

PCN#：[MCP-AC-22-0010]

Product Change Notice (PCN)

Subject: RA2E2 group I3C function revision

Publication Date: 2/24/2022

Effective Date: 7/1/2022

Revision Description: Initial Release

Description of Change:

The applicable products (MCU Ver.1) listed in the Affected Product List have restrictions and

precautions on the I2C / I3C bus interface.

Regarding the restrictions and precautions of MCU Ver.1, the workarounds and precautions have

already been described in RA2E2 Group User’s Manual Hardware Rev.1.00 (R01UH0919EJ0100).

However, in order to improve the function of the I2C / I3C bus interface, the products were revised

and the MCU version was changed from MCU Ver.1 to MCU Ver.2. For details of the changes, please

refer to “Appendix, Details of changes”.

The software workarounds of MCU Ver.1 can be executed on MCU Ver.2 without any changes.

Affected Product List:

Applicable products：RA2E2 Group

R7FA2E2A72DNK#AA0 R7FA2E2A72DNK#HA0 R7FA2E2A73CNK#AA0 R7FA2E2A73CNK#HA0

R7FA2E2A74CNK#AA0 R7FA2E2A74CNK#HA0 R7FA2E2A52DNK#AA0 R7FA2E2A52DNK#HA0

R7FA2E2A53CNK#AA0 R7FA2E2A53CNK#HA0 R7FA2E2A54CNK#AA0 R7FA2E2A54CNK#HA0

R7FA2E2A32DNK#AA0 R7FA2E2A32DNK#HA0 R7FA2E2A33CNK#AA0 R7FA2E2A33CNK#HA0

R7FA2E2A34CNK#AA0 R7FA2E2A34CNK#HA0 R7FA2E2A72DNJ#AA0 R7FA2E2A72DNJ#HA0

R7FA2E2A73CNJ#AA0 R7FA2E2A73CNJ#HA0 R7FA2E2A74CNJ#AA0 R7FA2E2A74CNJ#HA0

R7FA2E2A52DNJ#AA0 R7FA2E2A52DNJ#HA0 R7FA2E2A53CNJ#AA0 R7FA2E2A53CNJ#HA0

R7FA2E2A54CNJ#AA0 R7FA2E2A54CNJ#HA0 R7FA2E2A32DNJ#AA0 R7FA2E2A32DNJ#HA0

R7FA2E2A33CNJ#AA0 R7FA2E2A33CNJ#HA0 R7FA2E2A34CNJ#AA0 R7FA2E2A34CNJ#HA0

Reason for Change:

Improved I2C / I3C bus interface function

Impact on Package Dimensions, Function, Quality & Reliability:

No impact other than changing the I2C / I3C bus interface function.

Product Identification:

As shown in the example below, the last digit of the booking part numbers are changed from 0 to 1

between MCU Ver.1 and MCU Ver.2. Therefore, they can be distinguished by the booking part numbers.

In case of R7FA2E2A72DNK

Product part number Packing Booking part number

MCU Ver.1 MCU Ver.2

R7FA2E2A72DNK Tray R7FA2E2A72DNK#AA0 R7FA2E2A72DNK#AA1

T&R R7FA2E2A72DNK#HA0 R7FA2E2A72DNK#HA1

In addition, since the MCU version information stored in the MCU version register (MCUVER) is

changed as follows, it can be identified by software.

MCU Ver.1: MCUVE[7:0]=01h

MCU Ver.2: MCUVE[7:0]=02h

Qualification Status: N/A

Sample Availability Date: 2/28/2022

The following ES samples are prepared as samples for checking the function change of I2C/I3C.

There is no difference in I2C/I3C functions between mass-produced products and the ES samples.

Booking part number Package Packing Code

Flash

Operating

temperature

Sample

Availability

Date

R7FA2E2A72DNK#YK2 24-pin HWQFN Tray 64KB -40 to +85℃ 2022/2/28

R7FA2E2A72DNJ#YK2 20-pin HWQFN Tray 64KB -40 to +85℃ 2022/4/1

Device Material Declaration: Please contact our sales and distributors.

PCN#:[MCP-AC-22-0010]

Note:

1. Acknowledgement must be received by Renesas within 30 days or Renesas will consider the

change as approved.

2. If timely acknowledgement is provided by Customer, then Customer shall have 90 days from the

date of receipt of this PCN to make any objections to this PCN. If Customer fails to make

objections to this PCN within 90 days of the receipt of the PCN then Renesas will consider the

PCN changes as approved.

3. If customer cannot accept the PCN then customer must provide Renesas with a last time buy

demand and purchase order.

For additional information regarding this notice, please contact your Renesas sales representative.

Appendix. Details of changes:

The restrictions / precautions of MCU Ver.1 and the changes of MCU Ver.2 are as follows.

Operation mode Restrictions / precautions of MCU Ver.1

1 I2C master Operation when writing transmission data

2 I2C slave Timeout count operation when 10-bit address communication and the

upper address match is detected.

3 I2C slave ACK output operation when 10-bit address communication and the lower

address mismatch is detected.

4 I3C slave Arbitration operation when Dynamic Address is assigned by the ENTDAA

command

5 I3C master

/ I3C slave

Error recovery operation

6 I3C master Error recovery operation when receiving irregular data in I3C master

receive mode

7 I3C master

/ I3C slave

Operation when using unsupported Common Command Code (CCC)

#1： I2C master; Operation when writing transmission data

In MCU Ver.1, when the output timing of the first data of the frame and the transmission data write

timing are conflicted, the transmission of the first data to be transmitted (b7) will start with a deviation

of 1 bit.

MCU Ver.1 requires the software workaround when writing transmission data, but MCU Ver.2 does not

require the software workaround.

There is no problem even if the same software workaround of MCU Ver.1 is executed on MCU Ver.2.

Before the changes： User’s Manual: Hardware Rev.1.00 P699-P610

Note: The following processing is required when checking NTST.TDBEF0 = 1 in Steps [3] and [4] of the I2C master

transmission flowchart as shown in Figure 25.104.

When sending a slave address:

After confirming NTST.TDBEF0 = 1, confirm that PRSTDBG.SCILV = 0 (check the status of SCL) before writing the
transmission data.

When sending data:

● If BITCNT.BCNT = other than 0 after confirming NTST.TDBEF0 = 1, write the transmission data immediately

● If BITCNT.BCNT = 0 after confirming NTST.TDBEF0 = 1, check that BST.TENDF = 1 and PRSTDBG.SCILV = 0

(check the status of SCL) before writing the transmission data.

After the changes：

Note: MCU Ver.1 has the following restrictions and workarounds. These restrictions and workarounds are not required for

MCU Ver.2.

The following processing is required when checking NTST.TDBEF0 = 1 in Steps [3] and [4] of the I2C master

transmission flowchart as shown in Figure 25.104.

When sending a slave address:

After confirming NTST.TDBEF0 = 1, confirm that PRSTDBG.SCILV = 0 (check the status of SCL) before writing the
transmission data.

When sending data:

● If BITCNT.BCNT = other than 0 after confirming NTST.TDBEF0 = 1, write the transmission data immediately

● If BITCNT.BCNT = 0 after confirming NTST.TDBEF0 = 1, check that BST.TENDF = 1 and PRSTDBG.SCILV = 0

(check the status of SCL) before writing the transmission data.

#2： I2C slave; Timeout count operation when 10-bit address communication and the upper address

match is detected

In MCU Ver.1, the timeout count starts when 10-bit address communication and the upper address

match is detected.

MCU Ver.2 is revised the circuit so that the timeout count does not start until the lower address match

is detected after the upper address match is detected.

Before the changes： User’s Manual: Hardware Rev.1.00 P558

TOMDS[1:0] bits (Timeout Operation Mode Selection)

These bits are used to select the detection condition for timeout when the timeout function is enabled.

Note: When working with I2C Slave, during 10-bit address communication, the timeout count starts when the upper

address match is detected.

After the changes：

TOMDS[1:0] bits (Timeout Operation Mode Selection)

These bits are used to select the detection condition for timeout when the timeout function is enabled.

Note: MCU Ver.1 has the following restriction. The restriction is not required for MCU Ver.2.
When working with I2C Slave, during 10-bit address communication, the timeout count starts when the upper address

match is detected.

#3： I2C slave; ACK output operation when 10-bit address communication and the lower address

mismatch is detected

MCU Ver.1 has the following restrictions and workarounds when using 10-bit address communication.

The restrictions and workarounds are not required for MCU Ver.2

Before the changes： User’s Manual: Hardware Rev.1.00 P641

When multiple I2C slaves are connected to the I2C bus and there is a possibility that an I2C Slave other than this

module will NACK for the upper address / R after Repeated START, there are the following restrictions and

workarounds.

● Work around : Set the upper 2 bits of the 10-bit address assigned to this module to a value different from other

Slave. If the address is exhausted and cannot be set to a different value, use restriction (1).

● Restriction (1) : 10-bit address not available.

● Restriction (2) : After the ACK response in the red circle in the above figure, none of the slaves respond to data,

so the SDA keeps the high level and the I2C Master receives the 0xFF data. In the case of a system that can

handle 0xFF as abnormal data, 0xFF is read and discarded on the I2C Master side. If 0xFF is valid data, use

restriction (1).

After the changes：

MCU Ver.1 has the following restrictions and workarounds. The restrictions and workarounds are not required for MCU
Ver.2.

When multiple I2C slaves are connected to the I2C bus and there is a possibility that an I2C Slave other than this

module will NACK for the upper address / R after Repeated START, there are the following restrictions and

workarounds.

● Work around : Set the upper 2 bits of the 10-bit address assigned to this module to a value different from other

Slave. If the address is exhausted and cannot be set to a different value, use restriction (1).

● Restriction (1) : 10-bit address not available.

● Restriction (2) : After the ACK response in the red circle in the above figure, none of the slaves respond to data,

so the SDA keeps the high level and the I2C Master receives the 0xFF data. In the case of a system that can

handle 0xFF as abnormal data, 0xFF is read and discarded on the I2C Master side. If 0xFF is valid data, use

restriction (1).

#４： I3C slave; Arbitration operation when Dynamic Address is assigned by the ENTDAA command

In MCU Ver.1, if a dynamic address is assigned by the ENTDAA command in I3C slave mode, I3C will

participate in dynamic address arbitration in response to the ACK response of other slaves even after

the dynamic address assignment.

MCU Ver.1 requires the restrictions and workarounds when assigning dynamic address, but the

restrictions and workarounds are not required for MCU Ver.2.

There is no problem even if the same software workaround of MCU Ver.1 is executed on MCU Ver.2.

Before the changes： User’s Manual: Hardware Rev.1.00 P641

For RA2E2, the version that has not been modified by ECO has the following restrictions and

workarounds. This restriction / workaround is not required for the version modified by ECO.

Note: When multiple I3C (I3C Slave) are connected on the I3C Bus assign Dynamic Addresses in the following order.

1. Set the SDCTPIDH and SDCTPIDL registers (6 Bytes) of the I3C (I3C Slave) to a value (All 1 etc.) that has a

lower priority than other Slave Devices by Dynamic Address Arbitration.

2. After setting the Static Address in the I3C (I3C Slave), assign the Dynamic Address using the SETDASA /

SETAASA command.

3. Assign a Dynamic Address to an I3C Slave Device other than the I3C (I3C Slave) using the ENTDAA command.

After the changes：

MCU Ver.1 has the following restriction and workaround. This restriction and workaround are

not required for MCU Ver.2.

Note: When multiple I3C (I3C Slave) are connected on the I3C Bus assign Dynamic Addresses in the following order.

1. Set the SDCTPIDH and SDCTPIDL registers (6 Bytes) of the I3C (I3C Slave) to a value (All 1 etc.) that has a

lower priority than other Slave Devices by Dynamic Address Arbitration.

2. After setting the Static Address in the I3C (I3C Slave), assign the Dynamic Address using the SETDASA /

SETAASA command.

3. Assign a Dynamic Address to an I3C Slave Device other than the I3C (I3C Slave) using the ENTDAA command.

- 10 -

#５： I3C master / I3C slave; Error recovery operation

In order to improve the complexity of the error recovery flow, MCU Ver.2 is revised the circuit so that I3C will

be suspended (BCTL.RSM becomes 1) when an error occurs. After I3C is suspended, the application must

write the value 1 to the BCTL.RSM bit to resume I3C operation and recover form suspended state.

In MCU Ver.2, the error recovery flow shown in Figures 25.96 and Figures 25.97 are simplified by the above

improvements.

There is no problem even if the same error recovery flow of MCU Ver.1 is executed on MCU Ver.2.

Before the changes： User’s Manual: Hardware Rev.1.00 P690-P692

25.3.2.4.6 Error Recovery Operation [I3C mode]

When an error occurs, the INST.INEF, NTST.TEF, NTST.TABTF, HTST.TEF and HTST.TABTF flags are set

to 1 according to the cause of the error, or the interrupts associated with each flag are asserted (when detection

and interrupts are enabled.)

There is a possibility of communication error or internal module error.

The I3C master must perform an error recovery flow according to the following case:

● When TEF is detected.

Figure 25.96 and Figure 25.97 show the error recovery flow.

- 11 -

Error recovery operation

End of Error recovery operation

All commands complete?

No

YES

Set BCTL.ABT to 1 *1

NO

YES

Is the transfer aborted?

Read all Response Descriptor and

IBI Status Descriptor

Read all Rx data FIFO and

IBI data FIFO

Clear Command and Tx data FIFO

by RSTCTL register

Waiting for Bus Available Condition

(BCST.BAVLF = 1) ?

YES

NO

For case (1) :

 Clear BCTL.RSM (W1C)

For case (2) :

 Set RSTCTL.INTLRST to 1 and 0 clear.

For case (2) :

If the current master before internal reset,

set PRSST.CRMS to 1.

Check SDA line signal level

(PRSTDBG.SDILV = 0) ?

NO

YES

*2

[1] Transmission abort processing.

[5] Check whether IBI is issued from

Slave.

[6] RSM clear, internal reset and CRMS

settings depending on the error situation.

Check SDA line signal level

(PRSTDBG.SDILV = 0) ?

NO

YES

Wait : SCL cycle

Read BITCNT.BCNT[4:0] 4times

with SCL cycles.

BITCNT.BCNT[4:0]=5'h00?

(All 4 times)

Use the OUTCTL register to keep the SDA

High and drive the SCL from High to Low.

YES

NO

START condition and

SCL 9 cycle complete ?

NO

YES

*2

[7] Check whether IBI is issued from Slave

again.

If IBI is issued, read the BITCNT register

and check whether it is working.

[8] If BITCNT is not working, I3C Master

is not aware of IBI.

Operate the SCL using the OUTCTL

register and stop the IBI with a NACK

response. Then issue a STOP condition.

Use the OUTCTL register to issue

a STOP condition.

*2

[2] Read all FIFO data by referring to the

NQSTLV and HQSTLV registers.

Check the status and DATA_LENGTH.

[3] Read all FIFO data by referring to the

NDBSTLV and HDBSTLV registers.

[4] Flush Command Queue and Rx/Tx Data

FIFO

Figure 25.96 Example of error recovery operation flowchart for I3C Master

- 12 -

Error recovery operation

End of Error recovery operation

Read all Receive Status Descriptor and

Response Descriptor

Read all Rx data FIFO

Clear Command and Tx data FIFO

by RSTCTL register

Waiting for Bus Available Condition

(BCST.BAVLF = 1) ?

YES

NO

BST.STCNDDF = 1 ?
YES

NO

Set RSTCTL.INTLRST to 1 and

Set RSTCTL.INTLRST to 0

YES

NOWaiting for Bus Available Condition

(BCST.BAVLF = 1) ?

BST.STCNDDF = 1 ?
NO

YES

Waiting for Bus Available Condition

(BCST.BAVLF = 1) ?

NO

YES

Set RSTCTL.INTLRST to 1

Set RSTCTL.INTLRST to 0

[6] Internal software reset

[7] Check BCST.BAVLF.

If the bus changes, issue an internal software

reset according to the value of

BST.STCNDDF.

[1] Read all FIFO data by referring to the

NQSTLV and NRSQSTLV registers.

Check the status and DATA_LENGTH.

[2] Read all FIFO data by referring to the

NDBSTLV register.

[3] Flush Command Queue and Rx/Tx Data

FIFO

[4] Check the Bus Condition

Read SDATBAS0.SDDYAD[6:0] [5] Read SDATBAS0.SDDYAD [6: 0]

and hold the value.

Write back the value of

SDATBAS0.SDDYAD [6: 0].

[8] Write back the held value of

SDATBAS0.SDDYAD[6:0].

Figure 25.97 Example of error recovery operation flowchart for I3C slave

- 13 -

After the changes：

25.3.2.4.6 Error Recovery Operation [I3C mode]

When an error occurs, the INST.INEF, NTST.TEF, NTST.TABTF, HTST.TEF and HTST.TABTF flags are set

to 1 according to the cause of the error, or the interrupts associated with each flag are asserted (when detection

and interrupts are enabled.)

There is a possibility of communication error or internal module error.

Note: For MCU Ver.1, apply the following error recovery flow.

The I3C master / I3C slave must perform an error recovery flow according to the following case:

● When TEF is detected.

Figure 25.96-1 and Figure 25.97-1 show the error recovery flow of MCU Ver.1.

Note: For MCU Ver.2, apply the following error recovery flow.

If an error occurs, I3C will be suspended. (BCTL.RSM becomes 1.) After I3C is suspended, the application

must write the value 1 to the BCTL.RSM bit to resume I3C operation and recover from the suspended

state.

Figure 25.96-2 and Figure 25.97-2 show the error recovery flow of MCU Ver.2.

There is no problem even if the error recovery flow of MCU Ver.1 is executed on MCU Ver.2.

(Omitted because of the same figure as Figure 25.96)

Figure 25.96-1 Example of error recovery operation flowchart for I3C Master

- 14 -

Figure 25.96-2 Example of error recovery operation flowchart for I3C Master

(Omitted because of the same figure as Figure 25.97)
Figure 25.97-1 Example of error recovery operation flowchart for I3C Slave

Error recovery operation

Read all Response Descriptor and

IBI Status Descriptor

Read all Rx data FIFO and

IBI data FIFO

Clear Command and Tx data FIFO

by RSTCTL register

Set BCTL.RSM to 1

[1] Read all FIFO data by referring to the

NQSTLV and HQSTLV registers.

Check the status and DATA_LENGTH.

[2] Read all FIFO data by referring to the

NDBSTLV and HDBSTLV registers.

[3] Flush Command Queue and Rx/Tx Data

FIFO

[4] BCTL.RSM bit clear

End of Error recovery operation

YES

NOWaiting for RSM bit clear

(BCTL.RSM = 0) ?
[5] Waiting for BCTL.RSM bit clear *1

Note 1. It is possible to set the Command Descriptor while waiting

 for the RSM bit to be cleared.

- 15 -

Figure 25.97-2 Example of error recovery operation flowchart for I3C Slave

Error recovery operation

End of Error recovery operation

Read all Receive Status Descriptor and

Response Descriptor

Read all Rx data FIFO

Clear Command and Rx/Tx data FIFO

by RSTCTL register

Set BCTL.RSM to 1

YES

NO

[1] Read all FIFO data by referring to the

NQSTLV and NRSQSTLV registers.

Check the status and DATA_LENGTH.

[2] Read all FIFO data by referring to the

NDBSTLV register.

[3] Flush Command Queue and Rx/Tx Data

FIFO

Waiting for RSM bit clear

(BCTL.RSM = 0) ?

[4] BCTL.RSM bit clear

[5] Waiting for BCTL.RSM bit clear *1

Note 1. It is possible to set the Command Descriptor for issuing IBI while

 waiting for the RSM bit to be cleared.

- 16 -

#６： I3C master; Error recovery operation when receiving irregular data in I3C master receive mode

In MCU Ver.1, if the data transmitted from the slave is less than the received data length (number of bytes)

set in the command descriptor when receiving the I3C master, I3C is required to perform an internal reset.

MCU Ver.2 does not required to perform the internal reset.

There is no problem even if the same software workaround of MCU Ver.1 is executed on MCU Ver.2.

Before the changes： User’s Manual: Hardware Rev.1.00 P645

(c) SDR Data Read Transfer

1. Write the data requested from the I3C Master to the Transmit Data Buffer via the NTDTBPn register.

2. When Transaction is issued from the I3C Master, it compares the Slave Address of Address Header with its

own Slave Address, and if it matches, I3C responds with ACK.

When a Transaction is received, if the Transmit Data Buffer is EMPTY, I3C Slave responds with

NACK with the Address Header.

In preparation for retrying the I3C Master, write data to the Transmit Data Buffer via the NTDTBPn

register.

3. Transmit the data stored in the Transmit Data Buffer.

4. If data to be transmitted still remains, write the data to be transmitted with an interrupt by TDBEF0 = 1 to

the Transmit Data Buffer via the NTDTBPn register.

5. SDR:

When the transmission of the data stored in the Transmit Data Buffer is completed, Low is output to the T-

bit following Data, and it is notified to the I3C Master that it is the final data.

Legacy I2C Message:

When NACK is detected, data transmission is terminated.

6. When a Repeated START condition or STOP condition is detected, the Receive Status Descriptor is stored

in the Receive Status Buffer.

7. Read the Receive Status Descriptor via NRSQP and check the status.

If the data length does not match, set the RSTCTL.INTLRST bit to 1 and then reset the internal states

of this module. For details, see section 25.3.2.4.6. Error Recovery Operation [I3C mode].

- 17 -

After the changes：

(c) SDR Data Read Transfer

1. Write the data requested from the I3C Master to the Transmit Data Buffer via the NTDTBPn register.

2. When Transaction is issued from the I3C Master, it compares the Slave Address of Address Header with its

own Slave Address, and if it matches, I3C responds with ACK.

When a Transaction is received, if the Transmit Data Buffer is EMPTY, I3C Slave responds with

NACK with the Address Header.

In preparation for retrying the I3C Master, write data to the Transmit Data Buffer via the NTDTBPn

register.

3. Transmit the data stored in the Transmit Data Buffer.

4. If data to be transmitted still remains, write the data to be transmitted with an interrupt by TDBEF0 = 1 to

the Transmit Data Buffer via the NTDTBPn register.

5. SDR:

When the transmission of the data stored in the Transmit Data Buffer is completed, Low is output to the T-

bit following Data, and it is notified to the I3C Master that it is the final data.

Legacy I2C Message:

When NACK is detected, data transmission is terminated.

6. When a Repeated START condition or STOP condition is detected, the Receive Status Descriptor is stored

in the Receive Status Buffer.

7. Read the Receive Status Descriptor via NRSQP and check the status.

MCU Ver.1 has the following restriction and workaround. This restriction and workaround are not

required for MCU Ver.2.

If the data length does not match, set the RSTCTL.INTLRST bit to 1 and then reset the internal states

of this module. For details, see section 25.3.2.4.6. Error Recovery Operation [I3C mode].

- 18 -

#７： I3C master / I3C slave; Operation when using unsupported Common Command Code(CCC)

There are restrictions and workarounds for MCU Ver.1 and MCU Ver.2 when using common command codes

(CCC) that are not supported by the I3C master / I3C slave.

Before the changes： User’s Manual: Hardware Rev.1.00 P687

25.3.2.3.11 Common Command Codes (CCC) [I3C mode]

Command Code 0xE0-0xFE Vendor Extension-Direct CCCs defined are not supported.

The MIPI reserved area and Vendor Extension area of Command Code are not supported.

Do not use an unsupported CCC when using this module with I3C Slave.

If the I3C Master must use an unsupported CCC, use the added CCC after using ENTASx CCC to put

this module to Sleep mode.

After the changes：

25.3.2.3.11 Common Command Codes (CCC) [I3C mode]

For the common command code (CCC), refer to 5.1.9 Common Command Codes (CCC) in MIPI I3C Specification v1.0.

This I3C is based on Table 15 I3C Common Command Codes in 5.1.9.3 Common Command Definitions of MIPI I3C

Specification v1.0.

Note: MCU Ver.1 has the following restriction and workaround. The restriction and workaround are not required for

MCU Ver.2.

Command Code 0xE0-0xFE Vendor Extension-Direct CCCs defined are not supported.

The MIPI reserved area and Vendor Extension area of Command Code are not supported.

Do not use an unsupported CCC when using this module with I3C Slave.

If the I3C Master must use an unsupported CCC, use the added CCC after using ENTASx CCC to

put this module to Sleep mode.

Note: For MCU Ver.2, the MIPI Reserved area and Vendor Extension area of Command Code are described below.

I3C Master mode：

When sending CCCs in the MIPI Reserved area and Vendor Extension area from the I3C Master, only Broadcast

/ Direct SET CCCs using the Immediate Transfer Command can be sent.

Sending Direct GET CCC is not supported.

I3C Slave mode：

Only Broadcast / Direct SET CCC can be received for CCC in MIPI Reserved area and Vendor Extension area.

Receiving Direct GET CCC is not supported.

