# **RENESAS TECHNICAL UPDATE**

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

| Product<br>Category   | MPU/MCU                                                                                                  | Document<br>No.         | TN-RL*-A0112A/E        | Rev.     | 1.00 |  |
|-----------------------|----------------------------------------------------------------------------------------------------------|-------------------------|------------------------|----------|------|--|
| Title                 | Correction for Incorrect Description Notice RI<br>Descriptions in the User's Manual: Hardware<br>Changed | Information<br>Category | Technical Notification |          |      |  |
|                       |                                                                                                          | Lot No.                 |                        |          |      |  |
| Applicable<br>Product | RL78/L1C Group                                                                                           | All lots                | Reference<br>Document  | Rev 2.21 |      |  |

This document describes misstatements found in the RL78/L1C User's Manual: Hardware Rev. 2.21 (R01UH0409EJ0221).

**Corrections** 

| Applicable Item                                       | Applicable<br>Page        | Contents                          |
|-------------------------------------------------------|---------------------------|-----------------------------------|
| 8.3.4 Real-time clock control register 1 (RTCC1)      | Page 456                  | Incorrect descriptions<br>revised |
| Figure 8 - 22 Procedure for Reading Real-time Clock 2 | Page 470                  | Incorrect descriptions<br>revised |
| Figure 8 - 23 Procedure for Writing Real-time Clock 2 | Page 471                  | Incorrect descriptions<br>revised |
| 34.3.2 Supply current characteristics                 | Page 1182 to<br>Page 1185 | Incorrect descriptions<br>revised |
| 35.3.2 Supply current characteristics                 | Page 1248 to<br>Page 1251 | Incorrect descriptions revised    |

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.



Corrections in the User's Manual: Hardware

|     |                                                                | Pages in this          |                    |                 |                             |  |  |
|-----|----------------------------------------------------------------|------------------------|--------------------|-----------------|-----------------------------|--|--|
| No. |                                                                | Document No.           | English            | R01UH0382EJ0221 | document for<br>corrections |  |  |
| 1   | 8.3.4 R                                                        | eal-time clock control | register 1 (RTCC1) | Page 456        | Page 3                      |  |  |
| 2   | Figure 8 - 22 Procedure for Reading Real-time Clock 2          |                        |                    | Page 470        | Page 4                      |  |  |
| 3   | Figure 8 - 23 Procedure for Writing Real-time Clock 2 Page 471 |                        |                    |                 | Page 4                      |  |  |
| 4   | 34.3.2 Supply current characteristics Page 1182 to Page 118    |                        |                    |                 | Page 5 to Page 7            |  |  |
| 5   | 35.3.2 \$                                                      | Page 8 to Page 10      |                    |                 |                             |  |  |

Incorrect: Bold with underline: Correct: Gray hatched

# **Revision History**

RL78/L1C Correction for incorrect description notice

| Document Number | Issue Date    | Description                                      |
|-----------------|---------------|--------------------------------------------------|
| TN-RL*-A0112A/E | Jan. 19, 2023 | First edition issued                             |
|                 |               | Corrections No.1 to No.5 revised (this document) |



# 1. 8.3.4 Real-time clock control register 1 (RTCC1) (p.456)

## Incorrect:

Figure 8 - 8 Format of Real-time clock control register 1 (RTCC1) (3/3)

| ĺ | RWST            | Wait status flag of real-time clock 2                                     |  |  |  |  |
|---|-----------------|---------------------------------------------------------------------------|--|--|--|--|
|   | 0               | Counter is operating.                                                     |  |  |  |  |
|   | 1               | Mode to read or write counter value.                                      |  |  |  |  |
|   | This status fla | This status flag indicates whether the setting of the RWAIT bit is valid. |  |  |  |  |
|   |                 |                                                                           |  |  |  |  |

Before reading or writing the counter value, confirm that the value of this flag is 1.

Even if the RWAIT bit is set to 0, the RWST bit is not set to 0 while writing to the counter. After writing is completed, the RWST bit is set to 0.

| RWAIT                                                                                                                 | Wait control of real-time clock 2                                |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|
| 0                                                                                                                     | Sets counter operation.                                          |  |  |  |  |  |
| 1                                                                                                                     | Stops SEC to YEAR counters. Mode to read or write counter value. |  |  |  |  |  |
| This bit controls the operation of the counter.                                                                       |                                                                  |  |  |  |  |  |
| Be sure to write "1" to it to read or write the counter value.                                                        |                                                                  |  |  |  |  |  |
| As the counter (16-bit) is continuing to run, complete reading or writing within one second and turn back to 0.       |                                                                  |  |  |  |  |  |
| When RWAIT = 1, it takes up to 1 clock (fRTC) until the counter value can be read or written (RWST = 1). Note1, 2     |                                                                  |  |  |  |  |  |
| When the counter (16-bit) overflowed while RWAIT = 1, it keeps the event of overflow until RWAIT = 0, then counts up. |                                                                  |  |  |  |  |  |
| However, when it wrote a value to second count register, it will not keep the overflow event.                         |                                                                  |  |  |  |  |  |

Date: Jan. 19, 2023

Correct:

Figure 8 - 8 Format of Real-time clock control register 1 (RTCC1) (3/3)

| RWST                                                                                                                                                                | Wait status flag of real-time clock 2 |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|
| 0                                                                                                                                                                   | Counter is operating.                 |  |  |  |
| 1                                                                                                                                                                   | Mode to read or write counter value.  |  |  |  |
| This status flag indicates whether the setting of the RWAIT bit is valid.<br>Before reading or writing the counter value, confirm that the value of this flag is 1. |                                       |  |  |  |

Even if the RWAIT bit is set to 0, the RWST bit is not set to 0 while writing to the counter. After writing is completed, the RWST bit is set to 0.

| RWAIT | Wait control of real-time clock 2                                |  |  |  |
|-------|------------------------------------------------------------------|--|--|--|
| 0     | Sets counter operation.                                          |  |  |  |
| 1     | Stops SEC to YEAR counters. Mode to read or write counter value. |  |  |  |

This bit controls the operation of the counter.

Be sure to write "1" to it to read or write the counter value.

As the counter (16-bit) is continuing to run, complete reading or writing within one second and turn back to 0. When reading or writing to the counter is required while generation of the alarm interrupt is enabled, first set the CT2 to CT0

bits to 010B (generating the constant-period interrupt once per 1 second).

Then, complete the processing from setting the RWAIT bit to 1 to setting it to 0 before generation of the next

constant-period interrupt.When RWAIT = 1, it takes up to 1 clock (fRTc) until the counter value can be read or written (RWST = 1).<sup>Note1, 2</sup>

When the counter (16-bit) overflowed while RWAIT = 1, it keeps the event of overflow until RWAIT = 0, then counts up. However, when it wrote a value to second count register, it will not keep the overflow event.



## 2. Figure 8 - 22 Procedure for Reading Real-time Clock 2 (p.470)

#### Incorrect:

- Note 1. When the counter is stopped (RTCE = 0), RWST is not set to 1.
- **Note 2.** Be sure to confirm that RWST = 0 before setting STOP mode.
- Caution Complete the series of operations of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second.
- **Remark** SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR may be read in any sequence. All the registers do not have to be set and only some registers may be read.

# 3. Figure 8 - 23 Procedure for Writing Real-time Clock 2 (p.471)

### Incorrect:

- Note 1. When the counter is stopped (RTCE = 0), RWST is not set to 1.
- Note 2. Be sure to confirm that RWST = 0 before setting STOP mode.
- Caution 1. Complete the series of operations of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second.
- Caution 2. When changing the values of the SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR register while the counter operates (RTCE = 1), rewrite the values of the MIN register after disabling interrupt servicing INTRTC by using the interrupt mask flag register. Furthermore, clear the WAFG, RIFG and RTCIF flags after rewriting the MIN register.
- **Remark** SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR may be **read** in any sequence. All the registers do not have to be set and only some registers may be written.

Date: Jan. 19, 2023

#### Correct:

- Note 1. When the counter is stopped (RTCE = 0), RWST is not set to 1.
- **Note 2.** Be sure to confirm that RWST = 0 before setting STOP mode.
- Caution Complete the series of operations of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second. When reading to the counter is required while generation of the alarm interrupt is enabled, first set the CT2 to CT0 bits to 010B (generating the constant-period interrupt once per 1 second). Then, complete the processing from setting the RWAIT bit to 1 to setting it to 0 before generation of the next constant-period interrupt.
- **Remark** SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR may be read in any sequence. All the registers do not have to be set and only some registers may be read.

#### Correct:

- Note 1. When the counter is stopped (RTCE = 0), RWST is not set to 1.
- Note 2. Be sure to confirm that RWST = 0 before setting STOP mode.
- Caution 1. Complete the series of operations of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second. When writing to the counter is required while generation of the alarm interrupt is enabled, first set the CT2 to CT0 bits to 010B (generating the constant-period interrupt once per 1 second). Then, complete the processing from setting the RWAIT bit to 1 to setting it to 0 before generation of the next constantperiod interrupt.
- Caution 2. When changing the values of the SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR register while the counter operates (RTCE = 1), rewrite the values of the MIN register after disabling interrupt servicing INTRTC by using the interrupt mask flag register. Furthermore, clear the WAFG, RIFG and RTCIF flags after rewriting the MIN register.
- **Remark** SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR may be written in any sequence. All the registers do not have to be set and only some registers may be written.



## 4. 34.3.2 Supply current characteristics (p.1182 to p.1185)

#### Incorrect:

34.3.2 Supply current characteristics

#### $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

| Parameter      | Symbol                                         |      | Conditions             |                                     |                     | MIN.                 | TYP.        | MAX. | Unit |     |  |
|----------------|------------------------------------------------|------|------------------------|-------------------------------------|---------------------|----------------------|-------------|------|------|-----|--|
| Supply         | upply IDD1 Operating HS fHOCO = 48 MHz Note 3, |      | fHOCO = 48 MHz Note 3, | Basic                               | VDD = 3.6 V         |                      | 2.2         | 2.8  | mA   |     |  |
| current Note 1 |                                                | mode |                        | ,                                   | fiH = 24 MHz Note 3 | operation            | VDD = 3.0 V |      | 2.2  | 2.8 |  |
|                |                                                |      | mode Note 5            |                                     | Normal              | VDD = 3.6 V          |             | 4.4  | 8.5  |     |  |
|                |                                                |      |                        |                                     | operation           | VDD = 3.0 V          |             | 4.4  | 8.5  |     |  |
|                |                                                |      |                        |                                     |                     |                      |             |      |      |     |  |
|                |                                                |      |                        | fsub = 32.768 kHz <sup>Note 4</sup> | Normal              | Square wave input    |             | 6.2  | 13.3 |     |  |
|                |                                                |      |                        | TA = +85°C                          | operation           | Resonator connection |             | 6.2  | 13.4 |     |  |

- Note 1. Total current flowing into Vob, including the input leakage current flowing when the level of the input pin is fixed to Vob, or Vss. The values below the MAX. column include the peripheral operation current... However, not including the current flowing into the LCD controller/driver, A/D converter, D/A. converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.

 
 Note 4.
 When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultralow power consumption oscillation). However, not including the current flowing into the real-time clock.

 2, 12-bit interval timer, and watchdog timer.

Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

| HS (high-speed main) mode: | 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V@1 MHz to 24 MHz                                   |
|----------------------------|---------------------------------------------------------------------------------------------|
|                            | 2.4 V $\leq$ VDD $\leq$ 3.6 V@1 MHz to 16 MHz                                               |
| LS (low-speed main) mode:  | $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}@1 \text{ MHz}$ to $8 \text{ MHz}$ |
| LV (low-voltage main) mode | $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}@1 \text{ MHz}$ to $4 \text{ MHz}$ |

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. file: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- **Remark 4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

#### Correct:

(1/2)

34.3.2 Supply current characteristics

#### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

| Parameter   | Symbol    |             |             | Conditions              |           |                   | MIN. | TYP. | MAX. | Unit |
|-------------|-----------|-------------|-------------|-------------------------|-----------|-------------------|------|------|------|------|
| Supply      | IDD1      | Operating   | HS          | fHOCO = 48 MHz Note 3,  | Basic     | VDD = 3.6 V       |      | 2.2  | 2.8  | mA   |
| mode Note 5 | operation | VDD = 3.0 V |             | 2.2                     | 2.8       |                   |      |      |      |      |
|             |           |             | mode Note 5 |                         | Normal    | VDD = 3.6 V       |      | 4.4  | 8.5  |      |
|             |           |             |             |                         | operation | VDD = 3.0 V       |      | 4.4  | 8.5  |      |
|             |           |             |             |                         |           |                   |      |      |      |      |
|             |           |             |             | fsub = 32.768 kHzNote 4 | Normal    | Square wave input |      | 6.2  | 13.3 |      |
|             |           | TA = +85°C  | operation   | Resonator connection    |           | 6.2               | 13.4 |      |      |      |

Note 1. Total current flowing into V<sub>DD</sub>, including the input leakage current flowing when the level of the input pin is fixed to V<sub>DD</sub>, or V<sub>SS</sub>. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.

The currents in the "TYP." column do not include the operating currents of the peripheral modules.
The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the real-time clock 2.

- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultralow power consumption oscillation).
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V ≤ VDD ≤ 3.6 V@1 MHz to 24 MHz

|                            | 2.4 V $\leq$ VDD $\leq$ 3.6 V@1 MHZ to 16 MHZ            |
|----------------------------|----------------------------------------------------------|
| LS (low-speed main) mode:  | 1.8 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V@1 MHz to 8 MHz |
| LV (low-voltage main) mode | 1.6 V ≤ V <sub>DD</sub> ≤ 3.6 V@1 MHz to 4 MHz           |

**Remark 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

Remark 2. fHoco: High-speed on-chip oscillator clock frequency (48 MHz max.)

Remark 3. fill: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)

**Remark 4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C



(1/2)

| (TA = -40 to +85°C. | 1.6 V ≤ VDD ≤ 3.6 V, Vss = 0 V) |
|---------------------|---------------------------------|
| (                   |                                 |

| -                 | 0.1.1          | 0          |                                     |                                                                    |                      |      | -    |      |      |
|-------------------|----------------|------------|-------------------------------------|--------------------------------------------------------------------|----------------------|------|------|------|------|
| Parameter         | Symbol         | Conditions |                                     | 1                                                                  | 1                    | MIN. | TYP. | MAX. | Unit |
| Supply<br>current | IDD2<br>Note 2 | HALT mode  | HS (high-speed main)<br>mode Note 7 | fHOCO = 48 MHz Note 4,                                             | VDD = 3.6 V          |      | 0.77 | 2.70 | mA   |
| lote 1            | NOLE 2         |            | mode bales.                         | fiH = 24 MHz Note 4                                                | VDD = 3.0 V          |      | 0.77 | 2.70 |      |
|                   |                |            |                                     | fHOCO = 24 MHz Note 4,                                             | VDD = 3.6 V          |      | 0.55 | 1.91 |      |
|                   |                |            |                                     | fiH = 24 MHz Note 4                                                | VDD = 3.0 V          |      | 0.55 | 1.90 |      |
|                   |                |            |                                     | fHOCO = 16 MHz Note 4,                                             | VDD = 3.6 V          |      | 0.48 | 1.41 |      |
|                   |                |            |                                     | fiH = 16 MHz Note 4                                                | VDD = 3.0 V          |      | 0.47 | 1.41 | ]    |
|                   |                |            | LS (low-speed main)                 | fHOCO = 8 MHz <sup>Note 4</sup> ,<br>fiH = 8 MHz <sup>Note 4</sup> | VDD = 3.0 V          |      | 300  | 770  | μA   |
|                   |                |            | mode Note Z                         |                                                                    | VDD = 2.0 V          |      | 300  | 770  |      |
|                   |                |            | LV (low-voltage main)               | fHOCO = 4 MHz <sup>Note 4</sup> ,<br>fiH = 4 MHz <sup>Note 4</sup> | VDD = 3.0 V          |      | 440  | 770  | μA   |
|                   |                |            |                                     |                                                                    | VDD = 2.0 V          |      | 440  | 770  |      |
|                   |                |            |                                     | fmx = 20 MHz Note 3,                                               | Square wave input    |      | 0.35 | 1.63 | mA   |
|                   |                |            | mode Note Z                         | VDD = 3.6 V                                                        | Resonator connection |      | 0.51 | 1.68 |      |
|                   |                |            |                                     | fmx = 20 MHz Note 3,                                               | Square wave input    |      | 0.34 | 1.63 |      |
|                   |                |            | VDD = 3.0 V                         | Resonator connection                                               |                      | 0.51 | 1.68 |      |      |
|                   |                |            | fmx = 16 MHz Note 3,                | Square wave input                                                  |                      | 0.30 | 1.22 |      |      |
|                   |                |            |                                     | VDD = 3.6 V                                                        | Resonator connection |      | 0.45 | 1.39 |      |
|                   |                |            |                                     | fmx = 16 MHz <sup>Note 3</sup> ,<br>VDD = 3.0 V                    | Square wave input    |      | 0.29 | 1.20 | _    |
|                   |                |            |                                     |                                                                    | Resonator connection |      | 0.45 | 1.38 |      |
|                   |                |            |                                     | fMX = 10 MHz Note 3.                                               | Square wave input    |      | 0.23 | 0.82 |      |
|                   |                |            |                                     | VDD = 3.6 V                                                        | Resonator connection |      | 0.30 | 0.90 | -    |
|                   |                |            |                                     | fmx = 10 MHz Note 3.                                               | Square wave input    |      | 0.22 | 0.81 |      |
|                   |                |            |                                     | VDD = 3.0 V                                                        | Resonator connection |      | 0.30 | 0.89 |      |
|                   |                |            | LS (low-speed main)                 | fmx = 8 MHz Note 3,                                                | Square wave input    |      | 120  | 510  | μA   |
|                   |                |            | mode Note Z                         | VDD = 3.0 V                                                        | Resonator connection |      | 170  | 560  | ·    |
|                   |                |            |                                     | fMX = 8 MHz Note 3.                                                | Square wave input    |      | 130  | 520  |      |
|                   |                |            | VDD = 2.0 V                         | Resonator connection                                               |                      | 170  | 570  |      |      |
|                   |                |            |                                     |                                                                    |                      |      |      | 0.0  |      |
| Ipr               | IDD3           | STOP mode  | T <sub>A</sub> = -40°C              |                                                                    |                      |      | 0.18 | 0.52 | μA   |
|                   | Note 6         | Note &     | $T_{A} = +25^{\circ}C$              |                                                                    |                      |      | 0.25 | 0.52 |      |

|  |        |        | T <sub>A</sub> = -40°C | 0.18 | 0.52 | μΑ |
|--|--------|--------|------------------------|------|------|----|
|  | Note 6 | Note.8 | T <sub>A</sub> = +25°C | 0.25 | 0.52 |    |
|  |        |        | T <sub>A</sub> = +50°C | 0.34 | 2.21 |    |
|  |        |        | T <sub>A</sub> = +70°C | 0.64 | 3.94 |    |
|  |        |        | T <sub>A</sub> = +85°C | 1.18 | 7.95 |    |
|  |        |        | T <sub>A</sub> = +85°C | 1.18 | 7.95 |    |

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX, column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pulldown resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.

#### Date: Jan. 19, 2023

(2/2)

#### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

| Parameter | Symbol | Conditions |                        |                                  |                      | MIN. | TYP. | MAX. | Unit |
|-----------|--------|------------|------------------------|----------------------------------|----------------------|------|------|------|------|
| Supply    | IDD2   | HALT mode  | HS (high-speed main)   | fHOCO = 48 MHz Note 4,           | VDD = 3.6 V          |      | 0.77 | 2.70 | mA   |
| current   | Note 2 |            | mode Note 6            | fiH = 24 MHz Note 4              | VDD = 3.0 V          |      | 0.77 | 2.70 |      |
| Note 1    |        |            |                        | fHOCO = 24 MHz Note 4,           | VDD = 3.6 V          |      | 0.55 | 1.91 |      |
|           |        |            |                        | fiH = 24 MHz Note 4              | VDD = 3.0 V          |      | 0.55 | 1.90 |      |
|           |        |            |                        | fHOCO = 16 MHz Note 4,           | VDD = 3.6 V          |      | 0.48 | 1.41 |      |
|           |        |            |                        | fiH = 16 MHz Note 4              | VDD = 3.0 V          |      | 0.47 | 1.41 |      |
|           |        |            | LS (low-speed main)    | fHOCO = 8 MHz Note 4,            | VDD = 3.0 V          |      | 300  | 770  | μA   |
|           |        |            | mode Note 6            | fiH = 8 MHz Note 4               | VDD = 2.0 V          |      | 300  | 770  |      |
|           |        |            | LV (low-voltage main)  | fHOCO = 4 MHz Note 4,            | VDD = 3.0 V          |      | 440  | 770  | μA   |
|           |        |            | mode Note 6            | fiH = 4 MHz Note 4               | VDD = 2.0 V          |      | 440  | 770  |      |
|           |        |            | HS (high-speed main)   | fmx = 20 MHz Note 3,             | Square wave input    |      | 0.35 | 1.63 | mA   |
|           |        |            | mode Note 6            | VDD = 3.6 V                      | Resonator connection |      | 0.51 | 1.68 |      |
|           |        |            |                        | fmx = 20 MHz Note 3,             | Square wave input    |      | 0.34 | 1.63 |      |
|           |        |            |                        | VDD = 3.0 V                      | Resonator connection |      | 0.51 | 1.68 |      |
|           |        |            | fmx = 16 MHz Note 3,   | Square wave input                |                      | 0.30 | 1.22 |      |      |
|           |        |            | VDD = 3.6 V            | Resonator connection             |                      | 0.45 | 1.39 |      |      |
|           |        |            |                        | fMX = 16 MHz Note 3,             | Square wave input    |      | 0.29 | 1.20 |      |
|           |        |            |                        | VDD = 3.0 V                      | Resonator connection |      | 0.45 | 1.38 |      |
|           |        |            |                        | fmx = 10 MHz Note 3,             | Square wave input    |      | 0.23 | 0.82 |      |
|           |        |            |                        | VDD = 3.6 V                      | Resonator connection |      | 0.30 | 0.90 |      |
|           |        |            |                        | f <sub>MX</sub> = 10 MHz Note 3, | Square wave input    |      | 0.22 | 0.81 |      |
|           |        |            |                        | VDD = 3.0 V                      | Resonator connection |      | 0.30 | 0.89 |      |
|           |        |            | LS (low-speed main)    | fmx = 8 MHz Note 3,              | Square wave input    |      | 120  | 510  | μA   |
|           |        |            | mode Note 6            | VDD = 3.0 V                      | Resonator connection |      | 170  | 560  |      |
|           |        |            |                        | fmx = 8 MHz Note 3,              | Square wave input    |      | 130  | 520  |      |
|           |        |            |                        | VDD = 2.0 V                      | Resonator connection |      | 170  | 570  |      |
|           |        |            |                        |                                  |                      |      |      |      |      |
|           | IDD3   | STOP mode  | TA = -40°C             |                                  |                      |      | 0.18 | 0.52 | μA   |
|           |        | Note 7     | T <sub>A</sub> = +25°C |                                  |                      |      | 0.25 | 0.52 |      |
|           |        |            | T <sub>A</sub> = +50°C |                                  |                      |      | 0.34 | 2.21 |      |
|           |        |            | T <sub>A</sub> = +70°C |                                  |                      |      | 0.64 | 3.94 |      |
|           |        |            | T <sub>A</sub> = +85°C |                                  |                      |      | 1.18 | 7.95 |      |

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.

• The currents in the "TYP." column do not include the operating currents of the peripheral modules.

• The currents in the "MAX." column include the operating currents of the peripheral modules, except for

those flowing into LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash

memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the real-time clock 2.



- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is... included. However, not including the current flowing into the 12-bit interval timer and watchdog... timer.
- Note 6.....Not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog. timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

| HS (high-speed main) mode: | 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V@1 MHz to 24 MHz |
|----------------------------|-----------------------------------------------------------|
|                            | 2.4 V $\leq$ VDD $\leq$ 3.6 V@1 MHz to 16 MHz             |
| LS (low-speed main) mode:  | 1.8 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V@1 MHz to 8 MHz  |
| LV (low-voltage main) mode | 1.6 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V@1 MHz to 4 MHz  |

- **Note 8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fin: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- **Remark 5.** Except subsystem clock operation, temperature condition of the TYP. value is T<sub>A</sub> = 25

Date: Jan. 19, 2023

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

- **Note 2.** During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).
- **Note 6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:  $2.7 \vee \leq V_{DD} \leq 3.6 \vee @1 \text{ MHz to } 24 \text{ MHz}$  $2.4 \vee \leq V_{DD} \leq 3.6 \vee @1 \text{ MHz to } 16 \text{ MHz}$ LS (low-speed main) mode:  $1.8 \vee \leq V_{DD} \leq 3.6 \vee @1 \text{ MHz to } 8 \text{ MHz}$ 

- LV (low-voltage main) mode  $1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}_{@}1 \text{ MHz}$  to 4 MHz
- Note 7. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

Remark 2. fHoco: High-speed on-chip oscillator clock frequency (48 MHz max.)

Remark 3. fill: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)

Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25



## 5. 35.3.2 Supply current characteristics (p.1248 to p.1251)

#### Incorrect:

35.3.2 Supply current characteristics

#### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

| Parameter      | Symbol |           |                   | Conditions               |           |                      | MIN. | TYP. | MAX. | Unit |
|----------------|--------|-----------|-------------------|--------------------------|-----------|----------------------|------|------|------|------|
| Supply         | IDD1   | Operating | HS                | fHOCO = 48 MHz Note 3,   | Basic     | VDD = 3.6 V          |      | 2.2  | 2.9  | mA   |
| current Note 1 |        | mode      | (high-speed main) | fiH = 24 MHz Note 3      | operation | VDD = 3.0 V          |      | 2.2  | 2.9  |      |
|                |        |           | mode Note 5       |                          | Normal    | VDD = 3.6 V          |      | 4.4  | 9.2  |      |
|                |        |           |                   |                          | operation | VDD = 3.0 V          |      | 4.4  | 9.2  |      |
|                |        |           |                   |                          |           |                      |      |      |      |      |
|                |        |           |                   |                          |           |                      |      |      |      |      |
|                |        |           |                   | fsub = 32.768 kHz Note 4 | Normal    | Square wave input    |      | 6.2  | 13.3 |      |
|                |        |           |                   | TA = +85°C               | operation | Resonator connection |      | 6.2  | 13.4 |      |
|                |        |           |                   | fsub = 32.768 kHz Note 4 | Normal    | Square wave input    |      | 8.3  | 46.0 |      |
| n              |        |           |                   | TA = +105°C              | operation | Resonator connection |      | 8.4  | 46.0 |      |

- Note 1. Total current flowing into Vob, including the input leakage current flowing when the level of the input pin is fixed to Vob, or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A. converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the real-time clock.
   2, 12-bit interval timer, and watchdog timer.
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:  $2.7 V \le V_{DD} \le 3.6 V@1 MHz$  to 24 MHz  $2.4 V \le V_{DD} \le 3.6 V@1 MHz$  to 16 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fil: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

#### Correct:

(1/2)

#### 35.3.2 Supply current characteristics

#### (TA = -40 to +105°C, 2.4 V $\leq$ VDD $\leq$ 3.6 V, Vss = 0 V)

| Parameter      | Symbol |           |             | Conditions               |           |                      | MIN. | TYP. | MAX. | Unit |
|----------------|--------|-----------|-------------|--------------------------|-----------|----------------------|------|------|------|------|
| Supply         | IDD1   | Operating | HS          | fHOCO = 48 MHz Note 3,   | Basic     | VDD = 3.6 V          |      | 2.2  | 2.9  | mA   |
| current Note 1 |        | mode      |             | fiH = 24 MHz Note 3      | operation | VDD = 3.0 V          |      | 2.2  | 2.9  | ı.   |
|                |        |           | mode Note 5 |                          | Normal    | VDD = 3.6 V          |      | 4.4  | 9.2  |      |
|                |        |           |             |                          | operation | VDD = 3.0 V          |      | 4.4  | 9.2  | ı.   |
|                |        |           |             |                          |           |                      |      |      |      |      |
|                |        |           |             |                          |           |                      |      |      |      |      |
|                |        |           |             | fsub = 32.768 kHz Note 4 |           | Square wave input    |      | 6.2  | 13.3 | r.   |
|                |        |           |             | TA = +85°C               | operation | Resonator connection |      | 6.2  | 13.4 | 1    |
|                |        |           |             | fsub = 32.768 kHz Note 4 | Normal    | Square wave input    |      | 8.3  | 46.0 | ı.   |
|                |        |           |             | TA = +105°C              | operation | Resonator connection |      | 8.4  | 46.0 |      |

**Note 1.** Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or Vss. The following points apply in the HS (high-speed main) mode.

• The currents in the "TYP." column do not include the operating currents of the peripheral modules.

• The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the real-time clock 2.

- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultralow power consumption oscillation).
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:  $2.7 \vee \leq V_{DD} \leq 3.6 \vee @1 \text{ MHz}$  to 24 MHz  $2.4 \vee \leq V_{DD} \leq 3.6 \vee @1 \text{ MHz}$  to 16 MHz

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

Remark 2. fHoco: High-speed on-chip oscillator clock frequency (48 MHz max.)

Remark 3. fil: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)

**Remark 4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

**Remark 5.** Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C



(1/2)

#### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(2/2)

| Parameter         | Symbol | Conditions |                                            |                                                 |                      | MIN. | TYP. | MAX. | Unit |
|-------------------|--------|------------|--------------------------------------------|-------------------------------------------------|----------------------|------|------|------|------|
| Supply            | IDD2   | HALT mode  | HS (high-speed main)                       | fHOCO = 48 MHz Note 4,                          | VDD = 3.6 V          |      | 0.77 | 3.4  | mA   |
| current<br>Note 1 | Note 2 |            | mode Note Z                                | fiH = 24 MHz Note 4                             | VDD = 3.0 V          |      | 0.77 | 3.4  | I    |
| NOLE I            |        |            |                                            | fHOCO = 24 MHz Note 4,                          | VDD = 3.6 V          |      | 0.55 | 2.7  | I    |
|                   |        |            |                                            | fiH = 24 MHz Note 4                             | VDD = 3.0 V          |      | 0.55 | 2.7  | I    |
|                   |        |            |                                            | fHOCO = 16 MHz Note 4,                          | VDD = 3.6 V          |      | 0.48 | 1.9  |      |
|                   |        |            |                                            | fiH = 16 MHz Note 4                             | VDD = 3.0 V          |      | 0.47 | 1.9  | I    |
|                   |        |            | HS (high-speed main)<br>mode <b>Note.Z</b> | fmx = 20 MHz <sup>Note 3</sup> ,<br>VDD = 3.6 V | Square wave input    |      | 0.35 | 2.10 | mA   |
|                   |        |            |                                            |                                                 | Resonator connection |      | 0.51 | 2.20 | I    |
|                   |        |            |                                            | fmx = 20 MHz Note 3,                            | Square wave input    |      | 0.34 | 2.10 | I    |
|                   |        |            |                                            | VDD = 3.0 V                                     | Resonator connection |      | 0.51 | 2.20 | I    |
|                   |        |            |                                            | fmx = 16 MHz <sup>Note 3</sup> ,<br>VDD = 3.6 V | Square wave input    |      | 0.30 | 1.25 |      |
|                   |        |            |                                            |                                                 | Resonator connection |      | 0.45 | 1.41 |      |
|                   |        |            |                                            | fmx = 16 MHz Note 3,                            | Square wave input    |      | 0.29 | 1.23 |      |
|                   |        |            |                                            | VDD = 3.0 V                                     | Resonator connection |      | 0.45 | 1.41 | I    |
|                   |        |            |                                            | fmx = 10 MHz Note 3,                            | Square wave input    |      | 0.23 | 1.10 | l    |
|                   |        |            |                                            | VDD = 3.6 V                                     | Resonator connection |      | 0.30 | 1.20 |      |
|                   |        |            |                                            | fmx = 10 MHz Note 3,                            | Square wave input    |      | 0.22 | 1.10 |      |
|                   |        |            |                                            | VDD = 3.0 V                                     | Resonator connection |      | 0.30 | 1.20 |      |

|  | IDD3   | STOP mode               | $T_A = -40^{\circ}C$   | 0.18  | 0.52 | μA |
|--|--------|-------------------------|------------------------|-------|------|----|
|  | Note_6 | Note-8                  | TA = +25°C             | 0.25  | 0.52 |    |
|  |        |                         | T <sub>A</sub> = +50°C | 0.34  | 2.21 |    |
|  |        |                         | T <sub>A</sub> = +70°C | 0.64  | 3.94 |    |
|  |        |                         | T <sub>A</sub> = +85°C | 1.18  | 7.95 |    |
|  |        | T <sub>A</sub> = +105°C | 2.92                   | 40.00 |      |    |

- Note 1. Total current flowing into Vob, including the input leakage current flowing when the level of the input pin is fixed to Vob or Vss. The values below the MAX. column include the peripheral operation current... However, not including the current flowing into the LCD controller/driver, A/D converter, D/A. converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- **Note 2.** During HALT instruction execution by flash memory.
- **Note 3.** When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is. included. However, not including the current flowing into the 12-bit interval timer and watchdog. timer.
- Note 6.....Not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.

#### Date: Jan. 19, 2023

#### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

| current Note 2 mode Note 6 fiH = 24 M       | 48 MHz <sup>Note 4</sup> ,<br>MHz <sup>Note 4</sup><br>24 MHz <sup>Note 4</sup> . | VDD = 3.6 V<br>VDD = 3.0 V | MIN. | TYP.<br>0.77 | MAX. | Unit |
|---------------------------------------------|-----------------------------------------------------------------------------------|----------------------------|------|--------------|------|------|
|                                             | MHz Note 4                                                                        |                            |      | 0.77         | 2.4  |      |
|                                             |                                                                                   | VDD = 3.0 V                |      |              | 3.4  | mA   |
|                                             | 24 MHz Note 4.                                                                    |                            |      | 0.77         | 3.4  | -    |
|                                             | fHOCO = 24 MHz Note 4,                                                            | VDD = 3.6 V                |      | 0.55         | 2.7  |      |
| fiH = 24 N                                  | MHz Note 4                                                                        | VDD = 3.0 V                |      | 0.55         | 2.7  |      |
| fHOCO = 1                                   | fHOCO = 16 MHz Note 4,<br>fiH = 16 MHz Note 4                                     | VDD = 3.6 V                |      | 0.48         | 1.9  |      |
| fiH = 16 N                                  |                                                                                   | VDD = 3.0 V                |      | 0.47         | 1.9  |      |
| HS (high-speed main) f <sub>MX</sub> = 20 l |                                                                                   | Square wave input          |      | 0.35         | 2.10 | mA   |
| mode Note 6 VDD = 3.6                       |                                                                                   | Resonator connection       |      | 0.51         | 2.20 |      |
| fmx = 20                                    | MHz Note 3,                                                                       | Square wave input          |      | 0.34         | 2.10 |      |
| VDD = 3.0                                   | VDD = 3.0 V                                                                       | Resonator connection       |      | 0.51         | 2.20 |      |
| fmx = 16                                    | fmx = 16 MHz <sup>Note 3</sup> ,<br>VDD = 3.6 V                                   | Square wave input          |      | 0.30         | 1.25 |      |
| VDD = 3.6                                   |                                                                                   | Resonator connection       |      | 0.45         | 1.41 |      |
| fmx = 16                                    | MHz Note 3,                                                                       | Square wave input          |      | 0.29         | 1.23 |      |
| VDD = 3.0                                   | 0 V                                                                               | Resonator connection       |      | 0.45         | 1.41 |      |
| fmx = 10                                    | MHz Note 3,                                                                       | Square wave input          |      | 0. 23        | 1.10 |      |
| VDD = 3.6                                   | 6 V                                                                               | Resonator connection       |      | 0.30         | 1.20 | -    |
| fmx = 10                                    | fmx = 10 MHz Note 3,                                                              | Square wave input          |      | 0.22         | 1.10 |      |
| VDD = 3.0                                   | 0 V                                                                               | Resonator connection       |      | 0.30         | 1.20 |      |
|                                             |                                                                                   |                            |      | i            |      |      |

|  | IDD3 |        | T <sub>A</sub> = -40°C  |  | 0.18 | 0.52  | μA |
|--|------|--------|-------------------------|--|------|-------|----|
|  |      | Note 7 | T <sub>A</sub> = +25°C  |  | 0.25 | 0.52  |    |
|  |      |        | T <sub>A</sub> = +50°C  |  | 0.34 | 2.21  |    |
|  |      |        | T <sub>A</sub> = +70°C  |  | 0.64 | 3.94  |    |
|  |      |        | T <sub>A</sub> = +85°C  |  | 1.18 | 7.95  |    |
|  |      |        | T <sub>A</sub> = +105°C |  | 2.92 | 40.00 |    |

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The following points apply in the HS (high-speed main) mode.

• The currents in the "TYP." column do not include the operating currents of the peripheral modules.

• The currents in the "MAX." column include the operating currents of the peripheral modules, except for

- those flowing into LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0
- function module, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the real-time clock 2.

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.



(2/2)

Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:  $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}@1 \text{ MHz}$  to 24 MHz

2.4 V ≤ V<sub>DD</sub> ≤ 3.6 V@1 MHz to 16 MHz

- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fil: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Date: Jan. 19, 2023

- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).
- Note 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:  $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}@1 \text{ MHz}$  to 24 MHz

2.4 V ≤ V<sub>DD</sub> ≤ 3.6 V@1 MHz to 16 MHz

- Note 7. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fil: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)

Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

