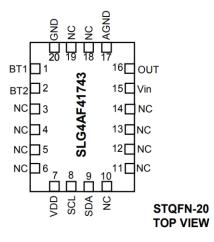


# SLG4AF41743

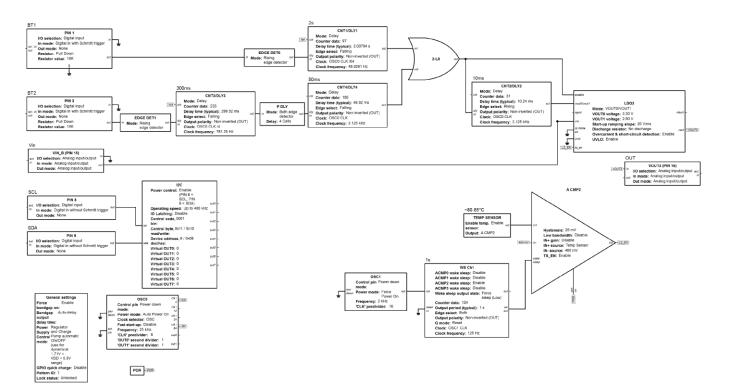
# **ERM Motor Control**

#### **General Description**

Silego SLG4AF41743 is a low-power and small form device. The SoC is housed in a 2mm x 3mm STQFN package which is optimal for use with small devices.


#### Features

- Low Power Consumption
- Pb-Free / RoHS Compliant
- Halogen-Free
- STQFN-20 Package


### **Output Summary**

1 Analog output

#### **Pin Configuration**



# Block Diagram



# **Pin Configuration**

| Pin # | Pin Name | Туре                | Pin Description                       |
|-------|----------|---------------------|---------------------------------------|
| 1     | BT1      | Digital Input       | Digital Input with Schmitt trigger    |
| 2     | BT2      | Digital Input       | Digital Input with Schmitt trigger    |
| 3     | NC       |                     | Keep Floating or Connect to GND       |
| 4     | NC       |                     | Keep Floating or Connect to GND       |
| 5     | NC       |                     | Keep Floating or Connect to GND       |
| 6     | NC       |                     | Keep Floating or Connect to GND       |
| 7     | VDD      | PWR                 | Supply Voltage                        |
| 8     | SCL      | Digital Input       | Digital Input without Schmitt trigger |
| 9     | SDA      | Digital Input       | Digital Input without Schmitt trigger |
| 10    | NC       |                     | Keep Floating or Connect to GND       |
| 11    | NC       |                     | Keep Floating or Connect to GND       |
| 12    | NC       |                     | Keep Floating or Connect to GND       |
| 13    | NC       |                     | Keep Floating or Connect to GND       |
| 14    | NC       |                     | Keep Floating or Connect to GND       |
| 15    | Vin      | Analog Input/Output | Analog Input/Output                   |
| 16    | OUT      | Analog Input/Output | Analog Input/Output                   |
| 17    | AGND     | GND                 | Analog Ground                         |
| 18    | NC       |                     | Keep Floating or Connect to GND       |
| 19    | NC       |                     | Keep Floating or Connect to GND       |
| 20    | GND      | GND                 | Ground                                |

# **Ordering Information**

| Part Number    | Package Type                            |
|----------------|-----------------------------------------|
| SLG4AF41743V   | V=STQFN-20                              |
| SLG4AF41743VTR | VTR=STQFN-20 – Tape and Reel (3k units) |

# Absolute Maximum Conditions

| Parameter                             | Min. | Max. | Unit |
|---------------------------------------|------|------|------|
| VHIGH tO GND                          | -0.3 | 7    | V    |
| Voltage at input pins                 | -0.3 | 7    | V    |
| Current at input pin                  | -1.0 | 1.0  | mA   |
| Storage temperature range             | -65  | 125  | °C   |
| Junction temperature                  |      | 150  | °C   |
| ESD Protection (Human Body Model)     | 2000 |      | V    |
| ESD Protection (Charged Device Model) | 1300 |      | V    |
| Moisture Sensitivity Level            | 1    |      |      |

## **Electrical Characteristics**

(@ 25°C, unless otherwise stated)

| Symbol | Parameter                                                        | Condition/Note                                   | Min.        | Тур.               | Max.        | Unit |  |
|--------|------------------------------------------------------------------|--------------------------------------------------|-------------|--------------------|-------------|------|--|
| Vdd    | Supply Voltage                                                   |                                                  | 3.3         | 5                  | 5.5         | V    |  |
| TA     | Operating Temperature                                            |                                                  | -40         | 25                 | 85          | °C   |  |
| lq     | Quiescent Current                                                | Static inputs and floating outputs               |             | TBD                |             | μA   |  |
| Vo     | Maximal Voltage Applied to<br>any PIN in High-Impedance<br>State |                                                  |             |                    | VDD         | V    |  |
| lo     | Maximal Average or DC<br>Current<br>(note 1)                     | Per Each Chip Side<br>(PIN2-PIN10, PIN12-PIN20)  |             |                    | 90          | mA   |  |
|        |                                                                  | Logic Input, at VDD=3.3V                         | 0.7x<br>VDD |                    | VDD         |      |  |
|        | HIGH-Level Input Voltage                                         | Logic Input with Schmitt Trigger,<br>at VDD=3.3V | 0.7x<br>VDD |                    | VDD         |      |  |
| Vін    |                                                                  | Logic Input, at VDD=5.0V                         |             | Vlt +<br>300<br>mV |             | V    |  |
|        |                                                                  | Logic Input with Schmitt Trigger,<br>at VDD=5.0V |             | Vlt +<br>400<br>mV |             |      |  |
|        |                                                                  | Logic Input, at VDD=3.3V                         |             |                    | 0.3x<br>VDD |      |  |
|        |                                                                  | Logic Input with Schmitt Trigger,<br>at VDD=3.3V |             |                    | 0.3x<br>VDD |      |  |
| VIL    | LOW-Level Input Voltage                                          | Logic Input, at VDD=5.0V                         |             | Vlt -<br>300<br>mV |             | V    |  |
|        |                                                                  | Logic Input with Schmitt Trigger,<br>at VDD=5.0V |             | Vlt -<br>400<br>mV |             |      |  |
| Ін     | HIGH-Level Input Current                                         | Logic Input PINs; V <sub>IN</sub> = VDD          | -1.0        |                    | 1.0         | μA   |  |

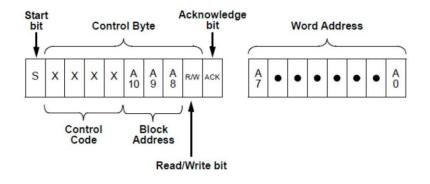
| lı∟               | LOW-Level Input Current | Logic Input PINs; V <sub>IN</sub> = 0V | -1.0 |     | 1.0 | μA |
|-------------------|-------------------------|----------------------------------------|------|-----|-----|----|
| Τ                 | Delay() Time            | At temperature 25°C                    |      | 1   |     | •  |
| T <sub>DLY0</sub> | Delay0 Time             | At temperature -40°C +85°C (note 1)    |      | 1   |     | S  |
| Τ                 | Delay1 Time             | At temperature 25°C                    |      | 2   |     | _  |
| T <sub>DLY1</sub> | Delayi Time             | At temperature -40°C +85°C (note 1)    | -    | 2   |     | S  |
| Τ                 | Delay2 Time             |                                        | 10   |     | ma  |    |
| T <sub>DLY2</sub> |                         | At temperature -40°C +85°C (note 1)    |      | 10  |     | ms |
| Τ                 | Dolov <sup>2</sup> Timo | At temperature 25°C                    |      | 300 |     | ma |
| T <sub>DLY3</sub> | Delay3 Time             | At temperature -40°C +85°C (note 1)    |      | 300 |     | ms |
| Τ                 | Delay 4 Time            | At temperature 25°C                    |      | 50  |     | ma |
| T <sub>DLY4</sub> | Delay4 Time             | At temperature -40°C +85°C (note 1)    |      | 50  |     | ms |
| Τsu               | Start up Time           | From VDD rising past PONTHR            |      | 1.3 |     | ms |

1. Guaranteed by Design.

# Chip address

| HEX | BIN     | DEC |
|-----|---------|-----|
| 08  | 0001000 | 8   |

#### Description


This device is created to control ERM motor. It can control motor in 2 ways – 2s vibration pattern (2 s ON) which is controlled by external button (BT1) and 2 short vibrations pattern (50ms ON->250ms OFF->50ms ON) which is controlled by another external button (BT2) and includes following futures: fast start up, overcurrent protection, short-circuit detection and over-temperature protection. Each delay/counter and LDO Vrefs can be reconfigured via I2C.

#### 1.I2C Basic Command Structure

Each command to the I2C Serial Communications block begins with a Control Byte. The bits inside this Control Byte are shown in Figure 1. After the Start bit, the first four bits are a control code, which can be set by the user in reg<xx:yy>.

The Block Address is the next three bits (A10, A9, A8), which will define the most significant bits in the addressing of the data to be read ("1") or written ("0") by the command. This Control Byte will be followed by an Acknowledge bit (ACK).

With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word Address. The Word Address, in conjunction with the three address bits in the Control Byte, will define the specific data byte to be read or written in the command. Figure 1 shows this basic command structure.





#### 2. I2C Serial General Timing

Shown in Figure 2 is the general timing characteristics for the I2C Serial Communications block.

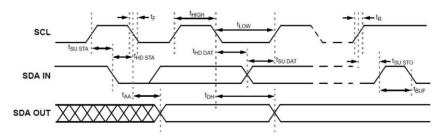
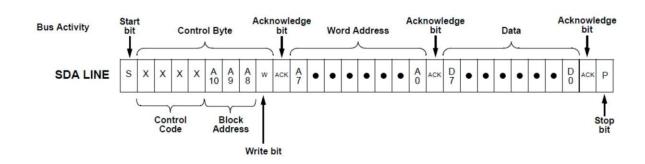




Figure 2. I2C Serial General Timing

#### 3.I2C Serial Communications: Read and Write Commands

Following the Start condition from the master, the Control Code [4 bits], the block address [3 bits] and the R/W bit (set to"0"), is placed onto the bus by the Bus Master. After the I2C Serial Communications block has provided an Acknowledgebit (ACK) the next byte transmitted by the master is the Word Address. The Block Address is the next three bits, and is the higher order addressing bits (A10, A9, A8), which when added to the Word Address will together set the internal address pointer in the SLG46533 to the correct data byte to be written. After the SLG46533 sends another Acknowledgebit, the Bus Master will transmit the data byte to be written into the addressed memory location. The SLG46533 again provides an Acknowledge bit and then the Bus Master generates a Stop condition. The internal write cycle for the data will take place at the time that the SLG46533 generates the Acknowledge bit.





The Random Read command starts with a Control Byte (with R/W bit set to "0", indicating a write command) and Word Address to set the internal byte address, followed by a Start bit, and then the Control Byte for the read (exactly the sameas the Byte Write command). The Start bit in the middle of the command will halt the decoding of a Write command, but will set the internal address counter in preparation for the second half of the command. After the Start bit, the Bus Master issues a second control byte with the R/W bit set to "1", after which the SLG46533 issues an Acknowledge bit, followed by the requested eight data bits.

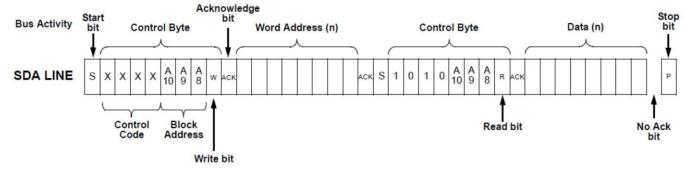



Figure 4. I2C Random Read Command

## 4. CNT/DLY Settings

The CNT/DLY block registers can be used to change the individual delay times of the delay blocks by changing the control data and the frequency of the clock according to Equation 1. The clock frequency can also be changed by using a clock pre-divider in the OSC0 block.

# **Delay time**: [(Counter Control Data + 1 + variable) / Frequency], where $0 \le variable \le 1$ ;

#### Equation 1: CNT/DLY Time

| Address Byte | Register Bit   | Block | Function                                            | Range        |
|--------------|----------------|-------|-----------------------------------------------------|--------------|
| 0xC0         | reg<1543:1536> | CNT0  | Counter data from 1 to 255 (default setting is 124) | 0x01 to 0xFF |
| 0xC1         | reg<1551:1544> | DLY1  | Counter data from 1 to 255 (default setting is 97)  | 0x01 to 0xFF |
| 0xC2         | reg<1559:1552> | DLY2  | Counter data from 1 to 255 (default setting is 31)  | 0x01 to 0xFF |
| 0xC3         | reg<1567:1560> | DLY3  | Counter data from 1 to 255 (default setting is 233) | 0x01 to 0xFF |
| 0xC3         | reg<1567:1560> | DLY4  | Counter data from 1 to 255 (default setting is 155) | 0x01 to 0xFF |

# **5.LDO Settings**

The LDO block is used to control ERM motor with fast start function. After start LDO starts with higher voltage (VOUT0voltage setting) and after 10ms it turns to lower voltage (VOUT1 voltage).

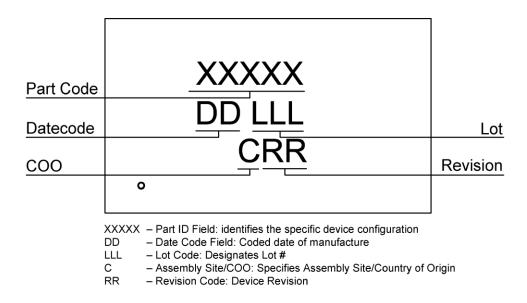
| Address Byte | Register Bit   | Block         | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Range                                  |
|--------------|----------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 0xCA         | reg<1623:1616> | LDO3<br>VOUT0 | LDO VOUT0 ref:<br>00000:0.90v, 00001:1.00v, 00010:1.05v, 00011:1.10v,<br>00100:1.20v, 00101:1.25v, 00110:1.35v, 00111:1.50v,<br>01000:1.67v, 01001:1.80v, 01010:1.90v, 01011:2.00v,<br>01100:2.10v, 01101:2.20v, 01110:2.30v, 01111:2.40v,<br>10000:2.50v, 10001:2.60v, 10010:2.70v, 10011:2.80v,<br>10100:2.90v, 10101:3.00v, 10110:3.10v, 10111:3.20v,<br>11000:3.30v, 11001:3.40v, 11010:3.50v, 11011:3.60v,<br>11100:3.70v, 11101:4.00v, 11110:4.30v, 11111:4.35v | 0d00000xxx to<br>0d11111xxx<br>xxx=001 |
| 0xE3         | reg<1823:1816> | LDO3<br>VOUT1 | LDO VOUT0 ref:<br>00000:0.90v, 00001:1.00v, 00010:1.05v, 00011:1.10v,<br>00100:1.20v, 00101:1.25v, 00110:1.35v, 00111:1.50v,<br>01000:1.67v, 01001:1.80v, 01010:1.90v, 01011:2.00v,<br>01100:2.10v, 01101:2.20v, 01110:2.30v, 01111:2.40v,<br>10000:2.50v, 10001:2.60v, 10010:2.70v, 10011:2.80v,<br>10100:2.90v, 10101:3.00v, 10110:3.10v, 10111:3.20v,<br>11000:3.30v, 11001:3.40v, 11010:3.50v, 11011:3.60v,<br>11100:3.70v, 11101:4.00v, 11110:4.30v, 11111:4.35v | 0d00000xxx to<br>0d11111xxx<br>xxx=011 |

# **Functionality Waveforms**

D0 – PIN#1 (BT1) D1 – PIN#2 (BT2) Channel 1 (yellow/top line) – PIN#15 (Vin) Channel 2 (light blue/2nd line) – PIN#16 (OUT)



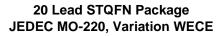


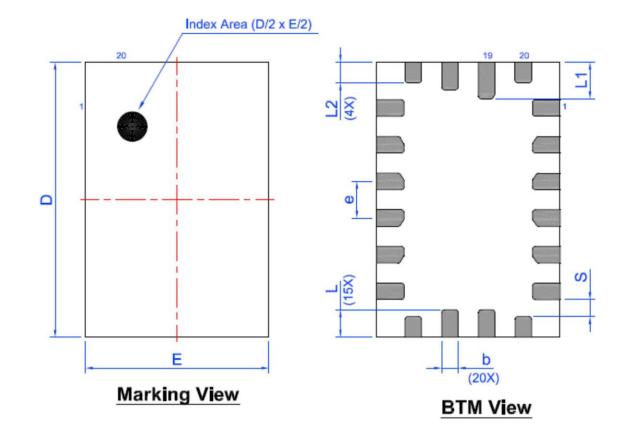

2. Device functionality. Zoomed fast start

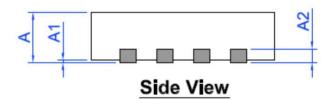


3. Device functionality. 2 short vibrations pattern.




# Package Top Marking





| Datasheet<br>Revision | Programming<br>Code Number | Locked<br>Status | Part Code | Revision | Date       |  |
|-----------------------|----------------------------|------------------|-----------|----------|------------|--|
| 0.10                  | 001                        | U                |           |          | 03/30/2016 |  |

The IC security bit is locked/set for code security for production unless otherwise specified. Revisionnumber is not changed for bit locking.

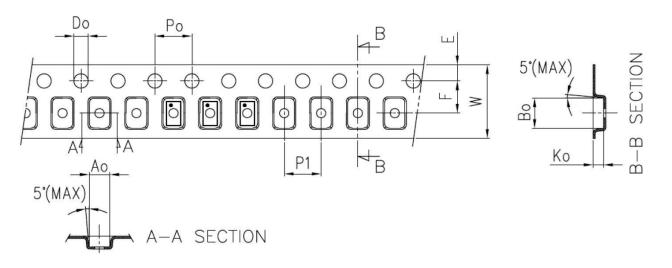
# Package Drawing and Dimensions





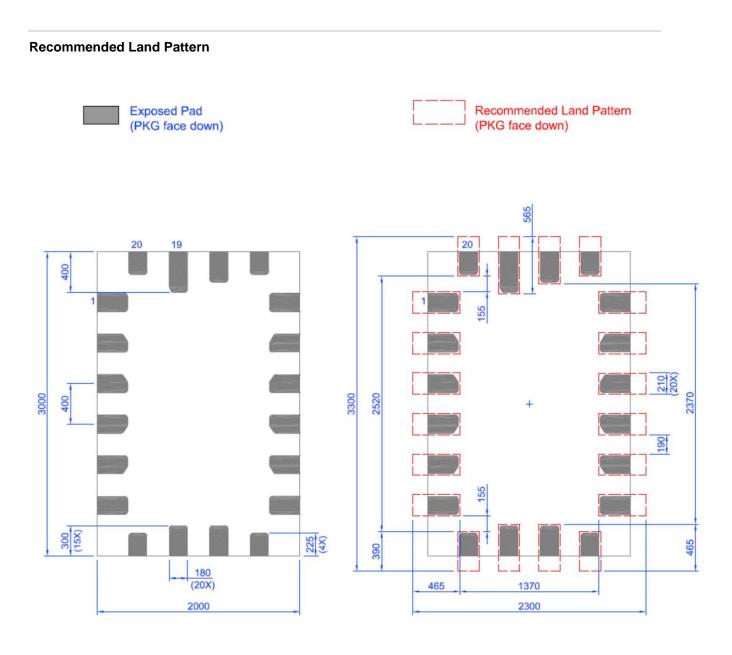


| Unit: mn | n     |          |       |        |       |       |       |
|----------|-------|----------|-------|--------|-------|-------|-------|
| Symbol   | Min   | Nom.     | Max   | Symbol | Min   | Nom.  | Max   |
| Α        | 0.50  | 0.55     | 0.60  | D      | 2.95  | 3.00  | 3.05  |
| A1       | 0.005 |          | 0.050 | E      | 1.95  | 2.00  | 2.05  |
| A2       | 0,10  | 0,15     | 0.20  | L      | 0.25  | 0.30  | 0.35  |
| b        | 0.13  | 0.18     | 0.23  | L1     | 0.35  | 0.40  | 0.45  |
| е        | (     | 0.40 BSC |       | L2     | 0.175 | 0.225 | 0.275 |
| S        | C     | .185 TYP |       |        |       |       |       |


## **Tape and Reel Specification**

| Package Type                     | # of | Nominal  | Max      | Max Units |                  | Trailer A |                | Leader B |                | Pocket (mm) |       |
|----------------------------------|------|----------|----------|-----------|------------------|-----------|----------------|----------|----------------|-------------|-------|
|                                  | Pins | Dackado  | per reel | per box   | Hub Size<br>(mm) | Pockets   | Length<br>(mm) | Pockets  | Length<br>(mm) | Width       | Pitch |
| STQFN 20L<br>2x3mm 0.4P<br>Green | 20   | 2x3x0.55 | 3000     | 3000      | 178/60           | 100       | 400            | 100      | 400            | 8           | 4     |

# **Carrier Tape Drawing and Dimensions**


| Package<br>Type                  | Pocket<br>BTM<br>Length<br>(mm) | Pocket<br>BTM Width<br>(mm) | Pocket<br>Depth<br>(mm) | Index Hole<br>Pitch<br>(mm) | Pocket<br>Pitch<br>(mm) | Index Hole<br>Diameter<br>(mm) | Index Hole<br>to Tape<br>Edge<br>(mm) | Index Hole<br>to Pocket<br>Center<br>(mm) | Tape Width<br>(mm) |
|----------------------------------|---------------------------------|-----------------------------|-------------------------|-----------------------------|-------------------------|--------------------------------|---------------------------------------|-------------------------------------------|--------------------|
|                                  | A0                              | В0                          | K0                      | P0                          | P1                      | D0                             | E                                     | F                                         | w                  |
| STQFN 20L<br>2x3mm<br>0.4P Green | 2.2                             | 3.15                        | 0.76                    | 4                           | 4                       | 1.5                            | 1.75                                  | 3.5                                       | 8                  |

Refer to EIA-481 Specifications



## **Recommended Reflow Soldering Profile**

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 3.3 mm<sup>3</sup> (nominal). More information can be found at <u>www.jedec.org</u>.



Unit:um

#### IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

#### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

#### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

#### **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.