

Status Class Background and Handling

PFDL_OK normal

meaning request was finished regularly

reason no problems during execution

remedy nothing

PFDL_ERR_ERASE heavy

meaning
at least one bit within the specified
block is not “blank”, the block could
not be erased

reason

for any bit in the addressed flash
block, the margin for an erased cell
is below the value required for full
data retention

remedy do not use the block anymore

PFDL_BUSY normal

meaning request is being processed

reason request has been accepted

remedy call PFDL_Handler until status
changes

R01US0055ED0130 Rev. 1.30 47
User Manual

3.8 Library Timings
In the following, certain timing characteristics of the Pico FDL are specified. All
timing specifications are based on the

RL78 FDL T04 V1.04/V1.05

Please note that there might be deviations from the specified timings in case you
are using other library versions.

3.8.1 Maximum Function Execution Times

The maximum function execution times are listed in Table 3-9. These timings can
be seen as worst case durations of the specific PFDL function calls and therefore
can aid the developer for time critical considerations, e.g. when setting up the
watchdog timer.

Please note that the function execution times may depend on

• the flash memory programming mode (full speed or wide voltage),

• the used clock frequency (given as fclk in MHz), and

• the byte count for the triggered operation (referred to as BYTE_CT).

Table 3-9 Maximum function execution times

Function/Command Full-speed mode
(µs)

Wide-voltage mode
(µs)

PFDL_Open 862 / fclk 862 / fclk

PFDL_Execute (erase) Note 536 / fclk 536 / fclk

PFDL_Execute
 (blank check) Note 484 / fclk 484 / fclk

PFDL_Execute (write) Note 549 / fclk 549 / fclk

PFDL_Execute (iverify) Note 502 / fclk 502 / fclk

PFDL_Execute (read) (53 / fclk) +
(17 / fclk × BYTE_CT)

(53 / fclk) +
(17 / fclk × BYTE_CT)

PFDL_Handler (251 / fclk) + 14 (251 / fclk) + 14

PFDL_Close (823 / fclk) + 443 (779 / fclk) + 968

PFDL_GetVersionString (10 / fclk) (10 / fclk)

The execution times listed in Table 3-9 refer to the function call only and not the
total time required to complete a command. The execution of erase, blank check,
write and iverify commands is only initiated by PFDL_Execute and needs to be
completed with successive calls of PFDL_Handler (see also Section 3.4).

3.8.2 Command Execution Times

The command execution times are listed in the following tables. These timings
are divided into the typical timings which will appear during the normal operation
(Table 3-10) and the maximum timings for worst case considerations (Table
3-11).

All given timings are based on the assumption that the command is executed
with continuous PFDL_Handler calls. In case the handler is called too seldom,
execution time might increase.

Note

R01US0055ED0130 Rev. 1.30 48
User Manual

Please note that the command execution times may depend on

• the flash memory programming mode (full speed or wide voltage),

• the used clock frequency (given as fclk in MHz), and

• the byte count for the triggered operation (referred to as BYTE_CT).

Table 3-10 Typical command execution times

Command Full-speed mode
(µs)

Wide-voltage mode
(µs)

Erase 11250 / fclk + 5800 9925 / fclk +7195

Blank check (906 / fclk + 30) +
(5 / fclk + 0.26) × BYTE_CT

(903 / fclk + 62.5) +
(4 / fclk + 0.9) × BYTE_CT

Write (487 / fclk + 11.67) +
(212 / fclk + 39.17) × BYTE_CT

(487 / fclk + 11.67) +
(208 / fclk + 82.5) × BYTE_CT

Iverify (621 / fclk + 25) +
(23 / fclk + 3.33) × BYTE_CT

(622 / fclk + 48.33) +
(14 / fclk + 24.17) × BYTE_CT

Read (44 / fclk) +
(14 / fclk) × BYTE_CT

(44 / fclk) +
(14 / fclk) × BYTE_CT

Table 3-11 Maximum command execution times

Command Full-speed mode
(µs)

Wide-voltage mode
(µs)

Erase 281561 / fclk + 264790 249000 / fclk + 299307

Blank check (1088 / fclk + 36) +
(6 / fclk + 0.31) × BYTE_CT

(1084 / fclk + 75) +
(5 / fclk + 1.09) × BYTE_CT

Write (585 / fclk + 14) +
(714 / fclk + 430) × BYTE_CT

(585 / fclk + 14) +
(669 / fclk + 954) × BYTE_CT

Iverify (746 / fclk + 30) +
(28 / fclk + 4) × BYTE_CT

(747 / fclk + 58) +
(17 / fclk + 29) × BYTE_CT

Read (53 / fclk) +
(17 / fclk × BYTE_CT)

(53 / fclk) +
(17 / fclk × BYTE_CT)

R01US0055ED0130 Rev. 1.30 49
User Manual

Revision History
Chapter Page Description

All Initial document revision 1.00

2.2
2.3

17
19-20

Revision 1.01:
Library stack consumption corrected
Extension of programming environment precautions

All
2.24
2.2.7
3.8

19
20
44

Revision 1.10:
Adding description of GNU API
Extending usage description data buffer
Adding dedicated linking method for R5F10266
device
Adding maximum function execution times

3.8.2

44-45

Revision 1.11:
Adding typical and maximum command execution
times.

2.2

3

2.3

all

3.5/3.6.3

17

all

21-22

all

all

Revision 1.12
Resource consumption and file structure updated
regarding the CC-RL Compiler

Adding description of CC-RL API

Caution chapter extended

Renesas (REN) Compiler renamed to CA78K0R

Byte count range specification added

2.2

2.3

3

all

16

21-22

all

all

Revision 1.20
Resource consumption and file structure updated
regarding the IAR V2.xx Compiler

Caution chapter extended

Adding description of IAR V2.xx API

The term "voltage mode" was changed to "flash
memory programming mode"

2.2

3

16

all

Revision 1.30
Resource consumption and file structure updated
regarding the LLVM Compiler

Adding description of LLVM API

R01US0055ED0130

Data Flash Access Library

	Cover
	Notice
	Regional Information
	Preface
	How to Use This Manual
	Table of Contents
	Chapter 1 Overview
	1.1 Important Terms
	1.2 Basic Workflow
	1.2.1 Library States and Transitions
	1.2.2 Exemplary Flow

	Chapter 2 Programming Environment
	2.1 Hardware Environment
	2.1.1 Initialization
	2.1.2 Blocks

	2.2 Software Environment
	2.2.1 File Structure
	2.2.2 Prohibited RAM Area
	2.2.3 Register Bank
	2.2.4 Stack and Data Buffer
	2.2.5 Data Flash Library
	2.2.6 Program Area
	2.2.7 Using the PFDL on the R5F10266 device

	2.3 Cautions on the Programming Environment

	Chapter 3 Data Flash Library Function
	3.1 Type of Data Flash Library Functions
	3.2 Segments of Data Flash Library Functions
	3.3 Commands
	3.4 Background Operation (BGO)
	3.5 List of Data Types, Return Values, and Return Types
	3.6 Description of Data Flash Library Functions
	3.6.1 PFDL_Open
	3.6.2 PFDL_Close
	3.6.3 PFDL_Execute
	3.6.4 PFDL_Handler
	3.6.5 PFDL_GetVersionString

	3.7 Description of Data Flash Library Commands
	3.7.1 PFDL_CMD_READ_BYTES
	3.7.2 PFDL_CMD_IVERIFY_BYTES
	3.7.3 PFDL_CMD_BLANKCHECK_BYTES
	3.7.4 PFDL_CMD_WRITE_BYTES
	3.7.5 PFDL_CMD_ERASE_BLOCK

	3.8 Library Timings
	3.8.1 Maximum Function Execution Times
	3.8.2 Command Execution Times

	Revision History
	Back Cover

