inter_{sil}"

ISL72813SEHEV1Z

Evaluation Board User Guide

USER'S MANUAL

UG096 Rev 1.00 February 24, 2017

Description

The ISL72813SEHEV1Z evaluation board was designed to provide a quick and easy method for evaluating the ISL72813SEH, 32-channel driver circuit IC. This device is a unique IC. To use this evaluation board properly requires a thorough knowledge of the operation of the IC. Refer to the ISL72813SEH datasheet for an understanding of the functions and features of the device.

The Intersil ISL72813SEH device is a radiation hardened, high-voltage, high-current 32-channel driver circuit with an integrated decoder for driving and selecting between a bank of relays in space applications. It is fabricated using Intersil's proprietary PR40 silicon-on-insulator process technology to mitigate single-event effects. This device integrates 32 current drivers that feature high-voltage, common-emitter and open-collector outputs with a 42V breakdown voltage and peak current rating of 600mA.

Specifications

The evaluation board has been configured and optimized for the following conditions:

- V_{CC} = 5V
- V_{EE} = -34V
- Collector output (Cx) load to GND of ≥58Ω (≤600mA)
- Board temperature: +25°C

Key Features

- Toggle switches for easy control of logic pins
- LED circuitry for quick functional testing
- · Convenient test points and connections for test equipment
- MCU interface connector for control of logic
- · Banana jacks for power and ground connections

Related Literature

For a full list of related documents, visit our website
 ISL72813SEH Datasheet

Ordering Information

PART NUMBER	DESCRIPTION						
ISL72813SEHEV1Z	ISL72813SEH evaluation board						

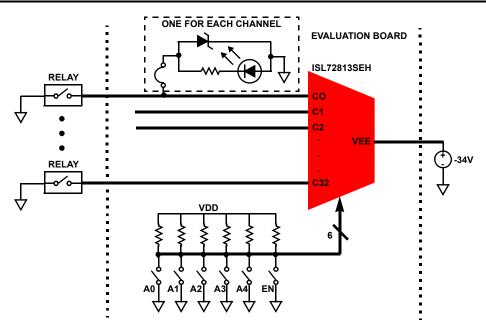


FIGURE 1. ISL72813SEHEV1Z BLOCK DIAGRAM

intersil

Quick Start

- 1. Verify that jumpers J0 J31 are installed on the board. This connects the LED circuitry to each of the driver channels.
- Put all of the toggle switches (SW0 A0, SW1 A1, SW2 A2, SW3 A3, SW4 A4, and SW5 EN) in the down position. This connects the A0 - A4, and EN logic pins of the IC to ground.
- 3. Apply $5V_{\mbox{DC}}$ at the VCC banana jack.
- 4. Apply -30V_{DC} at the VEE banana jack.
- Move the SW5 EN toggle switch to the up position (EN = VCC) to enable the current driver. The LED for the CO channel will light up indicating channel CO is ON.
- 6. Move the SWO AO toggle switch to the up position. The LED for the C1 channel will light up indicating that channel C1 is ON.
- 7. Adjust the toggle switches to cycle through the various 32 driver channels by changing the logic at the A0 A4 pins per the truth table on page 5 of the <u>ISL72813SEH</u> datasheet.

Introduction

The ISL72813SEHEV1Z evaluation board is designed to provide a quick and easy method for evaluating the ISL72813SEH radiation hardened 32-channel current driver IC.

A picture of the evaluation board for ISL782813SEHEV1Z is shown in <u>Figure 3 on page 6</u>. The ISL72813SEHL/PROTO 44 Ld CLCC IC is soldered onto the evaluation board. It is located in the center of the board and is designated as U1.

The Intersil ISL72813SEH device has 32 current driver channels. It was specifically designed to drive the coils of a bank of relay circuits. Only one channel is active at a time. A channel is selected by the logic level applied at the AO - A4 logic pins. It has an enable pin (EN) that can deactivate all the channels when it is driven LOW. A channel can drive a relay coil that requires up to 530mA of current. The part was designed to operate in the harsh environment of space.

This user guide will guide the user through the process of configuring and using the evaluation board to evaluate the ISL72813SEH device.

Functional Description

The ISL72813SEHEV1Z evaluation board provides a simple platform to demonstrate the features and evaluate the performance of the ISL72813SEH IC. It provides easy access to the pins of the ISL72813SEH IC and convenient connectors/test points for connecting test equipment. The schematic, bill of materials, and top silkscreen for the board are available on pages 9 through <u>11</u>.

Figures 13 through 15 show performance data taken using the ISL72813SEHEV1Z evaluation board and basic lab equipment.

The sections that follow will discuss using the evaluation board.

Basic Layout of Evaluation Board

The basic layout of the evaluation board is as follows: Refer to Figure 3 on page 6 or the actual ISL72813SEHEV1Z evaluation board.

Located in the center of the board is the IS72813SEHL/PROTO driver circuit IC (U1). The evaluation board has a Pin 1 dot, to show how the IC should be oriented onto the evaluation board. The IC Pin 1 indicator lead needs to be aligned with the evaluation board Pin 1 dot indicator. The board comes with the IC soldered onto the board.

Power for the IC is located at the left side of the board through banana jacks labeled VEE, GND, and VCC. A negative DC voltage source of -10V to -34V must be connected between VEE and GND to power the common emitter of the current channels. A DC voltage source of 3V to 5.5V must be connected between VCC and GND to power the logic decoder and the level shifter of the part.

Access to the 32 collector driver channels is through the C0 - C31 silver turret posts. The relay load or resistor simulating the relay load would be connected at theses pins. Each pin in parallel to the turret post has an LED and resistor that can be connected through a jumper to check the functionality of the device. With jumpers J0 thru J31 installed the LED circuitry will be connected to the C0 thru C31 open collectors of the part and when a channel is active (turned ON), the LED will light up.

Control of the logic pins A0 - A4 and the EN pin is by the toggle switches labeled SW0 A0, SW1 A1, SW2 A2, SW3 A3, SW4 A4, and SW5 EN located at the middle left side of the evaluation board. In addition to the switches, the logic can be controlled through the 24 pin right angle header connector labeled "MCU INTERFACE". When using this connector, the toggle switches should be switched into the up position. Finally, the logic can be controlled by connecting the user's logic drivers at the PA0 (A0), PA1 (A1), PA2 (A2), PA3 (A3), PA4 (A4), and PEN (EN) turret pins. When driving these pins, the toggle switches need to be in the up position. These turret pins can also be used to monitor the voltage levels at the logic pins with a voltmeter or oscilloscope.

Refer to the board schematic (Figure 5 on page 8) for the reference designators of the jumpers, resistors, and connectors associated with each I/O.

VCC Power Supply

The ISL72813SEH device requires a VCC DC voltage supply in the range of 3.0V to 5.5V for proper operation. The VCC powers the logic circuitry of the IC.

The VCC power supply is connected at banana jacks VCC and GND. The power supply should be capable of delivering 100mA of current.

VEE Power Supply

The ISL72813SEH device requires a negative VEE DC voltage supply in the range of -5V to -34V. The VEE voltage is connected to the common emitter of the 32 current drivers.

The power supply is connected at banana jacks VEE and GND. The power supply should be capable of delivering 1A of current.

Logic Control

The ISL72813SEH IC has six logic control input pins; A0 - A4 (Pins 19 - 23) and EN (Pin 25).

The Logic 1 V_{IH} level for the logic pins is from 2.0V to VCC. The Logic 0 V_{IL} level is from 0.8V to 0V. The V_{CC} voltage can be 3.0V to 5.5V.

The A0 - A4 digital input pins select between the 32 current driver circuit channels per the truth table on page 5 of the <u>ISL72813SEH</u> datasheet. The selected channel is activated when the EN pin is HIGH (Logic 1).

The EN digital input enables and disables the current driver channels. When EN = LOW (Logic 0) all channels are deactivated (OFF). When EN = HIGH (Logic 1) then the channel selected by the logic levels at A0 - A4 is activated (ON).

Test Points

The board has various test points for ease of connecting probes to make measurements. The test points available are described in <u>Table 1</u>.

TABLE 1. TEST POINTS							
DESIGNATOR	DESCRIPTION						
PG1 - PG4	Ground test point						
PA0	A0 logic input test point						
PA1	A1 logic input test point						
PA2	A2 logic input test point						
PA3	A3 logic input test point						
PA4	A4 logic input test point						
PEN	EN logic input test point						
PC0 - PC31	Open collector output test points						

TABLE 2. BOARD COMPONENT DEFINITIONS

DESIGNATOR	DESCRIPTION
U1	ISL72813SEHL/PROTO CLCC IC
VCC	VCC power supply connection (5V _{DC})
GND	Ground connection
VEE	Common emitter supply connection (-34V _{DC})
SW0 A0	Toggle switch for logic input A0
SW1 A1	Toggle switch for logic input A1
SW2 A2	Toggle switch for logic input A2
SW3 A3	Toggle switch for logic input A3
SW4 A4	Toggle switch for logic input A4
SW5 EN	Toggle switch for logic input EN
CO - C31	Open collector outputs load connections or test points
LED0 - LED31	LEDs for quick functional testing of the ISL72813SEH IC
R0 - R31	Load resistor for the LEDs
D0 - D31	Schottky diode across the LED circuitry to clamp positive transients during switching between channels
J0 - J31	Jumpers to connect LED circuitry to the open collector channel

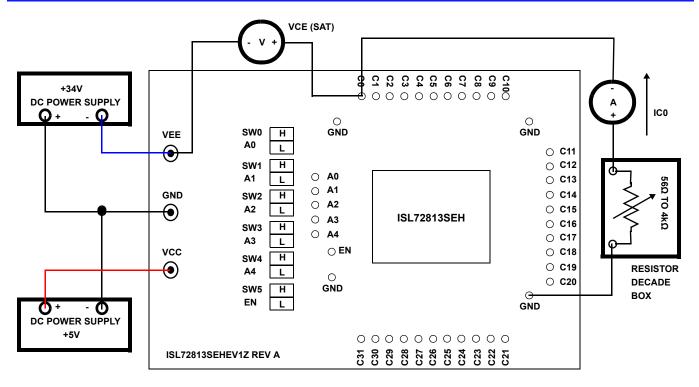


FIGURE 2. BASIC EVALUATION TEST SETUP BLOCK DIAGRAM (MEASURING VCE (SAT) vs ICx)

Using the Board to Measure VCE (SAT) vs IVEE of Channel CO

Refer to Figure 2.

Lab Equipment

The equipment, external supplies, and signal sources needed to operate the board:

- 1. DC power supply (3V to 5.5V).
- 2. DC power supply (-10V to -34V) capable of sinking 1A.
- 3. Resistor decade box or keysight B2902A precision source/measurement unit or equivalent.

Initial Board Setup Procedure

- **1**. Remove the J0 jumper to disconnect the LED circuitry from the C0 channel.
- 2. Put the SW0 A0, SW1 A1, SW2 A2, SW3 A3, SW4 A4, and SW5 EN toggle switches in the "L" down position. With the SW5 EN in the "L" position all channels will be disabled (OFF).
- 3. Attach the 5V_{DC} power supply to the banana jacks labeled VCC and GND as shown in <u>Figure 2</u>. Positive terminal at VCC and negative terminal at GND. The supply should be capable of delivering 3V to 5.5V and 100mA of current. Set the supply voltage to 5V.
- 4. Attach the 34V_{DC} power supply to the banana jacks labeled VEE and GND as shown in Figure 2. Negative terminal at VEE and Positive terminal at GND. The supply should be capable of -10V to -34V and sinking 1A of current. Set the supply voltage to 34V.

- 5. Connect the resistor decade box and ammeter (A) to the CO pin on the evaluation board as shown in Figure 2. One end of the decade box resistor should be connected to the CO pin through the ammeter to measure the ICO current. The other end of the resistor to the ground pin on the evaluation board. Set the decade box resistance to 165Ω .
- 6. Connect a voltmeter (V) between the CO pin and VEE banana jack as shown in <u>Figure 2</u>. The voltmeter will measure the VCE (SAT) voltage.

VCE (SAT) Measurements for Channel CO

- 1. Configure the board as described in <u>"Initial Board Setup</u> <u>Procedure"</u>.
- 2. Put the SW5 EN toggle switch in the "H" up position to enable the IC. The ICO current should read approximately 200mA and the VCE (SAT) voltage should read around 0.89V.
- 3. Change the decade box resistance to 94Ω . The ICO current should read approximately 349mA and the VCE (SAT) voltage should read around 1.01V.
- 4. Change the decade box resistance to 65Ω. The ICO current should read approximately 499mA and the VCE (SAT) voltage should read around 1.13V.
- 5. Change the decade box resistance to 61Ω. The ICO current should read approximately 532mA and the VCE (SAT) voltage should read around 1.16V.

Measuring VCE (SAT) on Other Channels

- 1. Configure the board as described in <u>"Initial Board Setup</u> <u>Procedure" on page 4</u>.
- 2. Ensure that SW5 EN toggle switch is in the "L" down position to disable the IC.
- 3. Move the ammeter and decade box to the new Cx channel that the user wants to test. Move the voltmeter to measure the voltage from the new Cx channel to VEE. Remove the Jx jumper from that channel. Configure the SWO AO SW4 A4 toggle switches to the appropriate logic levels to select the new Cx channel. Refer to the truth table on page 5 of the ISL72813SEH datasheet.

For example, if the user wants to perform the measurement on the C26 channel, connect the ammeter/decade box at the C26 pin on the evaluation board. Connect the voltmeter across the C26 pin and VEE. Remove jumper J26 to disconnect its LED circuitry. Set the toggle switches SWO A0 = "L", SW1 A1 = "H", SW2 A2 = "L", SW3 A3 = "H", and SW4 A4 = "H".

- 4. Repeat steps 2 5 in <u>"VCE (SAT) Measurements for Channel</u> <u>CO" on page 4</u> for the new Cx channel.
- 5. Note: The performance curves shown in Figure 13 on page 17 was taken using the evaluation board and a Keysight B2902A precision source/measurement unit. Test conditions:
 - a. The B2902A unit was set to measure and graph VCE (SAT) vs ICX as the user sweeps the ICX in 10mA increments from 0mA to 600mA.
 - b. $V_{CC} = 5V$, $V_{EE} = -34V$, $EN = V_{CC}$, A0 A4 = Set to have the Cx channel ON.
 - c. Channels CH0, CH8, CH16, CH24, and CH31 were measured. The plots in Figure 13 are the average of these channels.

ISL72813SEHEV1Z Evaluation Board

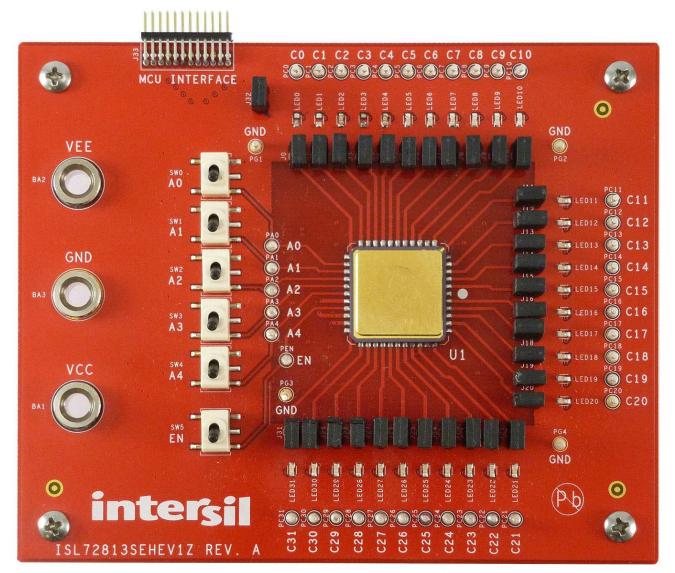


FIGURE 3. ISL72813SEHEV1Z EVALUATION BOARD (TOP VIEW)

ISL72813SEHEV1Z Evaluation Board (Continued)

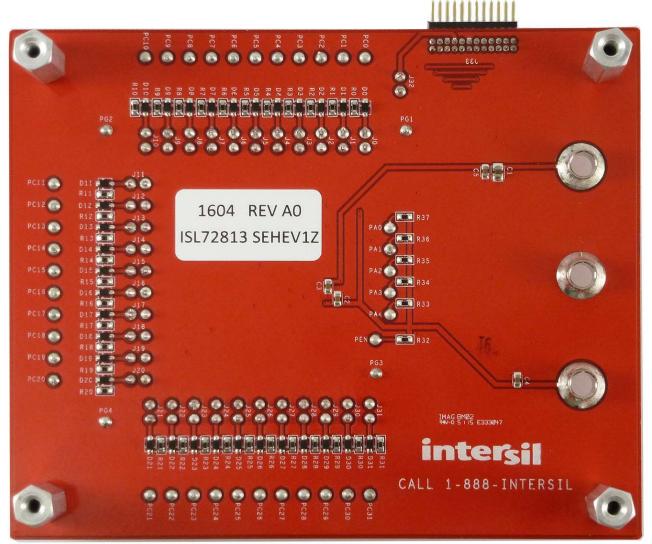


FIGURE 4. ISL72813SEHEV1Z EVALUATION BOARD (BOTTOM VIEW)

intersil

ISL72813SEHEV1Z

ISL72813SEHEV1Z Circuit Schematic

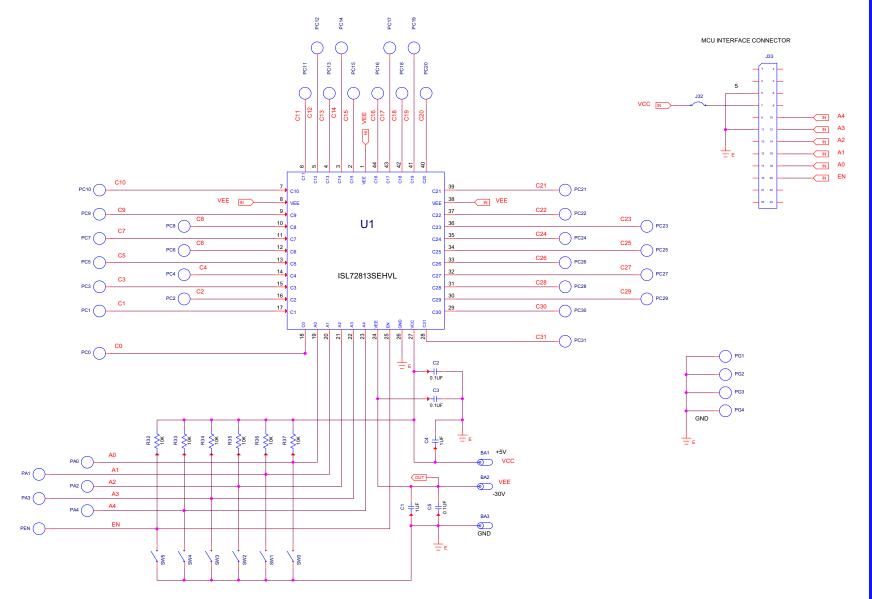
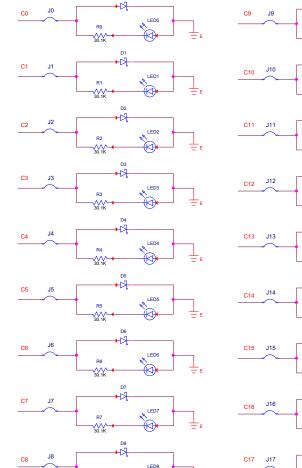
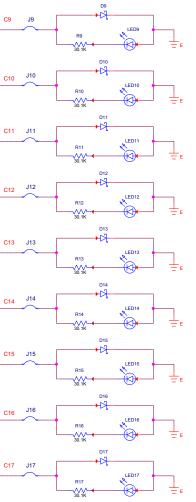



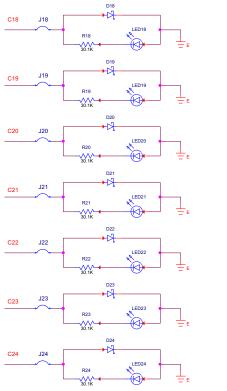
FIGURE 5. SCHEMATIC PAGE 1

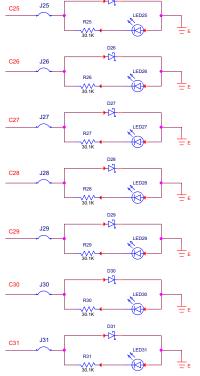
UG096 Rev 1.00 February 24, 2017

ISL72813SEHEV1Z

R8


10.1K


29


 \square

ᆂᇉ

D0

D25

FIGURE 6. SCHEMATIC PAGE 2

ISL72813SEHEV1Z Bill of Materials

QTY	UNITS	REFERENCE DESIGNATOR	DESCRIPTION	MFR	MANUFACTURER PART NUMBER	
42	ea.	PAO - PA4, PCO-PC31, PEN, PG1-PG4	Silver Solder Terminal Turret, 0.08 Pad, 0.040 Thole	MILL-MAX	2108-2-00-44-00-07-0	
1	ea.	C4	CAP, Multilayer, 0603, 1µF, 10V, 10%, CAP_0603	MURATA	GRM188R71A105KA61D	
1	ea.	C1	CAP, Ceramic, 0803, 1µF, 50V, 10%, CAP_0805	MURATA	GRM21BR71H105KA12L	
3	ea.	C2, C3, C5	CAP, Multilayer, 0603, 0.1µF, 50V, 10%, CAP_0603	GENERIC	H1045-00104-50V10	
3	ea.	BA1 - BA3	CONN; CON_BAN_575, Solder Mount Banana Plug	KEYSTONE	575-4	
6	ea.	SW0 - SW5	SPST - GT13MSCKE - C&K - SPST OFF-ON SM (2 Switch Positions), Ultra Miniature Toggle Switch	C&K	GT12MSCBETR	
6	ea.	R32 - R37	Thick Film Chip Resistor, 10kΩ, 1/10W, 1%, 0603, RES_0603	GENERIC	H2511-01002-1/10W1	
32	ea.	R0 - R31	Thick Film Chip Resistor, 30.1kΩ, 1/16W, 1%, 0603, RES_0603	GENERIC	H2511-03012-1/16W1	
33	ea.	J0 - J32	Two Pin Jumper, Thole, Jumper-1	GENERIC	JUMPER2-100	
32	ea.	LED0 - LED31	- LED31 SMD, LED_LX_L29K_0603, SMT 0603, GREEN, 1.7V, 2mA, 570nm, 3.9MCD		LG L29K-G2J1-24-Z-T	
32	ea.	D0 - D31	Schottky Barrier Rectifier Diode, SMD2, SOD23, 0.5A	DIODES	B0540WS	
1	ea.	J33	PTH2X12A, CON_HDR_3X12_50_RA, Male, 24 PIN (2 ROWS X 12 POS at 0.05 IN), Right Angle Header Connector	HARWIN	M50-3901242	
1	ea.	U1	32-Channel Driver Circuit with Integrated Decoder	INTERSIL	ISL72813SEHL/PROTO	

Board Layout

•	MCU INTERFACE				3 C4 0 2 O 20 2 O 20		C7				
			88		- • • • • • •	8	•	88	Ш	GND PG2	PC11
GND	SW1 A1 SW2	0	NO N1							LED11	PC12 C12 C13 C13 PC14 C14
843	A2 swa A3			U						 LED15 LED16 LED17 LED18 	PC16
	SW4 A4 SW5 EN	P6. GN) D D ₂₁ O ₂	0 ,0		0,0,	(0	0,,0	000 000 000	LEDI9	PC19 C19 PC20 C19
•	" itersil	i I			LED27		LED24			GND	•
	3SEHEV1Z REV.	A		C29	2 ~ 2`		C24 O	C23 0 C22 0	c21 O		

FIGURE 7. SILKSCREEN TOP

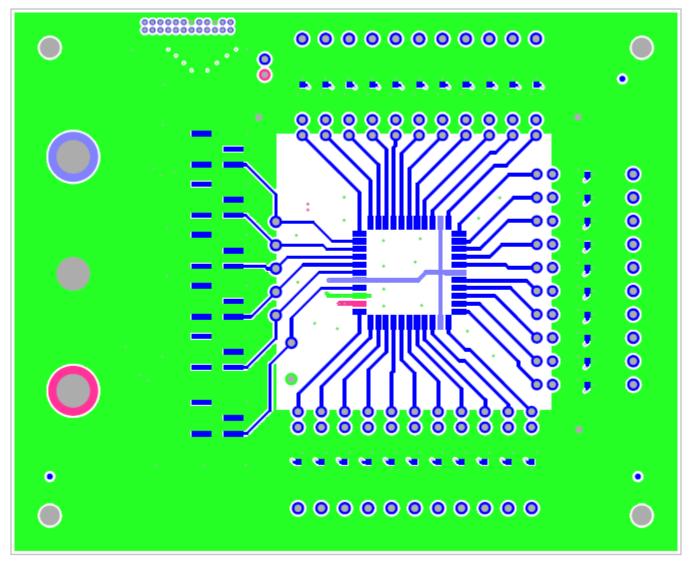


FIGURE 8. TOP LAYER COMPONENT SIDE

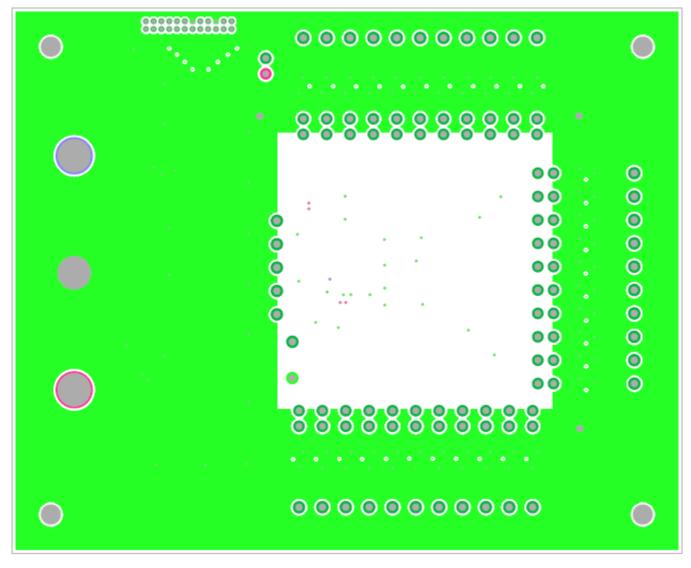


FIGURE 9. LAYER 2

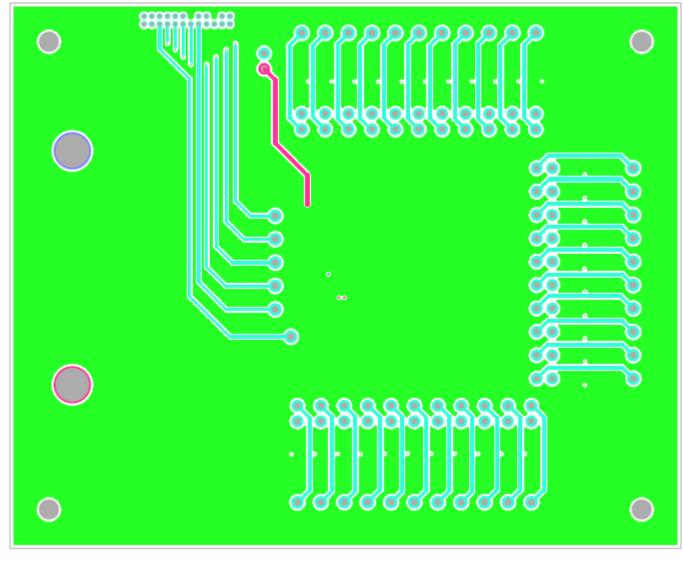


FIGURE 10. LAYER 3



FIGURE 11. BOTTOM LAYER SOLDER SIDE

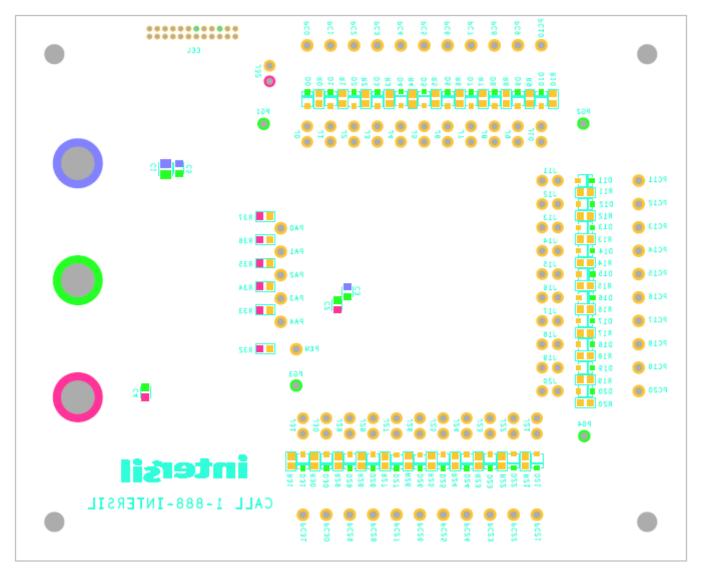
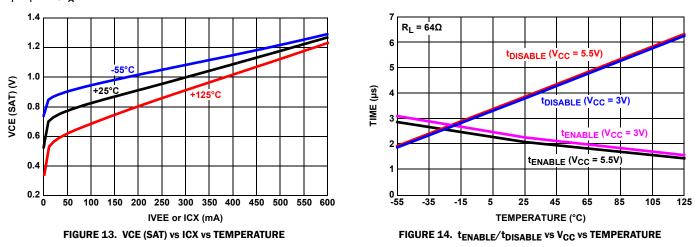
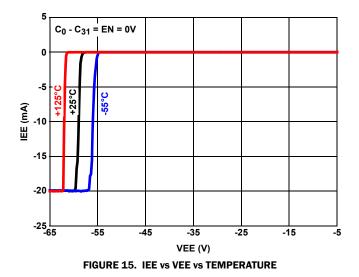




FIGURE 12. SILKSCREEN BOTTOM

Typical Performance Curves Unless noted: $V_{CC} = 3.3V$, D = 125kHz, Square Wave, 0 to V_{CC} , 50% Duty Cycle, $t_r = t_f \le 6ns$, $T_A = +25$ °C

intersil

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard" Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances; machine tools; personal electronic equipment: industrial robots: etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics oroducts outside of such specified ranges
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Plea e contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Renesas Electronics Corporation

http://www.renesas.com

SALES OFFICES Refer to "http://www.renesas.com/" for the latest and detailed information Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Miliboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tei: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germar Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amco Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Unit 1207, Block B, Menara Amcorp, Amcorp Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tei: +822-558-3737, Fax: +822-558-5338