
 APPLICATION NOTE

R01AN1887EJ0160 Rev.1.60 Page 1 of 114
Oct. 26, 2017

RZ/A1H Group
OS Porting Layer "OSPL" Sample Program
Introduction

This application note describes the sample program named `OSPL' which abstracts OS less and OS-using
environment.

The OS Porting Layer "OSPL" sample program offers the following features:

 Provides common API to OS less and OS-using environment

 Localizes modifying code for new OS environment

 Allocates asynchronous event bit automatically and able to make the pipeline.

 Provides API of cache flush.

 Provides timer basic API by using the timer hardware.

 Provides API to measure CPU load (for OS less only)

 Provides API of error handling with debug functions.

 If "#define R_OSPL_NDEBUG 1" was set, the debug function and a part of assertion is disabled and software
become faster and compact.

Target Device
RZ/A1H Group

RZ/A1M Group

RZ/A1LU Group

RZ/A1L Group

When applying the sample program covered in this application note to another microcomputer, modify the program
according to the specifications for the target microcomputer and conduct an extensive evaluation of the modified
program.

Please contact us for the project for RSK board.

This package contains OSPL for test. See 4.4.17. R_OSPL_TEST_CODE.

R01AN1887EJ0160
Rev.1.60

Oct. 26, 2017

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 2 of 114
Oct. 26, 2017

Table of Contents

OS Porting Layer "OSPL" Sample Program .. 1

1. Specifications .. 4

2. Operation Check Conditions ... 5

3. Reference Application Note(s) .. 6

4. Description of Software ... 7
4.1. Operation Outline .. 7

4.1.1. Preparations ..9
4.2. Interrupt .. 10
4.3. Basic Types .. 11
4.4. Constants, Enumerations and Error code .. 12

4.4.1. Version ..12
4.4.2. Error Codes ...13
4.4.3. r_ospl_async_state_t type - State ...13
4.4.4. r_ospl_wait_t type - The parameter of R_OSPL_THREAD_SetOnWait function13
4.4.5. r_ospl_flush_t type - The parameter of R_OSPL_MEMORY_Flush function14
4.4.6. r_ospl_axi_cache_attribute_t type - Cache attribute of AXI bus ..14
4.4.7. r_ospl_axi_protection_t type - Protection attribute of AXI bus ...14
4.4.8. r_ospl_async_type_t..15
4.4.9. bsp_int_err_t ...15
4.4.10. r_ospl_event_flags_t ...15
4.4.11. r_ospl_table_flags_t ..15
4.4.12. r_ospl_if_not_t ...16
4.4.13. bsp_int_src_t ...16
4.4.14. bsp_int_cb_t ..16
4.4.15. bsp_int_cmd_t ...16
4.4.16. mcu_lock_t ..17
4.4.17. The other constant values ...17

4.5. Structures and Unions .. 20
4.5.1. r_ospl_thread_id_t ...20
4.5.2. r_ospl_thread_def_t ..20
4.5.3. r_ospl_flag32_t ..20
4.5.4. r_ospl_event_group_id_t ...20
4.5.5. r_ospl_event_status_t ...21
4.5.6. r_ospl_async_t ..21
4.5.7. r_ospl_async_status_t ...23
4.5.8. r_ospl_queue_id_t ...23
4.5.9. r_ospl_queue_def_t ...23
4.5.10. r_ospl_queue_status_t ..23
4.5.11. BSP_CFG_USER_LOCKING_TYPE ..24
4.5.12. r_ospl_c_lock_t ...24
4.5.13. r_ospl_table_t ..24
4.5.14. r_ospl_table_status _t ...24
4.5.15. r_ospl_memory_spec_t ...24
4.5.16. r_ospl_ftimer_spec_t ...25
4.5.17. r_ospl_caller_t ...25
4.5.18. r_ospl_interrupt_t ..25

4.6. Functions .. 26
4.6.1. List ...26
4.6.2. Functions for versions of OSPL ...34
4.6.3. Functions for threads - r_ospl_thread_id_t type ..34
4.6.4. Functions for thread attached events ..38
4.6.5. Functions for flags - r_ospl_flag32_t type ..44
4.6.6. Functions for bit flags - bit_flags_fast32_t type ...45

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 3 of 114
Oct. 26, 2017

4.6.7. Functions for asynchronous notification - r_ospl_async_t type ...47
4.6.8. Functions for queue - r_ospl_queue_id_t type ..48
4.6.9. Functions for the area disabled all interrupts ...51
4.6.10. Functions for interrupt handling ...52
4.6.11. Functions for BSP_CFG_USER_LOCKING_TYPE type ...53
4.6.12. Functions for r_ospl_c_lock_t type ..57
4.6.13. Functions for array index table - r_ospl_table_t type ...57
4.6.14. Functions for the memory ..60
4.6.15. Functions for time ..63
4.6.16. Functions for the idle state ..68
4.6.17. Functions for interrupt callback functions - r_ospl_caller_t type ..69
4.6.18. Functions for error handling and debugging ..70
4.6.19. Functions for reviewed tags for the static code analyzer ...82
4.6.20. Multi compiler support ...83
4.6.21. Functions for the layer under OSPL ..85
4.6.22. Common functions for driver's APIs ..87
4.6.23. Common functions under the driver ..92
4.6.24. Other functions ..93

4.7. Figure of sequence ... 94
4.7.1. The interrupt response operation - Synchronous type (Responds by interrupt context)94
4.7.2. The interrupt response operation - Synchronous type (Responds by A-thread)95
4.7.3. The interrupt response operation - Asynchronous type (Not I-thread) ...96
4.7.4. The interrupt response operation - Asynchronous type (With I-thread) ...97

4.8. Supplementary Information .. 98
4.8.1. Selecting the target (use_list.h, mcu_board_select.h) ..98
4.8.2. Flagged structure parameters ...99
4.8.3. Nested Interrupt ... 100
4.8.4. OS porting guide ... 101
4.8.5. Application Porting Guide .. 103
4.8.6. Body of inline function (inline_body.c) ... 104
4.8.7. Reducing footprint ... 105
4.8.8. How to use the driver with interrupt handler .. 106
4.8.9. Pattern of mapping cached area and uncached area (RZ/A1) .. 108

4.9. Glossary .. 110

5. Sample Codes ... 112

6. Documents for Reference .. 113

Website and Support ... 114

Revision History ... 115

General Precautions in the Handling of MPU/MCU Products .. 117

Notice ... 118

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 4 of 114
Oct. 26, 2017

1. Specifications
Table 1.1 shows the Peripheral Functions to be Used and their Uses. Figure 1-1 shows an Operation environment of

driver example and test.

Table 1.1 Peripheral Functions to be Used and their Uses

Peripheral functions Uses

OS Timer (OSTM0, 1) or Multi-Function Timer Pulse Unit
2 (MUT2 - ch1, 2)

Uses in Free running timer (4.6.15. (2)).
Using channel can be selected by
"R_OSPL_FTIMER_IS" macro.
And, uses in the sample driver.

Interrupt Controller (INTC) (Interrupt ID : DMAINT0~3) DMAC interrupts (Uses in the sample driver)
Direct Access Controller (DMAC) Ch.(0~3) DMA transfer (Uses in the sample driver)

Figure 1-1 Operation environment

MESSAGE

Host PC

Serial interface
(RS-232C cable)

R7S72100 CPU board
RTK772100BC00000BR

R7S72100

Terminal software
(outputs sample code message)

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 5 of 114
Oct. 26, 2017

2. Operation Check Conditions
The sample code contained in this application note and test program have been checked under the conditions listed

below. The way to change the target OS is described at the section of 4.8.1. Selecting the target (use_list.h,
mcu_board_select.h).

Table 2.1 Operation Check Conditions

Item Description

MCU used RZ/A1H
Operating frequency CPU clock (Iϕ): 400MHz

Image processing clock (Gϕ): 266.67MHzϕ
Internal bus clock (Bϕ): 133.33MHz
Peripheral clock 1 (P1ϕ): 66.67MHz
Peripheral clock 0 (P0ϕ): 33.33MHz

Operating voltage Power supply voltage (I/O): 3.3V
Power supply voltage (Internal): 1.18V

ARM Integrated
development
environment

ARM® integrated development environment
ARM Development Studio 5 (DS-5TM) Version 5.16

C compiler ARM C/C++ Compiler/Linker/Assembler Ver.5.03 [Build 102]
IAR Integrated

development
environment

IAR Embedded Workbench for ARM 7.80.4.12495

C compiler
Renesas Integrated

development
environment

e2 studio (Version: 5.3.0.023)

C compiler GNUARM-NONE-EABI v16.01
Operating mode Boot mode 0

(CS0 space 16bit boot)
Communication setting of
terminal software

 Communication speed: 115200bps
 Data length: 8 bits
 Parity: None
 Stop bit length: 1 bit
 Flow control: None

Board used GENMAI board
 RTK772100BC00000BR (R7S72100 CPU board)
 RTK77210000B00000BR (R7S72100 Option board)

OS OS less
 CMSIS-RTOS RTX 4.80

Device used Serial interface (D-sub 9-pin connector)

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 6 of 114
Oct. 26, 2017

3. Reference Application Note(s)
For additional information associated with this document, refer to the following application note(s).

 RZ/A1H Group Example of Initialization (R01AN1646EJ)

 RZ/A1H Group I/O definition header file <iodefine.h> (R01AN1860EJ)

 RZ/A1H Group CMSIS-RTOS RTX BSP V2.03 release note (R01AN2200EJ)

 RZ/A1H Group CMSIS-RTOS RTX BSP V2.06 (e2studio / KPITGCC) (R01AN3104EJ)

 RZ/A1H Group CMSIS-RTOS RTX BSP V2.03 ICCARM release note (R01AN2990EJ)

 Board Support Package Module Using Firmware Integration Technology (R01AN1685EU)

This document does not explain the guide of driver development.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 7 of 114
Oct. 26, 2017

4. Description of Software
4.1. Operation Outline
Figure 4-1 shows the Figure of system block.

Figure 4-1 Figure of system block

Refer to (4.7.) Figure of sequence.

OSPL provides common API for OS less and for OS-using environment. It becomes easy to port between OS less and
OS-using environment.

The target software is the driver which responds to interrupt, starts asynchronous operation or waits something.

It provides the synchronous API which waits something and the asynchronous API corresponding to it. OSPL helps
to make usable software and to support pseudo multithreading. Even if the driver which does not support OSPL's
common functions for driver's APIs and has the API related an interrupt was used, it becomes high portability by calling
OSPL API from the application.

OSPL supports the interrupt response operation, the memory management, the time, the idle state and the error
handling. It does not support the communication between threads. When these operations are used in OS-using
environment, call each OS function directly from the "driver wrapper" over the driver for OS less.

Table 4.1 describes OSPL supported functions.

Application, Test,

Interrupt callback function

Driver

OSPL

OS or OS less basic environment

Hardware (Interrupt)

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 8 of 114
Oct. 26, 2017

Table 4.1 Functions of OSPL

Category Function OS
less

OS-
using Description

Thread Thread management ✓ x Creates a thread (Pseudo thread for OS less)
Sets and gets the parameter of the thread
Sets thread ID
Sets the behavior on waiting

✓ ✓ Gets thread ID
Lock ✓ ✓ Lock and unlock

Event Flag management ✓ ✓ Sets, clears and waits thread attached flags
Sets, clears and checks normal flags

Queue ✓ ✓ Transfers between threads
Interrupt Disable and enable ✓ ✓ Disables and enables all interrupts

Registers a callback function
Registers an interrupt handler
Disables and enables each interrupt and sets
priority of each interrupt

Object Lock ✓ ✓ Lock and unlock
Memory Cache ✓ ✓ Cache operation

Address conversion ✓ ✓ Converts an address of cached area and
uncached area
Converts an address of virtual and physical

Time Wait ✓ ✓ Waits during specified time
Reference ✓ ✓ Refers free running timer

Debug CPU ✓ x Measures and outputs CPU load
Debug ✓ ✓ Manages unrecoverable errors

Error break
Assertion (programming by contract)
Saves and outputs error information
Watch, fast logging and through counter
Checks stack overflow

Coding Readability ✓ ✓ Avoid less readability by committing for static
code analyzer

✓ : Functions supported with OSPL

x : Functions not supported with OSPL

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 9 of 114
Oct. 26, 2017

4.1.1. Preparations
The following preparations in Sample Code.

Terminal software is started in a host PC and it's established as follows. (In the case of Tera Term)

When a sample program is executed, a message is output at a terminal as follows.

Figure 4-2 Message output at sample program execution

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 10 of 114
Oct. 26, 2017

4.2. Interrupt
Table 4.2 shows Interrupts using by OSPL sample driver code. The operation in the interrupt is same as the operation

of "R_DRIVER_OnInterrupting" and "R_DRIVER_OnInterrupted" function of each drivers.

Table 4.2 Interrupts using by OSPL sample driver code

Interrupt (Source ID) Priority Summary

DMAINT0~DMAINT3 7 Receives the interrupt of DMAINT#
OSTM#TINT(#=0..1) 2 Receives the interrupt of OSTM#TINT

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 11 of 114
Oct. 26, 2017

4.3. Basic Types
Table 4.3 shows Basic types using in the example code.

Table 4.3 Basic types using in the example code

Symbol Description

char_t 8-bit character
bool_t Boolean data type. The value is true (1) or false (0).
bool8_t 8bit boolean data type. The value is true (1) or false (0).
bool16_t 16bit boolean data type. The value is true (1) or false (0).
bool32_t 32bit boolean data type. The value is true (1) or false (0).
int_t The signed integer for this library is a 32-bit signed integer.
int8_t 8-bit signed integer (defined by standard library)
int16_t 16-bit signed integer (defined by standard library)
int32_t 32-bit signed integer (defined by standard library)
int64_t 64-bit signed integer (defined by standard library)
uint8_t 8-bit unsigned integer (defined by standard library)
uint16_t 16-bit unsigned integer (defined by standard library)
uint32_t 32-bit unsigned integer (defined by standard library)
uint64_t 64-bit unsigned integer (defined by standard library)
int_fast8_t Fastest 8-bit minimum-width signed integer
int_fast16_t Fastest 16-bit minimum-width signed integer
int_fast32_t Fastest 32-bit minimum-width signed integer
uint_fast8_t Fastest 8-bit minimum-width unsigned integer
uint_fast16_t Fastest 16-bit minimum-width unsigned integer
uint_fast32_t Fastest 32-bit minimum-width unsigned integer
uintptr_t Same as pointer bit width unsigned integer as physical address
size_t Same as pointer bit width unsigned integer as byte size
ssize_t Same as pointer bit width signed integer
ptrdiff_t Same as pointer bit width signed integer as difference between pointers
bit_flags_fast32_t Same as uint_fast32_t bit flags (bit field)
bit_flags32_t Same as uint32_t bit flags (bit field)
bit_flags16_t Same as uint16_t bit flags (bit field)
bit_flags8_t Same as uint8_t bit flags (bit field)
byte_t Type of 1 byte
float32_t 32-bit float

(Defined by standard library when "__ARM_NEON__" defined)
float64_t 64-bit float

(Defined by standard library when "__ARM_NEON__" defined)
float128_t 128-bit float

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 12 of 114
Oct. 26, 2017

4.4. Constants, Enumerations and Error code

Section Type Symbol Description

4.4.1. - Version
4.4.2. errnum_t Error Codes
4.4.3. r_ospl_async_state_t State
4.4.4. r_ospl_wait_t The parameter of "R_OSPL_THREAD_SetOnWait" function
4.4.5. r_ospl_flush_t The parameter of "R_OSPL_MEMORY_Flush" function
4.4.6. r_ospl_axi_cache_attribute_t Cache attribute of AXI bus
4.4.7. r_ospl_axi_protection_t Protection attribute of AXI bus
4.4.8. r_ospl_async_type_t Kind of the asynchronous operation
4.4.9. bsp_int_err_t Error Codes of FIT*1 BSP
4.4.10. r_ospl_event_flags_t Bit flags or ID of event
4.4.11. r_ospl_table_flags_t Option of table of array number
4.4.12. r_ospl_if_not_t Behavior when searching one was not found
4.4.13. bsp_int_src_t Interrupt number
4.4.14. bsp_int_cb_t Interrupt handler
4.4.15. bsp_int_cmd_t Control command related to the interrupt
4.4.16. mcu_lock_t Hardware channel number for locking
4.4.17. - The other constant values

4.4.1. Version

Symbol Value Description

R_OSPL_VERSION 155 Version number of OSPL
Hundreds place is version number of OSPL
specification.
Tens place and one's place are minor version
number in specified OS and board.

R_OSPL_VERSION_STRING "1.55" String of version number of OSPL. e.g.) "1.00"
R_OSPL_IS_PREEMPTION 0 or 1 Whether preemptive RTOS or not.

This value is 0, if the environment was OS less.
This value is 1, if preemption was occurred on
interrupt or calling API, even if not round robin.
It is necessary to configure to pseudo
multithreading, if this value was 0.

BSP_CFG_RTOS_USED 0 or 1 Same as "R_OSPL_IS_PREEMPTION"
BSP_CFG_PARAM_CHECKING_E
NABLE

0 or 1 Enable or Disable parameter check of the system
1=The system checks except for the code
disabled by defined "R_OSPL_NDEBUG"
0=The system does not check all

R_OSPL_FOR_FREE_RTOS 80102 Target version of FreeRTOS.
The digit in the ten-thousand's place is major
version. The hundred's place is minor version.
The one's place is build number.

R_OSPL_FOR_RTX ((4<<16)|74) Target version of RTX. It is same as the value of
"osCMSIS_RTX".

R_OSPL_FOR_RZ_A1_BSP 205 Target version of RZ/A1H RTX BSP. The value is
100 times.

*1 Board Support Package Module Using Firmware Integration Technology (R01AN1685EU0260)

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 13 of 114
Oct. 26, 2017

R_OSPL_FOR_RZ_A1_OS_LESS 101 Target version of OS less sample for RZ/A1H.
The value is 100 times.

R_OSPL_FOR_RZ_A1_INTC 101 Target version of interrupt controller sample
(INTC). The value is 100 times.

R_OSPL_FOR_RZ_A1_CACHE 101 Target version of cache controlling sample. The
value is 100 times.

4.4.2. Error Codes

Symbol Value Description

0 0 No error is detected.
E_OTHERS 1 Others error
E_FEW_ARRAY 2 Error of few fixed length array
E_FEW_MEMORY 3 Few heap memory area
E_FIFO_OVER 4 Failed to enqueue
E_NOT_FOUND_SYMBOL 5 Not defined the symbol
E_NO_NEXT 6 There is not next element of list
E_ACCESS_DENIED 7 Error of denied read or write.

The object is locked by other thread.
E_NOT_IMPLEMENT_YET 9 Not implemented yet
E_ERRNO 0x0E(=14) Refer to "errno"
E_LIMITATION 0x0F(=15) Limitation
E_STATE 0x10(=16) Cannot do at this state
E_NOT_THREAD 0x11(=17) Not a thread, cannot call from interrupt context.
E_PATH_NOT_FOUND 0x12(=18) Not found file or folder
E_BAD_COMMAND_ID 0x16(=22) Out of number of command ID
E_TIME_OUT 0x17(=23) Time out
E_STACK_OVERFLOW 0x28(=24) Stack overflow
E_NO_DEBUG_TLS 0x1D(=29) Not set debug work area.

Refer to "R_OSPL_SET_DEBUG_WORK"
E_EXIT_TEST 0x1E(=30) Request of exit from the test

4.4.3. r_ospl_async_state_t type - State

Symbol Value Description

R_OSPL_UNINITIALIZED 0 State of not initialized. The initial value of global variables
R_OSPL_RUNNABLE 1 State to be able to call asynchronous operations
R_OSPL_RUNNING 2 State of running asynchronous operations or waiting interrupts
R_OSPL_INTERRUPTING 3 State with need to call "R_DRIVER_OnInterrupting" function
R_OSPL_INTERRUPTED 4 State with need to call "R_DRIVER_OnInterrupted" function
R_OSPL_LOCKED 5 State of using except for the driver

4.4.4. r_ospl_wait_t type - The parameter of R_OSPL_THREAD_SetOnWait function

Symbol Value Description

R_OSPL_WAIT_POLLING 0 Wait by polling

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 14 of 114
Oct. 26, 2017

R_OSPL_WAIT_PM_THREAD 1 Wait by pseudo multi-threading
If the function with waiting was called, time out argument is
ignored and the function returns immediately. Call
R_OSPL_THREAD_GetIsWaiting(4.6.3. (13)) after calling
the function with waiting.
However, if time out argument is "R_OSPL_INFINITE", the
function does not return. Because
'R_OSPL_THREAD_GetIsWaiting' function for OS less was
called from the synchronized function
"R_DRIVER_Transfer", the driver is depended on OS less.
This setting keeps CPU load 100%.

4.4.5. r_ospl_flush_t type - The parameter of R_OSPL_MEMORY_Flush function

Symbol Value Description

R_OSPL_FLUSH_WRITEB
ACK_INVALIDATE

2 Write back (clean) to the memory and invalidate L1 cache

R_OSPL_FLUSH_WRITEB
ACK_INVALIDATE_2ND

8 Write back (clean) to the memory and invalidate L2 cache

R_OSPL_FLUSH_INVALID
ATE

0 Invalidate L1 cache

4.4.6. r_ospl_axi_cache_attribute_t type - Cache attribute of AXI bus
Setting how bus master uses cache on AXI bus. For RZ/A1H, except for 'R_OSPL_AXI_CACHE_ZERO' is used to

set the attribute of cache operation to the memory out of L2 cache PL310. CPU accesses with L2 cache and bus master
except for CPU accesses without L2 cache, it is necessary to flush L2 cache
(R_OSPL_FLUSH_WRITEBACK_INVALIDATE_2ND). Refer to: RZ/A1H Group User's Manual: Hardware (5.8)
AXI Protocol Control Signals.

Symbol Value Description

R_OSPL_AXI_CACHE_ZERO 0 For internal bus
R_OSPL_AXI_STRONGLY 0 Strongly ordered memory
R_OSPL_AXI_DEVICE 1 Device memory
R_OSPL_AXI_UNCACHED 3 Uncached normal access
R_OSPL_AXI_WRITE_BACK_W 11 Cached write back. Allocates when writing
R_OSPL_AXI_WRITE_BACK 15 Cached write back. Allocates when reading and

writing

4.4.7. r_ospl_axi_protection_t type - Protection attribute of AXI bus
For RZ/A1H, this is secure attribute to SDRAM out of L2 cache PL310 on AXI bus. Secure attribute operates

whether or not to hit L2 cache. Secure attribute of CPU is corresponding to NS bit in MMU (TTB). Refer to: RZ/A1H
Group User's Manual: Hardware (5.8) AXI Protocol Control Signals.

Symbol Value Description

R_OSPL_AXI_PROTECTION_ZERO 0 For internal bus
R_OSPL_AXI_SECURE 0 Secure
R_OSPL_AXI_NON_SECURE 2 Non-secure

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 15 of 114
Oct. 26, 2017

4.4.8. r_ospl_async_type_t

Symbol Value Description

R_OSPL_ASYNC_TYPE_NORMAL 1 Normal asynchronous operation
R_OSPL_ASYNC_TYPE_FINALIZE 2 Asynchronous operation for finalize

4.4.9. bsp_int_err_t

Symbol Value Description

BSP_INT_SUCCESS 0 No error is detected
BSP_INT_ERR_NO_REGISTERED_
CALLBACK

0x2101 Not registered interrupt callback function

BSP_INT_ERR_INVALID_ARG 1 Parameter error
BSP_INT_ERR_UNSUPPORTED 15 Not supported

4.4.10. r_ospl_event_flags_t
"r_ospl_event_flags_t" is data type of thread attached event bit flags.

It is usually to set notify target to a variable as "r_ospl_event_flags_t" type in "r_ospl_async_t" type and pass the
variable to an operation target.

r_ospl_thread_id_t type's
value of variable

r_ospl_event_flags_t type's
value of variable

Notify target thread ID Bit of thread attached event flags (+ check bits)

Thread attached event:

Queue (r_ospl_queue_id_t) is sometimes used to sending data (asynchronous communication). But queue is usually
hidden in library API.

Queue:

4.4.11. r_ospl_table_flags_t

Symbol Value Description

R_OSPL_TABLE_I_LOCK 2 Whether I-lock area is made in each function.
R_OSPL_TABLE_T_LOCK 1 Whether T-lock area is made in each function.

Thread 16bit Flags

Thread

Interrupt Callback Function

Thread

Queue

Thread

Interrupt Callback Function Interrupt Callback Function

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 16 of 114
Oct. 26, 2017

4.4.12. r_ospl_if_not_t
Constant value of behavior, when searching key was not found.

Symbol Value Description

R_OSPL_ALLOCATE_IF_NOT 1 Searches and appends unused array number, if specified
key was not found. "E_FEW_ARRAY" error is raised, if there
is not unused array's index number. Returns the array
number, if specified key was found.

R_OSPL_ERROR_IF_NOT 0 "E_NOT_FOUND_SYMBOL" error is raised, if specified key
was not found . Returns the array's index number, if
specified key was found.

R_OSPL_DO_NOTHING_IF_NOT 2 Keeps output variable's value as same as input value, if
specified key was not found. Output the array's index
number, if specified key was found. This is used for
checking already key exists.

R_OSPL_OUTPUT_IF_NOT 3 Searches and appends unused array number, if not found
specified key. "E_FEW_ARRAY" error is raised, if there is
not unused array's index number. Keeps output variable's
value as same as input value, if specified key was found.
This is used for checking already key exists

R_OSPL_ALLOCATE_IF_EXIST_O
R_IF_NOT

4 Searches and appends unused array number, even if
specified key was found or not. "in_Key" argument of
"R_OSPL_TABLE_GetIndex" function is ignored.
"E_FEW_ARRAY" error is raised and any key is not
appended, if there is not unused array's index number.
After "R_OSPL_ALLOCATE_IF_EXIST_OR_IF_NOT" was
specified, the other constant as "r_ospl_if_not_t" type cannot
be specified. And "R_OSPL_TABLE_Free" function cannot
be called. "R_OSPL_ALLOCATE_IF_EXIST_OR_IF_NOT"
can be specified after calling "R_OSPL_TABLE_InitConst".

4.4.13. bsp_int_src_t
This is type of interrupt number.

Type of "bsp_int_src_t" is integer type or enumeration type by the environment.

The symbol of value is started from "BSP_INT_SRC_".

4.4.14. bsp_int_cb_t
This is type of interrupt handler.

Type of return value or arguments of function type of "bap_int_cb_t" is different from the environment.

Interrupt callbacks via "R_OSPL_CallInterruptCallback" in OSPL environment.

4.4.15. bsp_int_cmd_t

Symbol Value Description

BSP_INT_CMD_INTERRUPT_ENA
BLE

0 Enables the interrupt.
"FIT_NO_PTR" should be set at "Parameter" argument of
"R_BSP_InterruptControl" function.

BSP_INT_CMD_INTERRUPT_DISA
BLE

1 Disables the interrupt.
"FIT_NO_PTR" should be set at "Parameter" argument of
"R_BSP_InterruptControl" function.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 17 of 114
Oct. 26, 2017

4.4.16. mcu_lock_t
This is enumerated type about identity number of hardware channel for lock operation. Naming rule is to start from

'BSP_LOCK_' and upper snake case.

Define example:

typedef enum {
 BSP_LOCK_DMAC0,
 BSP_LOCK_DMAC1,
 :
 BSP_NUM_LOCKS /* This entry is not a valid lock. It is used for sizing
 g_bsp_Locks[] array below. Do not touch! */
} mcu_lock_t;

4.4.17. The other constant values

Symbol Value Description

R_OSPL_NDEBUG Not defined
or 1

Debug configuration (not defined) or Release
configuration (1). This is same as "NDEBUG" of
standard library.
The system can run with the debug configuration
OSPL and the release configuration application.
If the library (compiled binary) called the debug
configuration OSPL, compile the OSPL source with
debug configuration.

R_OSPL_TEST_CODE 0 or 1 A macro of whether the code for test is enabled or not.
"ospl" folder in OSPL package contains the code for
test. There is the OSPL without the code for test in
"workspace\src". The code for test is written in
branches with R_OSPL_TEST_CODE macro.
"*_test_*" file is source file for the test.

R_OSPL_ERROR_BREAK 0 or 1 A macro of whether to use error break function
R_OSPL_PRINTF (See

Description)
Setting of whether printf output is enabled or not in
OSPL.
Select from:
 R_OSPL_PRINTF_ENABLED
 R_OSPL_PRINTF_DISABLED
 R_OSPL_PRINTF_TO_INT_LOG

R_OSPL_INTERRUPT_HANDLE
R_IS

(See
Description)

Kind of interrupt handler.
Select from:
 R_OSPL_INTERRUPT_HANDLER_IS_GENERA

L
 The interrupt handler does not have any

arguments.
 The interrupt handler returns nothing.
 API is not called at the last of the interrupt

hander,
 R_OSPL_INTERRUPT_HANDLER_IS_WITH_INT

_SENSE
 The interrupt handler has "int_sence"

argument.
 R_OSPL_INTERRUPT_HANDLER_IS_FOR_RTX

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 18 of 114
Oct. 26, 2017

 This is for RTX. It is same as
"R_OSPL_INTERRUPT_HANDLER_IS_GEN
ERAL".

R_OSPL_TLS_ERROR_CODE 0 or 1 Whether the error code stores in TLS(Thread Local

Storage)
This value must be 1 by some application or some
library with OSPL.

R_OSPL_STACK_CHECK_COD
E

0 or 1 Setting of whether stack check corresponding code is
enabled or not.
1 means to do checking in the stack just before judging
in "IF" macro.
0 means disabled following functions and constants.
 R_OSPL_GET_STACK_POINTER
 R_OSPL_SET_END_OF_STACK
 R_OSPL_MOVE_END_OF_STACK
 R_OSPL_RESET_MIN_FREE_STACK_SIZE
 R_OSPL_GET_MIN_FREE_STACK_SIZE
 R_OSPL_STACK_CHECK_CANARY_VALUE
Some OS checks in the stack, when running thread
was changing. The checking of the OS is not same as
checking by OSPL.

R_OSPL_CPU_LOAD 0 or 1 Whether it is supported to measure CPU load (for OS
less)

R_OSPL_DEBUG_TOOL 0 or 1 Whether debug tools function is defined
R_OSPL_TLS_EVENT_CODE 0 or 1 Setting of whether it is enabled or not to managing that

thread attached event flags are used.
See 4.6.4. (1) R_OSPL_EVENT_Allocate.

R_OSPL_DETECT_BAD_EVENT 0 or 1 Setting of checking no conflicted thread attached event
flags by reading check bits.

R_OSPL_EVENT_MUST_ALLOC
ATE

0 or 1 Setting of whether "R_OSPL_RaiseUnrecoverable"
function is called, when an event was used without
allocation.

R_OSPL_ALL_EVENT_ALLOCA
TE

0 or 1 Whether it is supported to specify
"R_OSPL_EVENT_ALL_BITS" at
"R_OSPL_EVENT_Allocate".

R_OSPL_WAIT_OWNER_DEBU
G

0 or 1 Setting of whether to record to Int log about the thread
calling a function with waiting (For debug in OS-using
environment).
There is "R_OSPL_WAIT_OWNER_DEBUG" in OSPL
for defined "R_OSPL_IS_PREEMPTION = 0" only. In
pseudo multi-threading environment by calling
"R_OSPL_THREAD_SetOnWait" function with
"R_OSPL_WAIT_PM_THREAD", waiting thread must
call same waiting function or
"R_OSPL_THREAD_ExitWaiting" function.
"R_OSPL_WAIT_OWNER_DEBUG" is used for
investigating which function to be called.

R_OSPL_DEBUG_THREAD_CO
UNT

2 or more Maximum count of threads managing in debug work
area + maximum count of interrupt level.
The debug work area is not made, when settings are
"R_OSPL_ERROR_BREAK = 0" and
"R_OSPL_TLS_ERROR_CODE = 0"

R_OSPL_LIBRARY_MAKING 0 or 1 This macro presents whether or not the library is
making.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 19 of 114
Oct. 26, 2017

1 means that member variables in work area structure
cannot be referenced. "*_DEF" macro like
"R_OSPL_QUEUE_DEF" cannot be referenced. It may
affect define of "INLINE" macro.

R_OSPL_FLAG32_ALL_BITS 0xFFFFFFFF All bits of "r_ospl_flag32_t" type
R_OSPL_STACK_CHECK_CAN
ARY_VALUE

0x57AC512E Canary value written at the end of stack and not used
area.

BSP_CFG_USER_LOCKING_EN
ABLED

0 or 1 Whether to use user defined lock object.
0 = define following macros as using C-lock of OSPL
1 = define following macros by the user

 BSP_CFG_USER_LOCKING_TYPE =

r_ospl_c_lock_t

 BSP_CFG_USER_LOCKING_HW_LOCK_FUNC

TION =
R_BSP_HardwareLock

 BSP_CFG_USER_LOCKING_HW_UNLOCK_FU

NCTION =
R_BSP_HardwareUnlock

 BSP_CFG_USER_LOCKING_SW_LOCK_FUNC

TION =
R_BSP_SoftwareLock

 BSP_CFG_USER_LOCKING_SW_UNLOCK_FU

NCTION =
R_BSP_SoftwareUnlock

R_OSPL_UNLOCKED_CHANNE
L

0xFEE This macro is for specifying unlocked channel number.

R_OSPL_FTIMER_IS (See
Description)

Channel using for free running timer function (4.6.15.
(2))
Sample program uses following symbols:
 R_OSPL_FTIMER_IS_OSTM1 (OS less)
 R_OSPL_FTIMER_IS_MTU2_1_2 (with OS)

R_OSPL_FTIMER_IS_OSTM0 0 OS Timer - channel 0.
One of the value for R_OSPL_FTIMER_IS.

R_OSPL_FTIMER_IS_OSTM1 1 OS Timer - channel 1.
One of the value for R_OSPL_FTIMER_IS.

R_OSPL_FTIMER_IS_MTU2_1_
2

2 MUT2 - channel 1 and 2 cascade connection.
One of the value for R_OSPL_FTIMER_IS.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 20 of 114
Oct. 26, 2017

4.5. Structures and Unions

Section Symbol Outline

4.5.1. r_ospl_thread_id_t Pointer to a thread
4.5.2. r_ospl_thread_def_t Definition of a thread
4.5.3. r_ospl_flag32_t Flag having 32bit
4.5.4. r_ospl_event_group_id_t Type of internal event flag
4.5.5. r_ospl_event_status_t Status of event
4.5.6. r_ospl_async_t Setting of notifications
4.5.7. r_ospl_async_status_t Structure of driver's status and interrupt status
4.5.8. r_ospl_queue_id_t Queue between threads
4.5.9. r_ospl_queue_def_t Define of queue
4.5.10. r_ospl_queue_status_t Status of queue
4.5.11. BSP_CFG_USER_LOCKING_TYPE C-lock
4.5.12. r_ospl_c_lock_t C-lock for internal
4.5.13. r_ospl_table_t Array index table
4.5.15. r_ospl_memory_spec_t Specification of memory or cache memory
4.5.16. r_ospl_ftimer_spec_t Specification of free running timer
4.5.17. r_ospl_caller_t Manager of an interrupt callback function
4.5.18. r_ospl_interrupt_t Structure related to interrupt source. e.g. interrupt

number

4.5.1. r_ospl_thread_id_t
This is the type of pointer to a structure of a thread.

Member variables should not be accessed.

This has 16bit event internal.

This is created by "R_OSPL_THREAD_Create" function.

In OS-using environment, the thread type defined by OS and "r_ospl_thread_id_t" type defined by OSPL are same
type. Use API of OS except for "R_OSPL_THREAD_GetCurrentId" function.

In OS less, preemption does not be supported (pseudo multi thread). Usually "r_ospl_thread_id_t" is used for divide
to some threads for identifying over 16bit (16 types) events.

"r_ospl_thread_id_t" type variable can be let "R_OSPL_THREAD_NULL".

4.5.2. r_ospl_thread_def_t
This is the type of definition of a thread.

Member variables should not be accessed.

This is defined by "R_OSPL_THREAD_DEF" macro.

4.5.3. r_ospl_flag32_t
This is the type of flags having 32bit.

Member variables should not be accessed.

This is initialized by "R_OSPL_FLAG32_InitConst" function.

4.5.4. r_ospl_event_group_id_t
This is the type of internal event flags that has ID not as same as ID of thread in OSPL.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 21 of 114
Oct. 26, 2017

Bits over 16 bits is not used from OSPL, even if OS was supported over 16bit event group. The function writing to
event group can be called from not only thread but also interrupt context.

"r_ospl_event_group_id_t" type is internally defined a type as same as type of event group defined by OS that does
not support thread attached event. "r_ospl_event_group_id_t" type is not defined, when
"R_OSPL_EVENT_GROUP_CODE = 0".

OSPL user must calls API of thread attached event. The event group is used internally. "R_OSPL_EVENT_Allocate"
function internally calls "R_OSPL_EVENT_GROUP_Create" function and "R_OSPL_EVENT_GROUP_Create" gets
an event group that was created by calling "R_OSPL_EVENT_Allocate" function. "R_OSPL_EVENT_Free" function
internally calls "R_OSPL_EVENT_GROUP_Delete" function and "R_OSPL_EVENT_GROUP_Delete" function
releases to delete the event group. Timing of creating and deleting is depended on implementation of
"R_OSPL_EVENT_GROUP_Create" and "R_OSPL_EVENT_GROUP_Delete" function. It is not possible to change
the thread waiting for the event group to another event group.

" r_ospl_event_group_id_t " type variable can be let "R_OSPL_EVENT_GROUP_NULL".

4.5.5. r_ospl_event_status_t
Outline Status of event
Header r_ospl.h
Description This can be gotten by "R_OSPL_EVENT_GetStatus" function.

This is enabled, when "R_OSPL_DETECT_BAD_EVENT= 1".
Member variable bit_flags32_t

AllocatedEvents
Bits allocated event.
See R_OSPL_EVENT_Allocate

 bit_flags32_t
UnexpectedEvents

Bits set as not expected

4.5.6. r_ospl_async_t
Outline Setting of notifications
Header r_ospl.h
Description This is set to "R_DRIVER_TransferStart" function.

See. R_OSPL_EVENT_Wait (4.6.4. (4)).
Details of notification sometimes get from API of the module having queue.

Member variable bit_flags_fast32_t Flags Flagged structure parameters. Refer to Section (4.8.2.)
 R_F_OSPL_A_Thread
 R_F_OSPL_A_EventValue
 R_F_OSPL_I_Thread
 R_F_OSPL_I_EventValue
 R_F_OSPL_InterruptCallback
 R_F_OSPL_Delegate
The following preset (set of member's values) can be set
with above flags.
 R_F_OSPL_AsynchronousPreset
See "R_OSPL_ASYNC_SetDefaultPreset" function.

 void* Delegate The value defined by applications. Drivers and OSPL
does not access it.
It is able to reference from the argument of interrupt
callback function
"R_F_OSPL_Delegate" set with "Flags" member variable
is ignored.

 r_ospl_thread_id_t
A_Thread

The A-Thread waiting the A-Event receiving notifications
when any asynchronous operations were end.
This member variable must be set with
"R_F_OSPL_A_Thread".

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 22 of 114
Oct. 26, 2017

The default value is R_OSPL_THREAD_NULL. If
R_OSPL_THREAD_NULL was set, notifications are not
received.
Normally, the return value of
"R_OSPL_THREAD_GetCurrentId" function is set.
Normally, call "R_OSPL_EVENT_Wait" function, if you
want to receive notifications.

 r_ospl_event_flags_t
A_EventValue

The notify target set to the A-Event.
This member variable must be set with
"R_F_OSPL_A_EventValue".
Event flags set to notify target. Flags are 16bit.
Default is "R_OSPL_UNUSED_FLAG".

However, the default value is changed by
"R_DRIVER_SetDefaultAsync" function.

This member variable will be changed by calling
"R_OSPL_EVENT_Allocate" or "R_OSPL_EVENT_Free"
in target driver.

 r_ospl_thread_id_t
I_Thread

I-Thread having the I-Event receiving notifications needs
to do interrupt response operation.
This member variable usually does not have to be
specified by application.
This member variable must be set with
"R_F_OSPL_I_Thread".
It is able to set the value as same as "A_Thread".
The default value is R_OSPL_THREAD_NULL. If
R_OSPL_THREAD_NULL was set,
"R_DRIVER_OnInterrupted" function is called
automatically from the inside of interrupt callback
function. Otherwise a thread received I-Event must call
"R_DRIVER_OnInterrupted" function.
In OS-using environment, if R_OSPL_THREAD_NULL
was set, the driver's specification may be to notify to I-
Thread created in the driver inside. Look at the code of
"R_DRIVER_SetDefaultAsync" function.
Refer to : Figure of sequence

 r_ospl_event_flags_t
I_EventValue

The value of flag pattern set to the I-Event.
This member variable usually does not have to be
specified by application.
This member variable must be set with
"R_F_OSPL_I_EventValue".
Event flags set to notify target. Flags are 16bit.
Default is 0, if "I_Thread == R_OSPL_THREAD_NULL",
otherwise default is 0x0002 = R_OSPL_I_FLAG.

However, the default value is changed by
"R_DRIVER_SetDefaultAsync" function.

 r_ospl_callback_t
InterruptCallback

The interrupt callback function.
Specified function is callbacked from internal interrupt.
This member variable usually does not have to be
specified by application.
This member variable must be set with
"R_F_OSPL_InterruptCallback".
The default value is NULL. If NULL was set, the default
callback function created by the driver.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 23 of 114
Oct. 26, 2017

This function will be callbacked in the interrupt context
that the driver receives. But some driver sometimes calls
out of the interrupt context.

 errnum_t ReturnValue The return value of the asynchronous operation.
The value set at starting the asynchronous operation will
be deleted.
"ReturnValue" must be checked, when the asynchronous
operation was ended.

4.5.7. r_ospl_async_status_t
Synopsis Structure of driver's status and interrupt status defined by OSPL
Header r_ospl.h
Description "r_driver_async_status_t" type defined by the driver may have new member variable

or do not have some member variables.
Member variable r_ospl_async_state_t

State
The state of the driver. e.g.) running asynchronous
operation, interrupt response operation and so on. This
variable must be with volatile

 bool_t
IsEnabledInterrupt

Whether all interrupt line related the channel is enabled
or not

 r_ospl_flag32_t
InterruptEnables

Interrupt lines in all interrupt lines related with the
channel

 r_ospl_flag32_t
InterruptFlags

Copy of the interrupt status register.
Symbols corresponded each bit are defined in the driver
internally. These symbols may not be public in some
drivers.

 r_ospl_flag32_t
CancelFlags

Internal driver's flags of status of cancel the operation

 union LockOwner Locking owner.
There is this member variable only when
"R_OSPL_IS_PREEMPTION" = 0 defined.

 r_ospl_thread_id_t
LockOwner.Thread

Thread type locking owner.
R_OSPL_THREAD_NULL=Unlocked.

 void*
LockOwner.Context

Context type locking owner.
NULL=Unlocked.

4.5.8. r_ospl_queue_id_t
This is the type of queue that can be communicated between threads.

Each sizes of elements in a queue are all same. Element size can be different in each queue.

Member variables should not be accessed.

This is created by "R_OSPL_QUEUE_Create" function.

"r_ospl_queue_id_t" type variable can be let "R_OSPL_QUEUE_NULL".

4.5.9. r_ospl_queue_def_t
This is the type of define of queue.

Member variables should not be accessed.

This is defined by "R_OSPL_QUEUE_DEF" macro.

4.5.10. r_ospl_queue_status_t
Synopsis Status of queue
Header r_ospl.h

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 24 of 114
Oct. 26, 2017

Description This structure can be get from "R_OSPL_QUEUE_GetStatus" function.
Member variable int_fast32_t UsedCount Count of allocated element in the queue

 int_fast32_t MaxCount Maximum count of allocatable element in the queue

4.5.11. BSP_CFG_USER_LOCKING_TYPE
This is the type of C-lock. Lock operation does exclusive control for internal variable. Operations which denies not

owner of C-lock is user's responsibility.

This manages channel of hardware and permission to use software. It cannot be used for waiting as T-lock.

If "BSP_CFG_USER_LOCKING_ENABLED" was 0, "BSP_CFG_USER_LOCKING_TYPE" is defined as
"r_ospl_c_lock_t". If 1, OSPL does not define the type.

If C-lock became successful, the owner gets some right. The owner can operate something to the lock target object. If
there is not the right, E_ACCESS_DENIED error is raised for example. The owner is a thread or a context. This is
depended on the specification.

 When the target can be locked, set the owner ID in the lock target

 Before the target is unlocked, unset the owner ID in the lock target

 In the API of the lock target, check the owner ID

If there was other driver that operates same peripheral, OSPL may delegate locking management to the driver.

4.5.12. r_ospl_c_lock_t
This is the type of C-lock for OSPL internal. This does not manage exclusive control. See

"BSP_CFG_USER_LOCKING_TYPE" for API.

"r_ospl_c_lock_t*" type variable can be let NULL.

4.5.13. r_ospl_table_t
This is the type of array index table.

Member variables should not be accessed.

This is created by "R_OSPL_TABLE_DEF" macro or "R_OSPL_TABLE_InitConst" function 4.6.1. (12) .

This is converted to array's index number from key as "void*" type or "uintptr_t" type (NULL is available). Array's
index number is integer in a range between 0 and (n-1), and n can be set any number. User can select to do I-lock or T-
lock in every function. "r_ospl_table_t" checks no invalid reentrant, if "R_OSPL_NDEBUG" was not defined. It raises
"R_OSPL_RaiseUnrecoverable(E_STATE)" function, when invalid reentrant was detected.

This can be used for like thread local storage by converting from ID of "r_ospl_thread_id_t" to array's index number.
"r_ospl_table_t" can be used like fixed length memory pool, too.

4.5.14. r_ospl_table_status _t
Outline Structure of status of array index table.
Header r_ospl.h
Description This is set by "R_OSPL_TABLE_GetStatus" function. (4.6.13. (8))
Member variable int_fast32_t Count Count of elements in the table.
 int_fast32_t MaxCount Max count of elements in the table.

4.5.15. r_ospl_memory_spec_t
Outline Structure of the specification of the memory and cache memory
Header r_ospl.h
Description

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 25 of 114
Oct. 26, 2017

Member variable uint_fast32_t
CacheLineSize

Size of cache line (byte)

4.5.16. r_ospl_ftimer_spec_t
Outline Specification of free running timer
Header r_ospl.h
Description This is able to get from "R_OSPL_FTIMER_InitializeIfNot" function.

If the precision was 1 millisecond, "msec_Numerator" = 1 and "msec_Denominator"
= 1.
If the precision was 1 microsecond, "msec_Numerator" = 1 and "msec_Denominator"
= 1000.

Member variable uint32_t
msec_Numerator

The numerator of millisecond by 1 count.

 uint32_t
msec_Denominator

The denominator of millisecond by 1 count.

 uint32_t MaxCount Max value of the count
 uint32_t

ExtensionOfCount
The period from the target time.
An error is raised, when "Now" argument is greater than
"TargetTime" argument + "ExtensionOfCount" with
"R_OSPL_FTIMER_IsPast" function.

4.5.17. r_ospl_caller_t
This is the type of managing an interrupt callback function.

Member variables should not be accessed.

4.5.18. r_ospl_interrupt_t
Outline Structure related to interrupt source. e.g. interrupt number
Header r_ospl.h
Description -
Member variable bsp_int_src_t IRQ_Num Interrupt number

 int_fast32_t ChannelNum Channel number
 int_fast32_t Type The number defined by the driver internal
 void* Delegate The pointer defined by the driver internal

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 26 of 114
Oct. 26, 2017

4.6. Functions
4.6.1. List

Section Outline

(1) Functions for versions of OSPL
(2) Functions for threads - r_ospl_thread_id_t type
(3) Functions for thread attached events
(4) Functions for flags - r_ospl_flag32_t type
(5) Functions for bit flags - bit_flags_fast32_t type
(6) Functions for asynchronous notification - r_ospl_async_t type
(7) Functions for queue - r_ospl_queue_id_t type
(8) Functions for the area disabled all interrupts
(9) Functions for interrupt handling
(10) Functions for BSP_CFG_USER_LOCKING_TYPE type
(11) Functions for r_ospl_c_lock_t type
(12) Functions for array index table - r_ospl_table_t type
(13) Functions for the memory
(14) Functions for time
(15) Functions for the idle state
(16) Functions for interrupt callback functions - r_ospl_caller_t type
(17) Functions for error handling and debugging
(18) Functions for reviewed tags for the static code analyzer
(19) Multi compiler support
(20) Functions for the layer under OSPL
(21) Common functions for driver's APIs
(22) Common functions under the driver

(1) Functions for versions of OSPL

Section Function Name Outline

4.6.2. (1) R_OSPL_GetVersion Returns version number of OSPL
4.6.2. (2) R_OSPL_IsPreemption Returns whether the environment is supported preemption

(2) Functions for threads - r_ospl_thread_id_t type

Section Function Name Outline

4.6.3. (1) R_OSPL_THREAD_DEF Defines the work area and initial value of the thread (for
OS less)

4.6.3. (2) R_OSPL_THREAD Returns the work area of the thread (for OS less)
4.6.3. (3) R_OSPL_THREAD_Create Creates a pseudo thread (for OS less)
4.6.3. (4) R_OSPL_THREAD_Destroy Destroys a pseudo thread (for OS less)
4.6.3. (5) R_OSPL_THREAD_GetArgument Returns parameters passed when the running thread

was created (for OS less)
4.6.3. (6) R_OSPL_THREAD_SetCurrentId Set running thread ID (for OS less)
4.6.3. (7) R_OSPL_THREAD_GetCurrentId Get running thread ID (for OS less and OS-using

environment)
4.6.3. (8) R_OSPL_THREAD_GetMainId Returns main thread ID (for OS less)
4.6.3. (9) R_OSPL_THREAD_SetDelegate Sets a specified value to pointer type variable attached

with thread (for OS less)

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 27 of 114
Oct. 26, 2017

4.6.3. (10) R_OSPL_THREAD_GetDelegate Gets a specified value from pointer type variable
attached with thread (for OS less)

4.6.3. (11) R_OSPL_THREAD_SetOnWait Set waiting behavior of current thread
4.6.3. (12) R_OSPL_THREAD_GetOnWait Get waiting behavior of current thread
4.6.3. (13) R_OSPL_THREAD_GetIsWaiting Get whether the current thread is waiting or not
4.6.3. (14) R_OSPL_THREAD_ExitWaiting Exit waiting state of current thread

(3) Functions for thread attached events
The synchronous primitive as 16bit flags attached the thread.

It notifies to a thread by set one or some flags (set bit to 1) by other threads or interrupt callback functions.

Section Function Name Outline

4.6.4. (1) R_OSPL_EVENT_Allocate Allocates a bit of thread attached event flags
4.6.4. (2) R_OSPL_EVENT_Set Set one or some bits to 1
4.6.4. (3) R_OSPL_EVENT_Clear Set one or some bits to 0
4.6.4. (4) R_OSPL_EVENT_Wait Waits for setting the flags in 16bit and clear received flags
4.6.4. (5) R_OSPL_EVENT_GetStatus Gets status of event
4.6.4. (6) R_OSPL_EVENT_Free Returns a bit of thread attached event flags
The reason of not using 32bit is that some OS has only 16bit and able to define time out and check bit in higher 16 bit

like the following table

bit Description

31 Reserved
30 R_OSPL_TIMEOUT
29 Reserved
28 R_OSPL_UNUSED_FLAG
27:20 Check bit - value which is changed by allocating event
19:16 Check bit - bit number of allocating event flag
15:3 Thread attached event flag
2 Thread attached event flag - R_OSPL_FINAL_A_FLAG
1 Thread attached event flag - R_OSPL_I_FLAG
0 Thread attached event flag - R_OSPL_A_FLAG

(4) Functions for flags - r_ospl_flag32_t type
The 1 level buffer of 32bit flags for notifying interrupt status and so on.

API is not atomic. It is necessary to exclusive control.

You can create any number of flags similar to "bit_flags32_t" type's integer variable.

Section Function Name Outline

4.6.5. (1) R_OSPL_FLAG32_InitConst Clears all flags in 32bit to 0
4.6.5. (2) R_OSPL_FLAG32_Set Set one or some bits to 1
4.6.5. (3) R_OSPL_FLAG32_Clear Set one or some bits to 0
4.6.5. (4) R_OSPL_FLAG32_Get Get 32bit flags value
4.6.5. (5) R_OSPL_FLAG32_GetAndClear Returns the value of flags and clears all bits to 0

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 28 of 114
Oct. 26, 2017

(5) Functions for bit flags - bit_flags_fast32_t type
bit_flags_fast32_t type is the bit flags type of uint_fast32_t type. This type is collection of bits in binary as integer

type.

Section Function Name Outline

4.6.6. (1) IS_BIT_SET Evaluate whether passed bit is 1 or not
4.6.6. (2) IS_ANY_BITS_SET Evaluate whether any passed bits are 1 or not
4.6.6. (3) IS_ALL_BITS_SET Evaluate whether all passed bits are 1 or not
4.6.6. (4) IS_BIT_NOT_SET Evaluate whether passed bit is 0 or not
4.6.6. (5) IS_ANY_BITS_NOT_SET Evaluate whether any passed bits are 0 or not
4.6.6. (6) IS_ALL_BITS_NOT_SET Evaluate whether all passed bits are 0 or not

(6) Functions for asynchronous notification - r_ospl_async_t type

Section Function Name Outline

4.6.7. (1) R_OSPL_ASYNC_SetDefaultP
reset

Sets each member variable to preset values, if preset flag
was specified in "r_ospl_async_t" type structure.

(7) Functions for queue - r_ospl_queue_id_t type

Section Function Name Outline

4.6.8. (1) R_OSPL_QUEUE_DEF Defines attributes of queue and work area
4.6.8. (2) R_OSPL_QUEUE Returns initial attributes of queue and work area
4.6.8. (3) R_OSPL_QUEUE_Create Initializes a queue
4.6.8. (4) R_OSPL_QUEUE_GetStatus Gets status of the queue
4.6.8. (5) R_OSPL_QUEUE_Allocate Allocates an element from the queue object
4.6.8. (6) R_OSPL_QUEUE_Put Sends the element to the queue
4.6.8. (7) R_OSPL_QUEUE_Get Receives the element from the queue
4.6.8. (8) R_OSPL_QUEUE_Free Returns received memory area to the queue
4.6.8. (9) R_OSPL_GetQueueAsSingle

tonLock
Returns a T-lock object that is locked when singleton was
created and deleted

(8) Functions for the area disabled all interrupts
Do exclusive control to the interrupt handler by disabling or enabling all interrupts.

However, NMI is not disabled. See 4.8.3. regarding nested interrupt.

Section Function Name Outline

4.6.9. (1) R_OSPL_EnableAllInterrupt Releases all disabled interrupts
4.6.9. (2) R_OSPL_DisableAllInterrupt Disables all interrupts
4.6.9. (3) R_OSPL_GetIsAllInterruptEnabled Returns whether all interrupts are enabled

(9) Functions for interrupt handling

Section Function Name Outline

4.6.10. (1) R_BSP_InterruptWrite Registers an interrupt handler
4.6.10. (2) R_BSP_InterruptRead Returns registered interrupt handler

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 29 of 114
Oct. 26, 2017

4.6.10. (3) R_BSP_InterruptControl Controls related to the interrupt
4.6.10. (4) R_OSPL_SetInterruptPriority Sets the priority of the interrupt.
4.6.10. (5) R_OSPL_END_OF_INTERRUPT Macro that is called at last of interrupt handler

(10) Functions for BSP_CFG_USER_LOCKING_TYPE type

Section Function Name Outline

4.6.11. (1) R_OSPL_LockChannel Locks by channel number
4.6.11. (2) R_OSPL_UnlockChannel Unlocks by channel number
4.6.11. (3) R_BSP_HardwareLock Locks by hardware identify number
4.6.11. (4) R_BSP_HardwareUnlock Unlocks by hardware identify number
4.6.11. (5) R_BSP_SoftwareLock Locks the target
4.6.11. (6) R_BSP_SoftwareUnlock Unlocks the target

(11) Functions for r_ospl_c_lock_t type

Section Function Name Outline

4.6.12. (1) R_OSPL_C_LOCK_InitConst Initializes the C-lock object
4.6.12. (2) R_OSPL_C_LOCK_Lock Locks the target, if lockable state
4.6.12. (3) R_OSPL_C_LOCK_Unlock Unlocks the target

(12) Functions for array index table - r_ospl_table_t type

Section Function Name Outline

4.6.13. (1) R_OSPL_TABLE_DEF Declares work area and initial value of array index table.
4.6.13. (2) R_OSPL_TABLE Returns work area and initial value of array index table.
4.6.13. (3) R_OSPL_TABLE_InitConst Initializes an array index table.
4.6.13. (4) R_OSPL_TABLE_SIZE Calculate size of area for the array index table.
4.6.13. (5) R_OSPL_TABLE_GetIndex Returns array index number from specified key.
4.6.13. (6) R_OSPL_TABLE_Free Remove from array index table and separate index from

key. (key specified)
4.6.13. (7) R_OSPL_TABLE_FreeByIndex Remove from array index table and separate index from

key. (index specified)
4.6.13. (8) R_OSPL_TABLE_GetStatus Gets (pointer to structure that describes) status of array

index table.

(13) Functions for the memory

Section Function Name Outline

4.6.14. (1) R_OSPL_MEMORY_Flush Flushes cache memory
4.6.14. (2) R_OSPL_MEMORY_RangeFlush Flushes cache memory with the range of virtual

address
4.6.14. (3) R_OSPL_MEMORY_GetLevelOfFlus

h
Gets the level of cache flush for the memory

4.6.14. (4) R_OSPL_MEMORY_GetMaxLevelOf
Flush

Gets the level of all cache flush for the memory

4.6.14. (5) R_OSPL_MEMORY_GetSpecificatio
n

Gets the specification about memory and cache
memory

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 30 of 114
Oct. 26, 2017

4.6.14. (6) R_OSPL_ToPhysicalAddress Changes to physical address
4.6.14. (7) R_OSPL_ToCachedAddress Changes to the address in the cached area
4.6.14. (8) R_OSPL_ToUncachedAddress Changes to the address in the uncached area
4.6.14. (9) R_OSPL_MEMORY_Barrier Set data memory barrier
4.6.14. (10) R_OSPL_InstructionSyncBarrier Set instruction synchronization barrier
4.6.14. (11) R_OSPL_AXI_Get2ndCacheAttribut

e
Gets L2 cache attribute of AXI bus from the address

4.6.14. (12) R_OSPL_AXI_GetProtection Gets protection attribute of AXI bus from the address

(14) Functions for time

Section Function Name Outline

4.6.15. (1) R_OSPL_Delay Waits for a while until passed time
4.6.15. (2) R_OSPL_FTIMER_InitializeIfNot Set up the free running timer
4.6.15. (3) R_OSPL_FTIMER_Get Get current time of free running timer
4.6.15. (4) R_OSPL_FTIMER_IsPast Returns whether specified time was passed
4.6.15. (5) R_OSPL_FTIMER_TimeToCount Change from millisecond unit to free running timer unit
4.6.15. (6) R_OSPL_FTIMER_CountToTime Change from free running timer unit to millisecond unit
4.6.15. (7) R_OSPL_FTIMER_GetSpecificati

on
Get the specification of the free running timer

(15) Functions for the idle state
It is used for measuring CPU load.

When CPU load was measured on OS-using environment, make the lowest priority idle thread, count up the variable
in the thread and refer to the count value at the cyclic timer interrupt instead of using OSPL. Calculate CPU load as
100% is defined to the value of count up when only idle thread was running. Also, there is sometimes ICE which can
measure CPU load.

Section Function Name Outline

4.6.16. (1) R_OSPL_IDLE_Start_CPU_Load Starts to measure CPU load (for OS less)
4.6.16. (2) R_OSPL_IDLE_Print_CPU_Load Show the CPU load by printf (for OS less)

(16) Functions for interrupt callback functions - r_ospl_caller_t type

Section Function Name Outline

4.6.17. (1) R_OSPL_CallInterruptCallback Calls the interrupt callback function. It is called from OS
porting layer in the driver

4.6.17. (2) r_ospl_callback_t The function type of interrupt callback

(17) Functions for error handling and debugging

Section Function Name Outline

4.6.18. (1) CHK Enters infinite loop, if error was raised. It is for
debugging

4.6.18. (2) R_OSPL_RaiseUnrecoverable Raises the error of system unrecoverable
4.6.18. (3) R_DEBUG_BREAK Breaks here
4.6.18. (4) R_DEBUG_BREAK_IF_ERROR Breaks here, if it is error state

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 31 of 114
Oct. 26, 2017

4.6.18. (5) IF Breaks and transits to error state, if condition
expression is not 0

4.6.18. (6) IF_D It is same as "IF" (for Debug configuration only)
4.6.18. (7) ASSERT_R Assertion (Programming by Contract)
4.6.18. (8) ASSERT_D Assertion (Programming by Contract) (for Debug

configuration only)
4.6.18. (9) R_STATIC_ASSERT Assertion (Programming by Contract). It raises

compiling error, if static condition was false
4.6.18. (10) R_STATIC_ASSERT_GLOBAL "R_STATIC_ASSERT" for global scope
4.6.18. (11) R_NOOP The function doing nothing
4.6.18. (12) R_OSPL_MergeErrNum Merge the error code raised in the finalizing operation
4.6.18. (13) R_OSPL_SetErrNum Sets the error code to TLS
4.6.18. (14) R_OSPL_GetErrNum Returns the error code from TLS
4.6.18. (15) R_OSPL_CLEAR_ERROR Clears the error state
4.6.18. (16) R_OSPL_NOTIFY_ERROR Notifies an error to another thread and clears an error

of current thread.
4.6.18. (17) R_OSPL_SET_BREAK_ERROR_ID Register to break at raising error at the moment
4.6.18. (18) R_OSPL_GET_ERROR_ID Returns the number of current error
4.6.18. (19) R_OSPL_DEBUG_WORK_SIZE Calculates the size of debug work area
4.6.18. (20) R_OSPL_GetCurrentThreadError Returns debug information of current thread
4.6.18. (21) R_OSPL_FreeCurrentThreadError Releases an area of error and debug information in

current thread.
4.6.18. (22) R_OSPL_CHANGE_THREAD_LOCK

ED_COUNT
Modifies value of counter that can be accessed by
current thread only

4.6.18. (23) R_OSPL_GET_THREAD_LOCKED_
COUNT

Returns value of counter that can be accessed by
current thread only

4.6.18. (24) R_OSPL_GET_THREAD_LOCKED_
COUNT

Returns value of current stack pointer for debugging.

4.6.18. (25) R_OSPL_SET_END_OF_STACK Sets the end of stack area of current thread for
debugging.

4.6.18. (26) R_OSPL_MOVE_END_OF_STACK Moves end of stack area
4.6.18. (27) R_OSPL_CHECK_STACK_OVERFL

OW
Checks that stack overflow occurred.

4.6.18. (28) R_OSPL_RESET_MIN_FREE_STAC
K_SIZE

Resets minimum free stack size in current thread.

4.6.18. (29) R_OSPL_GET_MIN_FREE_STACK_
SIZE

Counts minimum free stack size in current thread.

4.6.18. (30) R_OSPL_GET_MIN_STACK_POINT
ER

Searches the position of stack pointer when largest
stack area was used by now

4.6.18. (31) R_D_Add Registers watching integer variable or pointer
variable

4.6.18. (32) R_D_Watch Show and Check watching variable's value
4.6.18. (33) R_D_AddToIntLog Records to the log fast
4.6.18. (34) R_D_Counter Count the through count

(18) Functions for reviewed tags for the static code analyzer

Section Function Name Outline

4.6.19. (1) IS Changes the code accepted with MISRA 13.2 to
readable

4.6.19. (2) R_OSPL_ReturnFalse Countermeasure for the warning, when "if" block
was disabled.

4.6.19. (3) R_UNREFERENCED_VARIABLE Suppress the warning of not referenced variable

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 32 of 114
Oct. 26, 2017

4.6.19. (4) R_UNREFERENCED_VARIABLE_2 "R_UNREFERENCED_VARIABLE" with 2
arguments

4.6.19. (5) R_UNREFERENCED_VARIABLE_3 "R_UNREFERENCED_VARIABLE" with 3
arguments

4.6.19. (6) R_UNREFERENCED_VARIABLE_4 "R_UNREFERENCED_VARIABLE" with 4
arguments

(19) Multi compiler support

Section Macro Name Outline

4.6.20. (1) R_OSPL_SECTION Names section name to function or variable
4.6.20. (2) R_OSPL_ALIGNMENT Alignments first address of global variable
4.6.20. (3) R_COUNT_OF Returns element count of the array
4.6.20. (4) INLINE Inline function (C99 specification compatible)
4.6.20. (5) STATIC_INLINE Static inline function (C99 specification compatible)
4.6.20. (6) R_ADDRESS_Add Adds at a value of address (pointer) by byte unit.
4.6.20. (7) R_OSPL_CountLeadingZeros Counts bits which is set 0 from most significant bit

(MSB).
4.6.20. (8) R_OSPL_IsSetBitsCount1 Returns whether there is one bit which is set 1.

(20) Functions for the layer under OSPL

Section Function Name Outline

4.6.21. (1) R_DebugBreak The function callbacked from OSPL for breaking
4.6.21. (2) R_OSPL_OnIdleDefault The default callback function on idle state (for OS less)
4.6.21. (3) R_OSPL_Start_T_Lock The function callbacked from OSPL internal, when T-

Lock started
4.6.21. (4) R_OSPL_End_T_Lock The function callbacked from OSPL internal, when T-

Lock ended
4.6.21. (5) R_OSPL_EVENT_GROUP_Create Creates an event group
4.6.21. (6) R_OSPL_EVENT_GROUP_Delete Delete an event group

(21) Common functions for driver's APIs

Section Function Name Outline

4.6.22. (1) R_DRIVER_Transfer Does synchronously the asynchronous operation of the
peripheral function

4.6.22. (2) R_DRIVER_TransferStart Starts the asynchronous operation of the peripheral function
4.6.22. (3) R_DRIVER_OnInterrupting Receives the interrupt
4.6.22. (4) R_DRIVER_OnInterrupted Does the interrupt response operation
4.6.22. (5) R_DRIVER_GetAsyncStatus Get the pointer to the structure indicated the status of

interrupts and the asynchronous operation
4.6.22. (6) R_DRIVER_Initialize Initializes the driver and changes driver's state to usable
4.6.22. (7) R_DRIVER_Finalize Finalizes the driver
4.6.22. (8) R_DRIVER_LockChannel Locks a channel (Changes to used state in the driver)
4.6.22. (9) R_DRIVER_UnlockChannel Unlocks a channel (Changes to not used state in the driver)

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 33 of 114
Oct. 26, 2017

(22) Common functions under the driver

Section Function Name Outline

4.6.23. (1) R_DRIVER_SetDefaultAsync Sets default value in "r_ospl_async_t" type
4.6.23. (2) R_DRIVER_I_LOCK_Replace Replaces I-lock object to the integrated driver's I-lock object
4.6.23. (3) R_DRIVER_DisableInterrupt Disables an interrupt for staring I-lock
4.6.23. (4) R_DRIVER_EnableInterrupt Enables an interrupt for ending I-lock

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 34 of 114
Oct. 26, 2017

4.6.2. Functions for versions of OSPL

(1) R_OSPL_GetVersion
Outline Returns version number of OSPL
Header r_ospl.h
Declaration int32_t R_OSPL_GetVersion();
Description Return value is same as "R_OSPL_VERSION" macro.
Arguments None
Return value Version number of OSPL

(2) R_OSPL_IsPreemption
Outline Returns whether the environment is supported preemption
Header r_ospl.h
Declaration bool_t R_OSPL_IsPreemption();
Description Return value is same as "R_OSPL_IS_PREEMPTION" macro.
Arguments None
Return value Whether the environment is RTOS supported preemption.

4.6.3. Functions for threads - r_ospl_thread_id_t type

(1) R_OSPL_THREAD_DEF
Outline Defines the work area and initial value of the thread (for OS less)
Header r_ospl.h
Declaration #define R_OSPL_THREAD_DEF(Name)
Description There is this function only when "R_OSPL_IS_PREEMPTION" = 0 defined.

It is not possible to use this macro in the library. If implement of OSPL was changed,
the library must be recompiled.

Arguments Name Thread name. Do not bracket by ""
Return value None

(2) R_OSPL_THREAD
Outline Returns the work area of the thread (for OS less)
Header r_ospl.h
Declaration r_ospl_thread_def_t* R_OSPL_THREAD(Name);
Description There is this function only when "R_OSPL_IS_PREEMPTION" = 0 defined.

It is not possible to use this macro in the library. If implement of OSPL was changed,
the library must be recompiled.

Arguments Name Thread name defined by "R_OSPL_THREAD_DEF".
Do not bracket by ""

Return value Work area of the thread and initial value

(3) R_OSPL_THREAD_Create
Outline Creates a pseudo thread (for OS less)
Header r_ospl.h
Declaration errnum_t R_OSPL_THREAD_Create(r_ospl_thread_def_t* ThreadDef, void*

Argument, r_ospl_thread_id_t* out_ThreadId);
Description There is this function only when "R_OSPL_IS_PREEMPTION" = 0 defined.

Usually, use it for creating more than one event.
To delete a thread, please call "R_OSPL_THREAD_Destroy" function.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 35 of 114
Oct. 26, 2017

Example:
r_ospl_thread_id_t g_ThreadA_Id;
R_OSPL_THREAD_DEF(g_ThreadA_Def);

void main()
{
 errnum_t e;

 e= R_OSPL_THREAD_Create(R_OSPL_THREAD(g_ThreadA_Def),
 NULL, &g_ThreadA_Id);
 IF(e){goto fin;}
}

Arguments r_ospl_thread_def_t*
ThreadDef

Work area of the thread and initial value returned by
"R_OSPL_THREAD" function.

 void* Argument The parameter passing to
"R_OSPL_THREAD_GetArgument" function.

 r_ospl_thread_id_t*
out_ThreadId

Output: Thread ID

Return value Error code. If there is no error, the return value is 0.

(4) R_OSPL_THREAD_Destroy
Outline Destroys a pseudo thread (for OS less)
Header r_ospl.h
Declaration errnum_t R_OSPL_THREAD_Destroy(r_ospl_thread_id_t* in_out_ThreadId);
Description There is this function only when "R_OSPL_IS_PREEMPTION" = 0 defined.

This does nothing and returns 0 (no error), if thread ID specified by
"in_out_ThreadId" argument was "R_OSPL_THREAD_NULL".

Attention:

"R_OSPL_FreeCurrentThreadError" must be called at the end of the thread.
Arguments r_ospl_thread_id_t*

in_out_ThreadId
ID of deleting thread

Return value Error code. If there is no error, the return value is 0.

(5) R_OSPL_THREAD_GetArgument
Outline Returns parameters passed when the running thread was created (for OS less)
Header r_ospl.h
Declaration void* R_OSPL_THREAD_GetArgument();
Description There is this function only when "R_OSPL_IS_PREEMPTION" = 0 defined.

Call "R_OSPL_THREAD_SetCurrentId" function from the message loop before
calling this function.

Arguments None
Return value "Argument" argument of "R_OSPL_THREAD_Create" function

(6) R_OSPL_THREAD_SetCurrentId
Outline Set running thread ID (for OS less)
Header r_ospl.h
Declaration void R_OSPL_THREAD_SetCurrentId(r_ospl_thread_id_t ThreadId);
Description There is this function only when "R_OSPL_IS_PREEMPTION" = 0 defined.

Call this function from the message loop on the pseudo multi-thread environment.

Example:
 R_OSPL_THREAD_SetCurrentId(ChildThreadId);

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 36 of 114
Oct. 26, 2017

 ChildThreadFunction();
 R_OSPL_THREAD_SetCurrentId(MainThreadId);

Arguments r_ospl_thread_id_t
ThreadId

Thread ID setting to current running state.

Return value None

(7) R_OSPL_THREAD_GetCurrentId
Outline Get running thread ID (for OS less and OS-using environment)
Header r_ospl.h
Declaration r_ospl_thread_id_t R_OSPL_THREAD_GetCurrentId();
Description It is possible to use this function, even if "R_OSPL_IS_PREEMPTION" was any

define.
For OS less, returns thread ID passed to "R_OSPL_THREAD_SetCurrentId"
function.
"R_OSPL_THREAD_NULL" is returned, if in interrupt context.

Arguments None
Return value The current running thread ID

(8) R_OSPL_THREAD_GetMainId
Outline Returns main thread ID (for OS less)
Header r_ospl.h
Declaration r_ospl_thread_id_t R_OSPL_THREAD_GetMainId();
Description There is this function only when "R_OSPL_IS_PREEMPTION" = 0 defined.

Call "R_OSPL_THREAD_SetCurrentId" function passed main thread ID at the first of
"main" function.

Arguments None
Return value Main thread ID

(9) R_OSPL_THREAD_SetDelegate
Outline Sets a specified value to pointer type variable attached with thread (for OS less)
Header r_ospl.h
Declaration void R_OSPL_THREAD_SetDelegate(r_ospl_thread_id_t in_ThreadId, void*

in_Delegate);
Description The variable attached with thread is not accessed from OSPL except for initializing

the thread.
Arguments r_ospl_thread_id_t

in_ThreadId
Thread ID

 void* in_Delegate Setting value
Return value None

(10) R_OSPL_THREAD_GetDelegate
Outline Gets a specified value from pointer type variable attached with thread (for OS less)
Header r_ospl.h
Declaration void* R_OSPL_THREAD_GetDelegate(r_ospl_thread_id_t in_ThreadId);
Description
Arguments r_ospl_thread_id_t

in_ThreadId
Thread ID

Return value Value of thread attached variable. Initial value is NULL.

(11) R_OSPL_THREAD_SetOnWait
Outline Set waiting behavior of current thread.
Header r_ospl.h

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 37 of 114
Oct. 26, 2017

Declaration errnum_t R_OSPL_THREAD_SetOnWait(r_ospl_wait_t OnWait);
Description This function should not be called from any drivers. Application can call this function.

Set "R_OSPL_WAIT_PM_THREAD" by this function to change from code for multi-
thread (OS using) to code for pseudo multi-thread (OS less). And change code of
time out from R_OSPL_INFINITE (OS using) to 0 (OS less). It is not necessary to
change code of time out from not R_OSPL_INFINITE (OS using).
Case of "R_OSPL_IS_PREEMPTION" = 0:

Initial value is "R_OSPL_WAIT_POLLING".
If this function was called from the interrupt context, E_STATE error is raised.

Case of "R_OSPL_IS_PREEMPTION" = 1:
This function is for compatibility only.
Arguments are ignored.
This function returns 0.

Refer to: R_OSPL_THREAD_GetIsWaiting
Arguments r_ospl_wait_t OnWait Behavior on waiting
Return value Error code. If there is no error, the return value is 0.

(12) R_OSPL_THREAD_GetOnWait
Outline Get waiting behavior of current thread.
Header r_ospl.h
Declaration r_ospl_wait_t R_OSPL_THREAD_GetOnWait();
Description Case of "R_OSPL_IS_PREEMPTION" = 0:

Initial value is "R_OSPL_WAIT_POLLING".
If this function was called from the interrupt context, this function returns
"R_OSPL_WAIT_POLLING".

Case of "R_OSPL_IS_PREEMPTION" = 1:
This function is for compatibility only.
This function returns R_OSPL_WAIT_POLLING. But it does not do the polling
on waiting

Refer to: R_OSPL_THREAD_SetOnWait
Arguments None
Return value Behavior on waiting

(13) R_OSPL_THREAD_GetIsWaiting
Outline Get whether the current thread is waiting or not.
Header r_ospl.h
Declaration bool_t R_OSPL_THREAD_GetIsWaiting();
Description Case of "R_OSPL_IS_PREEMPTION" = 0:

If "R_OSPL_WAIT_PM_THREAD" was set by "R_OSPL_THREAD_SetOnWait"
function, some waiting functions return soon even if the state is waiting and
"R_OSPL_THREAD_GetIsWaiting" function returns true.

If time out was set to 0, "R_OSPL_THREAD_GetIsWaiting" function returns true
at time out, even if any value was passed to "R_OSPL_THREAD_SetOnWait"
function,

"R_OSPL_THREAD_GetIsWaiting" function cannot be called because of not
returning from waiting function, if time out was "R_OSPL_INFINITE". Replace
from R_OSPL_INFINITE to 0 for porting to pseudo multi thread environment.

If this function was called from the interrupt context, this function returns false
and "ASSERT_D" in this function notifies in debug configuration.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 38 of 114
Oct. 26, 2017

Case of "R_OSPL_IS_PREEMPTION" = 1:
This function is for compatibility only.
This function returns false.

Example:
e= R_OSPL_THREAD_SetOnWait(R_OSPL_WAIT_PM_THREAD);
 IF(e){goto fin;}
e= R_OSPL_Delay(100); IF(e){goto fin;}
 if (R_OSPL_THREAD_GetIsWaiting()) { e=0; goto fin; }
 IF(e){goto fin;}

Arguments None
Return value Whether the current thread is waiting or not

(14) R_OSPL_THREAD_ExitWaiting
Outline Exit waiting state, if current thread was waiting state.
Header r_ospl.h
Declaration void R_OSPL_THREAD_ExitWaiting();
Description Case of "R_OSPL_IS_PREEMPTION" = 0:

The thread returned true from "R_OSPL_THREAD_GetIsWaiting" function after
a waiting function must call the waiting function again. After exiting waiting state,
other operation and other waiting can be done. If time out was set to 0, exiting
does not have to do.

If it was detected in OSPL API that necessary exiting was not done, E_STATE
error is raised. However sometimes the state cannot be detected. In this case,
time out will be not correct.

This function does not do anything called from the interrupt context.
"ASSERT_D" in this function notifies in debug configuration.

Case of "R_OSPL_IS_PREEMPTION" = 1:

This function is for compatibility only.
This function does not do anything.

Refer to: R_OSPL_THREAD_SetOnWait
Arguments None
Return value None

4.6.4. Functions for thread attached events

(1) R_OSPL_EVENT_Allocate
Outline Allocates a bit of thread attached event flags
Header r_ospl.h
Declaration errnum_t R_OSPL_EVENT_Allocate(r_ospl_thread_id_t* out_ThreadId,

r_ospl_thread_id_t in_ThreadId, bit_flags32_t* out_SetFlag,
r_ospl_event_flags_t in_SetFlag);

Description This function allocates an event flag for setting and waiting an event. Only current
thread can receive allocated event. Any thread or interrupt context can send, if they
had check bit output from this function.
Return allocated event flag by "R_OSPL_EVENT_Free" function.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 39 of 114
Oct. 26, 2017

Call this function, if thread attached event was used in synchronous (blocking)
function in library.

Allocating and returning is usually executed in blocking function out of non-blocking
function.

There is not check bit in "out_SetFlag" argument , if
"R_OSPL_DETECT_BAD_EVENT= 0".

Return the event and reallocate again before waiting for not same kind of event.
Check bit has ID that is changed value by each allocating event and disabled by
returning event. Raised error, if sender was sent returned old ID. ID is counted up
from 1 to 255 by using global variable.

"E_ACCESS_DENIED" error is raised, if allocating event was already signal state.

One bit is allocated within not allocated event flag bits dynamically, if "in_SetFlag"
argument was set to "R_OSPL_UNUSED_FLAG". "R_OSPL_UNUSED_FLAG"
cannot be specified, if "R_OSPL_TLS_EVENT_CODE = 1" only.

This function allocates one bit within 12bit (bit 15 to 4) except lower 4bit (e.g.
R_OSPL_A_FLAG), if "R_OSPL_UNUSED_FLAG" was specified.

All bits are allocated, if "R_OSPL_EVENT_ALL_BITS" was set to "in_SetFlag"
argument. Current thread cannot be find duplicated flags, but it is necessary to
allocate each bit.
"E_ACCESS_DENIED" error is raised, even if only one bit was already allocated.
"*out_SetFlag" does not have check bits. It is not possible to specify
"R_OSPL_EVENT_ALL_BITS", if "R_OSPL_ALL_EVENT_ALLOCATE != 1".

Arguments r_ospl_thread_id_t*
out_ThreadId

Output: ID of thread (= current thread) that is notify target
from event source

 r_ospl_thread_id_t
in_ThreadId

ID of thread (= current thread) that is notify target from
event source

 bit_flags32_t*
out_SetFlag

Output: allocated bit + check bit

 r_ospl_event_flags_t
in_SetFlag

Allocating bit of thread attached event or
"R_OSPL_UNUSED_FLAG"

Return value Error code. If there is no error, the return value is 0.

(2) R_OSPL_EVENT_Set
Outline Set one or some bits to 1
Header r_ospl.h
Declaration void R_OSPL_EVENT_Set(r_ospl_thread_id_t in_ThreadId,

r_ospl_event_flags_t in_SetFlags);
Description For OS less, there is the area disabled all interrupts.

For OS-using environment, the thread waiting in "R_OSPL_EVENT_Wait" function
might wake up soon.
Do nothing, when "in_ThreadId = R_OSPL_THREAD_NULL"

"R_OSPL_RaiseUnrecoverable(E_OTHERS)" is called, if "in_SetFlags" argument
did not have check bit and "R_OSPL_DETECT_BAD_EVENT= 1". Check bit can be
gotten from "R_OSPL_EVENT_Allocate".

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 40 of 114
Oct. 26, 2017

Arguments r_ospl_thread_id_t
in_ThreadId

The thread ID attached the target event source

 r_ospl_event_flags_t
in_SetFlags

The value of bit flags that target bit is 1

Return value None

(3) R_OSPL_EVENT_Clear
Outline Set one or some bits to 0
Header r_ospl.h
Declaration void R_OSPL_EVENT_Clear(r_ospl_thread_id_t ThreadId, r_ospl_event_flags_t

ClearFlags1);
Description It is not necessary to call this function after called "R_OSPL_EVENT_Wait" function.

The way that all bit flags is cleared is setting "R_OSPL_EVENT_ALL_BITS"
(=0x0000FFFF) at "ClearFlags1" argument.
When other thread was notified by calling "R_OSPL_EVENT_Set",
"R_OSPL_EVENT_Clear" must not be called from caller (notifier) thread.
For OS less, there is the area disabled all interrupts.
Do nothing, when "ThreadId = R_OSPL_THREAD_NULL" or "ClearFlags1"
argument is 0.

Thread attached event specified at "ClearFlags1" argument does not have to be
allocated by "R_OSPL_EVENT_Allocate" function.

Arguments r_ospl_thread_id_t
ThreadId

The thread ID attached the target event source

 r_ospl_event_flags_t
ClearFlags1

The value of bit flags that clearing bit is 1

Return value None

(4) R_OSPL_EVENT_Wait
Outline Waits for setting the flags in 16bit and clear received flags. Or waits for signal state

and return to not signal state after receiving.
Header r_ospl.h
Declaration errnum_t R_OSPL_EVENT_Wait(r_ospl_event_flags_t in_WaitingFlags,

bit_flags32_t* out_GotFlags, uint32_t in_Timeout_msec);
Description Waits in this function until the event flags become passed flags pattern by

"R_OSPL_EVENT_Set" function. Received flags are cleared.

In OS-using environment, the other threads can run while a thread waits in
"R_OSPL_EVENT_Wait" function. In OS less, the other threads cannot run while a
thread waits in "R_OSPL_EVENT_Wait" function. If "in_Timeout_msec" argument
was passed 0, pseudo multi-threading can be done.

Check "r_ospl_async_t::ReturnValue", when the asynchronous operation was
ended.

Output value of "*out_GotFlags" does not have values corresponding flags not
specified at "WaitingFlags".

Example:
 errnum_t e;
 errnum_t ee;
 r_ospl_async_t async;

 async.A_EventValue = 0; /* For fin block */

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 41 of 114
Oct. 26, 2017

 async.Flags = R_F_OSPL_A_Thread | R_F_OSPL_A_EventValue;
 e= R_OSPL_EVENT_Allocate(
 &async.A_Thread, R_OSPL_THREAD_GetCurrentId(),
 &async.A_EventValue, R_OSPL_UNUSED_FLAG);
 IF(e){goto fin;}

 e= R_DRIVER_TransferStart(&async); IF(e){goto fin;}

 for (;;) {
 bit_flags32_t got_flags;

 async.ReturnValue = 0;
 R_OSPL_EVENT_Set(async.A_Thread,
 async.A_EventValue);
 /* It is called from interrupt context *
 /* or other thread. */

 e= R_OSPL_EVENT_Wait(async.A_EventValue, &got_flags,
 R_OSPL_INFINITE);
 IF(e){goto fin;}

 if (IS_BIT_SET(got_flags, async.A_EventValue)) {
 e = async.ReturnValue; IF(e){goto fin;}
 :
 /* Write a response operation here */
 }
 if (IS_BIT_SET(got_flags, async_B.A_EventValue)) {
 e = async_B.ReturnValue; IF(e){goto fin;}
 :
 /* Write a response operation here */
 }
 }

 e=0;
fin:
 ee= R_OSPL_EVENT_Free(&async.A_Thread,
 &async.A_EventValue);
 e= R_OSPL_MergeErrNum(e, ee);
 ee= R_OSPL_EVENT_Free(&async_B.A_Thread,
 &async_B.A_EventValue);
 e= R_OSPL_MergeErrNum(e, ee);
 return e;
}

OSPL recommends using event notification as finishing asynchronous operation. If
callback function was used, the context (thread or interrupt) is unknown or depended
on specification. Then a problem of exclusive control may be happened. An event
notification makes that data of cooperation can be wrapped in local variable of thread
function. Then it is usually necessary to writing code of exclusive control. Also, real-
time performance, because code on interrupt context makes be reduced. Only high
priority code in whole system should be moved to callback function.

Call "R_DRIVER_OnInterrupted", when I-thread called "R_OSPL_EVENT_Wait"
function and received the timing of doing the interrupt response operation.
Message loop can be exited, if the state of "r_ospl_async_state_t" type got by
"R_DRIVER_GetAsyncStatus" function was "R_OSPL_UNINITIALIZED".

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 42 of 114
Oct. 26, 2017

In OS less, there is the area of disabled all interrupts inside. The area of waiting
inside is out of the area of disabled all interrupts. If "R_OSPL_EVENT_Wait" was
called in the area of disabled all interrupts, an error may be raised.

In OS less, the internal function of measuring CPU load is callbacked many times
while waiting.

About "in_WaitingFlags" argument:
This argument can be passed waiting 16bit flags and following constant value.

Symbol Value Description

R_OSPL_ANY_FLAG 0x00000000 Any flags in all flags

About time out and "in_Timeout_msec" argument:

"in_Timeout_msec" argument can be set not only time out but also the following
symbol.

Symbol Value Description

R_OSPL_INFINITE 0xFFFFFFFF No timeout. Current thread waits
infinitely until received. This value is
depended on the environment.

R_OSPL_INFINITE_PSE
UDO

0xFFFFFFFF
or 0

"R_OSPL_INFINITE" that is
supported with pseudo multi thread.
R_OSPL_IS_PREEMPTION = 1 :

Current thread waits infinitely
until received.

R_OSPL_IS_PREEMPTION = 0 :
Current thread does not wait
(like in_Timeout_msec = 0),
even if the thread was waiting
state. But, it is necessary to
branch to execute another
thread by return value of
"R_OSPL_THREAD_GetIsWaiti
ng".

"R_OSPL_TIMEOUT" bit in "*out_GotFlags" is set to 1, when time out occurred, and
16bit flags bits are set to 0 despite flag bit value.

Symbol Value Description

R_OSPL_TIMEOUT 0x40000000 Time out occurred

In OS less, the other threads cannot run while a thread waits in
"R_OSPL_EVENT_Wait" function. If "in_Timeout_msec" argument was passed 0,
pseudo multi-threading can be done.
At the case of timeout, "R_OSPL_TIMEOUT" bit in "*out_GotFlags" becomes to 1
and 16bit flags becomes to 0, if real value of flag was any value. Return value is 0 if
"in_Timeout_msec = 0", otherwise "E_TIME_OUT".

"R_OSPL_EVENT_Wait" function returns soon even if waiting state after called
"R_OSPL_THREAD_SetOnWait" function with "R_OSPL_WAIT_PM_THREAD" on
"R_OSPL_IS_PREEMPTION" = 0. In this case, the return value of
"R_OSPL_EVENT_Wait" function is 0 and *out_GotFlags argument is 0x00000000.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 43 of 114
Oct. 26, 2017

Regarding "in_WaitingFlags" argument:

If you want to wait for OR condition, set 0 or "R_OSPL_ANY_FLAG" to
"in_WaitingFlags" argument. It is necessary to respond the operation for not waiting
flags, too, because waiting bits cannot be set.

If you want to wait for AND condition, set not 0 and not "R_OSPL_ANY_FLAG" to
"in_WaitingFlags" argument.

If you want to wait for complex condition of AND and OR, set 0 or
"R_OSPL_ANY_FLAG" to "in_WaitingFlags" argument. When the process returned
from "R_OSPL_EVENT_Wait" function, send the flags to an automatic variable of
"r_ospl_flag32_t" type and check the value of "bit_flags_fast32_t" type got by
*out_GotFlags argument. If the condition was not met, call "R_OSPL_EVENT_Wait"
function again.

Arguments r_ospl_event_flags_t
in_WaitingFlags

The bit flags set to 1 waiting for (AND condition) or
"R_OSPL_ANY_FLAG"

 bit_flags32_t*
out_GotFlags

NULL is permitted.
Output: 16bit flags or "R_OSPL_TIMEOUT"

 uint32_t
in_Timeout_msec

Time out (millisecond) or "R_OSPL_INFINITE"

Return value Error code. If there is no error, the return value is 0.

(5) R_OSPL_EVENT_GetStatus
Outline Gets status of event.
Header r_ospl.h
Declaration errnum_t R_OSPL_EVENT_GetStatus(r_ospl_thread_id_t in_ThreadId,

r_ospl_event_status_t** out_Status);
Description There is this function, if "R_OSPL_DETECT_BAD_EVENT = 1".

Status are momentary information, when it was gotten. They are modified by other
thread running.

Example:
r_ospl_event_status_t* status;
e= R_OSPL_EVENT_GetStatus(R_OSPL_THREAD_GetCurrentId(),
&status); IF(e){goto fin;}

Arguments r_ospl_thread_id_t
in_ThreadId

ID of thread having target event

 r_ospl_event_status_t**
out_Status

Output: pointer to internal event structure.
See 4.5.5.

Return value Error code. If there is no error, the return value is 0.

(6) R_OSPL_EVENT_Free
Outline Returns a bit of thread attached event flags which current thread received
Header r_ospl.h
Declaration errnum_t R_OSPL_EVENT_Free(r_ospl_thread_id_t* in_out_ThreadId,

r_ospl_event_flags_t* in_out_SetFlag);
Description "*in_out_ThreadId" argument and "*in_out_SetFlag" argument is returned to the

value specified at "in_ThreadId" argument and "in_SetFlag" argument.
Returned event cannot be set and received.
Event allocated by current thread only can be returned.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 44 of 114
Oct. 26, 2017

This function must be called for detecting conflict of flags by error, if thread attached
event was used in library (binary) in synchronized function.

This function does nothing, if "*in_out_SetFlag" argument was set to 0.
Returned flags are cleared in this function.

Arguments r_ospl_thread_id_t*
in_out_ThreadId

Input/Output: ID of notify target thread

 r_ospl_event_flags_t*
in_out_SetFlag

Input/Output: Returning notify target (+ check bit)

Return value Error code. If there is no error, the return value is 0.

4.6.5. Functions for flags - r_ospl_flag32_t type

(1) R_OSPL_FLAG32_InitConst
Outline Clears all flags in 32bit to 0
Header r_ospl.h
Declaration void R_OSPL_FLAG32_InitConst(r_ospl_flag32_t* self);
Description This function is not thread safe. Please do exclusive control, if it needs.

Operates following operation.
volatile bit_flags32_t self->flags;
self->flags = 0;

Arguments r_ospl_flag32_t* self The value of 32bit flags
Return value None

(2) R_OSPL_FLAG32_Set
Outline Set one or some bits to 1
Header r_ospl.h
Declaration void R_OSPL_FLAG32_Set(r_ospl_flag32_t* self, bit_flags32_t SetFlags);
Description This function is not thread safe. Please do exclusive control, if it needs.

Operates following operation.
This function is not atomic because "|=" operator is "Read Modify Write" operation.
volatile bit_flags32_t self->Flags;
bit_flags32_t SetFlags;
self->Flags |= SetFlags;

Arguments r_ospl_flag32_t* self The value of 32bit flags
 uint32_t SetFlags The value of bit flags that target bit is 1

Return value None

(3) R_OSPL_FLAG32_Clear
Outline Set one or some bits to 0
Header r_ospl.h
Declaration void R_OSPL_FLAG32_Clear(r_ospl_flag32_t* self, bit_flags32_t ClearFlags1);
Description This function is not thread safe. Please do exclusive control, if it needs.

Operates following operation.
Set "R_OSPL_FLAG32_ALL_BITS", if you wanted to clear all bits.
This function is not atomic because "&=" operator is "Read Modify Write" operation.
volatile bit_flags32_t self->Flags;
bit_flags32_t ClearFlags1;

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 45 of 114
Oct. 26, 2017

self->Flags &= ~ClearFlags1;
Arguments r_ospl_flag32_t* self The value of 32bit flags

 uint32_t ClearFlags1 The value of bit flags that clearing bit is 1
Return value None

(4) R_OSPL_FLAG32_Get
Outline Get 32bit flags value
Header r_ospl.h
Declaration bit_flags32_t R_OSPL_FLAG32_Get(r_ospl_flag32_t* self);
Description This function is not thread safe. Please do exclusive control, if it needs.

In receiving the event, call "R_OSPL_FLAG32_GetAndClear" function instead of
"R_OSPL_FLAG32_Get" function or call "R_OSPL_FLAG32_Clear" function passed
the NOT operated value of flags got by "R_OSPL_FLAG32_Get" function.

Operates following operation.
volatile bit_flags32_t self->Flags;
bit_flags32_t return_flags;

return_flags = self->Flags;

return return_flags;

Arguments r_ospl_flag32_t* self The value of 32bit flags
Return value The value of 32bit flags

(5) R_OSPL_FLAG32_GetAndClear
Outline Returns the value of flags and clears all bits to 0
Header r_ospl.h
Declaration bit_flags32_t R_OSPL_FLAG32_GetAndClear(r_ospl_flag32_t* self);
Description This function is not thread safe. Please do exclusive control, if it needs.

Operates following operation.
This function is not atomic because the value might be set before clearing to 0.
volatile bit_flags32_t self->Flags;
bit_flags32_t return_flags;

return_flags = self->Flags;
self->Flags = 0;

return return_flags;

Arguments r_ospl_flag32_t* self The value of 32bit flags
Return value The value of 32bit flags

4.6.6. Functions for bit flags - bit_flags_fast32_t type

(1) IS_BIT_SET
Outline Evaluate whether passed bit is 1 or not
Header r_ospl.h
Declaration bool_t IS_BIT_SET(bit_flags_fast32_t Variable, bit_flags_fast32_t ConstValue);
Description If the count of bit in "ConstValue" argument that the value is 1 was not 1, return value

is unspecified.
Arguments bit_flags_fast32_t

Variable
The value of target bit flags

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 46 of 114
Oct. 26, 2017

 bit_flags_fast32_t
ConstValue

The value that investigating bit is 1

Return value Whether passed bit is 1

(2) IS_ANY_BITS_SET
Outline Evaluate whether any passed bits are 1 or not
Header r_ospl.h
Declaration bool_t IS_ANY_BITS_SET(bit_flags_fast32_t Variable, bit_flags_fast32_t

ConstValue);
Description If the count of bit in "ConstValue" argument that the value is 1 was 0, return value is

unspecified.
Arguments bit_flags_fast32_t

Variable
The value of target bit flags

 bit_flags_fast32_t
ConstValue

The value that investigating bits are 1

Return value Whether the any passed bits are 1

(3) IS_ALL_BITS_SET
Outline Evaluate whether all passed bits are 1 or not
Header r_ospl.h
Declaration bool_t IS_ALL_BITS_SET(bit_flags_fast32_t Variable, bit_flags_fast32_t

ConstValue);
Description If the count of bit in "ConstValue" argument that the value is 1 was 0, return value is

unspecified.
Arguments bit_flags_fast32_t

Variable
The value of target bit flags

 bit_flags_fast32_t
ConstValue

The value that investigating bits are 1

Return value Whether the all passed bit are 1

(4) IS_BIT_NOT_SET
Outline Evaluate whether passed bit is 0 or not
Header r_ospl.h
Declaration bool_t IS_BIT_NOT_SET(bit_flags_fast32_t Variable, bit_flags_fast32_t

ConstValue);
Description If the count of bit in "ConstValue" argument that the value is 1 was not 1, return value

is unspecified.
Arguments bit_flags_fast32_t

Variable
The value of target bit flags

 bit_flags_fast32_t
ConstValue

The value that investigating bit is 1

Return value Whether passed bit is 0

(5) IS_ANY_BITS_NOT_SET
Outline Evaluate whether any passed bits are 0 or not
Header r_ospl.h
Declaration bool_t IS_ANY_BITS_NOT_SET(bit_flags_fast32_t Variable, bit_flags_fast32_t

ConstValue);
Description If the count of bit in "ConstValue" argument that the value is 1 was 0, return value is

unspecified.
Arguments bit_flags_fast32_t

Variable
The value of target bit flags

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 47 of 114
Oct. 26, 2017

 bit_flags_fast32_t
ConstValue

The value that investigating bits are 1

Return value Whether the any passed bits are 0

(6) IS_ALL_BITS_NOT_SET
Outline Evaluate whether all passed bits are 0 or not
Header r_ospl.h
Declaration bool_t IS_ALL_BITS_NOT_SET(bit_flags_fast32_t Variable, bit_flags_fast32_t

ConstValue);
Description If the count of bit in "ConstValue" argument that the value is 1 was 0, return value is

unspecified.
Arguments bit_flags_fast32_t

Variable
The value of target bit flags

 bit_flags_fast32_t
ConstValue

The value that investigating bits are 1

Return value Whether the all passed bits are 0

4.6.7. Functions for asynchronous notification - r_ospl_async_t type
(1) R_OSPL_ASYNC_SetDefaultPreset
Outline Sets each member variable to preset values, if preset flag was specified in

"r_ospl_async_t" type structure.
Header r_ospl.h
Declaration void R_OSPL_ASYNC_SetDefaultPreset(r_ospl_async_t* in_out_Async);
Description This function is usually called from "R_DRIVER_SetDefaultAsync".

This function set member variables by a following preset flag.
This function does nothing, if preset flag was not specified.
Member variable is not set to preset value, if flag corresponding member variable
was specified.
This function sets flags corresponding member variable and clears flags
corresponding preset, if value corresponding preset flag was set to member variable.

Preset Flag Description

R_F_OSPL_Asynchro
nousPreset

New notification to current thread. And calls
"R_OSPL_EVENT_Allocate" function from this function
inside.
The module using "R_F_OSPL_AsynchronousPreset"
must call "R_OSPL_EVENT_Free" with event value of
"in_out_Async->A_EventValue".
"R_OSPL_RaiseUnrecoverable" is called, if error was
raised.

Sets like the following description.
"in_out_Async->A_Thread" is current thread.
"in_out_Async->A_EventValue" is not used bit (bit by
"R_OSPL_UNUSED_FLAG") + check bit.
The other bits are not accessed.

Arguments r_ospl_async_t*
in_out_Async

Input/Output: r_ospl_async_t type structure

Return value None

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 48 of 114
Oct. 26, 2017

4.6.8. Functions for queue - r_ospl_queue_id_t type

(1) R_OSPL_QUEUE_DEF
Outline Defines attributes of queue and work area.
Header r_ospl.h
Declaration #define R_OSPL_QUEUE_DEF(Name, MaxCount, Type)
Description It is not possible to use this macro in the library. If implement of OSPL was changed,

the library must be recompiled.
Arguments Name Queue's name. Do not bracket by ""

 MaxCount Max count of elements in the queue
 Type Type of element

Return value None

(2) R_OSPL_QUEUE
Outline Returns initial attributes of queue and work area.
Header r_ospl.h
Declaration r_ospl_queue_def_t* R_OSPL_QUEUE(Name);
Description It is not possible to use this macro in the library. If implement of OSPL was changed,

the library must be recompiled.
Arguments Name Queue's name. Do not bracket by ""
Return value Initial attributes of queue and work area.

(3) R_OSPL_QUEUE_Create
Outline Initializes a queue
Header r_ospl.h
Declaration errnum_t R_OSPL_QUEUE_Create(r_ospl_queue_id_t** out_self,

r_ospl_queue_def_t* in_QueueDefine);
Description It is not possible to call this function from the library. This function is called from

porting layer of the driver and send created queue to the driver.
OSPL does not have finalizing function (it is portable with CMSIS). An object
specified "in_QueueDefine" argument can be specified to the create function 1 times
only. Some OS does not have this limitation.
The address of a variable as "r_ospl_queue_id_t*" type is set at "out_self" argument.
Internal variables of the queue are stored in the variable specified with
"in_QueueDefine" argument.

Arguments r_ospl_queue_id_t**
out_self

Output: Initialized queue object

 r_ospl_queue_def_t*
in_QueueDefine

Initial attributes of queue and work area.

Return value Error code. If there is no error, the return value is 0

(4) R_OSPL_QUEUE_GetStatus
Outline Gets status of the queue
Header r_ospl.h
Declaration errnum_t R_OSPL_QUEUE_GetStatus(r_ospl_queue_id_t* self, const

r_ospl_queue_status_t** out_Status);
Description Got status are the information at calling moment. If other threads were run, the status

will be changed.
See "R_DRIVER_GetAsyncStatus" function about pointer type of "out_Status"
argument

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 49 of 114
Oct. 26, 2017

Arguments r_ospl_queue_id_t* self A queue object
 const

r_ospl_queue_status_t**
out_Status

Output: Pointer to the status structure

Return value Error code. If there is no error, the return value is 0

(5) R_OSPL_QUEUE_Allocate
Outline Allocates an element from the queue object
Header r_ospl.h
Declaration errnum_t R_OSPL_QUEUE_Allocate(r_ospl_queue_id_t* self, void*

out_Address, uint32_t in_Timeout_msec);
Description An error will be raised, if "in_Timeout_msec != 0" in interrupt context.

It becomes "*out_Address = NULL", when it was timeout and "in_Timeout_msec =
0".
E_TIME_OUT error is raised, when it was timeout and "in_Timeout_msec != 0".

In OS less environment, "R_OSPL_QUEUE_Allocate" supports pseudo multi-
threading. See "R_OSPL_THREAD_GetIsWaiting" function.

Arguments r_ospl_queue_id_t* self A queue object
 void* out_Address Input: Address of pointer variable. Output: Address of

allocated element
 uint32_t

in_Timeout_msec
Timeout (msec) or R_OSPL_INFINITE

Return value Error code. If there is no error, the return value is 0

(6) R_OSPL_QUEUE_Put
Outline Sends the element to the queue
Header r_ospl.h
Declaration errnum_t R_OSPL_QUEUE_Put(r_ospl_queue_id_t* self, void* in_Address);
Description It is correct, even if other thread put to the queue or get from the queue from calling

"R_OSPL_QUEUE_Allocate" to calling "R_OSPL_QUEUE_Put".
The message put to the queue by this function receives the thread calling
"R_OSPL_QUEUE_Get" function.

Arguments r_ospl_queue_id_t* self A queue object
 void* in_Address Address of element to put

Return value Error code. If there is no error, the return value is 0

(7) R_OSPL_QUEUE_Get
Outline Receives the element from the queue
Header r_ospl.h
Declaration errnum_t R_OSPL_QUEUE_Get(r_ospl_queue_id_t* self, void* out_Address,

uint32_t in_Timeout_msec);
Description Call "R_OSPL_QUEUE_Free" function after finishing to access to the element. Don't

access the memory area of the element after calling "R_OSPL_QUEUE_Free".

"E_NOT_THREAD" error is raised, if "in_Timeout_msec = 0" was specified from
interrupt context. It is not possible to wait for put data to the queue in interrupt
context.

"*out_Address" is NULL and returns 0 (no error), if it became to timeout and
"in_Timeout_msec = 0". "E_TIME_OUT" is raised, if "in_Timeout_msec != 0".

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 50 of 114
Oct. 26, 2017

Specify "in_Timeout_msec = 0", call the following functions by the following order
and use an event for preventing to block to receive other events by the thread having
waited for the queue.

Sending Side:
R_OSPL_QUEUE_Allocate
R_OSPL_QUEUE_Put
R_OSPL_EVENT_Set

Receiving Side:
R_OSPL_EVENT_Wait
R_OSPL_QUEUE_Get
R_OSPL_QUEUE_Free

In OS less environment, "R_OSPL_QUEUE_Get" supports pseudo multi-threading.
See "R_OSPL_THREAD_GetIsWaiting" function.

Arguments r_ospl_queue_id_t* self A queue object
 void* out_Address Input: Address of pointer variable. Output: Address of

received element
 uint32_t

in_Timeout_msec
Timeout (msec) or R_OSPL_INFINITE

Return value Error code. If there is no error, the return value is 0

(8) R_OSPL_QUEUE_Free
Outline Returns received memory area to the queue
Header r_ospl.h
Declaration errnum_t R_OSPL_QUEUE_Free(r_ospl_queue_id_t* self, void* in_Address);
Description It is correct, even if other thread put to the queue or get from the queue from calling

"R_OSPL_QUEUE_Get" to calling "R_OSPL_QUEUE_Free".

This function makes a space of element in the queue.

Arguments r_ospl_queue_id_t* self A queue object
 void* in_Address Address of element which are got from

"R_OSPL_QUEUE_Get"
Return value Error code. If there is no error, the return value is 0

(9) R_OSPL_GetQueueAsSingletonLock
Outline Returns a T-lock object that is locked when singleton was created and deleted.
Header r_ospl.h
Declaration r_ospl_queue_id_t R_OSPL_GetQueueAsSingletonLock(void);
Description Returned lock object (queue) is one in the whole system. For the first call, this

function disables all interrupts and creates the lock object and enables all interrupts.
The lock object has maximum resource count is 1, therefore it can do exclusive
control. Don't call "R_OSPL_QUEUE_Put" and "R_OSPL_QUEUE_Get" with the lock
object (queue). OSPL does not define special API function for T-lock.

It is necessary to T-lock, while a singleton object (class object) is initializing and
finalizing.

Example:
errnum_t CreateSingletonObject()
{
 r_ospl_queue_id_t signleton_lock_ID;

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 51 of 114
Oct. 26, 2017

 void* signleton_lock = NULL;

 signleton_lock_ID = R_OSPL_GetQueueAsSingletonLock();
 e= R_OSPL_QUEUE_Allocate(signleton_lock_ID,
 &signleton_lock, R_OSPL_INFINITE);
 IF(e){goto fin;} /* Start of T-Lock */
 if (gs_SingletonObject == NULL) {

 gs_SingletonObject = ...;

 }
 e=0;
fin:
 if (signleton_lock != NULL) {
 ee= R_OSPL_QUEUE_Free(signleton_lock_ID,
 signleton_lock); /* End of T-Lock */
 e= R_OSPL_MergeErrNum(e, ee);
 }
 return e;
}

Arguments None
Return value Queue as lock object.

4.6.9. Functions for the area disabled all interrupts

(1) R_OSPL_EnableAllInterrupt
Outline Releases all disabled interrupts
Header r_ospl.h
Declaration void R_OSPL_EnableAllInterrupt();
Description Driver user should not call this function.

Call this function at the end of area of all interrupts disabled.
Do not release, if all interrupts were already disabled by caller function.
This function does not release disabled NMI.

Arguments None
Return value None

(2) R_OSPL_DisableAllInterrupt
Outline Disables all interrupts
Header r_ospl.h
Declaration bool_t R_OSPL_DisableAllInterrupt();
Description Driver user should not call this function.

Call this function at begin of area of all interrupts disabled.
This function does not disable NMI.

Example:
void Func()
{
 bool_t was_all_enabled = false;

 was_all_enabled = R_OSPL_DisableAllInterrupt();

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 52 of 114
Oct. 26, 2017

 /* All interrupt disabled */

 if (was_all_enabled)
 { R_OSPL_EnableAllInterrupt(); }
}

Arguments None
Return value Whether all interrupts were enabled

(3) R_OSPL_GetIsAllInterruptEnabled
Outline Returns whether all interrupts are enabled
Header r_ospl.h
Declaration bool_t R_OSPL_GetIsAllInterruptEnabled();
Description
Arguments None
Return value whether all interrupts are enabled

4.6.10. Functions for interrupt handling
(1) R_BSP_InterruptWrite
Outline Registers an interrupt handler
Header platform.h or mcu_interrupts.h
Declaration bsp_int_err_t R_BSP_InterruptWrite(bsp_int_src_t in_IRQ_Num, bsp_int_cb_t

in_Callback);
Description -
Arguments bsp_int_src_t in_IRQ_Num Interrupt request number

 bsp_int_cb_t in_Callback The function as interrupt handler
Return value Error code. If there is no error, the return value is BSP_INT_SUCCESS.

(2) R_BSP_InterruptRead
Outline Returns registered interrupt handler
Header platform.h or mcu_interrupts.h
Declaration bsp_int_err_t R_BSP_InterruptRead(bsp_int_src_t in_IRQ_Num, bsp_int_cb_t*

out_Callback);
Description -
Arguments bsp_int_src_t in_IRQ_Num Interrupt request number

 bsp_int_cb_t* out_Callback Output: the function as interrupt handler
Return value Error code. If there is no error, the return value is BSP_INT_SUCCESS.

(3) R_BSP_InterruptControl
Outline Controls related to the interrupt
Header platform.h or mcu_interrupts.h
Declaration bsp_int_err_t R_BSP_InterruptControl(bsp_int_src_t in_IRQ_Num,

bsp_int_cmd_t in_Command, void* in_Parameter);
Description See (4.4.15.) bsp_int_cmd_t.
Arguments bsp_int_src_t

in_IRQ_Num
Interrupt request number

 bsp_int_cmd_t
in_Command

Control command

 void* in_Parameter See (4.4.15.) bsp_int_cmd_t.
Return value Error code. If there is no error, the return value is BSP_INT_SUCCESS.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 53 of 114
Oct. 26, 2017

(4) R_OSPL_SetInterruptPriority
Outline Sets the priority of the interrupt line.
Header r_ospl.h
Declaration errnum_t R_OSPL_SetInterruptPriority(bsp_int_src_t in_IRQ_Num, int_fast32_t

in_Priority);
Description Interrupt of priority less than specified interrupt priority is disabled in interrupt context.

Set priority to most high level, if nested interrupt was not supported.
Arguments bsp_int_src_t

in_IRQ_Num
Interrupt request number

 int_fast32_t in_Priority Priority. The less the prior.
Return value Error code. If there is no error, the return value is 0

(5) R_OSPL_END_OF_INTERRUPT
Outline Macro that is called at last of interrupt handler
Header r_ospl.h
Declaration #define R_OSPL_END_OF_INTERRUPT()
Description Depending on the define of "R_OSPL_INTERRUPT_ARGUMENTS" this calls

"R_UNREFERENCED_VARIABLE".

R_OSPL_INTERRUPT_ARGUMENTS is macro written as common code, if
arguments of interrupt handler are different depending on environment (interrupt
API).

Example:
static void R_DRIVER_IRQ_Handler2(
 R_OSPL_INTERRUPT_ARGUMENTS)
{
 R_DRIVER_IRQ_HandlerN(2); /* 2 = channel */
 R_OSPL_END_OF_INTERRUPT();
}

Arguments None
Return value None

4.6.11. Functions for BSP_CFG_USER_LOCKING_TYPE type
(1) R_OSPL_LockChannel
Outline Locks by channel number.
Header r_ospl.h
Declaration errnum_t R_OSPL_LockChannel(int_fast32_t in_ChannelNum, int_fast32_t*

out_ChannelNum, mcu_lock_t in_HardwareIndexCh0, mcu_lock_t
in_HardwareIndexChMax);

Description This function is called from the internal of "R_DRIVER_Initialize" function or
"R_DRIVER_LockChannel" function.
This function calls "R_BSP_HardwareLock".

If "in_Channel" argument was specified to "R_OSPL_UNLOCKED_CHANNEL"
(=0xFEE), this function locks unlocked channel. In this case, "out_ChannelNum"
argument was specified to "NULL", "E_OTHERS" error is raised, when
"R_OSPL_NDEBUG" = 1.

If channel number started from except for 0, "in_ChannelNum" argument must be
specified to channel number minus minimum channel number. Locked channel
number is "out_ChannelNum" + minimum channel number.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 54 of 114
Oct. 26, 2017

This function does not initialize the specified channel of peripheral.

"E_ACCESS_DENIED" error is raised, if specified channel was already locked.
"E_FEW_ARRAY" error is raised, if specified channel number was out of range and
"R_OSPL_DEBUG" = 1. "E_FEW_ARRAY" error is raised, if "in_ChannelNum" =
"R_OSPL_UNLOCKED_CHANNEL" and all channels was locked.

Arguments int_fast32_t
in_ChannelNum

Locking channel number or
"R_OSPL_UNLOCKED_CHANNEL"

 int_fast32_t*
out_ChannelNum

Output: Locked channel number, (in) NULL is permitted

 mcu_lock_t
in_HardwareIndexCh0

Hardware index of channel number = 0

 mcu_lock_t
in_HardwareIndexChMax

Hardware index of max channel number

Return value Error code. If there is no error, the return value is 0.

(2) R_OSPL_UnlockChannel
Outline Unlocks by channel number.
Header r_ospl.h
Declaration errnum_t R_OSPL_UnlockChannel(int_fast32_t in_ChannelNum, errnum_t e,

mcu_lock_t in_HardwareIndexCh0, mcu_lock_t in_HardwareIndexMax);
Description This function is called from the internal of "R_DRIVER_Finalize" function or

"R_DRIVER_UnlockChannel" function.
This function calls "R_BSP_HardwareUnlock".

If channel number started from except for 0, "in_ChannelNum" argument must be
specified to channel number minus minimum channel number.

This function does not finalize the specified channel of peripheral.

"E_ACCESS_DENIED" error is raised, if the specified channel was already unlocked.
This function does nothing and returns 0 (no error) (if argument e=0), if
"in_ChannelNum" argument was specified "R_OSPL_UNLOCKED_CHANNEL",
under 0, count of channel or more.

Arguments int_fast32_t
in_ChannelNum

Channel number

 errnum_t e Raising error code, if there is no error, 0
 mcu_lock_t

in_HardwareIndexCh0
Hardware index of channel number = 0

 mcu_lock_t
in_HardwareIndexMax

Hardware index of max channel number

Return value Error code or e 0 = successful and e = 0

(3) R_BSP_HardwareLock
Outline Locks by hardware index
Header r_ospl.h, locking.h or platform.h
Declaration bool_t R_BSP_HardwareLock(mcu_lock_t in_HardwareIndex);
Description It is usable to call "R_DRIVER_LockChannel" function, if there was 2 and more

channels.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 55 of 114
Oct. 26, 2017

This function calls functions by the following order, if
"BSP_CFG_USER_LOCKING_ENABLED" is 0.

R_OSPL_Start_T_Lock (Only "R_OSPL_IS_PREEMPTION" = 1)
R_OSPL_C_LOCK_Lock
R_OSPL_End_T_Lock (Only "R_OSPL_IS_PREEMPTION" = 1)

But this function calls "DMA_Alloc" function of RZ/A1H RTX BSP, if BSP
environment was used, "BSP_CFG_USER_LOCKING_ENABLED" was 0 and DMAC
index was specified.

This function calls "BSP_CFG_USER_LOCKING_HW_LOCK_FUNCTION", if
"BSP_CFG_USER_LOCKING_ENABLED" is 1.

Arguments mcu_lock_t
in_HardwareIndex

Hardware index

Return value Whether the operation was successes or not

(4) R_BSP_HardwareUnlock
Outline Unlocks by hardware index
Header r_ospl.h, locking.h or platform.h
Declaration bool_t R_BSP_HardwareUnlock(mcu_lock_t in_HardwareIndex);
Description It is usable to call "R_DRIVER_UnlockChannel" function, if there was 2 and more

channels.

"E_ACCESS_DENIED" error is raised, if the specified channel was already unlocked.

This function calls functions by the following order, if
"BSP_CFG_USER_LOCKING_ENABLED" is 0.

R_OSPL_Start_T_Lock (Only "R_OSPL_IS_PREEMPTION" = 1)
R_OSPL_C_LOCK_Unlock
R_OSPL_End_T_Lock (Only "R_OSPL_IS_PREEMPTION" = 1)

But this function calls "DMA_Free" function of RZ/A1H RTX BSP, if BSP environment
was used, "BSP_CFG_USER_LOCKING_ENABLED" was 0 and DMAC index was
specified.

This function calls "R_OSPL_RaiseUnrecoverable" function, if the specified hardware
index is out of range.

This function calls "BSP_CFG_USER_LOCKING_HW_UNLOCK_FUNCTION", if
"BSP_CFG_USER_LOCKING_ENABLED" is 1.

Arguments mcu_lock_t
in_HardwareIndex

Hardware index

Return value Whether the operation was success or not

(5) R_BSP_SoftwareLock
Outline Locks by lock object.
Header r_ospl.h, locking.h or platform.h
Declaration bool_t R_BSP_SoftwareLock(BSP_CFG_USER_LOCKING_TYPE* LockObject);
Description This function calls functions by the following order, if

"BSP_CFG_USER_LOCKING_ENABLED" was 0.
R_OSPL_Start_T_Lock (Only "R_OSPL_IS_PREEMPTION" = 1)
R_OSPL_C_LOCK_Lock
R_OSPL_End_T_Lock (Only "R_OSPL_IS_PREEMPTION" = 1)

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 56 of 114
Oct. 26, 2017

If it was 1, this function calls the function defined by
"BSP_CFG_USER_LOCKING_SW_LOCK_FUNCTION" macro.

Arguments BSP_CFG_USER_LOCK
ING_TYPE* LockObject

Lock object

Return value Whether the operation was success or not

Example:

/* (*1) If owner is a thread */
/* (*2) If owner is a context */
BSP_CFG_USER_LOCKING_TYPE lock; /* 0 initialized global variable */
r_ospl_thread_id_t lock_owner_thread = R_OSPL_THREAD_NULL; /* (*1) */
r_ospl_c_lock_t* lock_owner_object = NULL; /* (*2) */

 /* In initialize or open function. */
 b= R_BSP_SoftwareLock(&lock); IF(!b){e=E_ACCESS_DENIED; goto fin;}
 lock_owner_thread = R_OSPL_THREAD_GetCurrentId(); /* (*1) */
 lock_owner_object = &lock; /* (*2) */

 /* Checks locking (with right) at start in each API function. */
 IF (lock_owner_thread != R_OSPL_THREAD_GetCurrentId()) /* (*1) */
 { e=E_ACCESS_DENIED; goto fin; }
 IF (lock_owner_object != &lock) /* (*2) */
 { e=E_ACCESS_DENIED; goto fin; }

fin:
 /* In finalize or close function. */
 if (lock_owner_thread == R_OSPL_THREAD_GetCurrentId()) /* (*1) */
 /* if (lock_owner_object == &lock) */ /* (*2) */
 {
 lock_owner_thread = R_OSPL_THREAD_NULL; /* (*1) */
 lock_owner_object = NULL; /* (*2) */
 ee= R_BSP_SoftwareUnlock(&lock); e=R_OSPL_MergeErrNum(e, ee);
 }

(6) R_BSP_SoftwareUnlock
Outline Unlocks by lock object.
Header r_ospl.h, locking.h or platform.h
Declaration bool_t R_BSP_SoftwareUnlock(BSP_CFG_USER_LOCKING_TYPE*

LockObject);
Description "E_ACCESS_DENIED" error is raised, if the specified channel was already unlocked.

This function calls functions by the following order, if
"BSP_CFG_USER_LOCKING_ENABLED" was 0.

R_OSPL_Start_T_Lock (Only "R_OSPL_IS_PREEMPTION" = 1)
R_OSPL_C_LOCK_Unlock
R_OSPL_End_T_Lock (Only "R_OSPL_IS_PREEMPTION" = 1)

If it was 1, this function calls the function defined by
"BSP_CFG_USER_LOCKING_SW_UNLOCK_FUNCTION" macro.

Arguments BSP_CFG_USER_LOCK
ING_TYPE* LockObject

Lock object

Return value Whether the operation was success or not

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 57 of 114
Oct. 26, 2017

4.6.12. Functions for r_ospl_c_lock_t type

(1) R_OSPL_C_LOCK_InitConst
Outline Initializes the C-lock object
Header r_ospl.h
Declaration void R_OSPL_C_LOCK_InitConst(r_ospl_c_lock_t* self);
Description If *self is global variable or static variable initialized 0, this function does not have to

be called.
Arguments r_ospl_c_lock_t* self C-lock object
Return value None

(2) R_OSPL_C_LOCK_Lock
Outline Locks the target, if lockable state.
Header r_ospl.h
Declaration errnum_t R_OSPL_C_LOCK_Lock(r_ospl_c_lock_t* self);
Description Even if lock owner called this function, if lock object was already locked,

E_ACCESS_DENIED error is raised.

In OS-using environment, call this function in lock area having the code changing the
owner information variable. "R_OSPL_C_LOCK_Lock" does not do exclusive control.

E_NOT_THREAD error is raised, if this function was called from the interrupt context.

Arguments r_ospl_c_lock_t* self C-lock object
Return value Error code. If there is no error, the return value is 0.

(3) R_OSPL_C_LOCK_Unlock
Outline Unlocks the target.
Header r_ospl.h
Declaration errnum_t R_OSPL_C_LOCK_Unlock(r_ospl_c_lock_t* self);
Description If this function was called with unlocked object, this function does nothing and raises

"E_ACCESS_DENIED" error.
If self == NULL, this function does nothing and raises no error.
E_NOT_THREAD error is raised, if this function was called from the interrupt context.
"R_OSPL_C_LOCK_Unlock" does not do exclusive control.

In OS-using environment, call this function in T-lock area having the code changing
the owner information variable.

Arguments r_ospl_c_lock_t* self C-lock object
Return value Error code. If there is no error, the return value is 0.

4.6.13. Functions for array index table - r_ospl_table_t type

(1) R_OSPL_TABLE_DEF
Outline Declares work area and initial value of array index table.
Header r_ospl.h
Declaration #define R_OSPL_TABLE_DEF(Name, MaxCount, Flags)
Description It is not possible to use this macro in the library.

If implement of OSPL was changed, the library must be recompiled.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 58 of 114
Oct. 26, 2017

This macro can be written in global scope.
The array index table declared by this macro can be gotten by "R_OSPL_TABLE".

Arguments Name Name of array index table. Don't enclose by " "
 MaxCount Maximum count of element in the table
 Flags See 4.4.11. r_ospl_table_flags_t
Return value None

(2) R_OSPL_TABLE
Outline Returns work area and initial value of array index table.
Header r_ospl.h
Declaration #define R_OSPL_TABLE(Name)
Description It is not possible to use this macro in the library.

If implement of OSPL was changed, the library must be recompiled.
Arguments Name Name of array index table. Don't enclose by " "
Return value Work area and initial value of array index table.

(3) R_OSPL_TABLE_InitConst
Outline Initializes an array index table.
Header r_ospl.h
Declaration void R_OSPL_TABLE_InitConst(r_ospl_table_t* self, void* in_Area, uint32_t

in_AreaSize, r_ospl_table_flags_t in_Flags);
Description It is not necessary to call this function with the variable declared by

"R_OSPL_TABLE_DEF".
It is necessary to call this function with the variable not declared by
"R_OSPL_TABLE_DEF".

Arguments r_ospl_table_t* self Array index table
 void* in_Area Address of area for the array index table
 uint32_t in_AreaSize Size of area for the array index table (byte)

See "R_OSPL_TABLE_SIZE".
 r_ospl_table_flags_t

in_Flags
Option. 0 or bitwise OR of 4.4.11. r_ospl_table_flags_t.

Return value None

(4) R_OSPL_TABLE_SIZE
Outline Calculate size of area for the array index table.
Header r_ospl.h
Declaration #define R_OSPL_TABLE_SIZE(int_fast32_t in_MaxCount)
Description Array index numbers from 0 to "in_MaxCount - 1" will be managed.
Arguments int_fast32_t in_MaxCount Count of elements in the table
Return value Size of area for the array index table (byte)

(5) R_OSPL_TABLE_GetIndex
Outline Returns array index number from specified key.
Header r_ospl.h
Declaration errnum_t R_OSPL_TABLE_GetIndex(r_ospl_table_t* self, void* in_Key,

int_fast32_t* out_Index, r_ospl_if_not_t in_TypeOfIfNot);
Description User can know that specified key is not registered by calling after setting "*out_Index

= R_OSPL_NO_INDEX", if "in_TypeOfIfNot = R_OSPL_DO_NOTHING_IF_NOT".
User can know that specified key is already registered by calling after setting
"*out_Index = R_OSPL_NO_INDEX", if "in_TypeOfIfNot =
R_OSPL_OUTPUT_IF_NOT".

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 59 of 114
Oct. 26, 2017

Symbol Value Description

R_OSPL_NO_INDEX -1 There is not corresponding index number

Arguments r_ospl_table_t* self Array index table
 void* in_Key Key as specified value (address)
 int_fast32_t* out_Index Output: array index number
 r_ospl_if_not_t

in_TypeOfIfNot
Constant value of behavior, when searching key was not
found
See 4.4.12. r_ospl_if_not_t

Return value Error code. If there is no error, the return value is 0.

(6) R_OSPL_TABLE_Free
Outline Remove from array index table and separate index from key. (key specified)
Header r_ospl.h
Declaration void R_OSPL_TABLE_Free(r_ospl_table_t* self, void* in_Key);
Description This function returns 0 (no error), even if specified key was already removed.

This function calls "R_OSPL_RaiseUnrecoverable(E_STATE)" after getting array
index number by calling with "R_OSPL_ALLOCATE_IF_EXIST_OR_IF_NOT".

Arguments r_ospl_table_t* self Array index table
 void* in_Key Key
Return value None

(7) R_OSPL_TABLE_FreeByIndex
Outline Remove from array index table and separate index from key. (index specified)
Header r_ospl.h
Declaration void R_OSPL_TABLE_FreeByIndex(r_ospl_table_t* self, int_fast32_t

in_Index);
Description This function calls "R_OSPL_RaiseUnrecoverable(E_STATE)", when array index

number is never gotten by calling with
"R_OSPL_ALLOCATE_IF_EXIST_OR_IF_NOT".
This function calls "R_OSPL_RaiseUnrecoverable(E_NOT_FOUND_SYMBOL)", if
specified key was already removed.

Arguments r_ospl_table_t* self Array index table
 nt_fast32_t in_Index Array index number
Return value None

(8) R_OSPL_TABLE_GetStatus
Outline Gets (pointer to structure that describes) status of array index table.
Header r_ospl.h
Declaration errnum_t R_OSPL_TABLE_GetStatus(r_ospl_table_t* self, const

r_ospl_table_status_t** out_Status);
Description Pointer variable specified at "out_Status" argument is necessary const qualifier.

The value of "*out_Status" is updated, even if this function was not called.
Arguments r_ospl_table_t* self Array index table
 const

r_ospl_table_status_t**
out_Status

Output: Pointer to structure that describes status of array
index table. See 4.5.14. r_ospl_table_status _t

Return value None

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 60 of 114
Oct. 26, 2017

4.6.14. Functions for the memory

(1) R_OSPL_MEMORY_Flush
Outline Flushes cache memory
Header r_ospl.h
Declaration void R_OSPL_MEMORY_Flush(r_ospl_flush_t in_FlushType);
Description Call the function of the driver after flushing input output buffer in the cache memory,

If the data area accessing by the hardware is on cache and the driver did not
manage the cache memory.
Whether the driver manages the cache memory is depend on the driver specification.

For RZ/A1H, "in_FlushType" argument can be set only
"R_OSPL_FLUSH_WRITEBACK_INVALIDATE". But
"R_OSPL_FLUSH_WRITEBACK_INVALIDATE" is little used.

Arguments r_ospl_flush_t in_FlushType The operation of flush
Return value None

(2) R_OSPL_MEMORY_RangeFlush
Outline Flushes cache memory with the range of virtual address.
Header r_ospl.h
Declaration errnum_t R_OSPL_MEMORY_RangeFlush(r_ospl_flush_t in_FlushType, void*

in_StartAddress, size_t in_Length);
Description Align "in_StartAddress" argument and "in_Length" argument to cache line size. If not

aligned, E_OTHERS error is raised.
Refer to : R_OSPL_MEMORY_GetSpecification

If the data area written by the hardware and read from CPU was in cached area,
when the hardware started without invalidate
("R_OSPL_FLUSH_WRITEBACK_INVALIDATE" or
"R_OSPL_FLUSH_INVALIDATE"), invalidate the data area and read it after finished
to write by hardware. (If the driver does not manage the cache memory.)

For RZ/A1H, "in_FlushType" argument can be set only
"R_OSPL_FLUSH_INVALIDATE".

Arguments r_ospl_flush_t
in_FlushType

The operation of flush

 void* in_StartAddress The first virtual address of the range of flushing
 size_t in_Length The size of the range of flushing (byte)

Return value Error code. If there is no error, the return value is 0.

(3) R_OSPL_MEMORY_GetLevelOfFlush
Outline Gets the level of cache flush for the memory
Header r_ospl.h
Declaration errnum_t R_OSPL_MEMORY_GetLevelOfFlush(void* in_Address, int_fast32_t*

out_Level);
Description
Arguments void* in_Address The address in flushing memory

 int_fast32_t* out_Level Output: 0=Not need to flush, 1=L1 cache only, 2=both of
L1 and L2 cache

Return value Error code. If there is no error, the return value is 0.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 61 of 114
Oct. 26, 2017

(4) R_OSPL_MEMORY_GetMaxLevelOfFlush
Outline Gets the level of all cache flush for the memory
Header r_ospl.h
Declaration int_fast32_t R_OSPL_MEMORY_GetMaxLevelOfFlush();
Description This function returns 1, if it is not necessary to flush L2 cache.
Arguments None
Return value Level of cache. 1=L1 cache, 2=L2 cache

(5) R_OSPL_MEMORY_GetSpecification
Outline Gets the specification about memory and cache memory.
Header r_ospl.h
Declaration void R_OSPL_MEMORY_GetSpecification(r_ospl_memory_spec_t*

out_MemorySpec);
Description
Arguments r_ospl_memory_spec_t*

out_MemorySpec
The specification about memory and cache memory

Return value None

(6) R_OSPL_ToPhysicalAddress
Outline Changes to physical address
Header r_ospl.h
Declaration errnum_t R_OSPL_ToPhysicalAddress(void* in_Address, uintptr_t*

out_PhysicalAddress);
Description Example: Case that physical address is integer type

uintptr_t physical_address;

e= R_OSPL_ToPhysicalAddress(address, &physical_address);
IF(e){goto fin;}

Example: Case that physical address is pointer type
uintptr_t physical_address;
void* pointer;

e= R_OSPL_ToPhysicalAddress(address, &physical_address);
IF(e){goto fin;}
pointer = (void*) physical_address;

See 4.8.9. Pattern of mapping cached area and uncached area (RZ/A1)

Arguments void* in_Address Virtual address
 uintptr_t*

out_PhysicalAddress
Output: Physical address

Return value Error code. If there is no error, the return value is 0.

(7) R_OSPL_ToCachedAddress
Outline Changes to the address in the cached area
Header r_ospl.h
Declaration errnum_t R_OSPL_ToCachedAddress(void* in_Address, void*

out_CachedAddress);
Description "out_CachedAddress" argument is passed the address of pointer.

If the target environment did not have mirror area and "in_Address" argument was
passed uncached address, "E_ACCESS_DENIED" error is raised.
If "E_ACCESS_DENIED" error was raised, you may know the variable by looking at
value of "in_Address" argument and map file.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 62 of 114
Oct. 26, 2017

If the environment did not have any mirror area, it is not necessary to call the
function to change the address. But, the function can be used by checking whether
passed address is in cached area or uncached area.

See 4.8.9. Pattern of mapping cached area and uncached area (RZ/A1)

Arguments void* in_Address Virtual address
 void*

out_CachedAddress
(Output) Virtual address for cached area

Return value Error code. If there is no error, the return value is 0.

(8) R_OSPL_ToUncachedAddress
Outline Changes to the address in the uncached area
Header r_ospl.h
Declaration errnum_t R_OSPL_ToUncachedAddress(void* in_Address, void*

out_UncachedAddress);
Description "out_UncachedAddress" argument is passed the address of pointer.

If the target environment did not have mirror area and "in_Address" argument was
passed cached address, "E_ACCESS_DENIED" error is raised.
If "E_ACCESS_DENIED" error was raised, you may know the variable by looking at
value of "in_Address" argument and map file.
If the environment did not have any mirror area, it is not necessary to call the
function to change the address. But, the function can be used by checking whether
passed address is in cached area or uncached area.

See 4.8.9. Pattern of mapping cached area and uncached area (RZ/A1)

Arguments void* in_Address Virtual address
 void*

out_UncachedAddress
(Output) Virtual address for uncached area

Return value Error code. If there is no error, the return value is 0.

(9) R_OSPL_MEMORY_Barrier
Outline Set data memory barrier
Header r_ospl.h
Declaration void R_OSPL_MEMORY_Barrier(void);
Description DSB assembly operation of ARM.
Arguments None
Return value None

(10) R_OSPL_InstructionSyncBarrier
Outline Set instruction synchronization barrier
Header r_ospl.h
Declaration void R_OSPL_InstructionSyncBarrier(void);
Description ISB assembly operation of ARM.
Arguments None
Return value None

(11) R_OSPL_AXI_Get2ndCacheAttribute
Outline Gets L2 cache attribute of AXI bus from the address
Header r_ospl.h
Declaration errnum_t R_OSPL_AXI_Get2ndCacheAttribute(uintptr_t in_PhysicalAddress,

 r_ospl_axi_cache_attribute_t* out_CacheAttribute);
Description This function is used, when L2 cache attribute is different by the kind of the memory.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 63 of 114
Oct. 26, 2017

Arguments uintptr_t
in_PhysicalAddress

The physical address in the memory area

 r_ospl_axi_cache_attribu
te_t*
out_CacheAttribute

Output: The L2 cache attribute of AXI bus

Return value Error code. If there is no error, the return value is 0.

(12) R_OSPL_AXI_GetProtection
Outline Gets protection attribute of AXI bus from the address
Header r_ospl.h
Declaration errnum_t R_OSPL_AXI_GetProtection(uintptr_t in_PhysicalAddress,

 r_ospl_axi_protection_t* out_Protection);
Description This function is used, when protection attribute is different by the kind of the memory.
Arguments uintptr_t

in_PhysicalAddress
The physical address in the memory area

 r_ospl_axi_protection_t*
out_Protection

Output: The protection attribute of AXI bus

Return value Error code. If there is no error, the return value is 0.

4.6.15. Functions for time

(1) R_OSPL_Delay
Outline Waits for a while until passed time
Header r_ospl.h
Declaration errnum_t R_OSPL_Delay(uint32_t in_DelayTime_msec);
Description In OS less environment, this function uses free running timer.

In OS-using environment, this function uses OS function.

This function sometimes waits long time than specified time by timer precision. For
example, If the timer precision was 1millisecond, the argument was passed
1millisecond and this function was called at 0.4millisecond, this function returns at
2.0millisecond that it is 1.6millisecond after started to call this function.

If "in_DelayTime_msec" argument was set the value over
"R_OSPL_MAX_TIME_OUT",
this function waits for "R_OSPL_MAX_TIME_OUT" millisecond and "E_TIME_OUT"
error is raised. In debug configuration (not defined "R_OSPL_NDEBUG").
"ASSERT_D" notifies in this function before waiting. If you want to wait for over
"R_OSPL_MAX_TIME_OUT" millisecond, for OS-using environment, use periodic
timer. For OS less, use "R_OSPL_FTIMER_IsPast" function with care overflow.

If "R_OSPL_Delay" function was called from the interrupt context,
"R_OSPL_RaiseUnrecoverable (E_NOT_THREAD)" is called. If
"R_OSPL_RaiseUnrecoverable" returned, "R_OSPL_Delay" function returns
"E_NOT_THREAD" error. In interrupt handler, wait by calling
"R_OSPL_FTIMER_IsPast" function with care that the timer count does not overflow.

0.0 1.0 2.0 Time (msec)

Call "R_OSPL_Delay" (1msec) Return from the function

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 64 of 114
Oct. 26, 2017

Attention: if waiting process run in the interrupt handler, even most high priority
thread cannot run.

In OS less, this function callbacks the function of "r_ospl_idle_callback_t" type, while
this function is waiting. Use "R_OSPL_FTIMER_IsPast" function instead of this
function, if the system has pseudo multithreading.
OS function like this function sometimes raises an error, when OS function was
called from the interrupt handler. In that environment, "R_OSPL_Delay" does the
polling.

"R_OSPL_Delay" function returns soon even if waiting state after called
"R_OSPL_THREAD_SetOnWait" function with "R_OSPL_WAIT_PM_THREAD" on
"R_OSPL_IS_PREEMPTION" = 0. In this case, the return value of "R_OSPL_Delay"
function is 0. The return value of "R_OSPL_THREAD_GetIsWaiting" function shows
whether waiting state or not.

Arguments uint32_t
in_DelayTime_msec

Time of waiting (millisecond, maximum value is
"R_OSPL_MAX_TIME_OUT" (=65533))

Return value Error code. If there is no error, the return value is 0.

(2) R_OSPL_FTIMER_InitializeIfNot
Outline Set up the free running timer
Header r_ospl.h
Declaration errnum_t R_OSPL_FTIMER_InitializeIfNot(r_ospl_ftimer_spec_t*

out_Specification);
Description The free running timer does not stop.

If the counter of the free running timer was overflow, the counter returns to 0.
Even in interrupt handler, the counter does count up.
OSPL free running timer does not use any interrupt.

Using timer can be selected by "R_OSPL_FTIMER_IS" macro.

If the free running timer was already set up, this function does not set up it, outputs
to "out_Specification" argument and returns 0 (no error).
When OSPL API function with timeout or "R_OSPL_Delay" function was called,
"R_OSPL_FTIMER_InitializeIfNot" function is callbacked from these functions.
There is all interrupt disabled area inside.

Arguments r_ospl_ftimer_spec_t*
out_Specification

NULL is permitted. Output: The precision of the free run
timer

Return value Error code. If there is no error, the return value is 0.

(3) R_OSPL_FTIMER_Get
Outline Get current time of free running timer
Header r_ospl.h
Declaration uint32_t R_OSPL_FTIMER_Get(void);
Description Call "R_OSPL_FTIMER_InitializeIfNot" function before calling this function.

Call "R_OSPL_FTIMER_IsPast" function, when it is determined whether time
passed.

Example:
 errnum_t e;
 r_ospl_ftimer_spec_t ts;
 uint32_t start;
 uint32_t end;

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 65 of 114
Oct. 26, 2017

 e= R_OSPL_FTIMER_InitializeIfNot(&ts); IF(e){goto fin;}
 start = R_OSPL_FTIMER_Get();

 /* The section of measuring */

 end = R_OSPL_FTIMER_Get();
 printf("%d msec\n", R_OSPL_FTIMER_CountToTime(
 &ts, end - start));

Arguments None
Return value The current clock count of free run timer

(4) R_OSPL_FTIMER_IsPast
Outline Returns whether specified time was passed
Header r_ospl.h
Declaration errnum_t R_OSPL_FTIMER_IsPast(r_ospl_ftimer_spec_t* out_Specification,

 uint32_t Now, uint32_t TargetTime, bool_t* out_IsPast);
Description If the time of free running timer was same as the time of "TargetTime" argument, this

function returns false. If past, this function returns true. (If the specification is
returning true at same time, waiting time is sometimes short from the target time by
the timer precision.)

"Now" argument does not have to real current time. Because operations in modules
at the same time must use with same time value.

If "Now" argument was set more than the target time plus extension time
(r_ospl_ftimer_spec_t::ExtensionOfCount), E_TIME_OUT error is raised. Then the
interval of calling "R_OSPL_FTIMER_IsPast" must be shorter than extension time.
The target time cannot set longer than the time that counter is overflow. For these
errors can be detected, E_TIME_OUT error is raised, if the target time was set longer
than current timer count plus maximum count / 2. The extension time in
"out_Specification" argument can be change by the application. However, the more
long extension time was set, the less potential the error is detected. For details, refer
to following "About boundary value".

While the polling is doing, less priority thread cannot run. If the polling is doing in the
interrupt handler, even most high priority thread cannot run.

In OS-using environment, while "R_OSPL_Delay" was calling, other thread can run.
In OS less environment, other thread cannot run. (Interrupts can run.)

Example: Judge whether 300 milliseconds was past.
 errnum_t e;
 r_ospl_ftimer_spec_t ts;
 uint32_t target;
 bool_t is_past;

 e= R_OSPL_FTIMER_InitializeIfNot(&ts); IF(e){goto fin;}

 target = R_OSPL_FTIMER_Get() +
 R_OSPL_FTIMER_TimeToCount(&ts, 300);
 /* or previous_target +
 R_OSPL_FTIMER_TimeToCount(&ts, 300); */

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 66 of 114
Oct. 26, 2017

 /* ... */

 e= R_OSPL_FTIMER_IsPast(&ts, R_OSPL_FTIMER_Get(),
 target, &is_past);
 IF(e){goto fin;}

Example: Judge whether 1 hour was past.
 errnum_t e;
 r_ospl_ftimer_spec_t ts;
 uint32_t target;
 bool_t is_past;
 const uint32_t interval_time = 60 * 1000; /* msec
*/
 uint32_t interval_count;
 uint32_t elapsed_time;

 e= R_OSPL_FTIMER_InitializeIfNot(&ts); IF(e){goto fin;}

 if (ts.msec_Numerator >= ts.msec_Denominator) {
 printf("Max time is UINT32_MAX/2 msec\n");
 } else {
 printf("Max time is %d msec\n",
 R_OSPL_FTIMER_CountToTime(&ts, ts.MaxCount / 2));
 }

 ASSERT_R(ts.msec_Numerator >= ts.msec_Denominator ||
 R_OSPL_FTIMER_CountToTime(&ts, ts.MaxCount / 2) >=
 interval_time,
 e=E_LIMITATION; goto fin);

 interval_count = R_OSPL_FTIMER_TimeToCount(&ts,
 interval_time);
 elapsed_time = 0;
 target = R_OSPL_FTIMER_Get() + interval_count;

 /* ... */

 e= R_OSPL_FTIMER_IsPast(&ts, R_OSPL_FTIMER_Get(),
 target, &is_past);
 IF(e){goto fin;}
 /* The interval of calling this function must */
 /* be less than ts.ExtensionOfCount. */
 if (is_past) {
 elapsed_time += 1;
 if (elapsed_time >= 60) {
 ...
 } else {
 target += interval_count;
 }
 }

About boundary value:

If "r_ospl_ftimer_spec_t::MaxCount" is maximum of "uint32_t" and "TargetTime" is
more than "r_ospl_ftimer_spec_t::MaxCount", it judges that whether free running
timer was over than "TargetTime - (MaxCount + 1)". Because even when the counter
was round to 0, current judgement is done,

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 67 of 114
Oct. 26, 2017

If "r_ospl_ftimer_spec_t::MaxCount" is not maximum of "uint32_t", "TargetTime"
argument can be set the value more than "r_ospl_ftimer_spec_t::MaxCount".
However, current time plus "r_ospl_ftimer_spec_t ::MaxCount / 2" raises
E_TIME_OUT error.

Arguments r_ospl_ftimer_spec_t*
out_Specification

Precision of the free running timer

 uint32_t Now Count of current time
 uint32_t TargetTime Count of target time
 bool_t* out_IsPast Output: Whether the target time was past or not

Return value Error code. If there is no error, the return value is 0.

(5) R_OSPL_FTIMER_TimeToCount
Outline Change from millisecond unit to free running timer unit
Header r_ospl.h
Declaration uint32_t R_OSPL_FTIMER_TimeToCount(r_ospl_ftimer_spec_t* ts, uint32_t

msec);
Description The fractional part is rounded up. (For waiting time must be more than specified

time.)
This function calculates like the following formula.
(msec * ts->msec_Denominator + ts->msec_Numerator - 1) /
ts->msec_Numerator

Attention: If "ts->msec_Denominator" was more than "ts->msec_Numerator", take
care of overflow.

Arguments r_ospl_ftimer_spec_t*
ts

Precision of the free running timer

 uint32_t msec The value of millisecond unit
Return value The value of free running timer unit

0 MaxCount MaxCount * 3 / 2

The range of "TargetTime"

The range of "Now"

TargetTime

Not past Past (in extension time)

E_TIME_OUT error

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 68 of 114
Oct. 26, 2017

(6) R_OSPL_FTIMER_CountToTime
Outline Change from free running timer unit to millisecond unit
Header r_ospl.h
Declaration uint32_t R_OSPL_FTIMER_CountToTime(r_ospl_ftimer_spec_t* ts, uint32_t

Count);
Description The fractional part is rounded down. (Because overflow does not occur, when "Count

= r_ospl_ftimer_spec_t::MaxCount")
This function calculates like the following formula.
(Count * ts->msec_Numerator) / ts->msec_Denominator

Arguments r_ospl_ftimer_spec_t*

ts
Precision of the free running timer

 uint32_t Count The value of free running timer unit
Return value The value of millisecond unit

(7) R_OSPL_FTIMER_GetSpecification
Outline Get the specification of the free running timer
Header r_ospl.h
Declaration void R_OSPL_FTIMER_GetSpecification(r_ospl_ftimer_spec_t*

out_Specification);
Description Review the definition of this function, when the value of "R_OSPL_FTIMER_IS"

macro was added or changed.
Arguments r_ospl_ftimer_spec_t*

out_Specification
NULL is permitted. (Output) The precision of the free
running timer

Return value None

4.6.16. Functions for the idle state

(1) R_OSPL_IDLE_Start_CPU_Load
Outline Starts to measure CPU load (for OS less)
Header r_ospl_os_less.h
Declaration void R_OSPL_IDLE_Start_CPU_Load(int32_t Interval_msec);
Description This function sets OSPL to call printf with CPU load from "R_OSPL_OnIdleDefault"

function during periodic intervals.
This function is enabled, if OSPL was compiled with setting "R_OSPL_CPU_LOAD"
to 1.
Call "R_OSPL_IDLE_Print_CPU_Load" function, when CPU load is shown soon.
"R_OSPL_WAIT_POLLING" must be set.

Arguments int32_t Interval_msec The periodic intervals to show (msec), 0=Not show
Return value None

(2) R_OSPL_IDLE_Print_CPU_Load
Outline Show the CPU load by printf (for OS less)
Header r_ospl.h
Declaration void R_OSPL_IDLE_Print_CPU_Load(bool_t IsPrintNow);
Description This function is enabled, if OSPL was compiled with setting "R_OSPL_CPU_LOAD"

to 1.
This function shows CPU load from calling "R_OSPL_IDLE_Start_CPU_Load"
function or the time of "Interval_msec" argument of its function until calling
"R_OSPL_IDLE_Print_CPU_Load" function. However, it is necessary to call
"R_OSPL_IDLE_Start_CPU_Load" function once at least.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 69 of 114
Oct. 26, 2017

If "IsPrintNow = false", this function shows, when the time of "Interval_msec"
argument was passed only.
This function shows CPU load from previous showing to now, if "Interval_msec"
argument of "R_OSPL_IDLE_Start_CPU_Load" function was 0.
Developer of application can customize this function.

CPU load keeps 100%, if "R_OSPL_WAIT_POLLING" was not set.

Arguments bool_t IsPrintNow Whether shows immediately unless the timing of periodic
to show

Return value None

4.6.17. Functions for interrupt callback functions - r_ospl_caller_t type

(1) R_OSPL_CallInterruptCallback
Outline Calls the interrupt callback function. It is called from OS porting layer in the driver
Header r_ospl.h
Declaration void R_OSPL_CallInterruptCallback(r_ospl_caller_t* self, r_ospl_interrupt_t*

InterruptSource);
Description This function calls the function registered in "self" as "bsp_int_cb_t" type.

Call this function from the interrupt handler in OS porting layer of the driver.
The value of "self" argument is passed from the driver unit to OS porting layer of the
driver before the interrupt.

Arguments r_ospl_caller_t* self The internal parameters about interrupt operations
 r_ospl_interrupt_t*

InterruptSource
The source of the interrupt

Return value None

(2) r_ospl_callback_t
Outline The function type of interrupt callback
Header r_ospl.h
Declaration typedef errnum_t (* r_ospl_callback_t)(const r_ospl_interrupt_t* InterruptSource,

 const r_ospl_caller_t* Caller);
Description This is type of the interrupt callback function running in the interrupt context and

called from the interrupt handler.
It is possible to replace to application defined interrupt callback function by setting to
"r_ospl_async_t::InterruptCallback". But it is usually not necessary to replace.

As interrupt callback function, the default interrupt callback function provided from
the driver is used. It is unusual to use application defined interrupt callback function.
Write the response code of the interrupt (event driven code) next to the code calling
"R_OSPL_EVENT_Wait" function

Whether the asynchronous operation was ended is possible to know whether the
variable of "r_ospl_async_state_t" type referred from "R_DRIVER_GetAsyncStatus"
function is set to "R_OSPL_RUNNABLE" value.

It is not necessary to write the code of interrupt return (IRET) in the interrupt callback
function. The interrupt handlers calling interrupt callback function calls IRET, if
necessary.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 70 of 114
Oct. 26, 2017

It is not possible to divide interrupt callback functions by the kind of interrupt.
Alternatively, it is possible to write operations in interrupt handlers calling interrupt
callback function in porting layer under the driver. There are interrupt handlers by
each interrupt numbers.

It is possible to signal any event from application defined interrupt callback function.
But it is necessary to do following operations:

Necessary operations in the interrupt callback function:

If "r_ospl_async_t::I_Thread == R_OSPL_THREAD_NULL", call
"R_DRIVER_OnInterrupted" function after calling "R_DRIVER_OnInterrupting"
function.
(If there was not "R_DRIVER_OnInterrupted" function, do not call it.)

If "r_ospl_async_t::I_Thread != R_OSPL_THREAD_NULL", signal the I-event
after calling "R_DRIVER_OnInterrupting" function. The thread receiving the I-
event must call "R_DRIVER_OnInterrupted" function.
(If there was not "R_DRIVER_OnInterrupted" function, do not signal the I-event.)

Arguments r_ospl_interrupt_t*

InterruptSource
Source of interrupt

 r_ospl_caller_t* Caller Driver's internal parameters about interrupt operations
Return value Error code. If there is no error, the return value is 0. The value set to

"r_ospl_async_t::ReturnValue"

4.6.18. Functions for error handling and debugging

(1) CHK
Outline Enters infinite loop, if error was raised. It is for debugging
Header r_ospl.h
Declaration void CHK(errnum_t e);
Description This returns without doing anything, if e == 0. Otherwise this disables all interrupts

and enters infinite loop.

Example A:
e= FunctionX(); CHK(e);

Example B:
CHK(FunctionX());

Arguments errnum_t e Checking error code
Return value None

(2) R_OSPL_RaiseUnrecoverable
Outline Raises the error of system unrecoverable
Header r_ospl.h
Declaration void R_OSPL_RaiseUnrecoverable(errnum_t e);
Description The error of system unrecoverable is the error of impossible to self-recover by

process or main system. Example, the heap area was broken or there are not any
responses from hardware. This error can be recoverable by OS or the system
controller(e.g. Software reset)

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 71 of 114
Oct. 26, 2017

Example, when an error of recovery process was raised,
"R_OSPL_RaiseUnrecoverable" function must be called.

"R_OSPL_RaiseUnrecoverable" function can be customized by the application. By
default, it calls "R_DebugBreak" function and falls into the infinite loop.

Arguments errnum_t e Error code
Return value None

(3) R_DEBUG_BREAK
Outline Breaks here
Header r_ospl.h
Declaration #define R_DEBUG_BREAK()
Description Does break by calling "R_DebugBreak" function.

This macro is not influenced the setting of "R_OSPL_ERROR_BREAK" macro.
Arguments None
Return value None

(4) R_DEBUG_BREAK_IF_ERROR
Outline Breaks here, if it is error state
Header r_ospl.h
Declaration #define R_DEBUG_BREAK_IF_ERROR()
Description This function does nothing, if "R_OSPL_ERROR_BREAK" macro was defined to be

0. The following descriptions are available, if "R_OSPL_ERROR_BREAK" macro
was defined to be 1.

Checks the error state of the current thread.
Call this macro from the last of each thread.
Does break by calling "R_DebugBreak" function.

If an error was raised, this function calls "printf" with following message. Set
"error_ID" to "R_OSPL_SET_BREAK_ERROR_ID"
<ERROR error_ID="0x1" file="../src/api.c(336)"/>

Arguments None
Return value None

(5) IF
Outline Breaks and transits to error state, if condition expression is not 0
Header r_ospl.h
Declaration #define IF (Condition)
Description "IF" is as same as general "if", if "R_OSPL_ERROR_BREAK" macro was defined to

be 0. The following descriptions are available, if "R_OSPL_ERROR_BREAK" macro
was defined to be 1.

"IF" macro supports to find the code raising an error.

Example:
e= TestFunction(); IF(e){goto fin;}

If the "if statement" that is frequently seen in guard condition and after calling
functions was changed to "IF" macro, the CPU breaks at raising an error. Then the
status (values of variables) can be looked immediately and the code (call stack) can
be looked. Thus, debug work grows in efficiency.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 72 of 114
Oct. 26, 2017

"IF" macro promotes recognizing normal code and exceptional code. Reading speed
will grow up by skipping exceptional code.

Call "R_OSPL_SET_BREAK_ERROR_ID" function, if set to break at the code raising
an error.

Whether the state was error state or the error raised count is stored in the thread
local storage. In Release configuration, the variable of error state and the error
raised count is deleted. Manage the error code using auto variable and so on at out
of OSPL.

The error state is resolved by calling "R_OSPL_CLEAR_ERROR" function. If
"R_DEBUG_BREAK_IF_ERROR" macro was called with any error state, the process
breaks at the macro.

"R_OSPL_CHECK_STACK_OVERFLOW" function is called from "IF" macro inside,
if "R_OSPL_STACK_CHECK_CODE" macro is 1.

Arguments Condition Condition expression
Return value None

(6) IF_D
Outline It is same as "IF" (for Debug configuration only)
Header r_ospl.h
Declaration #define IF_D (Condition)
Description In Release configuration, the result of condition expression is always "false".

The release configuration is the configuration defined "R_OSPL_NDEBUG".

Arguments Condition Condition expression
Return value None

(7) ASSERT_R
Outline Assertion (Programming by Contract)
Header r_ospl.h
Declaration #define ASSERT_R(in_Condition, in_StatementsForError)
Description Case of defined "R_OSPL_ERROR_BREAK" to be 0:

If the result of condition expression is 0(false), do "in_StatementsForError".

Case of defined "R_OSPL_ERROR_BREAK" to be 1:

If the result of condition expression is 0(false), the error state will become active
and the operation of "in_StatementsForError" argument will be done.
"R_OSPL_CHECK_STACK_OVERFLOW" function is called from "ASSERT_R"
macro inside, if "R_OSPL_STACK_CHECK_CODE" macro is 1.

If operations did nothing, write "R_NOOP()" at "in_StatementsForError" argument.

Call "R_OSPL_ReturnFalse" function, if code of "false" passed at "in_Condition"
argument was warned.

Example:
ASSERT_R(size <= sizeof(buffer), goto fin);

Arguments in_Condition The condition expression expected true

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 73 of 114
Oct. 26, 2017

 in_StatementsForError The operation doing at condition is false. It is possible to
write complex sentence divided by ";".

Return value None

(8) ASSERT_D
Outline Assertion (Programming by Contract) (for Debug configuration only)
Header r_ospl.h
Declaration #define ASSERT_D(Condition, StatementForError)
Description This does nothing in Release configuration.

Release configuration is the configuration defined "R_OSPL_NDEBUG" as same as
standard library.

Arguments Condition The condition expression expected true
 StatementsForError The operation doing at condition is false. It is possible to

write complex sentence divided by ";".
Return value None

(9) R_STATIC_ASSERT
Outline Assertion (Programming by Contract). It raises compiling error, if static condition was false
Header r_ospl.h
Declaration #define R_STATIC_ASSERT(ConstantExpression, StringLiteral)
Description Use "R_STATIC_ASSERT_GLOBAL", if in global scope.

"STATIC_ASSERT" is as same as "static_assert" of C++0x. But OSPL changes the
symbol because it goes against GSCE naming rule.
No assembly code is generated.

Arguments ConstantExpression The condition expression (The result must be given at
the compile time)

 StringLiteral Write "". This is ignored.
Return value None

(10) R_STATIC_ASSERT_GLOBAL
Outline "R_STATIC_ASSERT" for global scope
Header r_ospl.h
Declaration #define R_STATIC_ASSERT_GLOBAL(ConstantExpression, StringLiteral)
Description No assembly code is generated.
Arguments ConstantExpression The condition expression (The result must be given at

the compile time)
 StringLiteral Write "". This is ignored.

Return value None

(11) R_NOOP
Outline The function doing nothing
Header r_ospl.h
Declaration void R_NOOP();
Description This can be written at "StatementsForError" argument of "ASSERT_R"
Arguments None
Return value None

(12) R_OSPL_MergeErrNum
Outline Merge the error code raised in the finalizing operation
Header r_ospl.h

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 74 of 114
Oct. 26, 2017

Declaration errnum_t R_OSPL_MergeErrNum(errnum_t CurrentError, errnum_t AppendError);
Description When the state was error state, if other new error was raised, new error code is

ignored.
If "CurrentError != 0", this function returns "CurrentError" argument.
If "CurrentError == 0", this function returns "AppendError" argument.
This function can be modified by user.

Example:
ee= Sample();
e= R_OSPL_MergeErrNum(e, ee);
return e;

Arguments errnum_t CurrentError Current error code

 errnum_t AppendError New append error code
Return value Merged error code

(13) R_OSPL_SetErrNum
Outline Sets an error code to TLS (Thread Local Storage).
Header r_ospl.h
Declaration void R_OSPL_SetErrNum(errnum_t e);
Description Usually error code is returned. If API function cannot return any error code, API

function can have the specification of setting error code by "R_OSPL_SetErrNum".
There is this function, if "R_OSPL_TLS_ERROR_CODE" macro was defined to be 1.
This function does nothing, if any error code was stored already in TLS.
The state does not change to error state, if "R_OSPL_SetErrNum" function was
called only. See "R_OSPL_GET_ERROR_ID".

Arguments errnum_t e Raising error code
Return value None

(14) R_OSPL_GetErrNum
Outline Returns the error code from TLS (Thread Local Storage).
Header r_ospl.h
Declaration errnum_t R_OSPL_GetErrNum();
Description Usually error code is returned. If API function cannot return any error code, API

function may have the specification of getting error code by "R_OSPL_GetErrNum".
There is this function, if "R_OSPL_TLS_ERROR_CODE" macro was defined to be 1.
This function returns 0 after called "R_OSPL_CLEAR_ERROR" function.

Arguments None
Return value Error code

(15) R_OSPL_CLEAR_ERROR
Outline Clears the error state
Header r_ospl.h
Declaration void R_OSPL_CLEAR_ERROR();
Description This function does nothing, if "R_OSPL_ERROR_BREAK" macro and

"R_OSPL_TLS_ERROR_CODE" macro were defined to be 0.
But code of calling "R_OSPL_CLEAR_ERROR" function is not deleted, because
library must clear the error raised from callback function in the application, when the
application set with "R_OSPL_ERROR_BREAK = 1" linked with the library set with
"R_OSPL_ERROR_BREAK = 0".

The following descriptions are available, if "R_OSPL_ERROR_BREAK" macro was
defined to be 1.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 75 of 114
Oct. 26, 2017

Whether the state is the error state is stored in thread local storage.
"R_OSPL_GetErrNum" function returns 0 after called this function.

If the error state was not cleared, the following descriptions were caused.
 Breaks at "R_DEBUG_BREAK_IF_ERROR" macro
 "R_OSPL_SET_BREAK_ERROR_ID" function behaves not expected

behavior because the count of error is not counted up.

Arguments None
Return value None

(16) R_OSPL_NOTIFY_ERROR
Outline Notifies an error to another thread and clears an error of current thread.
Header r_ospl.h
Declaration void R_OSPL_NOTIFY_ERROR(errnum_t* in_out_ErrorNumInOtherThread,

errnum_t in_NewErrorNum);
Description This function notifies by simple substitution like "*in_out_ErrorNumInOtherThread =

in_NewErrorNum". This function does not access internal status of the thread.

This function writes an error code in Int Log, if "in_NewErrorNum != 0",
"R_OSPL_DEBUG_TOOL = 1" and "R_OSPL_ERROR_NOTIFICATION_WATCH =
1".

Example:
r_ospl_async_t async;

R_OSPL_NOTIFY_ERROR(/*Set*/ &async.ReturnValue, e);

This function does like the following code, if
"R_OSPL_ERROR_NOTIFICATION_WATCH = 0".

Example:
r_ospl_async_t async;

async.ReturnValue = e;
if (e != 0) {
 R_OSPL_CLEAR_ERROR();
}

Arguments errnum_t*
in_out_ErrorNumInOtherThread

Address of variable to get error code from
current thread.

 errnum_t in_NewErrorNum Error code of current thread
Return value None

(17) R_OSPL_SET_BREAK_ERROR_ID
Outline Register to break at raising error at the moment
Header r_ospl.h
Declaration void R_OSPL_SET_BREAK_ERROR_ID(int_fast32_t ErrorID);
Description This function does nothing, if "R_OSPL_ERROR_BREAK" macro was defined to be

0. You know whether error raising state or not by checking variable of "errnum_t" in
this condition.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 76 of 114
Oct. 26, 2017

The following descriptions are available, if "R_OSPL_ERROR_BREAK" macro was
defined to be 1.

Set a break point at "R_DebugBreak" function, when the process breaks at the
error raised code.

The number of "ErrorID" argument can be known by
"R_DEBUG_BREAK_IF_ERROR" macro or "R_OSPL_GET_ERROR_ID"
macro.
In multi-threading environment, the number of "ErrorID" argument is the number
of raised errors in all threads.

The following code breaks at first error.
R_OSPL_SET_BREAK_ERROR_ID(1);

The following code breaks at next error after resuming from many errors.
R_OSPL_SET_BREAK_ERROR_ID(R_OSPL_GET_ERROR_ID() + 1);

Arguments int_fast32_t ErrorID Breaking number of error
Return value None

(18) R_OSPL_GET_ERROR_ID
Outline Returns the number of current error
Header r_ospl.h
Declaration int_fast32_t R_OSPL_GET_ERROR_ID();
Description This function does nothing, if "R_OSPL_ERROR_BREAK" macro was defined to be

0. The following descriptions are available, if "R_OSPL_ERROR_BREAK" macro
was defined to be 1.

This function returns 0, if any errors were not raised.
This function returns 1, if first error was raised.
After that, this function returns 2, if second error was raised after calling
"R_OSPL_CLEAR_ERROR" function.
This function does not return 0 after that the error was cleared by calling
"R_OSPL_CLEAR_ERROR".
The number of current error is running number in the whole of system (all threads).

Error is raised by following macros.
IF, IF_D, ASSERT_R, ASSERT_D

The process breaks at a moment of error raised, if the number of current error was
set to "R_OSPL_SET_BREAK_ERROR_ID" macro.

Arguments None
Return value The number of current error

(19) R_OSPL_DEBUG_WORK_SIZE
Outline Calculates the size of debug work area
Header r_ospl.h
Declaration #define R_OSPL_DEBUG_WORK_SIZE(int_fast32_t ThreadMaxCount)
Description "ThreadMaxCount" argument must be added for the interrupt context.

For example, if thread max count was 2, "ThreadMaxCount" is 3.
Arguments int_fast32_t

ThreadMaxCount
The max count of threads + count of interrupt level

Return value The size of work area (byte)

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 77 of 114
Oct. 26, 2017

(20) R_OSPL_GetCurrentThreadError
Outline Returns debug information of current thread.
Header r_ospl.h
Declaration r_ospl_error_t* R_OSPL_GetCurrentThreadError(void);
Description Don't modify member variable in return value.
Arguments None
Return value Debug information

(21) R_OSPL_FreeCurrentThreadError
Outline Releases an area of error and debug information in current thread.
Header r_ospl.h
Declaration void R_OSPL_FreeCurrentThreadError(void);
Description "R_OSPL_GetCurrentThreadError" function raises an error, when the count of thread

that calls error handling API was over than "R_OSPL_DEBUG_THREAD_COUNT".
The count is always increased, if this function did not call.

Please call this function at the last of thread function,

This function deletes the checking information whether event was allocated by calling
"R_OSPL_EVENT_Allocate" function and changes to the state of not allocating the
area.

This function does nothing, if current thread was not attached debug information.

Arguments None
Return value None

(22) R_OSPL_CHANGE_THREAD_LOCKED_COUNT
Outline Modifies value of counter that can be accessed by current thread only
Header r_ospl.h
Declaration void R_OSPL_CHANGE_THREAD_LOCKED_COUNT(r_ospl_thread_id_t

ThreadID, int_fast32_t Plus);
Description Drivers calls this function.

This function is not called from OSPL.
This function does nothing, if "R_OSPL_ERROR_BREAK" macro is 0.

Arguments r_ospl_thread_id_t
ThreadID

ID of thread

 int_fast32_t Plus The value of adding to the counter. The counter is
subtracted, if this argument was minus.

Return value None

(23) R_OSPL_GET_THREAD_LOCKED_COUNT
Outline Returns value of counter that can be accessed by current thread only
Header r_ospl.h
Declaration int_fast32_t R_OSPL_GET_THREAD_LOCKED_COUNT(r_ospl_thread_id_t

ThreadID);
Description This function returns 0, if "R_OSPL_ERROR_BREAK" macro is 0.
Arguments r_ospl_thread_id_t

ThreadID
ID of thread

Return value Count of objects that current thread has locked

(24) R_OSPL_GET_STACK_POINTER
Outline Returns value of current stack pointer for debugging.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 78 of 114
Oct. 26, 2017

Header r_ospl.h
Declaration uint8_t* R_OSPL_GET_STACK_POINTER();
Description There is not this function, if "R_OSPL_STACK_CHECK_CODE = 0".

This function is enabled, if "R_OSPL_STACK_CHECK_CODE = 1".
Arguments None
Return value Value of current stack pointer

(25) R_OSPL_SET_END_OF_STACK
Outline Sets the end of stack area of current thread for debugging.
Header r_ospl.h
Declaration void R_OSPL_SET_END_OF_STACK(void* in_EndOfStackAddress);
Description This function writes a canary's value "R_OSPL_STACK_CHECK_CANARY_VALUE"

at the end of stack area.
Stack check is disabled until calling current function.
Stack check is disabled, if the argument is specified with NULL.

Please, call "R_OSPL_RESET_MIN_FREE_STACK_SIZE" after calling this function,
if it needs.

A stack area is shared by all pseudo threads and interrupt context for OS less
environment.
Stack areas are split by each threads and interrupt context for OS-using
environment. This function set a canary value at a stack area for current thread or
current interrupt context.

There is not this function, if "R_OSPL_STACK_CHECK_CODE = 0".
This function is enabled, if "R_OSPL_STACK_CHECK_CODE = 1".

Arguments void*
in_EndOfStackAddress

Address of the end of stack area or NULL.

Return value None

(26) R_OSPL_MOVE_END_OF_STACK
Outline Moves end of stack area
Header r_ospl.h
Declaration void R_OSPL_MOVE_END_OF_STACK(void* in_EndOfStackAddress);
Description This moves the end of stack area of current thread and fills canary value at the

expanded area for debugging.
Some standard library changes the size of stack area by expanding heap area. This
function supports the specification.

The difference from "R_OSPL_SET_END_OF_STACK" is to fill the canary value
"R_OSPL_STACK_CHECK_CANARY_VALUE" at the expanded area, when the end
of stack area was moved. The filling "R_OSPL_GET_MIN_STACK_POINTER" works
properly.

Arguments void*
in_EndOfStackAddress

Address of new end of stack area

Return value None

(27) R_OSPL_CHECK_STACK_OVERFLOW
Outline Checks that stack overflow occurred.
Header r_ospl.h
Declaration void R_OSPL_CHECK_STACK_OVERFLOW();
Description This calls "R_OSPL_RaiseUnrecoverable" function, if stack overflow occurred.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 79 of 114
Oct. 26, 2017

This function checks whether the canary value is overwritten in the current stack.
This function is called from "IF" macro and "ASSERT_R" macro.

There is not this function, if "R_OSPL_STACK_CHECK_CODE = 0".
This function is enabled, if "R_OSPL_STACK_CHECK_CODE = 1".

This function does nothing until setting at the end of stack by
"R_OSPL_SET_END_OF_STACK".

You know the code of changing stack size by breaking
"R_OSPL_SET_END_OF_STACK", when stack overflow occurred.

This function does not check, if a call to OS API is prohibited.

Arguments None
Return value None

(28) R_OSPL_RESET_MIN_FREE_STACK_SIZE
Outline Resets minimum free stack size in current thread.
Header r_ospl.h
Declaration errnum_t R_OSPL_RESET_MIN_FREE_STACK_SIZE();
Description This function fills "R_OSPL_STACK_CHECK_CANARY_VALUE" from the end of

stack specified by "R_OSPL_SET_END_OF_STACK" to the stack pointer for current
thread or current interrupt context.

There is not this function, if "R_OSPL_STACK_CHECK_CODE = 0".
This function is enabled, if "R_OSPL_STACK_CHECK_CODE = 1".

Arguments None
Return value Error code. If there is no error, the return value is 0.

(29) R_OSPL_GET_MIN_FREE_STACK_SIZE
Outline Counts minimum free stack size in current thread.
Header r_ospl.h
Declaration size_t R_OSPL_GET_MIN_FREE_STACK_SIZE();
Description Minimum free stack size means minimum free space size in the stack area from

calling "R_OSPL_RESET_MIN_FREE_STACK_SIZE" to calling
"R_OSPL_GET_MIN_FREE_STACK_SIZE".

This function investigates a size of area not changed from
"R_OSPL_STACK_CHECK_CANARY_VALUE" in the stack area for current thread
or current interrupt context.

To measure the size of the stack used to perform an operation, calculate by using
"R_OSPL_GET_MIN_STACK_POINTER". See

There is not this function, if "R_OSPL_STACK_CHECK_CODE = 0".
This function is enabled, if "R_OSPL_STACK_CHECK_CODE = 1".

Arguments None
Return value Minimum free stack size

(30) R_OSPL_GET_MIN_STACK_POINTER
Outline Searches the position of stack pointer when largest stack area was used by now
Header r_ospl.h

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 80 of 114
Oct. 26, 2017

Declaration void* R_OSPL_GET_MIN_STACK_POINTER();
Description To search the position of the end of largest using range in the stack area of current

thread or interrupt context, this function reads in it and returns the address of position
that read value at the position was not same as
"R_OSPL_STACK_CHECK_CANARY_VALUE".

Size of stack usage is calculated by "before-address" - "after-min-address". "before-
address" is value of stack pointer before target operation. "after-min-address" is
position of the end of largest using range after target operation. The way is correct,
even if the end of stack area was moved by "R_OSPL_MOVE_END_OF_STACK" for
expanding heap area or others.

There is not this function, if "R_OSPL_STACK_CHECK_CODE = 0".
This function is enabled, if "R_OSPL_STACK_CHECK_CODE = 1".

This function returns NULL, if the end of stack area did not set by
"R_OSPL_SET_END_OF_STACK".

Arguments None
Return value The position of stack pointer when largest stack area was used by now

(31) R_D_Add
Outline Registers watching integer variable or pointer variable
Header r_ospl_debug.h
Declaration void R_D_Add(int_fast32_t IndexNum, void* Address, uint32_t BreakValue, bool_t

IsPrintf);
Description "R_D_Add" and "R_D_Watch" are APIs related to watch function.

This debug tool is available, if "R_OSPL_DEBUG_TOOL" was set to 1.
Example:
R_D_Add(0, &var, 0xB0, true); // 0xB0 may be not hit

There is not this function, if "R_OSPL_DEBUG_TOOL" macro was defined to be 0.
This function is available, if "R_OSPL_DEBUG_TOOL" macro was defined to be 1.

Arguments int_fast32_t IndexNum Watch Number, 0 or more
 void* Address Address of watching integer variable or pointer variable
 uint32_t BreakValue Breaking value of variable when "R_D_Watch" was

called
 bool_t IsPrintf Whether "printf" is called, when "R_D_Watch" was called

Return value None

(32) R_D_Watch
Outline Show and Check watching variable's value
Header r_ospl_debug.h
Declaration void R_D_Watch(int_fast32_t IndexNum);
Description "R_D_Add" and "R_D_Watch" are APIs related to watch function.

This debug tool is available, if "R_OSPL_DEBUG_TOOL" was set to 1.
This function calls "printf" with the value of variable registered by "R_D_Add" and
breaks when watching variable becomes registered value.
This function can be called from out of scope of registered variable. Then this
function can be written at many places without care of the scope.
Example:
R_D_Watch(0);
printf("Line: %d", __LINE__);
 // Show the value indicated this place

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 81 of 114
Oct. 26, 2017

There is not this function, if "R_OSPL_DEBUG_TOOL" macro was defined to be 0.
This function is available, if "R_OSPL_DEBUG_TOOL" macro was defined to be 1.

If internal data of the debug tool was broken, the global variable in "r_ospl_debug.o"
file should be move to safe address (memory map).

Arguments int_fast32_t IndexNum Watch Number, 0 or more
Return value None

(33) R_D_AddToIntLog
Outline Records to the log fast
Header r_ospl_debug.h
Declaration void R_D_AddToIntLog(int_fast32_t Value);
Description "R_D_AddToIntLog", "g_IntLog" and "g_IntLogLength" are APIs related to Int Log

function.
This debug tool is available, if "R_OSPL_DEBUG_TOOL" was set to 1.
This function overwrites from the first of the log, if max element value of "g_IntLog"
was over.
It is recommended to record not only the showing value of variable, but also the
value of the identifier of the place and the value of current time.

"g_IntLog", "g_IntLogLength" and "g_DebugVar" are external linkage global variable.
"g_DebugVar" is not accessed by "R_D_AddToIntLog" function. This variable can be
used for the conditional break referred the variable over the scope. And this variable
can be used for logging the last position that CPU went through .
int_fast32_t g_IntLog[100];
int_fast32_t g_IntLogLength;
int_fast32_t g_DebugVar[10];

There is not this function, if "R_OSPL_DEBUG_TOOL" macro was defined to be 0.
This function is available, if "R_OSPL_DEBUG_TOOL" macro was defined to be 1.

If internal data of the debug tool was broken, the global variable in "r_ospl_debug.o"
file should be moved to safe address (memory map).

Arguments int_fast32_t Value Recording value
Return value None

(34) R_D_Counter
Outline Count the through count
Header r_ospl_debug.h
Declaration bool_t R_D_Counter(int_fast32_t* in_out_Counter, int_fast32_t TargetCount, char*

Label);
Description This debug tool is available, if "R_OSPL_DEBUG_TOOL" was set to 1.

If this function was called with "TargetCount = 0", the count of through is output by
"printf" for each calling. If "TargetCount" argument was set to the through count and
restart the program, when the counter was counted up to "TargetCount", this function
returns "true". If there were many "printf" output, set "Label = NULL". At first calling,
the address of the counter is output by "printf". The counter can be look by the
debugger.

Example:
{ static int tc; if (R_D_Counter(&tc, 0, "A")) {
R_DEBUG_BREAK(); }}

Arguments int_fast32_t*
in_out_Counter

Input/Output: The through counter

 int_fast32_t TargetCount The value comparing with the through counter

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 82 of 114
Oct. 26, 2017

 char* Label The label for "printf", NULL=printf : no output
Return value Whether the through counter is counted up to "TargetCount"

4.6.19. Functions for reviewed tags for the static code analyzer

(1) IS
Outline Changes the code accepted with MISRA 13.2 to readable
Header r_static_an_tag.h
Declaration #define IS(bool_value)
Description Avoid "not 0" as double negation.

"IS" macro conforms to cast to boolean type specified in the language.
Example:
bool_t is_condition = (x > 0);
if (IS(is_condition)) { ... }
/* if (is_condition != 0)) { ... } */

Write this macro after being warned by static code analyzer.

Arguments bool_value The expression that evaluated result becomes boolean type
Return value Evaluate result of "bool_value != 0".

(2) R_OSPL_ReturnFalse
Outline Countermeasure for the warning, when "if" block was disabled.
Header r_ospl.h
Declaration int_t R_OSPL_ReturnFalse(void);
Description If a warning occurred by writing like:

#define IF_D(Condition) if (false)
Write like:
#define IF_D(Condition) if (R_OSPL_ReturnFalse())

Arguments None
Return value 0

(3) R_UNREFERENCED_VARIABLE
Outline Suppress the warning of not referenced variable
Header r_static_an_tag.h
Declaration #define R_UNREFERENCED_VARIABLE(Variable)
Description Write this macro after warned.
Arguments Variable The variable suppressing the warning
Return value None

(4) R_UNREFERENCED_VARIABLE2
Outline "R_UNREFERENCED_VARIABLE" with 2 arguments
Header r_static_an_tag.h
Declaration #define R_UNREFERENCED_VARIABLE2(Variable, Variable2)
Description
Arguments Variable The variable suppressing the warning

 Variable2 The variable suppressing the warning
Return value None

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 83 of 114
Oct. 26, 2017

(5) R_UNREFERENCED_VARIABLE3
Outline "R_UNREFERENCED_VARIABLE" with 3 arguments
Header r_static_an_tag.h
Declaration #define R_UNREFERENCED_VARIABLE3(Variable, Variable2, Variable3)
Description
Arguments Variable The variable suppressing the warning

 Variable2 The variable suppressing the warning
 Variable3 The variable suppressing the warning

Return value None

(6) R_UNREFERENCED_VARIABLE4
Outline "R_UNREFERENCED_VARIABLE" with 4 arguments
Header r_static_an_tag.h
Declaration #define R_UNREFERENCED_VARIABLE4(Variable, Variable2, Variable3,

Variable4)
Description
Arguments Variable The variable suppressing the warning

 Variable2 The variable suppressing the warning
 Variable3 The variable suppressing the warning
 Variable4 The variable suppressing the warning

Return value None

4.6.20. Multi compiler support

(1) R_OSPL_SECTION
Outline Names section name to function or variable
Header r_ospl.h
Declaration #define R_OSPL_SECTION(SectionName, Declaration)

#define R_OSPL_SECTION_FOR_ZERO_INIT(SectionName, Declaration)
#define R_OSPL_SECTION_FOR_INLINE(SectionName, Declaration)

Description This macro names section name to the function or the variable for setting where the
function or the variable put at the area in the memory map.
Initializer is written out of "R_OSPL_SECTION" macro.
"R_OSPL_SECTION_FOR_ZERO_INIT" is for the variable without initializer.
"R_OSPL_SECTION_FOR_INLINE" is for inline function.

Example:
int NormalFunction(int a)
{
 return a + 1;
}

R_OSPL_SECTION("CODE_BASIC_SECTION",
int SectionFunction(int a)
)
{
 return a + 1;
}

R_OSPL_SECTION("DATA_BASIC_SECTION",
int g_Variable_Data[100]
)

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 84 of 114
Oct. 26, 2017

= { 1 };

Arguments SectionName Section name
 Declaration Declaration of the function or the variable

Return value Declaration of the function or the variable

(2) R_OSPL_ALIGNMENT
Outline Alignments first address of global variable
Header r_ospl.h
Declaration #define R_OSPL_ALIGNMENT(ByteCount, Declaration)
Description Initializer is written out of "R_OSPL_ALIGNMENT" macro.

Example
R_OSPL_ALIGNMENT(0x100,
extern const int g_Variable_Const2[4]);

R_OSPL_ALIGNMENT(0x100,
const int g_Variable_Const2[4]) = { 0x01, 0x02, 0x03,
0x04 };

Arguments ByteCount Value of alignment

 Declaration Declaration of the variable.
Return value Declaration of the variable

(3) R_COUNT_OF
Outline Returns element count of the array
Header r_ospl.h
Declaration #define R_COUNT_OF(Array)
Description Example:

uint32_t array[10];
R_COUNT_OF(array) // = 10

Array argument must not be specified the pointer using like array.
Example:
uint32_t array[10];
func(array);

void func(uint32_t array[]) /* "array" is a pointer */
{
 R_COUNT_OF(array) // NG

}

Arguments Array Array
Return value Count of element

(4) INLINE
"INLINE" macro is same as C99 specification of inline without static and extern.

(5) STATIC_INLINE
"STATIC_INLINE" macro is same as C99 specification of static inline.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 85 of 114
Oct. 26, 2017

(6) R_ADDRESS_Add
Outline Adds at a value of address (pointer) by byte unit.
Header r_ospl.h
Declaration void* R_ADDRESS_Add(void* in_BaseAddress, int_fast32_t in_Offset);
Description The following code:

R_ADDRESS_Add(base_address, +offset)
calculate like the following code:
(((uint8_t*) base_address) + offset)

"in_Offset" argument is by byte unit despite type of pointer.
This macro prevents forgetting casting because of casting from "uint8_t*" to
"uint8_t*" does not feel redundant.
MISRA-C 2004-17.4 requests writing array, but it is not possible to add by byte unit.
Checking accessible range before accessing at the address as return value in the
similar way to array.

Arguments void* in_BaseAddress Augend. Address before adding
 int_fast32_t in_Offset Addend. Adding value. Minus value is permitted

Return value Added Address

(7) R_OSPL_CountLeadingZeros
Outline Counts bits which is set 0 from most significant bit (MSB).
Header r_ospl.h
Declaration int_fast32_t R_OSPL_CountLeadingZeros(bit_flags32_t in_BitFlags);
Description Return value is 32, if "in_BitFlags" argument was 0.

"R_OSPL_CountLeadingZeros" is macro, if there is in compiler-specific features.
Example:
R_OSPL_CountLeadingZeros(0x20000000) == 2;
R_OSPL_CountLeadingZeros(0x02000000) == 6;
R_OSPL_CountLeadingZeros(0x00000000) == 32;
int_fast32_t leading_bit_num = 31 -
 R_OSPL_CountLeadingZeros(flags);

Arguments in_BitFlags Investigating value of bit flags
Return value Count of bits

(8) R_OSPL_IsSetBitsCount1
Outline Returns whether there is one bit which is set 1.
Header r_ospl.h
Declaration bool_t R_OSPL_IsSetBitsCount1(uint32_t in_BitFlags);
Description Example:

R_OSPL_IsSetBitsCount1(0x00000001) == true;
R_OSPL_IsSetBitsCount1(0x00000002) == true;
R_OSPL_IsSetBitsCount1(0x00000003) == false;
R_OSPL_IsSetBitsCount1(0x00000000) == false;

Arguments uint32_t in_BitFlags Investigating value of bit flags
Return value Whether there is one bit which is set 1

4.6.21. Functions for the layer under OSPL

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 86 of 114
Oct. 26, 2017

(1) R_DebugBreak
Outline The function callbacked from OSPL for breaking
Header r_ospl.h
Declaration void R_DebugBreak(char_t* File, int_fast32_t Line);
Description Set a break point at this function.

In Release configuration, "File = NULL, Line = 0".
If "File = NULL", "Line" argument is error code.
This function can be customized by application developer.
OSPL's error handling function must not be called in this function.

If there was not debug environment and printf output serial communication, LED or
oscilloscope watching GPIO shows data instead of serial output. The way is that
"R_DebugBreak" function calls function controlling LED and function waiting for a
given length of time. Then LED shows variables of "R_DebugBreak" function. For
example, the following step shows data.

 Turn on in 1 second and turn off in 1 second at starting LED debug
 If data was 1, turn on in 0.5 second and turn off in 0.5 second
 If data was 0, turn on in 0.2 second and turn off in 0.8 second
 Show binary number by next digit 1 or 0 by shift operation

Arguments char_t* File The file name calling this function or NULL

 int_fast32_t Line The line number calling this function or error code
Return value None

(2) R_OSPL_OnIdleDefault
Outline The default callback function on idle state (for OS less)
Header r_ospl.h
Declaration errnum_t R_OSPL_OnIdleDefault(r_ospl_idle_event_t IdleEvent);
Description Callbacks many times at idle state.

This function shows CPU load by calling "R_OSPL_IDLE_Print_CPU_Load" function
during periodic intervals, if "R_OSPL_CPU_LOAD" was set to be 1 and
"R_OSPL_IDLE_Start_CPU_Load" function was called.
However, this function does not show during periodic intervals, if waiting API was not
called.

This function can be customized by application developer.

Arguments r_ospl_idle_event_t
IdleEvent

The kind about idle state

Return value Error code. If there is no error, the return value is 0.

(3) R_OSPL_Start_T_Lock
Outline The function callbacked from OSPL internal, when T-Lock started
Header -
Declaration errnum_t R_OSPL_Start_T_Lock(void);
Description This function locks by one synchronous object in OSPL.

This function must not be called from application.
Functions for error handling and debugging must not be called from this function.
This function is not callbacked from T-Lock area.

Arguments None
Return value Error code. If there is no error, the return value is 0.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 87 of 114
Oct. 26, 2017

(4) R_OSPL_End_T_Lock
Outline The function callbacked from OSPL internal, when T-Lock ended
Header -
Declaration void R_OSPL_End_T_Lock(void);
Description This function must not be called from application.

Functions for error handling and debugging must not be called from this function.
This function is not callbacked from out of T-Lock area.

Arguments None
Return value None

(5) R_OSPL_EVENT_GROUP_Create
Outline Creates an event group
Header r_ospl.h
Declaration errnum_t R_OSPL_EVENT_GROUP_Create(volatile r_ospl_event_group_id_t*

out_EventGroupId, r_ospl_thread_id_t in_ThreadId);
Description This function must not be called from application.

There is this function, if "R_OSPL_EVENT_GROUP_CODE" macro was defined to
be 1. See section 4.5.4. r_ospl_event_group_id_t.

Arguments r_ospl_event_group_id_t
* out_EventGroupId

Output: ID of created event group

 r_ospl_thread_id_t
in_ThreadId

Thread ID that waits created event group

Return value Error code. If there is no error, the return value is 0.

(6) R_OSPL_EVENT_GROUP_Delete
Outline Delete an event group
Header r_ospl.h
Declaration errnum_t R_OSPL_EVENT_GROUP_Delete(volatile r_ospl_event_group_id_t

in_EventGroupId, r_ospl_thread_id_t in_ThreadId);
Description This function must not be called from application.

There is this function, if "R_OSPL_EVENT_GROUP_CODE" macro was defined to
be 1.

Arguments r_ospl_event_group_id_t
in_EventGroupId

ID of deleting event group

 r_ospl_thread_id_t
in_ThreadId

ID of thread that waits an event group specified at
"in_EventGroupId argument".

Return value Error code. If there is no error, the return value is 0.

4.6.22. Common functions for driver's APIs

(1) R_DRIVER_Transfer
Outline Does synchronously the asynchronous operation of the peripheral function
Header (Driver's header)
Declaration errnum_t R_DRIVER_Transfer(int_fast32_t ChannelNum, ...);
Description Call this function from A-thread.

This function is synchronous (blocking) function of "R_DRIVER_TransferStart"
function.

This function waits inside. But this function can be called on OS-using environment
or unnecessary other (pseudo) thread running on OS less.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 88 of 114
Oct. 26, 2017

"R_DRIVER_Transfer" is placeholder. Real function name is depending on the
driver. e.g. R_FS_Read, R_VSYNC_Wait, R_TOUCH_Read.

This function starts asynchronous operation that runs the hardware or the
communication and so on paralleled with CPU and waits at inside until the operation
was ended or waits input data for writing next operation to calling
"R_DRIVER_Transfer" function.

Internal event is allocated by calling "R_OSPL_EVENT_Allocate" function from
inside. The function checks that there is not conflicted event with events for other
parallel operation.

In OS less, "R_DRIVER_Transfer" function calls many times the function of
"r_ospl_idle_callback_t" type while waiting.

In OS less or for reduce OS thread count (the total size of stack memory and so on),
call "R_DRIVER_TransferStart" function and build pseudo multi-threading.

Arguments int_fast32_t
ChannelNum

The channel number. It can be changed by the API
specification.

 ... The parameters. It can be changed by the API
specification.

Return value Error code. If there is no error, the return value is 0. It can be changed by the API
specification.

(2) R_DRIVER_TransferStart
Outline Starts the asynchronous operation of the peripheral function
Header (Driver's header)
Declaration errnum_t R_DRIVER_TransferStart(int_fast32_t ChannelNum, ..., r_ospl_async_t*

Async);
Description Call this function from A-thread.

This function is asynchronous (non-blocking) function of "R_DRIVER_Transfer"
function.

"R_DRIVER_TransferStart" is placeholder. Real function name is depending on the
driver. e.g. R_FS_ReadStart, R_SOUND_Play, R_VSYNC_WaitStart,
R_TOUCH_ReadStart

Refer to "r_ospl_async_t" type structure how to receive the end of asynchronous
operation.

Check the value of "r_ospl_async_t::ReturnValue" member variable, when the
asynchronous operation was ended.

Keep the memory area of the structure passed "Async" argument until the
asynchronous operation was ended. Don't pass the structure to "Async" argument of
other asynchronous operation until the asynchronous operation was ended. Some
driver may be able to start multi asynchronous operation by passed other "Async"
structure to "Async" argument. If it is not possible, the function returns error code.

Some drivers continue asynchronous input operation after A-event received for not
lost continuous input from input hardware by starting to receive input event by
"R_DRIVER_TransferStart" function. In that case, keep the memory area of the
structure passed "Async" and not use bits used for A-event or I-event of other target
until finished input.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 89 of 114
Oct. 26, 2017

(This function was the name called "R_DRIVER_TransferAsync".)

Refer to 4.7.1. 4.7.4. The figure of sequence

Arguments int_fast32_t
ChannelNum

The channel number. It can be changed by the API
specification.

 ... The parameters. It can be changed by the API
specification.

 r_ospl_async_t* Async Input/Output: Setting of notifications. NULL is not
permitted

Return value Error code. If there is no error, the return value is 0. It can be changed by the API
specification.

(3) R_DRIVER_OnInterrupting
Outline Receives the interrupt
Header (Driver's header)
Declaration errnum_t R_DRIVER_OnInterrupting(const r_ospl_interrupt_t* InterruptSource);
Description This function sends the interrupt notification from the interrupt status register to

"r_driver_async_status_t::InterruptFlags" variable and clears the interrupt status in
the register.

"R_DRIVER_OnInterrupting" is placeholder. Real function name is depending on the
driver.

Normally, this function was called automatically from the default interrupt callback
function provided by the driver.

The interrupt response operation is usually done in "R_DRIVER_OnInterrupted"
function. But there is sometimes the specification that "R_DRIVER_OnInterrupting"
function does the interrupt response operation.

Arguments r_ospl_interrupt_t*
InterruptSource

The source of interrupt. It can be changed by the API
specification.

Return value Error code. If there is no error, the return value is 0. It can be changed by the API
specification.

(4) R_DRIVER_OnInterrupted
Outline Does the interrupt response operation
Header (Driver's header)
Declaration errnum_t R_DRIVER_OnInterrupted(int_fast32_t ChannelNum);
Description This function clears bits of "r_driver_async_status_t::InterruptFlags" variable to 0 that

bits were set by "R_DRIVER_OnInterrupting" function to 1 and responds the
interrupt.

"R_DRIVER_OnInterrupted" is placeholder. Real function name is depending on the
driver.

When the asynchronous operation was ended, the A-event is signaled. The value of
"r_ospl_async_t::ReturnValue" variable must be checked, when the A-event was
received,

If the asynchronous operation was started with "r_ospl_async_t::I_Thread ==
R_OSPL_THREAD_NULL", this function is called automatically from the default
interrupt callback function provided by the driver.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 90 of 114
Oct. 26, 2017

If the asynchronous operation was started with "r_ospl_async_t::I_Thread !=
R_OSPL_THREAD_NULL", the I-event is signaled by the default interrupt callback
function. This function must be called after receiving the I-event.

When any interrupts were not signaled, this function does nothing and returns 0 (no
error).

There is sometimes not provided "R_DRIVER_OnInterrupted" function, if the
interrupt response operation almost did nothing.

Arguments int_fast32_t
ChannelNum

The channel number. It can be changed by the API
specification.

Return value Error code. If there is no error, the return value is 0. It can be changed by the API
specification.

(5) R_DRIVER_GetAsyncStatus
Outline Get the pointer to the structure indicated the status of interrupts and the

asynchronous operation
Header (Driver's header)
Declaration errnum_t R_DRIVER_GetAsyncStatus(int_fast32_t ChannelNum, const

r_driver_async_status_t** out_Status);
Description "R_DRIVER_GetAsyncStatus" is placeholder. Real function name is depending on

the driver.

The pointer variable passed to "out_Status" argument must be with "const" qualifier.
This function can be called from the thread and the interrupt callback function. This
function can be called, if the driver had not been initialized yet.

The value of **out_Status cannot be modified from the application. The driver
modifies it. It is depending on the member variable's specification whether it is
modified by calling this function or not calling.

Arguments int_fast32_t
ChannelNum

The channel number. It can be changed by the API
specification.

 r_driver_async_status_t*
* out_Status

Output: The pointer to the structure about the status of
interrupt and asynchronous operation. This is defined by
the driver.

Return value Error code. If there is no error, the return value is 0 It can be changed by the API
specification.

(6) R_DRIVER_Initialize
Outline Initializes the driver and changes driver's state to usable
Header (Driver's header)
Declaration errnum_t R_DRIVER_Initialize(int_fast32_t ChannelNum, r_driver_config_t

in_out_Config);
Description This section describes channel using management (lock) only.

"R_DRIVER_Initialize" function locks initialized channel. However,
"R_DRIVER_LockChannel" function locks the channel without initialization. Other
drivers can use a non-competitive channel that was locked without initialization.
Because not used channel list is managed.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 91 of 114
Oct. 26, 2017

This function returns "E_ACCESS_DENIED" error or "E_FEW_ARRAY" error or
others, if lock operation was failed.

The module must raise an error or change to limitation mode, if the module failed to
lock a channel.

The following code initializes specified number channel:
e= R_DRIVER_Initialize(1, NULL);
 IF(e){goto fin;}

The following code initializes not used channel and gets the number of channel:
 int_fast32_t channel_num = R_OSPL_UNLOCKED_CHANNEL;
 r_driver_config_t config;

 e= R_DRIVER_Initialize(channel_num, &config);
 IF(e){goto fin;}
 channel_num = config.ChannelNum;

Arguments int_fast32_t

ChannelNum
Locking and initializing channel number or
"R_OSPL_UNLOCKED_CHANNEL"
It can be changed by the API specification.

 r_driver_config_t
in_out_Config

Input/Output: all setting for initialization. NULL is
permitted.
It can be changed by the API specification.

Return value Error code. If there is no error, the return value is 0 It can be changed by the API
specification.

(7) R_DRIVER_Finalize
Outline Finalizes the driver
Header (Driver's header)
Declaration errnum_t R_DRIVER_Finalize(int_fast32_t ChannelNum, errnum_t e);
Description This section describes channel using management (lock) only.

This function finalizes the channel and unlocks it.

The channel is not finalized and not unlocked, if the owner (thread or context) not
called "R_DRIVER_Initialize" called "R_DRIVER_Finalize".

Arguments int_fast32_t
ChannelNum

Finalizing and unlocking channel number.
It can be changed by the API specification.

 errnum_t e Errors that have occurred. No error = 0
It can be changed by the API specification.

Return value Error code or e 0 = successful and "e = 0"

(8) R_DRIVER_LockChannel
r Locks a channel (Changes to used state in the driver)
Header (Driver's header)
Declaration errnum_t R_DRIVER_LockChannel(int_fast32_t const ChannelNum,

int_fast32_t* out_ChannelNum);
Description This function calls "R_OSPL_LockChannel" and makes the specified channel

available to other drivers. If the driver having "R_OSPL_LockChannel" function was
used, standard initialize function (e.g. "R_DRIVER_Initialize") must be called.

This function does not initialize the specified channel of the peripheral unit.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 92 of 114
Oct. 26, 2017

If "ChannelNum" argument was specified to "R_OSPL_UNLOCKED_CHANNEL"
(=0xFEE), unlocked channel is locked. In this case, "out_ChannelNum" argument
cannot be specified to "NULL".

Arguments int_fast32_t
ChannelNum

Locking channel number or
"R_OSPL_UNLOCKED_CHANNEL"
It can be changed by the API specification.

 int_fast32_t*
out_ChannelNum

Output: Locked channel number, NULL is permitted.

Return value Error code. If there is no error, the return value is 0 It can be changed by the API
specification.

(9) R_DRIVER_UnlockChannel
Outline Unlocks a channel (Changes to not used state in the driver)
Header (Driver's header)
Declaration errnum_t R_DRIVER_UnlockChannel(int_fast32_t const ChannelNum, errnum_t

e);
Description This function calls "R_OSPL_UnlockChannel" and makes the specified channel

available to the driver having "R_DRIVER_UnlockChannel" function.

This function does not finalize the specified channel of the peripheral unit.

"E_ACCESS_DENIED" error is raised, if the specified channel was already unlocked.
This function does nothing and returns 0 (no error) (if argument e=0), if
"ChannelNum" argument was "R_OSPL_UNLOCKED_CHANNEL", less than 0,
channel count or more.

Arguments int_fast32_t
ChannelNum

Unlocking channel number,
It can be changed by the API specification.

 errnum_t e Errors that have occurred. No error = 0
It can be changed by the API specification.

Return value Error code or e 0 = successful and "e = 0"

4.6.23. Common functions under the driver

(1) R_DRIVER_SetDefaultAsync
Outline Sets default value in "r_ospl_async_t" type
Header (Driver's internal header)
Declaration void R_DRIVER_SetDefaultAsync(r_ospl_async_t* Async, r_ospl_async_type_t

AsyncType);
Description The default settings set by this function can be changed for target system.

"R_DRIVER_SetDefaultAsync" is placeholder. Real function name is depending on
the driver.
This function calls "R_OSPL_ASYNC_SetDefaultPreset".
e.g. R_FS_SetDefaultAsync.

Arguments r_ospl_async_t* Async Input/Output: Setting of notifications. NULL is not
permitted

 r_ospl_async_type_t
AsyncType

Type of asynchronous operation

Return value None

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 93 of 114
Oct. 26, 2017

(2) R_DRIVER_I_LOCK_Replace
Outline Replaces I-lock object to the integrated driver's I-lock object.
Header (Driver's internal header)
Declaration bool_t R_DRIVER_I_LOCK_Replace(int_fast32_t ChannelNum, void* i_lock,

r_ospl_i_lock_vtable_t* i_lock_v_table);
Description This is an API provided the driver which may be integrated by an integrated type

driver. This is called from the integrated type driver except for the application.
This aggregate the operation of enabling and disabling an interrupt by I-lock.

Arguments int_fast32_t ChannelNum Channel number
 void* i_lock Value of first argument with member functions in

"i_lock_v_table" argument with this function or NULL
 r_ospl_i_lock_vtable_t*

i_lock_v_table
VTable related I-lock or NULL

Return value Whether I-lock object was replaced or not

(3) R_DRIVER_DisableInterrupt
Outline Disables an interrupt for staring I-lock.
Header (Driver's internal header)
Declaration bool_t R_DRIVER_DisableInterrupt(int_fast32_t ChannelNum);
Description This is an API provided the driver which may be integrated by an integrated type

driver. This is called from the integrated type driver except for the application.
Arguments int_fast32_t ChannelNum Channel number
Return value Whether the interrupt was enabled or not

(4) R_DRIVER_EnableInterrupt
Outline Enables an interrupt for ending I-lock
Header (Driver's internal header)
Declaration void R_DRIVER_EnableInterrupt(int_fast32_t ChannelNum);
Description This is an API provided the driver which may be integrated by an integrated type

driver. This is called from the integrated type driver except for the application.
Arguments int_fast32_t ChannelNum Channel number
Return value None

4.6.24. Other functions
(1) Not recommended functions
The following functions are for ensuring portability with old OSPL specification or other specification. They are not

recommended to be used.

R_OSPL_EVENT_Get, R_OSPL_EVENT_OBJECT_Create, R_BSP_InterruptsEnable, R_BSP_InterruptsDisable

(2) half internal functions
The following functions are just common operation, not ensured portability or allow to be called from driver for

debugging.

R_OSPL_ASYNC_CopyExceptAThread, R_OSPL_I_LOCK_LockStub, R_OSPL_I_LOCK_UnlockStub,
R_OSPL_I_LOCK_RequestFinalizeStub, R_OSPL_LockCurrentThreadError, R_OSPL_UnlockCurrentThreadError

(3) Print function
The following functions show internal status. It is not recommended to call in your product.

R_OSPL_TABLE_Print, R_OSPL_QUEUE_Print

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 94 of 114
Oct. 26, 2017

4.7. Figure of sequence
4.7.1. The interrupt response operation - Synchronous type (Responds by interrupt context)
Figure 4-3 shows the interrupt response operation using a synchronous function (Responds by interrupt context). In

OS less, the interrupt callback function calls "R_DRIVER_OnInterrupted" function.

Figure 4-3 the interrupt response operation using a synchronous function (Responds by interrupt context)

A-thread

4.6.22. (1) R_DRIVER_Transfer

Driver Hardware

Request to start

Return

Interrupt

Interrupt
Callback

4.6.22. (3) R_DRIVER_OnInterrupting

Return

4.6.22. (4) R_DRIVER_OnInterrupted

Return
Return

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 95 of 114
Oct. 26, 2017

4.7.2. The interrupt response operation - Synchronous type (Responds by A-thread)
Figure 4-4 shows the interrupt response operation using a synchronous function (Responds by A-thread). In OS-using

environment, the driver usually calls "R_DRIVER_OnInterrupted" function from "R_DRIVER_Transfer" function
running on A-thread not from the interrupt callback function (a interrupt context) for running high priority thread, if the
interrupt response operation in the driver takes long time.

Figure 4-4 the interrupt response operation using a synchronous function (Responds by A-thread)

A-thread

4.6.22. (1) R_DRIVER_Transfer

Driver

Hardware

Request to start

Return

Interrupt

Interrupt
Callback

4.6.22. (3) R_DRIVER_OnInterrupting

Return

4.6.22. (4) R_DRIVER_OnInterrupted

Return

Set r_ospl_async_t::I_Thread to A-thread inside

Event notification

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 96 of 114
Oct. 26, 2017

4.7.3. The interrupt response operation - Asynchronous type (Not I-thread)
Figure 4-5 shows the interrupt response operation using an asynchronous function

(r_ospl_async_t::I_Thread==R_OSPL_THREAD_NULL). In OS-using environment, the driver may have same flow
using an I-thread created in the driver inside as 4.7.4. The interrupt response operation - Asynchronous type (With I-
thread).

Figure 4-5 the interrupt response operation using an asynchronous function

(r_ospl_async_t::I_Thread==R_OSPL_THREAD_NULL)

A-thread

4.6.22. (2) R_DRIVER_TransferStart

Driver

Return

Hardware

Request to start

4.6.4. (4) R_OSPL_EVENT_Wait

Return

Interrupt

Interrupt
Callback

Return

Return
Return

4.6.22. (4) R_DRIVER_OnInterrupted

4.6.22. (3) R_DRIVER_OnInterrupting

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 97 of 114
Oct. 26, 2017

4.7.4. The interrupt response operation - Asynchronous type (With I-thread)
Figure 4-6 shows the interrupt response operation using an asynchronous function

(r_ospl_async_t::I_Thread!=R_OSPL_THREAD_NULL). In OS-using environment, the high priority thread should be
set to "r_ospl_async_t::I_Thread" explicitly, if the I-thread created in the driver inside runs, even if
"r_ospl_async_t::I_Thread==R_OSPL_THREAD_NULL".

Figure 4-6 the interrupt response operation using an asynchronous function

(r_ospl_async_t::I_Thread!=R_OSPL_THREAD_NULL)

A-thread

Driver

Return

Hardware

Request to start

Return

Interrupt

Interrupt
Callback

Return

Return

Return

I-thread

Return

4.6.22. (4) R_DRIVER_OnInterrupted

4.6.22. (3) R_DRIVER_OnInterrupting

4.6.22. (2) R_DRIVER_TransferStart

4.6.4. (4) R_OSPL_EVENT_Wait

4.6.4. (4) R_OSPL_EVENT_Wait

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 98 of 114
Oct. 26, 2017

4.8. Supplementary Information
4.8.1. Selecting the target (use_list.h, mcu_board_select.h)
OSPL supports some OSs and base software (e.g. BSP, board support package). Please, change between to define or

not to define macro in "use_list.h" file and change the value of define in "mcu_board_select.h" file.

But OSPL does not support all pattern of OS and base software. Test pattern are the following sets. Enumerated
symbols in patterns are defined without value or value of "#define".

 TARGET_RZA1H, USE_LIST_RZA1H_OS_LESS

 TARGET_RZA1H, USE_LIST_RZA1H_BSP, USE_LIST_RTX

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 99 of 114
Oct. 26, 2017

4.8.2. Flagged structure parameters
Flags member variables in the structure are used as bit flags, and if a bit is 1, the corresponding member variable is

enabled according to the coding pattern. If a bit is 0, the value of the member variable is assumed to be the default
value. Even if the version is upgraded so that its structure contains additional members, the old and new versions can
be binary compatible.

FuncA_ConfigClass config;

config.Flags = F_FuncA_Param1 | F_FuncA_Param2;
config.Param1 = 10;
config.Param2 = 2;
FuncA(&config);

Because there is not Flags |= F_FuncA_Param3, config.Param3 is the default value.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 100 of 114
Oct. 26, 2017

4.8.3. Nested Interrupt
Any interrupts are not signaled in area of disabling all interrupt, even if nested interrupt was supported.

Only a timer has potential to be signaled, but it is not effect to code driver and application.

It is possible to signal high priority interrupt of driver B as nested interrupt from I-lock area in driver A or interrupt
callback function. But driver B cannot call API of driver A from interrupt context even if indirectly.

"R_OSPL_DisableAllInterrupt" function maximizes interrupt mask level after saving current interrupt mask level.
"R_OSPL_EnableAllInterrupt" function returns interrupt mask level to the saved level.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 101 of 114
Oct. 26, 2017

4.8.4. OS porting guide
When you support OSPL for OS to new OS, you should port based on already exist OSPL for OS.

When you support OSPL for OS less to new board, you should port based on already exist OSPL for OS less.

Ported module can be identified as OSPL, even if not all API was supported.

Please, port attached test program, if your test used it.

This document does not explain the guide of developing the driver.

(1) Internal functions in OSPL and drivers
When you supported new OS or new board for OS less, you should port following functions in OSPL and the porting

layer in drivers.

 R_BSP_InterruptWrite

 R_BSP_InterruptRead

 R_BSP_InterruptControl

When you support OSPL to new OS, you should port following functions.

 "R_OSPL_Start_T_Lock" function

 "R_OSPL_End_T_Lock" function

(2) Thread
About functions for threads (4.6.1. (2)), only "R_OSPL_THREAD_GetCurrentId" function is common API for

different OS. The other functions are not provided as common API for different OS.

When you support OSPL to new OS, you should port "R_OSPL_THREAD_GetCurrentId" function.

When you port from with OS to without OS, functions that run parallel should be support pseudo multi-threading.

(3) Event
About functions for thread attached events (4.6.1. (3)), all functions are common API for different OS.

When you support OSPL to new OS, you should port all OSPL functions.

(4) Disabled all interrupts area
About functions for the area disabled all interrupts (4.6.1. (8)), all functions are common API for different OS.

When you support OSPL to new OS or new compiler, you should port all OSPL functions.

(5) Memory
About functions for the memory (4.6.1. (13)), all functions are common API for different OS.

When you support OSPL to new OS or new board, you should port all OSPL functions.

When memory map was changed, you should change the implement of functions, too. Cached area and uncached area
is described in section 4.8.9.

Regarding the detail of AXI bus, refer to: RZ/A1H Group User's Manual: Hardware (5.8) AXI Protocol Control
Signals.

(6) Time
About functions for time (0), all functions are common API for different OS.

When you support OSPL to new OS, new board, you should port all OSPL functions.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 102 of 114
Oct. 26, 2017

API must implement using timer hardware. It is not possible to implement by software only.

OSPL must use different timer that is used by OS and application. OSPL will not return from API function referring
the timer inside, if the timer was shared.

This free running timer can be implemented by OS timer, only when there was no timer resource by using OS. In this
case, define "R_OSPL_FTIMER_IS" macro "R_OSPL_FTIMER_IS_OS_TIMER_INTERRUPT".

(7) Regarding idle state
About functions for the idle state (0), all functions are API for OS less only.

Even if you supported software to new board, there is no need to port OSPL API functions.

In OS-using environment, the lowest priority thread is considered the idle state thread.

(8) Interrupt callback functions
About functions for interrupt callback functions (0), all functions are common API for different OS.

When you support OSPL to new OS or new board, you should port the code of calling the interrupt callback function
from the interrupt hander, because the interrupt handler under the driver is not same.

(9) Regarding queue
Functions related with queue 4.6.1. (7) is common API, even if OS was supported to other.

Change implement of API function defined by OSPL, when OSPL is supported to new OS.

(10) Multi compiler support
Multi compiler support 4.6.1. (19) takes in each function and syntax between compilers.

Change implement, when OSPL is supported to new compiler.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 103 of 114
Oct. 26, 2017

4.8.5. Application Porting Guide
There is RTOS related function as a part of OSPL. This section describes related API as a reference of porting

application of RTOS function.

The following table describes almost same functions between OSPL and CMSIS-RTOS and describes related
µITRON functions.

CMSIS OSPL µITRON

Signal Thread attached event *1 Event flag and task event flags (implementation
specific)

Mail Queue r_ospl_queue_id_t Fix length memory pool + (data queue or mail
box)

Generic Wait R_OSPL_Delay dly_tsk
*1 Added allocation and free API for detected conflicting with event.

The following table describes functions of OSPL closing to functions of CMSIS. It is necessary to port application or
develop wrapper.

CMSIS OSPL

Thread To create and delete thread + r_ospl_thread_id_t
Timer To create and delete thread + free running timer + R_OSPL_Delay
Mutex r_ospl_c_lock_t or r_ospl_queue_id_t *2
Semaphore r_ospl_c_lock_t or r_ospl_queue_id_t *2
Message Queue r_ospl_queue_id_t
Memory Pool r_ospl_table_t

*2 Split accessible data between threads which send to a queue and receive from the queue like exclusive control.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 104 of 114
Oct. 26, 2017

4.8.6. Body of inline function (inline_body.c)
When an inline function is not expanded, there is a compiler that automatically generates the entity of the function

and the compiler that the user must explicitly generate.

Depending on the compiler options, they may not all be expanded. Without the entity of the function when it was not
expanded, the linker prints an error message that is similar to the following:

undefined reference to `R_OSPL_THREAD_ExitWaiting'

You can explicitly generate a function entity by writing including header file code at below #include "r_ospl.h"
in ospl\porting\inline_body.c file. R_OSPL_MAKE_INLINE_BODY is defined at the beginning of the inline_body.c. By
that the definition of the INLINE macro (4.6.20. (4)) changes to always generates the entity of the function.

Depending on the compiler, __STDC_VERSION__> = 199901 L becomes true even though it does not conform to
the inline function specification of C99, and #if above the INLINE macro definition may not be determined as expected.
In that case, it is better to define the INLINE macro without determining the compiler type with #if.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 105 of 114
Oct. 26, 2017

4.8.7. Reducing footprint
Memory size (footprint) can be reduced by disabling debugging function of OSPL.

Set the following symbols, remove *.c file of OSPL temporarily, remove application sources except one application's
source and copy functions and variables which was raised link error at rebuilding from removed *.c file.

 R_OSPL_NDEBUG = 1

 R_OSPL_ERROR_BREAK = 0

 R_OSPL_TLS_ERROR_CODE = 0 (Set 1, if "R_OSPL_GetErrNum" function is used)

 R_OSPL_DEBUG_TOOL = 0

 R_OSPL_EVENT_OBJECT_CODE = 0

 R_OSPL_DETECT_BAD_EVENT = 0

 R_OSPL_TLS_EVENT_CODE = 0

 R_OSPL_CPU_LOAD = 0 (For OS less)

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 106 of 114
Oct. 26, 2017

4.8.8. How to use the driver with interrupt handler
There are sometimes drivers that the specification of the driver is that the application makes the interrupt handler.

OSPL calls the driver "driver with interrupt handler". This driver may have the specification that the application does
exclusive control.

The APIs written in this document (e.g. 0R_OSPL_SetInterruptPriority) does not depend on various OS or
with/without OS by abstract OS layer. The driver with interrupt handler does not depend on various OS or with/without
OS by placing the module depending on the OS out of the driver.

If the application or the middle-ware used the driver with interrupt handler, the following point must be checked.

 With OS and without OS, some global variables must be used for receiving data from the interrupt handler.
In the case, "volatile" qualifier must be written with global variables. If receiving code was written in the
interrupt handler, it is necessary to make "volatile" global variable related to threads, events and arguments
or register's value that is not able to get after clearing the interrupt (end of interrupt handler) at least.

 With OS and without OS, the code of I-Lock's exclusive control must be written, if necessary. (See
glossary)

 If the application supported OS, too, it is necessary to reduce the code in the interrupt handler, because the
highest priority thread can response soon. Specifically, only the code of set event is written in the interrupt
handler. The code of response the interrupt is written in the function receiving the event. Also, the event
must be clear before starting the asynchronous operation. (The application with OS for exclusive use and
unit test are not necessary to support it.)

 When the application was ported with OS, codes of calling driver's API should be written in T-Lock's
exclusive control. Otherwise, codes of calling driver's API should be written after checking that the current
thread is expected only one thread.

Example: the code of supported OS and without OS using the driver with interrupt handler

enum { R_DRIVER_EVENT_A = 0x0010 };
volatile r_ospl_thread_id_t g_App_Thread;
volatile r_driver_interrupt_t g_App_InterruptParameter;

int main()
{
 g_App_Thread = R_OSPL_THREAD_GetCurrentId();
 R_OSPL_EVENT_Clear(g_App_Thread, R_DRIVER_EVENT_A | R_DRIVER_EVENT_B);
 R_DRIVER_RegisterISR(R_DRIVER_INTERRUPT, App_InterruptCallback);
 R_DRIVER_RegisterISR(R_DRIVER_ERROR_INTERRUPT,
 App_ErrorInterruptCallback);

 for (;;) {
 e= R_OSPL_EVENT_Wait(R_OSPL_ANY_FLAG, &got_flags,
 R_OSPL_INFINITE); IF(e){goto fin;}

 /* Start I-Lock for R_DRIVER */

 #if R_OSPL_IS_PREEMPTION
 /* Start T-Lock for R_DRIVER */
 #endif

 if (IS_BIT_SET(got_flags, R_DRIVER_EVENT_A)) {

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 107 of 114
Oct. 26, 2017

 e = R_DRIVER_GetAsyncResult(); IF(e){goto fin;}
 :

 /* Write the code written in the interrupt handler here */
 }
 if (IS_BIT_SET(got_flags, R_DRIVER_EVENT_B)) {
 e = R_DRIVER_GetAsyncResult(); IF(e){goto fin;}
 :
 }

 #if R_OSPL_IS_PREEMPTION
 /* End T-Lock and/or I-Lock for R_DRIVER */
 #endif

 /* End I-Lock for R_DRIVER */
 }
}

void App_InterruptCallback(int Argument)
{
 R_DRIVER_GetParameterOnInterrupting(Argument,
 &g_App_InterruptParameter);
 R_OSPL_EVENT_Set(g_App_Thread, R_DRIVER_EVENT_A);
}

void App_ErrorInterruptCallback()
{
 R_OSPL_RaiseUnrecoverable(ERROR_CODE);
}

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 108 of 114
Oct. 26, 2017

4.8.9. Pattern of mapping cached area and uncached area (RZ/A1)
Please, change the function to define memory map in "r_ospl_memory.c" file, if you changed memory map of cached

area and uncached area set by TTB (MMU) in CPU. Also, you can change some patterns of the memory map by value
of "GS_RZ_A1_MMU_TYPE". Supported memory map are described in the following list.

1. GS_RZ_A1_MMU_TYPE_IS_SHIFTED_MIRROR: The virtual address (pointer in the software) of cached area
and uncached area is mapped at mirror area of On-Chip RAM. The virtual address of uncached area is same as the
physical address. This memory map cannot be selected in RZ/A1M, because it does not have mirror area of On-Chip
RAM.

2. GS_RZ_A1_MMU_TYPE_IS_ REVERSED _MIRROR: The virtual address (pointer in the software) of cached
area and uncached area is mapped at On-Chip RAM (not mirror). The virtual address of uncached area is same as the
physical address.

3. GS_RZ_A1_MMU_TYPE_IS_CACHE_UNCACHE: The virtual address (pointer in the software) of cached area
is mapped at low address of On-Chip RAM (not mirror) and uncached area is mapped at high address. The virtual
address is same as the physical address. It is not possible to change between virtual address and physical address.

1. GS_RZ_A1_MMU_TYPE_IS_SHIFTED_MIRROR

Virtual Address Physical Address

Cached Area

Uncached Area
On-Chip RAM

(mirror)

0xFFFFFFFF

0x00000000 0x00000000

0xFFFFFFFF

On-Chip RAM

2. GS_RZ_A1_MMU_TYPE_IS_REVERSED_MIRROR

Virtual Address Physical Address

Uncached Area

Cached Area
On-Chip RAM

(mirror)

0xFFFFFFFF

0x00000000 0x00000000

0xFFFFFFFF

On-Chip RAM

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 109 of 114
Oct. 26, 2017

4. GS_RZ_A1_MMU_TYPE_IS_CROSSED_MIRROR: The virtual address (pointer in the software) of cached area
is mapped at On-Chip RAM (not mirror) and uncached area is mapped at mirror area of On-Chip RAM. The virtual
address is same as the physical address. It is possible to change between virtual address and physical address at the first
1MB and last 1MB of On-Chip RAM in RZ/A1H. This memory map cannot be selected in RZ/A1M, because it does
not have mirror area of On-Chip RAM.

3. GS_RZ_A1_MMU_TYPE_IS_CACHE_UNCACHE

On-Chip RAM

0xFFFFFFFF

0x00000000 0x00000000

0xFFFFFFFF

Cached Area

Uncached Area

(No Mirror) On-Chip RAM
(mirror)

Virtual Address Physical Address

4. GS_RZ_A1_MMU_TYPE_IS_CROSSED_MIRROR

Virtual Address Physical Address

On-Chip RAM

0xFFFFFFFF

0x00000000 0x00000000

0xFFFFFFFF

Cached Area

Uncached Area On-Chip RAM
(mirror)

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 110 of 114
Oct. 26, 2017

4.9. Glossary

A-event Event receiving the end of asynchronous operation and waking up A-thread.

A-thread Thread in the application. E.g. main thread.
Thread set to "r_ospl_async_t::A_Thread".

C-lock What a thread holds exclusively a context (the current status of driver, middleware or
hardware).
If the competition was occurred, an error is raised without waiting.
Lock and unlock operations must do exclusive control with internal lock state variable
at inside, because two or more threads have potential to start to lock or unlock at the
same time.
T-lock usually locks in each function. C-lock usually locks from initializing to finalizing
or from opening to closing. Even if in multi-thread environment (and pseudo multi-
thread environment), the context set by current thread is not changed by other thread
without exclusive control.

Refer to: (4.5.12.) r_ospl_c_lock_t, (4.6.22. (6)) R_DRIVER_Initialize, T-lock, I-lock

Channel 1 or more numbers channel in a unit of the peripheral.

Context The area that contains current setting values. In OSPL, context means context
related a thread. Interrupt context means context when CPU is interrupt mode.

A context is attached by a thread or an interrupt. The context is not always attached
the thread only or the interrupt only.

Even on one channel, when a series of operations are performed in parallel on the
ont channel, context handling code is necessary. Note that parallel processing is not
only between threads, but also at each stage of interrupt (multiple interrupt stage).

Event Refer to 4.6.1. (3) Functions for thread attached events
.

I-event Event receiving the notification need to do the interrupt response operation and
waking up I-thread.

I-thread Thread to do the interrupt response operation.
Thread set to "r_ospl_async_t::I_Thread".

I-thread calls "R_DRIVER_OnInterrupted" function.
In OS-using environment, I-thread may be the thread created in the driver.
In OS less, A-thread does pseudo multi-threading. In "R_DRIVER_Transfer" function,
A-thread does the interrupt response operations instead of I-thread.
The role of I-thread is almost same as IST (Interrupt Service Thread).

I-Lock Exclusive control between operations on the thread and operations on the interrupt
context (the interrupt handler) by disabling the interrupt managed by the driver.

Example: It may be necessary to I-Lock for keeping consistent between internal
status variables in the driver or registers and status of the peripheral function, when
both the operation of stopping the peripheral function from a thread and the
operation of restart the peripheral function from an interrupt handler were done at the
same time.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 111 of 114
Oct. 26, 2017

When an interrupt signaled with masked the interrupt (in I-lock area), normally the
interrupt is pended. In the state, when the interrupt was unmasked, CPU jumps to
the interrupt vector soon.

Refer to T-Lock, C-lock.

Interrupt callback
function

Function callbacked from the interrupt handler.

Interrupt handler Function callbacked when the interrupt was signaled. This is registered by calling OS
or API of the target board.
This calls the interrupt callback function with adapting different from OS or API for
target board.
This is sometimes called ISR (Interrupt Service Routines).
See (4.8.8.) How to use the driver with interrupt handler

Pseudo multi-
threading

Emulation of multi-threading doing operations for each thread context by calling from
1 message loop. Even if no time sharing, OS that can preempt high priority thread is
not pseudo multi-threading.

The module supported pseudo multi-threading cannot wait in API function.

Operations for other thread context must be executed while waiting in the
synchronous function, it is necessary to return to the message loop (main function)
by doing following operation.

・ Separate a step function before waiting (polling) and a step function the
waiting (polling) operation and later operations.

・ Change to checking without polling or waiting with time out 0
・ Save local variables in the function and the function number (or function

pointer) to the context of a pseudo multi-threading and register the context
by "R_OSPL_THREAD_SetDelegate" function.

OSPL recommends that the driver provides both synchronous API functions having
wait and asynchronous API functions not having wait.

Refer to 4.6.3. (13) R_OSPL_THREAD_GetIsWaiting

Setting of
notifications

Refer to 4.5.6. r_ospl_async_t

Thread local storage
(TLS)

Variable having different memory area by each thread accessing same global
variable.
It is sometimes implemented by the array indexed by thread number. This is
sometimes not called TLS.
See 4.5.13. r_ospl_table_t.

T-Lock Exclusive control of resources or variables between operations on the thread and
operations on the other thread by using the mutex and so on. In OS less, it is not
necessary to T-Lock. Even if OS-using environment, the target was locked by C-lock,
the target does not have to be locked by T-lock.

Refer to I-Lock, C-lock.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 112 of 114
Oct. 26, 2017

5. Sample Codes
The sample codes can be downloaded from the Renesas Electronics website.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 113 of 114
Oct. 26, 2017

6. Documents for Reference
User's Manual: Hardware

RZ/A1H Group User's Manual: Hardware

The latest version can be downloaded from the Renesas Electronics website.

R7S72100 RTK772100BC00000BR (GENMAI) User's Manual

The latest version can be downloaded from the Renesas Electronics website.

R7S72100 CPU (GENMAI) Optional Board RTK7721000B00000BR User's Manual

The latest version can be downloaded from the Renesas Electronics website.

ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition Issue C

The latest version can be downloaded from the ARM website.

ARM Generic Interrupt Controller Architecture Specification Architecture version 1.0

The latest version can be downloaded from the ARM website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User's Manual: Development Tools

ARM Software Development Tools (ARM Compiler toolchain, ARM DS-5 etc.) can be downloaded from the ARM
website.

The latest version can be downloaded from the ARM website.

RZ/A1H Group OS Porting Layer "OSPL" Sample Program

R01AN1887EJ0160 Rev.1.60 Page 114 of 114
Oct. 26, 2017

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Doc.
Rev. Version Date Description

1.60 1.60 Oct 26, 2017 Added:
 use_list.h, mcu_board_select.h : selecting environment

 R_OSPL_FOR_* : version of environment

 Supported FreeRTOS

 R_OSPL_INTERRUPT_HANDLER_IS

 R_OSPL_END_OF_INTERRUPT

 R_OSPL_THREAD_Destroy

 R_OSPL_THREAD_SetDelegate

 R_OSPL_THREAD_GetDelegate

 R_OSPL_NOTIFY_ERROR

 R_OSPL_FreeCurrentThreadError

 R_OSPL_INFINITE_PSEUDO

 R_OSPL_ALL_EVENT_ALLOCATE

 r_ospl_event_group_id_t

 R_OSPL_EVENT_GROUP_Create

 R_OSPL_EVENT_GROUP_Delete

 R_OSPL_QUEUE_NULL

 R_OSPL_GetQueueAsSingletonLock

 R_OSPL_TABLE_GetStatus

 R_OSPL_MOVE_END_OF_STACK

 R_OSPL_GET_MIN_STACK_POINTER

 CHK : tiny error check

 4.8.6. Article of inline function

 4.8.9. Article of cached area and uncached area

Removed:
 Event object

Fixed:
 Warning of each compiler

 Modify word of symbol (from sentinel to canary) (from modify
thread to change thread)

 Fixed not intended I-lock (the issue is only when R_OSPL_NDEBUG
is not defined)

1.01 0.96 Feb. 29, 2016 Added:

 R_OSPL_EVENT_Allocate
 R_OSPL_EVENT_Free
 R_OSPL_UNUSED_FLAG
 R_OSPL_DETECT_BAD_EVENT

 R_OSPL_ASYNC_SetDefaultPreset
 Event object
 Array index table
 Stack check
 R_ADDRESS_Add
 R_OSPL_MEMORY_GetMaxLevelOfFlush
 R_OSPL_CountLeadingZeros

Added "R_OSPL_DEBUG_THREAD_COUNT" and removed
"R_OSPL_SET_DEBUG_WORK".
Added "R_OSPL_THREAD_NULL" and removed
"R_OSPL_THREAD_INTERRUPT".
Modified to "r_ospl_queue_id_t" from "r_ospl_queue_t".

0.90 Jul. 31, 2015 Added r_ospl_queue_t, r_ospl_axi_cache_attribute_t
1.00 0.89 Jul. 30, 2014 Added R_OSPL_SetInterruptPriority
0.88 0.88 Jun. 20, 2014 Added OSPL initializing API.

Separated from NDEBUG to R_OSPL_NDEBUG.
Defined the detail of timer functions.
Added the behavior of waiting for OS less (e.g.

R_OSPL_THREAD_SetOnWait).
Added E_NOT_THREAD error.
Added R_OSPL_FLUSH_INVALIDATE.
Added C-lock functions.

0.87 Mar. 18, 2014 The meaning of bits of clear argument was reversed.
Output value was changed, when "R_OSPL_EVENT_Wait" become
time out.
Member variables in "r_ospl_interrupt_t" structure were added.
Specifications were added: R_OSPL_TLS_ERROR_CODE,
R_OSPL_DEBUG_TOOL, R_OSPL_THREAD_INTERRUPT,
R_OSPL_FINAL_A_FLAG
Explanations were added: R_DRIVER_SetDefaultAsync, NDEBUG

0.80 Feb. 25, 2014 First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI,
an associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not
access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock signal
has stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.

 The characteristics of an MPU or MCU in the same group but having a different part number may
differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

	OS Porting Layer "OSPL" Sample Program
	1. Specifications
	2. Operation Check Conditions
	3. Reference Application Note(s)
	4. Description of Software
	4.1. Operation Outline
	4.1.1. Preparations

	4.2. Interrupt
	4.3. Basic Types
	4.4. Constants, Enumerations and Error code
	4.4.1. Version
	4.4.2. Error Codes
	4.4.3. r_ospl_async_state_t type - State
	4.4.4. r_ospl_wait_t type - The parameter of R_OSPL_THREAD_SetOnWait function
	4.4.5. r_ospl_flush_t type - The parameter of R_OSPL_MEMORY_Flush function
	4.4.6. r_ospl_axi_cache_attribute_t type - Cache attribute of AXI bus
	4.4.7. r_ospl_axi_protection_t type - Protection attribute of AXI bus
	4.4.8. r_ospl_async_type_t
	4.4.9. bsp_int_err_t
	4.4.10. r_ospl_event_flags_t
	4.4.11. r_ospl_table_flags_t
	4.4.12. r_ospl_if_not_t
	4.4.13. bsp_int_src_t
	4.4.14. bsp_int_cb_t
	4.4.15. bsp_int_cmd_t
	4.4.16. mcu_lock_t
	4.4.17. The other constant values

	4.5. Structures and Unions
	4.5.1. r_ospl_thread_id_t
	4.5.2. r_ospl_thread_def_t
	4.5.3. r_ospl_flag32_t
	4.5.4. r_ospl_event_group_id_t
	4.5.5. r_ospl_event_status_t
	4.5.6. r_ospl_async_t
	4.5.7. r_ospl_async_status_t
	4.5.8. r_ospl_queue_id_t
	4.5.9. r_ospl_queue_def_t
	4.5.10. r_ospl_queue_status_t
	4.5.11. BSP_CFG_USER_LOCKING_TYPE
	4.5.12. r_ospl_c_lock_t
	4.5.13. r_ospl_table_t
	4.5.14. r_ospl_table_status _t
	4.5.15. r_ospl_memory_spec_t
	4.5.16. r_ospl_ftimer_spec_t
	4.5.17. r_ospl_caller_t
	4.5.18. r_ospl_interrupt_t

	4.6. Functions
	4.6.1. List
	(1) Functions for versions of OSPL
	(2) Functions for threads - r_ospl_thread_id_t type
	(3) Functions for thread attached events
	(4) Functions for flags - r_ospl_flag32_t type
	(5) Functions for bit flags - bit_flags_fast32_t type
	(6) Functions for asynchronous notification - r_ospl_async_t type
	(7) Functions for queue - r_ospl_queue_id_t type
	(8) Functions for the area disabled all interrupts
	(9) Functions for interrupt handling
	(10) Functions for BSP_CFG_USER_LOCKING_TYPE type
	(11) Functions for r_ospl_c_lock_t type
	(12) Functions for array index table - r_ospl_table_t type
	(13) Functions for the memory
	(14) Functions for time
	(15) Functions for the idle state
	(16) Functions for interrupt callback functions - r_ospl_caller_t type
	(17) Functions for error handling and debugging
	(18) Functions for reviewed tags for the static code analyzer
	(19) Multi compiler support
	(20) Functions for the layer under OSPL
	(21) Common functions for driver's APIs
	(22) Common functions under the driver

	4.6.2. Functions for versions of OSPL
	(1) R_OSPL_GetVersion
	(2) R_OSPL_IsPreemption

	4.6.3. Functions for threads - r_ospl_thread_id_t type
	(1) R_OSPL_THREAD_DEF
	(2) R_OSPL_THREAD
	(3) R_OSPL_THREAD_Create
	(4) R_OSPL_THREAD_Destroy
	(5) R_OSPL_THREAD_GetArgument
	(6) R_OSPL_THREAD_SetCurrentId
	(7) R_OSPL_THREAD_GetCurrentId
	(8) R_OSPL_THREAD_GetMainId
	(9) R_OSPL_THREAD_SetDelegate
	(10) R_OSPL_THREAD_GetDelegate
	(11) R_OSPL_THREAD_SetOnWait
	(12) R_OSPL_THREAD_GetOnWait
	(13) R_OSPL_THREAD_GetIsWaiting
	(14) R_OSPL_THREAD_ExitWaiting

	4.6.4. Functions for thread attached events
	(1) R_OSPL_EVENT_Allocate
	(2) R_OSPL_EVENT_Set
	(3) R_OSPL_EVENT_Clear
	(4) R_OSPL_EVENT_Wait
	(5) R_OSPL_EVENT_GetStatus
	(6) R_OSPL_EVENT_Free

	4.6.5. Functions for flags - r_ospl_flag32_t type
	(1) R_OSPL_FLAG32_InitConst
	(2) R_OSPL_FLAG32_Set
	(3) R_OSPL_FLAG32_Clear
	(4) R_OSPL_FLAG32_Get
	(5) R_OSPL_FLAG32_GetAndClear

	4.6.6. Functions for bit flags - bit_flags_fast32_t type
	(1) IS_BIT_SET
	(2) IS_ANY_BITS_SET
	(3) IS_ALL_BITS_SET
	(4) IS_BIT_NOT_SET
	(5) IS_ANY_BITS_NOT_SET
	(6) IS_ALL_BITS_NOT_SET

	4.6.7. Functions for asynchronous notification - r_ospl_async_t type
	(1) R_OSPL_ASYNC_SetDefaultPreset

	4.6.8. Functions for queue - r_ospl_queue_id_t type
	(1) R_OSPL_QUEUE_DEF
	(2) R_OSPL_QUEUE
	(3) R_OSPL_QUEUE_Create
	(4) R_OSPL_QUEUE_GetStatus
	(5) R_OSPL_QUEUE_Allocate
	(6) R_OSPL_QUEUE_Put
	(7) R_OSPL_QUEUE_Get
	(8) R_OSPL_QUEUE_Free
	(9) R_OSPL_GetQueueAsSingletonLock

	4.6.9. Functions for the area disabled all interrupts
	(1) R_OSPL_EnableAllInterrupt
	(2) R_OSPL_DisableAllInterrupt
	(3) R_OSPL_GetIsAllInterruptEnabled

	4.6.10. Functions for interrupt handling
	(1) R_BSP_InterruptWrite
	(2) R_BSP_InterruptRead
	(3) R_BSP_InterruptControl
	(4) R_OSPL_SetInterruptPriority
	(5) R_OSPL_END_OF_INTERRUPT

	4.6.11. Functions for BSP_CFG_USER_LOCKING_TYPE type
	(1) R_OSPL_LockChannel
	(2) R_OSPL_UnlockChannel
	(3) R_BSP_HardwareLock
	(4) R_BSP_HardwareUnlock
	(5) R_BSP_SoftwareLock
	(6) R_BSP_SoftwareUnlock

	4.6.12. Functions for r_ospl_c_lock_t type
	(1) R_OSPL_C_LOCK_InitConst
	(2) R_OSPL_C_LOCK_Lock
	(3) R_OSPL_C_LOCK_Unlock

	4.6.13. Functions for array index table - r_ospl_table_t type
	(1) R_OSPL_TABLE_DEF
	(2) R_OSPL_TABLE
	(3) R_OSPL_TABLE_InitConst
	(4) R_OSPL_TABLE_SIZE
	(5) R_OSPL_TABLE_GetIndex
	(6) R_OSPL_TABLE_Free
	(7) R_OSPL_TABLE_FreeByIndex
	(8) R_OSPL_TABLE_GetStatus

	4.6.14. Functions for the memory
	(1) R_OSPL_MEMORY_Flush
	(2) R_OSPL_MEMORY_RangeFlush
	(3) R_OSPL_MEMORY_GetLevelOfFlush
	(4) R_OSPL_MEMORY_GetMaxLevelOfFlush
	(5) R_OSPL_MEMORY_GetSpecification
	(6) R_OSPL_ToPhysicalAddress
	(7) R_OSPL_ToCachedAddress
	(8) R_OSPL_ToUncachedAddress
	(9) R_OSPL_MEMORY_Barrier
	(10) R_OSPL_InstructionSyncBarrier
	(11) R_OSPL_AXI_Get2ndCacheAttribute
	(12) R_OSPL_AXI_GetProtection

	4.6.15. Functions for time
	(1) R_OSPL_Delay
	(2) R_OSPL_FTIMER_InitializeIfNot
	(3) R_OSPL_FTIMER_Get
	(4) R_OSPL_FTIMER_IsPast
	(5) R_OSPL_FTIMER_TimeToCount
	(6) R_OSPL_FTIMER_CountToTime
	(7) R_OSPL_FTIMER_GetSpecification

	4.6.16. Functions for the idle state
	(1) R_OSPL_IDLE_Start_CPU_Load
	(2) R_OSPL_IDLE_Print_CPU_Load

	4.6.17. Functions for interrupt callback functions - r_ospl_caller_t type
	(1) R_OSPL_CallInterruptCallback
	(2) r_ospl_callback_t

	4.6.18. Functions for error handling and debugging
	(1) CHK
	(2) R_OSPL_RaiseUnrecoverable
	(3) R_DEBUG_BREAK
	(4) R_DEBUG_BREAK_IF_ERROR
	(5) IF
	(6) IF_D
	(7) ASSERT_R
	(8) ASSERT_D
	(9) R_STATIC_ASSERT
	(10) R_STATIC_ASSERT_GLOBAL
	(11) R_NOOP
	(12) R_OSPL_MergeErrNum
	(13) R_OSPL_SetErrNum
	(14) R_OSPL_GetErrNum
	(15) R_OSPL_CLEAR_ERROR
	(16) R_OSPL_NOTIFY_ERROR
	(17) R_OSPL_SET_BREAK_ERROR_ID
	(18) R_OSPL_GET_ERROR_ID
	(19) R_OSPL_DEBUG_WORK_SIZE
	(20) R_OSPL_GetCurrentThreadError
	(21) R_OSPL_FreeCurrentThreadError
	(22) R_OSPL_CHANGE_THREAD_LOCKED_COUNT
	(23) R_OSPL_GET_THREAD_LOCKED_COUNT
	(24) R_OSPL_GET_STACK_POINTER
	(25) R_OSPL_SET_END_OF_STACK
	(26) R_OSPL_MOVE_END_OF_STACK
	(27) R_OSPL_CHECK_STACK_OVERFLOW
	(28) R_OSPL_RESET_MIN_FREE_STACK_SIZE
	(29) R_OSPL_GET_MIN_FREE_STACK_SIZE
	(30) R_OSPL_GET_MIN_STACK_POINTER
	(31) R_D_Add
	(32) R_D_Watch
	(33) R_D_AddToIntLog
	(34) R_D_Counter

	4.6.19. Functions for reviewed tags for the static code analyzer
	(1) IS
	(2) R_OSPL_ReturnFalse
	(3) R_UNREFERENCED_VARIABLE
	(4) R_UNREFERENCED_VARIABLE2
	(5) R_UNREFERENCED_VARIABLE3
	(6) R_UNREFERENCED_VARIABLE4

	4.6.20. Multi compiler support
	(1) R_OSPL_SECTION
	(2) R_OSPL_ALIGNMENT
	(3) R_COUNT_OF
	(4) INLINE
	(5) STATIC_INLINE
	(6) R_ADDRESS_Add
	(7) R_OSPL_CountLeadingZeros
	(8) R_OSPL_IsSetBitsCount1

	4.6.21. Functions for the layer under OSPL
	(1) R_DebugBreak
	(2) R_OSPL_OnIdleDefault
	(3) R_OSPL_Start_T_Lock
	(4) R_OSPL_End_T_Lock
	(5) R_OSPL_EVENT_GROUP_Create
	(6) R_OSPL_EVENT_GROUP_Delete

	4.6.22. Common functions for driver's APIs
	(1) R_DRIVER_Transfer
	(2) R_DRIVER_TransferStart
	(3) R_DRIVER_OnInterrupting
	(4) R_DRIVER_OnInterrupted
	(5) R_DRIVER_GetAsyncStatus
	(6) R_DRIVER_Initialize
	(7) R_DRIVER_Finalize
	(8) R_DRIVER_LockChannel
	(9) R_DRIVER_UnlockChannel

	4.6.23. Common functions under the driver
	(1) R_DRIVER_SetDefaultAsync
	(2) R_DRIVER_I_LOCK_Replace
	(3) R_DRIVER_DisableInterrupt
	(4) R_DRIVER_EnableInterrupt

	4.6.24. Other functions
	(1) Not recommended functions
	(2) half internal functions
	(3) Print function

	4.7. Figure of sequence
	4.7.1. The interrupt response operation - Synchronous type (Responds by interrupt context)
	4.7.2. The interrupt response operation - Synchronous type (Responds by A-thread)
	4.7.3. The interrupt response operation - Asynchronous type (Not I-thread)
	4.7.4. The interrupt response operation - Asynchronous type (With I-thread)

	4.8. Supplementary Information
	4.8.1. Selecting the target (use_list.h, mcu_board_select.h)
	4.8.2. Flagged structure parameters
	4.8.3. Nested Interrupt
	4.8.4. OS porting guide
	(1) Internal functions in OSPL and drivers
	(2) Thread
	(3) Event
	(4) Disabled all interrupts area
	(5) Memory
	(6) Time
	(7) Regarding idle state
	(8) Interrupt callback functions
	(9) Regarding queue
	(10) Multi compiler support

	4.8.5. Application Porting Guide
	4.8.6. Body of inline function (inline_body.c)
	4.8.7. Reducing footprint
	4.8.8. How to use the driver with interrupt handler
	4.8.9. Pattern of mapping cached area and uncached area (RZ/A1)

	4.9. Glossary

	5. Sample Codes
	6. Documents for Reference
	Website and Support
	Revision History
	General Precautions in the Handling of MPU/MCU Products
	Notice

