## RENESAS TECHNICAL UPDATE

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan Renesas Electronics Corporation

| Product Category | MPU/MCU |  | Document No. | TN-RL*-A018A/E | Rev. | 1.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Title | Correction for Incorrect Description Notice <br> RL78/G1A Descriptions in the Hardware User's Manual Rev. 1.10 Changed |  | Information Category | Technical Notification |  |  |
| Applicable Product | $\begin{aligned} & \text { RL78/G1A } \\ & \text { R5F10E } \end{aligned}$ | Lot No. | Reference Document | RL78/G1A User's Manual: Hardware <br> Rev.1.10 <br> R01UH0305EJ0110 (Mar. 2013) |  |  |
|  |  | All lots |  |  |  |  |

This document describes misstatements found in the RL78/G1A User's Manual: Hardware Rev.1.10 (R01UH0305EJ0110).

Corrections

| Applicable Item | Applicable Page | Contents |
| :--- | :--- | :--- |
| 11.2 Configuration of A/D Converter | Pages 363 | Incorrect descriptions revised |
| 11.3.2 A/D converter mode register 0 (ADM0) | Pages 371 to 375 | Incorrect descriptions revised |
| 12.6 Operation of UART (UART0 to UART2) <br> Communication | Pages 528 | Incorrect descriptions revised |
| 12.6.1 UART transmission | Pages 539 | Incorrect descriptions revised |
| 13.5.16 Communication operations | Page 637 | Incorrect descriptions revised |
| 17.3.4 Port mode registers 0 to 2, 7, 12, 15 (PM0 to <br> PM2, PM7, PM12, PM15) | Pages 746 | Incorrect descriptions revised |
| 18.3.3 SNOOZE mode | Page 767 | Incorrect descriptions revised |
| 22.3.1.1 Flash memory CRC control register <br> (CRC0CTL) | Pages 808 | Incorrect descriptions revised |
| 25.4.3 Procedure for accessing data flash memory | Page 842 | Changed specification |
| 29.3.1 Pin characteristics | Page 889,890 | Incorrect descriptions revised |
| 29.4 AC Characteristics | Page 900 | Incorrect descriptions revised |
| 29.5.1 Serial array unit | Page 905 to 917 | Incorrect descriptions revised |
| 29.6.1 A/D converter characteristics | Page 929 | Extended specification |
| 30.3.1 Pin characteristics | Page 944,945 | Incorrect descriptions revised |
| 30.4 AC Characteristics | Page 954 | Incorrect descriptions revised |

## Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

## Corrections in the User's Manual: Hardware

| No. | Corrections and Applicable Items |  | Pages in this document for corrections |
| :---: | :---: | :---: | :---: |
|  | Document No. ${ }^{\text {E }}$ English | R01UH0305EJ0110 |  |
| 1 | 11.2 Configuration of A/D Converter | Page 363 | Page 3 |
| 2 | 11.3.2 A/D converter mode register 0 (ADM0) | Pages 371 to 375 | Pages 4 to 7 |
| 3 | 12.6 Operation of UART (UARTO to UART2) Communication | Page 528 | Page 8 |
| 4 | 12.6.1 UART transmission | Page 539 | Pages 9, 10 |
| 5 | 13.5.16 Communication operations | Page 637 | Page 11 |
| 6 | 17.3.4 Port mode registers 0 to 2, 7, 12, 15 (PM0 to PM2, PM7, PM12, PM15) | Page 746 | Pages 12, 13 |
| 7 | 18.3.3 SNOOZE mode | Page 767 | Page 14 |
| 8 | 22.3.1.1 Flash memory CRC control register (CRCOCTL) | Page 808 | Page 14 |
| 9 | 25.4.3 Procedure for accessing data flash memory | Page 842 | Pages 15, 16 |
| 10 | 29.3.1 Pin characteristics | Pages 889, 890 | Page 17 |
| 11 | 29.4 AC Characteristics | Page 900 | Page 18 |
| 12 | 29.5.1 Serial array unit | Page 905 to 917 | Pages 19 to 24 |
| 13 | 29.6.1 A/D converter characteristics | Page 929 | Page 25 |
| 14 | 30.3.1 Pin characteristics | Page 944, 945 | Page 26 |
| 15 | 30.4 AC Characteristics | Page 954 | Page 27 |

Incorrect: Bold with underline; Correct: Gray hatched

## Revision History

RL78/G1A User's Manual: Hardware Rev.1.10 Correction for Incorrect Description Notice

| Document Number | Date | Description |
| :---: | :---: | :--- |
| TN-RL-A018A/E | Sep. 9, 2013 | First edition issued <br>  |

## Incorrect:

1. 11.2 Configuration of A/D Converter
(9) AVREFP pin

This pin inputs an external reference voltage (AVREFP)
If using AVREFP as the + side reference voltage of the A/D converter, set the ADREFP1 and ADREFPO bits of A/D converter mode register 2 (ADM2) to 1.
The analog signals input to ANI2 to ANI12 and ANI16 to ANI30 are converted to digital signals based on the voltage applied between AVREFP and the -side reference voltage
(AVREFM/AVSS).
In addition to AVREFP, it is possible to select AVDD, or the internal reference voltage ( 1.45 V ) as the + side reference voltage of the $A / D$ converter.

## Correct:

## (9) AVREFP pin

This pin inputs an external reference voltage (AVREFP)
If using AVREFP as the + side reference voltage of the A/D converter, set the A/D converter mode register 2 (ADM2), ADREFP1 bits to 1 and ADREFP0 bits to 0 .
The analog signals input to ANI2 to ANI12 and ANI16 to ANI30 are converted to digital signals based on the voltage applied between AVREFP and the -side reference voltage
(AVREFM/AVSS).
In addition to AVREFP, it is possible to select AVDD, or the internal reference voltage ( 1.45 V ) as the + side reference voltage of the A/D converter.

## Incorrect:

2. 11.3.2 A/D converter mode register 0 (ADMO)

Table 11-3. A/D Conversion Time Selection (2/4)
(2) 12 bit A/D Converter When there is stabilization wait time (hardware trigger wait mode (except second and subsequent conversion in sequential conversion mode and conversion of channel specified by scan 1, 2 , and 3 in scan mode ${ }^{\text {Note } 1}$ ))

| A/D Converter Mode Register 0 (ADMO) |  |  |  |  | Mode | Conversion <br> Clock (foo) | Number of Stabilization Wait Clock | Number of <br> Conversion <br> Clock | Stabilization <br> Wait Time <br> +Conversion <br> Time | Stabilization Wait Time + Conversion Time Selection |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | AVDD $=1.6$ to 3.6 V |  |  |  |  | AVDD $=1.6$ to 3.6 V | AVDD $=1.8003 .6 \mathrm{~V}$ | AVDD $=2.4$ to 3.6 V | AVDD $=2.7$ to3.6 V |
| FR2 | FR1 | FR0 | LV1 | LVO |  |  |  |  |  | $\mathrm{fCLK}=1 \mathrm{MHz}$ | $\mathrm{f}_{\text {CIK }}=4 \mathrm{MHz}$ | $\mathrm{fCLK}=8 \mathrm{MHz}$ | $\mathrm{f}_{\text {CLK }}=16 \mathrm{MHz}$ | $\mathrm{f}_{\text {CLK }}=32 \mathrm{MHz}$ |
| 0 | 0 | 0 | 1 | 0 |  | Normal 1 | fclk/32 | 4 fclk | 54 fad (number | 1732/fcık | Setting prohibited | Setting prohibited | Setting prohibited | Setting prohibited | $54.125 \mu \mathrm{~s}$ |
| 0 | 0 | 1 |  |  |  | falk/16 |  | of | 868/fclk |  |  |  | $54.25 \mu \mathrm{~s}$ | $27.125 \mu \mathrm{~s}$ |
| 0 | 1 | 0 |  |  |  | fclk/8 |  | clock: | 436/fclk |  |  | $54.5 \mu \mathrm{~s}$ | $27.25 \mu \mathrm{~s}$ | $13.625 \mu \mathrm{~s}$ |
| 0 | 1 | 1 |  |  |  | fclk/6 |  | 11 fad ) | 328/fclk |  |  | $41 \mu \mathrm{~s}$ | $20.5 \mu \mathrm{~s}$ | $10.25 \mu \mathrm{~s}$ |
| 1 | 0 | 0 |  |  |  | fclk/5 |  |  | 274/fclk |  |  | $34.25 \mu \mathrm{~s}$ | $17.125 \mu \mathrm{~s}$ | $8.5625 \mu \mathrm{~s}$ |
| 1 | 0 | 1 |  |  |  | fclk/4 |  |  | 220/fclk |  | $55 \mu \mathrm{~s}$ | $27.5 \mu \mathrm{~s}$ | $13.75 \mu \mathrm{~s}$ | $6.875 \mu \mathrm{~s}$ |
| 1 | 1 | 0 |  |  |  | fCLK/2 |  |  | 112/fclk |  | $28 \mu \mathrm{~s}$ | $14 \mu \mathrm{~s}$ | $7 \mu \mathrm{~s}$ | $3.5 \mu \mathrm{~s}$ |
| 1 | 1 | 1 |  |  |  | fclk/1 | 2 fclk |  | 56/fclk | $56 \mu \mathrm{~s}$ | $14 \mu \mathrm{~s}$ | $7 \mu \mathrm{~s}$ | $3.5 \mu \mathrm{~s}$ | Setting prohibited |
| 0 | 0 | 0 | 1 | 1 | Normal 2 | fclk/32 | 58 fclk | $\begin{aligned} & \hline 66 \text { fad } \\ & \text { (number } \end{aligned}$ | 2170/fсıк | Setting prohibited | Setting prohibited | Setting prohibited | Setting prohibited | $67.8125 \mu \mathrm{~s}$ |
| 0 | 0 | 1 |  |  |  | fcle/16 |  |  | 1114/fсık |  |  |  | $69.625 \mu \mathrm{~s}$ | $34.8125 \mu \mathrm{~s}$ |
| 0 | 1 | 0 |  |  |  | fCLk/8 |  | clock: | 586/fclk |  |  | $73.25 \mu \mathrm{~s}^{\text {Note 2 }}$ | $36.625 \mu \mathrm{~s}$ | $18.3125 \mu \mathrm{~s}$ |
| 0 | 1 | 1 |  |  |  | fCLK/6 |  | 23 fad) | 454/fclk |  |  | $56.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $28.375 \mu \mathrm{~s}$ | $14.1875 \mu \mathrm{~s}$ |
| 1 | 0 | 0 |  |  |  | fCLk/5 |  |  | 388/fclk |  |  | $48.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $24.25 \mu \mathrm{~s}$ | $12.125 \mu \mathrm{~s}$ |
| 1 | 0 | 1 |  |  |  | fCLK/4 |  |  | 322/fclk |  | $80.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $40.25 \mu \mathrm{~s}^{\text {Note } 2}$ | $20.125 \mu \mathrm{~s}$ | $10.0625 \mu \mathrm{~s}$ |
| 1 | 1 | 0 |  |  |  | fclk/2 |  |  | 190/fclk |  | $47.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $23.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $11.875 \mu \mathrm{~s}$ | $5.9375 \mu \mathrm{~s}$ |
| 1 | 1 | 1 |  |  |  | fclk/1 | 29 fclk |  | 95/fclk | $95 \mu \mathrm{~s}$ Note 2 | $23.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $11.875 \mu \mathrm{~S}^{\text {Note } 2}$ | $5.9375 \mu \mathrm{~s}$ | Setting prohibited |
| 0 | 0 | 0 | 1 | 0 | Low-volta ge 1 | fclk/32 | 15 fclk | 76 fAD (number | 2447/fсıк | Setting prohibited | Setting prohibited | Setting prohibited | Setting prohibited | $76.46875 \mu \mathrm{~s}^{\text {Note 2 }}$ |
| 0 | 0 | 1 |  |  |  | fclk/16 |  | of | 1231/fcık |  |  |  | $76.9375 \mu \mathrm{~s}^{\text {Note } 2}$ | $38.46875 \mu 5^{\text {Nole } 2}$ |
| 0 | 1 | 0 |  |  |  | fclk/8 |  | clock: | 623/fclk |  |  | $77.875 \mu \mathrm{~s}$ | $38.9375 \mu \mathrm{~s}^{\text {Nole } 2}$ | $19.46875 / \mathrm{s}^{\text {Nole } 2}$ |
| 0 | 1 | 1 |  |  |  | fCLK/6 |  | $33 \mathrm{fad})$ | 471/fclk |  |  | $58.875 \mu \mathrm{~s}$ | $29.4375 \mu \mathrm{~s}^{\text {Note } 2}$ | $14.71875 \mu s^{\text {Nole } 2}$ |
| 1 | 0 | 0 |  |  |  | fCLk/5 |  |  | 395/fclk |  |  | $49.375 \mu \mathrm{~s}$ | $24.6875 \mu \mathrm{~s}^{\text {Note } 2}$ | $12.34375 / s^{\text {Nole } 2}$ |
| 1 | 0 | 1 |  |  |  | fCLK/4 |  |  | 319/fclk |  | $79.75 \mu \mathrm{~S}^{\text {Note } 2}$ | $39.875 \mu \mathrm{~s}$ | $19.9375 \mu \mathrm{~s}^{\text {Nole } 2}$ | $9.96875 \mu \mathrm{~s}{ }^{\text {Note } 2}$ |
| 1 | 1 | 0 |  |  |  | fCLK/2 |  |  | 167/fclk |  | $41.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $20.875 \mu \mathrm{~s}$ | $10.4375 \mu \mathrm{~s}^{\text {Note } 2}$ | $5.21875 \mu \mathrm{~s}$ Note 2 |
| 1 | 1 | 1 |  |  |  | fclk/1 |  |  | 91/fclk | $91 \mu \mathrm{~S}$ Note 2 | $22.75 \mu \mathrm{~S}^{\text {Note } 2}$ | $11.375 \mu \mathrm{~s}$ | $5.6875 \mu \mathrm{~s}$ Note | Setting prohibited |
| 0 | 0 | 0 | 1 | 1 | $\begin{array}{\|c\|} \hline \text { Low-volta } \\ \text { ge } 2 \end{array}$ | fclk/32 | 8 fclk | 230 fad <br> (number | 7368/fськ | Setting prohibited | Setting prohibited | Setting prohibited | Setting prohibited | $230.25 / \mathrm{s}^{\text {Note } 2}$ |
| 0 | 0 | 1 |  |  |  | fclk/16 |  | of sampling | 3688/fcık |  |  |  | $230.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $115.25 / \mathrm{s}^{\text {Note } 2}$ |
| 0 | 1 | 0 |  |  |  | fCLk/8 |  | clock: | 1848/fcık |  |  | $231 \mu \mathrm{~S}^{\text {Note } 2}$ | $115.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $57.75 \mu \mathrm{~s}^{\text {Note } 2}$ |
| 0 | 1 | 1 |  |  |  | fCLK/6 |  |  | 1388/fcık |  |  | $173.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $86.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $43.375 / \mathrm{s}^{\text {Note } 2}$ |
| 1 | 0 | 0 |  |  |  | fclk/5 |  |  | 1158/fcık |  |  | 144.75 /s ${ }^{\text {Note 2 }}$ | $72.375 \mu \mathrm{~s}$ Note 2 | $36.1875 \mu \mathrm{~S}^{\text {Note 2 }}$ |
| 1 | 0 | 1 |  |  |  | fclk/4 |  |  | 928/fclk |  | $232 \mu \mathrm{~s}$ | $116 \mu \mathrm{~s}^{\text {Note } 2}$ | $58 \mu$ Sote 2 | $29 \mu \mathrm{~s}^{\text {Note } 2}$ |
| 1 | 1 | 0 |  |  |  | fCLK/2 |  |  | 468/fclk |  | $117 \mu \mathrm{~s}$ | $58.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $29.25 \mu \mathrm{~s}^{\text {Note } 2}$ | $14.625 / \mathrm{s}^{\text {Note } 2}$ |
| 1 | 1 | 1 |  |  |  | fclk/1 |  |  | 238/fclk | $238 \mu \mathrm{~s}$ | $59.5 \mu \mathrm{~s}$ | $29.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $14.875 \mu \mathrm{~S}^{\text {Note 2 }}$ | Setting prohibited |

## Correct:

Table 11-3. A/D Conversion Time Selection (2/4)
(2) 12 bit A/D Converter When there is stabilization wait time (hardware trigger wait mode (except second and subsequent conversion in sequential conversion mode and conversion of channel specified by scan 1,2 , and 3 in scan mode $\left.{ }^{\text {Note } 1}\right)$ )

| A/D Converter Mode Register 0 (ADMO) |  |  |  |  | Mode | Conversion <br> Clock (fon) | Number of <br> Stabilization <br> Wait Clock | Number of <br> Conversion <br> Clock | Stabilization <br> Wait Time <br> +Conversion <br> Time | Stabilization Wait Time + Conversion Time Selection |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | AVDD $=1.6$ to 3.6 V |  |  |  |  | AVDD $=1.6$ to 3.6 V | AVDD $=1.8$ to 3.6 V | AVDD $=2.4$ to 3.6 V | AVDD $=2.7$ to 3.6 V |
| FR2 | FR1 | FR0 | LV1 | LVO |  |  |  |  |  | fCLK $=1 \mathrm{MHz}$ | $f C L K=4 \mathrm{MHz}$ | $f C L K=8 \mathrm{MHz}$ | fCLK $=16 \mathrm{MHz}$ | fCLK $=32 \mathrm{MHz}$ |
| 0 | 0 | 0 | 0 | 0 |  | Normal 1 | fclk/32 | 4 fcık | $\begin{array}{\|c\|} \hline 54 \mathrm{fAD} \\ \text { (number } \\ \text { of } \\ \text { sampling } \\ \text { clock: } \\ 11 \mathrm{fAD} \text { ) } \\ \hline \end{array}$ | 1732/fсık | Setting prohibited | Setting prohibited | Setting prohibited | Setting prohibited | $54.125 \mu \mathrm{~s}$ |
| 0 | 0 | 1 |  |  | fclk/16 |  | 868/fclk |  |  | $54.25 \mu \mathrm{~s}$ |  |  |  | $27.125 \mu \mathrm{~S}$ |
| 0 | 1 | 0 |  |  | fclk/8 |  | 436/fclk |  |  | $54.5 \mu \mathrm{~s}$ |  |  | $27.25 \mu \mathrm{~s}$ | $13.625 \mu \mathrm{~s}$ |
| 0 | 1 | 1 |  |  | fclk/6 |  | 328/fclk |  |  | $41 \mu \mathrm{~s}$ |  |  | $20.5 \mu \mathrm{~s}$ | $10.25 \mu \mathrm{~s}$ |
| 1 | 0 | 0 |  |  | fclk/5 |  | 274/fclk |  |  | $34.25 \mu \mathrm{~s}$ |  |  | $17.125 \mu \mathrm{~s}$ | $8.5625 \mu \mathrm{~s}$ |
| 1 | 0 | 1 |  |  | fclk/4 |  | 220/fclk |  |  | $55 \mu \mathrm{~s}$ |  | $27.5 \mu \mathrm{~s}$ | $13.75 \mu \mathrm{~s}$ | $6.875 \mu \mathrm{~s}$ |
| 1 | 1 | 0 |  |  | fCLK/2 |  | 112/fclk |  |  | $28 \mu \mathrm{~s}$ |  | $14 \mu \mathrm{~s}$ | $7 \mu \mathrm{~s}$ | $3.5 \mu \mathrm{~s}$ |
| 1 | 1 | 1 |  |  | fCLK/1 |  | 2 fcLk | 56/fclk |  | $56 \mu \mathrm{~s}$ | $14 \mu \mathrm{~s}$ | $7 \mu \mathrm{~s}$ | $3.5 \mu \mathrm{~s}$ | Setting prohibited |
| 0 | 0 | 0 | 0 | 1 | Normal 2 | fclk/32 | 58 fclk | $66 \mathrm{f}_{\mathrm{AD}}$ <br> (number <br> of <br> sampling <br> clock: <br> $23 \mathrm{f}_{\mathrm{AD}}$ ) | 2170/fcık | Setting prohibited | Setting prohibited | Setting prohibited | Setting prohibited | $67.8125 \mu$ s |
| 0 | 0 | 1 |  |  |  | fcle/16 |  |  | 1114/fсяк |  |  |  | $69.625 \mu$ s | $34.8125 \mu \mathrm{~s}$ |
| 0 | 1 | 0 |  |  |  | fclk/8 |  |  | 586/fclk |  |  | $73.25 \mu \mathrm{~s}^{\text {Note2 }}$ | $36.625 \mu \mathrm{~s}$ | $18.3125 \mu \mathrm{~S}$ |
| 0 | 1 | 1 |  |  |  | fclk/6 |  |  | 454/fclk |  |  | $56.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $28.375 \mu \mathrm{~s}$ | $14.1875 \mu \mathrm{~s}$ |
| 1 | 0 | 0 |  |  |  | fclk/5 |  |  | 388/fclk |  |  | $48.5 \mu \mathrm{~S}^{\text {Note } 2}$ | $24.25 \mu \mathrm{~s}$ | $12.125 \mu \mathrm{~s}$ |
| 1 | 0 | 1 |  |  |  | fclk/4 |  |  | 322/fclı |  | $80.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $40.25 \mu \mathrm{~s}^{\text {Note } 2}$ | $20.125 \mu \mathrm{~s}$ | $10.0625 \mu \mathrm{~s}$ |
| 1 | 1 | 0 |  |  |  | fCLK/2 |  |  | 190/fclk |  | $47.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $23.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $11.875 \mu \mathrm{~s}$ | $5.9375 \mu \mathrm{~s}$ |
| 1 | 1 | 1 |  |  |  | fclk/1 | 29 fcık |  | 95/fclk | $95 \mu \mathrm{~S}^{\text {Note } 2}$ | $23.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $11.875 \mu \mathrm{~S}^{\text {Note } 2}$ | $5.9375 \mu \mathrm{~s}$ | Setting prohibited |
| 0 | 0 | 0 | 1 | 0 | Low-volta ge 1 | fcle/32 | 15 fclk | $76 \mathrm{f}_{\mathrm{AD}}$ <br> (number <br> of <br> sampling <br> clock: <br> $33 \mathrm{fAD})$ | 2447/fсıк | Setting prohibited | Setting prohibited | Setting prohibited | Setting prohibited | $76.46875 \mu \mathrm{~s}$ ( ${ }^{\text {Note } 2}$ |
| 0 | 0 | 1 |  |  |  | fclk/16 |  |  | 1231/fclk |  |  |  | $76.9375 \mu \mathrm{~S}^{\text {Note } 2}$ | $38.46875 / 5^{\text {Nole } 2}$ |
| 0 | 1 | 0 |  |  |  | fclk/8 |  |  | 623/fclk |  |  | $77.875 \mu \mathrm{~s}$ | $38.9375 \mu \mathrm{~S}^{\text {Note } 2}$ | $19.46875 / S^{\text {Nole } 2}$ |
| 0 | 1 | 1 |  |  |  | fclk/6 |  |  | 471/fclk |  |  | $58.875 \mu \mathrm{~s}$ | $29.4375 \mu \mathrm{~S}^{\text {Nole } 2}$ | $14.71875 / \mathrm{S}^{\text {Nole } 2}$ |
| 1 | 0 | 0 |  |  |  | fclk/5 |  |  | 395/fclk |  |  | $49.375 \mu \mathrm{~s}$ | $24.6875 \mu \mathrm{~S}^{\text {Nole } 2}$ | $12.34375 / 5^{\text {Note } 2}$ |
| 1 | 0 | 1 |  |  |  | fclk/4 |  |  | 319/fclk |  | $79.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $39.875 \mu \mathrm{~s}$ | $19.9375 \mu \mathrm{~S}^{\text {Note } 2}$ | $9.96875 \mu \mathrm{~s}^{\text {Note } 2}$ |
| 1 | 1 | 0 |  |  |  | fCLK/2 |  |  | 167/fclk |  | $41.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $20.875 \mu \mathrm{~s}$ | $10.4375 \mu \mathrm{~S}^{\text {Note } 2}$ | $5.21875 \mu \mathrm{~s}^{\text {Note } 2}$ |
| 1 | 1 | 1 |  |  |  | fclk/1 |  |  | 91/fclk | $91 \mu \mathrm{~S}^{\text {Note } 2}$ | $22.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $11.375 \mu \mathrm{~s}$ | $5.6875 \mu \mathrm{~S}$ Note | Setting prohibited |
| 0 | 0 | 0 | 1 | 1 | $\begin{array}{\|c\|} \text { Low-volta } \\ \text { ge } 2 \end{array}$ | fclk/32 | 8 fclk | $\begin{gathered} 230 \mathrm{f}_{\mathrm{AD}} \\ \text { (number } \\ \text { of } \\ \text { sampling } \\ \text { clock: } \\ 187 \mathrm{f}_{\mathrm{AD}} \text { ) } \end{gathered}$ | 7368/fськ | Setting prohibited | Setting prohibited | Setting prohibited | Setting prohibited | $230.25 \mu \mathrm{~S}^{\text {Note } 2}$ |
| 0 | 0 | 1 |  |  |  | fcle/16 |  |  | 3688/fcık |  |  |  | $230.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $115.25 \mu \mathrm{~s}$ Note 2 |
| 0 | 1 | 0 |  |  |  | fclk/8 |  |  | 1848/fclk |  |  | $231 \mu \mathrm{~S}^{\text {Note } 2}$ | $115.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $57.75 \mu \mathrm{~s}^{\text {Note } 2}$ |
| 0 | 1 | 1 |  |  |  | fclk/6 |  |  | 1388/fсıк |  |  | $173.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $86.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $43.375 \mu \mathrm{~s}^{\text {Note } 2}$ |
| 1 | 0 | 0 |  |  |  | fclk/5 |  |  | 1158/fсıк |  |  | $144.75 \mu \mathrm{~s}$ Note 2 | $72.375 \mu \mathrm{~s}^{\text {Note } 2}$ | $36.1875 \mu \mathrm{~s}^{\text {Note2 }}$ |
| 1 | 0 | 1 |  |  |  | fclk/4 |  |  | 928/fclk |  | $232 \mu \mathrm{~s}$ | $116 \mu \mathrm{~S}^{\text {Note } 2}$ | $58 \mu$ Note 2 | $29 \mu \mathrm{~s}^{\text {Note } 2}$ |
| 1 | 1 | 0 |  |  |  | fCLK/2 |  |  | 468/fclk |  | $117 \mu \mathrm{~s}$ | $58.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $29.25 \mu \mathrm{~s}^{\text {Note } 2}$ | $14.625 \mu \mathrm{~s}$ Note 2 |
| 1 | 1 | 1 |  |  |  | fclk/1 |  |  | 238/fclk | $238 \mu \mathrm{~s}$ | $59.5 \mu \mathrm{~s}$ | $29.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $14.875 / \mathrm{S}^{\text {Note } 2}$ | Setting prohibited |

## Incorrect:

Table 11-3. A/D Conversion Time Selection (4/4)
(4) 8 bit A/D Converter When there is stabilization wait time(hardware trigger wait mode (except second and subsequent conversion in sequential conversion mode and conversion of channel specified by scan 1, 2, and 3 in scan mode ${ }^{\text {Note } 1}$ ))

| A/D Converter Mode Register 0 (ADMO) |  |  |  |  | Mode | Conversion Clock (fad) | Number of <br> Stabilization <br> Wait Clock | Number of <br> Conversion <br> Clock | Stabilization Wait Time +Conversion Time | Stabilization Wait Time + Conversion Time Selection |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\mathrm{AV}^{\text {Voo }}$ = 1.6 to 3.6 V |  |  |  |  | $\mathrm{AV}_{\text {Vo }}=1.6103 .6 \mathrm{~V}$ | $\mathrm{AV}_{0}=1.8003 .6 \mathrm{~V}$ | $\mathrm{AV}_{00}=2.4103 .6 \mathrm{~V}$ | $\mathrm{AVoo}=2.7 \mathrm{to3.6V}$ |
| FR2 | FR1 | FR0 | LV1 | LVo |  |  |  |  |  |  | fСı $=1 \mathrm{MHz}$ | faık $=4 \mathrm{MHz}$ | fСıK $=8 \mathrm{MHz}$ | fCIK $=16 \mathrm{MHz}$ | fсıк $=32 \mathrm{MHz}$ |
| 0 | 0 | 0 | 1 | 0 | Normal 1 | fcık/32 | 4 fcLk | $\begin{array}{c\|} \hline 41 \mathrm{f} \mathrm{AD} \\ \text { (number } \end{array}$ | 1316/сок | Setting prohibited | Setting prohibited | Setting prohibited | Setting prohibited | $41.125 \mu \mathrm{~s}$ |
| 0 | 0 | 1 |  |  |  | fcık/16 |  | of | 660/fск |  |  |  | $41.25 \mu \mathrm{~s}$ | $20.625 \mu \mathrm{~s}$ |
| 0 | 1 | 0 |  |  |  | f¢Lk/8 |  | clock: | 332Асск |  |  | $41.5 \mu \mathrm{~s}$ | $20.75 \mu \mathrm{~s}$ | $10.375 \mu \mathrm{~s}$ |
| 0 | 1 | 1 |  |  |  | f¢Lk/6 |  | 11 fad) | 250/fıкк |  |  | $31.25 \mu \mathrm{~s}$ | $15.625 \mu \mathrm{~s}$ | $7.8125 \mu \mathrm{~s}$ |
| 1 | 0 | 0 |  |  |  | f¢Lk/5 |  |  | 209/fскк |  |  | $25.125 \mu \mathrm{~s}$ | $13.0625 \mu \mathrm{~s}$ | $6.53125 \mu \mathrm{~s}$ |
| 1 | 0 | 1 |  |  |  | f¢Lk/4 |  |  | 168/fскк |  | $42 \mu \mathrm{~s}$ | $21 \mu \mathrm{~s}$ | $10.5 \mu \mathrm{~s}$ | $5.25 \mu \mathrm{~s}$ |
| 1 | 1 | 0 |  |  |  | f¢Lk/2 |  |  | 86/Аскк |  | $21.5 \mu \mathrm{~s}$ | $10.75 \mu \mathrm{~s}$ | $5.375 \mu \mathrm{~s}$ | $2.6875 \mu \mathrm{~s}$ |
| 1 | 1 | 1 |  |  |  | fclk/1 | 2 fcık |  | 43/fскк | $43 \mu \mathrm{~s}$ | $10.75 \mu \mathrm{~s}$ | $5.375 \mu \mathrm{~s}$ | $2.6875 \mu \mathrm{~s}$ | Setting prohibited |
| 0 | 0 | 0 | 1 | 1 | Normal 2 | fсıк/32 | 58 fcık | $\begin{gathered} \hline 53 \mathrm{fad} \\ \text { (number } \end{gathered}$ | 1754/fскк | Setting prohibited | Setting prohibited | Setting prohibited | Setting prohibited | $54.8125 \mu \mathrm{~s}$ |
| 0 | 0 | 1 |  |  |  | fcık/16 |  |  | 906/сскк |  |  |  | $56.625 \mu \mathrm{~s}$ | $28.3125 \mu \mathrm{~s}$ |
| 0 | 1 | 0 |  |  |  | fclk/8 |  | clock: | 482Асск |  |  | $60.25 \mu \mathrm{~s}^{\text {Note2 }}$ | $30.125 \mu \mathrm{~s}$ | $15.0625 \mu \mathrm{~s}$ |
| 0 | 1 | 1 |  |  |  | fcık/6 |  | 23 fad) | 376/fскк |  |  | $47 \mu$ s ${ }^{\text {Note } 2}$ | $23.5 \mu \mathrm{~s}$ | $11.75 \mu \mathrm{~s}$ |
| 1 | 0 | 0 |  |  |  | fflk/5 |  |  | 323/fскк |  |  | $40.375 / s^{\text {Nole2 }}$ | $20.1875 \mu \mathrm{~s}$ | $10.09375 \mu \mathrm{~s}$ |
| 1 | 0 | 1 |  |  |  | f¢Lk/4 |  |  | 270/fск |  | 67.5 $\mu \mathrm{s}^{\text {Note } 2}$ | $33.75 \mu \mathrm{~s}^{\text {Note2 }}$ | $16.875 \mu \mathrm{~s}$ | $8.4375 \mu \mathrm{~s}$ |
| 1 | 1 | 0 |  |  |  | f¢Lk/2 |  |  | 164/fскк |  | $41 \mu$ sote 2 | $20.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $10.25 \mu \mathrm{~s}$ | $5.125 \mu \mathrm{~s}$ |
| 1 | 1 | 1 |  |  |  | fclk/1 | 29 fcık |  | 82Асск | $82 \mu \mathrm{~s}^{\text {Note } 2}$ | $20.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $10.25 \mu \mathrm{~s}^{\text {Note } 2}$ | $5.125 \mu \mathrm{~s}$ | Setting prohibited |
| 0 | 0 | 0 | 1 | 0 | Low-volta $\text { ge } 1$ | fсıк/32 | 15 fcLk | $\begin{gathered} \hline 63 \mathrm{f}_{\mathrm{AD}} \\ \text { (number } \end{gathered}$ | 2031/сок | Setting prohibited | Setting prohibited | Setting prohibited | Setting prohibited | $63.46875 / 8^{\text {Note } 2}$ |
| 0 | 0 | 1 |  |  |  | fcık/16 |  |  | 1023/сок |  |  |  | $63.9375 / \mathrm{s}^{\text {Note } 2}$ | $31.96875 / s^{\text {Node2 }}$ |
| 0 | 1 | 0 |  |  |  | fack/8 |  | clock: | 519/сск |  |  | $64.875 \mu \mathrm{~s}$ | $32.4375 / \beta^{\text {Nole } 2}$ | $16.21875 / s^{\text {Note2 }}$ |
| 0 | 1 | 1 |  |  |  | f¢LK/6 |  |  | 393/fскк |  |  | $49.125 \mu \mathrm{~s}$ | $24.5625 / s^{\text {Nole } 2}$ | $12.28125 / s^{\text {Node2 }}$ |
| 1 | 0 | 0 |  |  |  | fack/5 |  |  | 330/fскк |  |  | $41.25 \mu \mathrm{~s}$ | 20.625 /s ${ }^{\text {Note } 2}$ | $10.3125 \mu \mathrm{~S}^{\text {Nole2 }}$ |
| 1 | 0 | 1 |  |  |  | fcık/4 |  |  | 267/fcık |  | $66.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $33.375 \mu \mathrm{~s}$ | $16.6875 / \beta^{\text {Nole } 2}$ | $8.34375 \mu \mathrm{~s}^{\text {Note2 }}$ |
| 1 | 1 | 0 |  |  |  | f¢Lk/2 |  |  | 141/fскк |  | $35.25 / s^{\text {Note } 2}$ | $17.625 \mu \mathrm{~s}$ | $8.8125 / 5^{\text {Note } 2}$ | $4.40625 \mu \mathrm{~s}^{\text {Nobe } 2}$ |
| 1 | 1 | 1 |  |  |  | fclk/1 |  |  | 78/fскк | $78 \mu \mathrm{~s}^{\text {Note } 2}$ | $19.5 \mu \mathrm{~s}$ Note 2 | $9.75 \mu \mathrm{~s}$ | $4.875 \mu \mathrm{~s}^{\text {Note } 2}$ | Setting prohibited |
| 0 | 0 | 0 | 1 | 1 | $\begin{array}{\|c\|} \hline \text { Low-volta } \\ \text { ge } 2 \end{array}$ | fсıк/32 | 8 f¢Lk | 217 fAD (number | 6952łсок | Setting <br> prohibited | Setting <br> prohibited | Setting prohibited | Setting prohibited | $217.25 / s^{\text {Noote } 2}$ |
| 0 | 0 | 1 |  |  |  | flık/16 |  | sam | 3480/стк |  |  |  | $217.5 \mu \mathrm{~s}^{\text {Nole } 2}$ | $108.75 / s^{\text {Note } 2}$ |
| 0 | 1 | 0 |  |  |  | fclk/8 |  | clock: | 1744/сок |  |  | $218 \mu \mathrm{~s}$ | $109 \mu \mathrm{~s}^{\text {Note } 2}$ | $54.5 \mu s^{\text {Note } 2}$ |
| 0 | 1 | 1 |  |  |  | f¢LK/6 |  |  | 1310/сок |  |  | $163.75 / \mathrm{s}^{\text {Note } 2}$ | $81.875 \mu{ }^{\text {Note } 2}$ | $40.9375 \mu \mathrm{~s}^{\text {Note2 }}$ |
| 1 | 0 | 0 |  |  |  | f¢Lk/5 |  |  | 1093/сок |  |  | 136.625 /s ${ }^{\text {Note } 2}$ | $68.3125 / \mathrm{s}^{\text {Nole } 2}$ | $34.15625 / 8^{\text {Node } 2}$ |
| 1 | 0 | 1 |  |  |  | fclk/4 |  |  | 876/fскк |  | $219 \mu \mathrm{~s}$ | $109.5 \mu \mathrm{~S}^{\text {Nole } 2}$ | $54.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $27.375 / \mathrm{s}^{\text {Note } 2}$ |
| 1 | 1 | 0 |  |  |  | fack/2 |  |  | 442fсск |  | $110.5 \mu \mathrm{~s}$ | $55.25 \mu \mathrm{~s}^{\text {Note } 2}$ | 27.625 /s ${ }^{\text {Note } 2}$ | $13.8125 \mu \mathrm{~s}^{\text {Note2 }}$ |
| 1 | 1 | 1 |  |  |  | fclk/1 |  |  | 225fсск | $225 \mu \mathrm{~s}$ | $56.25 \mu \mathrm{~s}$ | $28.125 / \mathrm{S}^{\text {Note } 2}$ | $14.0625 / \mathrm{s}^{\text {Nole } 2}$ | Setting <br> prohibited |

## Correct:

Table 11-3. A/D Conversion Time Selection (4/4)
(4) 8 bit A/D Converter When there is stabilization wait time(hardware trigger wait mode (except second and subsequent conversion in sequential conversion mode and conversion of channel specified by scan 1, 2, and 3 in scan mode ${ }^{\text {Note } 1}$ ))

| A/D Converter Mode Register$0 \text { (ADMO) }$ |  |  |  |  | Mode | Conversion Clock (fad) | Number of <br> Stabilization <br> Wait Clock | Number of <br> Conversion <br> Clock | Stabilization Wait Time +Conversion Time | Stabilization Wait Time + Conversion Time Selection |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\mathrm{AV}^{\text {Voo }}$ = 1.6 to 3.6 V |  |  |  |  | $\mathrm{AV}_{\text {Vo }}=1.6103 .6 \mathrm{~V}$ | $\mathrm{AV}_{0}=1.8003 .6 \mathrm{~V}$ | $\mathrm{AV}_{00}=2.4103 .6 \mathrm{~V}$ | $\mathrm{AVoo}=2.7 \mathrm{to3.6V}$ |
| FR2 | FR1 | FR0 | LV1 | LV0 |  |  |  |  |  |  | fСı $=1 \mathrm{MHz}$ | faık $=4 \mathrm{MHz}$ | fСıK $=8 \mathrm{MHz}$ | fCIK $=16 \mathrm{MHz}$ | fсıк $=32 \mathrm{MHz}$ |
| 0 | 0 | 0 | 0 | 0 | Normal 1 | fcık/32 | 4 fcLk | $\begin{array}{c\|} \hline 41 \mathrm{f} \mathrm{AD} \\ \text { (number } \end{array}$ | 1316/сок | Setting prohibited | Setting prohibited | Setting prohibited | Setting prohibited | $41.125 \mu \mathrm{~s}$ |
| 0 | 0 | 1 |  |  |  | fcık/16 |  | of | 660/fск |  |  |  | $41.25 \mu \mathrm{~s}$ | $20.625 \mu \mathrm{~s}$ |
| 0 | 1 | 0 |  |  |  | f¢Lk/8 |  | clock: | 332/Аскк |  |  | $41.5 \mu \mathrm{~s}$ | $20.75 \mu \mathrm{~s}$ | $10.375 \mu \mathrm{~s}$ |
| 0 | 1 | 1 |  |  |  | fcık/6 |  | 11 fad) | 250/fıкк |  |  | $31.25 \mu \mathrm{~s}$ | $15.625 \mu \mathrm{~s}$ | $7.8125 \mu \mathrm{~s}$ |
| 1 | 0 | 0 |  |  |  | f¢Lk/5 |  |  | 209/fскк |  |  | $25.125 \mu \mathrm{~s}$ | $13.0625 \mu \mathrm{~s}$ | $6.53125 \mu \mathrm{~s}$ |
| 1 | 0 | 1 |  |  |  | f¢Lk/4 |  |  | 168/fскк |  | $42 \mu \mathrm{~s}$ | $21 \mu \mathrm{~s}$ | $10.5 \mu \mathrm{~s}$ | $5.25 \mu \mathrm{~s}$ |
| 1 | 1 | 0 |  |  |  | f¢Lk/2 |  |  | 86/Аскк |  | $21.5 \mu \mathrm{~s}$ | $10.75 \mu \mathrm{~s}$ | $5.375 \mu \mathrm{~s}$ | $2.6875 \mu \mathrm{~s}$ |
| 1 | 1 | 1 |  |  |  | fclk/1 | 2 fcık |  | 43/fскк | $43 \mu \mathrm{~s}$ | $10.75 \mu \mathrm{~s}$ | $5.375 \mu \mathrm{~s}$ | $2.6875 \mu \mathrm{~s}$ | Setting prohibited |
| 0 | 0 | 0 | 0 | 1 | Normal 2 | fсıк/32 | 58 fcık | $\begin{gathered} \hline 53 \mathrm{fad} \\ \text { (number } \end{gathered}$ | 1754/fскк | Setting prohibited | Setting prohibited | Setting prohibited | Setting prohibited | $54.8125 \mu \mathrm{~s}$ |
| 0 | 0 | 1 |  |  |  | fcık/16 |  |  | 906/сскк |  |  |  | $56.625 \mu \mathrm{~s}$ | $28.3125 \mu \mathrm{~s}$ |
| 0 | 1 | 0 |  |  |  | fclk/8 |  | clock: | 482Асск |  |  | $60.25 \mu \mathrm{~s}^{\text {Note2 }}$ | $30.125 \mu \mathrm{~s}$ | $15.0625 \mu \mathrm{~s}$ |
| 0 | 1 | 1 |  |  |  | fcık/6 |  | 23 fad) | 376/fскк |  |  | $47 \mu$ s ${ }^{\text {Note } 2}$ | $23.5 \mu \mathrm{~s}$ | $11.75 \mu \mathrm{~s}$ |
| 1 | 0 | 0 |  |  |  | fflk/5 |  |  | 323/fскк |  |  | $40.375 / s^{\text {Nole2 }}$ | $20.1875 \mu \mathrm{~s}$ | $10.09375 \mu \mathrm{~s}$ |
| 1 | 0 | 1 |  |  |  | f¢Lk/4 |  |  | 270/fск |  | 67.5 $\mu \mathrm{s}^{\text {Note } 2}$ | $33.75 \mu \mathrm{~s}^{\text {Note2 }}$ | $16.875 \mu \mathrm{~s}$ | $8.4375 \mu \mathrm{~s}$ |
| 1 | 1 | 0 |  |  |  | f¢Lk/2 |  |  | 164/fсск |  | $41 \mu$ sote 2 | $20.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $10.25 \mu \mathrm{~s}$ | $5.125 \mu \mathrm{~s}$ |
| 1 | 1 | 1 |  |  |  | fclk/1 | 29 fcık |  | 82Асск | $82 \mu \mathrm{~s}^{\text {Note } 2}$ | $20.5 \mu \mathrm{~s}^{\text {Note } 2}$ | $10.25 \mu \mathrm{~s}^{\text {Note } 2}$ | $5.125 \mu \mathrm{~s}$ | Setting prohibited |
| 0 | 0 | 0 | 1 | 0 | Low-volta $\text { ge } 1$ | fcık/32 | 15 fcLk | $\begin{gathered} \hline 63 \mathrm{f}_{\mathrm{AD}} \\ \text { (number } \end{gathered}$ | 2031/сок | Setting prohibited | Setting prohibited | Setting prohibited | Setting prohibited | $63.46875 / 8^{\text {Note } 2}$ |
| 0 | 0 | 1 |  |  |  | fcık/16 |  |  | 1023/сок |  |  |  | $63.9375 / \mathrm{s}^{\text {Note } 2}$ | $31.96875 / s^{\text {Node2 }}$ |
| 0 | 1 | 0 |  |  |  | fack/8 |  | clock: | 519/сск |  |  | $64.875 \mu \mathrm{~s}$ | $32.4375 / \beta^{\text {Nole } 2}$ | $16.21875 / s^{\text {Note2 }}$ |
| 0 | 1 | 1 |  |  |  | f¢LK/6 |  |  | 393/fскк |  |  | $49.125 \mu \mathrm{~s}$ | $24.5625 / s^{\text {Nole } 2}$ | $12.28125 / s^{\text {Node2 }}$ |
| 1 | 0 | 0 |  |  |  | fcık/5 |  |  | 330/fскк |  |  | $41.25 \mu \mathrm{~s}$ | 20.625 /s ${ }^{\text {Note } 2}$ | $10.3125 \mu \mathrm{~S}^{\text {Nole2 }}$ |
| 1 | 0 | 1 |  |  |  | fcık/4 |  |  | 267/fсıк |  | $66.75 \mu \mathrm{~s}^{\text {Note } 2}$ | $33.375 \mu \mathrm{~s}$ | $16.6875 / \beta^{\text {Nole } 2}$ | $8.34375 \mu \mathrm{~s}^{\text {Note2 }}$ |
| 1 | 1 | 0 |  |  |  | f¢Lk/2 |  |  | 141/fскк |  | $35.25 / s^{\text {Note } 2}$ | $17.625 \mu \mathrm{~s}$ | $8.8125 / 5^{\text {Note } 2}$ | $4.40625 \mu \mathrm{~s}^{\text {Nobe } 2}$ |
| 1 | 1 | 1 |  |  |  | fclk/1 |  |  | 78/fскк | $78 \mu \mathrm{~s}^{\text {Note } 2}$ | $19.5 \mu \mathrm{~s}$ Note 2 | $9.75 \mu \mathrm{~s}$ | $4.875 \mu \mathrm{~s}^{\text {Note } 2}$ | Setting prohibited |
| 0 | 0 | 0 | 1 | 1 | $\begin{array}{\|c\|} \hline \text { Low-volta } \\ \text { ge } 2 \end{array}$ | fсıк/32 | 8 f¢Lk | 217 fAD (number | 6952łсок | Setting <br> prohibited | Setting <br> prohibited | Setting prohibited | Setting prohibited | $217.25 / s^{\text {Noote } 2}$ |
| 0 | 0 | 1 |  |  |  | flık/16 |  | sam | 3480/стк |  |  |  | $217.5 \mu \mathrm{~s}^{\text {Nole } 2}$ | $108.75 / s^{\text {Note } 2}$ |
| 0 | 1 | 0 |  |  |  | fclk/8 |  | clock: | 1744/сок |  |  | $218 \mu \mathrm{~s}$ | $109 \mu \mathrm{~s}^{\text {Note } 2}$ | $54.5 \mu s^{\text {Note } 2}$ |
| 0 | 1 | 1 |  |  |  | f¢LK/6 |  |  | 1310/сок |  |  | $163.75 / \mathrm{s}^{\text {Note } 2}$ | $81.875 \mu{ }^{\text {Note } 2}$ | $40.9375 \mu \mathrm{~s}^{\text {Note2 }}$ |
| 1 | 0 | 0 |  |  |  | f¢Lk/5 |  |  | 1093/сок |  |  | 136.625 / $\mathrm{s}^{\text {Note } 2}$ | $68.3125 / s^{\text {Nole } 2}$ | $34.15625 / s^{\text {Node2 }}$ |
| 1 | 0 | 1 |  |  |  | ffık/4 |  |  | 876/fскк |  | $219 \mu \mathrm{~s}$ | $109.5 \mu \mathrm{~s}^{\text {Note2 }}$ | $54.75 \mu \mathrm{~s}^{\text {Note2 }}$ | $27.375 / \mathrm{s}^{\text {Note } 2}$ |
| 1 | 1 | 0 |  |  |  | f¢Lk/2 |  |  | 442Асск |  | $110.5 \mu \mathrm{~s}$ | $55.25 \mu \mathrm{~s}^{\text {Note2 }}$ | $27.625 / s^{\text {Note } 2}$ | $13.8125 \mu \mathrm{~s}^{\text {Nobe2 }}$ |
| 1 | 1 | 1 |  |  |  | fclk/1 |  |  | 225fсск | $225 \mu \mathrm{~s}$ | $56.25 \mu \mathrm{~s}$ | $28.125 / \mathrm{S}^{\text {Note } 2}$ | $14.0625 / \mathrm{s}^{\text {Nole } 2}$ | Setting <br> prohibited |

## Incorrect:

3. 12.6 Operation of UART (UART0 to UART2) Communication

| Unit | Channel | Used as CSI | Used as UART | Used as Simplified ${ }^{2} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | CSIOO | UARTO | IICOO |
|  | 1 | - |  | - |
|  | 2 | - | UART1 | - |
|  | 3 | CSI11 |  | IIC11 |
| 1 | 0 | CSI20 | UART2 (supporting LIN-bus) | IIC20 |
|  | 1 | CSI21 |  | IIC21 |

Correct:

- 32-pin product

| Unit | Channel | Used as CSI | Used as UART | Used as Simplified ${ }^{2} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | CSIOO | UARTO | IIC00 |
|  | 1 | - |  | - |
|  | 2 | - | UART1 | - |
|  | 3 | CSI11 |  | IIC11 |
| 1 | 0 | CSI20 | UART2 (supporting LIN-bus) | IIC20 |
|  | 1 | - |  | - |

## Incorrect:

4. 12.6.1 UART transmission


## Correct:



## Incorrect:

5. 13.5.16 Communication operations

Note The wait time is calculated as follows
(IICWLO setting value + IICWHO setting value +4$) \times f_{\text {CLK }}+t_{E} \times 2$ [clocks]

## Correct:

Note The wait time is calculated as follows.
$($ IICWLO setting value + IICWHO setting value $+4[$ clocks $]) / \mathrm{f}_{\mathrm{CLK}}+\mathrm{t}_{\mathrm{F}} \times 2$

## Incorrect:

6. 17.3.4 Port mode registers 0 to 2, 7, 12, 15 (PM0 to PM2, PM7, PM12, PM15)

Figure 17-5. Format of Port Mode Register (PM0 to PM2, PM7, PM12, PM15)


Address: FFF21H After reset: $\mathbf{0 O H}$ R/W

| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PM1 | 1 | PM16 | PM15 | PM14 | PM13 | PM12 | PM11 | PM10 |

Address: FFF22H After reset: $\mathbf{0 0 H}$ R/W

| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PM2 | PM27 | PM26 | PM25 | PM24 | PM23 | PM22 | PM21 | PM20 |

Address: FFF27H After reset: OOH R/W

| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PM7 | PM77 | PM76 | PM75 | PM74 | PM73 | PM72 | PM71 | PM70 |
|  |  |  |  |  |  |  |  |  |

Address: FFF2CH After reset: $\mathbf{0 O H}$ R/W

| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PM12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | PM120 |

Address: FFF2FH After reset: 00 H R/W


| PMOn | I/O mode selection for $\operatorname{Pmn} / K R m \operatorname{pin}(n=0$ to $9, m=0$ to $2,7,12,15)$ |
| :---: | :--- |
| 0 | Output mode (output buffer on) |
| 1 | Input mode (output buffer off) |

## Correct:

Figure 17-5. Format of Port Mode Register (PM0 to PM2, PM7, PM12, PM15)

| Address: FFF20H After reset: FFH R/W |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| PMO | 1 | PM06 | PM05 | PM04 | PM03 | PM02 | PM01 | PM00 |

Address: FFF21H After reset: FFH R/W

| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PM1 | 1 | PM16 | PM15 | PM14 | PM13 | PM12 | PM11 | PM10 |

Address: FFF22H After reset: FFH R/W

| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PM2 | PM27 | PM26 | PM25 | PM24 | PM23 | PM22 | PM21 | PM20 |

Address: FFF27H After reset: FFH R/W

| Symbol | 7 | 6 | 5 | 4 |  | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PM7 | PM77 | PM76 | PM75 | PM74 | PM73 | PM72 | PM71 | PM70 |
|  |  |  |  |  |  |  |  |  |

Address: FFF2CH After reset: FFH R/W

| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PM12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | PM120 |

Address: FFF2FH After reset: FFH R/W

| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PM15 | 1 | 1 | 1 | PM154 | PM153 | PM152 | PM151 | PM150 |
|  |  |  |  |  |  |  |  |  |  |


| PMmn | I/O mode selection for Pmn/KRk pin ( $\mathrm{n}=0$ to $7, \mathrm{~m}=0$ to $2,7,12,15, \mathrm{k}=0$ to 9 ) |
| :---: | :--- |
| 0 | Output mode (output buffer on) |
| 1 | Input mode (output buffer off) |

## RENESAS TECHNICAL UPDATE TN-RL*-A018A/E

Date: Sep. 24, 2013

## Incorrect:

## 7. 18.3.3 SNOOZE mode

Transition time from SNOOZE mode to normal operation:

- When vectored interrupt servicing is carried out:

HS (High-speed main) mode : 4.99 to 9.44 . $\mathrm{s}+7$ clocks
LS (Low-speed main) mode : 1.10 to $5.08 \mu s+7$ clocks
LV (Low-voltage main) mode : 16.58 to 25.40 us +7 clocks

- When vectored interrupt servicing is not carried out:

HS (High-speed main) mode : 4.99 to 9.44 us +7 clocks
LS (Low-speed main) mode : 1.10 to $5.08 \mu \mathrm{~s}+7$ clocks
LV (Low-voltage main) mode : 16.58 to $25.40 \mu \mathrm{~s}+7$ clocks

## 8. 22.3.1.1 Flash memory CRC control register (CRCOCTL)

| Symbol | <7> | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CRCOCTL | CRCOEN | 0 | FEA5 | FEA4 | FEA3 | FEA2 | FEA1 | FEAO |


| CRCOEN | Control of CRC ALU operation |
| :---: | :--- |
| 0 | Stop the operation. |
| 1 | Start the operation according to HALT instruction execution. |


| FEA5 | FEA4 | FEA3 | FEA2 | FEA1 | FEA0 | High-speed CRC operation range |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 to 3FFBH (16 K to 4 bytes) |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 to 7FFBH (32 K to 4 bytes) |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 to BFFBH (48 K to 4 bytes) |
| 0 | 0 | 0 | 0 | 1 | 1 | 0 to FFFBH (64 K to 4 bytes) |
| Other than above |  |  |  |  |  |  |
| Setting prohibited |  |  |  |  |  |  |

## Correct:

Transition time from SNOOZE mode to normal operation: -

- When vectored interrupt servicing is carried out

HS (High-speed main) mode : 4.99 to $9.44 \mu \mathrm{~s}+1$ clocks
LS (Low-speed main) mode : 1.10 to $5.08 \mu \mathrm{~s}+1$ clocks
LV (Low-voltage main) mode : 16.58 to $25.40 \mu \mathrm{~s}+1$ clocks $\cdot{ }^{-}$

- When vectored interrupt servicing is not carried out:

HS (High-speed main) mode : 4.99 to $9.44 \mu \mathrm{~s}+1$ clocks
LS (Low-speed main) mode : 1.10 to $5.08 \mu \mathrm{~s}+1$ clocks
LV (Low-voltage main) mode : 16.58 to $25.40 \mu \mathrm{~s}+1$ clocks

| Symbol | <7> | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CRCOCTL | CRCOEN | 0 | FEA5 | FEA4 | FEA3 | FEA2 | FEA1 | FEAO |


| CRCOEN | Control of CRC ALU operation |
| :---: | :--- |
| 0 | Stop the operation. |
| 1 | Start the operation according to HALT instruction execution. |


| FEA5 | FEA4 | FEA3 | FEA2 | FEA1 | FEA0 | High-speed CRC operation range |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 to 3FFBH (16 K -4 bytes) |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 to 7FFBH (32 K -4 bytes $)$ |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 to BFFBH (48 K -4 bytes $)$ |
| 0 | 0 | 0 | 0 | 1 | 1 | 0 to FFFBH (64 K - 4 bytes $)$ |
| Other than above |  |  |  |  |  | Setting prohibited |

## RENESAS TECHNICAL UPDATE TN-RL*-A018A/E

Date: Sep. 24, 2013

## Incorrect:

## 9. 25.4.3 Procedure for accessing data flash memory

The data flash memory is initially stopped after a reset ends and cannot be accessed (read or programmed). To access the memory, perform the following procedure:
$<1>$ Write 1 to bit 0 (DFLEN) of the data flash control register (DFLCTL).
<2> Wait for the setup to finish for software timer.etc.
The time setup takes differs for each main clock mode.
<Setup time for each main clock mode>

- HS (High-speed main): $5 \mu \mathrm{~s}$
- LS (Low-speed main): 720 ns
-LV (Low-voltage main): $10 \mu \mathrm{~s}$
<3> After the wait, the data flash memory can be accessed.
Cautions 1. Accessing the data flash memory is not possible during the setup time.

2. Before executing a STOP instruction during the setup time, temporarily clear DFLEN to 0 .

## Correct:

<Setup time for each flash operation mode>

- HS (High speed main): $5 \mu \mathrm{~s}$
- LS (Low speed main): 720 ns
- LV (Low voltage main): $10 \mu \mathrm{~s}$

The data flash memory is stopped after a reset ends. To access the data flash, make initial settings according to the following procedure.
$<1>$ Set bit 0 (DFLEN) of the data flash control register (DFLCTL) to 1 .
<2> Wait for the setup to finish for software timer, etc.
The time setup takes differs for each flash operation mode for the main clock.
<3> After the wait, the data flash memory can be accessed.
Cautions 1. Accessing the data flash memory is not possible during the setup time.
2. Transition to the STOP mode is not possible during the setup time. To enter the STOP mode during the setup time, clear DFLEN to 0 and then execute the STOP instruction.
3. The high-speed on-chip oscillator should be kept operating during data flash rewrite. If it is kept stopping, operate the high-speed on-chip oscillator clock (HIOSTOP $=0$ ) and execute the data flash library after $30 \mu \mathrm{~s}$ have elapsed.

After initialized, the data flash memory can be read by using a CPU instruction or can be read/written by using a data
flash library.
If the DMA controller operates when the data flash memory is accessed, however, follow one of these procedures:
(A) Suspending/forcibly terminating DMA transfer Before reading the data flash memory, suspend DMA transfer of all the channels used. After setting the DWAITn bit to 1 , however, wait at least for the duration of three clocks
(fcLk) before reading the
data flash memory. After reading the data flash memory, lift the suspension of transfer by clearing the DWAITn bit to 0 .
Or, forcibly terminate DMA transfer in accordance with the procedure in 15.5.5 Forced termination by software before reading the data flash memory. Resume DMA transfer after the data flash memory has been read.
(B) Access the data flash memory by using the newest data flash library.
(C) Insertion of NOP

Insert an NOP instruction immediately before the instruction that reads the data flash memory.
<Example>
MOVW HL,!addr16 ; Reads RAM.
NOP ; Insert NOP instruction before reading data flash memory.
MOV A,[DE] ; Read data flash memory.

If a high-level language such as C is used, however, the compiler may generate two instructions for one code. In this case, the NOP instruction is not inserted immediately before the data flash memory read instruction.
Therefore, read the data flash memory by (A) or (B) above.
Remarks 1. n : DMA channel number ( $\mathrm{n}=0,1$ )
2. fcık: CPU/peripheral hardware clock frequency

## Incorrect:

10. 29.3 DC Characteristics
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AV} \mathrm{DD} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, 1.6 \mathrm{~V} \leq E \mathrm{~V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=E \mathrm{~V}_{\mathrm{SS} 0}=0$ V) $(1 / 5)$

Note 3. Specification under output current where the duty $\leq 70 \%$.
The output current value that has changed the duty ratio lower than $70 \%$ can be calculated with the following expression (when changing the duty ratio to $\mathrm{n} \%$ ).
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{A} \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=E \mathrm{~V}_{\mathrm{SS}}=0$ V) $(2 / 5)$

Note 3. Specification under conditions where the duty factor is $70 \%$.
The output current value that has changed the duty ratio lower than $70 \%$ can can be calculated with the following expression (when changing the duty ratio to $\mathrm{n} \%$ ).

## Correct:

Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor > $70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from $70 \%$ to $\mathrm{n} \%$ ).

Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor > $70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from $70 \%$ to $\mathrm{n} \%$ ).

## Incorrect:

11. 29.4 AC Characteristics

|  | Items | Symbol | Conditions |  |  |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Instruction cycle (minimum instruction execution time) | Tcy | Main system clock (fmain) mode | HS (high-speed main) mode |  | $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$ | 0.03125 |  | 1 | $\mu \mathrm{S}$ |
|  |  |  |  |  |  | $2.4 \mathrm{~V} \leq \mathrm{V}_{\text {DD }}<2.7 \mathrm{~V}$ | 0.0625 |  | 1 | $\mu \mathrm{s}$ |
|  |  |  |  | LV (Low-voltage main) mode |  | $1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$ | 0.25 |  | 1 | $\mu \mathrm{s}$ |
|  |  |  |  | LS (low-speed main) mode |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$ | 0.125 |  | 1 | $\mu \mathrm{s}$ |
|  |  |  | Subsystem clock (fsuв) operation |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$ | 28.5 | 30.5 | 31.3 | $\mu \mathrm{S}$ |
|  |  |  | In the self programming mode | HS (high-speed main) mode |  | $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$ | 0.03125 |  | 1 | $\mu \mathrm{s}$ |
|  |  |  |  |  |  | $2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$ | 0.0625 |  | 1 | $\mu \mathrm{S}$ |
|  |  |  |  | LV (Low main) m | -voltage ode | $1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$ | 0.25 |  | 1 | $\mu \mathrm{s}$ |
|  |  |  |  | LS (lowmain) m | speed ode | $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$ | 0.125 |  | 1 | $\mu \mathrm{s}$ |
| <R> | External main system clock frequency | fex | $2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$ |  |  |  | 1.0 |  | 20.0 | MHz |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$ |  |  |  | 1.0 |  | 1.0 | MHz |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{VDD}^{2} 2.4 \mathrm{~V}$ |  |  |  | 1.0 |  | 8.0 | MHz |
|  |  |  | $1.6 \mathrm{~V} \leq \mathrm{V}$ D $<1.8 \mathrm{~V}$ |  |  |  | 1.0 |  | 4.0 | MHz |
|  |  | fexs |  |  |  |  | 32 |  | 35 | kHz |
| <R> | External main system clock input high-level width, low-level width | texh, texL | $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$ |  |  |  | 24 |  |  | ns |
|  |  |  | $2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$ |  |  |  | 30 |  |  | ns |
|  |  |  | $1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.4 \mathrm{~V}$ |  |  |  | 60 |  |  | ns |
|  |  |  | $1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<1.8 \mathrm{~V}$ |  |  |  | 120 |  |  | ns |
|  |  | texhs, texls |  |  |  |  | 13.7 |  |  | $\mu \mathrm{s}$ |
|  | TI00, TI01, TI03 to TIO7 input high-level width, low-level width | tтiH, ttil |  |  |  |  | 1/fıск +10 |  |  | $n s^{\text {Note }}$ |
|  | TO00, TO01, TO03 to TO07 output frequency | fto | HS (high-speed main) mode |  | $2.7 \mathrm{~V} \leq$ | $\leq E V_{\text {doo }} \leq 3.6 \mathrm{~V}$ |  |  | 8 | MHz |
|  |  |  |  |  | $1.8 \mathrm{~V} \leq$ | $\leq E V_{\text {dDo }}<2.7 \mathrm{~V}$ |  |  | 4 | MHz |
|  |  |  |  |  | $1.6 \mathrm{~V} \leq$ | $\leq E V_{\text {dDo }}<1.8 \mathrm{~V}$ |  |  | 2 | MHz |
|  |  |  | LV (Low-voltage main) mode |  | $1.6 \mathrm{~V} \leq$ | $\leq \mathrm{EV}_{\text {DDO }} \leq 3.6 \mathrm{~V}$ |  |  | 2 | MHz |
|  |  |  | LS (low-speed main) mode |  | $1.8 \mathrm{~V} \leq$ | $\leq \mathrm{EV}_{\text {doo }} \leq 3.6 \mathrm{~V}$ |  |  | 4 | MHz |
|  |  |  |  |  | $1.6 \mathrm{~V} \leq$ | $\leq E V_{\text {dDo }}<1.8 \mathrm{~V}$ |  |  | 2 | MHz |
|  | PCLBUZO, PCLBUZ1 output frequency | $f_{P C L}$ | HS (high-speed main) mode |  | $2.7 \mathrm{~V} \leq$ | <EV $\mathrm{DDDO}^{5} 3.6 \mathrm{~V}$ |  |  | 8 | MHz |
|  |  |  |  |  | $1.8 \mathrm{~V} \leq$ | $\leq E V_{\text {DDO }}<2.7 \mathrm{~V}$ |  |  | 4 | MHz |
|  |  |  |  |  | $1.6 \mathrm{~V} \leq$ | $\leq E V_{\text {DDO }}<1.8 \mathrm{~V}$ |  |  | 2 | MHz |
|  |  |  | LV (Low-voltage main) mode |  | $1.8 \mathrm{~V} \leq$ | <EV $\mathrm{DDDO}^{5} 3.6 \mathrm{~V}$ |  |  | 4 | MHz |
|  |  |  |  |  | $1.6 \mathrm{~V} \leq$ | $\leq E V_{\text {DDO }}<1.8 \mathrm{~V}$ |  |  | 2 | MHz |
|  |  |  | LS (low-speed main) mode |  | $1.8 \mathrm{~V} \leq$ | $\leq E V_{\text {dDo }} \leq 3.6 \mathrm{~V}$ |  |  | 4 | MHz |
|  |  |  |  |  | $1.6 \mathrm{~V} \leq$ | $\leq E V_{\text {DDO }}<1.8 \mathrm{~V}$ |  |  | 2 | MHz |
|  | Interrupt input high-level width, low-level width | tinth, tintl | INTP0 |  | $1.6 \mathrm{~V} \leq$ | $\leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$ | 1 |  |  | $\mu \mathrm{s}$ |
|  |  |  | INTP1 to INTP11 |  | $1.6 \mathrm{~V} \leq$ | $\leq E V_{\text {doo }} \leq 3.6 \mathrm{~V}$ | 1 |  |  | $\mu \mathrm{s}$ |
|  | Key interrupt input high-level width, low-level width | tKR | KR0 to KR9 |  | $\begin{aligned} & 1.8 \mathrm{~V} \leq \\ & 1.8 \mathrm{~V} \leq \end{aligned}$ | $\begin{aligned} & \leq E V_{D D O} \leq 3.6 \mathrm{~V}, \\ & \leq A V_{D D} \leq 3.6 \mathrm{~V} \end{aligned}$ | 250 |  |  | ns |
|  |  |  |  |  | $\begin{aligned} & 1.6 \mathrm{~V} \\ & 1.6 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \leq E V_{D D O}<1.8 \mathrm{~V}, \\ & \leq A V_{D D}<1.8 \mathrm{~V} \end{aligned}$ | 1 |  |  | $\mu \mathrm{s}$ |
|  | RESET low-level width | trsL |  |  |  |  | 10 |  |  | $\mu \mathrm{s}$ |

## Correct:

( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{VSS}=\mathrm{EVSSO}=0 \mathrm{~V}$ )


## 12. 29.5.1 Serial array unit <br> \section*{Incorrect:}

(2)During communication at same potential (CSI mode) (master mode, $\overline{\text { SCKp... internal clock output }}$ corresponding CSIOO only)
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{Ddo} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}, \mathrm{~V} s \mathrm{E}=\mathrm{EV}$ sso $=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS ${ }^{\text {Note } 1}$ |  | LS ${ }^{\text {Note } 2}$ |  | LV ${ }^{\text {Note } 3}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. |  |
| $\overline{\text { SCKp }}$ cycle time | tkcy1 | $2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD} \leq 3.6 \mathrm{~V}$ | tкcy $\geq$ 4/fcle | $\begin{aligned} & 83.3 \\ & \text { Note } 4 \end{aligned}$ |  | 250 |  | 500 |  | ns |
| SCKp high-/low-level width | tkH1, tkL1 | $2.7 \mathrm{~V} \leq \mathrm{EV}$ DD $\leq 3.6 \mathrm{~V}$ |  | $\begin{gathered} \mathrm{tkCy}_{1} / 2 \\ -10 \end{gathered}$ |  | $\begin{gathered} \mathrm{tkcy} 1 / 2 \\ -50 \end{gathered}$ |  | $\begin{gathered} \mathrm{tkCy}_{1} / 2 \\ -50 \end{gathered}$ |  | ns |
| Slp setup time (to SCKp $\uparrow$ ) Note 5 | tsik1 | $2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD} \leq 3.6 \mathrm{~V}$ |  | 33 |  | 110 |  | 110 |  | ns |
| Slp hold time (from $\overline{\text { SCKp }} \uparrow$ ) Note 6 | tksı11 | $2.7 \mathrm{~V} \leq \mathrm{EV}_{\text {do }} \leq 3.6 \mathrm{~V}$ |  | 10 |  | 10 |  | 10 |  | ns |
| Delay time from $\overline{\text { SCKp }} \downarrow$ to SOp output Note 7 | tksO1 | $\mathrm{C}=30 \mathrm{pF}$ Note 8 |  |  | 10 |  | 10 |  | 10 | ns |

Notes 1. HS is condition of HS (high-speed main) mode.
2. LS is condition of LS (low-speed main) mode.
3. LV is condition of LV (low-voltage main) mode.
4. The value must also be $2 / \mathrm{fCLK}$ or more.
5. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
6. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
7. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0 .
8. $C$ is the load capacitance of the SCKp and SOp output lines.

## Correct:

(2)During communication at same potential (CSI mode) (master mode, $\overline{\text { SCKp... internal clock output }}$ corresponding CSIOO only)
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}, \mathrm{~V} s=E \mathrm{Vsso}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS ${ }^{\text {Note } 1}$ |  | LS ${ }^{\text {Note } 2}$ |  | LV ${ }^{\text {Note } 3}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. |  |
| SCKp cycle time | tkcy1 | $2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$ | tкcrı $\geq 2 / \mathrm{fcık}$ | $\begin{aligned} & 83.3 \\ & \text { Note } 4 \end{aligned}$ |  | 250 |  | 500 |  | ns |
| SCKp high-/low-level width | tkH1, tkL1 | $2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD} \leq 3.6 \mathrm{~V}$ |  | $\begin{array}{\|c} \hline \text { tкcy/2 } \\ -10 \end{array}$ |  | $\begin{gathered} \mathrm{tKCry}_{1} / 2 \\ -50 \end{gathered}$ |  | $\begin{gathered} \mathrm{tKCr} 1 / 2 \\ -50 \end{gathered}$ |  | ns |
| $\underset{\text { Note } 5}{\text { Slp setup time (to SCKp } \uparrow \text { ) }}$ | tsik1 | $2.7 \mathrm{~V} \leq \mathrm{EV}$ DD $\leq 3.6 \mathrm{~V}$ |  | 33 |  | 110 |  | 110 |  | ns |
| Slp hold time (from SCKp $\uparrow$ ) Note 6 | tksil | $2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD} \leq 3.6 \mathrm{~V}$ |  | 10 |  | 10 |  | 10 |  | ns |
| Delay time from $\overline{\text { SCKp }} \downarrow$ to SOp output ${ }^{\text {Note }} 7$ | tksor | $\mathrm{C}=20 \mathrm{pF}$ Note 8 |  |  | 10 |  | 10 |  | 10 | ns |

Notes 1. HS is condition of HS (high-speed main) mode.
2. LS is condition of LS (low-speed main) mode.
3. $L V$ is condition of $L V$ (low-voltage main) mode.
4. The fMCL must also be 24 MHz or less.
5. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
6. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
7. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes
"from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
8. $C$ is the load capacitance of the SCKp and SOp output lines.

## Incorrect:

Notes 1. HS is condition of HS (high-speed main) mode.
2. LS is condition of LS (low-speed main) mode.
3. LV is condition of LV (low-voltage main) mode.
4. When DAPmn $=0$ and $C K P m n=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp $\downarrow$ " when $D A P m n=0$ and $C K P m n=1$, or DAPmn $=1$ and $C K P m n=0$.
5. When DAPmn $=0$ and $C K P m n=0$, or DAPmn $=1$ and $C K P m n=1$. The SIp hold time becomes "from SCKp" when DAPm $=0$ and CKPmn $=1$ or DAPmn $=1$ and CKPmn $=0$.
6. When $D A P m n=0$ and $C K P m n=0$, or $D A P m n=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp"" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
7. C is the load capacitance of the SOp output lines.
8. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

## Correct:

Notes 1. HS is condition of HS (high-speed main) mode.
2. LS is condition of LS (low-speed main) mode.
3. LV is condition of LV (low-voltage main) mode
4. Transfer rate in the SNOOZE mode : MAX. 1 Mbps
5. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
6. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from $\overline{\text { SCKp }} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
7. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=$ 1 and CKPmn = 0 .
8. $C$ is the load capacitance of the SOp output lines.

Incorrect:
(7) Communication at different potential (2.5 V) (CSI mode) (master mode, $\overline{\text { SCKp... internal clock output, }}$ corresponding CSIOO only)
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{EV}_{\mathrm{ss} 0}=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | HS ${ }^{\text {Note } 1}$ |  | LS ${ }^{\text {Note } 2}$ |  | LV ${ }^{\text {Note } 3}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. |  |
| SCKp cycle time | tkcy1 | $2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 3.6 \mathrm{~V}$, tкCY1 $\geq$ 2fčL <br> $2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}$,  <br> $\mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega$  | 300 |  | 1150 |  | 1150 |  | ns |
| SCKp high-level width | tKH1 | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$ | $\begin{aligned} & \mathrm{tkCry} / 2 \\ & -120 \end{aligned}$ |  |  |  | $\begin{array}{\|l\|} \hline \text { tKCY } 1 / 2 \\ -120 \end{array}$ |  | ns |
| SCKp low-level width | tkL1 | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}^{\leq} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$ | $\left\|\begin{array}{c} \mathrm{tkcy} / 2 \\ -10 \end{array}\right\|$ |  | $\left\lvert\, \begin{gathered} \text { tксуг1/2 } \\ -50 \end{gathered}\right.$ |  | $\begin{array}{\|c\|} \hline \text { tKCry } 1 / 2 \\ -50 \end{array}$ |  | ns |
| Slp setup time (to $\overline{\text { SCKp }} \uparrow$ ) ${ }^{\text {Note } 4}$ | tsik1 | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$ | 121 |  | 479 |  | 479 |  | ns |
| Slp hold time (from $\overline{\text { SCKp } \uparrow) ~}{ }^{\text {Note } 4}$ | tksı1 | $\begin{array}{\|l\|} 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \\ \hline \end{array}$ | 10 |  | 10 |  | 10 |  | ns |
| Delay time from $\overline{S C K p} \downarrow$ to SOp output ${ }^{\text {Note } 4}$ | tkso1 | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | 130 |  | 130 |  | 130 | ns |
| SIp setup time (to $\overline{\text { SCKp }} \downarrow)^{\text {Note } 5}$ | tsik1 | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$ | 3 |  | 110 |  | 110 |  | ns |
| SIp hold time (from $\overline{\text { SCKp }} \downarrow$ ) ${ }^{\text {Note } 5}$ | tksı1 | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDOO}^{\leq} 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{B}}=2.7 \mathrm{k} \Omega \end{aligned}$ | 10 |  | 10 |  | 10 |  | ns |
| Delay time from $\overline{\mathrm{SCKp}} \uparrow$ to SOp output ${ }^{\text {Note } 5}$ | tksor | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | 10 |  | 10 |  | 10 | ns |

## Correct:

(7) Communication at different potential (2.5 V) (CSI mode) (master mode, $\overline{\text { SCKp... internal clock output, }}$ corresponding CSIOO only)
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq \mathrm{V} \mathrm{DD} \leq 3.6 \mathrm{~V}$, V ss $=E V \mathrm{Ss} 0=0 \mathrm{~V}$ )

| Parameter | Symbol | Conditions |  | HS ${ }^{\text {Note } 1}$ |  | LS $^{\text {Note } 2}$ |  | LV ${ }^{\text {Note } 3}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. |  |
| $\overline{\text { SCKp cycle time }}$ | tkcy1 | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$ | $\mathrm{tKCY1}^{2} \geq 2 / \mathrm{fcLK}$ | 300 |  | 1150 |  | 1150 |  | ns |
| SCKp high-level width | tkH1 | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | $\begin{aligned} & \text { tкCy1/2 } \\ & -120 \end{aligned}$ |  |  |  | $\begin{array}{\|l\|l} \text { tксу1/2 } \\ -120 \end{array}$ |  | ns |
| SCKp low-level width | tkL1 | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | $\begin{gathered} \mathrm{tkcy} 1 / 2 \\ -10 \end{gathered}$ |  | $\begin{array}{\|c} \mathrm{tkcy} 1 / 2 \\ -50 \end{array}$ |  | $\begin{array}{\|c} \text { tкč1/2 } \\ -50 \end{array}$ |  | ns |
| Slp setup time (to $\overline{\mathrm{SCKp}} \uparrow$ ) ${ }^{\text {Note } 4}$ | tsik1 | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | 121 |  | 479 |  | 479 |  | ns |
| Slp hold time (from SCKp $\uparrow$ ) Note 4 | tksı11 | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | 10 |  | 10 |  | 10 |  | ns |
| Delay time from $\overline{\text { SCKp }} \downarrow$ to SOp output ${ }^{\text {Note }} 4$ | tkso1 | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V} D \mathrm{DD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$ |  |  | 130 |  | 130 |  | 130 | ns |
| Slp setup time (to $\overline{\mathrm{SCKp}} \downarrow$ ) ${ }^{\text {Note } 5}$ | tsik1 | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V} D D 0^{\leq} 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | 33 |  | 110 |  | 110 |  | ns |
| Slp hold time (from SCKp $\downarrow$ ) Note 5 | tksı1 | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$ |  | 10 |  | 10 |  | 10 |  | ns |
| Delay time from $\overline{\mathrm{SCKp}} \uparrow$ to SOp output ${ }^{\text {Note } 5}$ | tksO1 | $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$ |  |  | 10 |  | 10 |  | 10 | ns |

## Incorrect:

(8) Communication at different potential (1.8 V, 2.5 V ) (CSI mode) (master mode, $\overline{\text { SCKp... internal clock output) (2/2) }}$ ( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DD} 0} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{EV}_{\mathrm{ss} 0}=0 \mathrm{~V}$ )


Correct:
(8) Communication at different potential (1.8 V, 2.5 V ) (CSI mode) (master mode, $\overline{\text { SCKp... internal clock output) (2/2) }}$ ( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DD}} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{Vss}=\mathrm{EV}$ ss $=0 \mathrm{~V}$ )


### 13.29.6.1 A/D converter characteristics

## Addition:

When $A V_{\text {REF ( })}=A V_{\text {REFP }} / A N I 0(A D R E F P 1=0, \operatorname{ADREFP} 0=1), A V_{\text {REF ( })}=A V_{\text {REFM }} / A N I 1(A D R E F M=1)$, target pin:ANI2-ANI12
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \leq A \mathrm{~V}_{\mathrm{REFP}} \leq \mathrm{AV}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, A \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$,
Reference voltage $(+)=A V_{\text {REFP, }}$ Reference voltage ( - ) $=A V_{\text {REFM }}=0 \mathrm{~V}$, HALT mode)

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resolution | $\mathrm{R}_{\text {ES }}$ |  |  |  | 12 | bit |
| Overall error ${ }^{\text {Note 1,2,3 }}$ | AINL | 12bit resolution |  | $\pm 1.7$ | $\pm 3.3$ | LSB |
| Conversion time | $\mathrm{T}_{\text {conv }}$ | ADTYP=0, <br> 12bit resolution | 3.375 |  |  | $\mu \mathrm{s}$ |
| Zero-scale error ${ }^{\text {Note 1,2,3}}$ | $\mathrm{E}_{\text {zs }}$ | 12bit resolution |  | $\pm 1.3$ | $\pm 3.2$ | LSB |
| Full-scale error ${ }^{\text {Note1,2,3 }}$ | $\mathrm{E}_{\mathrm{FS}}$ | 12bit resolution |  | $\pm 0.7$ | $\pm 2.9$ | LSB |
| Integral linearity error ${ }^{\text {Note 1,2,3}}$ | ILE | 12bit resolution |  | $\pm 1.0$ | $\pm 1.4$ | LSB |
| Differential linearity error ${ }^{\text {Note 1,2,3 }}$ | DLE | 12bit resolution |  | $\pm 0.9$ | $\pm 1.2$ | LSB |
| Analog input voltage | $\mathrm{V}_{\text {AIN }}$ |  | 0 |  | $\mathrm{AV}_{\text {REFP }}$ | V |

Notes 1: TYP. Value is the average value $A V_{D D}=A V_{\text {REFP }}=3 V, \quad T_{A}=25^{\circ} \mathrm{C}$.
MAX. Values are mean $\pm 3 \sigma$ in normal distribution.
2: This value based on the characterization results, is not subject to production testing.
3: Excludes quantization error ( $\pm 1 / 2$ LSB).
Caution 1. Attention must be paid to noise input to each power supply and ground lines.
The reference voltage line of $\mathrm{AV}_{\text {REFP }}$ is separated from the other power supply lines for noise countermeasures.
Caution 2. Please make sure that pulses whose voltage suddenly change, such as digital pulses, are not input or output to a pin adjacent to the pin whose value is being A/D converted and P20 to P27, P150 to P154.

## Incorrect:

14. 30.3.1 Pin characteristics
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AV} \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, 2.4 \mathrm{~V} \leq E \mathrm{~V}_{\mathrm{DDO}} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=E \mathrm{~V}_{S S 0}=0$ V)

Note 3. Specification under output current where the duty $\leq 70 \%$.
The output current value that has changed the duty ratio lower than $70 \%$ can be calculated with the following expression (when changing the duty ratio to $n \%$ ).
$\left(T_{A}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq A V_{D D} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, 2.4 \mathrm{~V} \leq E V_{D D O} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=E \mathrm{~V}_{S S}=0$ V )
Note 3. Specification under output current where the duty $\leq 70 \%$.
The output current value that has changed the duty ratio lower than $70 \%$ can can be calculated with the following expression (when changing the duty ratio to $\mathrm{n} \%$ ).
15. 30.4 AC Characteristics
$\left(T_{A}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=$ $E V s s o=0 V$ )

## Correct:

Note 3 . Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor > $70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from $70 \%$ to $\mathrm{n} \%$ ).

Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from $70 \%$ to $n \%$ ).
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq \mathrm{VDD}_{\mathrm{D}} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{EVss} 0=$ 0 V )

