

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

U
ser’s M

anual
MISRA C Rule
SQMlint V.1.03
User’s Manual

Add-in to Renesas' c
 Checker

ompilers
Rev.1.00 2006.08

"MISRA" and the triangle logo are registered trademarks of The Motor Industry Research Association, held on behalf of the MISRA Consortium.

Keep safety first in your circuit designs!
 Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury,
fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as
(i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials
 These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited to the
customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas
Technology Corporation, Renesas Solutions Corporation or a third party.
 Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in
these materials.
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on
products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and Renesas Solutions
Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas
Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor for the latest product
information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical
errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation and Renesas
Solutions Corporation by various means, including the Renesas home page (http://www.renesas.com).
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms,
please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products.
Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, liability or other loss
resulting from the information contained herein.
 Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in
which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized
Renesas Technology product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus
or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
 The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or reproduce in
whole or in part these materials.
 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the
Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the
export control laws and regulations of Japan and/or the country of destination is prohibited.
 Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the products
contained therein.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following directory and email to your
local distributor.

\SUPPORT\Product-name\SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/en/tools

Contents

- i -

1. Introduction.. 1

2. Overview... 2

2.1. Position ... 3
2.2. Input/Output Files.. 3

3. How to Use SQMlint .. 4

3.1. When you’re using C Compiler Package for M16C family.. 4
3.2. When you’re using M32R family ... 7
3.3. When you’re using SuperH RISC engine family ... 9

3.3.1. Options.. 9
3.3.2. Error messages... 10

3.4. When you’re using H8S, H8/300 series .. 12
3.4.1. Options.. 12
3.4.2. Error messages... 14

4. Report Specifications ... 15

4.1. Report Message.. 15
4.2. Report File... 15
4.3. Compile Errors .. 16

5. Confirming the Result... 17

5.1. Referring to Report Files to Confirm ... 17
5.2. Referring to Report Messages to Confirm .. 17
5.3. Using the SQMmerger to Confirm... 17

6. List of Supported MISRA C Rules.. 18

7. Handling of Each MISRA C Rule .. 19

7.1. Rule 1.. 20
7.2. Rule 2 (Not supported).. 20
7.3. Rule 3 (Not supported).. 20
7.4. Rule 4 (Not supported).. 21
7.5. Rule 5.. 21
7.6. Rule 6 (Not supported).. 21
7.7. Rule 7 (Not supported).. 22
7.8. Rule 8.. 22
7.9. Rule 9 (Not supported).. 22
7.10. Rule 10 (Not supported).. 22
7.11. Rule 11 (Not supported) .. 23
7.12. Rule 12.. 24
7.13. Rule 13.. 25
7.14. Rule 14.. 26
7.15. Rule 15 (Not Supported) ... 26
7.16. Rule 16 (Not Supported) ... 26

Contents

- ii -

7.17. Rule 17.. 27
7.18. Rule 18.. 28
7.19. Rule 19.. 29
7.20. Rule 20.. 29
7.21. Rule 21.. 30
7.22. Rule 22.. 31
7.23. Rule 23 (Not Supported) ... 31
7.24. Rule 24.. 32
7.25. Rule 25 (Not supported).. 32
7.26. Rule 26 (Not Supported) ... 33
7.27. Rule 27 (Not Supported) ... 33
7.28. Rule 28.. 33
7.29. Rule 29.. 34
7.30. Rule 30 (Not supported).. 36
7.31. Rule 31.. 36
7.32. Rule 32.. 37
7.33. Rule 33.. 38
7.34. Rule 34.. 39
7.35. Rule 35.. 40
7.36. Rule 36.. 40
7.37. Rule 37.. 41
7.38. Rule 38.. 42
7.39. Rule 39.. 42
7.40. Rule 40.. 43
7.41. Rule 41 (Not supported).. 43
7.42. Rule 42.. 43
7.43. Rule 43.. 44
7.44. Rule 44.. 45
7.45. Rule 45.. 46
7.46. Rule 46.. 47
7.47. Rule 47 (Not supported).. 49
7.48. Rule 48.. 49
7.49. Rule 49.. 50
7.50. Rule 50.. 50
7.51. Rule 51.. 51
7.52. Rule 52 (Not supported).. 51
7.53. Rule 53.. 52
7.54. Rule 54.. 52
7.55. Rule 55.. 53
7.56. Rule 56.. 53
7.57. Rule 57.. 53
7.58. Rule 58.. 54
7.59. Rule 59.. 54
7.60. Rule 60.. 55
7.61. Rule 61.. 55
7.62. Rule 62.. 55

Contents

- iii -

7.63. Rule 63.. 56
7.64. Rule 64.. 56
7.65. Rule 65.. 57
7.66. Rule 66 (Not supported).. 57
7.67. Rule 67 (Not supported).. 57
7.68. Rule 68.. 58
7.69. Rule 69.. 58
7.70. Rule 70.. 59
7.71. Rule 71.. 59
7.72. Rule 72.. 60
7.73. Rule 73.. 60
7.74. Rule 74.. 61
7.75. Rule 75.. 61
7.76. Rule 76.. 62
7.77. Rule 77.. 62
7.78. Rule 78.. 63
7.79. Rule 79.. 63
7.80. Rule 80.. 63
7.81. Rule 81 (Not supported).. 64
7.82. Rule 82.. 64
7.83. Rule 83.. 65
7.84. Rule 84.. 65
7.85. Rule 85.. 66
7.86. Rule 86 (Not supported).. 66
7.87. Rule 87 (Not supported).. 66
7.88. Rule 88 (Not supported).. 67
7.89. Rule 88 (Not supported).. 67
7.90. Rule 90 (Not supported).. 67
7.91. Rule 91 (Not supported).. 67
7.92. Rule 92 (Not supported).. 68
7.93. Rule 93 (Not supported).. 68
7.94. Rule 94 (Not supported).. 68
7.95. Rule 95 (Not supported).. 68
7.96. Rule 96 (Not supported).. 69
7.97. Rule 97 (Not supported).. 69
7.98. Rule 98 (Not supported).. 69
7.99. Rule 99.. 69
7.100. Rule 100 (Not supported).. 70
7.101. Rule 101.. 70
7.102. Rule 102.. 71
7.103. Rule 103.. 71
7.104. Rule 104.. 72
7.105. Rule 105.. 73
7.106. Rule 106.. 74
7.107. Rule 107 (Not supported).. 75
7.108. Rule 108.. 75

Contents

- iv -

7.109. Rule 109 (Not supported).. 76
7.110. Rule 110 .. 77
7.111. Rule 111... 78
7.112. Rule 112 .. 78
7.113. Rule 113 .. 79
7.114. Rule 114 (Not supported) .. 79
7.115. Rule 115 .. 79
7.116. Rule 116 (Not supported) .. 80
7.117. Rule 117 (Not supported) .. 80
7.118. Rule 118 .. 80
7.119. Rule 119 .. 80
7.120. Rule 120 (Not supported).. 81
7.121. Rule 121.. 81
7.122. Rule 122.. 81
7.123. Rule 123.. 81
7.124. Rule 124.. 82
7.125. Rule 125.. 82
7.126. Rule 126.. 82
7.127. Rule 127.. 83

8. Appendix Merge Utility ... 84

8.1. Outline of Processing.. 84
8.1.1. Outline... 84

8.2. How to Use.. 85
8.2.1. Command Line.. 85
8.2.2. Options.. 85

8.3. Specification of Mixed Text Files Output... 85
8.3.1. Output Format of C Source Lines... 85
8.3.2. Output Format of MISRA C Inspection Results .. 85

9. Appendix File format conversion Utility... 87

9.1. Outline of Processing.. 87
9.1.1. Outline... 87

9.2. How to Use.. 87
9.2.1. Command Line.. 87
9.2.2. Options.. 88

Introduction

- - 1

1. Introduction

SQMlint statically checks C source codes to find codes that deviate from any of MISRA C1
rules.

The MISRA C rules are guidelines and can be used as inspection items of source code
review. Some deviations from the rules can be detected by inspection tools. SQMlint checks
C source codes against each of the MISRA C rules, and reports where codes deviate from
any of the rules, thereby assisting you in source code review.

The titles of MISRA C rules described in this manual, as well as the MISRA C rule

inspection items for the MISRA C Rule Checker are based on the “Guidelines for the Use of
the C Language in Vehicle Based Software” issued by MISRA.

1 MISRA C refers to the guidelines for the use of the C language in developing vehicle-based software that are issued by the Motor

Industry Software Reliability Association (MISRA) of the U.K.

Overview

- - 2

2. Overview

SQMlint checks to see if C source codes deviate from any of the MISRA C rules.
If a deviation is detected in your C source codes, SQMlint outputs a report message. (See

Chapter 4, “Report Specifications.”)

Example:

 typedef unsigned short UINT16;
 extern volatile UINT16 port1 = 0;
 extern volatile UINT16 port2 = 0;

 void func(void);
 void func(void)
 {
 while(port1 != 0) {
 if (port2 == 0) {
 break;
 }
 }
 }

When the above program is inspected by SQMlint, a report message similar to the

following will be output. It indicates that the use of the break statement on the 10th line of
the program deviates from rule 58.

[MISRA(58) Complaining : test.c, 10] 'break' statement shall not be used (except in a
'switch')

 Note
Not all rules defined in MISRA C can be inspected by SQMlint. For details about the

MISRA C rules that can be inspected by SQMlint, please see Chapter 6, “List of MISRA C
Rule Inspection Items.”

Overview

- - 3

2.1. Position
SQMlint is started from a compile driver as part of compile operation. Therefore, the

source code is processed by the compiler even after being checked against the MISRA C
rules.

 Supplement

The code generated by the compiler is unaffected by MISRA C rule checking.

2.2. Input/Output Files
 SQMlint checks the C language source file against the MISRA C rules and outputs the
inspection result to a report file, or to standard error as a report message (see Figure 2.2).
For details about report file and report message specifications, see Chapter 4, “Report
Specifications.”

Figure 2.1 Position of SQMlint

Compile driver

C language
source file

C preprocessor

SQMlint

Compiler

Linker

Figure 2.2 Input/Output Files of SQMlint

C language
source file

Report file

C preprocessor

SQMlint

Report message
to standard error

Compile driver

How to Use SQMlint

- - 4

3. How to Use SQMlint

3.1. When you’re using C Compiler Package for M16C family
To inspect your C source codes against the MISRA C rules, specify the options in the “C
compiler for M16C Family” that are shown in Table.

 Example:

nc30 test.c -c –misra_all –misra_report report.csv
nc308 test.c -c –misra_all –misra_report report.csv
 SQMlint inspects the test.c for all of the supported MISRA C rules and outputs the
result to report.csv. The test.c also is processed by the compiler.

 Table 3.1.1 Compiler Options for MISRA C Inspection

Option Description
-misra_all The source code is checked against all of the

supported MISRA C rules.
In this case, no rule numbers can be
specified.

-misra_apply rule-number
[,rule-number,...]

The source code is checked against only of
the MISRA C rules of the specified rule
numbers. One or more rule numbers always
in decimal must be specified. If any specified
rule number is equal to or less than 0, equal
to or greater than 128, or not included
among the rule numbers to be inspected, an
option error is assumed.
Do not insert spaces between a rule number
and the comma (,) or between the comma (,)
and a rule number.

-misra_ignore rule-number
[,rule-number,...]

The source code is not checked against the
MISRA C rules of the specified rule
numbers. One or more rule numbers always
in decimal must be specified. The source code
is inspected for all of the MISRA C rules,
except the rule numbers specified here. If
any specified rule number is equal to or less
than 0 or equal to or greater than 128, an
option error is assumed.
Do not insert spaces between a rule number
and the comma (,) or between the comma (,)
and a rule number.

How to Use SQMlint

- - 5

-misra_required The source code is checked against all of the
supported MISRA C rules that are classified
as “required.”
In this case, no rule numbers can be
specified.

-misra_required_add rule-number
[,rule-number,...]

The source code is checked against all of the
supported MISRA C rules that are classified
as “required,” as well as against those that
are specified by rule numbers. One or more
rule numbers always in decimal must be
specified. If any specified rule number is
equal to or less than 0 or equal to or greater
than 128, an option error is assumed.
Do not insert spaces between a rule number
and the comma (,) or between the comma (,)
and a rule number.

-misra_required_remove rule-number
[,rule-number,...]

The source code is checked against all of the
supported MISRA C rules that are classified
as “required,” not including those that are
specified by rule numbers. One or more rule
numbers always in decimal must be
specified.
Do not insert spaces between a rule number
and the comma (,) or between the comma (,)
and a rule number.

-misra_report
output-report-file-name

Specify the output report file name to which
the result of MISRA C rule checking is to be
saved. If this option is specified, the output
report file name cannot be omitted.
For the file extension, specify “.csv.”
If this option is omitted, inspection results
are output to standard error.

-ignore_files_misra
<file-name>[,<file-name>]

The specified file is not inspected.
- In the form of both a "file name" and "a

file name with a directory" can
describe a file name.
(file, dir/file, drive:/dir/file)

- In directory separator '/' and '¥' are
available.

-check_language_extension It reports on the enhancing key word
(near/far etc.) and extended specifications
(one byte enum) as violation of the rule-1.

-check_no_prototype_extension It reports as a violation to rule-71 when
there is no prototype declaration of the
function modified by __entry or __interrupt.

How to Use SQMlint

- - 6

 Note
 The options -misra_all, -misra_apply, -misra_ignore, -misra_required,

-misra_required_add and -misra_required_remove cannot be specified at the same
time.

How to Use SQMlint

- - 7

3.2. When you’re using M32R family
 To inspect your C source codes against the MISRA C rules, specify the options in the “C
compile for M32R Family” driver that are shown in Table.

 Example:

cc32r test.c -c -misra_all -misra_report report.csv
 SQMlint inspect the test.c for all of the supported MISRA C rules and outputs the
result to report.csv. The test.c also is processed by the compiler.

 Table 3.2.1 M3T-CC32R Compiler Options for MISRA C Inspection

Option Description
-misra_all The source code is checked against all of the

supported MISRA C rules.
In this case, no rule numbers can be
specified.

-misra_apply rule-number
[,rule-number,...]

The source code is checked against only of
the MISRA C rules of the specified rule
numbers. One or more rule numbers always
in decimal must be specified. If any specified
rule number is equal to or less than 0, equal
to or greater than 128, or not included
among the rule numbers to be inspected, an
option error is assumed.
Do not insert spaces between a rule number
and the comma (,) or between the comma (,)
and a rule number.

-misra_ignore rule-number
[,rule-number,...]

The source code is not checked against the
MISRA C rules of the specified rule
numbers. One or more rule numbers always
in decimal must be specified. The source code
is inspected for all of the MISRA C rules,
except the rule numbers specified here. If
any specified rule number is equal to or less
than 0 or equal to or greater than 128, an
option error is assumed.
Do not insert spaces between a rule number
and the comma (,) or between the comma (,)
and a rule number.

-misra_required The source code is checked against all of the
supported MISRA C rules that are classified
as “required.”
In this case, no rule numbers can be
specified.

How to Use SQMlint

- - 8

-misra_required_add rule-number
[,rule-number,...]

The source code is checked against all of the
supported MISRA C rules that are classified
as “required,” as well as against those that
are specified by rule numbers. One or more
rule numbers always in decimal must be
specified. If any specified rule number is
equal to or less than 0 or equal to or greater
than 128, an option error is assumed.
Do not insert spaces between a rule number
and the comma (,) or between the comma (,)
and a rule number.

-misra_required_remove rule-number
[,rule-number,...]

The source code is checked against all of the
supported MISRA C rules that are classified
as “required,” not including those that are
specified by rule numbers. One or more rule
numbers always in decimal must be
specified.
Do not insert spaces between a rule number
and the comma (,) or between the comma (,)
and a rule number.

-misra_report
output-report-file-name

Specify the output report file name to which
the result of MISRA C rule checking is to be
saved. If this option is specified, the output
report file name cannot be omitted.
For the file extension, specify “.csv.”
If this option is omitted, inspection results
are output to standard error.

 Note

 The options -misra_all, -misra_apply, -misra_ignore, -misra_required,
-misra_required_add and -misra_required_remove cannot be specified at the
same time.

How to Use SQMlint

- - 9

3.3. When you’re using SuperH RISC engine family
3.3.1. Options
 To inspect your C source codes against the MISRA C rules, specify the options in the
“C/C++ compiler for SuperH RISC engine” that are shown in Table. Please use only the
capital letter in the option character string when you use the compilation option by the
abbreviated form.

 Example:

shc test.c –misra=all –report_misra=report.csv
 SQMlint inspect the test.c for all of the supported MISRA C rules and outputs the
result to report.csv. The test.c also is processed by the compiler.

 Table 3.3.1.1 Options for MISRA C Inspection

Option Description
MIsra={

 ALL

 APply=rule-number [,rule-number,...] |
 IGnore=rule-number [,rule-number,...] |
 REQUIRED |

 REQUIRED_Add=rule-number [,rule-number,...] |
 REQUIRED_Remove=rule-number [,rule-number,...] |
}

(1) misra=all
The source code is checked against all

of the supported MISRA C rules.
In this case, no rule numbers can be

specified.
(2) misra=apply

The source code is checked against
only of the MISRA C rules of the
specified rule numbers. One or more
rule numbers always in decimal must
be specified. If any specified rule
number is equal to or less than 0, equal
to or greater than 128, or not included
among the rule numbers to be
inspected, an option error is assumed.

(3) misra=ignore
The source code is not checked against

the MISRA C rules of the specified rule
numbers. One or more rule numbers
always in decimal must be specified.
The source code is inspected for all of
the MISRA C rules, except the rule
numbers specified here. If any specified
rule number is equal to or less than 0 or
equal to or greater than 128, an option
error is assumed.

(4) misra=required
The source code is checked against all

of the supported MISRA C rules that
are classified as “required.”
In this case, no rule numbers can be
specified.

How to Use SQMlint

- - 10

 (5) misra= required_add
The source code is checked against all

of the supported MISRA C rules that
are classified as “required,” as well as
against those that are specified by rule
numbers. One or more rule numbers
always in decimal must be specified. If
any specified rule number is equal to or
less than 0 or equal to or greater than
128, an option error is assumed.

(6) misra= required_remove
The source code is checked against all

of the supported MISRA C rules that
are classified as “required,” not
including those that are specified by
rule numbers. One or more rule
numbers always in decimal must be
specified.

Do not insert spaces between a rule

number and the comma (,) or between
the comma (,) and a rule number.

REPort_misra[=<output-report-file-name>] Specify the output report file name to
which the result of MISRA C rule
checking is to be saved. When you omit
the output-report-file-name, the file of the
name of "C-source-file-name + .csv" is
generated.

If this option is omitted, inspection
results are output to standard error.

 Note

 The options –misra=all, -misra=apply, -misra=ignore, -misra=required,
-misra=required_add and –misra=required_remove cannot be specified at the
same time.

3.3.2. Error messages
When SQMlint is installed, the following error messages are added to the compiler.

Error levels are classified into the following five types:

 (I): Information error (Continues compiling processing and outputs the object
program.)

 (W): Warning error (Continues compiling processing and outputs the object
program.)

 (E): Error (Continues compiling processing but does not output the object
program.)

How to Use SQMlint

- - 11

 (F): Fatal error (Aborts compiling processing.)
 (−): Internal error (Aborts compiling processing.)

C3330 (F) MISRA Error

An invalid option is specified.

C3331 (F) MISRA Internal Error

It does not normally occur. (This is an internal error.) Make a note of the internal
error number, file name, line number, and comment in the message, and contact the
support department of the vendor.

C1340 (W) ‘MISRA’ option ignored

The options(-prep and -misra) that cannot be specified simultaneously are specified.
“-misra” option is ignored.

C1340 (W) ‘MISRA’ option ignored

The options(-lang=C++ and -misra) that cannot be specified simultaneously are
specified. “-misra” option is ignored.

C3327 (F) Cannot find “sqmlint.exe”

The execution file(sqmlint.exe) is not found.

How to Use SQMlint

- - 12

3.4. When you’re using H8S, H8/300 series
3.4.1. Options
 To inspect your C source codes against the MISRA C rules, specify the options in the
“C/C++ compiler for H8S, H8/300 series” that are shown in Table. Please use only the
capital letter in the option character string when you use the compilation option by the
abbreviated form.

 Example:

ch38 test.c –misra=all –report_misra=report.csv
 SQMlint inspect the test.c for all of the supported MISRA C rules and outputs the
result to report.csv. The test.c also is processed by the compiler.

 Table 3.4.1.1 Options for MISRA C Inspection

Option Description
MIsra={

 ALL

 APply=rule-number [,rule-number,...] |
 IGnore=rule-number [,rule-number,...] |
 REQUIRED |

 REQUIRED_Add=rule-number [,rule-number,...] |
 REQUIRED_Remove=rule-number [,rule-number,...] |
}

(1) misra=all
The source code is checked against all

of the supported MISRA C rules.
In this case, no rule numbers can be

specified.
(2) misra=apply

The source code is checked against
only of the MISRA C rules of the
specified rule numbers. One or more
rule numbers always in decimal must
be specified. If any specified rule
number is equal to or less than 0, equal
to or greater than 128, or not included
among the rule numbers to be
inspected, an option error is assumed.

(3) misra=ignore
The source code is not checked against

the MISRA C rules of the specified rule
numbers. One or more rule numbers
always in decimal must be specified.
The source code is inspected for all of
the MISRA C rules, except the rule
numbers specified here. If any specified
rule number is equal to or less than 0 or
equal to or greater than 128, an option
error is assumed.

How to Use SQMlint

- - 13

 (4) misra=required
The source code is checked against all

of the supported MISRA C rules that
are classified as “required.”
In this case, no rule numbers can be
specified.

(5) misra= required_add
The source code is checked against all

of the supported MISRA C rules that
are classified as “required,” as well as
against those that are specified by rule
numbers. One or more rule numbers
always in decimal must be specified. If
any specified rule number is equal to or
less than 0 or equal to or greater than
128, an option error is assumed.

(6) misra= required_remove
The source code is checked against all

of the supported MISRA C rules that
are classified as “required,” not
including those that are specified by
rule numbers. One or more rule
numbers always in decimal must be
specified.

Do not insert spaces between a rule

number and the comma (,) or between
the comma (,) and a rule number.

REPort_misra[=<output-report-file-name>] Specify the output report file name to
which the result of MISRA C rule
checking is to be saved. When you omit
the output-report-file-name, the file of the
name of "C-source-file-name + .csv" is
generated.

If this option is omitted, inspection
results are output to standard error.

IGnore_files_misra=< file-name>[,< file-name>] The specified file is not inspected.
- In the form of both a "file name"

and "a file name with a directory"
can describe a file name.
(file, dir/file, drive:/dir/file)

- In directory separator '/' and '¥' are
available.

CHECK_Language_extension It reports on the enhancing key word
(__abs8 etc.) and extended specifications
(one byte enum) as violation of the rule-1.

How to Use SQMlint

- - 14

CHECK_No_prototype_extension It reports as a violation to rule-71 when
there is no prototype declaration of the
function modified by __entry or
__interrupt.

 Note

 The options –misra=all, -misra=apply, -misra=ignore, -misra=required,
-misra=required_add and –misra=required_remove cannot be specified at the
same time.

3.4.2. Error messages
When SQMlint is installed, the following error messages are added to the compiler.

Error levels are classified into the following five types:

 (I): Information error (Continues compiling processing and outputs the object
program.)

 (W): Warning error (Continues compiling processing and outputs the object
program.)

 (E): Error (Continues compiling processing but does not output the object
program.)

 (F): Fatal error (Aborts compiling processing.)
 (−): Internal error (Aborts compiling processing.)

C3330 (F) MISRA Error

An invalid option is specified.

C3331 (F) MISRA Internal Error

It does not normally occur. (This is an internal error.) Make a note of the internal
error number, file name, line number, and comment in the message, and contact the
support department of the vendor.

C1340 (W) ‘MISRA’ option ignored

The options(-prep and -misra) that cannot be specified simultaneously are specified.
“-misra” option is ignored.

C1340 (W) ‘MISRA’ option ignored

The options(-lang=C++ and -misra) that cannot be specified simultaneously are
specified. “-misra” option is ignored.

C3327 (F) Cannot find “sqmlint.exe”

The execution file(sqmlint.exe) is not found.

Report Specifications

- - 15

4. Report Specifications

 The result of MISRA C rule checking consists of the following two levels:
1. Complaining

When any part of the source code deviates from MISRA C rules
2. Warning

When any part of the source code is likely to deviate from MISRA C rules

4.1. Report Message
 Messages that are output to standard error as the result of MISRA C rule checking are
referred to as the report message.
 If a complaining or warning against any MISRA C rules is detected, SQMlint outputs a
message in the format shown below.

4.2. Report File
 When the result of MISRA C rule checking is output to a report file, the report is output in
the CSV (Comma Separated Value) format that can be available in most spreadsheet
applications.
 If a complaining or warning against any MISRA C rules is detected in the source code,
SQMlint outputs particulars in a report file that are comprised of MISRA C rule numbers,
classification of complaining or warning, file name, line numbers and report messages in
that order, with each entry separated by a comma (,). Each report message is followed by a
new-line code.

 Example of an output report file:

Each header for each column is output to the first line.
The inspection results are output to the second and subsequent lines.

[MISRA (rule-number) Complaining: file-name, line-number] message for complainings
[MISRA (rule-number) Warning: file-name, line-number] message for warnings

Rule,Level,File,Line,Message<new line> Header
57,Complaining,"test.c",6 ,"the 'continue' ..."<new line> for a complaining
 (6th line of test.c)
58,Warning,"test.c",10 ,"the 'break' ..."<new line> for a warning
 (10th line of test.c)

Report Specifications

- - 16

4.3. Compile Errors
 The compile errors detected by SQMlint are reported as deviations from MISRA C rule 1.
 If 500 or more compile errors are detected, the compiler aborts the inspection and stops
running SQMlint.
 Such a limitation does not apply to the report messages for MISRA C rules that are
irrelevant to compile errors, so that any number of report messages will be output.

 Note

 The compile errors detected by the compiler that is run after MISRA C rule checking
by SQMlint are not output as report messages. (They are output to standard error as
ordinary compile errors.) Nor are they output to report files.

Confirming the Result

- - 17

5. Confirming the Result

There are following three methods for confirming the result of MISRA C rule checking.
Choose the appropriate method of confirmation depending on the purposes for which you’re
going to verify the inspection result.

5.1. Referring to Report Files to Confirm
 If you wish to make use of inspection results in source code review, save the results in
report files (CSV format) and refer to the saved files for confirmation.
 [Making the most of a report file]

1. Read the report files into your computer using a spreadsheet application, and the
file can be manipulated by, for example, sorting inspection results by rule.

2. Use the SQMmerger utility attached to SQMlint to create a mixed text file that is
produced by merging the inspection result into its C source file. For details on how
to make use of SQMmerger, see Section 5.3 in the later part of this manual.

5.2. Referring to Report Messages to Confirm
 This method may be used to temporarily confirm the inspection result while you compile
the program. You can check the result as if you checked the ordinary compile errors.

5.3. Using the SQMmerger to Confirm
 Use of SQMmerger can merge a report file into a corresponding C source file and produce
a mixed text file. In the mixed text file, a report message for a complaining or warning is
inserted after a corresponding line that has the complaining or warning. You can make use
of the mixed text file in source code review, etc.
 For details on how to use SQMmerger, see the “SQMmerger User’s Manual” included with
your SQMlint.
 Example of a mixed text file:

1 : void func(void);
2 : void func(void)
3 : {
4 : LABEL:
[MISRA(55) Complaining] label ('LABEL') should not be used

5 :
6 : goto LABEL;
[MISRA(56) Complaining] the 'goto' statement shall not be used

7 : }

List of Supported MISRA C Rules

- - 18

6. List of Supported MISRA C Rules

 Table 6.1 lists each specific MISRA C rule for which C source code can be or cannot be
inspected by SQMlint.

Table 6.1 List of Supported MISRA C Rules (v: Can be inspected; *: Can be inspected with
some restrictions; (empty): Excluded from those inspected)

Rule No. Support Rule No. Support Rule No. Support Rule No. Support

1 v 33 v 65 v 97
2 34 v 66 98
3 35 v 67 99 v
4 36 v 68 v 100
5 v 37 v 69 v 101 v
6 38 v 70 * 102 v
7 39 v 71 v 103 v
8 v 40 v 72 * 104 v
9 41 73 v 105 v

10 42 v 74 v 106 *
11 43 v 75 v 107
12 v 44 v 76 v 108 v
13 v 45 v 77 v 109
14 v 46 * 78 v 110 v
15 47 79 v 111 v
16 48 v 80 v 112 v
17 * 49 v 81 113 v
18 v 50 v 82 v 114
19 v 51 * 83 v 115 v
20 v 52 84 v 116
21 * 53 v 85 v 117
22 * 54 * 86 118 v
23 55 v 87 119 v
24 v 56 v 88 120
25 57 v 89 121 v
26 58 v 90 122 v
27 59 v 91 123 v
28 v 60 v 92 124 v
29 v 61 v 93 125 *
30 62 v 94 126 v
31 v 63 v 95 127 v
32 v 64 v 96

Handling of Each MISRA C Rule

- - 19

7. Handling of Each MISRA C Rule

 This chapter describes, in order of rule numbers, how each of the MISRA C rules will be
handled by SQMlint. The following shows how to read the explanation of each rule.

*Requirement texts are based on the “Guidelines for the Use of the C Language in
Vehicle Based Software” issued by MISRA.

 The following describes the meaning of the terms used in the explanation of each rule.
Term Meaning of the term

Identifier Refers to any of the label name, tag name, typedef name, variable
name, function name, member name or enumerator name.

Translation
unit

Refers to the include files written in one source file and the source
file.

Object Refers to the data storage that has the value and size corresponding
to a specified type. For example, variables are an object.

 About the typedef names used in the explanation of each rule
The following typedef names are used in the explanation of each rule to represent the
types of variables, etc.

typedef name Meaning of typedef name
SCHAR 1-byte signed character type (signed char type)

UCHAR
1-byte unsigned character type (unsigned char
type)

SINT16 2-byte signed integer type (signed short type)

UINT16
2-byte unsigned integer type (unsigned short
type)

SINT32 4-byte signed integer type (signed int type)

UINT32
4-byte unsigned integer type (unsigned int
type)

SLONG 4-byte signed integer type (signed long type)

ULONG
4-byte unsigned integer type (unsigned long
type)

FLOAT 4-byte floating-point type (float type)
DOUBLE 8-byte floating-point type (double type)

Section-number Rule number
(Category of rule): requirement text on MISRA C

 Interpretation
Describes how the rule is interpreted at Renesas.

 Functional specification
Describes the content of inspection in detail.

 Precaution
 Limitation

Handling of Each MISRA C Rule

- - 20

7.1. Rule 1

(required): All code shall conform to ISO 9899 standard C, with no extensions

permitted.

 Interpretation
No language extensions that are not compliant with ISO9899:1990 can be used. All
codes must conform to ISO9899:1990.

 Functional specification
If any language extensions that are not compliant with ISO9899:1990 are used,
SQMlint reports them as a complaining.
If any code does not conform to ISO9899:1990, SQMlint reports it as a complaining.

 [note]

 Even if the -misra ignore 1 option is specified, the compile errors detected by SQMlint
are reported as deviations from MISRA C rule 1.

7.2. Rule 2 (Not supported)

(advisory): Code written in languages other than C should only be used if there is a

defined interface standard for object code to which the
compilers/assemblers for both languages conform.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.
For our supported C compilers, there is a defined standard for interfacing with our
supported assemblers.

7.3. Rule 3 (Not supported)

(required): Assembly language functions that are called from C should be written as
C functions containing only in-line assembly language, and in-line
assembly language should not be embedded in normal C code.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

Handling of Each MISRA C Rule

- - 21

7.4. Rule 4 (Not supported)

(advisory): Provision should be made for appropriate run-time checking.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.5. Rule 5

 (required): Only those characters and escape sequences which are defined in the
ISO C standard shall be used.

 Interpretation
Only those characters and escape sequences that are compliant with ISO9899:1990 can
be used.

 Functional specification
If kanji code, katakana or undefined escape sequence is used in any character constant
or string literal, SQMlint reports it as a complaining.

7.6. Rule 6 (Not supported)

 (required): Values of character types shall be restricted to a defined and
documented subset of ISO 10646-1.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

Handling of Each MISRA C Rule

- - 22

7.7. Rule 7 (Not supported)

(required): Trigraphs shall not be used.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.8. Rule 8

(required): Multibyte characters and wide string literals shall not be used.

 Interpretation
Multibyte characters, wide string literals and wide character constants cannot be used.

 Functional specification
The multibyte character refers to a description like ‘ab’.
The wide character constant refers to a description like L‘AB’.
The wide string literal refers to a description like L“ABCD”.
If any of these characters or strings is detected, SQMlint reports it as a complaining.

7.9. Rule 9 (Not supported)

(required): Comments shall not be nested.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.10. Rule 10 (Not supported)

(advisory): Sections of code should not be 'commented out'.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

Handling of Each MISRA C Rule

- - 23

7.11. Rule 11 (Not supported)

(required): Identifiers (internal and external) shall not rely on significance of more
than 31 characters. Furthermore the compiler/linker shall be checked to
ensure that 31 characters significance and case sensitivity are
supported for external identifiers.

 Interpretation
Any identifier cannot have the same name in up to 31 characters.

 Functional specification
This rule is not supported.
Our supported C compilers and linkers support identifiers consisting of more than 31
characters. They also discriminate between the uppercase and lowercase letters.

Handling of Each MISRA C Rule

- - 24

7.12. Rule 12

(advisory): No identifier in one name space shall have the same spelling as an
identifier in another name space.

 Interpretation
The name space can be classified into four: labels, tags, members and other identifiers
(function name, variable name other than member, enumerator name and typedef
name). This rule means that any name space, irrespective of its kind, cannot have the
same spelling (same name).
The situation where the same spelling is used in name spaces of the same kind is not
the subject of this rule. For example, this applies to the case where two or more
different structures have members with the same spelling.
This rule may be interpreted as accepting use of the same identifier in two or more
name spaces providing it has different scopes in each.

 Functional specification
If any label, tag, member or other identifier is found that has the same spelling as an
identifier in another name space in the same scope, SQMlint reports it as a
complaining.

 Example:
 void func(void)
 {
 struct tag { SINT32 m; }s;
 SINT32 tag; /* Although duplicate tag and variable names are accepted in
 ISO9899:1990 specifications, they deviate from rule 12.
*/
 }

No warnings are output even when members with the same name are used in different
structures in the same scope.

 Example:
 struct tag1 { SINT32 m; }s1;
 struct tag2 { SINT32 m; }s2;
 /* The member variable m in the structure tag2 and the member variable m
 in the structure tag1 may have the same name. */

Handling of Each MISRA C Rule

- - 25

7.13. Rule 13

(advisory): The basic types of char, int, short, long, float and double should not be
used, but specific-length equivalents should be typedef'd for the specific
compiler, and these type names used in the code.

 Interpretation
To allow for compiler-independent C source code, this rule is intended to clarify the
data size. Therefore, all basic types, not just the above-captioned types, but also
including signed int, are checked to see if they are typedef’d.

 Functional specification
If any names of basic types are used in declarations or cast expressions directly
without being typedef’d, SQMlint reports them as a complaining.
Reported type names are detailed below.

(1) char, int, short, long, float, double, long double, _Bool(NC only), long long(NC only)

 Example:
 int i;
 int* p;
 int ary[5];

(2) signed and unsigned types of (1)

 Example:
 signed int si;

(3) Statements where types are implicitly declared to be int

 Example:
 const i;
 signed func(void);

Handling of Each MISRA C Rule

- - 26

7.14. Rule 14

(required): The type char shall always be declared as unsigned char or signed char.

 Interpretation
As captioned.

 Functional specification
 If a plain-char (without unsigned or signed) is used in a declaration or a cast
expression, SQMlint reports it as a complaining. Similarly, if a plain-char, is used for
the object pointed to by a pointer, SQMlint reports it as a complaining.

 Precaution

If the type char is used after being typedef’d as described below, SQMlint reports only
where the typedef name is defined but not where the typedef name is used.

 Example:
 typedef char CHAR; /* Complaining */
 CHAR c; /* No Complaining */
 char* p; /* Complaining */

7.15. Rule 15 (Not Supported)

(advisory): Floating-point implementations should comply with a defined
floating-point standard.

 Interpretation
The implementations of our supported C compilers are compliant with IEEE754.

 Functional specification
This rule is not supported.

7.16. Rule 16 (Not Supported)

(required): The underlying bit representations of floating-point numbers shall not be
used in any way by the programmer.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

Handling of Each MISRA C Rule

- - 27

7.17. Rule 17

(required): typedef names shall not be reused.

 Interpretation
The typedef name cannot be reused in any code or file.

 Functional specification
If the typedef name is found the same as any one of the identifiers in the entire scope
of a translation unit, SQMlint reports it as a complaining.

 Limitation

Inspection is not performed across the translation units.

Handling of Each MISRA C Rule

- - 28

7.18. Rule 18

(advisory): Numeric constants should be suffixed to indicate type, where an
appropriate suffix is available.

 Interpretation
There will be a case where constants are implicitly converted when used in expressions.
The captioned appropriate suffix (e.g., u, l, ul or f) refers to the one that can
represent the type to which constants are converted.

 Functional specification

If any constant used in an expression meets all of the conditions described below,
SQMlint reports it as a complaining.
- The constant is implicitly converted.
- Although its converted type can be specified by a suffix, No suffix or a suffix that

is different from its type is used for the constant.
- Operand constant of the unary + operator, operand constant of the unary –

operator, constant enclosed with round bracket, and those combinations.

Example 1:
 unsigned int ui;
 ui = ui + 3; /* Complaining, because 3 (int type) is converted
 to the unsigned int type */
 This should be correct to
 ui = ui + 3u;

Example 2:
 long l;
 l = -3; /* Complaining, because -3 (int type) is converted
 to the long type */
 This should be correct to
 l = -3L;

 Precaution

Example 1:
 FLOAT f;
 f = f + 1.0;
 Because the value 1.0 has type double, f is extended to double. The value 1.0 is not
converted and operated on directly as being double, this is not considered as a
deviation.

Example 2:
 UINT32 l;
 l = l + 'a'; /* Because The letter ‘a’ is not numeric, it is excluded from
 those inspected. */

Handling of Each MISRA C Rule

- - 29

7.19. Rule 19

(required): Octal constants (other than zero) shall not used.

 Interpretation
Octal constants often cause a descriptive error when writing constants because they
are not easily distinguishable from decimal constants. Therefore, octal constants other
than zero cannot be used.

 Functional specification
If any octal constants other than zero are used, SQMlint reports them as a
complaining.

7.20. Rule 20

(required): All object and function identifiers shall be declared before use.

 Interpretation
This rule prohibits the following:
- To call functions while they are not declared or before they are declared
- To use undeclared variables

(Use of undeclared variables results in generating a compile error in
ISO9899:1990-compliant C compilers.)

 Functional specification

If any undeclared variables or functions are used, SQMlint reports them as a
complaining.

Handling of Each MISRA C Rule

- - 30

7.21. Rule 21

(required): Identifiers in an inner scope shall not use the same name as an identifier
in an outer scope, and therefore hide that identifier.

 Interpretation

If a scope has another scope in it, the scopes inside and outside of another are
interpreted as an inner scope and an outer scope, respectively. This rule prohibits
declaring, for example, variables in a function that have the same name as one of
variables declared at file scope. However, identifiers and members may have the same
name.

 Functional specification
If any identifier in a function has the same name as another identifier in an outer
scope, SQMlint reports it as a complaining.

 Example:
 SINT32 val;
 void func(void)
 {
 SINT32 val; /* Because the name of this variable val and that of
 the global variable val are the same, this deviates from
 rule 21. */
 }

 Precaution
The following case is excluded from those to be inspected, because the inner variable
name is not hidden.

 Example:
 void func(void)
 {
 SINT32 val;
 }
 SINT32 val; /* The global variable val does not hide
 the upper local variable val. */

 Limitation
Inspection is not performed across the translation units.

Handling of Each MISRA C Rule

- - 31

7.22. Rule 22

(advisory): Declarations of objects should be at function scope unless a wider
scope is necessary.

 Interpretation
If the variables defined in file scope (not including extern-declared variables) are not
going to be used in more than one function, they should be defined in function scope.

 Functional specification
If the variables defined in file scope (not including extern-declared variables) are being
used in more than one function, SQMlint reports them as a warning.

 Limitation

Inspection is not performed across the translation units.

7.23. Rule 23 (Not Supported)

(advisory): All declarations at file scope should be static where possible.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

Handling of Each MISRA C Rule

- - 32

7.24. Rule 24

(required): Identifiers shall not simultaneously have both internal and external
linkage in the same translation unit.

 Interpretation
Identifiers with the same name cannot have a different linkage (e.g., extern or static)
irrespective of their scope.

 Functional specification

If any identifiers with the same name have a different linkage, SQMlint reports them
as a complaining.

 Example:
 static SINT32 a;
 SINT32 a; /* Because the variable a is tentatively defined after being
 static-declared, it deviates from rule 24. */

 static SINT32 b;
 extern SINT32 b; /* Because the static declaration is followed by
 an extern declaration, it deviates from rule 24. */

 static SINT32 s1;
 static SINT32 s2;
 void func(void)
 {
 extern SINT32 s1; /* Because the static declaration is followed by an
 extern declaration, it deviates from rule 24. */
 SINT32 s2; /* Although the variable ‘s2’ does not deviate from rule 24,
 it deviates from rule 21. */

7.25. Rule 25 (Not supported)

(required): An identifier with external linkage shall have exactly one external
definition.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.
If there is a deviation from rule 25, an error is assumed in the linker.

Handling of Each MISRA C Rule

- - 33

7.26. Rule 26 (Not Supported)

(required): If objects or functions are declared more than once they shall have
compatible declarations.

 Interpretation
Incompatible declarations between two different files such as “extern int a;” in one
file and “extern float a;” in another are not accepted.

 Functional specification
This rule is not supported.
If variables declared in the same file have different types, SQMlint reports in complain
level.

7.27. Rule 27 (Not Supported)

(advisory): External objects should not be declared in more than one file.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.28. Rule 28

(advisory): The register storage class specifier should not be used.

 Interpretation
As captioned.

 Functional specification
If any register storage class specifier is used, SQMlint reports it as a complaining.

 Example:
 void func(register SINT32 arg) /* Complaining */
 {
 register SINT32 i; /* Complaining */
 }

Handling of Each MISRA C Rule

- - 34

7.29. Rule 29

(required): The use of a tag shall agree with its declaration.

 Interpretation
(1) If when initializing the structure or union that is given a tag, the expressions to

initialize its members cannot be assigned to its members, a deviation from this
rule is considered. This is to prevent unintended use of a structure or union in
cases where a different structure or union with the same tag name as in one file
is defined in another file.
Note that this causes a compile error in ISO9899:1990-compliant C compilers.

Example:
 struct S1 { SINT32 i; } s1 = { "abc" }; /* Complaining
 and at the same time a compile error */
 struct { SINT32; } s2 = { "abc" }; /* Compile error only,
 because no tags are given */
 struct S2 { SLONG l; } s3 = { 0ul }; /* Excluded from those
 to be inspected
*/
 struct S3 { ULONG ul; } s4 = { (ULONG)"abc" }; /* Excluded
 from those to be inspected */
 struct T t;
 void func(void)
 {
 struct S1 s = t; /* Complaining and at the same time
 a compile error */
 }

(2) Initializing variables of an enumerated type with constants or expressions that
are not an enumerator is interpreted as deviating from this rule.

Example:
 enum NUM { ONE = 1, TWO = 2 };
 enum NUM n = 1; /* Complaining */

(3) Casting constants or variables of an integer type with an enumerated type is
also interpreted as deviating from this rule.

Example:
 enum NUM { ONE = 1, TWO = 2 };
 SINT32 n = 2;
 (enum NUM)1; /* Complaining */
 (enum NUM)n; /* Complaining */

Handling of Each MISRA C Rule

- - 35

 Functional specification
If variables of an enumerated type are initialized with constant expressions that are
not an enumerator, SQMlint reports them as a complaining.
If constants or variables of an integer type are cast with an enumerated type, SQMlint
reports them as a complaining.
If when initializing the structure or union that is given a tag, the expressions to
initialize its members cannot be assigned to its members, SQMlint reports them as a
complaining.
If structures or unions are initialized with a different structure or union, SQMlint
reports them as a complaining.

Handling of Each MISRA C Rule

- - 36

7.30. Rule 30 (Not supported)

(required): All automatic variables shall have been assigned a value before being
used.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.31. Rule 31

(required): Braces shall be used to indicate and match the structure in the non-zero
initialisation of arrays and structures.

 Interpretation
To initialize arrays or structures with an initializer list (a list of expressions separated
by a comma, each representing the initial value), braces must be used to indicate that
array or structure.

 Example:
 struct S {
 struct T { SINT32 i; SINT32 j; } t;
 SINT32 x;
 } s = { { 1, 2 }, 3 }; /* Braces {1, 2} are required */

 Functional specification
If any initializer list does not include enclosing braces, indicating the initializer list
part to initialize structures and that to initialize arrays, SQMlint reports it as a
complaining.
However, this rule does not apply to the initializers (expressions representing the
initialize value) that initialize unions. Nor does this rule apply to the case where the
initializers are a string literal (string enclosed in double-quotes).

 Example:
 SINT32 arr[2][3] = { 1,2,3, 4,5,6+1 }; /* Complaining */
 This should be correct to
 SINT32 arr[2][3] = { {1,2,3}, {4,5,6+1} };

Handling of Each MISRA C Rule

- - 37

7.32. Rule 32

(required): In an enumerator list, the '=' construct shall not be used to explicitly
initialise members other than the first, unless all items are explicitly
initialised.

 Interpretation
As captioned.

 Functional specification

It is in only one of the following cases that the ‘=‘ can be used in an enumerator. If any
enumeration declaration is detected where neither cases hold true, SQMlint reports it
as a complaining.

- Only the first enumerator is initialized with ‘=‘
- All enumerators are initialized with ‘=‘

 Example:
 /* No complaining */
 enum E1 { a1, b1, c1 };
 enum E2 { a2 = 1, b2, c2 };
 enum E3 { a3 = 1, b3 = 3, c3 = 5 };

 /* Complaining */
 enum E4 { a4, b4 = 3, c4 };
 enum E5 { a5 = 1, b5, c5 = 5 };

Handling of Each MISRA C Rule

- - 38

7.33. Rule 33

(required): The right hand operator of a && or || operator shall not contain side
effects.

 Interpretation
The operators && and || are characteristic in that the evaluation result of the
left-hand side expression determines whether or not to evaluate the right-hand side
expression. Writing an expression that may cause side effects when the right-hand side
expression is evaluated will result in global variables becoming rewritten or not
rewritten depending on the evaluation result of the left-hand side expression. The
purpose of this rule is to prevent such indeterminate behaviors.
Following operations are side effects:
− Modifying a abject(as when modifying a variable or the object pointed to by a

pointer)
− Accessing a volatile object(as when referencing or modifying the volatile object)
− Modifying a file
− Calling a function that does any of the above operations

 Functional specification

If any expression is detected where side effects are likely to occur on the right-hand
side of the operator && or ||, SQMlint outputs a report. In this case, if side effects on
the right-hand side expression are caused by only a function call, SQMlint reports it as
a warning. Otherwise, it reports it as a complaining.

 Example:
 volatile UINT16 us;
 SINT16 n;
 if ((n == 0) || is_empty()) { /* Warning */
 if ((n == 0) && (us == 0)) { /* Complaining */

Handling of Each MISRA C Rule

- - 39

7.34. Rule 34

(required): The operands of a logical && or || shall be primary expressions.

 Interpretation
Here, the primary expression refers to variables, functions, enumerators and constants
that are enclosed in parentheses. By limiting the left-hand and right-hand sides of the
operators && and || to only the primary expressions, this aims to guarantee that they
are logical expressions intended and make them easily to read.

 Functional specification

Unless either side of the operator && or || is a primary expression, SQMlint reports it
as a complaining.

 Example 1:
 if (a==0 && b==0) { /* Complaining */
 This should be correct to
 if ((a==0) && (b==0)) {

 Example 2:
 if (is_empty() || is_zero) { /* No complaining because both function
 and variable are primary expressions */

 Example 3:
 if ((a==0) && (b==0) || (c==0)) { /* Complaining because the expression
 on the left-hand side of ||
 is not a primary expression */
 This should be correct to
 if (((a==0) && (b==0)) || (c==0)) {

Handling of Each MISRA C Rule

- - 40

7.35. Rule 35

(required): Assignment operators shall not be used in expressions which return
Boolean values.

 Interpretation
The following expressions are interpreted as an expression that returns Boolean
values:

 Conditional expression
- Expression in () of if or else if
- Expression in () of while
- Second expression in parentheses of for
- Expression in the first operand of ?:

 Expressions on the left-hand and right-hand sides of a logical combination
operator (&& or ||)

 Expression on the right-hand side of the operator !

 Functional specification

If an assignment operator is included in any conditional expression, in the left-hand or
right-hand side expression of the logical combination operator (&& or ||), or in the
right-hand side expression of the logical negation operator (!), SQMlint reports it as a
complaining.

7.36. Rule 36

(advisory): Logical operators should not be confused with bitwise operators.

 Interpretation
A statement if(a & b), for example, is regarded as an abbreviated version of if((a &
b)!=0), but it may perhaps be intended to mean if(a && b) by misusing the operators
& and && or perhaps erroneously written. This rule detects such misused statements in
the following expressions:

 Conditional expression
- Expression in () of if or else if
- Expression in () of while
- Second expression in parentheses of for
- Expression in the first operand of ?:

 Expressions on the left-hand and right-hand sides of a logical combination
operator (&& or ||)

 Expression on the right-hand side of the operator !

 Functional specification

If the last operator to be evaluated in any conditional expression, in the left-hand or
right-hand side expression of the logical combination operator (&& or ||), or in the
right-hand side expression of the logical negation operator (!) is &, | or ~ of a bitwise

Handling of Each MISRA C Rule

- - 41

operator, SQMlint reports it as a complaining.

7.37. Rule 37

(required): Bitwise operations shall not be performed on signed integer types.

 Interpretation
As captioned.
Performing ^ operations on signed integer types is also thought to be prohibited.

 Functional specification

If the types of the following expressions are signed integer types, SQMlint reports
them as a complaining.
- The right-hand side expression of a bitwise operator (~)
- The left-hand and/or right-hand side expression of a bitwise operator (& , ^ or |)
- The left-hand side expression of a bitwise shift operator(<< or >>)
- The left-hand and/or right-hand side expression the compound assignment

operator of a bitwise operator (&=, ^= or |=)
- The left-hand side expression of the compound assignment operator of a bitwise

shift operator (<<= or >>=)

Example:
 SINT32 si;
 si = si >> 1u; /* Shift operations performed on signed int types constitute
 a deviation from this rule */

 Precaution

If the expression to be inspected is a signed constant value, SQMlint also reports it as
a complaining

 Example:
 0xFFFF << 4u;

Here, because the 0xFFFF to be inspected for this rule is the int type and a signed
constant value, SQMlint reports it as a complaining. To avoid this deviation, the
expression should be corrected to the one shown below.

 0xFFFFU << 4u;

Handling of Each MISRA C Rule

- - 42

7.38. Rule 38

(required): The right hand operand of a shift operator shall lie between zero and
one less than the width in bits of the left hand operand (inclusive).

 Interpretation
As captioned.

 Functional specification

If the right-hand side operand of a shift operator (<<, >>, <<= or >>=), the shift count,
is a constant expression and the value of that expression is equal to or greater than the
width in bits represented by the type of the left-side expression, SQMlint reports it as
a complaining.

7.39. Rule 39

(required): The unary minus operator shall not be applied to an unsigned
expression.

 Interpretation
As captioned.

 Functional specification

If the right-hand side expression of the unary operator ‘-’ is an unsigned type of
expression, SQMlint reports it as a complaining.

 Example:
 UINT16 us;
 -us; /* Complaining */

Handling of Each MISRA C Rule

- - 43

7.40. Rule 40

(advisory): The sizeof operator should not be used to expressions that contain side
effect.

 Interpretation

Following operations are side effects:
− Modifying a abject(as when modifying a variable or the object pointed to by a

pointer)
− Accessing a volatile object(as when referencing or modifying the volatile object)
− Modifying a file
− Calling a function that does any of the above operations

 Functional specification

If the operand of the sizeof operator (sizeof(this expression)) contains any
expression that is likely to cause side effects, SQMlint outputs a report. If no function
calls are included in the relevant expression, SQMlint reports them as a complaining.
If function calls are included, SQMlint reports them as a warning.

7.41. Rule 41 (Not supported)

(advisory): The implementation of integer division in the chosen compiler should be
determined, documented and taken into account.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.42. Rule 42

(required): The comma operator shall not be used, except in the control expression
of a for loop.

 Interpretation
As captioned.

 Functional specification

If a comma operator is used in expressions other than those in () of for statements,
SQMlint reports it as a complaining.

Handling of Each MISRA C Rule

- - 44

7.43. Rule 43

(required): Implicit conversion which may result in a loss of information shall not be
used.

 Interpretation
The conversions that result in a loss of information refer to the case where the
converted type cannot represent the pre-conversion value. If some value is assigned to,
or has parameters or returns passed to, or is initialized to a type lower in precision or
smaller in size than that, a loss of information may be incurred by conversion to such a
type.
Conversions in the following cases will cause a loss of information:
- When a variable is converted to a type smaller in size than that
- When a signed type is converted to an unsigned type
- When an unsigned type is converted to a signed type
- When a floating-point type is converted to an integer type
- When a constant expression is converted to a type that cannot hold the value of

the constant

 Functional specification
If a conversion that will cause a loss of information is detected in the following context,
SQMlint reports it as a complaining:
- When a value is assigned
- When passed as a parameter
- When returned as a return value
- When initialized

If a constant expression is assigned to or initialized to a bit-field that cannot hold the
value of the constant, because in this case too a loss of information is incurred,
SQMlint also reports it as a complaining.
This rule is inspected for integer, floating-point and enumerated types and pointers.

Handling of Each MISRA C Rule

- - 45

7.44. Rule 44

(advisory): Redundant explicit casts should not be used.

 Interpretation
The following two cases are interpreted as redundant explicit casts:
- When cast to the same type as before
- When cast to the same type as will be assumed after an implicit conversion

 Functional specification

A value may be cast to the same type as before, either directly or through multiple
casts. In the former case, SQMlint reports it as a complaining, whereas in the latter
case, SQMlint reports it as a warning.
When a value is cast to the same type as will be assumed for it after an implicit
conversion, SQMlint reports it as a complaining.

 Example:
 SCHAR c;
 SINT16 s;
 SINT32 n;
 SLONG l;
 ULONG ul;
 DOUBLE d;
 (SINT32)n; /* Complaining */
 (SLONG)(SLONG)n; /* Complaining */
 (SINT16)(SLONG)s; /* Warning */
 (SINT16)(SCHAR)s; /* Warning */
 /* If the upper digits needs to be set to 0, a mask should be used */
 n = (SINT32)c + (SINT32)c; /* Complaining (same as will be assumed
 after implicit conversion)*/
 n = (SINT32)c + c; /* Complaining (same as will be assumed
 after implicit conversion) */
 n = c + (SINT32)c; /* Complaining (same as will be assumed
 after implicit conversion) */
 d = (DOUBLE)1 / (DOUBLE)3; /* Complaining for the second cast (same as
 will be assumed after implicit conversion) */
 d = (DOUBLE)1 / 3; /* No complaining */
 d = 1 / (DOUBLE)3; /* No complaining */
 ul = (ULONG)1; /* Complaining */

Handling of Each MISRA C Rule

- - 46

7.45. Rule 45

(required): Type casting from any type to or from pointers shall not be used.

 Interpretation
As captioned.

 Functional specification

If a cast by a pointer type or, a cast on a pointer or on a function call that returns a
pointer is detected, SQMlint reports it as a complaining.

Handling of Each MISRA C Rule

- - 47

7.46. Rule 46

(required): The value of an expression shall be the same under any order of
evaluation that the standard permits.

 Interpretation
The orders of evaluation for expressions from one sequence point (function call (), &&,
||, ?:, ;, or comma operator) to the next sequence point is unspecified. If expressions
that will cause the same side effect are included in between, they will be evaluated in
varying orders depending on the compilers used and the intended result may not be
obtained. This rule prohibits statements that will cause such a problem.
Following operations are side effects:
− Modifying a abject(as when modifying a variable or the object pointed to by a

pointer)
− Accessing a volatile object(as when referencing or modifying the volatile object)
− Modifying a file
− Calling a function that does any of the above operations

 Functional specification

If the following expressions are included between one sequence point to the next
sequence point, SQMlint outputs a report:

(1) Expressions that modify the same variable (assignment operation, ++, and --
operation)

(2) Expressions that contain the same volatile variable
(3) More than one function call

However, if one of the following cases holds true, SQMlint reports it as a warning.
Otherwise, SQMlint reports it as a complaining.
The cases of (1) and (2) above, where the object is a structure or union member variable
The cases of (1) and (2) above, where the object is an array element
The case of (3) above

Example:
 ULONG ul = 10UL;

 volatile ULONG v;
 ul = (ul++) + ul; /* Complaining */
 ul = v + v; /* Complaining */
 ul = func (pop(), push()); /* Warning */

 Precaution

The following example is not considered to be a deviation from the rule, because
arguments are always evaluated prior to the relative function calls.:
 x = func(y = z / 3);

Handling of Each MISRA C Rule

- - 48

 Limitation
Inspection is not performed in cases where the same object is pointed to by pointers
and it has side effects. An example of this case is shown below.

 Example:
 *p = *p++ + *p++;

Handling of Each MISRA C Rule

- - 49

7.47. Rule 47 (Not supported)

(advisory): No dependence should be placed on C's operator precedence rules in
expressions.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.48. Rule 48

(advisory): Mixed precision arithmetic should use explicit casting to generate the
desired result.

 Interpretation
This rule is provided to prevent a loss of information as will be caused by arithmetic
operations performed with an unintended low precision due to implicit conversions.
If the result of an operation is operated on with a higher precision than that next, the
final result may not be thought to have been derived by calculations with the expected
precision.

 Functional specification
If the result of an arithmetic four-rules operation (+, -, * or /) is used in one of the
operations shown below with a higher precision than that, SQMlint reports it as a
complaining.

- Arithmetic operation (+, -, *, / or %)
- Assignment operation (=, +=, -=, *=, /=, or %=)
- Cast

If the result of an arithmetic four-rules operation is used to initialize a variable whose
type has a higher precision than that, SQMlint also reports it as a complaining.

 Example:
 UINT16 x = 65535u;
 UINT16 y = 10u;
 UINT32 ul1 = (UINT32) (x + y); /* Complaining (x + y equals 9) */
 To change the above statement as intended, correct it to
 UINT32 ul2 = (UINT32)x + (UINT32)y; /* x + y equals 65545 */

Handling of Each MISRA C Rule

- - 50

7.49. Rule 49

(advisory): Tests of a value against zero should be made explicit, unless the
operand is effectively Boolean.

 Interpretation
Expressions whose types are effectively Boolean are thought to be such expressions
that the last operator to be evaluated is &&, ||, !, <, >, <=, >=, == or !=.
If the following expressions are not an expression whose type is effectively Boolean,
comparisons with zero are considered necessary:

 Conditional expression
- Expression in () of if or else if
- Expression in () of while
- Second expression in parentheses of for
- Expression in the first operand of ?:

 Expressions on the left-hand and right-hand sides of a logical combination
operator (&& or ||)

 Expression on the right-hand side of the operator !

 Functional specification

If the last operator to be evaluated in any conditional expression, in the left-hand and
right-hand side expressions of the logical combination operator (&& or ||), or in the
right-hand side expression of the logical negation operator (!) is none of the operators
&&, ||, !, <, >, <=, >=, == or !=, SQMlint reports it as a complaining.

 Example:
 ULONG *pl;
 if (pl) { /* Complaining */
 This should be corrected to
 if (pl != 0) {

7.50. Rule 50

(required): Floating-point variables shall not be tested for exact equality or
inequality.

 Interpretation
As captioned.

 Functional specification

If the either side expression of the operator == or != is a floating-point type, SQMlint
reports it as a complaining.

 Example:
 if (d == 1.0) { /* Complaining */

Handling of Each MISRA C Rule

- - 51

7.51. Rule 51

(advisory): Evaluation of constant unsigned integer expressions should not lead to
wrap-around.

 Interpretation
If the evaluation of a constant unsigned integer expression results in overflowing or
underflowing the range of values that representable for the type of the result,
wrap-around is considered for the result.

 Functional specification

If the evaluation of a constant expression whose result type is an unsigned integer
constant results in an overflow or underflow, SQMlint reports it as a complaining.

 Example:
 ULONG ul = 3UL – 8UL; /* Complaining (underflow) */

 Limitation
Inspection is not performed on constant expressions in macros.

 Example:
 #if (1u - 2u)

7.52. Rule 52 (Not supported)

(required): There shall be no unreachable code.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

Handling of Each MISRA C Rule

- - 52

7.53. Rule 53

(required): All non-null statements shall have a side-effect.

 Interpretation
As captioned.
Following operations are side effects:
− Modifying a abject(as when modifying a variable or the object pointed to by a

pointer)
− Accessing a volatile object(as when referencing or modifying the volatile object)
− Modifying a file
− Calling a function that does any of the above operations

 Functional specification

If any expression which is not a function call and does not produce a side effect is
detected, SQMlint reports it as a complaining. However, no reports are output when
function calls that do not produce a side effect are encountered.

7.54. Rule 54

(required): A null statement shall only occur on a line by itself, and shall not have
any other text on the same line.

 Interpretation
Neither comments nor expressions can be written before and after a null statement (;)
on the same line as the statement.
 a = 1; ; /* Complaining */
 ; a = 1; /* Complaining */
 if (1); /* Complaining */
 ;; /* Complaining */

 Functional specification

If any expression is written before or after a null statement, SQMlint reports it as a
complaining.

 Limitation

Inspection cannot be performed in cases where a null statement is preceded or followed
by a comment or macro description.

 Example:
 #define TEXT
 void func(void)
 {
 TEXT; /* In this case, inspection cannot be performed. */
 }

Handling of Each MISRA C Rule

- - 53

7.55. Rule 55

(advisory): Labels should not be used, except in switch statements.

 Interpretation
As captioned.

 Functional specification
If labels are defined, SQMlint reports them as a complaining.

7.56. Rule 56

(required): The goto statement shall not be used.

 Interpretation
As captioned.

 Functional specification
If goto statements are used, SQMlint reports them as a complaining.

7.57. Rule 57

(required): The continue statement shall not be used.

 Interpretation
As captioned.

 Functional specification
If continue statements are used, SQMlint reports them as a complaining.

Handling of Each MISRA C Rule

- - 54

7.58. Rule 58

(required): The break statement shall not be used (except to terminate the cases of
a switch statement).

 Interpretation
As captioned.

 Functional specification
If break statements are used, except to terminate the conditions of a switch statement,
SQMlint reports them as a complaining.
If break statements are used in local blocks of a case clause, SQMlint reports them as a
complaining.

 Example:
 case 1:
 {
 a = 0;
 break; /* Complaining */
 }

7.59. Rule 59

(required): The statements forming the body of an if, else if, else, while, do ... while,
or for statement shall always be enclosed in braces.

 Interpretation
As captioned.
A similar rule applies to switch statements too.

 Functional specification
Unless said statements are enclosed in { }, SQMlint reports them as a complaining.

Handling of Each MISRA C Rule

- - 55

7.60. Rule 60

(advisory): All if, else if constructs should contain a final else clause.

 Interpretation
This rule is interpreted as shown by examples below.

 Example:
 if (a == 1) {
 } else if (a < 1) {
 } /* An else statement is always required here. */

 if (x < 0) {
 } /* An else statement may be omitted here. */

 Functional specification

If the matching else for else if is not found, SQMlint reports it as a complaining.

7.61. Rule 61

(required): Every non-empty case clause in a switch statement shall be terminated
with a break statement.

 Interpretation
As captioned.

 Functional specification
If any non-empty case clause is not followed by a break statement at the end of it,
SQMlint reports it as a complaining.

7.62. Rule 62

(required): All switch statements should contain a final default clause.

 Interpretation
As captioned.

 Functional specification
If any switch statement is not followed by a default clause at the end of it, SQMlint
reports it as a complaining.

Handling of Each MISRA C Rule

- - 56

7.63. Rule 63

(advisory): A switch expression should not represent a Boolean value.

 Interpretation
Expressions that represent a Boolean value are assumed to be such an expression that
the last operator to be evaluated is &&, ||, !, <, >, <=, >=, == or !=.
The switch statement shown below is interpreted as deviating from this rule, because
its processing involves determining whether the variable ‘a’ has the value 1 or not.

 Example:
 switch (a) {
 case 1:
 break;
 default:
 break;
 }

 Functional specification

If the last operator to be evaluated in a switch statement is one of the operators &&,
||, !, <, >, <=, >=, == or !=, SQMlint reports it as a complaining.
If a switch statement consists only of one case clause and a default clause, SQMlint
reports it as a complaining.

7.64. Rule 64

(required): Every switch statements shall have at least one case.

 Interpretation
As captioned.

 Functional specification
If a switch statement does not have any case, SQMlint reports it as a complaining.

Handling of Each MISRA C Rule

- - 57

7.65. Rule 65

(required): Floating-point variables shall not be used as loop counters.

 Interpretation
Loop counters are interpreted as a variable used in a conditional expression that
terminates the relevant loop.

 Functional specification

In all cases where any variable or member variable of a floating-point type is used in
the conditional expression of a while statement or in the second expression of a for
statement, SQMlint reports it as a warning.

7.66. Rule 66 (Not supported)

(advisory): Only expressions concerned with loop control should appear within a for
statement.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.67. Rule 67 (Not supported)

(advisory): Numeric variables being used within a for loop for iteration counting
should not be modified in the body of the loop.

 Interpretation
As captioned.

 Functional specification

This rule is not supported.

Handling of Each MISRA C Rule

- - 58

7.68. Rule 68

(required): Functions shall always be declared at file scope.

 Interpretation
As captioned.

 Functional specification
If functions are declared at other than file scope, SQMlint reports them as a
complaining.
If a function is called while no prototypes are declared for the function, SQMlint also
reports it as a complaining.

 Example:
 void main(void)
 {
 func(); /* Complaining */
 }

7.69. Rule 69

(required): Functions with variable numbers of arguments shall not be used.

 Interpretation
As captioned.

 Functional specification

If “...” is included in function declarations or function definitions, SQMlint reports it as
a complaining.

 Example:
 void func1(const SCHAR* fmt, ...); /* Complaining */
 void func2(SINT32 i, ...) /* Complaining */
 {
 }

Handling of Each MISRA C Rule

- - 59

7.70. Rule 70

(required): Functions shall not call themselves, either directly or indirectly.

 Interpretation
As captioned.

 Functional specification

Only when functions are called from themselves directly, SQMlint reports them as a
complaining.

 Limitation

Inspection is not performed in cases when functions are called from themselves
indirectly.

7.71. Rule 71

(required): Functions shall always have prototype declarations and the prototype
shall be visible at both the function definition and call.

 Interpretation
Prototype declarations are required before functions can be defined.
Prototype declarations are required before functions can be called, and it deviates from
rule 20 also.

 Functional specification
If no prototype is declared for a function before defining or calling the function,
SQMlint reports it as a complaining.

 Example:
 void func(void) { } /* Complaining */
 This should be corrected to
 void func(void);
 void func(void) { }

 If no prototype is declared before calling a function, SQMlint reports it as a
complaining for this rule as well as for rule 20.

Handling of Each MISRA C Rule

- - 60

7.72. Rule 72

(required): For each function parameter the type given in the declaration and
definition shall be identical, and the return types shall also be identical.

 Interpretation
Parameter types and return types in prototype declarations and those in function
definitions must be completely identical.

 Functional specification
Unless parameter types and return types in prototype declarations and those in
function definitions are completely identical, SQMlint reports them as a complaining.

 Limitation

Inspection is not performed across the translation units.

7.73. Rule 73

(required): Identifiers shall either be given for all of the parameters in a function
prototype declaration, or for none.

 Interpretation
The identifiers here mean the names of parameters. In cases where multiple
parameters are present in one prototype declaration, this rule prohibits coexistence of
“parameters without a name” and “parameters with a name.”

 Functional specification
If “parameters without a name” and “parameters with a name” coexist in a prototype
declaration, SQMlint reports them as a complaining.
Because ellipsises (…) have no name, they are not inspected for this rule.

 Example:
 /* Complaining */
 void func1(UINT32 n, UINT32); /* only the first parameter
 has the name */
 void func2(UINT32, UINT32 i); /* only the second parameter
 has the name */

 /* No complaining */
 void func3(UINT32, UINT32); /* all parameters have no name */
 void func4(UINT32 n, UINT32 i); /* all parameters have the names */
 void func5(const UINT32* fmt, ...); /* No Complaining */

Handling of Each MISRA C Rule

- - 61

7.74. Rule 74

(required): If identifiers are given for any of the parameters, then the identifiers
used in the declaration and definition shall be identical.

 Interpretation
If identifiers (parameter names) are given for any parameters in a prototype
declaration, they must have the same name as identifiers for parameters in a function
definition.

 Functional specification
If any identifier has different names in prototype declaration and function definition,
SQMlint reports it as a complaining.

7.75. Rule 75

(required): Every function shall have an explicit return type.

 Interpretation
 In ISO9899:1990, if type names such as char, int or short that represent the return
type are omitted in function declarations, type int is implicitly assumed for that return
type. Declarations of such an implicit return type are interpreted as deviation this
rule.

 Functional specification

If no return type is found in a function declaration or definition or in a function type
cast, SQMlint reports it as a complaining.
In the following cases where no type names are given and only a type qualifier (const
or volatile) or a storage class (static or extern) is written for return type, the statement
is not regarded as explicitly specifying a return type, and therefore SQMlint reports it
as a complaining.

 Example:
 /* Complaining */
 func1() { } /* Return type implicitly becomes int */
 const func2() { } /* Return type implicitly becomes const int */
 const func3(); /* Return type implicitly becomes const int */
 static func4(); /* Return type implicitly becomes int */

Handling of Each MISRA C Rule

- - 62

7.76. Rule 76

(required): Function with no parameters shall be declared with parameter type void.

 Interpretation
A function with no parameters refers to a function type whose parameter list is empty
as in the case of “void func();”. Because compilers do not check the parameter types
of such a function, this rule stipulates that void be written for parameters.

 Functional specification

If no parameter list is found in a function declaration or definition or in a cast with a
type including function types, SQMlint reports it as a complaining.

7.77. Rule 77

(required):The unqualified type of parameters passed to a function shall be
compatible with the unqualified expected types defined in the function
prototype.

 Interpretation
This rule is interpreted as requesting that argument types specified when calling a
function be compatible with the unqualified expected types of parameters (not
including const and volatile) that are defined in the function prototype. Accordingly,
arguments that occur implicit conversions are interpreted as deviation from the rule.

 Functional specification
If the argument types specified when calling a function and the corresponding
parameter types defined in the function prototype, except qualifiers (const and volatile),
do not match when they are compared, SQMlint reports it as a complaining.

 Example:
 void func(const SLONG);
 void xxx(void)
 {
 SINT32 i;
 SLONG l;
 func(l); /* No complaining */
 func(i); /* Complaining (int and signed long are incompatible) */

Handling of Each MISRA C Rule

- - 63

7.78. Rule 78

(required): The number of parameters passed to a function shall match the function
prototype.

 Interpretation
As captioned.

 Functional specification

If the number of arguments that is given when calling a function does not match the
number of parameters defined in the function prototype, SQMlint reports it as a
complaining. Note, however, that this causes a compile error in
ISO9899:1990-compliant C compilers.

 Precaution

Function calls that make use of default arguments which is an extended feature are
interpreted as deviating from this rule.

7.79. Rule 79

(required): The values returned by void functions shall not be used.

 Interpretation
As captioned.

 Functional specification

If calls to functions whose return type is void are used in a subexpression, SQMlint
reports it as a complaining. Note, however, that this causes a compile error in
ISO9899:1990-compliant C compilers.

7.80. Rule 80

(required): Void expression shall not be passed as function parameters.

 Interpretation
As captioned.

 Functional specification

If calls to functions whose return type is void are used as parameters to another
function, or a variable declared as void* p; is passed to func(*p) as an argument,
SQMlint reports it as a complaining. Note, however, that this causes a compile error in
ISO9899:1990-compliant C compilers. It also deviates from rule 79.

Handling of Each MISRA C Rule

- - 64

7.81. Rule 81 (Not supported)

(advisory): const qualification should be used on function parameters which are
passed by reference, where it is intended that the function will not
modify the parameter.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.82. Rule 82

(advisory): A function should have a single point of exit.

 Interpretation
If a function has a return value, the function can have only one return statement at the
end of it. If the return type of the function is void, the function can either have no
return statements at all or have only one return statement at the end of it.

 Functional specification
(1) When the function has a return value

If the function has multiple return statements or does not have a return statement
at the end of it, SQMlint reports it as a complaining.

(2) When the return type of the function is void
If the function has multiple return statements or has a return statement at other
than the end of it, SQMlint reports it as a complaining.

Handling of Each MISRA C Rule

- - 65

7.83. Rule 83

(required): For functions with non-void return type: i) there shall be one return
statement for every exit branch (including the end of the program), ii)
each return shall have an expression, iii) the return expression shall
match the declared return type.

 Interpretation
If a function has return type, the return statement must have an expression and the
return expression must match the declared return type. Furthermore, there can be no
statements after the last return statement of the function.

 Functional specification
If the return statement does not appear at the end of the function, SQMlint reports it
as a complaining.
If the return statement does not have a return value, SQMlint reports it as a
complaining.
If the return value of the return statement does not match the declared return type,
SQMlint reports it as a complaining.

7.84. Rule 84

(required): For function with void return type, return statements shall not have an
expression.

 Interpretation
As captioned.

 Functional specification
If the return statement has a return value, SQMlint reports it as a complaining.

Handling of Each MISRA C Rule

- - 66

7.85. Rule 85

(advisory): Function called with no parameters should have empty parentheses.

 Interpretation
Function names written without parentheses () represent a function address. Such a
description cannot be discriminated whether an intended function call is erroneously
written or an address reference is intended. To prevent this problem, this rule is
interpreted as recommending an explicit use of the unary operator “&” when function
addresses are to be referenced.
Expressions (*func) where the indirection operator (*) is operated on function names
also are interpreted as deviating from the rule as does (func only).
However, if such an expression is used in function calls (i.e., (*func)()) is not
interpreted as deviating from the rule.

 Functional specification

In cases when function names are included in an expression, if neither the unary
operator & nor the () operator for function calls are found, SQMlint reports them as a
complaining.
However, when an expression is used as initializer(initial value of initialization) of the
pointer to a function, it is not considered to be a violation.

7.86. Rule 86 (Not supported)

(advisory): If a function returns error information, then that error information should
be tested.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.87. Rule 87 (Not supported)

(required): #include statements in a file shall only be preceded by other
pre-processor directives or comments.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

Handling of Each MISRA C Rule

- - 67

7.88. Rule 88 (Not supported)

(required): Non-standard characters shall not occur in header file names in #include
directives.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.89. Rule 88 (Not supported)

(required): The #include directive shall be followed by either a <filename> or
"filename" sequence.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.90. Rule 90 (Not supported)

(required): C macros shall only be used for symbolic constants, function-like
macros, type qualifiers and storage class specifiers.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.91. Rule 91 (Not supported)

(required): Macros shall not be #define'd and #undef'd within a block.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

Handling of Each MISRA C Rule

- - 68

7.92. Rule 92 (Not supported)

(advisory): A #undef should not be used.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.93. Rule 93 (Not supported)

(advisory): A function should be used in preference to a function-like macro.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.94. Rule 94 (Not supported)

(required): A function-like macro shall not be 'called' without all of its arguments.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.95. Rule 95 (Not supported)

(required): Arguments to a function-like macro shall not contain tokes that look like
pre-processing directives.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

Handling of Each MISRA C Rule

- - 69

7.96. Rule 96 (Not supported)

(required): In the definition of a function-like macro the whole definition, and each
instance of a parameter, shall be enclosed in parentheses.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.97. Rule 97 (Not supported)

(advisory): Identifiers in pre-processor directives should be defined before use.

 Interpretation

As captioned.

 Functional specification
This rule is not supported.

7.98. Rule 98 (Not supported)

(required): There shall be at most one occurrence of the # or ## pre-processor
operators in a single macro definition.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.99. Rule 99

(required): All uses of the #pragma directive shall be documented and explained.

 Interpretation
As captioned.

 Functional specification
If #pragma is used, SQMlint reports it as a warning.

Handling of Each MISRA C Rule

- - 70

7.100. Rule 100 (Not supported)

(required): The defined pre-processor operator shall only be used in one of the two
standard forms.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.101. Rule 101

(advisory): Pointer arithmetic should not be used.

 Interpretation

Accessing the address result of increment(++) or decrement(--) operations to pointers or
using [] to access a pointer as an array is not considered to be a problem. However,
accessing the addresses obtained by any other arithmetic operations on the pointers
may be considered to have a greater possibility of constituting an illegal access than
the above. This rule prohibits such pointer arithmetic.

 Functional specification

If any arithmetic operations on pointers other than increment(++) or decrement(--)
operations are detected, SQMlint reports them as a complaining.
However, use of the [] operator in the right-side expression of the ! operator or in a
pointer is excluded from those inspected.

 Example:
 SINT32 a[10];
 SINT32 *p = &(a[0]);
 p++; /* No complaining */
 p[4] = 1; /* No complaining */
 (p + 5) = 0; / Complain */

Handling of Each MISRA C Rule

- - 71

7.102. Rule 102

(advisory): No more than 2 levels of pointer indirection should be used.

 Interpretation
As captioned.

 Functional specification

If pointer variables are declared in more than 2 levels, SQMlint reports them as a
complaining.
If expressions are cast to pointer types in more than 2 levels, SQMlint reports them as
a complaining.
If the indirection operator (*) is used more than two times successively (e.g., ***p),
SQMlint reports it as a complaining.

7.103. Rule 103

(required): Relational operators shall not be applied to pointer types except where
both operands are of the same type and point to the same array,
structure or union.

 Interpretation
The “same array, structure or union” is interpreted as referring to the same array
object, same structure object or same union object, respectively.
The relational operators refer to <, >, <= and >=, with == and != not included.

 Functional specification

Whenever relational operators used to compare pointers together are found, SQMlint
reports it as a warning. This does not always mean that the reported statements
deviate from rule 103. If the same array object, same structure object or same union
object is pointed to, SQMlint also outputs a report.

 Example:
 SINT32* pi1, pi2;
 pi1 > pi2; /* Pointers for different objects cannot be compared */

Handling of Each MISRA C Rule

- - 72

7.104. Rule 104

(required): Non-constant pointers to functions shall not be used.

 Interpretation
This rule is interpreted as prohibiting use of a pointer to function whose address is not
determined when compiled as part of an expression other than function calls, as well
as casting with a pointer to function.

 Functional specification

Unless declarations of pointer variables to functions are initialized by a constant
expression or function name, SQMlint reports them as a complaining.
If casts by pointer types to functions or casts to pointers to functions are detected,
SQMlint also reports them as a complaining.

 Example:
 void func(void)
 {
 void (*f1)(void) = &func;
 /* This is correct because the pointer f1 to function is initialized by
 a pointer to function whose address is determined when compiled */
 void (*f2)(void) = f1;
 /* Cannot be initialized by a pointer to function whose address is
 not determined when compiled */
 }

Handling of Each MISRA C Rule

- - 73

7.105. Rule 105

(required): All the functions pointed to by a single pointer to function shall be
identical in the number and type of parameters and return type.

 Interpretation
This rule is interpreted as requesting that in the following cases where they
respectively are pointers to functions, the function types pointed to by these two
pointers should be compatible. Two function types of which the number of parameters,
the corresponding types of parameters and the return types are identical are
compatible.

- Pointers from which values are assigned and pointers to which values are
assigned

- Parameters in prototype declarations and arguments when functions are called
- Return values in function definitions and return values in return statements
- Declaration of pointers to functions and expressions to initialize them

 Functional specification

If function types are not compatible in the above interpretation, SQMlint reports them
as a complaining. Note, however, that this causes a compile error in
ISO9899:1990-compliant C compilers.

 Example:
 SINT32 func1(SINT32);
 SINT32 func2();
 SINT32 (fp*)(SINT32);

 fp = &func1; /* No Complaining */
 fp = &func2; /* Complaining */

Handling of Each MISRA C Rule

- - 74

7.106. Rule 106

(required): The address of an object with automatic storage shall not be assigned to
an object which may persist after the object has ceased to exist.

 Interpretation
This rule is interpreted as aiming to prevent the address of a local variable from being
assigned to a pointer variable existing in a scope outside that scope or being used
outside the scope as a return value.

 Functional specification

If the address value of a local variable is assigned to a pointer variable existing in a
scope outside that scope, SQMlint reports it as a complaining. If a return statement
where the addresses of local variables are used as return values is detected, SQMlint
also reports it as a complaining.

 Limitation

Inspection is not performed in case of indirect assignments. The indirect assignments,
for example, are the following cases.

– when the address value of a local variable, after being assigned to a local pointer
variable first, is assigned to a pointer variable existing in outer scope

– when the address thus assigned to a pointer variable is used as a return value in a
return statement

Nor will inspection be performed in cases where the address value of a local variable is
assigned to the object pointed to by a pointer.

 Example:
 SINT32** pp;
 SINT32* p;
 void func(void)
 {
 SINT32 a;
 SINT32* pa=&a;

 p = &a; /* Complaining */
 pp = &pa; / Not inspected */
 }

Handling of Each MISRA C Rule

- - 75

7.107. Rule 107 (Not supported)

(required): The null pointer shall not be de-referenced.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.108. Rule 108

(required): In the specification of structure or union type, all members of the
structure or union shall be fully specified.

 Interpretation
To “specify all members” here means assigning names (variable names) to all the
members of a structure or union when defining the structure or union.
In bit-field declarations, it is possible to declare “structures consisting only of padding,
with members assigned no names.” However, if this structure variable is referenced or
modified, program behavior is undefined. This rule is interpreted as aiming to prevent
such undefined behavior.

 Example:
 struct S {
 unsigned int :1;
 unsigned int :1;
 unsigned int :1;
 unsigned int :1;
 } s; /* Hereafter, what will result by referencing
 or modifying this variable s is undefined */

 Functional specification

If none of the structure or union members have names, SQMlint reports it as a
complaining.

Handling of Each MISRA C Rule

- - 76

7.109. Rule 109 (Not supported)

(required): Overlapping variable storage shall not be used.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

Handling of Each MISRA C Rule

- - 77

7.110. Rule 110

(required): Unions shall not be used to access the sub-parts of larger data types.

 Interpretation
In cases where the following conditions are met at the same time, unions are regarded
as being used to “access the sub-parts of larger data types.”
 - All members included in a union have the same size.
 - That union contains one or more structures or arrays.
However, even when members included in parts of a union have the same size, the
union is not regarded as being used to “access the sub-parts of larger data types”
unless all of the union members are identical in size.

 Functional specification
If unions are regarded as being used to “access the sub-parts of larger data types” in
the above interpretation, SQMlint reports them as a complaining.

 Example 1:
 union U1 {
 unsigned char arr[4];
 unsigned long ul;
 }; /* Complaining, because arr and ul use areas of the same size */

 Example 2:
 union U2 {
 struct {
 unsigned char b0:1;
 unsigned char b1:1;
 unsigned char b2:1;
 unsigned char b3:1;
 unsigned char b4:1;
 unsigned char b5:1;
 unsigned char b6:1;
 unsigned char b7:1;
 } bits;
 unsigned char all;
 struct {
 unsigned char c1:4;
 unsigned char c2:4;
 } other;
 }; /* Complaining, because bits and all, other use areas of the same size */

Handling of Each MISRA C Rule

- - 78

 Example 3:
 union U3 {
 unsigned char arr[2];
 unsigned long ul;
 }; /* No complaining, because arr and ul sizes are different */

7.111. Rule 111

(required): Bit fields shall only be defined to be of type unsigned int or signed int.

 Interpretation
As captioned.

 Functional specification

If bit fields are detected that are neither type unsigned int nor type signed int,
SQMlint reports them as a complaining.

 Example:
 struct S {
 int b0: 1; /* Complaining */
 signed int b1: 2; /* No complaining */
 };

7.112. Rule 112

(required): Bit fields of type signed int shall be at least 2 bits long.

 Interpretation
This rule is interpreted as requesting that bit-fields of signed type should be 2 bits or
more in width. Although rule 111 stipulates that bit-fields can only be defined to be of
type unsigned int or signed int, some compilers allow the use of bit-fields of type
unsigned char or signed char.
Because bit-fields consisting only of a sign bit are considered not acceptable for security,
it is desirable that inspection be performed on all signed types. Therefore, SQMlint
outputs a report for all signed types.

 Functional specification

If bit-fields in width of 2 bits or more are defined to be of a signed type, SQMlint
reports them as a complaining.

Handling of Each MISRA C Rule

- - 79

7.113. Rule 113

(required): All the members of a structure (or union) shall be named and shall only
be accessed via their name.

 Interpretation
Defining members without names for a structure (or union) is interpreted as deviating
from this rule. However, in ISO9899:1990-compliant C language, only the bit-fields for
paddings can be defined as unnamed members. Therefore, it is only the case where
padding for bit-fields are unnamed that is regarded as deviating from this rule.
Taking the addresses of members of a structure (or union) is regarded as deviating
from this rule, because it is possible that they will be accessed without their name.

 Functional specification

If a structure or union is defined with unnamed members, SQMlint reports it as a
complaining. However, no report will be output for bit-fields that are zero bits wide,
because they cannot have names according to ISO9899:1990.
If the addresses of members of a structure (or union) are taken, SQMlint also reports
them as a complaining.

7.114. Rule 114 (Not supported)

(required): Reserved words and standard library function names shall not be
redefined or undefined.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.115. Rule 115

(required): Standard library function names shall not be reused.

 Interpretation
Functions with the same names as the standard library function names cannot be
defined.

 Functional specification
If functions with the same names as the standard library function names are defined,
SQMlint reports them as a complaining.

Handling of Each MISRA C Rule

- - 80

7.116. Rule 116 (Not supported)

(required): All libraries used in production code shall be written to comply with the
provisions of this document, and shall have been subject to appropriate
validation.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.117. Rule 117 (Not supported)

(required): The validity of values passed to library functions shall be checked.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.118. Rule 118

(required): Dynamic heap memory allocation shall not be used.

 Interpretation
As captioned.

 Functional specification

If calls to functions calloc(), malloc(), realloc() or free() are used, SQMlint reports them
as a complaining.

7.119. Rule 119

(required): The error indicator errno shall not be used.

 Interpretation
As captioned.

 Functional specification

If errno is used, SQMlint reports it as a complaining.

Handling of Each MISRA C Rule

- - 81

7.120. Rule 120 (Not supported)

(required): The macro offsetof, in library <stddef.h>, shall not be used.

 Interpretation
As captioned.

 Functional specification
This rule is not supported.

7.121. Rule 121

(required): <locale.h> and the setlocale function shall not be used.

 Interpretation
As captioned.
Nor can the localeconv function be used.

 Functional specification

If calls to functions setlocale() or localeconv() are used, SQMlint reports them as a
complaining.

7.122. Rule 122

(required): The setjmp macro and the longjmp function shall not be used.

 Interpretation
As captioned.

 Functional specification

If calls to functions setjmp() or longjmp() are used, SQMlint reports in complaining
level.

7.123. Rule 123

(required): The signal handling facilities of <signal.h> shall not be used.

 Interpretation
As captioned.

 Functional specification

If calls to functions signal() or raise() are used, SQMlint reports in complaining level.

Handling of Each MISRA C Rule

- - 82

7.124. Rule 124

(required): The input/output library <stdio.h> shall not be used in production code.

 Interpretation

In no case can stdio.h be included.

 Functional specification
If stdio.h is included, SQMlint reports it as a complaining.
However, the function stdio.h is used without including stdio.h, SQMlint outputs a
report in rule 71.

7.125. Rule 125

(required): The library functions atof, atoi, and atol from library <stdlib.h> shall not
be used.

 Interpretation
As captioned.

 Functional specification

If calls to functions atof(), atoi() or atol() are used, SQMlint reports them as a
complaining.

 Limitation

Inspection cannot be performed in cases where the functions atof(), atoi() or atol() are
defined in stdlib.h as macro.

7.126. Rule 126

(required): The library functions about, exit, getenv, and system from library
<stdlib.h> shall not be used.

 Interpretation
As captioned.

 Functional specification

If calls to functions abort(), exit(), getenv() or system() are used, SQMlint reports them
as a complaining.

Handling of Each MISRA C Rule

- - 83

7.127. Rule 127

(required): The time handling functions of library <time.h> shall not be used.

 Interpretation
As captioned.

 Functional specification

If calls to functions clock(), difftime(), mktime(), time(), asctime(), ctime(), gmtime(),
localtime() or strftime() are used, SQMlint reports them as a complaining.

Appendix Merge Utility

- - 84

8. Appendix Merge Utility

 SQMmerger is a utility designed to create a file that can produce a mixed text of C source
lines and corresponding report messages from the report files (CSV format) generated by
SQMlint and the C source files.

8.1. Outline of Processing
8.1.1. Outline
 SQMmerger creates a file that can produce a mixed text of C source lines and
corresponding report messages from the C language source files and the report files
generated by SQMlint. Figure 8.2.1.1 shows the relationship between the input and output
files of SQMmerger.

 Example of an output mixed text file:

1 : void func(void);
2 : void func(void)
3 : {
4 : LABEL:
[MISRA(55) Complain] label (LABEL) should not be used

5 :
6 : goto LABEL;
[MISRA(56) Complain] the 'goto' statement shall not be used

7 : }

Figure 8.1.1.1. Input/output files of SQMviewer

C language
source file

Report file

Compile driver

SQMlint

SQMMERGER

Mixed- text

Appendix Merge Utility

- - 85

8.2. How to Use
8.2.1. Command Line
 Command line usage:
 SQMmerger -src C-source-file-name -r report-file-name -o mixed-text-output-file-name [-v]
[-V] [-h]
 Example: sqmmerger -src test.c -r test.csv -o test.vi
 See Section 8.2.2, “Options of SQMmerger,” for details about the options of SQMmerger.

8.2.2. Options
 The options of SQMmerger and their features are described below.

 Table 8.2.2.1 Options

Option Feature
-src C-source-file-name Specifies the C source file name that was inspected by

SQMlint.
-r report-file-name Specifies the report file name generated by SQMlint.
-o mixed-text-output-file-name Specifies the mixed text output file name to be

generated by SQMmerger.
-v Displays the command program name and the

command line being executed.
-V Terminates execution of SQMmerger after displaying

a startup message.
-h Displays command line options of SQMmerger.

8.3. Specification of Mixed Text Files Output
8.3.1. Output Format of C Source Lines
 Line numbers and colons (:) are added to the beginning of C source lines when they are
output.
 Example:

 1 : typedef signed int INT;

 2 : INT glb;

8.3.2. Output Format of MISRA C Inspection Results
 There are two formats in which the MISRA C inspection results are output.

(1) When the inspection result report message generated is for the source file name
specified by the -src option
The MISRA C rule number and the content of a report message are output.
Example:

 4 : LABEL:
 [MISRA(55) Complain] label (LABEL) should not be used

(2) When the inspection result report message generated is for any source file name other

Appendix Merge Utility

- - 86

than the source file name specified by the -src option (i.e., a header file, etc. that has
been included in the source file)
The MISRA C rule number, the source file name and line number in error, and the
content of a report message are output.
Example:

 [MISRA(124) Complain:stdio.h,line 10] the 'stdio.h' library shall not be

 used in production code

If the inspection result report messages (errors) generated are for any source file other than
the source file specified by the -src option, those report messages are output at the
beginning of the mixed text file.
 Example:

 [MISRA(8) Complain:locale.h,line 15] multibyte characters shall not be used

 1 : #include <locale.h>
 2 :
 3 : void comp1(void);
 4 : void comp1(void)
 5 : {
 6 : setlocale(0,0);
 [MISRA(68) Complain] function (setlocale)
 [MISRA(20) Complain] (setlocale) has not
 [MISRA(71) Complain] (setlocale) has not
 [MISRA(121) Complain] a (setlocale) func

 7 : }

Report messages generated for
included files are output at the
beginning of the file.
shall always be declared at file scope
 been declared yet
 been declared as prototype
tion has been used

Appendix File format conversion Utility

- - 87

9. Appendix File format conversion Utility

SQMform is utility to convert the file that SQMlint generated into the file of the tag jump
format. SQMform can bring two or more files together in one file. Moreover, because same
information that exists in the multiple file is brought together in one, the output result of
SQMlint can be compactly brought together.

9.1. Outline of Processing
9.1.1. Outline
SQMform connects CSV files that SQMlint generated. At this time, the overlapping
message is brought together in one. Moreover, it is possible to convert it into the tag jump
form for the text editor.

9.2. How to Use
9.2.1. Command Line
 Command line usage:
 sqmform [Options] CSV-file-name [CSV-file-name...]
 Example: sqmform -verbose -o summary.csv test1.csv test2.csv test3.csv

 See Section 9.2.2, “Options of sqmform,” for details about the options of sqmform.

C language
source file

Figure 9.1.1.1. Input/output files of sqmform

C Compile

Report file
(CSV)

sqmform

Report file
(CSV or

Tag Jump Format)

- The multiple file is put together in one.
- The message of the same file and the same

source line number is brought together in
one.

- The file format is converted.

Appendix File format conversion Utility

- - 88

9.2.2. Options
 The options of sqmform and their features are described below.

 Table 9.2.2.1 Options

Option Feature
-o output-file-name Specifies the output file name.

- If this option is not specified, the output
file name is a name that replaces the
extension of the input file name with
".txt".

- When the same file as the output file
name already exists, an existing file is
overwrited.

-form {tag1|tag2|tag3|tag4|csv} The converted format is specified.
1. tag1 format

 file_name(line_number)message
2. tag2 format

 file_name line_number:message
3. tag3 format

 file_name line_number message
4. tag4 format

 file_name:line_number:message
5. csv format

It is the same as output format of SQMlint.

- If this option is not specified, "-form tag1"
is made effective.

- “tag1”, “tag2”, “tag3”, and “tag4” are the
tag jump forms for the text editor. Please
select the format suitable for the text
editor that you use.
Please use "csv" when you bring the
output file of SQMlint together.

- If you specify any of tag1, tag2, tag3, and
tag4, path separator in the output file is
always assumed to be "¥". The purpose of
conversion is to correspond to the text
editor that cannot use the tag jump
function as path separator '/'.

-verbose The following information is displayed in the
standard output.

- Beginning time
- End time

-summary The following information is displayed in the
standard output.

Appendix File format conversion Utility

- - 89

- MISRA C rule-number and output
frequency.
If the content of the message, the file
name, and the line-number are all the
same, it counts once.

-full_path The absolute path is made by adding "Current
directory" to "Relative path in the input file", and it
is written in the output file.
Please use this option when the tag jump function of
the text editor needs the absolute path.

-V Terminates execution of sqmform after displaying
a startup message.

Add-in to Renesas' compilers
MISRA C Rule Checker SQMlint User's Manual

Publication Date: Aug. 1, 2006 Rev.1.00

Published by:
Sales Strategic Planning Div.
Renesas Technology Corp.

Edited by: Microcomputer Tool Development Department
Renesas Solutions Corp.

© 2004. Renesas Technology Corp. and Renesas Solutions Corp., All rights reserved. Printed in Japan.

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

MISRA C Rule Checker SQMlint V.1.03

REJ10J1314-0100

User’s Manual

	Introduction
	Overview
	Position
	Input/Output Files

	How to Use SQMlint
	When you’re using C Compiler Package for M16C family
	When you’re using M32R family
	When you’re using SuperH RISC engine family
	Options
	Error messages

	When you’re using H8S, H8/300 series
	Options
	Error messages

	Report Specifications
	Report Message
	Report File
	Compile Errors

	Confirming the Result
	Referring to Report Files to Confirm
	Referring to Report Messages to Confirm
	Using the SQMmerger to Confirm

	List of Supported MISRA C Rules
	Handling of Each MISRA C Rule
	Rule 1
	Rule 2 (Not supported)
	Rule 3 (Not supported)
	Rule 4 (Not supported)
	Rule 5
	Rule 6 (Not supported)
	Rule 7 (Not supported)
	Rule 8
	Rule 9 (Not supported)
	Rule 10 (Not supported)
	Rule 11 (Not supported)
	Rule 12
	Rule 13
	Rule 14
	Rule 15 (Not Supported)
	Rule 16 (Not Supported)
	Rule 17
	Rule 18
	Rule 19
	Rule 20
	Rule 21
	Rule 22
	Rule 23 (Not Supported)
	Rule 24
	Rule 25 (Not supported)
	Rule 26 (Not Supported)
	Rule 27 (Not Supported)
	Rule 28
	Rule 29
	Rule 30 (Not supported)
	Rule 31
	Rule 32
	Rule 33
	Rule 34
	Rule 35
	Rule 36
	Rule 37
	Rule 38
	Rule 39
	Rule 40
	Rule 41 (Not supported)
	Rule 42
	Rule 43
	Rule 44
	Rule 45
	Rule 46
	Rule 47 (Not supported)
	Rule 48
	Rule 49
	Rule 50
	Rule 51
	Rule 52 (Not supported)
	Rule 53
	Rule 54
	Rule 55
	Rule 56
	Rule 57
	Rule 58
	Rule 59
	Rule 60
	Rule 61
	Rule 62
	Rule 63
	Rule 64
	Rule 65
	Rule 66 (Not supported)
	Rule 67 (Not supported)
	Rule 68
	Rule 69
	Rule 70
	Rule 71
	Rule 72
	Rule 73
	Rule 74
	Rule 75
	Rule 76
	Rule 77
	Rule 78
	Rule 79
	Rule 80
	Rule 81 (Not supported)
	Rule 82
	Rule 83
	Rule 84
	Rule 85
	Rule 86 (Not supported)
	Rule 87 (Not supported)
	Rule 88 (Not supported)
	Rule 88 (Not supported)
	Rule 90 (Not supported)
	Rule 91 (Not supported)
	Rule 92 (Not supported)
	Rule 93 (Not supported)
	Rule 94 (Not supported)
	Rule 95 (Not supported)
	Rule 96 (Not supported)
	Rule 97 (Not supported)
	Rule 98 (Not supported)
	Rule 99
	Rule 100 (Not supported)
	Rule 101
	Rule 102
	Rule 103
	Rule 104
	Rule 105
	Rule 106
	Rule 107 (Not supported)
	Rule 108
	Rule 109 (Not supported)
	Rule 110
	Rule 111
	Rule 112
	Rule 113
	Rule 114 (Not supported)
	Rule 115
	Rule 116 (Not supported)
	Rule 117 (Not supported)
	Rule 118
	Rule 119
	Rule 120 (Not supported)
	Rule 121
	Rule 122
	Rule 123
	Rule 124
	Rule 125
	Rule 126
	Rule 127

	Appendix Merge Utility
	Outline of Processing
	Outline

	How to Use
	Command Line
	Options

	Specification of Mixed Text Files Output
	Output Format of C Source Lines
	Output Format of MISRA C Inspection Results

	Appendix File format conversion Utility
	Outline of Processing
	Outline

	How to Use
	Command Line
	Options

