Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

HITACHI SEMICONDUCTOR TECHNICAL UPDATE

Classification of Production	microprocessor				No	TN-SH7-415A/E	
THEME	Guidance of SH7706 hardwa manual correction	7706 hardware on Classification of Information		 Spec change Supplement of Documents Limitation of Use 		 Change of Mask Change of Production Line 	
		Lot No.				Rev.	Effective Date
PRODUCT NAME	SH7706(HD6417706) All		Reference Documents	SH7706 Hardw manual Rev ADE-602-23	are .2.0 5A	1.0	Manual revise

There is the following correction in SH7706 hardware manual.

1.Errata

Page	Item	Error	Right
184	Explanation of bits 6, 5, 4, and 3 "0101" portions	0101: The row address begins with A10. (TheA10 value is output at A1 when the row address is output. 128M(2M×16bits ×4banks), 64M(1M×16bits×4banks))	0101: The row address begins with A10. (TheA10 value is output at A1 when the row address is output. 128M(2M×16bits×4banks), 64M(2M×8bits×4banks))
11-5	Figure 11.2 WTCNT,WTCSR address	Address: H'FFFFFE84 Address: H'FFFFFE86	Address: H'FFFFF84 Address: H'FFFFF86
17-10	17.1.6 Explanation of bits 15	When ASEMDO = 1, these bits are always read as 1 and must only be written with 0.	When ASEMDO = 1, these bits are always read as 1.
18-4	18.3.2 Port C Data Register (PCDR)	PCDR is initialized to H'00 by a power-on reset, after which the general input port function(pullup MOS on) is set as the initial pin function, and the corresponding pin levels are read. It retains its previous value in standby mode and sleep mode, and in a manual reset.	PCDR is initialized to H'00 by a power-on reset.
18-6	18.4.2 Port D Data Register (PDDR)	PDDR is initialized to H'00 by a power-on reset, after which the general input port function(pullup MOS on) is set as the initial pin function, and the corresponding pin levels are read. It retains its previous value in standby mode and sleep mode, and in a manual reset.	PDDR is initialized to H'00 by a power-on reset.

Page	Item	Error	Right
18-7	18.5.2 Port E Data Register (PEDR)	PEDR is initialized to H'00 by a power-on reset, after which the general input port function(pullup	PEDR is initialized to H'00 by a power-on reset.
		function, and the corresponding pin levels are read. It retains its previous value in standby mode and sleep mode, and in a manual reset.	
18-11	18.8.2 Port H data Register (PHDR)	PHDR is initialized to H'00 by a power-on reset, after which the general input port function(pullup MOS on) is set as the initial pin function, and the corresponding pin levels are read. It retains its previous value in standby mode and sleep mode, and in a manual reset.	PHDR is initialized to H'00 by a power-on reset.
18-12	18.9 Port J	Each pin has an input pullup MOS, which is controlled by Port J Control Register (PJCR) in PFC.	(delete)
24-4	Table 24.4 Note	Note: * The Min value depends on the clock mode used. See table 10.3, Available Combinations of Clock Mode and FRQCR Values.	(delete)
24-31	Figure24.31 Synchronous DRAM Burst Read Bus Cycle (RAS Down, Same Row Address, CAS Latency = 2)		Tnop cycle is deleted. tAD, tCSD3, tRWD, tRASD, tDQMD, and tDAKD1 are specified from the head of Tc1 cycle.

2.List of registers (p.596)

Register	Power-on	Manual	Software	Module	Sleep	Module
Name	Reset	Reset	Standby	Standby	Breep	modulo
PTEH	Undefined	Undefined	Held	Held	Held	CCN
PTEL	Undefined	Undefined	Held	Held	Held	
TTB	Undefined	Undefined	Held	Held	Held	
TEA	Undefined	Undefined	Held	Held	Held	
MMUCR	Initialized *1	Initialized *1	Held	Held	Held	
BASRA	Undefined	Undefined	Held	Held	Held	
BASRB	Undefined	Undefined	Held	Held	Held	
TRA	Undefined	Undefined	Held	Held	Held	
INTEVT	Undefined	Undefined	Held	Held	Held	
BRSR	Initialized *1	Initialized *1	Held	Held	Held	UBC
BRDR	Initialized *1	Initialized *1	Held	Held	Held	
FRQCR	Initialized *2	Held	Held	Held	Held	CPG
WTCNT	Initialized *2	Held	Held	Held	Held	
WTCSR	Initialized *2	Held	Held	Held	Held	
RSECAR	Held *3	Held *3	Held	Held	Held	RTC
RMINAR	Held *3	Held *3	Held	Held	Held	
RHRAR	Held *3	Held *3	Held	Held	Held	
RWKAR	Held *3	Held *3	Held	Held	Held	
RDAYAR	Held *3	Held *3	Held	Held	Held	
RMONAR	Held *3	Held *3	Held	Held	Held	
TCPR_2	Undefined	Undefined	Held	Held	Held	TMU
INTEVT2	Undefined	Undefined	Held	Held	Held	INTC
SAR_0	Undefined	Undefined	Held	Held	Held	DMAC
DAR_0	Undefined	Undefined	Held	Held	Held	
DMATCR_0	Undefined	Undefined	Held	Held	Held	
SAR_1	Undefined	Undefined	Held	Held	Held	
DAR_1	Undefined	Undefined	Held	Held	Held	
DMATCR_1	Undefined	Undefined	Held	Held	Held	
SAR_2	Undefined	Undefined	Held	Held	Held	
DAR_2	Undefined	Undefined	Held	Held	Held	
DMATCR_2	Undefined	Undefined	Held	Held	Held	
SAR_3	Undefined	Undefined	Held	Held	Held	
DAR_3	Undefined	Undefined	Held	Held	Held	
DMATCR_3	Undefined	Undefined	Held	Held	Held	
SDIR *4	Held	Held	Held	Held	Held	UDI

23.3 Register States in Processing Mode (The shaded columns show the change part)

Note *1 Some bits are not initialized.

*2 Not initialized by a power-on reset generated by the WDT.

*3 Some bits are initialized.

*4 Initialized on asserting state of $\overline{\text{TRST}}$ or on Test-Logic-Reset state of TAP.

<u>3. AC Characteristics</u> (p.607) Table 24.5 Summarize clock timing in one table as follows. (The shaded columns show the change part)

Item	Symbol	min	max	Unit	Figure
EXTAL clock input frequency(clock mode 0)	\mathbf{f}_{EX}	25	66.67	MHz	24.1
EXTAL clock input cycle time(clock mode 0)	t _{EXcyc}	15	40	ns	
EXTAL clock input frequency(clock mode 1)	f _{EX}	6.25	16.67	MHz	
EXTAL clock input cycle time(clock mode 1)	t _{EXcyc}	60	160	ns	
EXTAL clock input low pulse width	t _{EXL}	1.5	—	ns	
EXTAL clock input high pulse width	$\mathbf{t}_{\mathrm{EXH}}$	1.5	—	ns	
EXTAL clock input rise time	t _{EXR}	_	6	ns	
EXTAL clock input fall time	t _{EXF}	_	6	ns	
CKIO clock input freqency	fcкı	25	66.67	MHz	24.2
CKIO clock input cycle time	t _{CKIcyc}	15	40	ns	
CKIO clock input low pulse width	t _{CKIL}	1.5	—	ns	
CKIO clock input low pulse width	t _{CKIH}	1.5	—	ns	
CKIO clock input rise time	tckir	_	6	ns	
CKIO clock input fall time	t _{CKIF}	_	6	ns	
CKIO clock output freqency	f _{OP}	25	66.67	MHz	24.3
CKIO clock output cycle time	t _{cyc}	15	40	ns	
CKIO clock output low pulse width	tckol	3	_	ns	
CKIO clock output high pulse width	tскон	3	—	ns	
CKIO clock output rise time	tckor	_	5	ns	
CKIO clock output fall time	tскоғ	_	5	ns	
Power-on oscillation settling time	tosc1	10	—	ms	24.4
RESETP setup time	tresps	20	_	ns	24.4, 24.5
RESETM setup time	t _{RESMS}	0	—	ns	
RESETP assert time	t _{RESPW}	20	—	t_{cyc}	
RESETM assert time	tresmw	20	—	$\mathbf{t}_{\mathrm{cyc}}$	
Standby return oscillation settling time1	tosc2	10	_	ms	24.5
Standby return oscillation settling time2	tosc3	10	—	ms	24.6
Standby return oscillation settling time3	tosc4	11	_	ms	24.7
PLL synchronization settling time 1	t _{PLL1}	100	—	ìs	24.8, 24.9
(at the releas from standby mode)					
PLL synchronization settling time 1	t _{PLL2}	100	_	ì s	24.10
(at the modification of multiplication rate)					
IRQ/IRL interruput determination time (RTC is used in the standby mode)	tirlstb	100		ìs	24.10

Table 24.5 Clock timing