
 APPLICATION NOTE

R01AN1880EJ0103 Rev.1.03 Page 1 of 48
Aug.24, 2017

RZ/A1H Group
Pixel Format Converter "PFV" Driver Example
Introduction

This application note describes the example driver which converts an image from a pixel format to another by using
the RZ/A1H's pixel format converter (PFV).

The PFV example driver offers the following features:

 Converts image data among pixel formats RGB888(input only), ARGB8888(output only), RGB565, and
YCbCr422.

 Uses a color matrix which allows a brightness (offset) adjustment and a 9-axis gain adjustment on image data
when converting it.

 Uses two direct access controllers (DMACs) for consecutively converting image data. One DMAC inputs image
data from RAM into the PFV. Another DMAC transfers image data from the PFV to RAM. The DMAC channel
is specified in the initialization function. Interrupts (IFEI and OFFI) generated from the PFV are reported to the
DMACs.

 PFV and DMAC channel number can be changed to any number in PFV example application.

Target Device
RZ/A1H Group

RZ/A1M Group

When applying the example program covered in this application note to another microcomputer, modify the program
according to the specifications for the target microcomputer and conduct an extensive evaluation of the modified
program.

R01AN1880EJ0103
Rev.1.03

Aug.24, 2017

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 2 of 48
Aug.24, 2017

Table of Contents

Pixel Format Converter "PFV" Driver Example ... 1

1. Specifications .. 4

2. Operation Check Conditions ... 5

3. Reference Application Note(s) .. 6

4. Peripheral Functions .. 7

5. Description of Hardware .. 8
5.1 Hardware Configuration .. 8
5.2 List of Pins to be Used .. 9

6. Description of Software ... 10
6.1 Operation Outline .. 10

6.1.1 Preparations ..12
6.2 Memory Mapping .. 13

6.2.1 Section Assignment in Sample Code ..14
6.2.2 Setting for MMU ..17
6.2.3 Exception Processing Vector Table ...18

6.3 List of commands .. 19
6.4 Interrupt .. 20
6.5 Basic Types .. 21
6.6 Constants, Enumerations and Error code .. 21

6.6.1 Version ..22
6.6.2 Error Codes ...22
6.6.3 pfv_format_t ..22
6.6.4 pfv_swap_t ..23
6.6.5 pfv_color_matrix_mode_t ..24
6.6.6 pfv_dc_offset_index_t ...24
6.6.7 pfv_matrix_multiply_index_t ..25
6.6.8 pfv_idtrg_t ..25
6.6.9 pfv_odtrg_t ..25
6.6.10 pfv_interrupt_line_t ..26
6.6.11 pfv_interrupt_status_t ..26
6.6.12 pfv_dmac_interrupt_unit_t ...26
6.6.13 Values within Unnamed Enumerations and Constants ..26

6.7 Structures and Unions .. 27
6.7.1 pfv_dmac_config_t ..27
6.7.2 pfv_config_t ...27
6.7.3 pfv_io_format_t ..27
6.7.4 pfv_transfer_config_t ...29
6.7.5 pfv_color_matrix_t ...30
6.7.6 pfv_reset_color_matrix_t ...31
6.7.7 pfv_dma_bit_count_t ...32

6.8 List of Variables .. 33
6.9 Functions .. 34

6.9.1 List ...34
6.9.2 Functions for cooperation between the PFV and DMACs ...36
6.9.3 Functions for PFV operation only ..38
6.9.4 Functions, available before initialization, for PFV operation only ...42
6.9.5 Driver porting layer functions ...42

6.10 Supplementary Information .. 46
6.10.1 Flagged structure parameters ...46

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 3 of 48
Aug.24, 2017

7. Example Codes ... 47

8. Documents for Reference .. 47

Website and Support ... 48

Revision History ... 49

General Precautions in the Handling of MPU/MCU Products .. 50

Notice ... 51

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 4 of 48
Aug.24, 2017

1. Specifications
Table 1-1 shows the Peripheral Functions and Their Applications, and Figure 1-1 shows the Operation

Overview.

Table 1-1 Peripheral Functions and Their Applications

Peripheral functions Uses

Pixel Format Converter (PFV) Converts image data.
Direct Access Controller (DMAC) Transfers image data. There are one DMAC for input to the PFV

and another DMAC for output from the PFV.
Interrupt Controller (INTC) Controls the PFV and DMAC interrupts.
Serial Communications Interface
(SCIF)(UART)

Debug output

Figure 1-1 the Operation Overview

MESSAGE

Host PC

Serial interface
(RS-232C cable)

R7S72100 CPU board
RTK772100BC00000BR

R7S72100

Terminal software
(outputs sample code message)

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 5 of 48
Aug.24, 2017

2. Operation Check Conditions
The example code contained in this application note has been checked under the conditions listed below.

Table 2-1 Operation Check Conditions

Item Description

MCU used RZ/A1H
Operating frequency CPU clock (Iϕ): 400MHz

Image processing clock (Gϕ): 266.67MHz
Internal bus clock (Bϕ): 133.33MHz
Peripheral clock 1 (P1ϕ): 66.67MHz
Peripheral clock 0 (P0ϕ): 33.33MHz

Operating voltage Power supply voltage (I/O): 3.3V
Power supply voltage (Internal): 1.18V

ARM Integrated development
environment

ARM® integrated development environment
ARM Development Studio 5 (DS-5TM) Version 5.16

C compiler ARM C/C++ Compiler/Linker/Assembler Ver.5.03 [Build 102]
IAR Integrated development

environment
IAR Embedded Workbench for ARM 7.80.4.12495

C compiler
Renesas Integrated development

environment
e2 studio (Version: 5.3.0.023)

C compiler GNUARM-NONE-EABI v16.01
Operating mode Boot mode 0

(CS0 space 16bit boot)
Communication setting of terminal
software

• Communication speed: 115200bps
• Data length: 8 bits
• Parity: None
• Stop bit length: 1 bit
• Flow control: None

Board used GENMAI board
• RTK772100BC00000BR (R7S72100 CPU board)
• RTK77210000B00000BR (R7S72100 Option board)

Device used LCD. (Only the example should be used. The PFV driver should
not be used.)
Serial interface (D-sub 9-pin connector)

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 6 of 48
Aug.24, 2017

3. Reference Application Note(s)
For additional information associated with this document, refer to the following application note(s).

 RZ/A1H Group Example of Initialization (R01AN1646EJ)

 RZ/A1H Group I/O definition header file <iodefine.h> (R01AN1860EJ)

 RZ/A1H Group OS porting layer "OSPL" Example Program (R01AN1887EJ)

 RZ/A1H Group Direct Access Controller "DMAC_RM" Driver Example (Attached to PFV) (R01AN1888EJ)

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 7 of 48
Aug.24, 2017

4. Peripheral Functions
The basic functions of the PFV and DMAC are described in the RZ/A1H Group User's Manual: Hardware.

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 8 of 48
Aug.24, 2017

5. Description of Hardware
5.1 Hardware Configuration

Figure 5-1 shows examples of hardware devices connected. Figure 5-2 shows Block Diagram.

Figure 5-1 Examples of Hardware Devices Connected

Figure 5-2 Block Diagram

GENMAI board

Option board
(Optional)

LCD output
(Optional)

ULINK2 (ICE)

To host PC's
USB

To host PC's
serial port

Power supply

SDRAM or
on-chip
RAM

PFV DMAC
(*1)

DMAC
(*1)

ROM, SDRAM
or on-chip
RAM

RZ/A1H

INTC

(*1) CPU can access to PFV instead of DMAC.

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 9 of 48
Aug.24, 2017

5.2 List of Pins to be Used
Table 5-1 lists the pins to be used and their functions.

Table 5-1 Pins to be Used and their Functions

Pin name I/O Description

None

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 10 of 48
Aug.24, 2017

6. Description of Software
6.1 Operation Outline

Figure 6-1 shows the sequence of processes using the DMACs. Figure 6-2 shows the sequence of processes not
using the DMACs.

Changing the OS requires changing the contents of the driver porting layer functions.

Figure 6-1 Sequence of Processes Using the DMACs

Initializes PFV, input DMAC, and output DMAC.
(6.9.2(1) R_PFV_DMAC_Initialize function)

PFV Input DMAC Output DMAC CPU RAM

Creates an input image in RAM.

Sets conversion information in the PFV.
(6.9.2(3) R_PFV_DMAC_SetIOFormat function, 6.9.2(6) R_PFV_DMAC_SetImageColorMatrix
function)

Starts DMA to initiate conversion.
(6.9.2(8) R_PFV_DMAC_Transfer function)

Input image data

Output image data End interrupt

Performs termination processing for the PFV, input DMAC, and
output DMAC.
(6.9.2(2) R_PFV_DMAC_Terminate function)

R
epeated Pixel format conversion

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 11 of 48
Aug.24, 2017

Figure 6-2 Sequence of Processes Not Using the DMACs

Initializes the PFV.
(6.9.3(1) R_PFV_Initialize function)

PFV CPU

Sets conversion information in the PFV.
(6.9.3(3) R_PFV_SetIOFormat function, 6.9.3(6) R_PFV_SetImageColorMatrix function)

Performs termination processing for the PFV.
(6.9.3(2) R_PFV_Terminate function)

R
epeated

Checks whether the PFV's input FIFO is empty.
(6.9.3(8) R_PFV_GetFilledByteInInputFIFO function)

Writes non-converted image data to the PFV.
(6.9.3(9) R_PFV_WritePixelDataViaPIO function)

Checks whether the PFV's output FIFO contains data.
(6.9.3(10) R_PFV_GetFilledByteInOutputFIFO function)

Reads converted image data from the PFV.
(6.9.3(11) R_PFV_ReadPixelDataViaPIO function)

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 12 of 48
Aug.24, 2017

6.1.1 Preparations
The following preparations in Sample Code.

1. Terminal software is started in a host PC and it's established as follows. (In the case of Tera Term)

2. When a sample program is executed, a message is output at a terminal as follows.

Figure 6-3 Message output at sample program execution

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 13 of 48
Aug.24, 2017

6.2 Memory Mapping
Figure 6.4 shows the Address Space of the RZ/A1H group and the Memory Mapping of the GENMAI board

RTK772100BC00000BR.

In this sample code, the code and data used in the ROM area is located in the NOR flash memory connected to the
CS0 space, and the code and data used in the RAM area is located in the large-capacity on-chip RAM.

Figure 6.4 Memory Mapping

Normal space

CS3 space (64MB)

CS2 space (64MB)

CS1 space (64MB)

CS5 space (64MB)
CS4 space (64MB)

H'FFFF FFFF

H'60A0 0000

H'6000 0000

CS0 space (64MB)

H'5C00 0000

Mirror space

RZ/A1H group
Address space

Others
(502MB)

H'5800 0000

CS3 space (64MB)

CS2 space (64MB)

CS1 space (64MB)

CS5 space (64MB)
CS4 space (64MB)

H'5000 0000

H'4400 0000

H'4000 0000

CS0 space (64MB)

H'2000 0000

H'1C00 0000

Others
 (2550MB)

H'1800 0000

H'1000 0000

SPI multi I/O bus space 1
(64MB)

SPI multi I/O bus space 2
(64MB)

Large-capacity on-chip RAM
(10MB)

H'4C00 0000

H'4800 0000

H'20A0 0000

SPI multi I/O bus space 2
(64MB)

SPI multi I/O bus space 1
(64MB)

Large-capacity on-chip RAM
(10MB)

H'0000 0000

H'0C00 0000

H'0800 0000

H'0400 0000

CS3 mirror space

CS2 mirror space

CS1 mirror space

CS5 mirror space
CS4 mirror space

CS0 mirror space

GENMAI board
Memory map

Others
(502MB)

SDRAM (64MB)

SDRAM (64MB)

NOR flash memory
(64MB)

User area

NOR flash memory
(64MB)

Others
(2550MB)

SPI multi I/O bus
mirror space 1

SPI multi I/O bus
mirror space 2

Large-capacity on-chip RAM
mirror space

Serial flash memory (64MB)

Serial flash memory (64MB)

Large-capacity on-chip RAM
(10MB)

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 14 of 48
Aug.24, 2017

6.2.1 Section Assignment in Sample Code
In this sample code, the exception processing vector table and the IRQ interrupt handler are assigned to the large-

capacity on-chip RAM, and they are executed in such RAM to speed up the interrupt processing. The transfer
processing from the NOR flash memory area which is the program code of the exception processing vector table and the
IRQ interrupt handler to the large-capacity on-chip RAM area, the clear to zero processing for the data selection without
initial data, and the initialization for the data selection with initial data are executed by using the scatter-loading
function. Refer to "Image structure and generation" in "ARM Compiler toolchain Using the Linker" provided by the
ARM for more information about the scatter-loading function.

Table 6.1 and Table 6.2 list the Sections to be Used in this sample code. Figure 6.5 shows the Section Assignment for
the initial condition of the sample code and the condition after using the scatter-loading function.

Table 6.1 Sections to be Used (1/2)

Area Name Description Type Loading
Area

Execution
Area

VECTOR_TABLE Exception processing vector table Code FLASH FLASH
RESET_HANDLER Program code area of reset handler

processing
This area consists of the following
sections.
• INITCA9CACHE (L1 cache setting)
• INIT_TTB (MMU setting)
• RESET_HANDLER (Reset handler)

Code FLASH FLASH

CODE_BASIC_SETUP Program code area to optimize operating
frequency and flash memory

Code FLASH FLASH

InRoot This area consists of the sections located
in the root area such as C standard
library.

Code
and
RO Data

FLASH FLASH

CODE_FPU_INIT Program code area for NEON and VFP
initializations
This area consists of the following
sections.
• CODE_FPU_INIT
• FPU_INIT

Code FLASH FLASH

CODE_RESET Program code area for hardware
initialization
This area consists of the following
sections.
• CODE_RESET (Startup processing)
• INIT_VBAR (Vector base setting)

Code FLASH FLASH

CODE_IO_REGRW Program code area for read/write
functions of I/O register

Code FLASH FLASH

CODE Program code area for defaults
All the Code type sections which do not
define section names with C source are
assigned in this area.

Code FLASH FLASH

CONST Constant data area for defaults
All the RO Data type sections which do
not define section names with C source
are assigned in this area.

RO Data FLASH FLASH

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 15 of 48
Aug.24, 2017

Table 6.2 Sections to be Used (2/2)

Area Name Description Type Loading
Area

Execution
Area

VECTOR_MIRROR_
TABLE

Exception processing vector table
(Section to transfer data to large-capacity
on-chip RAM)

Code FLASH LRAM

CODE_HANDLER_
JMPTBL

Program code area for user-defined
functions of IRQ interrupt handler

Code FLASH LRAM

CODE_HANDLER Program code area of IRQ interrupt
handler
This area consists of the following
sections.
• CODE_HANDLER
• IRQ_FIQ_HANDLER

Code FLASH LRAM

DATA_HANDLER_
JMPTBL

Registration table data area for user-
defined functions of IRQ interrupt handler

RW Data FLASH LRAM

ARM_LIB_STACK Application stack area ZI Data - LRAM
IRQ_STACK IRQ mode stack area ZI Data - LRAM
FIQ_STACK FIQ mode stack area ZI Data - LRAM
SVC_STACK Supervisor (SVC) mode stack area ZI Data - LRAM
ABT_STACK Abort (ABT) mode stack area ZI Data - LRAM
TTB MMU translation table area ZI Data - LRAM
ARM_LIB_HEAP Application heap area ZI Data - LRAM
DATA Data area with initial value for defaults

All the RW Data type sections which do
not define section names with C source
are assigned in this area.

RW Data FLASH LRAM

BSS Data area without initial value for defaults
All the ZI Data type sections which do not
define section names with C source area
assigned in this area.

ZI Data - LRAM

Notes: 1. "FLASH" and "LRAM" shown in Loading Area and Execution Area indicate the NOR flash memory
area and the large-capacity on-chip RAM area respectively.

 2. Basically the section name is set to be the same as the region's, however it consists of some sections
in the areas of RESET_HANDLER, InRoot, CODE_FPU_INIT, CODE_RESET, CODE, CONST,
CODE_HANDLER, DATA, and BSS. Refer to the ARM compiler toolchain manual about the region
and the section.

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 16 of 48
Aug.24, 2017

Figure 6.5 Section Assignment

H'FFFF FFFF

RZ/A1H group
Address space

H'4000 0000

CS0 space
 (64MB)

H'2000 0000

H'1C00 0000

H'1800 0000

H'1000 0000

H'20A0 0000
Large-capacity on-chip RAM

(10MB)

H'0000 0000

H'0C00 0000

H'0800 0000

H'0400 0000

H'2002 E000
H'2002 C000

H'2002 4000

Section assignment
(Load view)

H'2002 0100

RESER_HANDLER

H'2002 0000

VECTOR_TABLE

H'2000 0000

H'03FF FFFF

CODE_BASIC_SETUP

InRoot

H'0000 0000

H'0000 0200

H'0000 0100 VECTOR_MIRROR_TABLE

CODE_FPU_INIT

CODE_RESET

CODE_IO_REGRW

CODE

CONST

CODE_HANDLER

CODE_HANDLER_JMPTBL

DATA_HANDLER_JMPTBL

H'2003 0000
H'2003 2000
H'2003 4000

H'2003 8000

H'200B 8000

Section assignment
(Execution view)

RESER_HANDLER

VECTOR_TABLE

CODE_BASIC_SETUP

InRoot

CODE_FPU_INIT

CODE_RESET

CODE_IO_REGRW

CODE

CONST

CODE_HANDLER_JMPTBL

VECTOR_MIRROR_TABLE

CODE_HANDLER

DATA_HANDLER_JMPTBL

ARM_LIB_STACK

IRQ_STACK
FIQ_STAC

SVC_STACK
ABT_STACK

TTB

ARM_LIB_HEAP

DATA

BSS

H'209F FFFF

Memory allocation after
executing scatter-loading

Clear to zero

DATA

Initialize data
with initial value

Transfer program
code which requires
speeding up to on-

chip RAM

Initialize data
with initial value

Transfer exception
processing vector to
on-chip RAM

Secure area such
as stack area

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 17 of 48
Aug.24, 2017

6.2.2 Setting for MMU
The MMU is set to manage the 4 GB area in 1MB unit from the address H'0000 0000 in response to the memory map

of the hardware resource used for the GENMAI board. (Set by the ttb_init.s file.) The minimum unit should be 1MB
when customizing the MMU based on the system.

Table 6.3 lists the Setting for MMU.

Table 6.3 Setting for MMU

Definition Name Contents Address Size Memory Type

M_SIZE_NOR CS0 and CS1 spaces
(NOR flash memory)

H'0000 0000
to

H'07FF FFFF

128MB L1 cache enable,
Normal memory

M_SIZE_SDRAM CS2 and CS3 spaces
(SDRAM)

H'0800 0000
to

H'0FFF FFFF

128MB L1 cache enable,
Normal memory

M_SIZE_CS45 CS4 and CS5 spaces H'1000 0000
to

H'17FF FFFF

128MB Strongly-ordered memory
(L1 cache disable)

M_SIZE_SPI SPI multi IO bus
space 1 and 2
(serial flash memory)

H'1800 0000
to

H'1FFF FFFF

128MB L1 cache enable,
Normal memory

M_SIZE_RAM Large-capacity on-chip
RAM space

H'2000 0000
to

H'209F FFFF

10MB L1 cache enable,
Normal memory

M_SIZE_IO_1 On-chip peripheral module
and reserved area

H'20A0 0000
to

H'3FFF FFFF

502MB Strongly-ordered memory
(L1 cache disable)

M_SIZE_NOR_M CS0 and CS1 mirror spaces H'4000 0000
to

H'47FF FFFF

128MB L1 cache disable,
Normal memory

M_SIZE_SDRAM_M CS2 and CS3 mirror spaces H'4800 0000
to

H'4FFF FFFF

128MB L1 cache disable,
Normal memory

M_SIZE_CS45_M CS4 and CS5 mirror spaces H'5000 0000
to

H'57FF FFFF

128MB Strongly-ordered memory
(L1 cache disable)

M_SIZE_SPI_M SPI multi IO bus
mirror space 1 and 2

H'5800 0000
to

H'5FFF FFFF

128MB L1 cache disable,
Normal memory

M_SIZE_RAM_M Large-capacity on-chip
RAM mirror space

H'6000 0000
to

H'609F FFFF

10MB L1 cache disable,
Normal memory

M_SIZE_IO_2 On-chip peripheral module
and reserved area

H'60A0 0000
to

H'FFFF FFFF

2550MB Strongly-ordered memory
(L1 cache disable)

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 18 of 48
Aug.24, 2017

6.2.3 Exception Processing Vector Table
The RZ/A1H has seven types of exception processing (reset, undefined instruction, software interrupt, prefetch abort,

data abort, IRQ, and FIQ). In the case of boot mode 0, the exception processing vector table is assigned to the area from
H'0000 0000 to the area of 32 bytes (from H'0000 0000 to H'0000 001F) after the reset cancellation.

Figure 6.6 shows the contents of the sample code exception processing vector table as a description example.

vector_table
 LDR pc, =reset_handler ; 0x0000_0000 : Reset exception
 LDR pc, =undefined_handler ; 0x0000_0004 : Undefined instructions
exception
 LDR pc, =svc_handler ; 0x0000_0008 : Software interrupts exceptions
 LDR pc, =prefetch_handler ; 0x0000_000c : Prefetch abort exception
 LDR pc, =abort_handler ; 0x0000_0010 : Data abort exception
 LDR pc, =reserved_handler ; 0x0000_0014 : Reserved
 LDR pc, =irq_handler ; 0x0000_0018 : IRQ exception
 LDR pc, =fiq_handler ; 0x0000_001c : FIQ exception

Figure 6.6 Description Example of Exception Processing Vector Table

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 19 of 48
Aug.24, 2017

6.3 List of commands
Table 6-4 shows commands of sample program. Command name is not case sensitive.

Table 6-4 List of commands

Command Summary

Sample_PFV_PIO This sample code directly outputs pixel data from the CPU to the PFV's
FIFO. It transfers pixel data from memory to memory.

Sample_PFV_DMAC This sample code outputs pixel data from the DMAC to the PFV's FIFO. It
transfers pixel data from memory to memory.

Sample_PFV_DMAC_Image This sample code outputs pixel data from the DMAC to the PFV's FIFO. It
transfers pixel data from memory to memory. Output data is shown in LCD.
Program changes gain of image.

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 20 of 48
Aug.24, 2017

6.4 Interrupt
Table 6-5 shows Interrupts using by example code.

Table 6-5 Interrupts using by example code

Interrupt
(Source ID)

Priority Summary

DMAINT0 -
DMAINT#

INTERRUPT_LEVEL_OF_INPUT_DMAC(=20)
INTERRUPT_LEVEL_OF_OUTPUT_DMAC(=19)

Receives the interrupt of
DMAINT#

IFEI0 - IFEI# INTERRUPT_LEVEL_OF_INPUT_EMPTY(=24) Receives the interrupt of IFEI# or
is the target of DMA Extended
Resource Selector.

OFFI0 - OFFI# INTERRUPT_LEVEL_OF_OUTPUT_FULL(=23) Receives the interrupt of OFFI#
or is the target of DMA Extended
Resource Selector.

PFVEI0 - PFVEI# INTERRUPT_LEVEL_OF_ERROR(=31) Receives the interrupt of PFVEI#

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 21 of 48
Aug.24, 2017

6.5 Basic Types

Symbol Description

char_t 8-bit character
bool_t Logical data type. The value is true (1) or false (0).
int_t The signed integer for this library is a 32-bit signed integer.
int8_t 8-bit signed integer (defined by standard library)
int16_t 16-bit signed integer (defined by standard library)
int32_t 32-bit signed integer (defined by standard library)
int64_t 64-bit signed integer (defined by standard library)
uint8_t 8-bit unsigned integer (defined by standard library)
uint16_t 16-bit unsigned integer (defined by standard library)
uint32_t 32-bit unsigned integer (defined by standard library)
uint64_t 64-bit unsigned integer (defined by standard library)
int_fast8_t Fastest 8-bit minimum-width signed integer
int_fast16_t Fastest 16-bit minimum-width signed integer
int_fast32_t Fastest 32-bit minimum-width signed integer
uint_fast8_t Fastest 8-bit minimum-width unsigned integer
uint_fast16_t Fastest 16-bit minimum-width unsigned integer
uint_fast32_t Fastest 32-bit minimum-width unsigned integer
uintptr_t Same as pointer bit width unsigned integer as physical address
size_t Same as pointer bit width unsigned integer as byte size
ptrdiff_t Same as pointer bit width signed integer as difference between pointers
bit_flags_fast32_t Same as uint_fast32_t bit flags (bit field)
bit_flags32_t Same as uint32_t bit flags (bit field)
float32_t 32-bit float

(Defined by standard library when "__ARM_NEON__" defined)
float64_t 64-bit float

(Defined by standard library when "__ARM_NEON__" defined)
float128_t 128-bit float

6.6 Constants, Enumerations and Error code

Section Type Symbol Description

6.6.1 - Version
6.6.2 errnum_t Error Codes
6.6.3 pfv_format_t Pixel format of image data
6.6.4 pfv_swap_t Byte-order swapping for image data
6.6.5 pfv_color_matrix_mode_t Pixel format of image data before and after conversion
6.6.6 pfv_dc_offset_index_t Array number for an offset component in the color matrix
6.6.7 pfv_matrix_multiply_index_t Array number for a gain component in the color matrix
6.6.8 pfv_idtrg_t Number of bytes when the input FIFO is determined to be

empty
6.6.9 pfv_odtrg_t Number of bytes when the output FIFO is determined to be full
6.6.10 pfv_interrupt_line_t A kind of interrupt line
6.6.11 pfv_interrupt_lines_t Bit flags of "pfv_interrupt_line_t"
6.6.12 pfv_dmac_interrupt_unit_t A kind of peripheral signaled interrupt

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 22 of 48
Aug.24, 2017

*1 r_ospl_interrupt_t Struct of interrupt source
*1 r_ospl_caller_t Information of driver internal interrupt operations
6.6.13 Unnamed enumerations and

constants
Other constants

6.6.1 Version

Symbol Value Description

PFV_VERSION 101 Version number of PFV
PFV_VERSION_STRING "1.01" String of version number of PFV

6.6.2 Error Codes

Symbol Value Description

0 0 No error is detected.
E_OTHERS 1 Others error
E_FEW_ARRAY 2 Error of few fixed length array
E_FEW_MEMORY 3 Few heap memory area
E_FIFO_OVER 4 Failed to enqueue
E_NOT_FOUND_SYMBOL 5 Not defined the symbol
E_NO_NEXT 6 There is not next element of list
E_ACCESS_DENIED 7 Error of denied read or write
E_NOT_IMPLEMENT_YET 9 Not implemented yet
E_ERRNO 0x0E(=14) Refer to "errno"
E_LIMITATION 0x0F(=15) Temporary limitation
E_STATE 0x10(=16) Cannot do at this state
E_NOT_THREAD 0x11(=17) Not a thread, Cannot call from interrupt context.
E_PATH_NOT_FOUND 0x12(=18) Not found file or folder
E_BAD_COMMAND_ID 0x16(=22) Out of number of command ID
E_TIME_OUT 0x17(=23) Time out
E_STACK_OVERFLOW 0x1C(=28) Stack overflow
E_NO_DEBUG_TLS 0x1D(=29) Not set debug work area.
E_EXIT_TEST 0x1E(=30) Request of exit from the test
E_PFV_HW_ERROR 0x4701(=18177) Error of detected by PFV hardware

6.6.3 pfv_format_t
Pixel formats of image data

Symbol Value Description

PFV_RGB888 0 32-bit color. The bits are in this order: 8 bits unused, 8 bits for
red, 8 bits for green, and 8 bits for blue. They are arranged from
left to right in descending order of significance or byte order used
by the CPU. (This order is used by default for input.)

PFV_ARGB8888 0 32-bit color. The bits are in this order: 8 bits for alpha, 8 bits for
red, 8 bits for green, and 8 bits for blue. They are arranged from
left to right in descending order of significance or byte order used

*1 RZ/A1H Group OS porting layer "OSPL" Example Program (R01AN1887EJ)

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 23 of 48
Aug.24, 2017

by the CPU. Output alpha value is fixed value setting at
pfv_io_format_t::output_alpha variable. (This order is used by
default for output.)

PFV_RGB565 1 16-bit color. The bits are in this order: 5 bits for red, 6 bits for
green, and 5 bits for blue. They are arranged from left to right in
descending order of significance or byte order used by the CPU.

PFV_YCbCr422 3 32-bit color x 2 pixels. The four bytes are in this order: 1 byte for
Cb (color difference U), 1 byte for Y0 (brightness of the pixel on
the left), 1 byte for Cr (color difference V), and 1 byte for Y1
(brightness of the pixel on the right). They are ordered from left
to right in ascending order of addresses.

6.6.4 pfv_swap_t
Byte-order swapping for image data

Symbol Value Description

When the pixel format is PFV_RGB888 or PFV_ARGB8888:
PFV_SWAP_ARGB8888 0 32-bit color. The bits are in this order: 8 bits for alpha (or 8 bits

unused), 8 bits for red, 8 bits for green, and 8 bits for blue. They
are arranged from left to right in descending order of significance
or byte order used by the CPU. (Default)

PFV_SWAP_RABG8888 1 The bits are in this order: bits for red, bits for alpha (or bits
unused), bits for blue, and bits for green. They are arranged
from left to right in descending order of significance like the bits for
PFV_SWAP_ARGB8888.

PFV_SWAP_GBAR8888 2 The bits are in this order: bits for green, bits for blue, bits for alpha
(or bits unused), and bits for red. They are ordered from left to
right in descending order of significance like the bits for
PFV_SWAP_ARGB8888.

PFV_SWAP_BGRA8888 3 The bits are in this order: bits for blue, bits for green, bits for red,
and bits for alpha (or bits unused). They are ordered from left to
right in descending order of significance like the bits for
PFV_SWAP_ARGB8888.

When the pixel format is PFV_RGB565:
PFV_SWAP_RGB565_PIXE
L10

2 16-bit color x 2 pixels. The high-order 16 bits are for the pixel on
the right. The low-order 16 bits are for the pixel on the left. The
bits are in this order: 5 bits for red, 6 bits for green, and 5 bits for
blue. They are arranged from left to right in descending order of
significance or byte order used by the CPU. (Default)
Do not set this value when accessing 16 bits in the FIFO.

PFV_SWAP_RGB565_PIXE
L01

0 Same as above except that the high-order 16 bits are for the pixel
on the left and the low-order 16 bits are for the pixel on the right.
Do not set this value when accessing 16 bits in the FIFO.

When the pixel format is PFV_YCbCr422:
PFV_SWAP_YCbCr422_Cb
_Y0_Cr_Y1

3 32-bit color x 2 pixels. The four bytes are in this order: 1 byte for
Cb (color difference U), 1 byte for Y0 (brightness of the pixel on
the left), 1 byte for Cr (color difference V), and 1 byte for Y1
(brightness of the pixel on the right). They are ordered from left
to right in ascending order of addresses. (Default)

PFV_SWAP_YCbCr422_Y0
_Cb_Y1_Cr

2 The four bytes are in this order: 1 byte for Y0, 1 byte for Cb (U), 1
byte for Y1, and 1 byte for Cr (V). They are ordered from left to
right in ascending order of addresses like the bytes for
PFV_SWAP_YCbCr422_Y1CrY0Cb.

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 24 of 48
Aug.24, 2017

PFV_SWAP_YCbCr422_Cr_
Y1_Cb_Y0

1 The four bytes are in this order: 1 byte for Cr (V), 1 byte for Y1, 1
byte for Cb (U), and 1 byte for Y0. They are ordered from left to
right in ascending order of addresses like the bytes for
PFV_SWAP_YCbCr422_Y1CrY0Cb.

PFV_SWAP_YCbCr422_Y1
_Cr_Y0_Cb

0 The four bytes are in this order: 1 byte for Y1, 1 byte for Cr (V), 1
byte for Y0, and 1 byte for Cb (U). They are ordered from left to
right in ascending order of addresses like the bytes for
PFV_SWAP_YCbCr422_Y1CrY0Cb.

PFV_SWAP_YCbCr422_Y1
CrY0Cb

3 32-bit color x 2 pixels. The bits are in this order: 8 bits for Y1
(brightness of the pixel on the right), 8 bits for Cr (color difference
U), and 8 bits for Cb (color difference V). They are ordered from
left to right in descending order of significance or byte order used
by the CPU.

PFV_SWAP_YCbCr422_CrY
1CbY0

2 The bits are in this order: bits for Cr, bits for Y1, bits for Cb, and
bits for Y0. They are ordered from left to right in descending
order of significance like the bits for
PFV_SWAP_YCbCr422_Y1CrY0Cb.

PFV_SWAP_YCbCr422_Y0
CbY1Cr

1 The bits are in this order: bits for Y0, bits for Cb, bits for Y1, and
bits for Cr. They are ordered from left to right in descending
order of significance like the bits for
PFV_SWAP_YCbCr422_Y1CrY0Cb.

PFV_SWAP_YCbCr422_Cb
Y0CrY1

0 The bits are in this order: bits for Cb, bits for Y0, bits for Cr, and
bits for Y1. They are ordered from left to right in descending
order of significance like the bits for
PFV_SWAP_YCbCr422_Y1CrY0Cb.

Refer to Section 47.3.2, Input/Output Data Format of the RZ/A1H Group User's Manual: Hardware.

6.6.5 pfv_color_matrix_mode_t
Type of image data conversion between pixel formats

Refer to Section 6.9.4(1), R_PFV_STATIC_GetColorMatrixMode Function

Symbol Value Description

PFV_GBR_TO_GBR 0 Converts image data from RGB to RGB.
PFV_GBR_TO_YCbCr 1 Converts image data from RGB to YCbCr.
PFV_YCbCr_TO_GBR 2 Converts image data from YCbCr to RGB.
PFV_YCbCr_TO_YCbCr 3 Converts image data from YCbCr to YCbCr.
PFV_MATRIX_MODE_COUNT 4 Number of values of the pfv_color_matrix_mode_t type

6.6.6 pfv_dc_offset_index_t
Array number for an offset component in the color matrix.

The components of input image data are incremented for brightness adjustment.

When image data is converted from YCbCr to another format, Cb (color difference U) and Cr (color difference V) are
always decremented by 128.

For RGB565, only the high-order 5 or 6 bits of the 8-bit integer are effective. Small-scale offset adjustment by
changing only the low-order bits has no effect.

Refer to member variable dc_offset_plus_128 of the pfv_color_matrix_t type described in Section 6.7.5.

Symbol Value Description

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 25 of 48
Aug.24, 2017

PFV_DC_OFFSET_Y_OR_GREEN 0 Array number assigned to the offset for Y (brightness) or
green

PFV_DC_OFFSET_BLUE 1 Array number assigned to the offset for blue
PFV_DC_OFFSET_RED 2 Array number assigned to the offset for red

6.6.7 pfv_matrix_multiply_index_t
This is array number for a gain component in the color matrix.

The calculated offset components are added together for gain adjustment.

Refer to member variable matrix_multiply_256 of the pfv_color_matrix_t type described in Section 6.7.5.

Symbol Value Description

PFV_COLOR_MATRIX_GG 0 When image data is converted to RGB:
G1 = GG*G0 + GB*B0 + GR*R0
B1 = BG*G0 + BB*B0 + BR*R0
R1 = RG*G0 + RB*B0 + RR*R0

When image data is converted to YCbCr:
Y1 = YY*G0 + GB*B0 + GR*R0
Cb1 = BG*G0 + BB*B0 + BR*R0 + 128
Cr1 = RG*G0 + RB*B0 + RR*R0 + 128

R0, G0, and B0 are the calculated offset components for red/Cr
(color difference V), green/Y (brightness), and blue/Cb (color
difference U), respectively.
R1, G1, B1, Y1, Cb1, and Cr1 are the components of output
image data.
GG, GB, GR, BG, BB, BR, RG, RB, RR, and YY are the suffixes
for the symbols on the left.

PFV_COLOR_MATRIX_GB 1
PFV_COLOR_MATRIX_GR 2
PFV_COLOR_MATRIX_BG 3
PFV_COLOR_MATRIX_BB 4
PFV_COLOR_MATRIX_BR 5
PFV_COLOR_MATRIX_RG 6
PFV_COLOR_MATRIX_RB 7
PFV_COLOR_MATRIX_RR 8
PFV_COLOR_MATRIX_YY 0

6.6.8 pfv_idtrg_t
This is number of bytes of data in the input FIFO when it is determined to be empty. The maximum capacity of this

FIFO is 32 bytes.

Symbol Value Description

PFV_IDTRG_SPACED_2_BYTE 0 2 bytes
PFV_IDTRG_SPACED_4_BYTE 1 4 bytes
PFV_IDTRG_SPACED_16_BYTE 2 16 bytes
PFV_IDTRG_SPACED_32_BYTE 3 32 bytes

6.6.9 pfv_odtrg_t
This is number of bytes of data in the output FIFO when it is determined to be full. The maximum capacity of this

FIFO is 32 bytes.

Symbol Value Description

PFV_ODTRG_FILLED_2_BYTE 0 2 bytes
PFV_ODTRG_FILLED_4_BYTE 1 4 bytes
PFV_ODTRG_FILLED_16_BYTE 2 16 bytes
PFV_ODTRG_FILLED_32_BYTE 3 32 bytes

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 26 of 48
Aug.24, 2017

6.6.10 pfv_interrupt_line_t
A kind of interrupt line

Symbol Value Description

PFV_INTERRUPT_LINE_PFVEIn 1 Interrupt of PFVEI. PFV error
PFV_INTERRUPT_LINE_IFEIn 2 Interrupt of IFEI. Input FIFO is empty
PFV_INTERRUPT_LINE_OFFIn 4 Interrupt of OFFIn. Output FIFO is full

6.6.11 pfv_interrupt_status_t
This is bit flags which contains two or more pfv_interrupt_line_t values (described in Section 6.6.10,

pfv_interrupt_line_t.)

It is used by setting of enabling or disabling interrupt line.

Symbol Value Description

PFV_INTERRUPT_LINE_ALL - All kind of interrupt line
6.6.12 pfv_dmac_interrupt_unit_t

A kind of peripheral signaled interrupt

Symbol Value Description

PFV_INTERRUPT_UNIT_PFV 1 PFV
PFV_INTERRUPT_UNIT_DMAC 2 DMAC

6.6.13 Values within Unnamed Enumerations and Constants

Symbol Value Description

PFV_CHANNEL_MIN 0 Minimum channel number of the PFV
PFV_CHANNEL_MAX 1 Maximum channel number of the PFV
PFV_INPUT_FIFO_FULL_BYTE 32 Number of bytes in the PFV's input FIFO
PFV_OUTPUT_FIFO_FULL_BYTE 32 Number of bytes in the PFV's output FIFO

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 27 of 48
Aug.24, 2017

6.7 Structures and Unions
Table 6-6 Structures and Unions

Section Symbol Outline

6.7.1 pfv_dmac_config_t Parameters for the R_PFV_DMAC_Initialize function
6.7.2 pfv_config_t Parameters for the R_PFV_Initialize function
6.7.3 pfv_io_format_t Parameters for the R_PFV_DMAC_SetIOFormat function
6.7.4 pfv_transfer_config_t Parameters for the R_PFV_DMAC_Transfer function
6.7.5 pfv_color_matrix_t Parameters for the R_PFV_DMAC_SetImageColorMatrix

function
6.7.6 pfv_reset_color_matrix_t Reset value for the color matrix
6.7.7 pfv_dma_bit_count_t DMA transfer size and the full and empty levels for the PFV's

FIFO
*2 r_ospl_async_t Setting of Notification
*2 pfv_async_status_t Status and Interrupt status. Same as "r_ospl_async_status_t"

6.7.1 pfv_dmac_config_t
Outline Parameters for the R_PFV_DMAC_Initialize function
Header devdrv_pfv.h
Description
Member variable bit_flags_t flags Flagged structure parameters. Refer to Section 6.10.1.

F_PFV_DMAC_INPUT_DMAC_CHANNEL
F_PFV_DMAC_OUTPUT_DMAC_CHANNEL
F_PFV_DMAC_RESET_COLOR_MATRIXES

 int_fast32_t
input_DMAC_channel

Channel number of the DMAC which transfers input
image data from memory to the PFV.
If this variable is omitted, the DMAC is not used.

 int_fast32_t
output_DMAC_channel

Channel number of the DMAC which transfers output
image data from the PFV to memory.
If this variable is omitted, the DMAC is not used.

 pfv_color_matrix_sub_t*
reset_color_matrixes

Reset value for the color matrix. Refer to Section 6.7.6.

 pfv_get_dma_bit_count_f
unc_t
get_dma_bit_count_func

Using function instead of
"R_Userdef_PFV_GetDMA_BitCount" function

6.7.2 pfv_config_t
Outline Parameters for the R_PFV_Initialize function
Header devdrv_pfv.h
Description
Member variable bit_flags_t flags Flagged structure parameter. Refer to Section 6.10.1.

F_PFV_RESET_COLOR_MATRIXES
 pfv_color_matrix_sub_t*

reset_color_matrixes
Reset value for the color matrix. Refer to Section 6.7.6.

6.7.3 pfv_io_format_t
Outline Parameters for the R_PFV_DMAC_SetIOFormat function, etc.
Header devdrv_pfv.h
Description

*2 Refer to RZ/A1H Group OS porting layer "OSPL" (R01AN1887JJ)

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 28 of 48
Aug.24, 2017

Member variable bit_flags_t flags Flagged structure parameters. Refer to Section 6.10.1.
F_PFV_INPUT_FORMAT
F_PFV_INPUT_SWAP
F_PFV_OUTPUT_FORMAT
F_PFV_OUTPUT_SWAP
F_PFV_OUTPUT_ALPHA
F_PFV_IS_DITHER
F_PFV_IMAGE_WIDTH
F_PFV_IMAGE_HEIGHT

 pfv_format_t
input_format

Pixel format of the input image.
If this variable is omitted, the setting is not changed.
The initial value is PFV_RGB888.

 pfv_swap_t
input_swap

Byte-order swapping which applies to the pixel format of the
input image.
The default order is one of the following depending on the
input_format member variable:
PFV_SWAP_ARGB8888
PFV_SWAP_RGB565_PIXEL10
PFV_SWAP_YCbCr422_Cb_Y0_Cr_Y1

 pfv_format_t
output_format

Pixel format of the output image.
If this variable is omitted, the setting is not changed.
The initial value is PFV_ARGB8888.

 pfv_swap_t
output_swap

Byte-order swapping which applies to the pixel format of the
output image.
The default order is one of the following depending on the
output_format member variable:

PFV_SWAP_ARGB8888
PFV_SWAP_RGB565_PIXEL10
PFV_SWAP_YCbCr422_Cb_Y0_Cr_Y1

 int_t output_alpha Value of the alpha component of the output image. This
variable is effective only when output_format is
PFV_ARGB8888.
This variable should be in the range of 0 to 255.
If this variable is omitted, 255 is assumed.

 bool_t is_dither Specifies whether to perform dithering. This variable is
effective only when output_format is PFV_RGB565. If the
number of input data color bits is not greater than that of
output data color bits, the effects of dithering are not
obtained even if this variable is effective.
If this variable is omitted, the setting is not changed.
The initial value is true.

 int_t image_width Width (in pixels) of an image.
This variable is required for dithering only.
If this variable is omitted, the setting is not changed.
The initial value is 0.
This variable overwrites pfv_transfer_config_t::buffer_width
specified for the R_PFV_DMAC_Transfer function.

 int_t image_height Height (in pixels) of an image.
This variable is required for dithering only.
If this variable is omitted, the setting is not changed.
The initial value is 0.
This variable overwrites pfv_transfer_config_t::buffer_height
specified for the R_PFV_DMAC_Transfer function.

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 29 of 48
Aug.24, 2017

6.7.4 pfv_transfer_config_t
Outline Parameters for the R_PFV_DMAC_Transfer function
Header devdrv_pfv.h
Description
Member variable bit_flags_t flags Flagged structure parameters. Refer to Section 6.10.1.

F_PFV_TRANSFER_INPUT_BUFFER_ADDRESS
F_PFV_TRANSFER_INPUT_BUFFER_SIZE
F_PFV_TRANSFER_OUTPUT_BUFFER_ADDRESS
F_PFV_TRANSFER_OUTPUT_BUFFER_SIZE
F_PFV_TRANSFER_BUFFER_WIDTH
F_PFV_TRANSFER_BUFFER_HEIGHT

 uintptr_t
input_buffer_address

Physical start address of memory containing the input
image. If this variable is omitted, the DMAC is not used.
In this case, write the data directly to the PFV by using
the R_PFV_WritePixelDataViaPIO function.

 size_t
input_buffer_size

Size (in bytes) of memory containing the input image.
This variable is mandatory if input_buffer_address is
specified.
This variable is used to check whether the buffer size is
large enough when the buffer_width and buffer_height
member variables are specified. The size of data to be
converted is calculated from the buffer_width and
buffer_height member variables.

 uintptr_t
output_buffer_address

Physical start address of memory containing the output
image. If this variable is omitted, the DMAC is not used.
In this case, read the data directly from the PFV by using
the R_PFV_ReadPixelDataViaPIO function.

 size_t
output_buffer_size

Size (in bytes) of memory containing the output image.
This variable is mandatory if output_buffer_address is
specified.
If the buffer_width and buffer_height member variables
are omitted and if the size specified with this variable is
greater than the output image size, then this driver does
not determine that the transfer has completed.
This variable is used to check whether the buffer size is
large enough when the buffer_width and buffer_height
member variables are specified. The size of data to be
converted is calculated from the buffer_width and
buffer_height member variables.
After execution of the R_PFV_DMAC_Transfer function,
this variable becomes the size of the output image.

 int_t buffer_width Width (in pixels) of the image.
If this variable is omitted, the size of data to be converted
is equal to the size specified with input_buffer_size and
not the size calculated from the width and height of the
image.

 int_t buffer_height Height (in pixels) of the image.
This variable is mandatory if buffer_width is specified.

 int_fast32_t

interval_count_of_DMA
Value of setting to "ITVL" bit in "CHITVL_n" register of
DMAC.
Interval count. Number of counting from finish of reading
or writing to next reading or writing. Unit of count is Bϕ
clock. Default is 0.

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 30 of 48
Aug.24, 2017

 r_ospl_axi_cache_attribu
te_t
source_AXI_cache_attrib
ute

Value of setting to "SCA" bit in "CHEXT_n" register of
DMAC.
Cache attribute of AXI bus, when DMAC reads via L2
cache. Default is R_OSPL_AXI_CACHE_ZERO that is
for internal bus of RZ/A1H.

 r_ospl_axi_protection_t
source_AXI_protection

Value of setting to "SPR" bit in "CHEXT_n" register of
DMAC.
Protection attribute of AXI bus, when DMAC reads via L2
cache. Default is R_OSPL_AXI_PROTECTION_ZERO
that is for internal bus of RZ/A1H.

 r_ospl_axi_cache_attribu
te_t
destination_AXI_cache_
attribute

Value of setting to "DCA" bit in "CHEXT_n" register of
DMAC.
Cache attribute of AXI bus, when DMAC writes via L2
cache. Default is R_OSPL_AXI_CACHE_ZERO that is
for internal bus of RZ/A1H.

 r_ospl_axi_protection_t
destination_AXI_protecti
on

Value of setting to "DPR" bit in "CHEXT_n" register of
DMAC.
Protection attribute of AXI bus, when DMAC writes via L2
cache. Default is R_OSPL_AXI_PROTECTION_ZERO
that is for internal bus of RZ/A1H.

6.7.5 pfv_color_matrix_t
Outline Parameters for the R_PFV_DMAC_SetImageColorMatrix function, etc.
Header devdrv_pfv.h
Description The variables of this data type are arranged in the same configuration as those of the

vdc5_color_matrix_t type for the VDC5 driver. Variables of the vdc5_color_matrix_t
type can be cast to the pfv_color_matrix_t type, and then the variables of this data
type can be used.

Member variable int32_t dummy Unused. Available to achieve compatibility with the
vdc5_color_matrix_t type.

 pfv_color_matrix_mode_t
mode

Type of conversion of image data between pixel formats.
Refer to Section 6.6.5.

 uint16_t
dc_offset_plus_128[]

Array of values each of which is the sum of an offset
component in the color matrix and 128.
The components are incremented for brightness
adjustment. The array number is of the
pfv_dc_offset_index_t type described in Section 6.6.6,
pfv_dc_offset_index_t.

 int16_t
matrix_multiply_256[]

Array of values each of which is the product of a gain
component in the color matrix and 256.
The components are added together for gain adjustment.
The array number is of the pfv_matrix_multiply_index_t
type described in Section 6.6.7,
pfv_matrix_multiply_index_t.

Example:
#define NUM_2048 2048 /* if (matrix_multiply_256 < 0) matrix_multiply_256
= register_value - 2048 */
static const pfv_reset_color_matrix_t
gs_ResetColorMatrixes[PFV_MATRIX_MODE_COUNT] =
{
 { /* GBR => GBR */
 { 128, 128, 128 },
 { 256, 0, 0, 0, 256, 0, 0, 0, 256 }
 },
 { /* GBR => YCBCR, SMPTE 293M */
 { 128, 128, 128 },

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 31 of 48
Aug.24, 2017

 { 150, 29, 77, 1963-NUM_2048, 128, 2005-NUM_2048, 1941-NUM_2048,
 2027-NUM_2048, 128 }
 },
 { /* YCBCR => GBR, SMPTE 293M */
 { 128, 128, 128 },
 { 256, 1960-NUM_2048, 1865-NUM_2048, 256, 454, 0, 256, 0, 359 }
 },
 { /* YCBCR => YCBCR */
 { 128, 128, 128 },
 { 256, 0, 0, 0, 256, 0, 0, 0, 256 }
 }
};
#undef NUM_2048

6.7.6 pfv_reset_color_matrix_t

Outline Reset value for the color matrix
Header r_pfv.h
Description Array of the pfv_reset_color_matrix_t type, which consists of the number of elements

specified with PFV_MATRIX_MODE_COUNT. The element numbers of this array
are of the pfv_color_matrix_mode_t type.

Member variable uint16_t
dc_offset_plus_128[]

Array of values each of which is the sum of an offset
component in the color matrix and 128.
The components are incremented for brightness
adjustment. The array number is of the
pfv_dc_offset_index_t type described in Section 6.6.6,
pfv_dc_offset_index_t.

 int16_t
matrix_multiply_256[]

Array of values each of which is the product of a gain
component in the color matrix and 256.
The components are added together for gain adjustment.
The array number is of the pfv_matrix_multiply_index_t
type described in Section 6.6.7,
pfv_matrix_multiply_index_t.

Example:
#define NUM_2048 2048 /* if (matrix_multiply_256 < 0) matrix_multiply_256
= register_value - 2048 */
static const pfv_reset_color_matrix_t
gs_ResetColorMatrixes[PFV_MATRIX_MODE_COUNT] =
{
 { /* GBR => GBR */
 { 128, 128, 128 },
 { 256, 0, 0, 0, 256, 0, 0, 0, 256 }
 },
 { /* GBR => YCBCR, SMPTE 293M */
 { 128, 128, 128 },
 { 150, 29, 77, 1963-NUM_2048, 128, 2005-NUM_2048, 1941-NUM_2048,
 2027-NUM_2048, 128 }
 },
 { /* YCBCR => GBR, SMPTE 293M */
 { 128, 128, 128 },
 { 256, 1960-NUM_2048, 1865-NUM_2048, 256, 454, 0, 256, 0, 359 }
 },
 { /* YCBCR => YCBCR */
 { 128, 128, 128 },
 { 256, 0, 0, 0, 256, 0, 0, 0, 256 }
 }
};
#undef NUM_2048

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 32 of 48
Aug.24, 2017

6.7.7 pfv_dma_bit_count_t
Outline DMA transfer size and the full and empty levels for the PFV FIFO
Header r_pfv.h
Description Arguments for the R_Userdef_PFV_GetDMA_BitCount function (6.9.5(11))
Member variable dmac_bit_count_t

input_buffer_DMA_bit_count
Size of DMA transfer to the input buffer. Refer
to RZ/A1H Group DMAC_RM Example program
(attached PFV) (R01AN1888JJ).

 dmac_bit_count_t
input_PFV_DMA_bit_count

Size of DMA transfer to the PFV's input FIFO

 pfv_idtrg_t
input_trigger_byte_count

Number of bytes when the PFV's input FIFO
becomes empty. Refer to Section 6.6.8.

 dmac_bit_count_t
output_PFV_DMA_bit_count

Size of DMA transfer to the PFV's output FIFO

 dmac_bit_count_t
output_buffer_DMA_bit_count

Size of DMA transfer to the output buffer

 pfv_odtrg_t
output_trigger_byte_count

Number of bytes when the PFV's output FIFO
becomes full. Refer to Section 6.6.9.

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 33 of 48
Aug.24, 2017

6.8 List of Variables
Table 6-7 shows the static variables. Table 6-8 shows the const Variables.

Table 6-7 Static Variables

Type Variable Name Contents Function Used

pfv_dmac_contexts_t gs_pfv_dmac_contexts PFV-DMAC Some functions
pfv_contexts_t gs_pfv_contexts PFV Some functions
r_dmac_temporary_channel_t gs_dmac_temporary_channel DMAC Some functions

Table 6-8 const Variables

Type Variable Name Contents Function Used

None

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 34 of 48
Aug.24, 2017

6.9 Functions
6.9.1 List

Section Abstract

(1) Functions for cooperation between the PFV and DMACs
(2) Functions for PFV operation only
(3) Functions, available before initialization, for PFV operation only
(4) List of driver porting layer functions

(1) Functions for cooperation between the PFV and DMACs

Section Function Name Outline

6.9.2(1) R_PFV_DMAC_Initialize Initializes the PFV, input DMAC, and output DMAC.
6.9.2(2) R_PFV_DMAC_Terminate Performs termination processing for the PFV, input

DMAC, and output DMAC.
6.9.2(3) R_PFV_DMAC_SetIOFormat Configures the settings for conversion of image

data between pixel formats.
6.9.2(4) R_PFV_DMAC_GetIOFormat Obtains the settings for conversion of image data

between pixel formats.
6.9.2(5) R_PFV_DMAC_ResetImageColorMatrix Resets the color matrix.
6.9.2(6) R_PFV_DMAC_SetImageColorMatrix Sets the color matrix.
6.9.2(7) R_PFV_DMAC_GetImageColorMatrix Obtains the color matrix settings.
6.9.2(8) R_PFV_DMAC_Transfer Converts image data. (Synchronous)
6.9.2(9) R_PFV_DMAC_TransferAsync Converts image data. (Asynchronous)
6.9.2(10) R_PFV_DMAC_OnInterrupting Receives an interrupt
6.9.2(11) R_PFV_DMAC_OnInterrupted Responds an interrupt
6.9.2(12) R_PFV_DMAC_StopTransfer Aborts image data conversion.

(2) Functions for PFV operation only

Section Function Name Outline

6.9.3(1) R_PFV_Initialize Initializes the PFV.
6.9.3(2) R_PFV_Terminate Performs termination processing for the PFV.
6.9.3(3) R_PFV_SetIOFormat Configures the settings for image data conversion

between pixel formats.
6.9.3(4) R_PFV_GetIOFormat Obtains the settings for image data conversion

between pixel formats.
6.9.3(5) R_PFV_ResetImageColorMatrix Resets the color matrix.
6.9.3(6) R_PFV_SetImageColorMatrix Sets the color matrix.
6.9.3(7) R_PFV_GetImageColorMatrix Obtains the color matrix settings.
6.9.3(8) R_PFV_GetFilledByteInInputFIFO Obtains the number of bytes of data in the PFV's

input FIFO.
6.9.3(9) R_PFV_WritePixelDataViaPIO Writes image data to the PFV.
6.9.3(10) R_PFV_GetFilledByteInOutputFIFO Obtains the number of bytes of data in the PFV's

output FIFO.
6.9.3(11) R_PFV_ReadPixelDataViaPIO Reads image data from the PFV.
6.9.3(12) R_PFV_OnInterrupting Receives an interrupt
6.9.3(13) R_PFV_OnInterrupted Responds an interrupt
6.9.3(14) R_PFV_GetAsyncStatus Gets the pointer to the struct of interrupts and

asynchronous operation

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 35 of 48
Aug.24, 2017

(3) Functions, available before initialization, for PFV operation only

Section Function Name Outline

6.9.4(1) R_PFV_STATIC_GetColorMatrixMode Obtains the appropriate value of the
pfv_color_matrix_mode_t type.

(4) List of driver porting layer functions

Section Function Name Outline

6.9.5(1) R_Userdef_PFV_SetDefaultAsync Sets default value of r_ospl_async_t type
structure

6.9.5(2) R_Userdef_PFV_OnInitialize Initializes the driver porting layer part.
6.9.5(3) R_Userdef_PFV_OnFinalize Performs termination processing for the driver

porting layer part.
6.9.5(4) R_Userdef_PFV_SetInterruptCallbackCaller Sets interrupt callback function caller to driver

porting layer part
6.9.5(5) R_Userdef_PFV_OnEnableInterrupt Enables interrupts
6.9.5(6) R_Userdef_PFV_OnDisableInterrupt Disables interrupts
6.9.5(7) R_Userdef_PFV_OnInterruptDefault Default interrupt callback function
6.9.5(8) R_Userdef_PFV_DMAC_SetDefaultConfig Sets default configuration of pfv_dmac_config_t

type structure
6.9.5(9) R_Userdef_PFV_SetDefaultConfig Sets default configuration of pfv_config_t type

structure
6.9.5(10) R_Userdef_PFV_DMAC_GetInterruptUnit Gets a kind of peripheral signaled interrupt
6.9.5(11) R_Userdef_PFV_GetDMA_BitCount Obtains the DMA transfer size. Also, obtains

the full and empty levels for the PFV's FIFO.

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 36 of 48
Aug.24, 2017

6.9.2 Functions for cooperation between the PFV and DMACs
(1) R_PFV_DMAC_Initialize
Outline Initializes the PFV, input DMAC, and output DMAC.
Header r_pfv.h
Declaration errnum_t R_PFV_DMAC_Initialize(int_fast32_t pfv_channel,

pfv_dmac_config_t* in_out_config);
Description Initializes the internal variables.

The input DMAC transfers input image data from memory to the PFV. The output
DMAC transfers output image data from the PFV to memory.
Interrupts (IFEI and OFFI) from the PFV are sent to the DMAC but not to the CPU.
They set all the elements of the color matrix to 0.

Arguments int_fast32_t
pfv_channel

PFV channel numbers.
PFV_CHANNEL_MIN to PFV_CHANNEL_MAX.

 pfv_dmac_config_t*
in_out_config

Other settings. Refer to Section 6.7.1.
NULL is not permitted.

Return value Error code. If there is no error, the return value is 0.

(2) R_PFV_DMAC_Terminate
Outline Performs termination processing for the PFV, input DMAC, and output DMAC.
Header r_pfv.h
Declaration errnum_t R_PFV_DMAC_Terminate(int_fast32_t pfv_channel);
Description This function aborts the processing if the DMACs are active.
Arguments int_fast32_t

pfv_channel
PFV channel number

Return value Error code. If there is no error, the return value is 0.

(3) R_PFV_DMAC_SetIOFormat
Outline Configures the settings for image data conversion between pixel formats.
Header r_pfv.h
Declaration errnum_t R_PFV_DMAC_SetIOFormat(int_fast32_t pfv_channel,

pfv_io_format_t* in_out_io_format);
Description This function also resets the color matrix.

Refer to (5) R_PFV_DMAC_ResetImageColorMatrix.
Arguments int_fast32_t

pfv_channel
PFV channel number

 pfv_io_format_t*
in_out_io_format

Setting. Refer to Section 6.7.3.
NULL is not permitted.

Return value Error code. If there is no error, the return value is 0.

(4) R_PFV_DMAC_GetIOFormat
Outline Obtains the settings for image data conversion between pixel formats.
Header r_pfv.h
Declaration errnum_t R_PFV_DMAC_GetIOFormat(int_fast32_t pfv_channel,

pfv_io_format_t* out_io_format);
Description
Arguments int_fast32_t

pfv_channel
PFV channel number

 pfv_io_format_t*
out_io_format

Output: Setting. Refer to Section 6.7.3.

Return value Error code. If there is no error, the return value is 0.

(5) R_PFV_DMAC_ResetImageColorMatrix
Outline Resets the color matrix.
Header r_pfv.h

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 37 of 48
Aug.24, 2017

Declaration errnum_t R_PFV_DMAC_ResetImageColorMatrix(int_fast32_t pfv_channel,
pfv_color_matrix_mode_t mode);

Description The offset is 0. The gain factor is 1.
For conversion between RGB and YCbCr formats, the conversion equation includes
the color matrix values defined in SMPTE 293M.

Arguments int_fast32_t
pfv_channel

PFV channel number

 pfv_color_matrix_mode_t
mode

Type of image data conversion between pixel formats.
Refer to Section 6.6.5.

Return value Error code. If there is no error, the return value is 0.

(6) R_PFV_DMAC_SetImageColorMatrix
Outline Sets the color matrix.
Header r_pfv.h
Declaration errnum_t R_PFV_DMAC_SetImageColorMatrix(int_fast32_t pfv_channel,

pfv_color_matrix_t* offset_and_matrix);
Description
Arguments int_fast32_t

pfv_channel
PFV channel number

 pfv_color_matrix_t*
offset_and_matrix

Color matrix. Refer to Section 6.7.5.

Return value Error code. If there is no error, the return value is 0.

(7) R_PFV_DMAC_GetImageColorMatrix
Outline Obtains the color matrix settings.
Header r_pfv.h
Declaration errnum_t R_PFV_DMAC_GetImageColorMatrix(int_fast32_t pfv_channel,

pfv_color_matrix_t* out_offset_and_matrix);
Description
Arguments int_fast32_t

pfv_channel
PFV channel number

 pfv_color_matrix_t*
out_offset_and_matrix

Output: Color matrix. Refer to Section 6.7.5.

Return value Error code. If there is no error, the return value is 0.

(8) R_PFV_DMAC_Transfer
Outline Converts image data. (Synchronous)
Header r_pfv.h
Declaration errnum_t R_PFV_DMAC_Transfer(int_fast32_t pfv_channel,

pfv_transfer_config_t* in_out_config);
Description This function converts via the DMAC and the PFV.

This is synchronous function that does not return until to complete the convert.
Arguments int_fast32_t

pfv_channel
PFV channel number

 pfv_transfer_config_t*
in_out_config

Setting. Refer to Section 6.7.4.

Return value Error code. If there is no error, the return value is 0.

(9) R_PFV_DMAC_TransferAsync
Outline Converts image data. (Asynchronous)
Header r_pfv.h
Declaration errnum_t R_PFV_DMAC_TransferAsync(int_fast32_t pfv_channel,

pfv_transfer_config_t* in_out_config, r_ospl_async_t* async);
Description This function starts transfer via the DMAC for conversion which uses the PFV.

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 38 of 48
Aug.24, 2017

This is asynchronous function that returns soon after starting the convert.
The detail of async argument is explained at the section of R_DRIVER_TransferStart
function in RZ/A1H Group OS porting layer "OSPL" (R01AN1887JJ)

Arguments int_fast32_t
pfv_channel

PFV channel number

 pfv_transfer_config_t*
in_out_config

Setting. Refer to Section 6.7.4.

 r_ospl_async_t* async Setting of Notification
Return value Error code. If there is no error, the return value is 0.

(10) R_PFV_DMAC_OnInterrupting
Outline Receives an interrupt.
Header r_pfv.h
Declaration errnum_t R_PFV_DMAC_OnInterrupting(const r_ospl_interrupt_t*

InterruptSource);
Description Normally, this function is called automatically from default interrupt callback function.

This function calls R_PFV_OnInterrupting function receiving an interrupt or
R_DMAC_TEMPORARY_OnInterrupting function.

Arguments r_ospl_interrupt_t*
InterruptSource

Interrupt source

Return value Error code. If there is no error, the return value is 0.

(11) R_PFV_DMAC_OnInterrupted
Outline Responds an interrupt.
Header r_pfv.h
Declaration errnum_t R_PFV_DMAC_OnInterrupted(int_fast32_t pfv_channel);
Description Normally, this function is called automatically from default interrupt callback function.

This function calls R_PFV_OnInterrupted function responding an interrupt or
R_DMAC_TEMPORARY_OnInterrupted function.

Arguments int_fast32_t
pfv_channel

PFV channel number

Return value Error code. If there is no error, the return value is 0.

(12) R_PFV_DMAC_StopTransfer
Outline Aborts image data transfer.
Header r_pfv.h
Declaration errnum_t R_PFV_DMAC_StopTransfer(int_fast32_t pfv_channel);
Description
Arguments int_fast32_t

pfv_channel
PFV channel number

Return value Error code. If there is no error, the return value is 0.

6.9.3 Functions for PFV operation only
(1) R_PFV_Initialize
Outline Initializes the PFV.
Header r_pfv.h
Declaration errnum_t R_PFV_Initialize(int_fast32_t pfv_channel, pfv_config_t*

in_out_config);
Description This function Initializes the internal variables and PFV.

It internally calls driver porting layer function R_Userdef_PFV_OnInitialize.
It sets all the elements of the color matrix to 0.

Arguments int_fast32_t
pfv_channel

PFV channel number
PFV_CHANNEL_MIN to PFV_CHANNEL_MAX

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 39 of 48
Aug.24, 2017

 pfv_config_t*
in_out_config

Setting. Refer to Section 6.7.2.
NULL is permitted.

Return value Error code. If there is no error, the return value is 0.

(2) R_PFV_Terminate
Outline Performs termination processing for the PFV.
Header r_pfv.h
Declaration errnum_t R_PFV_Terminate(int_fast32_t pfv_channel);
Description This function internally calls driver porting layer function

R_Userdef_PFV_OnFinalize.
Arguments int_fast32_t

pfv_channel
PFV channel number

Return value Error code. If there is no error, the return value is 0.

(3) R_PFV_SetIOFormat
Outline Configures the settings for image data conversion between pixel formats.
Header r_pfv.h
Declaration errnum_t R_PFV_SetIOFormat(int_fast32_t pfv_channel, pfv_io_format_t*

in_out_io_format);
Description This function also resets the color matrix.

Refer to (5) R_PFV_ResetImageColorMatrix.
Arguments int_fast32_t

pfv_channel
PFV channel number

 pfv_io_format_t*
in_out_io_format

Setting. Refer to Section 6.7.3.
NULL is not permitted.

Return value Error code. If there is no error, the return value is 0.

(4) R_PFV_GetIOFormat
Outline Obtains the settings for image data conversion between pixel formats.
Header r_pfv.h
Declaration errnum_t R_PFV_GetIOFormat(int_fast32_t pfv_channel, pfv_io_format_t*

out_io_format);
Description
Arguments int_fast32_t

pfv_channel
PFV channel number

 pfv_io_format_t*
out_io_format

Output: Setting. Refer to Section 6.7.3.

Return value Error code. If there is no error, the return value is 0.

(5) R_PFV_ResetImageColorMatrix
Outline Resets the color matrix.
Header r_pfv.h
Declaration errnum_t R_PFV_ResetImageColorMatrix(int_fast32_t pfv_channel,

pfv_color_matrix_mode_t mode);
Description The offset is 0. The gain factor is 1.

For conversion between RGB and YCbCr formats, the conversion equation includes
the color matrix values defined in SMPTE 293M.

Arguments int_fast32_t
pfv_channel

PFV channel number

 pfv_color_matrix_mode_t
mode

Type of image data conversion between pixel formats.
Refer to Section 6.6.5.

Return value Error code. If there is no error, the return value is 0.

(6) R_PFV_SetImageColorMatrix

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 40 of 48
Aug.24, 2017

Outline Sets the color matrix.
Header r_pfv.h
Declaration errnum_t R_PFV_SetImageColorMatrix(int_fast32_t pfv_channel,

pfv_color_matrix_t* offset_and_matrix);
Description
Arguments int_fast32_t

pfv_channel
PFV channel number

 pfv_color_matrix_t*
offset_and_matrix

Color matrix. Refer to Section 6.7.5.

Return value Error code. If there is no error, the return value is 0.

(7) R_PFV_GetImageColorMatrix
Outline Obtains the color matrix settings.
Header r_pfv.h
Declaration errnum_t R_PFV_GetImageColorMatrix(int_fast32_t pfv_channel,

pfv_color_matrix_t* out_offset_and_matrix);
Description
Arguments int_fast32_t

pfv_channel
PFV channel number

 pfv_color_matrix_t*
out_offset_and_matrix

Output: Color matrix. Refer to Section 6.7.5.

Return value Error code. If there is no error, the return value is 0.

(8) R_PFV_GetFilledByteInInputFIFO
Outline Obtains the number of bytes of data in the PFV's input FIFO.
Header r_pfv.h
Declaration errnum_t R_PFV_GetFilledByteInInputFIFO(int_fast32_t pfv_channel, int_t*

out_filled_byte);
Description The maximum number of bytes in the PFV's input FIFO is equal to

PFV_INPUT_FIFO_FULL_BYTE.
If the PFV encounters an error, the return value from this function indicates the error
code.

Arguments int_fast32_t
pfv_channel

PFV channel number

 int_t* out_filled_byte Output: Number of bytes in the PFV's input FIFO
Return value Error code. If there is no error, the return value is 0.

(9) R_PFV_WritePixelDataViaPIO
Outline Writes non-converted image data to the PFV.
Header r_pfv.h
Declaration errnum_t R_PFV_WritePixelDataViaPIO(int_fast32_t pfv_channel, uint32_t

pixel_data, int_t bit_count);
Description If the input FIFO is full when this function is executed, an error occurs. Using the

R_PFV_GetFilledByteInInputFIFO function, check whether the FIFO is full.
Arguments int_fast32_t

pfv_channel
PFV channel number

 uint32_t pixel_data One pixel of image data. Two pixels of image data for
PFV_YCbCr422.

 int_t bit_count Number of bits of image data passed to pixel_data. It is
16 for PFV_RGB565 or 32 for others.

Return value Error code. If there is no error, the return value is 0.

(10) R_PFV_GetFilledByteInOutputFIFO
Outline Obtains the number of bytes of data in the PFV's output FIFO.

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 41 of 48
Aug.24, 2017

Header r_pfv.h
Declaration errnum_t R_PFV_GetFilledByteInOutputFIFO(int_fast32_t pfv_channel, int_t*

out_filled_byte);
Description The maximum number of bytes in the PFV's output FIFO is equal to

PFV_OUTPUT_FIFO_FULL_BYTE.
If the PFV encounters an error, the return value from this function indicates the error
code.

Arguments int_fast32_t
pfv_channel

PFV channel number

 int_t* out_filled_byte Output: Number of bytes in the PFV's output FIFO
Return value Error code. If there is no error, the return value is 0.

(11) R_PFV_ReadPixelDataViaPIO
Outline Reads converted image data from the PFV.
Header r_pfv.h
Declaration errnum_t R_PFV_ReadPixelDataViaPIO(int_fast32_t pfv_channel, uint32_t*

out_pixel_data, int_t bit_count);
Description If the output FIFO is empty when this function is executed, an error occurs. Using

the R_PFV_GetFilledByteInOutputFIFO function, check whether the FIFO is empty.
Arguments int_fast32_t

pfv_channel
PFV channel number

 uint32_t*
out_pixel_data

Output: One pixel of image data. Two pixels of image
data for PFV_YCbCr422.

 int_t bit_count Number of bits of image data passed to pixel_data. It is
16 for PFV_RGB565 or 32 for others.

Return value Error code. If there is no error, the return value is 0.

(12) R_PFV_OnInterrupting
Outline Receives an interrupt.
Header r_pfv.h
Declaration errnum_t R_PFV_OnInterrupting(const r_ospl_interrupt_t* InterruptSource);
Description Normally, this function is called automatically from default interrupt callback function.

This function notifies an interrupt from interrupt status register to
pfv_async_status_t::InterruptFlags variable and clears interrupt.
Refer to the section of R_DRIVER_OnInterrupting function in RZ/A1H Group OS
porting layer "OSPL" (R01AN1887JJ)

Arguments r_ospl_interrupt_t*
InterruptSource

Interrupt source

Return value Error code. If there is no error, the return value is 0.

(13) R_PFV_OnInterrupted
Outline Responds an interrupt.
Header r_pfv.h
Declaration errnum_t R_PFV_OnInterrupted(int_fast32_t const pfv_channel);
Description Normally, this function is called automatically from default interrupt callback function.

This function clear to 0 in pfv_async_status_t::InterruptFlags variable set to 1 by
R_PFV_OnInterrupting function and responds an interrupt.
Refer to the section of R_DRIVER_OnInterrupted function in RZ/A1H Group OS
porting layer "OSPL" (R01AN1887JJ)

Arguments int_fast32_t
pfv_channel

PFV channel number

Return value Error code. If there is no error, the return value is 0.

(14) R_PFV_GetAsyncStatus
Outline Gets the pointer to the struct of interrupts and asynchronous operation

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 42 of 48
Aug.24, 2017

Header r_pfv.h
Declaration errnum_t R_PFV_GetAsyncStatus(int_fast32_t pfv_channel, const

pfv_async_status_t** out_Status);
Description The pointer variable passed to out_Status argument must be with const qualifier.
Arguments int_fast32_t

pfv_channel
PFV channel number

 pfv_async_status_t**
out_Status

(Output) The pointer to the struct of interrupts and
asynchronous operation

Return value Error code. If there is no error, the return value is 0.

6.9.4 Functions, available before initialization, for PFV operation only
(1) R_PFV_STATIC_GetColorMatrixMode
Outline Obtains the appropriate value of the pfv_color_matrix_mode_t type.
Header r_pfv.h
Declaration errnum_t R_PFV_STATIC_GetColorMatrixMode(pfv_format_t input_format,

pfv_format_t output_format, pfv_color_matrix_mode_t* out_color_matrix_mode);
Description
Arguments pfv_format_t

input_format
Pixel format to be input to the PFV

 pfv_format_t
output_format

Pixel format to be output from the PFV

 pfv_color_matrix_mode_t*
out_color_matrix_mode

Refer to Section 6.6.5, pfv_color_matrix_mode_t.

Return value Error code. If there is no error, the return value is 0.

6.9.5 Driver porting layer functions
(1) R_Userdef_PFV_SetDefaultAsync
Outline Sets default value of r_ospl_async_t type structure.
Header r_pfv_pl.h
Declaration void R_Userdef_PFV_SetDefaultAsync(r_ospl_async_t* Async);
Description
Arguments r_ospl_async_t* Async Input/Output: Setting of Notification
Return value Error code. If there is no error, the return value is 0.

(2) R_Userdef_PFV_OnInitialize
Outline Initializes the driver porting layer part.
Header r_pfv_pl.h
Declaration errnum_t R_Userdef_PFV_OnInitialize(int_fast32_t pfv_channel);
Description If necessary, supply the clock for the PFV.

This function is called from the R_PFV_DMAC_Initialize or R_PFV_Initialize function.
Arguments int_fast32_t pfv_channel PFV channel number
Return value Error code. If there is no error, the return value is 0.

(3) R_Userdef_PFV_OnFinalize
Outline Performs termination processing for the driver porting layer part.
Header r_pfv_pl.h
Declaration errnum_t R_Userdef_PFV_OnFinalize(int_fast32_t pfv_channel, errnum_t e);
Description If necessary, stop to supply the clock for the PFV.

This function is called from the R_PFV_DMAC_Terminate or R_PFV_Terminate
function.

Arguments int_fast32_t pfv_channel PFV channel number
 errnum_t e Errors that have occurred. No error = 0
Return value Error code or e 0 = successful and e = 0.

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 43 of 48
Aug.24, 2017

(4) R_Userdef_PFV_SetInterruptCallbackCaller
Outline Sets interrupt callback function caller to driver porting layer part
Header r_pfv_pl.h
Declaration errnum_t R_Userdef_PFV_SetInterruptCallbackCaller(int_fast32_t pfv_channel,

const r_ospl_caller_t* caller);
Description This function is called by each starting to asynchronous operation with interrupts.

Call R_OSPL_CallInterruptCallback function with "caller" argument of this function
from interrupt handler. Refer to the section of R_OSPL_CallInterruptCallback
function in RZ/A1H Group OS porting layer "OSPL" (R01AN1887JJ)
It is not necessary to check channel number in this function.

Arguments int_fast32_t
pfv_channel

PFV channel number

 r_ospl_caller_t* caller The value passing to R_OSPL_CallInterruptCallback
Return value Error code. If there is no error, the return value is 0

(5) R_Userdef_PFV_OnEnableInterrupt
Outline Enables interrupts
Header r_pfv_pl.h
Declaration void R_Userdef_PFV_OnEnableInterrupt(int_fast32_t pfv_channel,

pfv_interrupt_lines_t enables);
Description It is not necessary to check channel number in this function.
Arguments int_fast32_t

pfv_channel
PFV channel number

 pfv_interrupt_lines_t
enables

Bit flags set to 1 enabling interrupt line

Return value Error code. If there is no error, the return value is 0

(6) R_Userdef_PFV_OnDisableInterrupt
Outline Disables interrupts
Header r_pfv_pl.h
Declaration void R_Userdef_PFV_OnDisableInterrupt(int_fast32_t pfv_channel,

pfv_interrupt_lines_t disables);
Description It is not necessary to check channel number in this function.
Arguments int_fast32_t

pfv_channel
PFV channel number

 pfv_interrupt_lines_t
disables

Bit flags set to 1 disabling interrupt line

Return value Error code. If there is no error, the return value is 0

(7) R_Userdef_PFV_OnInterruptDefault
Outline Default interrupt callback function
Header r_pfv_pl.h
Declaration errnum_t R_Userdef_PFV_OnInterruptDefault(const r_ospl_interrupt_t*

interrupt_source, const r_ospl_caller_t* caller);
Description This function will be called when InterruptCallback member variable in async

argument of R_PFV_DMAC_TransferAsync function was NULL.
This function is r_ospl_callback_t type.

Arguments r_ospl_interrupt_t*
interrupt_source

Interrupt source

 r_ospl_caller_t* caller The value passed to R_OSPL_CallInterruptCallback
Return value Error code. If there is no error, the return value is 0

(8) R_Userdef_PFV_DMAC_SetDefaultConfig

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 44 of 48
Aug.24, 2017

Outline Sets default configuration of pfv_dmac_config_t type structure
Header r_pfv_pl.h
Declaration errnum_t R_Userdef_PFV_DMAC_SetDefaultConfig(pfv_dmac_config_t*

in_out_config);
Description This function sets each member variables to default value related to bits set to 0 in

Flags member variable in pfv_dmac_config_t type structure.
Arguments pfv_dmac_config_t*

in_out_config
Setting. NULL is not permitted.

Return value Error code. If there is no error, the return value is 0

(9) R_Userdef_PFV_SetDefaultConfig
Outline Sets default configuration of pfv_config_t type structure
Header r_pfv_pl.h
Declaration errnum_t R_Userdef_PFV_SetDefaultConfig(pfv_config_t* in_out_config);
Description This function sets each member variables to default value related to bits set to 0 in

Flags member variable in pfv_config_t type structure.
Arguments pfv_config_t*

in_out_config
Setting. NULL is not permitted.

Return value Error code. If there is no error, the return value is 0

(10) R_Userdef_PFV_DMAC_GetInterruptUnit
Outline Gets a kind of peripheral signaled interrupt
Header r_pfv_pl.h
Declaration errnum_t R_Userdef_PFV_DMAC_GetInterruptUnit(r_ospl_interrupt_t*

InterruptSource, r_pfv_dmac_interrupt_unit_t* out_Unit);
Description Call this function from interrupt callback function.

This function outputs which managed peripheral's R_DRIVER_OnInterrupting
function.
In this function, it gets a kind of interrupt from which peripherals by comparing
greater or less with IRQ_Num member variable in InterruptSource argument.

Arguments r_ospl_interrupt_t* InterruptSource Interrupt source
 r_pfv_dmac_interrupt_unit_t* out_Unit A kind of peripheral
Return value Error code. If there is no error, the return value is 0

(11) R_Userdef_PFV_GetDMA_BitCount
Outline Obtains the DMA transfer size. Also, obtains the full and empty levels for the FIFO

for the PFV.
Header r_pfv_pl.h
Declaration errnum_t R_Userdef_PFV_GetDMA_BitCount(

uintptr_t input_buffer_start_address, size_t input_buffer_size,
uintptr_t output_buffer_start_address, size_t output_buffer_size,
pfv_dma_bit_count_t* out);

Description If input_buffer_size or output_buffer_size = 0, the DMAC is not used for data input to
or output from the PFV. Information about the input DMAC or output DMAC is
output to the out argument, but this information is ignored.
This function is pfv_get_dma_bit_count_func_t type.

Arguments uintptr_t
input_buffer_start_address

Physical start address of the input buffer

 size_t input_buffer_size Number of bytes transferred from the input buffer
 uintptr_t

output_buffer_start_address
Physical start address of the output buffer

 size_t output_buffer_size Number of bytes transferred to the output buffer
 pfv_dma_bit_count_t* out Output: DMA transfer size and the full and empty

levels for the PFV FIFO. Refer to Section 6.7.7.

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 45 of 48
Aug.24, 2017

Return value Error code. If there is no error, the return value is 0.

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 46 of 48
Aug.24, 2017

6.10 Supplementary Information
6.10.1 Flagged structure parameters

Flags member variables in the structure are used as bit flags, and if a bit is 1, the corresponding member variable is
enabled according to the coding pattern. If a bit is 0, the value of the member variable is assumed to be the default
value. Even if the version is upgraded so that its structure contains additional members, the old and new versions can
be binary compatible.

FuncA_ConfigClass config;

config.Flags = F_FuncA_Param1 | F_FuncA_Param2;
config.Param1 = 10;
config.Param2 = 2;
FuncA(&config);

Because there is not Flags |= F_FuncA_Param3, config.Param3 is the default value.

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 47 of 48
Aug.24, 2017

7. Example Codes
The example codes can be downloaded from the Renesas Electronics website.

8. Documents for Reference
User's Manual: Hardware

RZ/A1H Group User's Manual: Hardware

The latest version can be downloaded from the Renesas Electronics website.

R7S72100 RTK772100BC00000BR (GENMAI) User's Manual

The latest version can be downloaded from the Renesas Electronics website.

R7S72100 CPU (GENMAI) Optional Board RTK7721000B00000BR User's Manual

The latest version can be downloaded from the Renesas Electronics website.

ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition Issue C

The latest version can be downloaded from the ARM website.

ARM Generic Interrupt Controller Architecture Specification Architecture version 1.0

The latest version can be downloaded from the ARM website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User's Manual: Development Tools

ARM Software Development Tools (ARM Compiler toolchain, ARM DS-5 etc.) can be downloaded from the ARM
website.

The latest version can be downloaded from the ARM website.

RZ/A1H Group PFV Example Driver

R01AN1880EJ0103 Rev.1.03 Page 48 of 48
Aug.24, 2017

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev. Date Description

1.03 Aug. 24, 2017 Example application supports frame buffer on cached area.
Updated to OSPL version 1.60.

1.02 Feb. 29, 2016 Added to support L2 cache.
Updated initial settings to version 1.01.
Updated internal OSPL to version 0.96.
Updated internal DMAC driver to version 1.02

1.00 Jun. 20.2014 First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with

an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
LSI, an associated shoot-through current flows internally, and malfunctions occur due to the
false recognition of the pin state as an input signal become possible. Unused pins should be
handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of
pins are not guaranteed from the moment when power is supplied until the reset process is
completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power reaches
the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not

access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock signal
has stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock
signal. Moreover, when switching to a clock signal produced with an external resonator (or by
an external oscillator) while program execution is in progress, wait until the target clock signal is
stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number

may differ in terms of the internal memory capacity, layout pattern, and other factors, which can
affect the ranges of electrical characteristics, such as characteristic values, operating margins,
immunity to noise, and amount of radiated noise. When changing to a product with a different
part number, implement a system-evaluation test for the given product.

Notice Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

	Pixel Format Converter "PFV" Driver Example
	1. Specifications
	2. Operation Check Conditions
	3. Reference Application Note(s)
	4. Peripheral Functions
	5. Description of Hardware
	5.1 Hardware Configuration
	5.2 List of Pins to be Used

	6. Description of Software
	6.1 Operation Outline
	6.1.1 Preparations

	6.2 Memory Mapping
	6.2.1 Section Assignment in Sample Code
	6.2.2 Setting for MMU
	6.2.3 Exception Processing Vector Table

	6.3 List of commands
	6.4 Interrupt
	6.5 Basic Types
	6.6 Constants, Enumerations and Error code
	6.6.1 Version
	6.6.2 Error Codes
	6.6.3 pfv_format_t
	6.6.4 pfv_swap_t
	6.6.5 pfv_color_matrix_mode_t
	6.6.6 pfv_dc_offset_index_t
	6.6.7 pfv_matrix_multiply_index_t
	6.6.8 pfv_idtrg_t
	6.6.9 pfv_odtrg_t
	6.6.10 pfv_interrupt_line_t
	6.6.11 pfv_interrupt_status_t
	6.6.12 pfv_dmac_interrupt_unit_t
	6.6.13 Values within Unnamed Enumerations and Constants

	6.7 Structures and Unions
	6.7.1 pfv_dmac_config_t
	6.7.2 pfv_config_t
	6.7.3 pfv_io_format_t
	6.7.4 pfv_transfer_config_t
	6.7.5 pfv_color_matrix_t
	6.7.6 pfv_reset_color_matrix_t
	6.7.7 pfv_dma_bit_count_t

	6.8 List of Variables
	6.9 Functions
	6.9.1 List
	(1) Functions for cooperation between the PFV and DMACs
	(2) Functions for PFV operation only
	(3) Functions, available before initialization, for PFV operation only
	(4) List of driver porting layer functions

	6.9.2 Functions for cooperation between the PFV and DMACs
	(1) R_PFV_DMAC_Initialize
	(2) R_PFV_DMAC_Terminate
	(3) R_PFV_DMAC_SetIOFormat
	(4) R_PFV_DMAC_GetIOFormat
	(5) R_PFV_DMAC_ResetImageColorMatrix
	(6) R_PFV_DMAC_SetImageColorMatrix
	(7) R_PFV_DMAC_GetImageColorMatrix
	(8) R_PFV_DMAC_Transfer
	(9) R_PFV_DMAC_TransferAsync
	(10) R_PFV_DMAC_OnInterrupting
	(11) R_PFV_DMAC_OnInterrupted
	(12) R_PFV_DMAC_StopTransfer

	6.9.3 Functions for PFV operation only
	(1) R_PFV_Initialize
	(2) R_PFV_Terminate
	(3) R_PFV_SetIOFormat
	(4) R_PFV_GetIOFormat
	(5) R_PFV_ResetImageColorMatrix
	(6) R_PFV_SetImageColorMatrix
	(7) R_PFV_GetImageColorMatrix
	(8) R_PFV_GetFilledByteInInputFIFO
	(9) R_PFV_WritePixelDataViaPIO
	(10) R_PFV_GetFilledByteInOutputFIFO
	(11) R_PFV_ReadPixelDataViaPIO
	(12) R_PFV_OnInterrupting
	(13) R_PFV_OnInterrupted
	(14) R_PFV_GetAsyncStatus

	6.9.4 Functions, available before initialization, for PFV operation only
	(1) R_PFV_STATIC_GetColorMatrixMode

	6.9.5 Driver porting layer functions
	(1) R_Userdef_PFV_SetDefaultAsync
	(2) R_Userdef_PFV_OnInitialize
	(3) R_Userdef_PFV_OnFinalize
	(4) R_Userdef_PFV_SetInterruptCallbackCaller
	(5) R_Userdef_PFV_OnEnableInterrupt
	(6) R_Userdef_PFV_OnDisableInterrupt
	(7) R_Userdef_PFV_OnInterruptDefault
	(8) R_Userdef_PFV_DMAC_SetDefaultConfig
	(9) R_Userdef_PFV_SetDefaultConfig
	(10) R_Userdef_PFV_DMAC_GetInterruptUnit
	(11) R_Userdef_PFV_GetDMA_BitCount

	6.10 Supplementary Information
	6.10.1 Flagged structure parameters

	7. Example Codes
	8. Documents for Reference
	Website and Support
	Revision History
	General Precautions in the Handling of MPU/MCU Products
	Notice

